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An Adversarial Risk Analysis Framework for Cybersecurity

David Rios Insua,1,∗ Aitor Couce-Vieira,1 Jose A. Rubio,2 Wolter Pieters,3

Katsiaryna Labunets,3 and Daniel G. Rasines4

Risk analysis is an essential methodology for cybersecurity as it allows organizations to deal
with cyber threats potentially affecting them, prioritize the defense of their assets, and decide
what security controls should be implemented. Many risk analysis methods are present in cy-
bersecurity models, compliance frameworks, and international standards. However, most of
them employ risk matrices, which suffer shortcomings that may lead to suboptimal resource
allocations. We propose a comprehensive framework for cybersecurity risk analysis, covering
the presence of both intentional and nonintentional threats and the use of insurance as part
of the security portfolio. A simplified case study illustrates the proposed framework, serving
as template for more complex problems.

KEY WORDS: Adversarial risk analysis; cybersecurity; cyber insurance; resource allocation; risk
analysis

1. INTRODUCTION

At present, all kinds of organizations are being
critically impacted by cyber threats (Anderson, 2008;
Andress & Winterfeld, 2013). Risk analysis is a fun-
damental methodology to help manage such issues
(Cooke & Bedford, 2001). With it, organizations can
assess the risks affecting their assets and what secu-
rity controls they should implement to reduce the
likelihood of such threats and/or their possible im-
pacts should they happen.

Numerous frameworks support cybersecurity
risk management, including ISO 27005 (Interna-
tional Organization for Standardization [ISO], 2011),
CRAMM (Central Communication and Telecommu-
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nication Agency [CCTA], 2003), MAGERIT (Minis-
terio de Hacienda y Administraciones Pblicas [MIN-
HAP], 2012), EBIOS (Agence Nationale de la Scurit
des Systems d’Information [ANSSI], 1995), SP 800-
30 (National Institute of Standards and Technology
[NIST], 2012), and CORAS (Lund, Solhaug, & Stlen,
2010). Similarly, several compliance and control as-
sessment frameworks, like ISO 27001 (ISO, 2013),
Common Criteria (The Common Criteria Recogni-
tion Agreement Members [CCRA], 2009), and CCM
(Cloud Security Alliance [CSA], 2016), provide
guidance on the implementation of cybersecurity
best practices. They have many virtues, particularly
their extensive catalogues of threats, assets, and
controls, and provide detailed guidelines for the im-
plementation of countermeasures to protect digital
assets. However, much remains to be done regarding
risk analysis from a methodological point of view.
Indeed, a detailed study of the main approaches to
cybersecurity risk management reveals that it often
relies on risk matrices, with shortcomings well doc-
umented in Cox (2008) and Thomas, Bratvold, and
Bickel (2014): compared to more stringent methods,
the qualitative ratings in risk matrices (likelihood,
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severity, and risk) are more prone to ambiguity and
subjective interpretation and, very importantly for
our application area, they systematically assign the
same rating to risks that are very different risks
qualitatively, potentially inducing suboptimal cyber-
security resource allocations. Hubbard and Seiersen
(2016) and Allodi and Massacci (2017) provide
additional critical views on the use of risk matrices
in cybersecurity. Moreover, with few exceptions, like
IS1 (National Technical Authority for Information
Assurance [HMG], 2012), those methodologies do
not explicitly take into account the intentionality of
certain threats. This is in contrast with the relevance
that organizations like the Information Security Fo-
rum (ISF, 2016) start to give to such threats, receiving
the name adversarial in contrast to more standard
ones defined as accidental or environmental. Thus,
ICT owners may obtain unsatisfactory results in
relation to the prioritization of cyber risks and the
measures they should implement. In this context,
a complementary way for dealing with cyber risks
through risk transfer is emerging: cyber insurance
products, of very different natures and not in every
country, have been introduced in recent years by
companies like AXA, Generali, and Allianz. How-
ever, cyber insurance has yet to take off (Marotta,
Martinelli, Nanni, Orlando, & Yautsiukhin,
2017).

We aim at developing methods to support deci-
sions in relation to cybersecurity resource allocation,
including the adoption of cyber insurance. Fielder,
Panaousis, Malacaria, Hankin, and Smeraldi (2016)
review and introduce various approaches to such
problems, focusing on optimization and game-theory
models and their combination. Schilling and Wern-
ers (2016) describe a combinatorial optimization
approach for optimal selection of IT security safe-
guards, with no consideration of risk or adversarial
aspects. Cavusoglu, Raghunathan, and Yue (2018)
and Rao et al. (2015) provide game-theoretic models
for cybersecurity resource allocation under common
knowledge assumptions that might not be realistic
in our context. Thus, we propose an alternative
framework for cybersecurity risk analysis, combin-
ing optimization with an adversarial risk analysis
(ARA) approach to deal with adversarial agents; we
emphasize adversarial aspects for a better prediction
of threats as well as include cyber insurance within
the cybersecurity portfolio. Section 2 presents our
framework, supported by a simplified case study in
Section 3, which may serve as a template for more
complex problems. We conclude with a brief discus-

Fig. 1. Basic ID for system performance evaluation. cn indicates
costs associated with system operation over the relevant planning
period; the utility function u(cn) accounts for risk attitudes. Note
that in IDs, oval nodes represent uncertainties modeled with a
probability distribution p(. . . ), and utility nodes represent pref-
erences modeled with an utility function u(. . . ).

sion. An appendix compares our approach with a
standard game-theoretic one in a stylized example.

2. A CYBERSECURITY ADVERSARIAL
RISK ANALYSIS FRAMEWORK

We introduce our integrated risk analysis ap-
proach to facilitate cybersecurity resource allocation.
Our aim is to improve current cybersecurity frame-
works, introducing schemes that incorporate all
relevant parameters, including decisionmakers’ pref-
erences and risk attitudes (Clemen & Reilly, 2013)
and the intentionality of adversaries. Moreover,
we consider decisions concerning cyber insurance
adoption to complement other risk management
alternatives through risk transfer. We present the
framework stepwise, analyzing the elements involved
progressively. We describe the models (Banks, Rios,
& Rios Insua, 2015) through influence diagrams (ID)
and bi-agent influence diagrams (BAID) detailing
the relevant elements: assets, threats, security con-
trols, and impacts. At each step, we provide a brief
description of the diagrams introduced and a generic
mathematical formulation.

2.1. System Performance Evaluation

Fig. 1 describes the starting outline for a cyber
system under study. cn designates the costs asso-
ciated with its operation over the relevant period;
they are typically uncertain and modeled with a
probability distribution p(cn). We introduce a utility
function u(cn) over costs to account for risk attitudes
(Ortega, Radovic, & Rios Insua, 2018). We evaluate
system performance under normal conditions, that
is, in absence of relevant incidents, through its
associated expected utility ψn = ∫

u(cn) p(cn) dcn

(French & Ros Insua, 2000). This scheme can be so-
phisticated in several directions. For example, there
could be several performance functions, leading to
a multiattribute problem, as reflected in the case in
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Fig. 2. Cybersecurity risk assessment. The threats (two in this ex-
ample, t1 and t2) might impact on the organization’s assets, causing
costs (two in this example, ct and cc). These costs, and those under
normal conditions cn, are aggregated to determine the total costs c
and evaluated through the utility function u(c). Recall that in IDs,
double-lined ovals represent deterministic aspects.

Section 3. A typical example in cybersecurity is to
consider attributes concerning information availabil-
ity, integrity, and confidentiality (Mowbray, 2013).

