
Water Resour Manage (2011) 25:1341–1357
DOI 10.1007/s11269-010-9748-z

Clustered K Nearest Neighbor Algorithm for Daily
Inflow Forecasting

Mahmood Akbari · Peter Jules van Overloop ·
Abbas Afshar

Received: 23 February 2010 / Accepted: 18 November 2010 /
Published online: 7 December 2010
© Springer Science+Business Media B.V. 2010

Abstract Instance based learning (IBL) algorithms are a common choice among data
driven algorithms for inflow forecasting. They are based on the similarity principle
and prediction is made by the finite number of similar neighbors. In this sense, the
similarity of a query instance is estimated according to the closeness of its feature
vector with those of data available in calibration data. As the selected attributes in
the feature vector are determined overall on calibration data, there may be some
data points whose outputs do not follow the considered attributes. In fact, output
values of these inconsistent data points may be a function of some other attributes
which were not considered. Therefore, for some query instances, the inconsistent
points may be appeared as the neighbors while they may not really be neighbor
to the query instance. They can deteriorate forecasting results especially if they are
very close to the query instance with the current similarity definition. In this study
a clustered K nearest neighbor (CKNN) algorithm is introduced which can capture
these inconsistent data points. Similar to the inconsistent data points, CKNN can be
also robust against noisy data. The proposed algorithm was shown to be effective
for a synthetic linear data set corrupted by noise. In addition, the utility of the
algorithm was demonstrated for daily inflow forecasting of the Karoon1 reservoir
located in Iran.
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1 Introduction

In the most commonly used learning algorithms, such as neural networks and
decision trees, a single model is used to construct an explicit global representation
of the target function over all training data. In contrast, the instance based learning
(IBL) algorithms simply store some or all of the training examples and postpone
any generalization effort until a new query instance must be predicted. In fact
they apply specific cases or experiences to new situations by matching known cases
and experiences with new cases (Atkeson et al. 1997). They can thus build query-
specific local models, which attempt to fit the training examples only in a region
around the query instance. This type of learning method is also referred to as lazy
learning method. Because it just finds a set of the nearest neighbors and constructs
a local model based on them. Examples of the types of local models include Nearest
Neighbor (NN), K Nearest Neighbor (KNN) and Locally Weighted Regression
(LWR). NN local models simply choose the closest point and use its output value.
KNN local models average the outputs of the nearby points. The KNN method
can further be improved by weighting each of K Neighbors inversely according to
their distance to the query instance. LWR fits a linear or nonlinear local model
to the nearby points using a distance weighted regression. Thus, locally weighted
regression is very similar to least-squares regression, except that the error terms used
to derive the best linear or nonlinear approximation are weighted by the inverse of
their distance to the query instance.

Instance based learning algorithms in their different forms have been successfully
applied in the field of inflow forecasting as in many other areas. Karlsson and
Yakowitz were probably the first to explore the use of these methods for inflow
forecasting (Karlsson and Yakowitz 1987; Yakowitz 1987). Galeati (1990) applied
the KNN method for daily discharge forecasting and compared it to the ARX (Auto
Regressive Exogenous input) model. Shamseldin and O’Connor (1996) extended the
KNN method to NNLPM (Nearest Neighbor Linear Perturbation Model) for river
flow forecasting. In this model, perturbations of the most recent rainfall segment of
test pattern with respect to the mean of its nearest neighbors are linearly related
to the resulting perturbation in the runoff from the mean runoff of the nearest
neighbors.

Lall and Sharma (1996) presented a nearest neighbor bootstrap for resampling
monthly streamflow and showed its utility in comparison to linear and nonlinear
autoregressive models. Coulibaly et al. (2005) used the NN method in the framework
of multi models approach for daily inflow forecasting. Solomatine et al. (2008)
demonstrated the priority of the KNN and LWR approaches compared to Artificial
Neural Networks (ANN) and M5 model trees in the short term inflow forecasting.

