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Nonlinear State Estimation for a Bipedal Robot

Erik Vlasblom

Abstract—This report discusses the design, implementation Moreover, withstanding large unexpected pushes is not an
and evaluation of a state estimator for bipedal robots, makig inherent part of either of these techniques. This meansatey
use of the robot's full-body dynamics. The Unscented Kalman ¢ 45 ropust as humans. To produce human-like gait in terms
Filter is chosen to fuse the predictions with the measuremdas. To f ffici tilit d robust il
evaluate the new filter design, a second estimator is implemed ot energy efliciency, versalility and robustness, _cap b
as a benchmark, using a conventional Linear Inverted Pendulm based control was developed [3] [4], based on instantaneous
Model for the prediction and a Kalman Filter for data fusion.  capture point control. The instantaneous capture poinP)IC
Simulations of three different motions show how the CoM esti was defined to be the point where one instantaneously has
mates of both methods deal with different kinds of uncertaities step to come to a full halt. To maintain balance during

and an experiment was done as a preliminary application on . . .
the TUlip bipedal robot. Estimation with a pendulum model motion, ankle and hip balance strategies can be used when

gave incorrect estimates in the presence of sensory bias.ibg the ICP lies within the support polygon and a step can be
the full-body dynamics, however, the effect of sensory bias taken otherwise. By continuously forcing the ICP out of the
was reduced significantly._ Moreover, th? proposed method ve&a support polygon and taking a step to prevent from falling,
shown to be robust against parametric errors. However, the 5 giaple gait pattern can be achieved. Independent research
performance varied between different motions, making it had within the field of human movement science shows that the
to tune. Improving the filter to inherently work for various
movements as well as making the filter numerically efficient |CP, called the extrapolated center of mass (XcoM) by the
enough for online implementation still requires further research. researchers, indeed is a good measure of balance for humans
while standing and walking [5] [6].

Index Terms—Bipedal robot, state estimation, unscented Crucial to Wa|k|ng is accurate knOWIedge about the state
kalman filter. of the system. Still, state estimation is often named as a
limiting factor in the control of humanoids [4] [7] [8] [9]. d¥
balancing, important derived states like the support paiyg
and the CoM have to be obtained using the kinematic model
I N a world that has been designed for humans, the ideglthe robot. Though, uncertainties in the kinematic chaichs

robot would be one that is morphologically similar to &s play, link flexibility and parameter uncertainty as wedl a
human. These type of robots would be able to navigate througdhsory noise make it difficult to accurately obtain theatest
our world and handle objects much like we do. Because pfp]. Because these uncertainties are hindering estimatie
this, they could perform a large variety of tasks, rangingontrol is limited and therefore, state estimation has to be
from helping the elderly and entertainment to carrying oiproved. Seeing that control of humanoids becomes more
repairs in hazardous environments such as nuclear pow@anced and human-like, it is essential that the same is don
plants. Therefore, humanoid robots are an important tog§r state estimation.
of research. However, COntrO”ing the balance of tWO-I@gge Based on physi0|ogica| studies we know that there is
robots still proves to be a challenge, especially duringemogtrong evidence for the presence of accurate internal raodel
complex motions such as walking. within the central nervous system (CNS) of humans. Forward

Different walking strategies have been used during sevegginamic models within the CNS are expected to help detect
decades of research on legged robotic platforms. The meglironmental changes, increase the accuracy of state esti
popular strategy is locomotion based on the zero-moment painates and make predictions for mental planning [11] [12].
(ZMP). This is is the point where the influence of all forcegoreover, it was shown that humans under certain circum-
acting on the mechanism can be replaced by one single fokggnces make use of forward models in a Bayesian framework
[1]. The key is to keep this point within the support polygofig estimate their state and that of their environment [13].[1
and away from the edges, which is usually done by generatipgr this reason, using a complete description of the robot
and following a desired centre of mass (CoM) trajectory. Marijynamics in combination with Bayesian estimation might be
robots successfully apply this technique for various types the best way of obtaining state estimates. And not only could
movements, including walking. However, it is not very energthis combination improve state estimation, but it couldoals
efficient. Humanoid robots using limit cycle walking mimicfunction for other parts of sensorimotor learning like paeger
human gait by relying on the passive dynamics of the systegstimation and detection of environmental changes.

Hence, these robots have similar energy efficiency as humangarious studies have been done on state estimation in

[2], but they can not do diverse movements because thgipedal robots using internal models and Bayesian estimati

are limited to Walklng patterns that result in a limit CyCleMost often these studies focus on estimating the CoM. A
. ) . common approach is using a Kalman Filter and a linearised

The author is _wnh the department of Mechanical Engm_eermB dul del di he CoM 151 116
of the Delft University of Technology, the Netherlands (ein endulum as a model to predict the CoM motion [15] [16]
erik.vlasblom@gmail.com). [10]. Some researchers have modified this method to account

I. INTRODUCTION
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for modelling errors by explicitly estimating them. In one
study, an Extended Kalman Filter and a flexible inverted
pendulum model were used to estimate the unmeasurable
flexible motion of the biped [17]. Another research augmente
the state of the linearised pendulum with a CoM offset and
a disturbance force that could then be estimated [18]. These
studies both showed improvements as compared to using a
linearised pendulum only, but it was also noted that this is
a lumped-mass generalisation of the real errors. The true
error could be the sum of a variety of smaller errors in each
body. Furthermore, it was suggested to improve the model
by adding neglected effects like angular momentum. And
indeed, by using a linearised pendulum, the complex dyramic
of the robot are simplified. For humanoids using the ZMP
strategy where a CoM trajectory is prescribed or for robots
taking small, pendulum-like steps, assuming a linearisad p
dulum can work. For more complex movements and larger
human-like steps the prediction might be insufficient. Some
researchers have therefore used more sophisticated niikdels
a constrained rigid multi-body model or a planar five-link
model [19] [20]. The planar five-link model was compared
against the pendulum model, and although it is less robust
against parameter errors, it showed an improved estimafion
the CoM. In addition, the estimation of the feet positionswa
improved . A planar five-link model was also successfullyduse
with a Sliding Mode Observer to estimate the trunk orieotati Fig. 1. A CAD model of the TUIlip humanoid robot, showing thenstruction
of a bipedal robot [21]. of the six degree of freedom leg.
Because there is strong evidence that humans have ac-
curate internal models and because more complete models
have shown to improve state estimation, the use of a thr&glief of the state and some measurements, what is the actual
dimensional full-body model is suggested in this reporings state of the system. The belief is obtained via a prediction
this model, the actual states of the robot are estimatedy THsed on the previous estimate. As both the belief and the
can be used to improve not only the CoM, but also oth&teasurements are uncertain, it becomes a matter of preglicti
derived states like the feet positions. And lastly, instegnd finding a probability density function (pdf) of the state
of using a lumped-mass generalisation, specific sources rather than a single value. The final estimate is then oldaine
uncertainty could be more precisely targeted by tuning t# applying some optimisation criterion to the posteriof pd
noise levels for each state of the robot. The prediction 8Ech as minimising the mean square error between the estimat
the full-body model will be fused with the measurements bnd the true state. When the prediction model is linear aed th
means of a nonlinear state estimator. noise is Gaussian, the Kalman Filter gives an exact optimal
This report is organised as follows. In section II, variougolution. This is because a Gaussian pdf is preserved under a
techniques for estimating nonlinear systems will be diseds linear transformation. For nonlinear systems, it is nemgst
In section Il the bipedal robot TUIip will be described afte Use computationally tractable sub-optimal solutions [23].
which in section IV the internal models will be explainedTherefore, choosing the right technique comes down to ngakin
Section V shows the filter implementation. Section VI shows trade-off between how accurate the posterior pdf has be be
the Simu|ati0n’ app”ca’[ion and results. Section VII g|\a§s described and how much time is available for Computation.
discussion of the results and section VIIl concludes thiwre The more accurate the predicted pdf can be approximated, the
closer the outcome is to the optimal estimate, but the more
calculation effort it requires.
Starting at the accurate but computationally expensive sid
To be able to use more advanced models, nonlinear stafehe spectrum, there is a wide range of particle filters maki
estimation technigques have to be used. Roughly, they case of Sequential Monte Carlo Sampling to approximate
be divided into deterministic and probabilistic types. Ththe posterior pdf. The more samples, the more accurate the
common Luenberger Observer as well as the Sliding Modstimation will be [24] [25]. The Ensemble Particle Filter
Observer fall in the first category. Although the Sliding Modhas a similar approach. Using an ensemble of particles and
Observer has been used in robotics and was shown to beadlightly different update procedure from Particle Fitehis
bust, only probabilistic filters will be considered here énege type can also capture higher order moments of the pdf [26].
of the similarities they have shown with human behavioufhe amount of particles required for these methods can range
These filters are based on Bayesian inference: given a pfimm 50 up to a several thousand, but is hard to predict up