2.2. Cybersecurity Risk Assessment

Based on Fig. 1, we consider the cybersecurity
risk assessment problem in Fig. 2. In general, we
include m threats t1, . . . , tm; some of them could
be physical (e.g., a fire) and others cyber (e.g., a
DDoS attack5). Their occurrence is random vari-
ables. We also include l types of assets; some of
them could be traditional (e.g., facilities) and others
could be cyber (e.g., information systems). Impacts
on them will be, respectively, designated ci , i = 1,
. . . , l and are typically uncertain. If the impacts are
conditionally independent given the threats, the
corresponding model would be of the form p(c1

|t1, . . . , tm) . . . p(cl |t1, . . . , tm) p(t1, . . . , tm), where
p(t1, . . . , tm) describes the probability of the threats
happening,6 and p(ci |t1, . . . , tm) describes the proba-
bility of impact on the ith asset, given the occurrence

5A distributed denial of service (DDoS) is a network attack con-
sisting of a high number of infected computers flooding with net-
work traffic a victim computer or network device, rendering it
inaccessible.

6Depending on the problem, we could have further decomposi-
tions. For example, in a case like that in Fig. 2 with independent
threats, we would have p(t1, . . . , tm) = ∏m

i=1 p(ti ).

of various threats. We aggregate costs additively
at the total cost node c. Then, the expected utility
would be:

ψr =
∫
. . .

∫
u

(
cn +

l∑
i=1

ci

)
p(cn) p(c1|t1, . . . , tm)

. . . p(cl |t1, . . . , tm) p(t1, . . . , tm) dtm . . . dt1 dcl

. . . dc1 dcn.

We have assumed that consequences are additive,
but we could have a generic utility u(cn, c1, . . . , cl).
Finally, we evaluate the loss in expected utility
ψn − ψr . Alternatively, we could compare the dif-
ference in the corresponding certain equivalents
(French, 1986). When such difference is sufficiently
large, incidents are expected to harm the system
significantly and we should manage such risks. Note
that we could incorporate several utility nodes to
describe multiple stakeholders’ preferences.

2.3. Risk Mitigation in Cybersecurity
Risk Management

As a next step, we add security controls. We in-
troduce a portfolio of them to reduce the likelihood
of threats and/or their impact. Examples include fire-
walls, employee training, or making regular backups.
For simplicity, in Fig. 3, we assume that all controls
have influence over all events and impacts. It will
not always be so: a fire detector makes less harmful,
but not less likely, a fire; resource accounting mech-
anisms (Mirkovic & Reiher, 2004) managing access
based on user privileges make a successful DDoS
attack less likely, but usually not less harmful. Node
e describes the portfolio of controls, whose cost we
model through the distribution p(ce|e). Controls
might have influence on threat likelihoods p(ti |e),
i = 1, . . . ,m, as well as on asset impact likelihoods
p(ci |t1, . . . , tm, e). We aggregate all costs through
the total cost node c, under appropriate additivity
assumptions. In this case, the organization’s expected
utility when we implement portfolio e is:

ψ(e) =
∫
. . .

∫
u

(
cn + ce +

l∑
i=1

ci

)
p(cn)

×p(ce|e) p(c1|t1, . . . , tm, e) . . . p(cl |t1, . . . , tm, e)

×p(t1, . . . . , tm|e) dtm . . . dt1 dcl . . . dc1 dcc dcn.

We would then look for the maximum expected
utility portfolio by solving ψ∗

e = maxe∈Eψ(e), where
E is the set of feasible portfolios, which should
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Fig. 3. Cybersecurity risk management. We add to Fig. 2 the se-
curity controls portfolio e (and its cost ce) that the organization
can implement to mitigate the threats or their impacts. Recall that
rectangle nodes represent decisions.

satisfy incumbent constraints like economic (e.g., not
exceeding a budget), legal (e.g., complying with data
protection laws), logistic, or physical.

2.4. Risk Transfer in Cybersecurity Risk
Management: Cyber Insurance

As a relevant element of increasing interest,
we introduce the possibility of acquiring a cyber
insurance product. Its cost will typically depend
on the implemented portfolio of controls, as in
Fig. 4: the better such a portfolio is, the lower
the insurance premium would be. This cost will
also depend on the assets to be protected. We
could include the insurance within the portfolio of
controls; however, it is convenient to represent it
separately, since premiums will usually depend on
the controls deployed. The decision node i describes
the cyber insurance adopted, with entailed costs ci

with probability p(ci |i, e), although they will usually
be deterministic. In addition, insurance and secu-
rity controls will affect impacts, modeled through
p(c j |t1, . . . , tm, e, i), j = 1, . . . , l. The total cost node
c aggregates the costs. The expected utility when we

Fig. 4. Cyber insurance for cybersecurity risk management. We
add to Fig. 3 the insurance i (and its cost ci ) to which the organi-
zation can subscribe to mitigate the impacts that the threats can
cause.

implement portfolio e together with insurance i is:

ψ(e, i) =
∫
. . .

∫
u

⎛
⎝cn + ce + ci +

l∑
j=1

c j

⎞
⎠ p(cn)

× p(ci |i, e)p(ce|e) × p(c1|t1, . . . , tm, e, i) . . .

× p(cl |t1, . . . , tm, e, i) p(t1, . . . , tm|e) dtm . . .

× dt1dcl . . . dc1 dci dce dcn.

We seek the maximum expected utility portfolio
of security controls and insurance by solving ψ∗

e,i =
maxe∈E,i∈I ψ(e, i), where I represents the catalogue
of insurance products available. The pair (e, i) could
be further restricted jointly, for example, by compli-
ance requirements or common budget constraints.

2.5. Adversarial Risk Analysis in Cybersecurity

As discussed, intentionality is a key factor
when analyzing cyber threats. As an example, the
ISF (2016) specifies a group of several adversarial
threats within its catalogue. We use ARA (Banks
et al., 2015) to model the intentions and strategic
behavior of adversaries in the cybersecurity domain;
see Merrick and Parnell (2011) for a comparison
of various methods modeling adversaries in risk
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Fig. 5. Adversarial risk analysis in cybersecurity: defense–attack
problem. We modify Fig. 3 by transforming the cyber threat into
an adversarial one: an attacker is deciding whether to attack the
organization (a) based on his own evaluation, u(a, ct , cc), of the
harm caused to the organization, and the cost of performing the at-
tack. Lighter nodes refer to issues concerning solely the Defender;
darker nodes refer to issues relevant only for the Attacker; nodes
with stripped background affect both agents. Arcs have the same
interpretation as in Shachter (1986).

management. Under ARA, the attacker has his own
utility function and seeks to maximize the effec-
tiveness of his attack. This paradigm is applicable
to multiple types of strategic interactions between
attackers and defenders. Two of them are specially
relevant in cybersecurity.

2.5.1. Defense–Attack Model

The original examples, Figs. 2 and 3, evolve into
Fig. 5, modeling an adversarial case through a BAID
with a Defender and an Attacker. The unintentional
threat remains modeled through a probabilistic
node, whereas we model the adversarial threat
through a decision node for the Attacker, who needs
to decide whether to launch an attack to his benefit.
For simplicity, in the diagram we model the physical
threat t1 as unintentional and the cyber threat a as
adversarial, although adversarial physical threats
and unintentional cyber threats could be relevant in
certain cases, as exemplified in the case study. Also
for simplicity, we only consider one attacker and one
attack, but the ideas extend to multiple attacks by
one attacker or to multiple attackers.

We present a sequential defense–attack template
model for cybersecurity. For the Defender problem,

Fig. 6. Attacker problem in the defense–attack model.

this converts the Attacker’s decision nodes into
chance ones and eliminates the Attacker’s nodes not
affecting it, as well as the corresponding utility node.
For the Attacker, where we assume here that there
is only one Attacker responsible for the adversarial
threat a independent of the other threats, given the
portfolio e. Fig. 3 essentially presents the Defender
problem and we covered its resolution in Section 2.3.
The cyber attack is described probabilistically7

through p(a|e), which represents the probability that
the Defender assigns to cyber threat a materializing,
had portfolio e been adopted. However, given the
strategic nature of this problem, rather than using
a standard probability elicitation approach (Dias,
Morton, & Quigley, 2018), we greatly facilitate and
improve the assessment of the required distribution
if we analyze the Attacker decision about which
attack to perform, as argued in Rios, Insua, Banks,
Rios, and Ortega (2019). Under the ARA paradigm,
the Defender should analyze the Attacker strategic
problem in Fig. 6.

