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Nonlinear State Estimation for a Bipedal Robot
Erik Vlasblom

Abstract—This report discusses the design, implementation
and evaluation of a state estimator for bipedal robots, making
use of the robot’s full-body dynamics. The Unscented Kalman
Filter is chosen to fuse the predictions with the measurements. To
evaluate the new filter design, a second estimator is implemented
as a benchmark, using a conventional Linear Inverted Pendulum
Model for the prediction and a Kalman Filter for data fusion.
Simulations of three different motions show how the CoM esti-
mates of both methods deal with different kinds of uncertainties
and an experiment was done as a preliminary application on
the TUlip bipedal robot. Estimation with a pendulum model
gave incorrect estimates in the presence of sensory bias. Using
the full-body dynamics, however, the effect of sensory bias
was reduced significantly. Moreover, the proposed method was
shown to be robust against parametric errors. However, the
performance varied between different motions, making it hard
to tune. Improving the filter to inherently work for various
movements as well as making the filter numerically efficient
enough for online implementation still requires further research.

Index Terms—Bipedal robot, state estimation, unscented
kalman filter.

I. I NTRODUCTION

I N a world that has been designed for humans, the ideal
robot would be one that is morphologically similar to a

human. These type of robots would be able to navigate through
our world and handle objects much like we do. Because of
this, they could perform a large variety of tasks, ranging
from helping the elderly and entertainment to carrying out
repairs in hazardous environments such as nuclear power
plants. Therefore, humanoid robots are an important topic
of research. However, controlling the balance of two-legged
robots still proves to be a challenge, especially during more
complex motions such as walking.

Different walking strategies have been used during several
decades of research on legged robotic platforms. The most
popular strategy is locomotion based on the zero-moment point
(ZMP). This is is the point where the influence of all forces
acting on the mechanism can be replaced by one single force
[1]. The key is to keep this point within the support polygon
and away from the edges, which is usually done by generating
and following a desired centre of mass (CoM) trajectory. Many
robots successfully apply this technique for various typesof
movements, including walking. However, it is not very energy
efficient. Humanoid robots using limit cycle walking mimic
human gait by relying on the passive dynamics of the system.
Hence, these robots have similar energy efficiency as humans
[2], but they can not do diverse movements because they
are limited to walking patterns that result in a limit cycle.

The author is with the department of Mechanical Engineering
of the Delft University of Technology, the Netherlands (e-mail:
erik.vlasblom@gmail.com).

Moreover, withstanding large unexpected pushes is not an
inherent part of either of these techniques. This means theyare
not as robust as humans. To produce human-like gait in terms
of energy efficiency, versatility and robustness, capturability-
based control was developed [3] [4], based on instantaneous
capture point control. The instantaneous capture point (ICP)
was defined to be the point where one instantaneously has
to step to come to a full halt. To maintain balance during
motion, ankle and hip balance strategies can be used when
the ICP lies within the support polygon and a step can be
taken otherwise. By continuously forcing the ICP out of the
support polygon and taking a step to prevent from falling,
a stable gait pattern can be achieved. Independent research
within the field of human movement science shows that the
ICP, called the extrapolated center of mass (XcoM) by the
researchers, indeed is a good measure of balance for humans
while standing and walking [5] [6].

Crucial to walking is accurate knowledge about the state
of the system. Still, state estimation is often named as a
limiting factor in the control of humanoids [4] [7] [8] [9]. For
balancing, important derived states like the support polygon
and the CoM have to be obtained using the kinematic model
of the robot. Though, uncertainties in the kinematic chain such
as play, link flexibility and parameter uncertainty as well as
sensory noise make it difficult to accurately obtain these states
[10]. Because these uncertainties are hindering estimation, the
control is limited and therefore, state estimation has to be
improved. Seeing that control of humanoids becomes more
advanced and human-like, it is essential that the same is done
for state estimation.

Based on physiological studies we know that there is
strong evidence for the presence of accurate internal models
within the central nervous system (CNS) of humans. Forward
dynamic models within the CNS are expected to help detect
environmental changes, increase the accuracy of state esti-
mates and make predictions for mental planning [11] [12].
Moreover, it was shown that humans under certain circum-
stances make use of forward models in a Bayesian framework
to estimate their state and that of their environment [13] [14].
For this reason, using a complete description of the robot
dynamics in combination with Bayesian estimation might be
the best way of obtaining state estimates. And not only could
this combination improve state estimation, but it could also
function for other parts of sensorimotor learning like parameter
estimation and detection of environmental changes.

Various studies have been done on state estimation in
bipedal robots using internal models and Bayesian estimation.
Most often, these studies focus on estimating the CoM. A
common approach is using a Kalman Filter and a linearised
pendulum as a model to predict the CoM motion [15] [16]
[10]. Some researchers have modified this method to account
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for modelling errors by explicitly estimating them. In one
study, an Extended Kalman Filter and a flexible inverted
pendulum model were used to estimate the unmeasurable
flexible motion of the biped [17]. Another research augmented
the state of the linearised pendulum with a CoM offset and
a disturbance force that could then be estimated [18]. These
studies both showed improvements as compared to using a
linearised pendulum only, but it was also noted that this is
a lumped-mass generalisation of the real errors. The true
error could be the sum of a variety of smaller errors in each
body. Furthermore, it was suggested to improve the model
by adding neglected effects like angular momentum. And
indeed, by using a linearised pendulum, the complex dynamics
of the robot are simplified. For humanoids using the ZMP
strategy where a CoM trajectory is prescribed or for robots
taking small, pendulum-like steps, assuming a linearised pen-
dulum can work. For more complex movements and larger
human-like steps the prediction might be insufficient. Some
researchers have therefore used more sophisticated modelslike
a constrained rigid multi-body model or a planar five-link
model [19] [20]. The planar five-link model was compared
against the pendulum model, and although it is less robust
against parameter errors, it showed an improved estimationof
the CoM. In addition, the estimation of the feet positions was
improved . A planar five-link model was also successfully used
with a Sliding Mode Observer to estimate the trunk orientation
of a bipedal robot [21].

Because there is strong evidence that humans have ac-
curate internal models and because more complete models
have shown to improve state estimation, the use of a three-
dimensional full-body model is suggested in this report. Using
this model, the actual states of the robot are estimated. They
can be used to improve not only the CoM, but also other
derived states like the feet positions. And lastly, instead
of using a lumped-mass generalisation, specific sources of
uncertainty could be more precisely targeted by tuning the
noise levels for each state of the robot. The prediction of
the full-body model will be fused with the measurements by
means of a nonlinear state estimator.

This report is organised as follows. In section II, various
techniques for estimating nonlinear systems will be discussed.
In section III the bipedal robot TUlip will be described after
which in section IV the internal models will be explained.
Section V shows the filter implementation. Section VI shows
the simulation, application and results. Section VII givesa
discussion of the results and section VIII concludes this report.