Il. NONLINEAR STATE ESTIMATION
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of particles, computational complexity can become enosnou
[27] [22]. Less computationally expensive are the SigmaPoi
Kalman Filters. Examples are the Quadrature Kalman Filter,
the Central Difference Kalman Filter [28] [29] and the more
popular Unscented Kalman Filter [30] [31] [32]. They make {c}
use of deterministically chosen points with associatedytisi e
to approximate the posterior as a Gaussian pdf. Sigma Point
Kalman filtes can not accurately describe a multi-modal pdf
or higher moments, but the amount of samples is fixed and
scales with the state siz&. The Unscented Kalman Filter,
for example, usually require8N + 1 samples. This makes
them computationally favourable over Particle Filters. iDe
other end of the spectrum, the less accurate Extended Kalman
Filter can be found. It is an ad hoc solution, making use of
local linearisation of the nonlinear function to be able sz u
the standard Kalman Filter equations [33]. Though it is rofte
used, it can give very bad estimates in case the assumption of
linearity is violated [27] [31]. It also requires the calatibn of
Jacobians that do not exist on the switching surface of aithybr
system. The previously mentioned sample based techniques
can more easily deal with discontinuities [31] [22].

For a humanoid robot, estimation has to be done re&lo. 2. The Linear Inver_ted Pendulum Model, which is ofterduto analyse
time with limited computation power. Moreover, the techraq "¢ ©entre of Mass motion.
has to be able to deal with the hybrid nature of a biped.
Sigma Point Filters are shown to have better accuracy when IV. SYSTEM MODELS
compared to the Extended Kalman Filter. Also, constraints
and discontinuities can be more easily incorporated. They
preferred over Monte Carlo techniques because they req

front. Because the computation effort scales with the arhoun o) z
0
“;%y

a The internal robot models used for state estimation are usu-
Lﬁlllé( simple models that neglect nonlinear behaviour, amgul

far less computations and are thus more suited for real-tiﬁ%omemum and the motlon_ln the third dimension. To b_e
systems. Considering the above, a Sigma Point Kalman filﬁ le to e_st|mate more versatile mqvements OT n_ext-gemaran_

seems like a good solution for state estimation in a human Hmapmds and to. better cope with .uncertalnt.les present in
robot. Specifically, the Unscented Kalman Filter is choséhe kinematic chain, a three-dimensional multi-body model

because it can be tuned in various ways to either incre 'g zellntro,\(juge:j.. Iz the _fgrsé sgll;).se_ct[[cr)]n,lt.he L!negr In:grl
accuracy or decrease computational complexity. enduium Vodet 1S described. 1his 1S the ineansed pemulu

that is often used for CoM estimation. In order to evaluate th

1. TULIP HARDWARE AND CONTROL estimator proposed in this report, an estimator based an thi
The TUlip is a 1.1 m tall, 18 kg humanoid robot. Both IegIinearised pendulum will also be_implemented asa bepchmark
have 6 actuated degrees of freedom: 3 in the hip, 1 in the aneth.e sections thereafter,_the k|r_1emat|cs and dynamichef t
and 2 in the ankle [34] [7]. Figure 1 shows a CAD model of threnu't"bOdy robot model will be given.
TUIip and figure 3 shows a schematic of the robot kinematics.

Each joint is actuated with a Maxon DC motor and a planetagy Linear Inverted Pendulum Model
gearhead. Flexion and extension of the hip, knee and ankle ag,o | inear Inverted Pendulum Model (LIPM) is an often

well as the inversion and eversion of the ankle are achievggled model to approximate the CoM motion of a humanoid
with series elastic actuation (SEA) [35]. Here, the motoes arobot, both for control and estimation. A schematic is shown

connected to the jo?nt via an elastit_: _element. B_y MEeAsUNi\ figure 2. The pendulum is constrained to move along a
the. elo.ngatlon of this elem_ent, the joint torque is caladat horizontal plane at height,. This is achieved by means of a
which in a feedback loop is used for torque control. Eacl}%lescopic, massless leg whose internal forces keep the CoM
motor axle has a HEDS 5540 rotary encoder attached. T6 he horizontal plane. The base of the pendulum is located
joints with series elastic actuation also have a ScanconlﬂRMat the Centre of Pressure (CoP) of the robot. For a point foot
encoder on the joint axle. The torso is equipped with an Xsef3q is the ankle location projected on the ground. Veator
MTI inertial measurement unit that outputs estimates of the o position of the CoM in frame. The location ofa is

o.rlentatllon, rotational velocity and linear accelerguanhree expressed agc,p in some global framé. The equations of
dimensions. Lastly, each foot has Tekscan Felxiforce $8NSQ otion are then given by

to detect contact with the floor. The current software runa in

1 kHz loop in an xPC Target real-time software environment.

On-board calculations are done on a 1 GHz Diamond System P =wiPr, with P =
Poseidon SBC with 256 MB RAM.

1)

O O =
o = O
o O O
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model from here on. In this model, the 2 kinematic chains that
can be recognized run fromto 10,. and from0 to 10;. For
each chain, the body frames are related as

H Y0, =H,H@O,)H, fori=1...n 2)

i

wheren is the number of the end effector frame. Homo-
geneous transformatioH (6;) represents a pure rotation or
translation, depending on the type of joint. The transfdroma
H,, contains a constant offset that splits the kinematic chain.
At a bifurcation, the value of the offset depends on the chose
direction. It is an identity matrix otherwise. Transformoats
H;, contain constant offsets between the joints. The indiMidua
bodies are then related via their CoM positions according to

H{7'(0:) = Ky, HTH(60:) Hop, ®3)

where H,,, contains a constant center of mass position
viewed from the body frame, as depicted in figure 3. The
position kinematics are completed by recursively definiaghe
CoM location relative to the global frame for each side as

{10:3/
{11, ' 0 0 i—1
H; (01,...,0;) =H;_(61,...,0;—1)H; " (6;) 4)

The velocity kinematics are obtained using a geometric
approach based on screw theory. For details, see Appendix
A. Here, the basic steps in the derivation will be given using
a slightly simpler notation of twists for readability. Alsthe
arguments ofI’ shall be omitted from here on. First, the twist
for each joint can be found as shown below.

i 0 - i_1—1
Fig. 3. The complete kinematic model of the TUlip humanoidaio T; e 20 (Hz 1) H; 1 (5)
i

(12,3

. ) _ which is of the form
wherewy, = :z% and P is a matrix that projects the

equations onto the:y-plane. The result of the constraint is w v
a set of uncoupled equations describing the motion of the 0 1

Co|'\</l n ;rame . Morfeolvfer, lt)he.equat:on_s ar? I|ne|$r. l,Th'S where® is a screw-symmetric matrix representing a rota-
makes the LIPM useful for basic analysis. Also, the linegj,,, velocity and where the vectorrepresents a translational

behaviour allows for using it as an internal model for sta locity. The twistTi ! is expressed in twist coordinates as
estimation, without needing nonlinear filters. A simple iah !