Specifically, given portfolio e, and assuming that
the Attacker maximizes expected utility, the De-
fender would compute, for each attack a, the ex-
pected utility for the Attacker:

ψA (a|e) =
∫∫∫

uA(a, c1, . . . , cl) pA(c1|t1, . . . , tm, a, e)

× . . . pA(cl |t1, . . . , tm, a, e) pA(t1, . . . , tm|e)

× dtm . . . dt1 dcc dct ,

7We are assuming that given e, a is conditionally independent of
(t1, . . . , tm).
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Fig. 7. Adversarial risk analysis in cybersecurity: defense–attack–
defense problem.

where uA and pA designate, respectively, the util-
ity and probabilities of the Attacker. The Defender
must then find the attack solving:

max
a∈A

ψA(a|e),

where A is the set of attack options. However, the
Defender will not typically know uA and pA. Suppose
we are capable of modeling her uncertainty about
them with random probabilities PA and a random
utility function UA (Banks et al., 2015). Then, the op-
timal random attack, given e, is:

A∗(e) = arg max
a∈A

∫∫∫
UA(a, c1, . . . , cl) PA(c1|t1, . . . ,

× tm, a, e) . . . PA(cl |t1, . . . , tm, a, e) PA(t1, . . . ,

× tm|e)dtm . . . dt1 dcc dct .

Finally, the distribution over attacks we were looking
for satisfies p(a|e) = P(A∗(e) = a), assuming that
the attack set is discrete (e.g., attack options). Sim-
ilarly, if the attack space is continuous (e.g., attack
efforts), the probability becomes a density function.
We can estimate such attack distribution through
Monte Carlo (MC) simulation as in Algorithm 1 (see
the Appendix), where we designate the distribution
of random utilities and probabilities through F =
(UA(a, c1, . . . , cl), PA(c1|t1, . . . . , tm, a, e), . . . , PA(cl |t1,
. . . , tm, a, e), PA(t1, . . . , tm|e)).

2.5.2. Defense–Attack–Defense Model

Cybersecurity risk management also comprises
reactive measures that can be put in place to counter
an attack, should it happen. Therefore, we split the
security portfolio into two groups: preventive ep and
reactive er |t1, . . . , tm, a security controls, as in Fig. 7.
This corresponds to our sequential defense–attack–
defense template model, in which the first move
is by the Defender (preventive portfolio ep), the
second one is by the Attacker (attack after observing
preventive controls, a|ep), and the third one is by
the Defender (reactive portfolio er |t1, . . . , tm, a).
We solve the Defender problem much as we did in
Section 2.3, reflecting changes caused by splitting
the security control node. Specifically, the expected
utility when portfolio e = (ep, er ) is implemented is:

ψ(e) =
∫
. . .

∫
u

(
cn + ce +

l∑
i=1

ci

)
p(cn) p(ce|ep, er )

× p(cl |t1, . . . , tm, a, ep, er ) . . . p(c1|t1, . . . , tm,

× a, ep, er )p(t1, . . . , tm|ep) p(a|ep) da dtm . . .

× dt1 dcl . . . dc1 dct dce dcn.

We would then look for the maximum expected
utility portfolio:

(e∗
p, e∗

r ) = arg max
(ep,er )∈Ep×Er

ψ(ep, er ),

where Ep and Er , respectively, define constraints for
preventive and reactive portfolios, some of which
could be joint.

The above represents a global view of the se-
quential problem, although we solve this kind of two-
stage problems sequentially, as in He and Zhuang
(2017). We would solve the Attacker problem pro-
viding p(a|ep) in a similar fashion as in Section 2.5.1.

3. A CASE STUDY TEMPLATE

We illustrate our cybersecurity risk analysis
framework with a defense–attack case study, which
can serve as a template for more complex problems.
For confidentiality reasons, we have simplified the
number of relevant issues and masked the data
conveniently. This simplification will also allow us
to better illustrate key modeling concepts and the
overall scheme. Moreover, we include uncertain
phenomena in which data are abundant and others
in which they are not and, thus, we shall need to rely
on expert judgment for its quantification (Dias et al.,
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Fig. 8. Case study as a BAID.

2018). The Defender is an SME8 with 60 people and
90 computers. A cyber attack might affect its online
services. Prices and rates in Euros refer to Spain,
where the incumbent organization is located.

In essence, we first structure the problem, identi-
fying assets, threats, and security controls. The latter
may have implementation costs in exchange for
reducing the threat likelihoods and/or possible im-
pacts. Subsequently, we assess the impacts that may
have an effect on asset values to find the optimal risk
management portfolio. Since we include adversarial
threats, we consider the Attacker decision problem.
In this case, there is a single potential Attacker
that contemplates a DDoS attack with the objective
of disrupting the Defender services, causing an
operational disruption and reputational damage and
the consequent loss of customers, besides incurring
contractual penalties potentially affecting its conti-
nuity. Then, we simulate from this problem to obtain
the attack probabilities, which feed back into the
Defender problem to obtain the optimal defense.
We focus on finding the optimal security portfolio
and insurance product for the company, in the sense
of maximizing expected utility. Other formulations

8Small or medium-size enterprise.

are discussed in Section 3.5. We consider a one-year
planning horizon.

3.1. Problem Structuring

We structure the problem through the BAID in
Fig. 8 and describe its components next.

3.1.1. Assets

We first identify the Defender assets at risk.
We could obtain them from catalogues like those
of the methodologies mentioned in Section 1. Here
we consider: Facilities, the offices potentially affected
by threats; Computer equipment, the data center
and workstations of the organization; Market share.
Other assets not considered in this case include, for
example, the company’s development software, its
business information, its mobile devices, or the staff.

3.1.2. Nonintentional Threats

We consider threats over the identified as-
sets deemed relevant and having nonintentional
character. This may include threats traditionally
insurable as well as new ones potentially cyber
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insurable. We model each threat with a probabilis-
tic node associated with the Defender problem. We
extract two threats from the MAGERIT (MINHAP,
2012) catalogue: fire and computer virus. A fire may
affect facilities and computers; we do not contem-
plate impact on market share, as the organization has
a backup system; we assume that a fire can occur only
by accident, not by sabotage. The computer virus is
aimed at disrupting normal operations of computer
systems; we consider this threat nonintentional, as
most viruses propagate automatically: their occur-
rence tends to be random from the Defender per-
spective. Other nonintentional threats, not consid-
ered here, could be water damage, power outages, or
employee errors.

3.1.3. Intentional Threats

This category may include both cyber and physi-
cal threats. Again, we could use catalogues from, for
example, ISF (2016). We should first identify the at-
tackers. We then integrate the attack options avail-
able to each attacker within a single decision node. In
our case, we just consider one competitor, reflected
in the competitor attack node. He may attempt a
DDoS to undermine the availability of the Defender
site, compromising its customer services. For this, he
must decide whether to launch the attack and the
number of attempts. Other intentional attacks, not
modeled here, could include launching an advanced
persistent threat, instigating the misbehaviour of in-
siders, or the use of bombs.

3.1.4. Uncertainties Affecting Threats

We consider now those uncertainties affecting
the Defender’s assets. We model each of them with a
probabilistic node. In our case, these will be the du-
ration of the DDoS attack, which will depend on the
number of attacks and security controls deployed,
and the fire duration, which can be reduced with an
anti-fire system. Other related uncertainties could
come, for example, from a more detailed modeling
of the virus (e.g., infection probability given the
operating system) or the eventual propagation of the
fire to adjacent buildings.

