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Abstract: A set of dual functional small molecules (DFSMs) containing different amino acids
has been synthesized and employed together with three different variants of the cytochrome
P450 monooxygenase P450BM3 from Bacillus megaterium in H2O2-dependent oxidation reactions.
These DFSMs enhance P450BM3 activity with hydrogen peroxide as an oxidant, converting these
enzymes into formal peroxygenases. This system has been employed for the catalytic epoxidation of
styrene and in the sulfoxidation of thioanisole. Various P450BM3 variants have been evaluated in
terms of activity and selectivity of the peroxygenase reactions.

Keywords: biocatalysis; cytochrome P450; dual functional small molecules; epoxidations; sulfoxidation

1. Introduction

Cytochrome P450 monooxygenases (P450 or CYP) catalyze a broad range of oxyfunctionalization
reactions of non-activated C–H- and C=C-bonds [1–6]. Especially, the frequently observed regio- and
enantioselectivity of this transformation makes P450s potentially very useful tools in preparative
biocatalysis [7].

The catalytic cycle of P450 monooxygenases comprises the reductive activation of molecular
oxygen to form the catalytically active oxyferryl species (i.e., a highly oxidized iron-oxo-complex).
The reducing equivalents needed for this reaction are generally derived from reduced nicotinamide
cofactors via more or less complex electron transport chains [8], adding complexity to the reaction
schemes [9].

In 1999, Arnold and coworkers proposed to preparatively exploit the well-known hydrogen
peroxide shunt pathway [10]. Here, the catalytically active compound is formed directly from H2O2

thereby drastically simplifying the regeneration scheme of P450 monooxygenases (Scheme 1).
Unfortunately, the majority of the known P450s are rapidly inactivated by H2O2 making the H2O2

shunt pathway practically irrelevant. Some exceptions are known, in which P450s can efficiently use
H2O2 through a substrate-assisted reaction mechanism for the hydroxylation or decarboxylation of
fatty acids [11–15].
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a base (Glutamate) present in peroxygenases but missing in the active site of P450 monooxygenases 49 
may account for the poor activity of P450 monooxygenases with H2O2 (Scheme 2). 50 
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Scheme 2. Formation of Compound I from H2O2 in peroxygenases. The active-site base glutamate 52 
(Glu, green) facilitates the reaction by first deprotonating the primary H2O2-adduct and by 53 
reprotonation of the peroxo-intermediate. 54 

To alleviate this shortcoming, a range of base-modified decoy molecules was suggested. In 55 
essence, these dual functional small molecules (DFSMs) comprise an imidazole-base coupled via a 56 
linker moiety to an amino acid anchoring part in order to position the base within the P450 57 
monooxygenases’ active sites, thereby enabling peroxygenase-like reactions [18,19]. In the current 58 
study, we set out to validate and broaden this very interesting concept. 59 

2. Results 60 

2.1. Preparation of the Dual Functional Small Molecules (DFSMs) 61 

Imidazole-based dual DFSMs were synthesized following a literature-known four-step 62 
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Scheme 1. Comparison of the classical regeneration and the H2O2-shunt pathway to drive P450
monooxygenase-catalyzed oxyfunctionalization reactions.

Recently, Cong and coworkers reported an elegant possible solution to the H2O2-related
inactivation of P450 monooxygenases [16,17]. By comparing the catalytic mechanism and active
sites of P450 monooxygenases with those of (H2O2-dependent) peroxygenases, these authors reasoned
that a base (Glutamate) present in peroxygenases but missing in the active site of P450 monooxygenases
may account for the poor activity of P450 monooxygenases with H2O2 (Scheme 2).
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Scheme 2. Formation of Compound I from H2O2 in peroxygenases. The active-site base glutamate (Glu,
green) facilitates the reaction by first deprotonating the primary H2O2-adduct and by reprotonation of
the peroxo-intermediate.

To alleviate this shortcoming, a range of base-modified decoy molecules was suggested. In essence,
these dual functional small molecules (DFSMs) comprise an imidazole-base coupled via a linker moiety
to an amino acid anchoring part in order to position the base within the P450 monooxygenases’ active
sites, thereby enabling peroxygenase-like reactions [18,19]. In the current study, we set out to validate
and broaden this very interesting concept.

