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Abstract
The use of computational fluid dynamics (CFD) in modern engineering applications has greatly
increased in recent years. However, many applications of a ‘real-time’ or ‘multi-query’ nature
still pose a prohibitive computational cost for large scale simulations. Reduced order models
(ROMs) have been proposed to alleviate this cost by finding approximate low-dimensional repre-
sentations of fluid dynamical simulations that are cheaper to evaluate. This master thesis deals
with ROMs of the POD-Galerkin kind, where POD stands for proper orthogonal decomposition
and Galerkin refers to Galerkin projection.

An issue of increasing interest in projection-based reduced order modelling of conservation
laws is the preservation of the conservative structure underlying such equations at the reduced
level. A non-linearly stable POD-Galerkin ROM of the incompressible Navier-Stokes equations
that globally conserves kinetic energy (in the inviscid limit), momentum and mass on periodic
domains was constructed by Sanderse (2020). The quadratic nonlinearity in the convection
operator was dealt with using an exact tensor decomposition to eliminate the dependence of
the computational scaling of the ROM on the full order model (FOM) dimensions. However,
such a cubic tensor decomposition is not always feasible: in case many POD modes are required
(cases with slow Kolmogorov N-width decay), the exact decomposition becomes prohibitively
expensive. One possible solution is the use of hyper-reduction methods such as the discrete
empirical interpolation method (DEIM). The DEIM generally does not retain the conservative
structure of the ROM to which it is applied and, as a consequence, non-linear stability of the
ROM of the incompressible Navier-Stokes equations is no longer guaranteed.

In this master thesis several novel DEIM formulations are proposed that enable the con-
struction of non-linearly stable hyper-reduced order models (hROMs) of the incompressible
Navier-Stokes equations. The hROMs have the same mass, momentum and energy conservation
properties as the previously proposed ROM, but they do not suffer of prohibitively expensive
computational scaling when the number of POD modes is increased. The first of the proposed
methods is the least-squares discrete empirical interpolation method (LSDEIM), which is based
on a constrained minimization. The second method is the Sherman-Morrisson discrete empiri-
cal interpolation method (SMDEIM), which applies a rank-one correction to the conventional
DEIM to conserve energy. The third method is the decoupled least-squares discrete empirical
interpolation method (DLSDEIM), which is a generalization of the LSDEIM that allows in-
creasing the size of the measurement space. All methods result in structure-preserving DEIM
formulations that have an equivalent computational scaling as the conventional DEIM, but
provide provably stable, structure-preserving hROMs. Furthermore, the use of the principal
interval decomposition (PID) in the construction of the reduced and DEIM spaces is considered
to beat the Kolmogorov barrier.

The methods are implemented in hROMs of the incompressible Navier-Stokes equations
based on the previously proposed ROM. They are compared in terms of robustness, accuracy
and efficiency using a shear layer roll-up as a test case. The best performing structure-preserving
DEIM formulation is used in conjunction with the PID in a two-dimensional turbulence test
case. This demonstrates the ability of the hROM to reproduce two-dimensional turbulence.
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kmax Largest wavenumber on discrete domain
Kr Reduced total kinetic energy
Ki

r Reduced total kinetic energy in interval i
Kn

r Reduced total kinetic energy at discrete time tn
K(t) Total kinetic energy
L Largest length scales in 2DT flow
l Length scales in intertial range of 2DT flow
L2(Ω) The space of square-integrable functions defined on Ω
Lc Characteristic length scale
L(c, λ) LSDEIM Lagrangian
Lh Linear Poisson operator
M Continuous divergence operator

M
Matrix obtained from Runge-Kutta bilinear form / Basis to
DEIM-space (clear from context)

m Number of DEIM space dimensions
Md DEIM space
MF Feasible LSDEIM approximations
Mh Discrete divergence operator
Mh Mesh
Mi DEIM basis of interval i
mij Component of M in row i and column j
Mp SMDEIM short-hand matrix