IBL uses the similarity (neighborhood) between the feature vector of the query
instance and K similar sets of historical feature vectors to obtain the best estimate
for the dependent variable of the query instance. IBL assumes that the prediction of
a test instance will be close to the output values of the nearby points. As a result, in
the ideal case, the output values of the nearest neighbors are not to be very far from
each other. This is because the neighbors of the query instance are neighbors to each
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other too. In other words, when the output values of the neighbors are not very close,
forecasting may be risky (Karlsson and Yakowitz 1987). This may arise mainly from
three reasons: 1) calibration data set is not sufficiently large 2) relevant attributes of
the query instance are not suitable 3) noisy data may be included in the neighbors.
In the first case, because of unprecedented events, neighbors may be inconsistent. In
such situations, good forecasts with IBL are not expected as any other data driven
model. The second and third cases, however, are considered in this study.

Feature selection, as used in the IBL method, is one of the most important aspects
of pattern recognition. In the field of inflow forecasting, the feature vector is com-
monly composed of the lagged rainfall and runoff as relevant attributes (Karlsson
and Yakowitz 1987; Yakowitz 1987; Coulibaly et al. 2005; Shamseldin and O’Connor
1996; Solomatine et al. 2008). The feature vector can be also dependant on other
relevant information such as soil moisture, snow pack, temperature, etc. (Karlsson
and Yakowitz 1987). But such series are neither available nor considered to reduce
complexity. Furthermore, relevant independent variables are usually determined
overall by correlation analysis, mutual information analysis or other methods over
the calibration data (Bowden et al. 2005). Unsuitable attributes can result in false
estimation of the similarity and in choosing wrong neighbors and, consequently, in
inaccurate forecasts. When attributes are selected overall, there may be some data
points whose outputs do not follow the considered attributes. In fact, the output
values of these inconsistent data points may be a function of some other attributes
which were not considered. Therefore, for some query instances, the inconsistent
points may appear as neighbors while they are not really neighbors to the query
instance. They can deteriorate forecasting results, especially if they are very close to
the query instance with the current similarity definition.

Real data always poses the challenge of managing noise. As forecasting in the IBL
is done by the finite K nearby points, some noisy data points included in the data
sets may affect the output in a similar way as inconsistent data points. In order to
improve the prediction accuracy, it is often necessary to reduce the original training
set by removing some noisy instances before the learning phase (Czarnowski and
Jędrzejowicz 2006).

In this study, subtractive clustering algorithm is employed to capture the incon-
sistent data as well as noisy data points. The proposed clustered KNN algorithm
(CKNN) prunes the inconsistent and noisy data points in the neighbors which results
in improved forecasting as compared to the traditional KNN. The performance of
the proposed flow forecasting scheme is tested on inflow to the Karoon1 reservoir
located in Iran.

The rest of this paper is constructed as follows: first, the traditional KNN model
is described. The proposed algorithm (CKNN) is introduced and its applications to
synthetic and streamflow data are then presented. Finally the paper ends up with the
conclusions.

2 K Nearest Neighbor Model

K Nearest Neighbor learning, one of the most popular realizations of IBL, combines
the target values of K selected neighbors to predict the target value of a given test
pattern.
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A weighted Euclidean norm is usually used to measure the closeness (similarity)
of the feature vector of query instance (Xq) and any feature vector of calibration
data set (X i):

d
(
Xq, Xi

) =
√√√
√

m∑

j=1

wa
j

(
xij − xqj

)2 (1)

where i, j are indices for data and attributes respectively, wa
j is the weight of each

attribute, m is the number of attributes, and xij is the normalized value of jth attribute
of ith data point. It should be noted that each attribute is normalized to minimize the
scale difference. The weights of attributes are determined such that they produce the
lowest mean square error of forecasting over the calibration data set (Karlsson and
Yakowitz 1987).