II. N ONLINEAR STATE ESTIMATION

To be able to use more advanced models, nonlinear state
estimation techniques have to be used. Roughly, they can
be divided into deterministic and probabilistic types. The
common Luenberger Observer as well as the Sliding Mode
Observer fall in the first category. Although the Sliding Mode
Observer has been used in robotics and was shown to be ro-
bust, only probabilistic filters will be considered here because
of the similarities they have shown with human behaviour.
These filters are based on Bayesian inference: given a prior

Fig. 1. A CAD model of the TUlip humanoid robot, showing the construction
of the six degree of freedom leg.

belief of the state and some measurements, what is the actual
state of the system. The belief is obtained via a prediction
based on the previous estimate. As both the belief and the
measurements are uncertain, it becomes a matter of predicting
and finding a probability density function (pdf) of the state
rather than a single value. The final estimate is then obtained
by applying some optimisation criterion to the posterior pdf
such as minimising the mean square error between the estimate
and the true state. When the prediction model is linear and the
noise is Gaussian, the Kalman Filter gives an exact optimal
solution. This is because a Gaussian pdf is preserved under a
linear transformation. For nonlinear systems, it is necessary to
use computationally tractable sub-optimal solutions [22][23].
Therefore, choosing the right technique comes down to making
a trade-off between how accurate the posterior pdf has be be
described and how much time is available for computation.
The more accurate the predicted pdf can be approximated, the
closer the outcome is to the optimal estimate, but the more
calculation effort it requires.

Starting at the accurate but computationally expensive side
of the spectrum, there is a wide range of particle filters making
use of Sequential Monte Carlo Sampling to approximate
the posterior pdf. The more samples, the more accurate the
estimation will be [24] [25]. The Ensemble Particle Filter
has a similar approach. Using an ensemble of particles and
a slightly different update procedure from Particle Filters, this
type can also capture higher order moments of the pdf [26].
The amount of particles required for these methods can range
from 50 up to a several thousand, but is hard to predict up
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front. Because the computation effort scales with the amount
of particles, computational complexity can become enormous
[27] [22]. Less computationally expensive are the Sigma Point
Kalman Filters. Examples are the Quadrature Kalman Filter,
the Central Difference Kalman Filter [28] [29] and the more
popular Unscented Kalman Filter [30] [31] [32]. They make
use of deterministically chosen points with associated weights
to approximate the posterior as a Gaussian pdf. Sigma Point
Kalman filtes can not accurately describe a multi-modal pdf
or higher moments, but the amount of samples is fixed and
scales with the state sizeN . The Unscented Kalman Filter,
for example, usually requires2N + 1 samples. This makes
them computationally favourable over Particle Filters. Onthe
other end of the spectrum, the less accurate Extended Kalman
Filter can be found. It is an ad hoc solution, making use of
local linearisation of the nonlinear function to be able to use
the standard Kalman Filter equations [33]. Though it is often
used, it can give very bad estimates in case the assumption of
linearity is violated [27] [31]. It also requires the calculation of
Jacobians that do not exist on the switching surface of a hybrid
system. The previously mentioned sample based techniques
can more easily deal with discontinuities [31] [22].

For a humanoid robot, estimation has to be done real-
time with limited computation power. Moreover, the technique
has to be able to deal with the hybrid nature of a biped.
Sigma Point Filters are shown to have better accuracy when
compared to the Extended Kalman Filter. Also, constraints
and discontinuities can be more easily incorporated. They are
preferred over Monte Carlo techniques because they require
far less computations and are thus more suited for real-time
systems. Considering the above, a Sigma Point Kalman filter
seems like a good solution for state estimation in a humanoid
robot. Specifically, the Unscented Kalman Filter is chosen
because it can be tuned in various ways to either increase
accuracy or decrease computational complexity.

III. TU LIP HARDWARE AND CONTROL

The TUlip is a 1.1 m tall, 18 kg humanoid robot. Both legs
have 6 actuated degrees of freedom: 3 in the hip, 1 in the knee
and 2 in the ankle [34] [7]. Figure 1 shows a CAD model of the
TUlip and figure 3 shows a schematic of the robot kinematics.
Each joint is actuated with a Maxon DC motor and a planetary
gearhead. Flexion and extension of the hip, knee and ankle as
well as the inversion and eversion of the ankle are achieved
with series elastic actuation (SEA) [35]. Here, the motors are
connected to the joint via an elastic element. By measuring
the elongation of this element, the joint torque is calculated
which in a feedback loop is used for torque control. Each
motor axle has a HEDS 5540 rotary encoder attached. The
joints with series elastic actuation also have a Scancon 2RMHF
encoder on the joint axle. The torso is equipped with an Xsens
MTI inertial measurement unit that outputs estimates of the
orientation, rotational velocity and linear accelerationin three
dimensions. Lastly, each foot has Tekscan Felxiforce sensors
to detect contact with the floor. The current software runs ina
1 kHz loop in an xPC Target real-time software environment.
On-board calculations are done on a 1 GHz Diamond System
Poseidon SBC with 256 MB RAM.

{0}

{c}

{a}

y

y

y

x

x

x

z

z

z0

r

Fig. 2. The Linear Inverted Pendulum Model, which is often used to analyse
the Centre of Mass motion.

IV. SYSTEM MODELS

The internal robot models used for state estimation are usu-
ally simple models that neglect nonlinear behaviour, angular
momentum and the motion in the third dimension. To be
able to estimate more versatile movements of next-generation
humanoids and to better cope with uncertainties present in
the kinematic chain, a three-dimensional multi-body model
will be introduced. In the first subsection, the Linear Inverted
Pendulum Model is described. This is the linearised pendulum
that is often used for CoM estimation. In order to evaluate the
estimator proposed in this report, an estimator based on this
linearised pendulum will also be implemented as a benchmark.
In the sections thereafter, the kinematics and dynamics of the
multi-body robot model will be given.

A. Linear Inverted Pendulum Model

The Linear Inverted Pendulum Model (LIPM) is an often
used model to approximate the CoM motion of a humanoid
robot, both for control and estimation. A schematic is shown
in figure 2. The pendulum is constrained to move along a
horizontal plane at heightz0. This is achieved by means of a
telescopic, massless leg whose internal forces keep the CoM
on the horizontal plane. The base of the pendulum is located
at the Centre of Pressure (CoP) of the robot. For a point foot,
this is the ankle location projected on the ground. Vectorr
is the position of the CoM in framea. The location ofa is
expressed asrCoP in some global frame0. The equations of
motion are then given by

r̈ = ω2
0Pr, with P =




1 0 0
0 1 0
0 0 0


 (1)
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Fig. 3. The complete kinematic model of the TUlip humanoid robot.

where ω0 =
√

g
z0

and P is a matrix that projects the
equations onto thexy-plane. The result of the constraint is
a set of uncoupled equations describing the motion of the
CoM in frame c. Moreover, the equations are linear. This
makes the LIPM useful for basic analysis. Also, the linear
behaviour allows for using it as an internal model for state
estimation, without needing nonlinear filters. A simple Kalman
Filter suffices.