Filter suffices. i1 ( v )
Z. =

w

(6)

B. Kinematics Using the twists of each joint, the Jacobian for the instan-
Figure 3 shows the complete kinematics of the TUlip withynegus spatial velocity: = J:@ of the ith body relative to

all degrees of freedom as described in section Ill. For thge global framed can be constructed. The spatial velocity

internal model used in the state estimator, the feet are [g-the velocity as seen from the origin of the spatial frame

moved. This greatly reduces model complexity by elimirgting The vector in this case represents all the degrees of

2 degrees of freedom per leg and avoiding complex groufidedom of one of the kinematic chains. The construction of

contact models. The framek), and 10; are the new end the jacobian is done by using all previously constructesitswi

effector frames. The effect that the ankles have is incaieor 5ng transformations matrices according to
by transforming the measured ankle torques to a wrenchgactin

on the lower legs. The trunk is modelled as a floating body by I =(t,...,t,) @)
defining a virtual, 6 degree of freedom kinematic chain that

connects the trunk with the world frame. The model used for with

estimation thus has two 4 degree of freedom legs attached to ,

the floating trunk giving a total of 14 degrees of freedom. It P {j <1 Angfltfl

will be referred to as the Floating Footless Humanoid (FFH) J i>i 0
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Thus, column; is the contribution of thejth joint to the with the IMU output. The vector; represents the joint control
spatial velocity of bodyi. Because it is the spatial velocitytorques and the vectaf,,, contains the ankle torques on the
as seen from framé, the contribution from all jointg > ¢ end of both lower legs. They are mapped to the joint space
up to the end effecton for body i is zero. In the equation making use of the body Jacobian of both lower I1égk.C and
above, Ad, is the Adjoint transformation which transformsG are the mass matrix, the Coriolis forces and gravitational

twists from one frame to another. The Adjoint transformatioeffects respectively.

is defined as Since a humanoid is transitioning between double and single
- support phases during walking, its dynamics are hybrid in
Adgy — < R dR ) (8) nature. This is implemented by switching constraints on the

0 R feet using Lagrange multipliers. Leb, = (pss pry h)T

with R andd the rotation matrix and translation vector ofepresent the location of a foot withthe height of this foot
transformation matrixH. Note thatd is the screw-symmetric above the ground. Then, the following constraint functiess
form of d. The body Jacobian can now be calculated usirfgground contact model for that foot.
the inverse of the Adjoint transformation matrix.
h>0, AX>0 (13)
J? = Adgoe J: 9)
o » "o Which means that wheh < 0, the constrainti = 0 is
This gives velocities of body relative to the global frame gctiyated. This ensures that the foot is always on or abave th
0 and seen from the body frameas v, = J;6. These ground. It introduces the Lagrange multipliethat functions
velocities can now be used to calculate the kinetic energy 5 ground reaction force. As these forces can not pull the
of the Lagrange equation. For completeness, all the boghot hack to the ground, the extra conditionois required.
velocmes_wnl be c_ollected by defining a total Jacobian fOIr\Iext, a no slipping condition is implemented for the case the
each chain according to foot is in contact with the ground. This is implemented as

I

()-(1) e
J

n

) } _ _ The above constraints are conditional on whether or not
This results in a Jacobian for the right and left leg. Both qhe constraint onh is active. When these conditions and

Whi(_:h start with a_Jacobian for_the 6 degree of freedom Mirtugosiraints are implemented for both feet, the hybrid dyinam
chain and end with the Jacobian of the 4 degree of freede@h pe represented using the same dynamics given in equation
leg. The final Jacobian for all bodies is thus (12). In a similar way as the constraints of (13), joint matio
limits are implemented for both knees. Finally, 18(0)

b o represent the current active constraints of the hybric stat
g, =1 J. (12) . C o ;
7 The governing equations in are then given by
with T o
(M :BS ><0>_<dft0t’> (15)
B; O As 1 (Bs) 0
Jb Jb Jb
P 3 3 ! whereB, = 2 . The total forces arg,,, = J°(6)” f ., +
R A R : P 5 7; — CO — G and0; is a square zero matrix where the size
Jb Jb Jb . .
6 10, 10, depends on the number of active constraints.

To decrease computational burden, the bodies attached to
the hip rotation and abduction are assumed massless. The
upper and lower legs are assumed to be point masses. Fur-
thermore, no impact equations were implemented. Andylastl
) to further reduce the computational complexity, Coriotisces
C. Dynamics were assumed to be small due to the low velocities and not

The equations of motion for the FFH can now for exampleaken into account.
be obtained by using the Lagrange equation as shown in
Appendix A. The final equations of motion are

which gives the velocitieas?,, = J? ,8,,; of all bodies
combined. From here o), = 8.,; shall be used to represen
all the 14 degrees of freedom.

V. STATE ESTIMATION

A g _ 1bhio\T ‘ In this section, the two state estimators are explainechén t
M(6)8 +C(6,0)6 + G(6) = I(6) feue + 7, (12) first subsection the state estimation making use of the LIPM i
where the generalized coordinates are givenfas= given. Itis based on the currently implemented CoM estimato
(@y 2z, Py by 07, ... 910,)T. The statesz,y,z are the for the TUIip [10]. Secondly, the implementation of the full
prismatic joints andy., v, v, the zyx Euler angles of the body state estimator will be explained. The results of both
virtual chain. This rotation order is chosen such that itadhes estimators shall be compared for evaluation.
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TABLE | TABLE Il

PROCESS MEASUREMENT AND SIMULATED SENSOR NOISE COVARIANCE PROCESS MEASUREMENT AND SIMULATED SENSOR NOISE COVARIANCE

FOR THELINEAR INVERTED PENDULUM KALMAN FILTER. FOR THEFULL-BODY UNSCENTEDKALMAN FILTER.
To[m] ry[m] re[m/s]  ry[m/s] Y, 2 Yo,y ¥z 07,08 09,010

. . d d d
Process 0.86e=% 0.86e—® 0.86e=% 0.8583¢~6 (] [rad] [rad] _[rad]
Measurement 0.95e~% 0.95¢=% 0.95e=% 0.95¢—% Process 1—4 1-4 le=® 1e~®
Measurement 1-5 1-5 le=® 1le=©
Simulated sensor 4e—4 1.2¢—3 le=6 le—6

A. Linear Inverted Pendulum Kalman Filter

The Linear Inverted Pendulum Kalman Filter (LIPM KF) 9,2 Yo, Py, z 07,08 09,010
uses the LIPM, given in section in section IV-A, as a forward (m/s] _[rad/s] [rad/s] _[rad/s]
model. As these equations are linear, a Kalman Filter can be_Process 1 1-° 5° 1
used for estimation. To do so, the LIPM equation from (1) is _Measurement 472  27% 11 1t
put in state space form and discretised. The resulting @msat ~_Simulated sensor 4e™2 52 lem?  le”?

are of the form

first put into a constrained state space form.