2. Results

2.1. Preparation of the Dual Functional Small Molecules (DFSMs)

Imidazole-based dual DFSMs were synthesized following a literature-known four-step
procedure [17,20]. Overall, seven DFSMs comprising different amino acids and different spacer lengths
were synthesized (Scheme 3). It should be mentioned here that amongst the seven DFSMs synthesized
only 3 (Im-C5-Ile, Im-C6-Phe and Im-C6-Ile) showed significant activity with the enzyme tested.

For the P450 monooxygenase we chose the well-known CYP102A1 (P450BM3) from Bacillus
megaterium. More specifically, three variants P450BM3 F87A, P450BM3 V78A/F87A and P450BM3
A74E/F87V/P386S were recombinantly expressed in Escherichia coli and purified following literature
methods [21,22]. All variants contained a mutation at position 87, which had previously been reported
to broaden the substrate scope of P450BM3 [23]. The side-chain of phenylalanine 87 extends into
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the lumen of the substrate access channel close to the heme iron and thus residues with less bulky
side-chains, such as mutations to alanine or valine, widen the access channel by creating incremental
space in the vicinity of the heme iron [23]. The mutation V78A has a similar effect, making the
hydrophobic pocket that encloses the heme iron more capacious than in the wild type [23]. The variant
P450BM3 A74E/F87V/P386S has previously been shown to possess 2 or 2.5 fold increased catalytic
activity for the oxidation of β-ionone compared to the F87A or F87V single variants, respectively,
and was therefore also included here [21].
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Scheme 3. Dual Functional Small Molecules (DFSMs) synthesized for the P450BM3-catalyzed oxidations.

2.2. Biocatalytic Transformations Using the DFSMs/P450BM3 System

Having all catalytic components at hand, we first investigated the influence of the DFSMs on the
P450BM3-catalyzed and H2O2-driven epoxidation of styrene (1) to obtain optically active styrene oxide
(2). As shown in Table 1, only three of the seven DFSMs enabled H2O2-driven reactions with P50BM3.

Pleasingly, we found that the presence of DFSMs significantly improved the catalytic performance
of all P450BM3 variants. In case of the F87A variant for example, Im-C6-Phe increased the product
formation almost 20 fold. Other combinations gave similar improvements. However, at present
time we are unable to rationalize the improvements in light of DFSM binding to the enzyme active
site and/or positioning of the substrates. Further studies will be necessary to obtain a quantitative
structure–activity relationship. In line with the pH optimum of P450BM3 [24], the highest turnover
numbers were observed at slightly alkaline pH values (Table 1, entries 1 vs. 5 and 6; entries 9 vs. 12).
Decreasing the H2O2 concentration appeared to have a positive effect on the product formation (Table 1,
entries 1 vs. 7), which we attribute to a lower inactivation rate at lower peroxide concentrations.

Interestingly, the DFSMs also influenced the enantioselectivity of the epoxidation reaction,
which is in line with the original report by Cong and coworkers [17]. Possibly, this is due to a more
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stringent positioning of the starting material in the enzyme active site. However, again, no obvious
structure–activity relationship was observed.

Table 1. Epoxidation of styrene (1) catalyzed by DFSM/P450BM3 using H2O2 as the oxidant.a.
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4 None c 8 6 10
5 Im-C6-Phe 7 68 65
6 Im-C6-Phe 6 ≤2 –
7 Im-C6-Phe d 8 133 77

V78A/F87A variant

8 Im-C6-Phe 8 54 6
9 Im-C6-Ile 8 97 22

10 Im-C5-Ile 8 80 19
11 None 8 11 n.d.
12 Im-C6-Ile 6 ≤2 n.d.

A74E/F87V/P386S variant

13 Im-C6-Phe 8 ≤2 n.d.
14 Im-C6-Ile 8 17 4 (S)
15 Im-C5-Ile 8 17 6 (S)
16 None 8 ≤2 n.d.

a Reaction conditions: P450BM3 (0.5 µM), styrene (4 mM), H2O2 (20 mM; except entry 7), DFSM (0.5 mM),
in phosphate buffer. Reaction time: 30 min; b Determined by Gas Chromatography; c No reaction was observed in
absence of DFSM or biocatalyst; d c(H2O2) = 5 mM; n.d. not determined.