Contents viii

Symbol Definition
mp Number of dimensions measurement space
Mh

u FOM solution manifold
MN

u All solution manifolds in N -dimensional state space
N Total number of velocity unknowns
n̂k Outward normal vector to face k of a control volume
Np Total number of pressure unknowns
np Number of PID intervals
ns Number of solution snapshots
Nu Total number u-unknowns
N(u) Arbitrary nonlinear vector operator
Nv Total number v-unknowns
n̂(x, t) Outward normal vector
Nx Number of pressure control volumes in x-direction
Ny Number of pressure control volumes in y-direction
N (µ, σ) Normal distribution with mean µ and standard deviation σ
NΩp Number of non-overlapping pressure control volumes
P Pressure Sobolev space / Measurement matrix (clear from context)
Pa Total palinstrophy
Ph Measurement space
Pi
h Measurement space of interval i

ph(t) Discrete pressure vector
P h(t) Discrete total momentum vector
Pu
h (t) Discrete total momentum in u-direction
P v
h (t) Discrete total momentum in v-direction
pi Vector index of ith DEIM measurement point
(P k

r )
i kth Component of reduced total momentum in interval i

P r(t) Reduced total momentum vector
Pu
r (t) Reduced total momentum in u-direction
P v
r (t) Reduced total momentum in v-direction

P (t) Total momentum vector
p(x, t) Continuous pressure field
Qh Matrix satisfying Dh = −QT

hQh

Qr Matrix satisfying Dr = −QT
r Qr

r Number of reduced space dimensions
R The set of real numbers
R+ The set of positive real numbers
r(a) SMDEIM short-hand vector
Re Reynolds number
Reh Grid Reynolds number
ri Number of dimension in POD basis of interval i
r(t) Residual vector
s Number of Runge-Kutta stages
Sa Palinstrophy sink term
S(t) Surface of V (t)
t Time
T End-time
T Characteristic timescale of turbulent eddy
(·)T Transpose of linear operator ·
Td d-Dimensional torus
ti Start-time of PID interval i
tn nth discrete time point
Ts Timescale significantly longer than T
U Velocity Sobolev space
u0 Initial condition vector



Contents ix

Symbol Definition
uC u-Unknown central to computational stencil
Uc Characteristic velocity
un+1
h Discrete velocity vector at discrete time tn+1

uh(t) Discrete velocity vector
uh,∆t=0.001(t) Numerical velocity vector with ∆t = 0.001

Uk
j jth Runge-Kutta stage vector of kth Newton-Raphson iteration

uk k ∈ {N,E, S,W} u-unknowns relative to uC
Uk kth Runge-Kutta stage vector
Uk Runge-Kutta stage block-vector of kth Newton-Raphson iteration
ur(t) Reduced velocity vector
u−
r (ti+1) Reduced velocity vector of interval i at interface at ti+1

u+
r (ti+1) Reduced velocity vector of interval i+ 1 at interface at ti+1

uTG,h(t) Discrete Taylor-Green solution
un+1 Solution vector at discrete time tn+1

U(x, t) Velocity magnitude field
u(x, t) Continuous velocity field
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1
Introduction

Computational fluid dynamics (CFD) has become an integral part of many modern engineering
applications. The increase in computational power in recent decades has allowed engineers to
model increasingly larger fluid dynamical systems. However, many modern applications are of a
multi-query or real-time nature e.g. design optimization [80] and uncertainty quantification [34]
for the former and real-time control [79, 68] and digital twin technology [45] for the latter, and
still pose prohibitively large computational costs. Reduced order models (ROMs) have been
proposed as a solution to this problem. A ROM is a type of surrogate model that approximates
the high-dimensional full scale model, or full order model (FOM) as it is often referred to in the
model reduction community, in a low-dimensional way by finding approximate formulations of
involved quantities or operators. The low-dimensionality of the model consequently makes the
ROM significantly cheaper to evaluate than the large scale model.

Traditionally in the CFD community, these ROMs have been constructed by projecting
the fluid dynamics equations of interest onto low-dimensional linear spaces obtained from the
proper orthogonal decomposition (POD) algorithm [47, 94], using either Galerkin [86, 79, 98,
50, 58] or Petrov-Galerkin [23, 41, 22] projection. More recently, alternatives have also been
explored. ROMs have been constructed without availability of a FOM by inferring the ROM
from data using operator inference methods [73, 92, 16, 61]. Machine learning methods like
convolutional autoencoders have been used in a projective sense [55, 78] and also inference
methods [66, 60] have been applied to obtain nonlinear low-dimensional approximations. Other
nonlinear dimensionality reduction methods like diffusion maps [95] have also been leveraged.
However, the traditional POD-Galerkin methods remain powerful and this thesis will primarily
deal with these methods and their natural extensions like the principal interval decomposition
(PID) [18, 49].