B. Kinematics

Figure 3 shows the complete kinematics of the TUlip with
all degrees of freedom as described in section III. For the
internal model used in the state estimator, the feet are re-
moved. This greatly reduces model complexity by eliminating
2 degrees of freedom per leg and avoiding complex ground
contact models. The frames10r and 10l are the new end
effector frames. The effect that the ankles have is incorporated
by transforming the measured ankle torques to a wrench acting
on the lower legs. The trunk is modelled as a floating body by
defining a virtual, 6 degree of freedom kinematic chain that
connects the trunk with the world frame. The model used for
estimation thus has two 4 degree of freedom legs attached to
the floating trunk giving a total of 14 degrees of freedom. It
will be referred to as the Floating Footless Humanoid (FFH)

model from here on. In this model, the 2 kinematic chains that
can be recognized run from0 to 10r and from0 to 10l. For
each chain, the body frames are related as

Hi−1
i (θi)

′ = HsiH(θi)Hli for i = 1 . . . n (2)

wheren is the number of the end effector frame. Homo-
geneous transformationH(θi) represents a pure rotation or
translation, depending on the type of joint. The transformation
Hsi contains a constant offset that splits the kinematic chain.
At a bifurcation, the value of the offset depends on the chosen
direction. It is an identity matrix otherwise. Transformations
Hli contain constant offsets between the joints. The individual
bodies are then related via their CoM positions according to

Hi−1
i (θi) = Hmi−1

−1Hi−1
i (θi)

′Hmi (3)

where Hmi contains a constant center of mass position
viewed from the body frame, as depicted in figure 3. The
position kinematics are completed by recursively defining each
CoM location relative to the global frame for each side as

H0
i (θ1, . . . , θi) = H0

i−1(θ1, . . . , θi−1)H
i−1
i (θi) (4)

The velocity kinematics are obtained using a geometric
approach based on screw theory. For details, see Appendix
A. Here, the basic steps in the derivation will be given using
a slightly simpler notation of twists for readability. Also, the
arguments ofHj

i shall be omitted from here on. First, the twist
for each joint can be found as shown below.

Ti−1
i =

∂

∂θi

(
Hi−1

i

)
Hi−1

i

−1
(5)

which is of the form
(

ω̃ v
0 1

)

whereω̃ is a screw-symmetric matrix representing a rota-
tional velocity and where the vectorv represents a translational
velocity. The twistTi−1

i is expressed in twist coordinates as

ti−1
i =

(
v
ω

)
(6)

Using the twists of each joint, the Jacobian for the instan-
taneous spatial velocityvs

i = Js
i θ̇ of the ith body relative to

the global frame0 can be constructed. The spatial velocity
is the velocity as seen from the origin of the spatial frame
0. The vectorθ in this case represents all the degrees of
freedom of one of the kinematic chains. The construction of
the Jacobian is done by using all previously constructed twists
and transformations matrices according to

Js
i = (t1, . . . , tn) (7)

with

tj =

{
j ≤ i AdH0

j−1
tj−1
j

j > i 0
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Thus, columntj is the contribution of thejth joint to the
spatial velocity of bodyi. Because it is the spatial velocity
as seen from frame0, the contribution from all jointsj > i
up to the end effectorn for body i is zero. In the equation
above, Ad(·) is the Adjoint transformation which transforms
twists from one frame to another. The Adjoint transformation
is defined as

AdH =

(
R d̃R
0 R

)
(8)

with R andd the rotation matrix and translation vector of
transformation matrixH. Note thatd̃ is the screw-symmetric
form of d. The body Jacobian can now be calculated using
the inverse of the Adjoint transformation matrix.

Jb
i = Ad−1

H0
n
Js
i (9)

This gives velocities of bodyi relative to the global frame
0 and seen from the body framei as vb

n = Jb
i θ̇. These

velocities can now be used to calculate the kinetic energy
of the Lagrange equation. For completeness, all the body
velocities will be collected by defining a total Jacobian for
each chain according to

Jb =




Jb
1
...
Jb
n


 (10)

This results in a Jacobian for the right and left leg. Both of
which start with a Jacobian for the 6 degree of freedom virtual
chain and end with the Jacobian of the 4 degree of freedom
leg. The final Jacobian for all bodies is thus

Jb
tot =




Jv

Jr

Jl


 (11)

with

Jv =




Jb
1
...
Jb
6


, Jr =




Jb
7r
...

Jb
10r


, Jl =




Jb
7l
...

Jb
10l




which gives the velocitiesvb
tot = Jb

totθ̇tot of all bodies
combined. From here on,θ = θtot shall be used to represent
all the 14 degrees of freedom.

C. Dynamics

The equations of motion for the FFH can now for example
be obtained by using the Lagrange equation as shown in
Appendix A. The final equations of motion are

M(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = Jb(θ)Tfext + τ j (12)

where the generalized coordinates are given asθ =
(x y z ψz ψy ψx θ7r . . . θ10l)

T . The statesx, y, z are the
prismatic joints andψz, ψy, ψx the zyx Euler angles of the
virtual chain. This rotation order is chosen such that it matches

with the IMU output. The vectorτ j represents the joint control
torques and the vectorf ext contains the ankle torques on the
end of both lower legs. They are mapped to the joint space
making use of the body Jacobian of both lower legs.M, C and
G are the mass matrix, the Coriolis forces and gravitational
effects respectively.

Since a humanoid is transitioning between double and single
support phases during walking, its dynamics are hybrid in
nature. This is implemented by switching constraints on the
feet using Lagrange multipliers. Letpf = (pfx pfy h)

T

represent the location of a foot withh the height of this foot
above the ground. Then, the following constraint functionsas
a ground contact model for that foot.

h ≥ 0, λ ≥ 0 (13)

Which means that whenh < 0, the constrainth = 0 is
activated. This ensures that the foot is always on or above the
ground. It introduces the Lagrange multiplierλ that functions
as a ground reaction force. As these forces can not pull the
robot back to the ground, the extra condition onλ is required.
Next, a no slipping condition is implemented for the case the
foot is in contact with the ground. This is implemented as

(
pfx
pfy

)
=

(
0
0

)
(14)

The above constraints are conditional on whether or not
the constraint onh is active. When these conditions and
constraints are implemented for both feet, the hybrid dynamics
can be represented using the same dynamics given in equation
(12). In a similar way as the constraints of (13), joint motion
limits are implemented for both knees. Finally, letbs(θ)
represent the current active constraints of the hybrid state s.
The governing equations ins are then given by

(
M BT

s

Bs 0s

)(
θ̈
λs

)
=

(
f tot

d
dt (Bs) θ̇

)
(15)

whereBs =
∂bs

∂θ . The total forces aref tot = Jb(θ)Tfext+

τ j −Cθ̇ −G and0s is a square zero matrix where the size
depends on the number of active constraints.

To decrease computational burden, the bodies attached to
the hip rotation and abduction are assumed massless. The
upper and lower legs are assumed to be point masses. Fur-
thermore, no impact equations were implemented. And, lastly,
to further reduce the computational complexity, Coriolis forces
were assumed to be small due to the low velocities and not
taken into account.