3.1.5. Attacker Uncertainties

We model the uncertainties that the Attacker
might find relevant and that only affect him
with probabilistic nodes (in his own color). In

Table I. Insurance Product Features, Some of Them Referring to
Cyber Impacts

Product Coverage

No insurance None.
Traditional

insurance
80% of hired capital in buildings and

contents, firefighters, and movement of
furniture.

Cyber insurance 80% of cyber expenses related to:
confidential data violation, investigation
and legal costs, losses caused by threats
and extortion, removal of computer
viruses, measures related to data
protection procedures, and computer
fraud.

Comprehensive
insurance

All of the above.

our case, we consider only the detection of the
Attacker: if detected, his reputation would suf-
fer and he might face legal prosecution. Other
attacker uncertainties that might be included are the
effectiveness of the DDoS platform or the number of
customers affected by the DDoS.

3.1.6. Relevant Security Controls

We identify security controls relevant to counter
the threats. For this, we may use listings from the
above-mentioned methodologies. We associate a
Defender decision node with the security controls. In
our case, we consider an anti-fire system to detect a
fire, facilitating early mitigation; a firewall to protect
the network from malicious traffic; the implementa-
tion of risk mitigation procedures for cybersecurity
and fire protection; and a cloud-based DDoS pro-
tection, diverting DDoS traffic to an absorbing
cloud-based site. Other measures, not included here,
could be a system resource management policy, a
cryptographic data protocol, or a wiring protection.

3.1.7. Insurance

We also consider the possibility of purchasing
insurance to transfer risk with the corresponding
Defender decision node. The premium will depend
on the protected assets and contextual factors such
as location, company type and, quite importantly,
the implemented controls. Table I displays the
contemplated insurance products.
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Fig. 9. Defender problem.

3.1.8. Impacts on Defender

Having identified the threats, we present their
relevant impacts on the Defender’s assets. We
model each of them with a probabilistic node. We
consider: Impact on facilities, the monetary losses
caused by fire in or on them; Impact on computers,
the monetary losses caused by fire or viruses split
into insurable and noninsurable ones to assess the
possible insurance coverage; Impact on market
share. We also consider the impacts associated with
safeguards as deterministic nodes: cost of security
controls, cost of insurance, and insurance coverage.
Finally, a deterministic total costs node aggregates
the Defender’s consequences to establish the final
impact in the Defender problem. We could include
other types of impacts such as the corporate image
or the staff safety, although we do not do so here.

3.1.9. Impacts on Attacker

We consider the following impacts: Attacker
earnings from increased market share, transferred
from those lost by the defender; Costs when detected,
covering possible sanctions by the regulator and legal
costs, as well as loss of customers and reputation, if
detected. The final Results of attack combines all pre-

vious impacts, as well as the costs of undertaking the
attack. We model the Costs when detected as a prob-
abilistic node. The remaining ones are deterministic.

3.1.10. Preferences

Value nodes describe how the corresponding
agent evaluates consequences. We include one value
node for each of the participating agents: the Utility
of Defender node models the Defender preferences
and risk attitudes over the total costs; the Utility of
Attacker node models those of the Attacker.

3.1.11. Defender and Attacker Problems

Figs. 9 and 10, respectively, represent the De-
fender and Attacker problems derived from the
strategic problem in Fig. 8. We use both diagrams to
guide judgment elicitation.

3.2. Assessing the Defender’s Nonstrategic Beliefs
and Preferences

We now provide the quantitative assessment of
the Defender beliefs and preferences not requiring
strategic analysis. Some of them will be based
on data and expert judgment, others just on expert
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Table II. Cost of Individual Security Controls

Security Control Cost

Anti-fire system € 1,500
Firewall € 2,250
Risk mitigation

procedures
€ 2,000

Cloud-based
DDoS
protection

2 gbps 5 gbps 10 gbps 1,000 gbps

€ 2,400 € 3,600 € 4,800 € 12,000

judgment due to the typical lack of data in cybersecu-
rity environments (Hubbard & Seiersen, 2016). As a
consequence, we populate most nodes in the model.
Section 3.3 treats nodes that require strategic analy-
sis. Finally, Section 3.4 analyzes the Defender prob-
lem to find the optimal controls and insurance. When
incumbent, we provide the pertinent utility u, ran-
dom utility UA, probability p, random probability PA,
or deterministic model at the corresponding node.

3.2.1. Economic Value of Defender Assets

We consider the following values for the assets at
risk: Facilities, with a value of € 5,000,000, reflecting
only acquisition costs; Computer equipment, with a
value of € 200,000, under similar considerations; Mar-
ket share is estimated at 50%, which, translated into
next-year expected profits, is valued at € 1,500,000.

3.2.2. Modeling Security Controls

Security controls decision s. The security port-
folios that the Defender could implement derive
from the options in Section 3.1. For the DDoS
protection, we have the choice of not implementing
it or subscribing to a 2, 5, 10, or 1,000 gbps service.
For the other security controls, the choice is binary.
We thus have 40 portfolios that could be constrained
by, for example, a budget, as in Section 3.5.

Cost of security controls cs |s. Table II provides
them, from which we derive those of the portfolios.

3.2.3. Modeling the Insurance Product

Insurance decision i . This refers to the insur-
ance product that the Defender could purchase
(Table III) once the controls have been selected.

Insurance cost, ci |i . It depends on the controls
implemented by the organization (Table III).

Table III. Insurance Product Cost

Security Controls

Prod. None Anti-Fire Firewall or DDoS prot. Proc.

None € 0 € 0 € 0 € 0
Trad. € 500 € 300 € 500 € 500
Cyber € 300 € 300 € 200 € 250
Compr. € 700 € 500 € 600 € 650

Table IV. Industrial Fire Data in Vitoria (2005–2009)

Year Buildings Fires

2005 1,220 32
2006 1,266 29
2007 1,320 30
2008 1,347 28
2009 1,314 28

Insurance coverage gi |i,b,qi , as reflected in
Table I.

3.2.4. Modeling the Fire Risk

Likelihood, p( f ). This node provides the annual
probability of suffering a fire. We use data from
Vitoria (DSC de Vitoria, 2009), concerning fire in-
terventions in industrial buildings (Table IV). As the
fire rate remains fairly stable over time, we estimate
such probability with a beta-binomial model with
beta prior βe(1/2, 1/2). The posterior would be:

f |data ∼ βe(1/2 +
5∑

i=1

xi ,

1/2 +
5∑

i=1

(ni − xi )) ≡ βe(147.5, 6320.5),

where xi is the number of fires affecting industrial
buildings and ni the number of buildings in the ith
year, i = 1, . . . , 5. As the posterior variance is small,
such distribution can be reasonably summarized
through its posterior expectation, p̂ = 0.022. The
number f of fires can be approximated with a
Poisson P(0.022) distribution. However, we consider
only the probability that one fire occurs, since
Pr( f > 1) = 0.00024. Thus, f ∼ min[1,P(0.022)].

Duration, p(o| f, s). It is a major fire impact
determinant (Bagchi, Sprintson, & Singh, 2013): the
longer the fire, the more damaging it will be. Fig. 11
presents the histogram of industrial fire durations,
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Fig. 10. Attacker problem.

Fig. 11. Industrial fire duration histogram. Vitoria, Spain (2005–
2009).

with mode [30,60] minutes. Adapting Wiper, Rios
Insua, and Ruggeri (2001), we model the fire du-
ration o with a gamma �(shape = γ, scale = γ /μ)
distribution. We assume a noninformative, but
proper, exponential prior for γ ∼ E(0.01) and in-
verse gamma for μ ∼ Inv-�(1, 1). No expression for
the posterior distribution is available, but we can
introduce a Markov chain MC scheme to sample μ

and γ from the data. Based on it, we estimate that
E(γ |data) ≈ 0.85 and E(μ|data) ≈ 78.