Given the output values of neighbors (Yi), the predicted output for the test pattern
(Yq) is calculated as follows:
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where wN
i is the weight of each neighbor and K is the number of neighbors. In the

simple form of KNN, wN
i is employed to be 1/K and the estimate is the mean value

of K nearest neighbors. In the modified form of KNN, however, each neighbor is
usually given a weight based on the distance between the neighbor and the test
pattern. A farther neighbor receives a smaller weight, which reduces its effect on
the prediction results compared to other closer neighbors. In this way, some kernel
functions, which decrease monotonically as distance increases, have been used. There
are a number of well-known kernel functions such as linear kernel (Solomatine
et al. 2008), inversion kernel (Ruprecht and Müller 1994; Solomatine et al. 2008),
exponential kernel (Aha and Goldstone 1992), and Gaussian kernel (Wand and
Schucany 1990) which are defined as follows:
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Atkeson et al. (1997) claimed that there is no clear evidence that a specific kernel
function is always superior to others, however, some outperformed others on some
data sets (Solomatine et al. 2008).

The number of nearest neighbors which should be considered in estimation is
itself a challenging issue. Indeed, no well-established method exists for selecting an
optimal K for using the KNN. The number of neighbors is often chosen empirically
by cross-validation or domain experts in practice (Kang and Cho 2008).

In this study, KNN is traditionally calibrated off-line using a calibration data
set and then the optimal number of nearest neighbors (K) and the weights of the

attributes
(
wa

j

)
are determined.
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3 Clustered K Nearest Neighbor Algorithm

IBL is based on the assumption that the prediction of a test instance should be close
to the output values of the nearby points. In this sense, neighborhood refers to the
similarity between the feature vector of the query instance and the feature vectors of
historical data. The CKNN presented in this study assumes that if the input vectors
of the neighbors are similar to the query instance and consequently similar to each
other, their targets are also similar. Therefore, the output values of the neighbors
with near feature vectors are to be relatively close to each other. In this situation, the
similar neighbors in the feature vector and the output values may form some local
groups of the neighbors. The number of neighbors in each group can be different,
and some neighbors may belong to none of the clusters. In such cases, the prediction
based on these neighbors may be risky. In fact, if the output values of some neighbors
are very far from the rest, the prediction for the query instance may be unreliable.
This is because the prediction in KNN is based on similarity, but all neighbors are not
similar. In the traditional KNN, each neighbor contributes to the output of the query
instance proportional to its closeness to the query instance. In reality, however, each
neighbor may not be as reliable as its closeness. If some neighbors stay alone, they
may be the inconsistent points in which their output values probably do not follow
the current attributes. In fact, they may not really be neighbor to the query instance.
In this sense, noisy data can behave similar to the inconsistent data points.

In the CKNN, data clustering is applied for identifying the inconsistent and noisy
data points among the neighbors for each query instance. Data clustering is a process
of putting similar data into groups. A clustering algorithm partitions a data set into
several groups such that the similarity within each group is larger than among groups
(Jang et al. 1997). For the purpose of this study, each neighbor as a data point is
identified with a two dimensional vector as follows:

Vi = (
d

(
Xq, Xi

)
, Yi

)
(4)

In the CKNN model, after clustering the neighbors, each neighbor belonging to none
of the clusters is removed from the neighbors and then estimation is done based on
the remaining neighbors.

Some clustering algorithms need to know the number of clusters explicitly while
others automatically specify the number of clusters during the process of clustering.
This study employs the subtractive clustering algorithm proposed by Chiu (1994)
which does not require any prior knowledge about the number of clusters. For this
method, data points have to be rescaled to [0, 1] in each dimension. In the subtractive
clustering algorithm, each data point is a potential cluster center. This potentiality is
calculated based on the density of surrounding data points according to:

Pl =
K∑

i=1

exp
(

−||Vnorm
i − Vnorm

l ||
(ra/2)2

)
; l = 1, 2, . . . , K (5)

Where Vnorm
l and Pl are the normalized vector and the potential of the lth data point

respectively; ‖.‖, the Euclidian distance; and ra is a positive constant called cluster
radius. Hence, a data point will have a high density value if it has many closer data
points. In that case, the algorithm selects the first cluster center Vnorm

C1 as the point
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having the highest potential value PC1. Next, the density measure of each data point
Vnorm

l is revised as follows:

Pl
new = Pl

old − PC1. exp
(

−||Vnorm
l − Vnorm

C1 ||
(rb /2)2

)
; l = 1, 2, . . . , K, l �= C1 (6)