V. STATE ESTIMATION

In this section, the two state estimators are explained. In the
first subsection the state estimation making use of the LIPM is
given. It is based on the currently implemented CoM estimator
for the TUlip [10]. Secondly, the implementation of the full-
body state estimator will be explained. The results of both
estimators shall be compared for evaluation.
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TABLE I
PROCESS, MEASUREMENT AND SIMULATED SENSOR NOISE COVARIANCE

FOR THEL INEAR INVERTED PENDULUM KALMAN FILTER.

rx[m] ry[m] ṙx[m/s] ṙy[m/s]

Process 0.86e−6 0.86e−6 0.86e−6 0.8583e−6

Measurement 0.95e−4 0.95e−4 0.95e−4 0.95e−4

A. Linear Inverted Pendulum Kalman Filter

The Linear Inverted Pendulum Kalman Filter (LIPM KF)
uses the LIPM, given in section in section IV-A, as a forward
model. As these equations are linear, a Kalman Filter can be
used for estimation. To do so, the LIPM equation from (1) is
put in state space form and discretised. The resulting equations
are of the form




rx
ry
ṙx
ṙy




k+1

=




1 0 h 0
0 1 0 h
ω2
0h 0 1 0
0 ω2

0h 0 1







rx
ry
ṙx
ṙy




k

(16)

with the stater = (rx ry ṙx ṙy) expressed in framea of
figure 2. At each time step, the pendulum is fitted onto the
current configuration of the robot by updating the location of
a and the heightz0. These LIPM properties are updated by
inserting the encoder measurements at the current time instant
into the kinematic transformations. Framea is chosen to be
at the ankle position of the stance leg. For the double support
phase, the CoP should lie somewhere in between both feet. As
the pressure sensors on the TUlip can not measure the CoP but
only determine if there is ground contact, framea is placed
in between both ankle positions for the double support phase.
The previous estimate ofr is then expressed in this frame to
make the prediction for the next time instant.

The measurement equation that is used is

zk+1 = (rx ry ṙx ṙy)
T
k+1 (17)

where the CoM positionsrx and ry are calculated using
the local CoM positions and the encoder measurements. The
derivative is used as the velocity measurement.

Lastly, the noise levels were obtained from the currently
implemented observer. They were tuned to achieve as good as
possible tracking of the CoM and they are given in table I.
For the simulation study, the simulated CoM measurement was
calculated by using simulated joint angle sensors and forward
kinematics. The noise covariance of the simulated sensors can
be found in table II.

B. Full-Body Unscented Kalman Filter

The Full-Body Unscented Kalman Filter (FB UKF) uses the
FFH model from section IV-C as an internal model to predict
the next state. The Unscented Kalman Filter (UKF) is used to
fuse the prediction with the measurements. Equation (15) is

TABLE II
PROCESS, MEASUREMENT AND SIMULATED SENSOR NOISE COVARIANCE

FOR THEFULL -BODY UNSCENTEDKALMAN FILTER.

x, y, z ψx, ψy , ψz θ7, θ8 θ9, θ10
[m] [rad] [rad] [rad]

Process 1−4 1−4 1e−5 1e−5

Measurement 1−5 1−5 1e−5 1e−6

Simulated sensor 4e−4 1.2e−3 1e−6 1e−6

ẋ, ẏ, ż ψ̇x, ψ̇y, ψ̇z θ̇7, θ̇8 θ̇9, θ̇10
[m/s] [rad/s] [rad/s] [rad/s]

Process 1−4 1−5 5−5 1−4

Measurement 4−2 2−4 1−4 1−4

Simulated sensor 4e−2 5e−2 1e−2 1e−2

first put into a constrained state space form.




θ̇

θ̈
λs


 =




I 0 0
0 M BT

s

0 Bs 0s




−1


θ̇
f tot

d
dt (Bs) θ̇


 (18)

whereI is an identity matrix. This gives the state derivative
as a function of the stateqT = (θT θ̇

T
). Discretisation is done

via a Runge-Kutta4th order numerical integration scheme to
obtain the prediction for timek + 1 based on the estimate
on time k. Equation (18) is solved using a damped pseudo-
inverse method, which is numerically more stable than usinga
regular inverse. The constraints are stabilized by projecting the
predicted value onto the constraint surface. Instead of using
the predicted or estimated values, the sensor measurementsare
used to determine which constraints are active. This turned
out to be a more robust solution. The foot sensors are used to
check the conditions in (13) and activate the constraint together
with the equality constraints of (14) if required. The jointangle
measurement of each knee used check whether or not the joint
limit has been reached.

The measurement equation for the FB UKF is

zk+1 = (x y z ψz ψy ψx θ7r . . . θ10l

ẋ ẏ ż ψ̇z ψ̇y ψ̇x θ̇7r . . . θ̇10l)
T
k+1 (19)

The trunk position measurementsx,y and z are calculated
using the encoders and forward kinematics. The frame in
which they are expressed depends on the current support
setting as detected by the foot sensors. It is either the frame
of the left or the right foot. The orientation measurementsψz,
psiy andψx come from the IMU mounted on the trunk. For
the SEA joints, the joint encoder measurements are as joint
angle measurementsθ9r , θ10r , θ9l andθ10l . For the other joint
angle measurementsθ7r , θ8r , θ7l andθ8l , the motor encoder
measurements have to be used, multiplied with the gear ratio.
The velocities of the trunk̇x, ẏ and ż are acquired from the
IMU. For the Euler angle rate of changėψz, ψ̇y and ψ̇x, the
Euler angle derivatives are used as a measurement. Similarly,
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the derivatives of the encoder measurements are used as joint
angular velocity measurementsθ̇7r to θ̇10l .

The UKF can be tuned in various ways. One of which is
the choosing the set of sigma points used to approximate the
posterior probability density function [31]. This approxima-
tion is obtained by propagating all sigma points through the
nonlinear system. The symmetric set was chosen for the FB
UKF because the equal weights for each sigma point make
estimation more robust, especially near a constraint surface.
The algorithm of the UKF that was used can be found in
appendix B.

Finally, the noise covariance values have to be set. The
simulated sensor noise covariance was obtained from sensor
data sheets and by inspecting sensor output data. The process
and measurement noise were tuned to overcome specific error
sources. For example, unmeasured backlash is present in two
of the hip joints of the TUlip making the angle measurements
more uncertain. Also, more trust was placed in the model for
several velocities to filter the noise. The values are given in
table II. The estimates obtained by the FB UKF can finally be
used to calculate the CoM using forward kinematics.

VI. EVALUATION , APPLICATION AND RESULTS

This section consists of a simulation study an application
to the TUlip humanoid robot. In the first part, ground truth
data will be obtained via a dynamic simulation. The simulated
estimator uses the same dynamics for the prediction but with
either a parameter error or sensor bias. As the LIPM KF only
estimates the CoM, the CoM estimates will be compared for
both estimators. The actual state estimate obtained by the FB
UKF will be evaluated individually. In the preliminary appli-
cation, the estimates will be compared with the measurements.
The set-up and results are given in the following subsections.

A. Simulation Study

Because both measurements and predictions are suffering
from inaccuracies, it is important to know how an estimator
performs under these circumstances. The overall robustness
and the dependency on different uncertainties can be well
investigated using simulation. This will be done for both
estimators for several movements to see if the results are
general or only hold for specific types of motion.

To do so, simulations with the FFH model will be used as
the ground truth. A total of 3 different movements will be
simulated. The first motion is ased on a balancing strategy
using the ankles. The second motion is more dynamic and
uses both the ankles and upper body momentum to balance.
A wrench controller on the lower legs was used to emulate
balance control of the ankles. The third movement is based on
a walking motion. As there is currently no walking controller
on the TUlip, it is a walking motion in mid air such that
it matches with the experiment in the next section. Each
simulation lasts2 seconds. They are shown in figure 4. The
direction of movement is thex-direction for all configurations.
So the upper body movement in configuration A and B as
well as the extension of the legs in configuration C are in
the x-direction. The direction for which play has the biggest

A.

B.

C.