Ty 1 0 h O Ty

Ty _ 0 1 0 h Ty . 1 ,

T "l wih 0 10 T (16) 6 (I) 13{ B?T 6 .

Ty ) e 0 wih 0 1 my ) )‘\9 = o B OS . -(f];n‘) 5 (18)
s s s at s

with the stater = (r, r, 7, 7,) expressed in frame of
figure 2. At each time step, the pendulum is fitted onto the . T 2T . L
current configuration of the robot by updating the locatidén &S a function of thetitatg? = (0 0. )- D_|scret|s_at|on is done
a and the heighty. These LIPM properties are updated b 'a a Runge-Kuf[ta_L order_ numerical integration sche_me to
inserting the encoder measurements at the current tinminstObt?m tflle gredltgtlon Igr Flméc|+; b‘?sed 03 the 3st|mat§
into the kinematic transformations. Frameis chosen to be °"' M€ & Equation ( .) 'S solved using a damped pseudo-
at the ankle position of the stance leg. For the double Smppl&verse .method, which is numencally more stable tk_\gn uaing
phase, the CoP should lie somewhere in between both feet.rﬁgu!ar inverse. The constraints are stabilized by prijg¢he .
the pressure sensors on the TUIlip can not measure the CoPpéS{j'CteFj value on'Fo the constraint surface. Instead aigusi
only determine if there is ground contact, frameés placed the predicted or_estlma_ted values, _the sensor measurgarents
in between both ankle positions for the double support phagged to determine which co_nstralnts are active. This turned
The previous estimate of is then expressed in this frame toout to be a more robust solution. The foot sensors are used to
make the prediction for the next time instant check the conditions in (13) and activate the constrairgttogy

The measurement equation that is used is. with the equality constraints of (14) if required. The joamgle

q measurement of each knee used check whether or not the joint

limit has been reached.

The measurement equation for the FB UKF is

wherel is an identity matrix. This gives the state derivative

Zht1 = (Tz Ty Ta fy)fﬂ a7

where the CoM positions:, and r, are calculated using
the local CoM positions and the encoder measurements. The
derivative is used as the velocity measurement. Zit1 = (Y 29z Yy Yo O, ... Oro, .

Lastly, the noise levels were obtained from the currently @y i by ¥ b7, ... 010)i4  (19)
implemented observer. They were tuned to achieve as good as .
possible tracking of the CoM and they are given in table 1. | "€ trunk position measurementsy and > are calculated
For the simulation study, the simulated CoM measurement w&¥nd the encoders and forward kinematics. The frame in
calculated by using simulated joint angle sensors and fatwd'Nich they are expressed depends on the current support

kinematics. The noise covariance of the simulated sengors S€ting as detected by the foot sensors. It is either theeram
be found in table II. of the left or the right foot. The orientation measuremefts

psi, andy, come from the IMU mounted on the trunk. For

the SEA joints, the joint encoder measurements are as joint
B. Full-Body Unscented Kalman Filter angle measuremends,, 019, , 09, andésy,. For the other joint

angle measurementés , 6s,., 07, andfs,, the motor encoder

The Full-Body Unscented Kalman Filter (FB UKF) uses theneasurements have to be used, multiplied with the gear. ratio

FFH model from section IV-C as an internal model to predidthe velocities of the trunk, ¢ and Z are acquired from the
the next state. The Unscented Kalman Filter (UKF) is used taU. For the Euler angle rate of change, 1/}y and v, the
fuse the prediction with the measurements. Equation (15)HEsiler angle derivatives are used as a measurement. Sinilarl
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the derivatives of the encoder measurements are used &s joy’
angular velocity measuremerﬁs to 9101

The UKF can be tuned in various ways. One of which is
the choosing the set of sigma points used to approximate the
posterior probability density function [31]. This appron-

tion is obtained by propagating all sigma points through thé.
nonlinear system. The symmetric set was chosen for the FE
UKF because the equal weights for each sigma point make
estimation more robust, especially near a constraint cerfa .

The algorithm of the UKF that was used can be found in

appendix B. C.
Finally, the noise covariance values have to be set. The

simulated sensor noise covariance was obtained from sensc

data sheets and by inspecting sensor output data. The proce_

and measurement noise were tuned to overcome specific eErSr . Configurations used in simulation. From left to rigtite robot is

sources. For example, unmeasured backlash is present in 84n atos, 0.5s, 1s, 1.5s and 2s. The first two motions shown are, from

of the hip Jomts of the TUIlip making the angle measurementep to bottom, based on the ankle and hip balancing stratéule wtanding.

more uncertain. Also, more trust was placed in the model fiFe [ oton =2 weng paten e i he . eres et are o

several velocities to filter the noise. The values are given mass on the ground.

table Il. The estimates obtained by the FB UKF can finally be

used to calculate the CoM using forward kinematics.

V1. EVALUATION, APPLICATION AND RESULTS

This section consists of a simulation study an applicatic /
to the TUlip humanoid robot. In the first part, ground truth=
data will be obtained via a dynamic simulation. The simuate’
estimator uses the same dynamics for the prediction but w}
either a parameter error or sensor bias. As the LIPM KF oniy :
estimates the CoM, the CoM estimates will be compared fgig. 5. The movement used for the experimental validatiomplémented on
both estimators. The actual state estimate obtained byBhe tzer;élkllr; :;Ta;:;‘gdr%):tcoltn ;ISg Er;\églﬁmg g?citrllzns\:vrgﬂl éggnriﬂtgnglel% I?n
UKF will be evaluated individually. In the preliminary appl ¢ '
cation, the estimates will be compared with the measurementq re 4. The video stils show a single step.

The set-up and results are given in the following subsestion

_ _ influence shall be theg-direction because of the play in the
A. Smulation Sudy hip abduction and adduction joints.

Because both measurements and predictions are sufferinglext, several uncertainties were introduced. Sensoryenois
from inaccuracies, it is important to know how an estimatawas added to he true state and state derivative. The sirdulate
performs under these circumstances. The overall robustnesnsor noise is given in table Il. Then, backlash was added.
and the dependency on different uncertainties can be weélis was done for the joints where it was identified to be
investigated using simulation. This will be done for botla problem, namely the hip rotation and hip abduction and
estimators for several movements to see if the results adduction [10]. The backlash was systematically varied in
general or only hold for specific types of motion. 10 samples betweefi®° and 3° for each type of joint. It