Thus, we subtract an amount of potential from each data point as a function of its
distance from the first cluster center. The data points near the first cluster center
will have a greatly reduced potential, and therefore will unlikely be selected as the
next cluster center. To avoid obtaining closely spaced cluster centers, we set rb to
be somewhat greater than ra. After revising the density function, the next cluster
center is selected as the point having the greatest density or potential value. The
process of acquiring new cluster centers proceeds based on potential value in relation
to an acceptance threshold

(
ε̄.PC1

)
, rejection threshold

(
ε.PC1

)
and the shortest

distance between the candidate cluster center and all previously found cluster centers
(DISmin). A data point with a potential greater than the acceptance threshold is
directly accepted as a cluster center. A data point with a potential between the upper
and the lower thresholds is accepted if the following inequality holds:

DISmin

ra
+ Pl

PC1 ≥ 1 (7)

In such a case, Vnorm
l is accepted as the next cluster center, otherwise if the above

inequality does not hold or Pl ≺ ε.PC1 the algorithm terminates. Finally, the data
points within the radius distance of a cluster center are assigned to the related cluster
and any data point whose minimum distance from the cluster centers is greater
than the radius distance, is left out. The recommended values for the parameters
of subtractive clustering algorithm are 0.15 ≤ ra ≤ 0.3, 1.25ra ≤ rb ≤ 1.5ra, ε̄ = 0.5
and 0.15 ≤ ε ≤ 0.5 (Chiu 1994).

After the neighbors are grouped into different clusters, each neighbor sitting in
none of the clusters is recognized as an inconsistent point, thereby it is ignored and
then prediction for the query instance is made by other neighbors.

4 Applications

This section illustrates how noisy and inconsistent points in training data set affect
the predictive ability with respect to the original KNN through two experiments. The
first experiment uses the data from known synthetic linear data corrupted by noise.
The second one presents an application to the real world for daily flow forecasting
where the inconsistent data points may deteriorate the results of the traditional KNN
model. In the latter case, preprocessing of the data was done before applying the
models to remove probable noisy data included into the calibration data set, but the
data set may still be infected by some noisy data.
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As performance measures, the root mean square error (RMSE) and mean ab-
solute error (MAE) are employed for comparing the results of KNN and CKNN
models:

RMSE =

√
n∑

q=1
(Yq−Ŷq)

2

n

MAE = 1
n

n∑

q=1
|Yq − Ŷq|

(8)

Comparing the performance of KNN to different distance kernel functions, it was ob-
served that KNN with square inverse distance (3-c) resulted in the best performance
for the real data experiment. The same kernel function was also used for the case of
synthetic data. An off-line optimization process on the size of neighborhood (i.e. K)
was employed using calibration data set and the optimal values of K were found to
be 8 and 10 for the synthetic and real data applications, respectively.

In order to find the optimal CKNN model for each experiment, the parameters
of the subtractive clustering algorithm were varied within the proposed ranges. For
each combination of these parameters, a model was built and trained. Through op-
timization of the performance indices RMSE and MAE obtained on the calibration
data, the optimal parameters combination was sought. Finally, the following values
were retained: ra = 0.2, rb = 0.3, ε̄ = 0.5 and ε = 0.3 for the first experiment and
ra = 0.15, rb = 0.2, ε̄ = 0.5 and ε = 0.15 for the second experiment.

4.1 Synthetic Linear Data Set

The aim of this experiment is to evaluate the performance of the proposed algorithm
in the presence of noise. For this purpose, we performed experiments on a synthetic
linear data set with simulated noise using Gaussian noise. The samples of 100 and 20
observations were generated as the training and test data sets, respectively, using the
linear model of Eq. 9 as follows:

Yi = 0.5Xi (9)

Where i varies from 1 to the size of data set and Xi is generated from a standard
normal distribution N(0,1).