Fig. 4. Configurations used in simulation. From left to right, the robot is
shown at0s, 0.5s, 1s, 1.5s and2s. The first two motions shown are, from
top to bottom, based on the ankle and hip balancing strategy while standing.
The third motion is a walking pattern while in the air. Here, the feet are not
in contact with the ground. The black dot indicates the projected centre of
mass on the ground.

Fig. 5. The movement used for the experimental validation, implemented on
the TUlip humanoid robot. It is a walking motion with the robot hanging in
its rack and it based on configuration C of the simulation study as seen in
figure 4. The video stills show a single step.

influence shall be they-direction because of the play in the
hip abduction and adduction joints.

Next, several uncertainties were introduced. Sensory noise
was added to he true state and state derivative. The simulated
sensor noise is given in table II. Then, backlash was added.
This was done for the joints where it was identified to be
a problem, namely the hip rotation and hip abduction and
adduction [10]. The backlash was systematically varied in
10 samples between0◦ and 3◦ for each type of joint. It
was modelled as a bias on the measurement. To make the
effect a bit more realistic, the direction of the bias changed
with the direction of the torque during simulation. The final
measurement values including noise and possible bias were
used as measurements of each estimator. Note that for the
LIPM KF, these measurements are inserted in the kinematic
model to obtain the CoM measurements. After that, the
model parameters were systematically varied over 10 samples.
Masses and inertias as well as CoM locations were varied
between−10% and10%. Dimensional properties were varied
between−5% and5%. These changes were then applied to the
kinematic and dynamic models. The effect of link flexibility
was not specifically investigated. There are 23 parameters and
2 different joints suffering from backlash giving a total of25
different sources of uncertainty. Each source is varied in10
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TABLE III
THE AVERAGE RMSEOF THE COM ESTIMATIONS FOR ALL PARAMETER

VARIATIONS FOR BOTH ESTIMATORS FOR EACH CONFIGURATION. THE

ITALIC VALUES FOR THE LIPM KF ARE NOT ESTIMATED BUT
CALCULATED USING FORWARD KINEMATICS.

A B C

1. LIPM KF

x 0.0030 0.0017 0.0046
y 0.0002 0.0002 0.0018
z 0.0015 0.0015 0.0015
ẋ 0.1883 0.1053 0.1811
ẏ 0.0066 0.0013 0.0646
ż 0.0002 0.0008 0.0002

2. FB UKF

x 0.0010 0.0068 0.0009
y 0.0004 0.0006 0.0022
z 0.0016 0.0027 0.0016
ẋ 0.0522 0.1185 0.0675
ẏ 0.0086 0.0157 0.0742
ż 0.0088 0.0138 0.0159

steps for3 motions. This results in a total of750 simulations
per estimator.

In the evaluation, first of all, the performance of the CoM es-
timation in the presence of parameter errors shall be compared
between the configurations for each estimator. After that, the
influence of different types of parameter errors and backlash
on the CoM estimation of each estimator shall be compared.
Lastly, the state estimations and foot location estimationof
the FB UKF will be evaluated. For these comparisons, the
root-mean-square error (RMSE) will be used as a metric. It is
calculated for each simulation for both estimators. The results
will be compared using box plots. Here, the average shall be
used as an indicator of accuracy and the spread in the data
as an indicator for robustness. To make comparisons between
different data sets an ANOVA with a with a significance level
of 0.01 was used to distinguish sets with different means.
Levene’s test for homogeneity of variance with a significance
level of 0.01 will be used to find differences in variance.

B. Simulation Results

Table III summarises the results. The RMSE of the CoM
estimate for each trial has been averaged over the configura-
tions. The effect of backlash was excluded from the average
as it will be inspected separately. In the rest of this subsection,
more detailed results of both estimators will be shown.

1) Linear Inverted Pendulum Kalman Filter: The RMSE
for all parameter variations is shown per configuration in the
box plots of figure 6. The black dots indicate outliers. The data
sets that are coupled with a horizontal bar are significantly
different. From this, it can be observed that the performance
differs per configuration. The estimator performs the least
good for configuration C. The estimation of thex-position
was better for configuration B. The vertical position can not
be estimated with the LIPM KF so it was obtained using
forward kinematics and no significant differences were found.
In fact, no significant differences were found between the
configurations for any of the forward kinematics calculations.
Figure 8 shows the RMSE of configuration A, grouped per

type of uncertainty. It can be seen that the spread is the largest
when varying mass and backlash. Using Levene’s test, the
variance was indeed found to be significantly larger for these
two types. Errors in the CoM positions were found to have
the least influence on the variance. The same was found for
the variances of the other configurations B and C, despite
of the averages being different. When compared to forward
kinematics, no significant reduction in variance was found for
the backlash. The average RMSE was the same or even greater
for thex-position.

2) Full-Body Unscented Kalman Filter: Figure 7 shows
the effect of parameter variations for different configurations
of the FB UKF. For configurations A and C, the estimation
in x-direction was significantly better than the LIPM KF. In
configuration B, though, the FB UKF performed worse in
the x-direction. For they and z-estimation, no differences
were found. Figure 9 shows the influence of the different
types of uncertainties. The variance caused by errors in mass
parameters is significantly larger than the rest. The effect
of backlash is reduced significantly in terms of variance as
compared with the LIPM KF. This can be seen in figure 10,
where a single simulation is shown in which3◦ of backlash
was added. In figure 11, the estimated velocities are shown.
For configuration B, backlash was also reduced in they-
direction. For configuration C, the effect of backlash was not
reduced. Moreover, the influence of the parameter errors was
reduced as well in the first configuration. As opposed to the
LIPM KF, the FB UKF estimates more than just the CoM.
Figure 12, for example, shows the joint angles in the hip for
the same simulation as figure 10. It can be seen that the bias
of the hip abduction and adduction has indeed been reduced.
Figure 13 shows the trunk velocities. In particular, the vertical
velocity of the trunk is less noisy. However, thex-direction
still contains noise and they-direction has some small offsets.
For completeness, figure 18 shows the distance between both
feet, which can be used to construct the support polygon.

C. Application to the TUlip Humanoid Robot

Although a simulation gives insight in influencing factors,
it does not say much about the actual performance of an
estimator. Sensors may show drift and there might be more
sources of uncertainty than modelled. Moreover, it was not in-
vestigated how a combination of wrong parameters influences
the performance. Though, this is likely to be the case for the
real robot. To find out more about these issues, a preliminary
application is done.

Because there is currently no stable balance or walking
controller implemented on the TUlip, a walking motion in
mid air was implemented. Apart from different gains for PD
control, the controller implementation was the same as for
configuration C in the simulation study. The implemented
motion is shown in figure 5.

Recorded data from the TUlip was imported and provided
to the FB UKF. Estimation was done offline, not embedded
in the closed-loop controller of the TUlip. The estimation was
performed on a 2 GHz computer with 6 GB memory. The
torques as measured by the TUlip were provided to the FFH
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angles using an open-loop simulation for several steps.

model and an open-loop simulation is performed. Damping
was added to the joints in the FHH model and the damping
coefficientsβ were used as a tuning parameter. The values can
be seen in table IV. For estimation, the same noise covariance
matrices were used as in the simulation. The measured angles
and estimated angles were compared and both used to calculate
the CoM. Finally, the estimated CoM and the measuerd CoM
were also compared.