The only proposed control that may have an
effect on fire duration is the anti-fire system. Using
expert judgment (Dias et al., 2018), we determine
its threshold duration under the proposed system
with, respectively, suggested minimum, modal, and
maximum durations of 1, 10, and 60 minutes. To
mitigate expert overconfidence (Galway, 2007), we
consider a triangular distribution with quantiles 0.05
at 1 and 0.95 at 60 minutes, resulting in a triangular
distribution Tri(0.8, 63, 10), which models o if there
is a fire ( f = 1) and the portfolio s contains the anti-
fire system. On the other hand, o ∼ �(0.85, 0.0109)
if the portfolio does not contain the anti-fire system.

Impact. We assume that the amount lost is
linearly related to the fire duration. After consulting
with experts, we consider that a fire lasting 120
minutes would degrade the facilities by 100% in the
absence of controls. To simplify, we assume that
the effect of fire duration is linear. Additionally, the
impact on computer equipment derives from the
percentage of facility degradation caused by fire.
Assuming that computers are evenly distributed
through the premises, a fire lasting 120 minutes
would also degrade computer equipment by 100%.
This impact is potentially insurable and will be
modeled in Section 3.2.7.

3.2.5. Modeling the Computer Virus Risk

Likelihood, p(v|s). This node provides the num-
ber v of virus infections during a year. The distribu-
tion of the number of infected computers in a month
follows a binomial distribution B(h,q), with q the
probability that a computer gets infected and h the
number of computers. Various statistics suggest that
the rate of virus infections worldwide is 33% (Panda
Security, 2015), so we estimate q̂ = 0.33. The organi-
zation has 90 computers, which we assume have the
same security controls and are equally likely to be in-
fected. Since the analysis is for 12 months, we use h =
12 · 90 = 1, 080. Additionally, we consider the effect
of our controls: if a firewall is implemented, the prob-
ability that a computer gets infected reduces to q̂ =
0.005, not completely eliminating the threat, even if
this includes continuous updating based on the latest
virus signatures; if the mitigation procedures are im-
plemented, the infection probability reduces by 50%,
with firewall or not, as this control entails improve-
ments in the organization such as imposing safety
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Table V. Number v of Annual Virus Infections

Sec. Controls in s Distribution

Firewall and proc. v ∼ B(1080, 0.0025)
Firewall v ∼ B(1080, 0.005)
Procedure v ∼ B(1080, 0.1666)
Otherwise v ∼ B(1080, 0.33)

requirements on acquired systems. The number v of
infections is, therefore, modeled as in Table V.

Impact. Viruses may impact the integrity and
availability of computers, leading to information cor-
ruption or unavailability. Impacts on confidentiality
are variable, as they depend on the stolen informa-
tion. The average daily cost of these infections was
estimated at € 2.683 (Solutionary, 2013), although
this may vary depending on the monetary value of
the information and services that the victim systems
support. Bigger losses come from sophisticated cam-
paigns (e.g., as with WannaCry) or targeted malware
that, under our paradigm, we would better model
as an adversarial threat. In our case, repairing a
computer infected by a virus requires € 31, for two
technician hours. Insurance options cover the re-
moval of computer viruses. Therefore, we cover this
impact within the insurable aspects in Section 3.2.7.

Additionally, most viruses entail performance
reduction in aspects such as initialization of operat-
ing systems. Although small, this causes time losses
to the user. We assume that most (70%) of the work
time of the organization is in front of a computer
and that it would take, on average, 40 hour to detect
the problem. We therefore assume that when a com-
puter is infected, 28 hour of its usage are affected by
the virus. We model the time loss w with a uniform
U(0, 0.05) distribution that represents that the per-
centage of lost time caused by a virus is between 0%
and 5%. The average hourly cost of the employees
is € 20/hour. Therefore, for each virus infection, the
cost would be 20 × 28 × w. Our insurance options
do not cover this loss and, thus, we model it within
the noninsurable aspects in Section 3.2.7.

3.2.6. Modeling the DDoS Threat

We consider now the nonstrategic aspects of the
DDoS threat.

Duration, p(l|a, s). The duration l in hours of a
successful DDoS attack will depend on the intensity
of the attacking campaign, how well-crafted the

attack is, and the security controls implemented.
An emerging type of control is cloud-based systems
absorbing traffic when a site becomes a victim of a
DDoS. If no control is deployed, it would be virtually
impossible to block such attack. Based on Securelist
(2016) and Verisign (2017), the average attack lasts
four hours, averaging 1 gbps, with peaks of 10 gbps.
We model l j , the length of the jth individual DDoS
attack, as a �(4, 1). This duration is conditional
on whether the attack actually saturates the target,
which depends on the capacity of the DDoS platform
minus the absorption by the cloud-based system.
We assume that the Attacker uses a professional
platform capable of 5 gbps attacks, modeled through
a �(5, 1) distribution. We then subtract the traffic
sgbps absorbed by the protection system to determine
whether the attack is successful (its traffic over-
flows the protection system). Since the campaign
might take a attacks, the output of this node is
l = ∑a

j l j , with l j ∼ �(4, 1) if �(5, 1) − sgbps > 0, and
l j = 0, otherwise.

Impact. A DDoS attack might cause a repu-
tational loss that would affect the organization’s
market share. We assume that all market share is
lost at a linear rate until all value is gone, say, after
five to eight days of unavailability: in the fastest case,
the loss rate r would be 0.5/120 = 0.00417 per hour,
whereas in the slowest one it would be 0.0026. We
model r as a U(0.0026, 0.00417).

3.2.7. Modeling Impacts on the Assets
We recollect here the impacts on the assets.
Impact on facilities, p(b|o). The monetary loss

b due to degradation of facilities through fire is
b ∼ 5, 000, 000 × min(1, o

120 ), following Section 3.2.4.
Insurable impacts on computers, p(qi |o, v).

We model the monetary losses qi due to degra-
dation of computers covered by insurance, either
caused by fire, Section 3.2.4, or through repairing
computers infected with viruses, Section 3.2.5, as
qi ∼ 31v + 200, 000 × min(1, o

120 ).
Noninsurable impacts on computers, p(qn|v).

The monetary losses qm caused by degradation of
computers due to the lost time caused by viruses are
not covered by insurance. Following Section 3.2.5,
we model qn ∼ 560w × v.

Impact on market share, p(m|l). The monetary
loss m due to a reduced market share, following
Section 3.2.6, is m ∼ min[1, 500, 000, 3, 000, 000 ×
l × r ].
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Total Defender costs, cd|gi , ci , cs,m,b,qi ,qn.
The costs cd suffered by the Defender are
cd = m + b + qi + qn + cs + ci − gi , where cs is the
security controls cost, ci that of insurance, gi the in-
surance coverage (which reduces losses), and m, b, qi ,
and qn are the impacts on assets previously described.

3.2.8. Defender Utility, u(cd)

The organization is constant risk averse over
costs. Its utility function is strategically equivalent
to u(cd) = a − b exp(k(cd)). We calibrate it with
three costs: worst, best, and an intermediate one.
The worst reasonable loss is based on the sum of all
costs and impacts (except that due to the computer
virus) € 6,755,300. Computer virus impacts do not
have an upper limit; based on simulations, it is
reasonable to assume that they would not exceed
€ 50,000. Giving an additional margin, we assume
that such maximum is 7, 000, 000. The best loss is 0.
For the intermediate cost c∗

d = 2, 660, 000, we find its
probability equivalent α so that u(c∗

d) = α (Ortega
et al., 2018); based on information provided by the
company, u(c∗

d) � .5. We rescale the costs to the
(0,1) range through 1 − cd

7,000,000 . Then, the utility
function is u(cd) = 1

e−1 [exp(1 − cd
7,000,000 ) − 1].