Similarly, P450BM3-catalyzed sulfoxidation of thioanisole (3) was positively influenced by
DFSMs (Table 2). Compared to the epoxidation reaction, rate accelerations were somewhat lower;
the enantioselectivity of the sulfoxidation reaction, however, was significantly improved by the
DFSMs. Both observations can be rationalized by the spontaneous (non-enantioselective) oxidation
of thioanisole by H2O2 [25]. Quite interestingly, the P450BM3 A74E/F87V/P386S variant, which in
the epoxidation reaction gave rather poor results compared to the other two variants, excelled in the
sulfoxidation reaction.

As mentioned above, H2O2-related inactivation of the heme enzyme appeared to be a major
limitation of the proposed H2O2-shunt pathway reaction of P450BM3. We therefore also investigated
the effect of controlled in situ H2O2 generation via reductive activation of O2 using an oxidase [26].
Thus, employing the commercially available alcohol oxidase from Pichia pastoris (PpAOx), H2O2 was
generated in situ from O2 at the expense of methanol (which was oxidized to formaldehyde).

When this system was applied (Table 3), reaction rates were significantly decreased (reaction
times 18 h), while at the same time the turnover numbers of the biocatalyst were improved, compared
to the use of H2O2 they were five times greater. The low concentration of H2O2 available slowed
down both the reaction rate and the oxidative inactivation. We expect that further optimized reaction
schemes may provide optimal H2O2 generation rates, ensuring maximized enzymatic sulfoxidation
while minimizing the H2O2-related inactivation of the heme enzyme. Again, in the absence of any
DFSM, near racemic product was observed, indicating predominant spontaneous sulfoxidation.
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Table 2. P450BM3-catalyzed sulfoxidation of thioanisole (3) using H2O2 as the oxidant.a.
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Table 3. P450BM3 F87A-catalyzed sulfoxidation of 3 using in situ generation of H2O2 by the
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One major drawback of classic P450 monooxygenation reactions is that, due to the exclusive water
solubility of the nicotinamide cofactors, they have to be performed in aqueous reaction media. As the
majority of the reagents of interest for P450 monooxygenase-catalyzed oxyfunctionalizations are rather
hydrophobic, reagent concentrations tend to be in the lower millimolar range, reducing the preparative
attractiveness of these reactions from an economic and environmental point-of-view [27]. In this
respect, the proposed peroxide-driven reaction offers some interesting possibilities for non-aqueous
reactions using P450 monooxygenases.
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To test this hypothesis, we evaluated the epoxidation of styrene using precipitated P450BM3 F87A
suspended in neat styrene as the reaction medium; the stoichiometric oxidant was tBuOOH (Scheme 4).
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Very pleasingly, under these conditions, epoxidation of styrene was observed in the presence of
Im-C5-Ile (TONP450BM3 = 178, TON = [Styrene oxide]/[P450BM3]), while in the absence of Im-C5-Ile,
100 turnovers were still observed for the biocatalyst. (R)-2 was obtained with optical purities around
15% for both reactions. In the absence of the P450BM3 F87A variant, no product formation was
observed, even upon prolonged reaction times. To the best of our knowledge, this is the first example
of a P450 monooxygenase reaction under neat conditions.

3. Materials and Methods

Unless otherwise noted, analytical grade solvents and commercially available reagents were used
without further purification.

Dual functional small molecules (DFSMs) were synthesized according to the methodology
described in the literature [17]. Compounds Im-C5-Ile, Im-C5-Phe, Im-C6-Ile, Im-C6-Phe and Im-C6-Met
exhibited physical and spectral properties in accordance with those reported [17].

GC (Gas Chromatography) analyses were performed on a Shimazdu GC-2010 Plus (Shimazdu,
Kyoto, Japan). For the oxidation of styrene (1) to styrene oxide (2), a ChirasilDex CB (Agilent, Santa
Clara, CA, USA, 25 m × 0.32 mm × 0.25 µm) column was employed: Carrier gas He, 100 ◦C hold
12.50 min, 20 ◦C min−1 to 225 ◦C, hold 1 min. Retention times: 1: 3.0 min; (R)-2: 7.5 min; (S)-2: 7.9 min
and dodecane (internal standard): 9.8 min. For the oxidation of thioanisole (3) to methyl phenyl
sulfoxide (4) a Lipodex E (Agilent, 50 m × 0.25 mm × 0.25 µm) column was used: Carrier gas He,
130 ◦C hold 6.0 min, 20 ◦C min−1 to 200 ◦C, hold 5.0 min, 25 ◦C min−1 to 220 ◦C hold 1.0 min. Retention
times: 3: 4.2 min; dodecane (internal standard): 4.9 min; (S)-4: 11.8 min, and (R)-4: 12.4 min.