Then noise was added at different levels to the output values of the instances in
the training set as described by Eq. 10 as follows:

Yi ← Yi + εi (10)

where ε indicates a noise term from a normal distribution with zero mean and
variance of 0.5; N(0,0.5). We define the noise level to be the probability that the
output values of the instances in the training set were corrupted by the noise. It
should be noted that the output values of the instances in the test set are not
noisy. The simulations were conducted with the levels of the noise ranging from
p = 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 in order to predict the output values of the
test data set using both the KNN and CKNN models.

The RMSE and MAE results of each model for different levels of the noise are
reported in Table 1. In the noiseless case, the CKNN model gives similar results to
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Table 1 Comparison of the performance of the models in terms of RMSE and MAE for the different
levels of noise for the linear data set

Noise level RMSE MAE

KNN CKNN KNN CKNN

0 0.045701 0.045701 0.034833 0.034833
0.05 0.073589 0.045716 0.050421 0.034943
0.10 0.096044 0.045721 0.07634 0.034976
0.15 0.100488 0.045743 0.080357 0.034992
0.20 0.134972 0.065319 0.105489 0.044457
0.25 0.133257 0.094911 0.117494 0.057933
0.30 0.205223 0.187613 0.160952 0.149625

the KNN which are the best among all cases listed in the table. The RMSE and MAE
of the results generally increase for the KNN model as the noise increases while they
remain approximately constant for the CKNN model when the noise in the training
data is increased from 0 to 0.15. In these cases, the CKNN can recognize the noise
data and prune them among the neighbors before prediction. However, the CKNN
model gradually approaches the KNN model as the noise level in the training set is
increased to 0.3 and more. This is due to the fact that CKNN can not distinguish noisy
instances from non-noisy instances when the number of noisy instances approaches
to the number of non-noisy instances. This may be attributed to the fact that the
CKNN assumes that noisy instances in training data are so little in which they are not
grouped into any cluster at the clustering stage. This assumption is usually consistent
with real systems where the number of correct data is much more than noisy data.

As a graphical illustration, Fig. 1a demonstrates the data points in the training set
with the noise level of 0.2. As shown in this figure, the noisy data which do not follow
the exact linear function can be simply distinguished from the correct data. Scatter
plots between the real and computed outputs by the KNN and CKNN models over
the test data are shown in Fig. 1b, c, respectively. From the figures, it is observed that
the CKNN shows a closer match between the real and the predicted output values of
the test data.

The results reveal how well the proposed model is able to predict the correct
output when the training data set contains noise. Moreover, the traditional KNN
is more sensitive to the noise level in the training set than the CKNN model and the
accuracy of KNN’s prediction decreases more quickly than does CKNN’s as the level
of the noise increases.

4.2 Daily Flow Forecasting

In order to demonstrate the effect of the proposed algorithm to capture the inconsis-
tent data points, daily flow forecasting for the Karoon catchment is considered. The
North Karoon River basin, with an area of 25,000 km2, is located in the Southwest
of Iran. There exist multiple reservoirs on the Karoon River in series designed
mainly for power generation. Daily reservoir inflow predictions are essential to the
operational planning and scheduling of these hydroelectric power systems. In this
study, the Karoon1 reservoir was taken as an example and daily inflow forecasting
for lead time of one day at Soosan gauging station located upstream of the dam was
considered (Fig. 2).
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Fig. 1 Scatter plots for a the training data set corrupted by noise at the level of 0.2, b KNN and
c CKNN models over the test data of the synthetic linear data experiment

Rainfall and flow data from some gauging stations located in the catchments are
available and may be used to forecast the inflow to the Karoon1 reservoir.