3.3. Assessing the Attacker’s Random Beliefs
and Preferences

In the Defender problem, the competitor attack
is described through a probabilistic node modeling
the number of attacks launched by the Attacker
given the security controls that are implemented.
To obtain the corresponding probabilities, we
model the Attacker problem based on Fig. 10.
Its solution would provide the Attacker’s optimal
action. However, as argued in Section 2.5, we model
our uncertainty about his preferences and beliefs
through random utilities and probabilities to find the
random optimal attack; for this, we simulate from
it to forecast his actions and obtain the required
probability distribution.

Defender’s security controls. This node is prob-
abilistic for the Attacker. However, we assume
that he may observe through network exploration
tools whether the Defender has implemented
relevant controls.

Competitor attack decision, a|s. This decision
node models how many attacks (between 0, doing
nothing, and 30) the DDoS campaign will make.

Attackers usually give up once the attack has been
mitigated and move on to the next target or try other
disruption methods. However, when the attack is
targeted, the Attacker might continue the campaign
for several days, causing an extensive impact.

Duration of the DDoS, PA(l|a, s). We base our
estimate on that of the Defender (Section 3.2.6). We
model the length of the jth individual DDoS attack
as a random gamma distribution �length(υ, υ/μ) with
υ ∼ U(3.6, 4.8) and υ/μ ∼ U(0.8, 1.2), adding some
uncertainty around its average duration (between
three and six hours) and dispersion. Similarly, we
model the attack gbps through a random gamma
distribution �gbps(ω,ω/η) with ω ∼ U(4.8, 5.6) and
ω/η ∼ U(0.8, 1.2). Next, we subtract sgbps from �gbps

to determine whether the DDoS is successful. As in
Section 3.2.6, we use l = ∑a

j l j , with l j ∼ �length if
�gbps − sgbps > 0, and l j = 0 otherwise.

Impact on market share, PA(m|l). We base our
estimate on that of the Defender (Section 3.2.7),
adding some uncertainty. The market share value
and percentage are not affected by uncertainty,
as this information is available to both agents.
However, we model uncertainty in the market loss
rate: the fastest one (five days in the Defender prob-
lem) is between four and six days in the Attacker
problem and the slowest one (eight for Defender)
is between seven and nine. Therefore, the random
distribution describing the market loss is m ∼ min
[1, 500, 000, 3, 000, 000 × l × R] with R ∼ U(α, β),
α ∼ U(0.0021, 0.0031), and β ∼ U(0.00367, 0.00467).

Attacker earnings, e|m. Being the sole competi-
tor, we assume that the Attacker gain e in terms
of market share is e = m. The random uncertainty
in earnings derives from the randomness of the
preceding nodes.

Attacker Detection, PA(t |a). This represents the
chance of the Attacker being detected. Detection
probabilities are estimated via expert judgment
at 0.2%, should the Attacker attempt a DDoS
attack. Should there be a attacks, the detection has
a binomial distribution B(a, 0.002). To add some
uncertainty, we model the detection probability for
each attack through a βe(2, 998).9 Then, we model
the Attacker’s detection t through a random bino-
mial distribution that outputs detected if B(a, φ) > 0
with φ ∼ βe(2, 998), and not detected, otherwise.

Cost for Attacker when detected, pA(ct |t). As
a competitor, if the Attacker is detected, he would
face a serious discredit, together with compensation

9Its mean is 0.002.
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Table VI. Conditional Probability Table for Random Optimal Attacks

Number of Attempts

DDoS Prot. System 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1,000 gbps 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 gbps 0.000 0.001 0.003 0.003 0.004 0.005 0.012 0.012 0.015 0.013 0.017 0.024 0.024 0.022 0.030 0.035
5 gbps 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002
2 gbps 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
None 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Number of Attempts

DDoS Prot. System 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1,000 gbps 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 gbps 0.026 0.041 0.025 0.044 0.042 0.053 0.050 0.048 0.047 0.060 0.050 0.059 0.065 0.081 0.089
5 gbps 0.008 0.006 0.012 0.017 0.007 0.028 0.031 0.055 0.070 0.061 0.096 0.117 0.143 0.141 0.203
2 gbps 0.000 0.000 0.002 0.001 0.002 0.013 0.013 0.020 0.034 0.069 0.091 0.112 0.144 0.223 0.276
None 0.000 0.000 0.003 0.001 0.004 0.008 0.010 0.022 0.042 0.058 0.081 0.105 0.173 0.246 0.247

and legal costs as well as criminal responsibilities.
We use this cost decomposition: € 550,000 of ex-
pected reputational costs, due to the communication
actions required to preserve credibility; € 30,000
of expected legal costs; € 350,000 of expected civil
indemnities and regulatory penalties; € 1,500,000 of
expected suspension costs, related to losses derived
from prohibition to operate for some time. We add
some uncertainty, modeling the cost as a normal
distribution with mean 2,430,000 and SD 400,000,
that is, ct |t ∼ N (2, 430, 000, 400, 000).

Result of attack, ca|e, ct , a. This combines the
Attacker earnings and costs if detected, and those
of undertaking the attacks. We consider that using
a botnet to launch the DDoS attack would cost on
average around € 33 per hour (Incapsula, 2015)
(€ 792 for a day). Therefore, ca = e − ct − 792a.

Attacker’s random utility, UA(ca). We assume
that the Attacker is risk prone, with a utility function
strategically equivalent to uA(ca) = (c′

a)ka , where
k> 1, c′

a are the costs ca normalized to [0, 1], and
ka the risk proneness parameter. We induce the
random utility considering that ka follows a U(8, 10)
distribution.

3.3.1. Simulating the Attacker Problem

Summarizing the earlier assessments, the dis-
tribution of random utilities and probabilities in the
Attacker problem is F = (UA(ca), pA(ct |t), PA(t |a),
PA(m|l), PA(l|a, s)). We calculate the random opti-

mal attack, given the security controls s implemented
through:

A∗(s) = arg max
a

∫
. . .

∫
UA(ca) pA(ct |t) PA(t |a) PA

× (m|l) PA(l|a, s) dl dmdt dct .

To approximate it, we use an MC approach as in
Algorithm 1 (Appendix A) with K=20,000, which we
have implemented in R. For each size s of the DDoS
protection system, we assess the distribution of the
random optimal attack. Table VI displays the attack
probabilities, conditional on the protection imple-
mented. For instance, if the security portfolio does
not contain a DDoS protection system (s = 0, none),
an attack seems certain, and its duration would be
between 18 and 30 attacks, 29 and 30 being the most
likely attack sizes. We thus create the probability
distribution p(a|s). We have now fully specified the
Defender problem and are ready to solve it.

3.4. Solving the Defender Problem

Summarizing earlier assessments about the
Defender problem, we have that the involved
distributions are G = (p(m|l), p(qn|v), p(qi |o, v),
p(b|o), p(l|a, s), p(a|s), p(v|s), p(o| f, s), p( f )). The
Defender’s expected utility when the security
portfolio s is implemented together with insurance
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Table VII. Expected Utility for Three Best and Worst Combinations of Controls and Insurance

Anti-Fire Firewall Procedure DDoS Protection Insurance Expected Utility

Anti-fire Firewall No procedure 1,000 gbps Comprehensive 0.9954
Anti-fire Firewall No procedure 1,000 gbps Traditional 0.9950
Anti-fire Firewall Procedure 1,000 gbps Comprehensive 0.9949
. . . . . . . . . . . . . . . . . .