To do so, simulations with the FFH model will be used awas modelled as a bias on the measurement. To make the
the ground truth. A total of 3 different movements will beeffect a bit more realistic, the direction of the bias chahge
simulated. The first motion is ased on a balancing strategyth the direction of the torque during simulation. The final
using the ankles. The second motion is more dynamic anmasurement values including noise and possible bias were
uses both the ankles and upper body momentum to balancged as measurements of each estimator. Note that for the
A wrench controller on the lower legs was used to emulatdPM KF, these measurements are inserted in the kinematic
balance control of the ankles. The third movement is based model to obtain the CoM measurements. After that, the
a walking motion. As there is currently no walking controllemodel parameters were systematically varied over 10 sample
on the TUIip, it is a walking motion in mid air such thatMasses and inertias as well as CoM locations were varied
it matches with the experiment in the next section. Eadietween—10% and10%. Dimensional properties were varied
simulation lasts2 seconds. They are shown in figure 4. Theetween-5% and5%. These changes were then applied to the
direction of movement is the-direction for all configurations. kinematic and dynamic models. The effect of link flexibility
So the upper body movement in configuration A and B agas not specifically investigated. There are 23 parametets a
well as the extension of the legs in configuration C are i different joints suffering from backlash giving a total 26
the z-direction. The direction for which play has the biggedtifferent sources of uncertainty. Each source is varied(n
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TABLE IlI type of uncertainty. It can be seen that the spread is thesarg

THE AVERAGE RMSEOF THE COM ESTIMATIONS FOR ALL PARAMETER  \when varying mass and backlash. Using Levene’s test, the
VARIATIONS FOR BOTH ESTIMATORS FOR EACH CONFIGURATIONTHE

ITALIC VALUES FOR THE LIPM KE ARE NOT ESTIMATED BUT variance was indeed found to be significantly larger for ¢hes
CALCULATED USING FORWARD KINEMATICS. two types. Errors in the CoM positions were found to have
the least influence on the variance. The same was found for
A B C the variances of the other configurations B and C, despite
=+  0.0030 0.0017 0.0046 of the averages being different. When compared to forward
y 0.0002 0.0002 0.0018 kinematics, no significant reduction in variance was fourrd f
1 LPMKE * 00015 0.0015 0.0015 the backlash. The average RMSE was the same or even greater
« 0.1883 0.1053 0.1811 for the z-position.
¥ 0.0066 0.0013 0.0646 2) Full-Body Unscented Kalman Filter: Figure 7 shows
z 00002 0.0008 0.0002 the effect of parameter variations for different configimas
x  0.0010 0.0068 0.0009 of the FB UKF. For configurations A and C, the estimation
y  0.0004 0.0006 0.0022 in z-direction was significantly better than the LIPM KF. In
2. FBUKF ° 00016 0.0027 0.0016 configuration B, though, the FB UKF performed worse in
j; 8'8(5)22 8'312? 8'8%2 the z-direction. For they and z-estimation, no differences
. 00088 0.0138 0.0159 were found. Figure 9 shows the influence of the different

types of uncertainties. The variance caused by errors irs mas
parameters is significantly larger than the rest. The effect
of backlash is reduced significantly in terms of variance as
compared with the LIPM KF. This can be seen in figure 10,

%/yhere a single simulation is shown in whigh of backlash

as added. In figure 11, the estimated velocities are shown.

steps for3 motions. This results in a total af0 simulations
per estimator.
In the evaluation, first of all, the performance of the CoM e

timation in the presence of parameter errors shall be comlpa r confiauration B. backlash Iso reduced in
between the configurations for each estimator. After thed, t 0 io lgFu atio f ’ ?C aCs thwasﬁa ?Ofﬁ) uﬁle hl y;e
influence of different types of parameter errors and babklag'geccgg' Mgrr:gnelrglsﬁ I'?]?I e,nceeoe} tiz Oara?’r?etzf e;?/:rs noas
on the CoM estimation of each estimator shall be compar rg'dzced.as Wellvin,the f:rstuconfigurationl:J As opposed to ;ﬁe
Lastly, the state estimations and foot location estimatbn PM KF, the FB UKF estimates more than just the CoM.

the FB UKF will be evaluated. For these comparisons, t 19 le. sh the ioint les in the hip f
root-mean-square error (RMSE) will be used as a metric. It j gure 1z, for example, shows the joint angles n the hip for
the same simulation as figure 10. It can be seen that the bias

calculated for each simulation for both estimators. Theltss . . - .
: . f the hip abduction and adduction has indeed been reduced.
I mpar n lots. Here, the average sh ||§ ” . .

will be compared using box plots. Here, the average shall i ure 13 shows the trunk velocities. In particular, theticat

used as an indicator of accuracy and the spread in the data . . . S
Y P ocity of the trunk is less noisy. However, thedirection

as an indicator for robustness. To make comparisons betwé{g tai . d the-direction h Il offset
different data sets an ANOVA with a with a significance lev I contains noise an he-direction has some smafl OfISets.
or completeness, figure 18 shows the distance between both

of 0.01 was used to distinguish sets with different mean ot which can be used to construct the support polvaon
Levene’s test for homogeneity of variance with a signifiean ' pport polygon.

level of 0.01 will be used to find differences in variance.
C. Application to the TUlip Humanoid Robot

B. Smulation Results Although a simulation gives insight in influencing factors,
Table 1l summarises the results. The RMSE of the Coll does not say much about the actual performance of an
estimate for each trial has been averaged over the configugatimator. Sensors may show drift and there might be more
tions. The effect of backlash was excluded from the averageurces of uncertainty than modelled. Moreover, it was mot i
as it will be inspected separately. In the rest of this sulimec vestigated how a combination of wrong parameters influences
more detailed results of both estimators will be shown. the performance. Though, this is likely to be the case for the
1) Linear Inverted Pendulum Kalman Filter: The RMSE real robot. To find out more about these issues, a preliminary
for all parameter variations is shown per configuration ia thapplication is done.
box plots of figure 6. The black dots indicate outliers. Theada Because there is currently no stable balance or walking
sets that are coupled with a horizontal bar are significangpntroller implemented on the TUIip, a walking motion in
different. From this, it can be observed that the perforreanmid air was implemented. Apart from different gains for PD
differs per configuration. The estimator performs the leasontrol, the controller implementation was the same as for
good for configuration C. The estimation of theposition configuration C in the simulation study. The implemented
was better for configuration B. The vertical position can naenotion is shown in figure 5.
be estimated with the LIPM KF so it was obtained using Recorded data from the TUIlip was imported and provided
forward kinematics and no significant differences were tbunto the FB UKF. Estimation was done offline, not embedded
In fact, no significant differences were found between the the closed-loop controller of the TUIlip. The estimatioasw
configurations for any of the forward kinematics calculatio performed on a 2 GHz computer with 6 GB memory. The
Figure 8 shows the RMSE of configuration A, grouped peorques as measured by the TUIlip were provided to the FFH
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Fig. 6. Box plots showing the RMSE of the CoM position estiorg

using the LIPM KF for all parameter variations for each comfégion. The
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data sets marked with an asterisk are significantly differen
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Fig. 10. CoM estimation of configuration A with the LIPM KF atie FB Fi_g. 12. Joint angle estimation of _the Ie_ft hip jqints duriegnfiguration A
UKF. In this simulation, backlash ¢f° was added to the hip abduction andWlth the FB UKF from the same S|mu_|at|on as f|gure_10. The mesasant
adduction. It was modelled as a torque dependent measuirdiasn clearly s, has a torque dependent bias 35f representing the unmeasured

play.
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Fig. 11. CoM velocity estimation of configuration A with théRM KF and

the FB UKF, obtained from the same simulation as figure 10 Fig. 13. Joint angle estimation of the left hip joints duriognfiguration A

with the FB UKF from the same simulation as figure 10.