As pointed out by Karlsson and Yakowitz (1987), a remarkable deficiency of KNN
is its disability in predicting values higher than the historical discharges. However,
for daily management purpose in which the interest is not centered on extreme
values, it is viable (Wu et al. 2008). In a data driven model, an important step is
the choice of input variables which will efficiently represent the modeled system.
Bowden et al. (2005) reviewed different methods for choosing input variables of
data driven, particularly ANN models. Cross-correlation (CC) and average mutual
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Fig. 2 The Karoon1 reservoir and the upstream gauging stations

information (AMI) analyses are the common techniques which are often employed
for selecting appropriate inputs (Imrie et al. 2000; Sharma 2000; Abebe and Price
2003; Bhattacharya and Solomantine 2005; El-Shaıe et al. 2007, 2009; Mishra 2009;
Solomatine et al. 2008). The major disadvantage of CC is its failure in detecting
nonlinear dependences between variables. So in the cases of real physical systems in
which nonlinear dependence may exist between inputs and outputs, CC may result
in omission of important inputs carrying valuable knowledge (Bowden et al. 2005).
Unlike CC, AMI is not restricted with linear functions; hence it may efficiently
account for both linear and nonlinear dependencies between variables. AMI is based
on Shannon’s entropy (Shannon 1948) and is a measure of information that can be
learned about one data set from another known data set. The AMI between two
measurements xi and y j drawn from sets X and Y is defined by:

AMIXY =
∑

xi y j

p
XY

(
xi, y j

)
log2

(
pXY

(
xi, y j

)

p
X

(xi) pY
(
y j

)

)

(11)

where pXY(xi,y j) is the joint probability density for the measurements X and Y
resulting in values xi and y j and pX(xi) and pY(y j) are the individual probability
density for the measurements of X and Y. If the measurement X resulting in xi

is completely independent of the measurement Y resulting in y j, then the average
mutual information AMIXY is zero.

To continue the application process, one has to find out the appropriate attributes
for flow forecasting model at Soosan gauging station. Therefore, the AMI between
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Fig. 3 Average mutual information between the flow at Soosan gauging station and the flows at the
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the flow at Soosan gauging station and the flow and rainfall data from different
gauging stations were computed up to a lag time of 5 days, as shown in Figs. 3 and 4,
respectively. From Fig. 3, it is observed that in addition to the lagged flow at Soosan
gauging station, previous flows at Pol-e-Shaloo, Armand and Barez gauging stations
contain substantial information about the current flow at Soosan gauging station.
However, the information content from two other gauging stations, namely Morghak
and Lordegan is relatively little. Figure 4 shows the AMI values for the rainfall data
from different gauging stations at varying lag times. The same figure shows that the
rainfall data with a lag of 1 day at Barez and Lordegan gauging stations have the
highest AMI values.

Although this approach does not directly determine the input parameters for the
forecasting model, it does provide a useful guidance for recognizing the main input
parameters to the model. Basically, the number and the type of input parameters may
change depending on the kind of model being used (Sharma 2000). In this study,
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the different combinations of the main input parameters (i.e., rainfall and flow at
different gauging stations) were tested using an efficient search procedure. The most
suitable input subset with the smallest RMSE over the calibration data was identified
and the best model was structured as follows:

Q108 (t) = f {Q108 (t − 1) , Q108 (t − 2) , Q237 (t − 1) ,

Q231 (t − 1) , Q225 (t − 1) , R235 (t − 1)} (12)

In which, Q and R are flow and rainfall respectively and the subscripts represent
the national code number of gauging stations in Iran’s telemetry system (see Fig. 2).
Although the lagged rainfall at Lordegan station revealed relatively smaller AMI,
compared to the lagged runoffs at Morghak and Lordegan stations which are
not appeared in Eq. 12, it finally appeared as the model’s input because of the
highest fitness over the calibration data. Further investigation revealed the significant
relation between the lagged rainfall and flow at Soosan gauging station especially for
the peak flows.

Note that the input determination process, both at the AMI and fitness evalua-
tions, is justified over all calibration data. The global evaluations provide the input
parameters showing the highest impact on the overall performance of the models,
however, some of the available data points in the calibration data set may result
in the outputs which do not follow the selected inputs (attributes). In fact, the
output values of these inconsistent data points may be a function of some other
attributes which are not considered. In the KNN model for some query instances, the
inconsistent points may appear as the neighbors with the similarity measure based on
the selected attributes. The inconsistent points may not be the real neighbors to the
query instance deteriorating the output estimation. The proposed clustered KNN is
developed to identify the inconsistent points and removes them from the neighbors
before estimation, thereby locally improving the prediction accuracy.