No anti-fire No firewall No procedure No protection Cyber 0.8246
No anti-fire No firewall Procedure No protection No insurance 0.8246
No anti-fire No firewall No procedure No protection No insurance 0.8242

i is:

ψ(s, i) =
∫
. . .

∫
u(cd) p(m|l) p(qn|v) p(qi |o, v)

× p(b|o) p(l|a, s) p(a|s) p(v|s) p(o| f, s) p( f )

× df dodv da dl db dqi dqn dm.

The optimal resource allocation is the maximum
expected utility pair (s∗, i∗) = arg maxs,i ψ(s, i).
We use Algorithm 2 (Appendix A) to approximate
the portfolio together with the optimal portfolio.
We have implemented it in R with an MC sample
size of K=20,000 and the results are summarized in
Table VII. The best portfolio consists of a 1,000 gbps
cloud-based DDoS protection system, a firewall, an
anti-fire system, and the comprehensive insurance.
Besides the ranking of countermeasures, we can
obtain additional information from the simulation.
For instance, the best portfolios tend to include a
firewall, a 1,000 gbps DDoS protection with no risk
management procedure. The best portfolios also in-
clude insurance, either traditional or comprehensive.

3.5. Further Analysis

The previous ARA model can be used to
perform other relevant analysis, as we briefly discuss.

3.5.1. Sensitivity Analysis

We can assess the robustness of the previous
solution by checking whether variations in the inputs
to the model alter the optimal solution. This is espe-
cially important in a case like ours with small differ-
ences in expected utility among top alternatives and
many inputs being purely judgmental. The approach
would require the implementation of additional al-
gorithms for sensitivity analysis that indicate whether
small deviations in input parameters may lead to
a large effect in the model outcome (Rios, 1990).

As an example, the optimal portfolio in Table VII
will remain as such until we sufficiently reduce the
value of p( f ), specifically f ∼ min[1,P(0.0088)]. If
p( f ) is further reduced, the optimal portfolio will
contain the same security controls and insurance as
the optimal, except for the anti-fire system.

Additionally, sensitivity analysis can be used to
explore the maximum cyber insurance price that the
Defender would be willing to pay. This may be used,
inter alia, to price insurance products.

3.5.2. Introducing Constraints

As mentioned, we may introduce constraints
over the security portfolios. For example, we could
add to the problem a budget limit of, say, € 8,000.
Then, our problem would involve only those port-
folios satisfying that constraint. In such case, the
optimal portfolio would consist of the firewall, the
10 gbps DDoS protection system, and the compre-
hensive insurance, with a cost of € 7,650. Another ex-
ample could refer to constraints on compulsory secu-
rity controls, as certain insurance policies might de-
mand their implementation before a policy is issued.

3.5.3. Return on Security Investment

Our formulation focused on choosing the best
security portfolio. An additional aspect that could
be addressed is calculating the return on security
investment (ROSI) to assess the cost effectiveness
of a cybersecurity budget (ENISA, 2012; Schatz
& Bashroush, 2017). Calculating the optimal solu-
tion over a range of budgets (e.g., from € 5,000 to
€ 25,000) generates a function that, for a given
budget, provides the optimal solution and its ex-
pected utility to explore the return on risk mitigation
investments. Additionally, we could find the op-
timal increase in the portfolio so as to attain a
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certain expected utility level or satisfy a certain risk
appetite level.

3.5.4. Comparison with a Game-Theoretic
Approach

Appendix C provides a comparison between our
framework and a standard game-theoretic solution
in a simplified cybersecurity example. The basic
conclusions would be, first, that both approaches rely
on different assumptions and, consequently, lead
to different solutions; that the game-theoretic ap-
proach requires more stringent common knowledge
assumptions that might not hold in cybersecurity;
given that, we may view the ARA approach as
more robust. Additionally, the proposed framework
may be more adaptable to realistic cybersecurity
scenarios with several potential attackers and several
accidental and environmental threats as it more
duly apportions various sources of uncertainty, as
discussed in Merrick and Parnell (2011).

4. DISCUSSION

Current cybersecurity risk analysis frameworks
provide relevant knowledge bases for understanding
cyber threats, security policies, and impacts on
business assets with dependencies on the IT infras-
tructure. However, most of such frameworks provide
risk analysis methods that are not sufficiently formal-
ized, nor comprehensive enough. Indeed, most of
them suggest risk matrices as their main analytic ba-
sis, which provide a fast but frequently rudimentary
study of threats. Hence, we have presented a formal
framework supporting all steps relevant to undertake
a comprehensive cybersecurity risk analysis. It im-
plies structuring the cybersecurity problem as a deci-
sion model based on a multiagent influence diagram.
It enables the assessment of beliefs and preferences
of the organization regarding cybersecurity risks as
well as the security portfolio and insurance it can
implement to treat such risks. It takes into account,
in addition to nonintentional threats, the strategic
behavior of adversarial threats with ARA. We model
the intentional factors through the decision problems
of the attackers. The case introduced is a simplifi-
cation of a real example but serves as template for

complex problems. Among other things, we had to
rely on expert judgment to assess the uncertainty
nodes for which we lacked data. From the decision
support point of view, ARA enables the calcula-
tion of optimal cybersecurity resource allocations,
facilitating the selection of security and insurance
portfolios. Furthermore, it also enables sensitivity
analysis to evaluate whether the optimal portfolio
remains as such, in case different elements affecting
risk change.

Future work involves the application of this
paradigm to study other cybersecurity adversar-
ial problems, including granting a cyber insurance
product and cyber reinsurance issues. The prob-
lem proposed here refers to strategic/tactical deci-
sions; it would be interesting to develop dynamic
schemes integrating strategic and operational deci-
sions. Similarly, we shall address the development
of parametric cyber insurance schemes in order to
obtain premiums that reflect better risk manage-
ment. We shall also pursue optimization algorithms
beyond enumeration to reduce the computational
burden.

When compared with standard approaches
in cybersecurity, our paradigm provides a more
comprehensive method, leading to a more detailed
modeling of risk problems, yet, no doubt, more
demanding in terms of analysis. We believe though
that at many organizations, especially in critical
infrastructures and sectors, the stakes at play are so
high that this additional work should be worth the
effort. Therefore, another relevant activity would
be the development of a software environment that
supports the implementation of our cybersecurity
framework based on the R routines elaborated.
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APPENDIX A: ALGORITHMS

Algorithm 1. Estimating distribution over attacks (defense–attack).
For each defense e

For i = 1, . . . , K
Generate (

U i
A(t2, ct, cc), P i

A(ct|t1, t2, e), P i
A(cc|t1, t2, e), P i

A(t1|e)
)

∼ F

Compute

a∗i = arg max
a

∫∫∫
U i

A(a, ct, cc) P i
A(ct|t1, a, e) P i

A(cc|t1, a, e) P i
A(t1|e)dt1 dcc dct

end
Approximate

p̂A(a|e) =
#{a∗i = a}

K

end

Algorithm 2. Approximation of Defender’s optimal portfolio.
ψ(s, i) = 0
For each (s, i)

For j = 1, . . . , K
Generate

mj , qj
n, qj

i , bj , lj , aj , vj , oj , f j
) ∼ G

Compute
cj

s|s, cj
i |i, gj

i |i, bj , qj
i

Compute
cj

d = mj + bj + qj
i + qj

n + cj
s + cj

i − gj
i

Compute

ψ(s, i) = ψ(s, i) +
u(cj

d)
K

end
end
Compute

(ŝ∗, î∗) = arg max
s,i

ψ(s, i)
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APPENDIX B: NOTATIONS

Cybersecurity ARA framework notation

p(·) probability distribution
u(·) utility function

PA(·) random probability distribution (at-
tacker problem)