MASTER THESIS ERIK VLASBLOM, DELFT UNIVERSITY OF TECHNOLOG, JUNE 2014

11

=’
— 0.2 T T T T 3 0.02 T T T T
~ o} i
8
S~ of — Measurementl| < N SN——
——LIPM KF -0.02f —— Measurement
—— FB UKF —— FB UKF
-0.2 ! ! ! -0.04 ! ! !
8.5 9 9.5 10 10.! 8.5 9 9.5 10 10.5
=
—0.2 T T T T 3 0.2 T T T T
&
< o 1

—

[
N

0.7

0.68

0.66

0.64 : : : :
8.5 , . 10
Time Tsﬁ

10.!

Fig. 14. CoM estimation as done in the experiment. No grounth tdata
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Fig. 16. Joint angle estimation, using the same experimexg used for
estimating the CoM in figure 14.
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Fig. 15. CoM velocity estimation, using the same experimeas used for
estimating the CoM in figure 14.

Fig. 17. Euler angle estimation, using the same experimeag used for
estimating the CoM in figure 14.
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observations and issues will be discussed in the following

Fig. 18. The distance between the feet as estimated by the fdKF subsection.

configuration A in the same simulation as figure 10.

A. Compensating for Sensor Bias

0.5 . . . : : The play in the joints was not modelled with an extra
— Measurement degree of freedom, but as a varying bias on the measurement,
0 Forward Dynamics . . . . .

dependent on the direction of the torque. A varying biadfitse
~05 A A . A . could also represent a loose or misaligned encoder. Using
4 forward kinematics, such a bias directly influences theveeri

9 10 11 12 13 1

' ' ' ' ' states like the CoM or feet locations. Making use of the LIPM
L /_/\ . KF as a prediction, this effect remained, because the filter
\\_ - directly uses forward kinematics to fit the pendulum model

9 10 1 12 13 1

4 onto the real robot. The FB UKF, however, allows for fine-

0.2

o

-0.2

0.5 . . ; ; ; tuning the covariance on individual joints and for two of the
= three configurations, the influence of this bias was sigmiflga
OL.//\_\ ,_//\_—\/_/ 7 lower. In configuration B, though, the estimates were not
05 , ~ . . . improved. The same can be observed in the experiment.
9 10 1 12 13 14 The hip abduction and adduction is known to suffer from
05 ' ' ' T\ ' unmeasurable play. If this is compensated for, the estinate
o-—/\\——* \—_—~___ | angles should have an offset from the measured ones. Though,

in figure 16 it seems the estimator is tracking the measured

o 10 11 1 13 14 angleds,, rather than compensating for sensory bias. For the
Time [s] hybrid state of configuration B with both feet in the air, tree n
support state, there is no additional information thattéile

Fig. 19. A forward dynamics simulation using the measurét jorques from estimator how the Iegs are moving with respect to the trunk,
the experiment. The measured angles are shown togethettheitsimulated aPart from the gncoders. HoweV_erv these enconers suffier fro
angles using an open-loop simulation for several steps. measurement bias. In configuration A and B, with both feet on
the ground in the double support state, the feet are not rgovin

This information is provided by the foot sensors to the mpdel

model and an r?pe'n'_loop si?]"nulation is pelrformeﬁ. Dampingnsiated into a constraint on both feet. With one foot an th
was added to the joints in the FHH model and the dampi ound in the single support state, it is therefore expetttat

Eoefﬁmer_\tsﬂ \évlerlevusl:ed as a tuning plframeter. The values sensor bias can be partly reduced in most likely the stanc
e seen In table 1V. For estimation, the same noise covaglar only. Additional sensors like acceleration measurdsen

matrices were used as in the simulation. The measured an Sh IMUs in both feet could help to overcome this problem.
and estimated angles were compared and both used to calculat
the CoM. Finally, the estimated CoM and the measuerd CoM ) .
were also compared. B. Robustness against Parametric Errors

With the simulation study, the sensitivity to model para-
metric errors can be checked. This gives an indication of
) » .the robustness. Using forward kinematics, the influence of

Figures 14 and 15 show the CoM position and velocity,ying model parameters is the same among the different
estimation. Figures 16 show the estimated hip angles @sqqurations. For the LIPM KF as well as for the FB UKF,
compared with the measured angles. The estimated EUGE effect is depicted in figures 6 and 7. It was found that
angles are shown in figure 17. The simulation that was dogg, yariance in the data was also the same for almost all data
with the FFH model using the torques measured by the TUIiRs \when comparing the two figures. Moreover, it was also

is shown in figure 19. similar to the variance of a pure kinematic calculation. Whe

looking at the figures 8 and 9, it can be seen that the FB

VII. DiscussioN UKF compensates for parametric errors to some extent. The

In this report, a nonlinear estimator for a humanoid robegriance caused by the mass, for example, is lower in the
was proposed using the full-body dynamics of the robot. & wa-estimation. Apart from that, the UKF itself can be altered
compared with an estimator using a simpler LIPM. Severa do parameter estimation or even dual estimation. [32¢ Th

D. Experiment Results
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latter estimates parameters and states simultaneoussn bbe aspect of the FB UKF. Though it can be used to solve multiple
useful in case parameters change during motion, for exampgsues in the kinematic chain, it does not solve all becatuse i
when the robot picks up and carries a load. This gives the F8lies on the availability of redundant information. Tugithe
UKF, when it is well tuned, an edge as compared to the LIPKter should focus on tackling the specific issues present in
KF. Lastly, in practice, when obtaining the robot parangterthe robot. Hence, it is suggested to identify these issusde

it is suggested to focus on geometric parameters and bajplication of the estimator.

masses, instead of local CoM positions or inertia. Thisus tr

for both of the estimators as well as for a forward kinematie, Numerical Implementation

calculation. . .
In sections IV and V, several choices were made to decrease

] the compuational burden. However, the current filter was not

C. Smple versus Complex Models implemented on the robot itself. Despite doing the estiomesti

In this research, two estimators were compared. One &-100H z, estimation generally took twice as long as the
duced the complex robot dynamics to a two-dimensionduration of the estimated motion. Currently, the predittio
pendulum and the other included almost all degrees of frmedavith the equations of motion is done in C-code. However,
of the robot. The effect of increasing model complexity caimplementation of the equations of motion in C-code was
best be seen from figures 6 and 7. In configuration A, the Fdne by directly exporting symbolic equations to C. It is
UKF clearly outperforms the LIPM KF. The reason becomeberefore suggested to look at efficient implementatioke li
apparent when inspecting the estimationrgfin figure 11. the Articulated-Body Algorithm [36]. Also, the UKF itselfas
As can be seen, the estimation of the velocity is incorrectot implemented in C but in Matlab m-code, but the UKF
It was explained in section VI-A that backlash had limitedalculations themselves are not as computationally comple
influence on ther-direction in the simulations. Therefore, thisas the equations of motion. Two other options that could
can not be the cause of the incorrect prediction in figure §peed up the calculations are reducing the amount of sigma
Instead, the LIPM KF simply predicts an incorrect velocitypoints and implementing a numerically more efficient method
causing a bad estimate for the position as well. The reasidee the Square-Root Unscented Kalman Filter. This square-
behind this, is a bad fit from the pendulum onto the robatoot variant of the UKF increases computational speed and
This is even more the case for configuration C where tlgeiarantees a positive semi-definite state covariance xmatri
robot is in the air. Although no ground truth was availabtes t [37]. Positive semi-definiteness can also be an issue in the
experiment suggests the same, as can be seen from 15. filmmerical implementation of the normal UKF, where the
FB UKEF, though, can predict a no support state much betteratrix square root is calculated as shown in algorithm 1 of
Configuration B best reveals the crux of this section. Wikike t appendix B. An incorrect prediction that is weighed using a
LIPM KF might predict in the wrong direction in configurationrelatively large weigh factor can, for example, cause nucaér
A, it might just as well predict in the right direction, witbhb instability. This is the reason for choosing the general sym
actually having knowledge about the complex and fast motionetric sigma point set. Lastly, it should be noted that agldin
that is happing. This is the case for configuration B. It show®nstraints can cause badly scaled matrices, causinggonsbl
that simple models can work in specific cases, whereas the WBen implementing equation (18). With a damping factor of
UKF was unable to follow the fast movements in configuration = 0.01 for the damped pseudo-inverse, this problem is
B. Tuning the covariances tailor-made for configuration Burrently circumvented.
estimation performance can be significantly improved, but
the tuning deteriorates the performance of the other mstiof: |yplementation on the TUlip
This demonstrates a disadvantage of using complex model

namely, that they are harder to tune for multiple motions. While using measured data to test the tracking of the FB