D. Experiment Results

Figures 14 and 15 show the CoM position and velocity
estimation. Figures 16 show the estimated hip angles as
compared with the measured angles. The estimated Euler
angles are shown in figure 17. The simulation that was done
with the FFH model using the torques measured by the TUlip
is shown in figure 19.

VII. D ISCUSSION

In this report, a nonlinear estimator for a humanoid robot
was proposed using the full-body dynamics of the robot. It was
compared with an estimator using a simpler LIPM. Several

TABLE IV
DAMPING ADDED TO THE JOINTS IN THEFFH MODEL, USED FOR TUNING.

θ7 θ8 θ9 θ10

β[Nms/rad] 2 2 0.75 0.6

observations and issues will be discussed in the following
subsection.

A. Compensating for Sensor Bias

The play in the joints was not modelled with an extra
degree of freedom, but as a varying bias on the measurement,
dependent on the direction of the torque. A varying bias itself
could also represent a loose or misaligned encoder. Using
forward kinematics, such a bias directly influences the derived
states like the CoM or feet locations. Making use of the LIPM
KF as a prediction, this effect remained, because the filter
directly uses forward kinematics to fit the pendulum model
onto the real robot. The FB UKF, however, allows for fine-
tuning the covariance on individual joints and for two of the
three configurations, the influence of this bias was significantly
lower. In configuration B, though, the estimates were not
improved. The same can be observed in the experiment.
The hip abduction and adduction is known to suffer from
unmeasurable play. If this is compensated for, the estimated
angles should have an offset from the measured ones. Though,
in figure 16 it seems the estimator is tracking the measured
angleθ8l , rather than compensating for sensory bias. For the
hybrid state of configuration B with both feet in the air, the no
support state, there is no additional information that tells the
estimator how the legs are moving with respect to the trunk,
apart from the encoders. However, these encoders suffer from
measurement bias. In configuration A and B, with both feet on
the ground in the double support state, the feet are not moving.
This information is provided by the foot sensors to the model,
translated into a constraint on both feet. With one foot on the
ground in the single support state, it is therefore expectedthat
the sensor bias can be partly reduced in most likely the stance
leg only. Additional sensors like acceleration measurements or
even IMUs in both feet could help to overcome this problem.

B. Robustness against Parametric Errors

With the simulation study, the sensitivity to model para-
metric errors can be checked. This gives an indication of
the robustness. Using forward kinematics, the influence of
varying model parameters is the same among the different
configurations. For the LIPM KF as well as for the FB UKF,
this effect is depicted in figures 6 and 7. It was found that
the variance in the data was also the same for almost all data
sets when comparing the two figures. Moreover, it was also
similar to the variance of a pure kinematic calculation. When
looking at the figures 8 and 9, it can be seen that the FB
UKF compensates for parametric errors to some extent. The
variance caused by the mass, for example, is lower in the
x-estimation. Apart from that, the UKF itself can be altered
to do parameter estimation or even dual estimation. [32]. The
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latter estimates parameters and states simultaneously. Itcan be
useful in case parameters change during motion, for example,
when the robot picks up and carries a load. This gives the FB
UKF, when it is well tuned, an edge as compared to the LIPM
KF. Lastly, in practice, when obtaining the robot parameters,
it is suggested to focus on geometric parameters and body
masses, instead of local CoM positions or inertia. This is true
for both of the estimators as well as for a forward kinematic
calculation.

C. Simple versus Complex Models

In this research, two estimators were compared. One re-
duced the complex robot dynamics to a two-dimensional
pendulum and the other included almost all degrees of freedom
of the robot. The effect of increasing model complexity can
best be seen from figures 6 and 7. In configuration A, the FB
UKF clearly outperforms the LIPM KF. The reason becomes
apparent when inspecting the estimation ofṙx in figure 11.
As can be seen, the estimation of the velocity is incorrect.
It was explained in section VI-A that backlash had limited
influence on thex-direction in the simulations. Therefore, this
can not be the cause of the incorrect prediction in figure 6.
Instead, the LIPM KF simply predicts an incorrect velocity
causing a bad estimate for the position as well. The reason
behind this, is a bad fit from the pendulum onto the robot.
This is even more the case for configuration C where the
robot is in the air. Although no ground truth was available, the
experiment suggests the same, as can be seen from 15. The
FB UKF, though, can predict a no support state much better.
Configuration B best reveals the crux of this section. While the
LIPM KF might predict in the wrong direction in configuration
A, it might just as well predict in the right direction, without
actually having knowledge about the complex and fast motion
that is happing. This is the case for configuration B. It shows
that simple models can work in specific cases, whereas the FB
UKF was unable to follow the fast movements in configuration
B. Tuning the covariances tailor-made for configuration B,
estimation performance can be significantly improved, but
the tuning deteriorates the performance of the other motions.
This demonstrates a disadvantage of using complex models,
namely, that they are harder to tune for multiple motions.

D. Versatility

One of the benefits of the FB UKF is that it estimates all
current states and it can thus provide more than just the CoM.
By removing errors in the kinematic chain, the locations of
the feet were also estimated and improved as compared to
using forward kinematics. This is shown in figure 18. Figure
13 shows that the FB UKF can also filter noisy measurements
of individual states. However, the figure also shows it can not
filter all noise present in the measurements. One has to place
trust in some noisy measurements to be able to remove sensory
bias present in the kinematic chain. This directly results in
a noisy CoM velocity estimate, seen in both the simulation
results of figure 11 and the experimental results from figure
15 and 17. It can be easily solved by including a non-predictive
filter like a Butterworth filter, but it does reveal an important

aspect of the FB UKF. Though it can be used to solve multiple
issues in the kinematic chain, it does not solve all because it
relies on the availability of redundant information. Tuning the
filter should focus on tackling the specific issues present in
the robot. Hence, it is suggested to identify these issues before
application of the estimator.

E. Numerical Implementation

In sections IV and V, several choices were made to decrease
the compuational burden. However, the current filter was not
implemented on the robot itself. Despite doing the estimations
at 100Hz, estimation generally took twice as long as the
duration of the estimated motion. Currently, the prediction
with the equations of motion is done in C-code. However,
implementation of the equations of motion in C-code was
done by directly exporting symbolic equations to C. It is
therefore suggested to look at efficient implementations like
the Articulated-Body Algorithm [36]. Also, the UKF itself was
not implemented in C but in Matlab m-code, but the UKF
calculations themselves are not as computationally complex
as the equations of motion. Two other options that could
speed up the calculations are reducing the amount of sigma
points and implementing a numerically more efficient method
like the Square-Root Unscented Kalman Filter. This square-
root variant of the UKF increases computational speed and
guarantees a positive semi-definite state covariance matrix
[37]. Positive semi-definiteness can also be an issue in the
numerical implementation of the normal UKF, where the
matrix square root is calculated as shown in algorithm 1 of
appendix B. An incorrect prediction that is weighed using a
relatively large weigh factor can, for example, cause numerical
instability. This is the reason for choosing the general sym-
metric sigma point set. Lastly, it should be noted that adding
constraints can cause badly scaled matrices, causing problems
when implementing equation (18). With a damping factor of
λ = 0.01 for the damped pseudo-inverse, this problem is
currently circumvented.