UA(·) random utility function (attacker prob-
lem)

cn cost of normal system performance
ψn expected utility under normal condi-

tions
t1, . . . , tm threats
c1, . . . , cl costs of impacts on the assets

c total costs
ψr expected utility considering threats

e security controls portfolio
ce security controls portfolio cost

ψ(e) expected utility when portfolio e is im-
plemented

ψ∗
e expected utility of optimal portfolio
i insurance

ci insurance cost
ψ(e, i) expected utility when portfolio e and

insurance i are implemented
ψ∗

e,i expected utility of optimal portfolio
and insurance

uA(·) attacker utility function
ψA(·) expected utility for attacker
A∗(e) optimal random attack given security

portfolio e
ep preventive security controls portfolio
er reactive security controls portfolio

Case study template notation

i insurance
ci insurance cost
gi insurance coverage
s security controls portfolio

cs security controls portfolio cost
f fire probability
o fire duration
v number of computer virus infections
q probability that a computer gets in-

fected
w percentage of time loss caused by com-

puter virus
b impact on facilities

qi insurable impact on computers
qn noninsurable impact on computers
cd total costs for defender

u(cd) defender utility
a competitor attack
l duration of DDoS

l j lenght of jth DDoS attack
r market share loss ratio

m impact on market share
e attacker earnings
t detection of attacker

ct cost when detected
ca result of attack

uA(ca) attacker utility
UA(ca) attacker random utility

A∗(s) optimal random attack given security
portfolio s

ψ(s, i) expected utility when portfolio s and in-
surance i are implemented

(s∗, i∗) optimal security portfolio s and insur-
ance i

βe(·) beta distribution
P(·) Poisson distribution
�(·) gamma distribution

Tri(·) triangular distribution
U(·) uniform distribution
B(·) binomial distribution
N (·) normal distribution
E(·) exponential distribution

APPENDIX C: COMPARISON WITH A
GAME-THEORETIC APPROACH

This appendix compares our ARA framework
with a standard game-theoretic (GT) approach by
analyzing a simple example with both methods. We
consider a defend–attack problem, in which a de-
fender D has to decide (d) among three connecting
options between two data centers in a campus shared
with other institutions: using the campus network
with encryption and other protection measures (d1);
using it without additional protection (d2); or the
most expensive, installing a dedicated line between
the data centers (d3). The danger resides in a poten-
tial targeted attacker A, insider to the campus, who
decides whether to attack the defender’s connection
(a1) or not (a0). The result of the attack (r) leads to
consequences related to data exfiltration, expressed
as costs, for both the defender (cD) and the attacker
(cA). They evaluate these consequences through
utility functions (uD and uA) that incorporate their
risk attitude. Fig. C1 represents the problem as an
ID and Table C1 details the problem for various
relevant defense–attack combinations.
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Fig. C1. Influence diagram representing the connecting problem.

Table C1. Defender and Attacker Elements

Defender
Decision d

Attacker
Decision a

Attack
Result r

Defender
Consequences cD

Attacker
Consequences cA

Defender
Utility u(cD)

Attacker
Utility u(cA)

d1 a1 r1 s + kr1 l − gr1 1 − eλ(s+kr1) eμ(l+gr1) − 1
a0 0 s 0 1 − eλs 0

d2 a1 r2 kr2 l − gr2 1 − eλkr2 eμ(l+gr2) − 1
a0 0 0 0 0 0

d3 a1 – – – – –
a0 – h 0 1 − eλh 0

Note: r1 (r2) is the attack result, in terms of fraction of data compromised, in case the defender uses the campus network with (without)
protection d1 (d2); h is the cost of installing a new line between the data centers; s is the cost of taking the extra protection when using the
campus network; k is the defender’s cost relative to the fraction of data compromised; l is the attacker cost of executing the attack; g is the
attacker’s gain relative to the fraction of data extracted from the defender; λ is the defender risk aversion coefficient; μ is the attacker risk
proneness coefficient.

Common ingredients to both approaches refer
to the assessment of the defender elements. Sup-
pose that we have h = 100, 000, s = 25, 000, and
k = 300, 000; her risk aversion coefficient is λ = 3 ·
10−5; the attack result r1, given the protection, fol-
lows a beta distribution r1 ∼ βe(0.6, 1.4) (mean 0.3),
whereas the attack result r2, given the lack of protec-
tion, follows a beta distribution r2 ∼ βe(0.36, 0.24)
(mean 0.7).

Game-theoretic approach. Under common
knowledge, we assume that the defender knows
that the attacker’s parameters are: l = 12, 000;
g = 33,000; μ = 1.8 × 10−5; r1 follows a beta dis-
tribution βe(2.4, 6.7) (mean 0.2637); and r2 follows
beta distribution βe(6.5, 4) (mean 0.619).

We first compute the attacker’s best response
to the defender choice d, which is a∗(d) = arg maxa

ψA(a,d), where ψA(a,d) = ∫∫
uA(cA)pA(cA|a, r)pA

(r |d, a)drdcA is the attacker’s expected utility. Know-
ing a∗(d), we compute the defender’s optimal de-
cision from the game-theoretic perspective d∗

GT =
arg maxd ψD(a∗(d),d), where ψD(a,d) is the de-
fender’s expected utility, defined in a similar fash-
ion to that of the attacker. In our case, we have

a∗(d1) = a0, a∗(d2) = a1, and a∗(d3) = a0, that is,
attacking is the best decision for the attacker
only when the defender uses the campus net-
work without protection. We then compute the
respective expected utilities as max(ψD(a∗(d1),d1),
ψD(a∗(d2),d2), ψD(a∗(d3),d3)) to find d∗

GT . In our
case, (−1.117,−19.086,−2960.141) and, thus, d∗

GT =
d1, using the campus network with the protec-
tion measures.

Adversarial risk analysis approach. Without
common knowledge, we model the defender’s beliefs
about the attacker’s judgment with random prob-
abilities PA(·) and random utilities UA(·). Suppose
that l ∼ U(10, 000, 20, 000); g ∼ U(10, 000, 50, 000);
μ ∼ U(1 × 10−5, 2 × 10−5); r1 follows the random
beta distribution βe(U(2, 4),U(6, 8)); and, similarly,
r2 follows r2 ∼ βe(U(5, 7),U(3, 5)).

We calculate the random optimal at-
tack A∗(d), given the defender’s choice d,
which is obtained through arg maxa

∫∫
UA(cA)

PA(cA|a, r)PA(r |d, a)drda. This leads to estimates
p̂(a1|d1) = 0.180, p̂(a1|d2) = 0.567, p̂(a1|d3) = 0,
and the corresponding complementary probabilities
for a0. Knowing this, we calculate the defender’s
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expected utility, when d is her choice, as ψ(d) =∫∫
uD(cD)pD(cD|a, r)pD(r |d, a) p̂(a|d)dcDdrda. The

decisions’ expected utilities are, respectively,
(−110.99,−1, 753.933,−19.086) and, thus, the ARA
optimal defense is d∗

ARA = d3, installing a dedicated
line, which is different from the game-theoretic
solution dGT .

Comments. A first difference between the
approaches is that GT assumes common knowledge.
In our example, this entails that the defender knows
the attacker’s probability distributions and utility
function. Alternatively, ARA does not assume such
knowledge, but the defender needs to model her
beliefs over the attacker judgments through ran-
dom probability distributions and a random utility
function. Consequently, a second difference is that
GT informs the defender problem with the optimal
decision of the attacker, whereas ARA provides
a probability distribution of the attacker decision.
Observe that the ARA approach may be seen as a
way to induce robustness in the GT approach when
we are not sure about the attacker assessments.

Similar comments hold for cases in which a game
under a partial information approach is considered
as common knowledge over the types prior and is
required to approximate Bayes–Nash equilibria.
See Rothschild, McLay and Guikema (2012) for
additional discussion.
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