NMR Spectra were recorded (1H NMR 300 MHz; 13C NMR 75 MHz) with the solvent peak used as
the internal reference (7.26 and 77.0 ppm for 1H and 13C, respectively) using an Agilent 400 (400 MHz,
Santa Clara, CA, USA)

P450BM3 F87A and P450BM3 V78A/F87A were produced according to a previously reported
protocol [22].

3.1. Preparation of P450BM3 A74E/F87V/P386S

pET28a P450BM3 A74E F87V P386S was expressed in E. coli BL21 (DE3). First, 5 mL Lysogeny
Broth (LB) medium supplemented with 30 µg mL−1 kanamycin was inoculated with single colonies
and grown overnight at 37 ◦C, 180 rpm for preculture. Then 1 L medium (900 mL Terrific Broth (TB) +

100 mL phosphate buffer pH 7.5) supplemented with kanamycin (30 µg mL−1) was inoculated with the
5 mL preculture and incubated at 37 ◦C, 180 rpm. When OD600 reached 0.8 (OD600: Absorbance at
600 nm), induction was obtained by adding isopropyl β-D-1-thiogalactopyranoside (100 µmol L−1);
at this timepoint 5-aminolevulinic acid (500 µmol L−1) FeSO4 (100 µmol L−1) were also added. Cultures
were then stirred at 30 ◦C, 180 rpm overnight. Cells were harvested by centrifugation (10,000 g,
30 min, 4 ◦C) and resuspended in 50 mM phosphate buffer pH 7.5 supplemented with RNase and
DNase. After 30 min on ice, cells were disrupted with a French press. The cells debris was removed by
centrifugation (14,000 rpm, 30 min, 4 ◦C). Purification was performed by nickel affinity chromatography
using a 60 mL His-Trap FF crude column (GE Healthcare, Chicago, IL, USA) applying a gradient of
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imidazole. The enzyme was then desalted with a PD-10 column and concentrated with an Amicon
filter with a cut-off of 30 kDa.

3.2. General Procedure for the Preparation of Im-C4-Phe and Im-C4-Ile

Im-C4-Phe and Im-C4-Ile were prepared starting from 4-(1H-imidazol-1-yl)butanoic acid: A DMF
(Dimethylformamide) solution (10 mL) containing HOBt (150 mg, 1.1 mmol), EDC (170 mg, 1.1 mmol),
and 4-(1H-imidazol-1-yl)butanoic acid (154 mg, 1.0 mmol) was stirred at room temperature for
1 h. A solution of L-phenylalanine methyl ester or L-isoleucine methyl ester (1.1 mmol) and
4-methylmorpholine (202 mg, 2.0 mmol) dissolved in 10 mL of DMF was then added to the reaction
mixture. After 18 h, the reaction mixture was partitioned between dichloromethane (50 mL) and H2O
(50 mL). The organic layer was washed with H2O (3 × 50 mL) and dried over MgSO4. The solution was
concentrated under reduced pressure. The crude product was then dissolved in 2 mL NaOH aqueous
solution (1.0 M) and 1 mL THF and stirred overnight. The THF was removed under reduced pressure
and the solution was acidified to pH 2.0 with HCl (1.0 M). Water was then removed under reduced
pressure and the residue was dissolved in ethanol. NaCl was separated by filtration and ethanol was
evaporated to give the final products.

(S)-2-(4-(1H-imidazol-1-yl)butanamido)-3-phenylpropanoic acid (Im-C4-Phe): Colorless oil (135.4
mg, 45% yield). 1H-NMR (300 MHz, d6-DMSO): δ (ppm) 8.97 (s, 1H), 8.13 (d, 1H, J = 8.0 Hz), 7.91
(s, 1H), 7.62 (s, 1H), 7.31–7.14 (m, 5H). 4.37–4.29 (m, 1H), 4.13 (t, 2 H, J = 7.5 Hz), 3.07–3.01 (m, 1H),
2.82–2.74 (m, 1H), 2.07-1.96 (m, 4H). 13C-NMR (75.4 MHz, d6-DMSO): δ (ppm) 174.2, 172.6, 138.3,
135.6, 129.2 (2C), 128.7, 126.6 (2C), 124.8, 121.2, 54.1, 48.9, 37.1, 35.2, 25.3. HRMS: m/z calculated for
C16H19N3O3 (M+): 302.1499; found: 302.1498.