UKF, the measured torques were first checked in an open-loop
N simulation of which the final results are given in figure 19. It
D. Versatility shows several steps of the walking pattern. The simulatias w
One of the benefits of the FB UKF is that it estimates allsed to tune the damping in the model joints. This revealed
current states and it can thus provide more than just the Coséveral issues. First of all, a gain error was found betwken t
By removing errors in the kinematic chain, the locations dbrques measured by the series elastic actuation and tiestor
the feet were also estimated and improved as comparedctdculated from the pwm signals sent to the motor. It was
using forward kinematics. This is shown in figure 18. Figursolved manually by matching the signals, though it requires
13 shows that the FB UKF can also filter noisy measuremeffitsther investigation on motor drive level. When the gairoer
of individual states. However, the figure also shows it cah nim the measurements was not manually compensated for, the
filter all noise present in the measurements. One has to plastimator performance degraded. Furthermore, a stiffwass
trust in some noisy measurements to be able to remove sendonnd to be present in the hip rotation. The joint seemed to
bias present in the kinematic chain. This directly resutts prefer to go to its zero position. This is caused by the dlectr
a noisy CoM velocity estimate, seen in both the simulatiazaebles that run from the trunk over the leg, pulling the legkba
results of figure 11 and the experimental results from figute its zero position in some situations when the hip rotates
15 and 17. It can be easily solved by including a non-pradictiaround itsz-axis. Moreover, from figure 19 it becomes clear
filter like a Butterworth filter, but it does reveal an importa the hip rotation drifts away. This was caused by stick-gfip i
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the joint. Because an error in the angle is detected in the lo. Geometrical Background
level control, the motor sends out a signal which is too small A rigid body motion is a mapping : R — R? where

to overcome friction. This does not result in a motion of thgjstance and orientation are preserved. First, consigecase
robot, but does result in the hip rotation drifting away dari of pure rotation. The proper description of the motion that
the open-loop simulation. The effect was also observed f@jtisfies these conditions is via the Special Orthogonalmgro

the hip abduction. The FB UKF was found to be a useful togl(3), which is the space of rotation matrices. It is defined
in discovering software and hardware related issues. lifjjnalg

although it was not investigated specifically, the expernime
indicates there is some robustness against model inputserro o -
However, no quantitative information can support this. SO3)={ReR> :RR' =I,defR) =1}  (20)

This is a group under the operation of matrix multiplication
Moreover, it is a smooth manifold that has three degrees of
G. Future Work freedom representing the orientation. A group which is also

Tuning the filter to work for various movements was foundmooth manifold is called a Lie group, to which a Lie algebra
to be a difficult task. Making sure the FB UKF estimate&(3) can be associated. On its own, a Lie algebra is nothing
all sorts of motion without having to retune the filter inmore than a vector space with an operator satisfying some
between different configurations still requires furthesearch. axioms. Associated to a Lie group, it is the tangent space at
One major area of future work is to implement the proposdble identity of the Lie group. So intuitively, the Lie algebr
observer in a real-time system for a humanoid robot. Thetgscribes some velocity, which makes it useful for the asisly
potential control performance improvements in a closeg lo®f rigid bodies. The Lie algebra is
need to be investigated as well. Experiments should be done t
acquire ground truth data about the states of the robot.dvioti 80(3) ={we R¥>3 .o = —GJT} (21)

icna;gtrlrjr:gtic:)rrroli/(l:zk?r:es';gzs;niorrjbczltjlorll bﬁ]gﬁggﬂ to toml ain t which means it is skew-symmetric. Now, let us extend these
' 9 9 ust, nu s notions to the general case that includes translation ubieg

efficient are also issues future research could focus omllfzin : . . - -
although different constraints can be added to the syste%ﬁemal Euclidean grou££(3). This group is defined as

switching constraints and the effect of ground impact oepth
unexpected disturbance forces have not been investigated y g (3) = {( R d ) :R e S0O(3),de R3} (22)
and require further research. 0 1

which in its turn is also a Lie group with the associated Lie
algebrase(3). Here,d defines the translation. The Lie algebra
has the form of

In this report, the Full-Body Unscented Kalman Filter (FB
8¢(3) = {(

VIIl. CONCLUSION

UKF) was presented. This estimator makes use of the Float- ‘g 11] > tw € 80(3),v € R3} (23)
ing Feetless Humanoid (FFH) model for prediction and the

Unscented Kalman Filter to estimate the state of a humanoidAn action ofH € SFE(3) on a point inp € R? then defines
robot. The FFH model is, as the name suggests, a humaribiel rigid transformatiory : p — Rp + d.

model with a floating base, without feet, modelled in 3D.

Constraints were added to model ground contact and jot Twists of a Rigid Body

Iimi_ts. The main benefit of this design is that it allows for practice, to express the mapping let H; € SE(3).

estimating all _states of the rob_ot, except_ for the feet Emglel'hen, the configuration of a point on a rigid body with

When comparing the CoM estimates with a K_alr_nan F”tefFamej relative to a spatial frameis given by

that uses Linearised Pendulum Model for prediction (LIPM

KF), the FB UKF reveals another strength. It can decrease the p—Hp (24)

effect of play in the joints, modelled as a varying measumgme J

bias, thereby improving the estimation of all derived ftate wherep = (p,l)T. For simplicity, the bar will be omitted

like the CoM. Both estimators were found to be robudgtom here on. Now, the Lie algebra can be used to express

against parametric errors. The LIPM KF, though, is easier the velocities. First, consider the pure rotational cpée=

implement and tune for various types of motion. R;.pf. Differentiating with respect to time givgs' = R;lpj.