To develop the KNN and CKNN models, the available data are organized into
pairs of feature vector X and output value of Y in which X is a six dimensional vector
consisting of lagged rainfall and inflow variables from different gauging stations and
Y represents the value of the predicted flow at Soosan gauging station for the next
day. Table 2 shows the statistical parameters (i.e., minimum value: xmin, maximum
value: xmax, mean: xmean, and standard deviation: sx) for the daily flow data set of
Soosan gauging station. As is observed from the table, the data are splitted into
the calibration and verification data sets with relatively similar statistics. In order to
verify that both data sets (calibration and verification) have the similar distributions
of low, medium and high flows, a chi-square test was used based on the relative
frequencies of both data sets. The results showed that there is not a significant
difference in the frequencies of low, medium and high flows of the calibration data
as compared with the verification data at the 5% level.

Table 2 The statistical parameters for the data set of Soosan gauging station

Calibration Verification

Period Xmin Xmean Xmax Sx Period Xmin Xmean Xmax Sx

1994–2000 79.8 285.5 2479 223.9 2001–2003 69.6 272.8 2233 217.9

X: flow (m3/s)
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Table 3 Comparison of the performance of the models in terms of RMSE and MAE for the different
ranges of flow during the verification period

Range of flow MAE RMSE

ANN KNN CKNN ANN KNN CKNN

Full range 29.79 36.90 27.14 58.93 72.78 52.17
Low range 18.43 12.29 9.22 24.45 24.40 18.28
Medium range 36.70 70.32 51.77 61.42 107.30 74.26
High range 167.51 151.55 116.46 227.51 176.08 138.37

Furthermore, an ANN model was used in the present experiment as a convenient
benchmark against which the performances of the KNN and CKNN can be com-
pared. Besides the lagged rainfall at Barez station, as seventh attribute, the input
vector used in this model is the same as that used for the KNN and CKNN models.

Apart from the performance evaluation of the models over the whole test
data set, their performances on the different ranges of flow were also considered.
For this purpose, the magnitude of flow at the verification period was divided
into low (X< = Xmean), medium (Xmean < X <= Xmean + 2Sx) and high magnitude
(X > Xmean + 2Sx) flows. The number of data points in low, medium and high flows
is 693, 363 and 39 respectively.

Table 3 compares the results of the models in terms of RMSE and MAE over the
verification data set on the different ranges of flow. The results show that although
the overall performance of the ANN seems better than the traditional KNN, the
KNN is more effective than the ANN especially for high flows which might be of
more interest in reservoir operation. The main superiority of the ANN is at the
forecasting of the medium range flows as compared to the KNN model, while the
ANN is not as successful at the forecasting of the high flows.

From the results listed, it is also concluded that the CKNN can efficiently improve
the efficiency of the KNN in all ranges of flow so that the CKNN is found to be
more efficient than the ANN on the whole test data set. The MAE value of the
CKNN model on the full range of flow is 27.14 m3/s which is 26.5% lower than that
of the KNN model. In addition, the RMSE value of the CKNN model shows 28.3%
improvement over the traditional KNN model. The results demonstrate that the
proposed clustered KNN model can improve the original KNN model by efficiently
identifying and removing the inconsistent data points of the training data set.

As a graphical demonstration, the scatter plots of the observed and computed flow
values for the whole test data set for different models are presented in Fig. 5. These
plots give a clear indication of relative capability of each of the models over the full
range of flows.

In order to illustrate how an inconsistent point can deteriorate the prediction, an
example from the verification data set is selected together with the nearest neighbors
and a prediction is made by the KNN and CKNN. As presented in Table 4, the
prediction for day 30 in March 2002 is based on the hydrological situation on the days
listed in the table as the neighbors when the rainfall and flow records were similar.