F. Implementation on the TUlip

While using measured data to test the tracking of the FB
UKF, the measured torques were first checked in an open-loop
simulation of which the final results are given in figure 19. It
shows several steps of the walking pattern. The simulation was
used to tune the damping in the model joints. This revealed
several issues. First of all, a gain error was found between the
torques measured by the series elastic actuation and the torques
calculated from the pwm signals sent to the motor. It was
solved manually by matching the signals, though it requires
further investigation on motor drive level. When the gain error
in the measurements was not manually compensated for, the
estimator performance degraded. Furthermore, a stiffnesswas
found to be present in the hip rotation. The joint seemed to
prefer to go to its zero position. This is caused by the electric
cables that run from the trunk over the leg, pulling the leg back
to its zero position in some situations when the hip rotates
around itsz-axis. Moreover, from figure 19 it becomes clear
the hip rotation drifts away. This was caused by stick-slip in
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the joint. Because an error in the angle is detected in the low-
level control, the motor sends out a signal which is too small
to overcome friction. This does not result in a motion of the
robot, but does result in the hip rotation drifting away during
the open-loop simulation. The effect was also observed for
the hip abduction. The FB UKF was found to be a useful tool
in discovering software and hardware related issues. Finally,
although it was not investigated specifically, the experiment
indicates there is some robustness against model input errors.
However, no quantitative information can support this.

G. Future Work

Tuning the filter to work for various movements was found
to be a difficult task. Making sure the FB UKF estimates
all sorts of motion without having to retune the filter in
between different configurations still requires further research.
One major area of future work is to implement the proposed
observer in a real-time system for a humanoid robot. Then,
potential control performance improvements in a closed loop
need to be investigated as well. Experiments should be done to
acquire ground truth data about the states of the robot. Motion
capture or force pressure sensors could be useful to obtain this
information. Making the design robust, numerically stableand
efficient are also issues future research could focus on. Finally,
although different constraints can be added to the system,
switching constraints and the effect of ground impact or other
unexpected disturbance forces have not been investigated yet
and require further research.

VIII. C ONCLUSION

In this report, the Full-Body Unscented Kalman Filter (FB
UKF) was presented. This estimator makes use of the Float-
ing Feetless Humanoid (FFH) model for prediction and the
Unscented Kalman Filter to estimate the state of a humanoid
robot. The FFH model is, as the name suggests, a humanoid
model with a floating base, without feet, modelled in 3D.
Constraints were added to model ground contact and joint
limits. The main benefit of this design is that it allows for
estimating all states of the robot, except for the feet angles.
When comparing the CoM estimates with a Kalman Filter
that uses Linearised Pendulum Model for prediction (LIPM
KF), the FB UKF reveals another strength. It can decrease the
effect of play in the joints, modelled as a varying measurement
bias, thereby improving the estimation of all derived states
like the CoM. Both estimators were found to be robust
against parametric errors. The LIPM KF, though, is easier to
implement and tune for various types of motion.

APPENDIX A
ROBOT K INEMATICS

The following subsections give a compact overview of
methods and definitions used in deriving the equations of
motion. Readers are referred to [38] [39] [40] for more detailed
explanations.

A. Geometrical Background

A rigid body motion is a mappingg : R3 → R3 where
distance and orientation are preserved. First, consider the case
of pure rotation. The proper description of the motion that
satisfies these conditions is via the Special Orthogonal group
SO(3), which is the space of rotation matrices. It is defined
as

SO(3) =
{
R ∈ R3×3 : RRT = I, det(R) = 1

}
(20)

This is a group under the operation of matrix multiplication.
Moreover, it is a smooth manifold that has three degrees of
freedom representing the orientation. A group which is alsoa
smooth manifold is called a Lie group, to which a Lie algebra
Ŋo(3) can be associated. On its own, a Lie algebra is nothing
more than a vector space with an operator satisfying some
axioms. Associated to a Lie group, it is the tangent space at
the identity of the Lie group. So intuitively, the Lie algebra
describes some velocity, which makes it useful for the analysis
of rigid bodies. The Lie algebra is

Ŋo(3) =
{
ω̃ ∈ R3×3 : ω̃ = −ω̃T

}
(21)

which means it is skew-symmetric. Now, let us extend these
notions to the general case that includes translation usingthe
Special Euclidean groupSE(3). This group is defined as

SE(3) =

{(
R d
0 1

)
: R ∈ SO(3),d ∈ R3

}
(22)

which in its turn is also a Lie group with the associated Lie
algebraŊe(3). Here,d defines the translation. The Lie algebra
has the form of

Ŋe(3) =

{(
ω̃ v
0 1

)
: ω̃ ∈ Ŋo(3),v ∈ R3

}
(23)

An action ofH ∈ SE(3) on a point inp ∈ R3 then defines
the rigid transformationg : p 7→ Rp+ d.

B. Twists of a Rigid Body

In practice, to express the mappingg, let Hi
j ∈ SE(3).

Then, the configuration of a pointp on a rigid body with
framej relative to a spatial framei is given by

p̄i = Hi
jp̄

j (24)

wherep̄ = (p, 1)
T . For simplicity, the bar will be omitted

from here on. Now, the Lie algebra can be used to express
the velocities. First, consider the pure rotational casepi =
Ri

jp
j . Differentiating with respect to time giveṡpi = Ṙi

jp
j .

It can be rewritten toṗi = Ṙi
jR

i
j
−1

pi. Here, the expression
ω̃s = ṘR−1 is an element of the Lie algebra. Because it is
skew-symmetric, it can be written as a vectorωs containing
the rotational velocities in the spatial framei. In a similar
way, ω̃b = R−1Ṙ can be found, which gives the rotational
velocities in the body framej as a vectorωb. Now again, this
can be extended to the general case. It can then be shown that
the velocities of a rigid body are given by
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Vis
j = Ḣi

jH
i
j
−1

(25)

Vib
j = Hi

j
−1

Ḣi
j (26)

Here, Vis
j ∈ Ŋe(3) and Vib

j ∈ Ŋe(3) are the spatial and
body twist respectively, also called the spatial and body twist.
When writing out these expressions, it can indeed be seen
that they have the form given in (23). A twist can also be
expressed in twist coordinates. Define the vee operator∨ as
(·)∨ : Ŋe(3) → R6. Then, a twistV of the form given in (23)
can be expressed in twist coordinates as

V∨ =

(
ω̃ v
0 1

)∨
=

(
v
ω

)
= v (27)

wherev has the form of a vector. For completeness, the
wedge operator∧ shall be used for the inverse operation(·)∧ :
R6 → Ŋe(3). When inspecting the terms of the twists, they can
be interpreted as follows. The spatial twistVis

j is the velocity
of body j relative to some framei as seen from framei. The
body twistVib

j is the velocity of bodyj relative to some frame
i as seen from framej.

C. Twists of a Serial Link

1) The Adjoint Transform: To obtain the twists that describe
the velocities of a serial link, let us first find a way to relate
two twists to each other. From equations (25) and (26) it can
be easily seen that

Vis
j = Hi

jV
ib
j H

i
j

−1
(28)

which maps the twist from body to spatial coordinates. In
twist coordinates, we write this mapping as

vis
j = AdHi

j
vib
j (29)

where

AdH =

(
R d̃R
0 R

)
(30)

is called the Adjoint transformation that maps a twist from
one frame to another frame as AdH : R6 → R6. This will be
useful later on.