(S)-2-(4-(1H-imidazol-1-yl)butanamido)-3-methylpentanoic acid (Im-C4-Ile): Colorless oil (137.7
mg, 49% yield). 1H-NMR (300 MHz, d6-DMSO): δ (ppm) 9.12 (s, 1H), 8.19 (s, 1H), 7.95 (s, 1H), 7.67 (s,
1H), 4.16–4.11 (m, 1H), 3.92 (t, 2H, J = 7.9 Hz), 2.14–2.07 (m, 4H), 1.93-1.87 (m, 2H), 1.21–1.13 (m, 3H),
0.89–0.80 (m, 6H). 13C-NMR (75.4 MHz, d6-DMSO): δ (ppm) 174.1, 171.3, 137.6, 128.6, 119.8, 57.2, 49.0,
36.2, 34.4, 32.1, 31.9, 25.2, 16.1, 11.8. HRMS: m/z calculated for C14H23N3O3 (M+): 281.1739; found:
281.1734.

3.3. General Procedure for the Biocatalyzed Oxidation of Styrene and Thioanisole Employing the
P450BM3/DFSM System

Unless otherwise stated, the corresponding variant of P450BM3 (0.5 µM) was transferred to a glass
sample bottle containing 0.1 M, pH 8.0 phosphate buffer (0.36 mL), styrene (1) or thioanisole (3) (4 mM
in methanol) and the DFSM (0.5 mM, dissolved in pH 8.0 phosphate buffer). H2O2 (20 mM, dissolved
in pH 8.0 phosphate buffer) was added and the reaction was shaken at room temperature and 300 rpm
for 30 min. The reaction was then extracted using ethyl acetate containing 5.0 mM of dodecane as the
external standard (0.4 mL) and dried over anhydrous sodium sulfate. The conversion and the optical
purity of styrene oxide (2) or methyl phenyl sulfoxide (4) was analyzed by gas chromatography.

3.4. General Method for the Biocatalyzed Oxidations Employing the H2O2 In Situ Generation System

P450BM3 F87A (0.5µM) was transferred to a glass sample bottle containing 0.1 M, pH 8.0 phosphate
buffer (0.36 mL), methanol (100 mM), thioanisole (3) (4 mM in methanol) and the DFSM (0.5 mM,
dissolved in pH 8.0 phosphate buffer). A solution of the alcohol oxidase from Pichia pastoris (5 nM,
dissolved in pH 8.0 phosphate buffer) was added and the reaction was shaken at room temperature
and 300 rpm for 18 h. The reaction was then extracted using ethyl acetate containing 5 mM of dodecane
as the external standard (0.4 mL) and dried over anhydrous sodium sulfate. The conversion and the
optical purity of methyl phenyl sulfoxide (4) was analyzed by gas chromatography.
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3.5. General Method for the Epoxidation of Styrene Using Precipitated P450BM3 F87A with DFSMs

P450BM3 F87A was precipitated with acetone and dried (30 mg) and transferred to a glass sample
bottle containing styrene (1) (200 µL) and the DFSM (0.5 mM, dissolved in pH 8.0 phosphate buffer).
tBuOOH (20 mM, 70% in H2O) was added and the reaction was shaken at room temperature and
300 rpm for 30 min. The reaction was then extracted using ethyl acetate containing 5.0 mM of dodecane
as the external standard (0.4 mL) and dried over anhydrous sodium sulfate. The conversion and the
optical purity of styrene oxide (2) was analyzed by gas chromatography.

4. Conclusions

Overall, we have confirmed Cong’s approach, turning P450 monooxygenases into peroxygenases
by using DFSMs. The results shown in this study suggest specific interactions of the DFSMs with
the enzymes (here P450BM3) influencing their performance as co-catalysts. Further studies with a
broader set of DFSMs will be necessary to establish quantitative structure–activity relationships and
further optimize the reaction system. It will also be interesting to investigate possible match/mismatch
combinations of the (chiral) amino acid anchoring groups.

One exciting possibility of DFSMs arises from the fact that P450 monooxygenase catalysis becomes
independent from (exclusively water soluble) nicotinamide cofactors and thereby enables the use of
P450 monooxygenases under neat reaction conditions.
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