Figure 6 is the output of the subtractive clustering algorithm which puts the similar
neighbors in the feature vector and the output value into a cluster. It is observed that
the neighbor 2 is an inconsistent neighbor which does not sit inside of the existing
clusters. The CKNN ignores this neighbor which has resulted in the improvement of
the forecasting as compared to the KNN.
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(c) CKNN
R2 = 0.9454
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Fig. 5 Scatter plots for a ANN, b KNN and c CKNN models over the verification data

It should be noted that the proposed method can be more efficient where the size
of the calibration data set is large enough. In the case of relatively small data set,
the output values of neighbors may be naturally far from each other. So, applying
the CKNN can result in the false elimination of some neighbors and consequently
ignoring the valuable information of these data points.

As a final point, it should be emphasized that the inclusion of a clustering
algorithm does not significantly increase the computing time in the CKNN, even



Clustered K Nearest Neighbor Algorithm 1355

T
ab

le
4

E
xa

m
pl

e
of

th
e

ne
ar

es
tn

ei
gh

bo
rs

of
a

qu
er

y
in

st
an

ce
fo

r
th

e
da

ily
fl

ow
da

ta
se

t

P
oi

nt
D

at
e

A
tt

ri
bu

te
s

O
ut

pu
t

P
re

di
ct

io
n

Q
10

8
(t

–1
)

Q
10

8
(t

–2
)

Q
23

7
(t

–1
)

Q
23

1
(t

–1
)

Q
22

5
(t

–1
)

R
23

5
(t

–1
)

Q
10

8
(t

)
K

N
N

C
K

N
N

Q
ue

ry
30

.0
3.

20
02

73
3

43
8

86
0

27
4

43
9

39
59

6
85

3
66

8
N

e.
1

13
.0

3.
19

94
67

9
36

4
76

7
15

3
17

2
58

81
4

N
e.

2
06

.0
4.

19
97

88
0

57
5

81
0

10
3

30
4

23
18

70
N

e.
3

06
.0

5.
19

97
59

8
58

6
60

5
29

2
15

4
17

.5
72

9
N

e.
4

20
.0

3.
19

96
76

3
65

4
78

9
21

4
29

0
0

81
6

N
e.

5
19

.0
3.

19
96

65
4

72
1

63
8

16
9

26
2

4
76

3
N

e.
6

21
.0

4.
19

95
48

6
46

0
50

4
17

7
19

2
0

56
3

N
e.

7
26

.0
3.

20
00

71
6

44
0

84
3

13
0

11
6

22
71

2
N

e.
8

07
.0

5.
19

97
72

9
59

8
85

4
28

6
24

7
0.

5
68

2
N

e.
9

19
.0

3.
19

95
51

3
63

6
81

8
18

6
25

1
2

43
8

N
e.

10
03

.0
4.

19
94

54
3

34
0

71
7

22
8

12
8

13
49

6

N
e.

:n
ei

gh
bo

r



1356 M. Akbari et al.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14

Cluster 1 Cluster 2

d (×10−2)

Y
=

Q
10

8(
t)

Fig. 6 Clustering of neighbors of a query instance included an inconsistent point as a neighbor

when using a large data set as a training set. As an example, for the case study
considered, the computational time for each year of the test data set was 15 seconds
for the KNN model while it was 35 seconds for the CKNN model which indicates the
CKNN is still efficient from the computational time’s point of view.

5 Conclusions

This paper presents a clustered K nearest neighbor algorithm (CKNN) which can
capture the inconsistent data as well as noisy data points. These points may appear
as the neighbors of some query instances in the KNN model deteriorating the
results of forecasting while they are not really neighbor to the query instance. The
proposed model recognizes these points, prunes them among the neighbors, and
then forecasting is done based on the remainder of the neighbors. Experiments
conducted over the different ranges of flow data of the Karoon1 reservoir, concluded
that the forecasting accuracy in the CKNN is much higher than that of the KNN
model. Furthermore, a synthetic linear data set was used to study how noise in the
training data set affects the predictive ability with respect to the original KNN. The
simulations showed that the CKNN model is more robust and maintains the good
predictive ability in the presence of noise in the training data set.

The proposed idea about recognizing the inconsistent and noisy data by a cluster-
ing algorithm can be also applied in the LWR model as another type of instance
based learning algorithm, but it is clear it can not be used in the NN where the
forecasting is based on only the output value of the nearest neighbor.
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