2) Unit Twists: The next step is to look at the twists of
joints with a single degree of freedomθ. For such a joint,
define a unit twist as

Tis
j =

∂

∂θ

(
Hi

j

)
Hi

j
−1

(31)

which when multiplied with a magnitudėθ forms the
spatial twist between linki and j as Vis

j = Tis
j θ̇. Or, in

twist coordinates asvis
j = tisj θ̇. When rearranging (26) to

Ḣi
j = Vis

j Hi
j the solution of the differential equation can be

found which gives a relation between elements ofSE(3) and
Ŋe(3).

Hi
j(θ) = eT

is
j θHi

j(0) (32)

Thus, the exponent of a twist gives the motion of a body
relative to its initial positionHi

j(0) after some trajectory ofθ.

3) The Geometric Jacobian: Finally, we can obtain the
Jacobians that give the velocity kinematics. First, the velocities
of end effectorn will be derived. The spatial velocity is

V0s
n = Ḣ0

nH
0
n
−1

=
∂H0

n

∂θ1
Hn

0 θ̇1 + . . .+
∂H0

n

∂θ1
Hn

0 θ̇n

which can also be written in twist coordinates.

v0s
n = Js

nθ̇ (33)

v0s
n =

(
∂H0

n

∂θ1
Hn

0

∨
. . .

∂H0
n

∂θn
Hn

0

∨)



θ̇1
...
θ̇n


 (34)

the vee operator∨ transforms a twist into twist coordinates.
The individual terms are then given as

∂H0
n

∂θi
Hn

0 =

(
H0

i−1

∂Hi−1
i

∂θi
Hi

n

)
Hn

0

= H0
i−1

(
∂Hi−1

i

∂θi
Hi

i−1

)
Hi−1

0

= H0
i−1T

i−1s
i Hi−1

0

∂H0
n

∂θi
Hn

0

∨
= AdH0

i−1
ti−1s
i (35)

This completes the spatial JacobianJs
n of bodyn. It can be

seen that thejth column ofJs
n is the unit twist of jointθj ,

transformed to the global frame0. Likewise, Jacobian in body
coordinates can be derived and it can be shown that

Js
n = AdH0

n
Jb
n (36)

This finally gives the body velocities of the end-effectorn.

v0b
n = Jb

nθ̇ (37)

D. Wrenches

In a similar way, the forces can be added to the system.
Define a wrench to be a pair of a force and a moment acting
on bodyi as

wi =

(
f
τ

)
(50)

such that the power can be calculated from a twist and a
wrench asP = w · v = τ · ω + f · v. A wrench can also be
transformed using the Adjoint. Under a coordinate change, the
power should stay equal. Using this fact it can be seen that

wi = AdT
Hj

i

wj . (51)

And, similar to twists, the body Jacobian can be used to
map external forces on a rigid body to the joint space as

τ ext =
(
Jb
n

)T
wn. (52)

With τ ∈ Rn.
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Algorithm 1 The Additive Unscented Kalman Filter [32]
Initialise:

x̂0 P0 Q R

For k = 1, 2, . . . ,∞:

1) Sigma points:

X k−1|k−1 = (x̂k−1|k−1 + γ
√
Pk−1|k−1x̂k−1|k−1 − γ

√
Pk−1|k−1) (38)

2) Prediction step:

X ∗
k|k−1 = f

(X k−1|k−1,uk−1

)
(39)

x̂k|k−1 =

2L∑

i=1

w
(m)
i X ∗

k|k−1,i (40)

Pk|k−1 =

2L∑

i=1

w
(c)
i

(
X ∗

k|k−1,i − x̂k|k−1

)(
X ∗

k|k−1,i − x̂k|k−1

)T
+Q (41)

3) Correction step:

X k−1|k−1 = (x̂k|k−1 + γ
√
Pk|k−1x̂k|k−1 − γ

√
Pk|k−1) (42)

Yk|k−1 = h
(X k|k−1,uk−1

)
(43)

ŷk|k−1 =

2L∑

i=1

w
(m)
i Yk|k−1,i (44)

P
(y,y)
k|k−1 =

2L∑

i=1

w
(c)
i (Yk|k−1,i − ŷk|k−1)(Yk|k−1,i − ŷk|k−1)

T +R (45)

P
(x,y)
k|k−1 =

2L∑

i=1

w
(c)
i (X k|k−1,i − x̂k|k−1)(Yk|k−1,i − ŷk|k−1)

T (46)

Kk = P
(x,y)
k|k−1

(
P

(y,y)
k|k−1

)−1

(47)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (48)

Pk|k = Pk|k−1 −KkP
(y,y)
k|k−1K

T
k (49)

Parameters:γ =
√
L is a scaling parameter for the generation of the sigma points, whereL is the dimension of the state. The

weightsw(·)
i for the mean and covariance are equally distributed asw

(·)
i = 1/2L.

E. Equations of Motion

With the twists and wrenches of previous sections, all
information needed to set up the equations of motion is
available. The twists can be made for every body inside a
chain giving the total body JacobianJb for the system. Note
that this Jacobian is different from the analytic Jacobian and
does not require the local inertia matrices to be transformed.
This can be used in for example the Lagrange Equations to
get the equations of motion for the serial link.

d

dt

∂T
∂θ̇

− ∂T
∂θ

+
∂V
∂θ

= τ (53)

With θ ∈ Rn the generalized coordinates,T the kinetic
energy andV the potential energy. They are

T =

n∑

i=1

1

2

(
v0b
i

)T
Ml,iv

0b
i

=

n∑

i=1

1

2
θ̇
T (

Jb
i

)T
MlJ

b
i θ̇

=
1

2
θ̇
T (

Jb
)T

MlJ
bθ̇ (54)

V =
n∑

i=1

mighi(θi) (55)

whereMl,i ∈ R6×6 denotes the local mass matrix of body
i. Writing out the terms we can find the equations of motion
as

M(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = τ . (56)

with inertia matrixM, Coriolis matrixC, gravity G and
τ = τ j + τ ext representing the joint control torques and
projected end-effector forces.
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APPENDIX B
UNSCENTEDKALMAN FILTER

For the Full-Body Unscented Kalman Filter (FB UKF), the
Unscented Kalman Filter (UKF) with additive noise is used for
estimation [32]. Its working principle is shown in algorithm
1. For scaling, the general symmetric set is used [31]. First,
the initial values for the state estimate and covariancex̂0

and P0 are set, as well as the measurement and process
noiseQ and R. Then, at each time step, the sigma points
X k−1|k−1 are distributed around the previous estimate based
on the previous covariance and some scaling parameterγ. The
next step is the prediction which is made by propagating the
sigma points through the nonlinear function. The output is the
set of transformed sigma pointsX ∗

k|k−1. The new weighted
mean and covariance are then calculated from the transformed
sigma points. Next, new sigma pointsX k−1|k−1 are created
around the predicted values using the predicted covarianceand
γ. They are propagated through the nonlinear measurement
equation and the weighted mean of the outcome then gives
the predicted measurement. The final step is to calculate the
Kalman gain and performing the update steps as in a regular
Kalman filter to obtain the new estimatêxk|k and covariance
Pk|k.
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