It can be rewritten tg’ = Rj-R;’-_lpi. Here, the expression

@* = RR! is an element of the Lie algebra. Because it is

skew-symmetric, it can be written as a vectst containing

the rotational velocities in the spatial framieIn a similar
The following subsections give a compact overview ofiay, @® = R~!'R can be found, which gives the rotational

methods and definitions used in deriving the equations eélocities in the body framg as a vectow®. Now again, this

motion. Readers are referred to [38] [39] [40] for more dethi can be extended to the general case. It can then be shown that

explanations. the velocities of a rigid body are given by

APPENDIXA
ROBOT KINEMATICS
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3) The Geometric Jacobian: Finally, we can obtain the

1 Jacobians that give the velocity kinematics. First, theeities

Vi =HH (25 5t end effectom will be derived. The spatial velocity is
v? =HH; (26)
Here, Vi € 8(3) and VI’ € 3¢(3) are the spatial and VO = H%H?fl
body twist respectively, also called the spatial and bodgttw OHO ) HHO .
When writing out these expressions, it can indeed be seen = 891”H861 +...+ 801"H39n

that they have the form given in (23). A twist can also be
expressed in twist coordinates. Define the vee operatas
()" : 8(3) — RS. Then, a twistV of the form given in (23)
can be expressed in twist coordinates as 0% = IO (33)

. v 6,
VV = W ) = ( Y ) = 27 s aH?L nv 6H9L nv .
< 0 1 w v (27) v = o He gt HG : (34)
wherewv has the form of a vector. For completeness, the 0,

Wﬁedge, operaton Sha" be L_|sed for the inverse op_erat(o)f : the vee operatov transforms a twist into twist coordinates.
R® — 8¢(3). When inspecting the terms of the twists, they Cah e individual terms are then given as

be interpreted as follows. The spatial tWTé;iS is the velocity
of body j relative to some framé as seen from framé The

which can also be written in twist coordinates.

body twistV;ib is the velocity of bodyj relative to some frame OH, HY = <H9_1 oH; H', ) H
i as seen from framg. 00; ’ 00;

0 aH;_l % 1—1
C. Twists of a Serial Link = Hia (5 Him ) Ho

1) TheAdjoint Transform: To obtain the twists that describe

HO lT’Lj—lsHi—l
the velocities of a serial link, let us first find a way to relate R 0

\Y%
two twists to each other. From equations (25) and (26) it can OH,, H} = Adyo ti'° (35)
be easily seen that 29; o
This completes the spatial Jacobi#j of bodyn. It can be
Vi = H;tV;le;i*l (28) seen that thgith column of J? is the unit twist of jointd;,

Hansformed to the global frante Likewise, Jacobian in body

hich m h ist from ial in N ) - )
whic aps the twist from body to spatial coordinates coordinates can be derived and it can be shown that

twist coordinates, we write this mapping as

. . s __ b
’U;-S _ AdH? ’U;b (29) Jn = AngJn (36)
where ' This finally gives the body velocities of the end-effector
(R dR v =300 (37)
Adyg = < 0 R ) (30)
is called the Adjoint transformation that maps a twist fror®. Wrenches
one frame to another frame as Ad R® — R®. This will be  |n a similar way, the forces can be added to the system.
useful later on. Define a wrench to be a pair of a force and a moment acting

2) Unit Twists: The next step is to look at the twists ofon podyi as
joints with a single degree of freedoth For such a joint,

define a unit twist as W, = ( f ) (50)
T\ T
is 9 AN =
T = 2 (H7) H; (31) such that the power can be calculated from a twist and a

wrench asP =w-v =7 -w+ f-v. A wrench can also be
transformed using the Adjoint. Under a coordinate charge, t
power should stay equal. Using this fact it can be seen that

which when multiplied with a magnitudé forms the
spatial twist between link and j as Vi* = T*¢. Or, in
twist coordinates a®’* = t{°d. When rearranging (26) to

Hj = Vi*H, the solution of the differential equation can be w; = AT, w;. (51)
found which gives a relation between elementsSéf(3) and
8¢(3). And, similar to twists, the body Jacobian can be used to

v map external forces on a rigid body to the joint space as
H:(0) = ¢ 7H}(0) (32)

Thus, the exponent of a twist gives the motion of a body
relative to its initial positionH’,(0) after some trajectory df. With 7 € R™.

Tear = (38) " w,,. (52)
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Algorithm 1 The Additive Unscented Kalman Filter [32]
Initialise:

Zo Py Q R

Fork=1,2,...,00
1) Sgma points:

Xi1jp—1 = @p—1jk—1 T Y/ Pro1jp—1Tr—1jk—1 — Y/ Pr-1/6—1) (38)

2) Prediction step:

w—1 = [ (X p—1jh—1, Up—1) (39)

2L
Tpjh—1 = ngm)x’iwq,i (40)

2L -

Py = sz@ (XZ\kfl,i - j’klkfl) (XZU%M - 531«\1@71) +Q (41)

im1

3) Correction step:
Xiap—1 = @1+ 7/ Prp—1Zrp—1 — 71/ Prjp—1) (42)
Vi1 = h(Xpp—1, ur—1) (43)
oL
Ylk-1 = ngm)yk\k—l,i (44)
P,ﬁ?(,ffl = Zw (Vite—1i = Uip1) Vrpo—1,i — Jppp_)” + R (45)
P,Sf,fi)l = Zw (X =1, = 1) (Vhjr—1,i — Qk|k71>T (46)
K — P(w’y) (P(y \Y) ) (47)
k k|k—1 k|lk—1

Ty = T+ Ke(Yr — Yrpe—1) (48)
Py = Prp-1— Kknglllfi)lK,? (49)

Parametersy VL is a scaling parameter for the generation of the sigma poitisreL is the dimension of the state. The
We|ght5w for the mean and covariance are equally d|str|buted)%\)s— 1/2L.

3

E. Equations of Motion _ 17 (J*-’)TMlJ’-’é
2 7 3
With the twists and wrenches of previous sections, all i=1
information needed to set up the equations of motion is = lgT (Jb)TMlJb[g (54)
2

available. The twists can be made for every body inside a
chain giving th(_-:' to@al pody Jacobialt for the s_ystem. Note Y = Zngh (6:) (55)
that this Jacobian is different from the analytic Jacobiad a
does not require the local inertia matrices to be transfdrme
This can be used in for example the Lagrange Equations to
get the equations of motion for the serial link. whereM, ; € R6%6 denotes the local mass matrix of body
i. Writing out the terms we can find the equations of motion

doT oT oV

With 8 € R” the generalized coordinate$, the kinetic M(6)8 + C(6,0)0 + G(8) = 7. (56)
energy andV the potential energy. They are
with inertia matrix M, Coriolis matrix C, gravity G and

0b T = T, + Tt representing the joint control torques and
Ml i, .7
projected end-effector forces.

l\DI»—l

- 356

i=1
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APPENDIXB
UNSCENTEDKALMAN FILTER

&l

For the Full-Body Unscented Kalman Filter (FB UKF), thei0]
Unscented Kalman Filter (UKF) with additive noise is used fo
estimation [32]. Its working principle is shown in algorith
1. For scaling, the general symmetric set is used [31]. Firgiz)
the initial values for the state estimate and covariaige

and P, are set, as well as the measurement and proc

17

A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and $h&al, “Ex-
periments with a hierarchical inverse dynamics contrafiera torque-
controlled humanoid,” Technical report, Tech. Rep., 1996.

T. Vissers, “Sensor fusion on a humanoid robot,” Mdstéresis, Delft
University of Technology, 2012.

] R. Miall and D. M. Wolpert, “Forward models for physigizal motor

noise Q and R. Then, at each time step, the sigma points
X_1)x—1 are distributed around the previous estimate based
on the previous covariance and some scaling paramefine
next step is the prediction which is made by propagating the;

sigma points through the nonlinear function. The outpuhés t

set of transformed sigma poin®;,_;. The new weighted
mean and covariance are then calculated from the transtbr
sigma points. Next, new sigma poinf;_,,_; are created
around the predicted values using the predicted covariande [17]

~. They are propagated through the nonlinear measurement

(14]

s

equation and the weighted mean of the outcome then gives
the predicted measurement. The final step is to calculate tH8
Kalman gain and performing the update steps as in a regular
Kalman filter to obtain the new estimaig,;, and covariance
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