Nevertheless, the traditional methods do have limitations. For turbulent (and convection-
dominated) flows that are of engineering interest it is well-known that linear, projection-based
ROMs suffer from stability and accuracy issues [86, 38, 12, 6, 58]. Efforts have been made
to solve this issue and an overview is provided by [38, 86]. A promising solution is structure-
preservation, this entails constructing ROMs such that the underlying physics of fluid flows
are respected. Especially conservation of kinetic energy is an important physical principle to
uphold in a ROM with regards to stability as it bounds the norm of the solution [86, 2, 26, 99].

An investigation of the current state of the literature, reported in a separate literature
overview document (‘Methods for Energy-Conserving Model Reduction for Fluid Flow’), re-
sulted in the conclusion that attempts at constructing structure-preserving ROMs of fluid flow
fall in one of four categories. The first category is constrained optimization projection [24, 90,
42, 17, 48]; here model reduction is cast into an optimization problem and constrained to pre-
serve structure. A second category is formed by symmetry-preservation [86, 2, 26, 99] where
symmetries of the continuous analogues of ROM operators have been preserved resulting in the
conservation of energy and nonlinear stability. In [40, 27, 76, 46, 1] Hamiltonian physics are
preserved in a low-dimensional setting, forming a third category. Finally, in [64, 105, 56, 65,
13, 5] data-driven approaches using inference and machine learning methods have been adopted
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establishing a fourth category.
It is clear that the issue of stability and its resolution through structure-preservation has

been the subject of considerable research efforts. However, reduction of nonlinear models suffers
also from another issue. Namely, evaluating nonlinear operators in a reduced setting using the
POD requires intermediate lifting of the reduced representation to the high-dimensional (FOM)
spaces. Thus, although the ROM is low-dimensional, the computational effort to evaluate it is
still high-dimensional, defeating its purpose. Methods to overcome this problem are referred to
as hyper-reduction methods [21]. For sufficiently simple cases exact hyper-reduction methods
exist that eliminate computational dependence on the FOM dimensions [86, 4]. This can be
done when the underlying nonlinearity is of polynomial nature. Yet, these methods can become
prohibitively expensive for larger ROMs as noted in [86]. Hence, approximate hyper-reduction
methods may be considered since these generally have better scaling properties. Examples
of such approximate hyper-reduction methods are the discrete empirical interpolation method
(DEIM) [29, 30, 28, 14], Gauss-Newton with approximated tensors (GNAT) [25, 23] and energy-
conserving sampling and weighting1 (ECSW) [41, 37, 36].

The usage of approximate hyper-reduction methods comes at a cost. Namely, out of the box
many hyper-reduction methods do not preserve the structure of the operators to which they are
applied and thus stability can be lost. The field of model reduction of Hamiltonian systems has
offered some solutions for this; [27] proposes a structure-preserving DEIM variant for systems
with Hamiltonian functionals with non-quadratic terms; [102] improves this DEIM variant and
[63] proposes a structure-preserving DEIM variant for nonlinear Hamiltonian operators that
preserves skew-symmetry. However, the fluid dynamics models of interest to this thesis have
quadratic Hamiltonian functionals [70, 11] (kinetic energy) making the first two methods ([27,
102]) inapplicable. Furthermore, the approximate method proposed in [63] scales computation-
ally as the prohibitively expensive exact method used in [86]. For this reason, none of these
DEIM variants are applicable to the models of interest to this thesis and there is a gap in the
present literature.

It is the previously discussed gap where the present thesis aims to provide a contribution
to the literature. More specifically, this thesis aims at developing structure-preserving DEIM
variants that are capable to robustly, accurately and efficiently deal with convection-dominated
flows. Consequently, the following research goal is formulated:

”To develop robust, accurate and efficient reduced order models for the incompress-
ible Navier-Stokes equations.”

This thesis will be organized as follows. First, the governing equations will be introduced in
chapter 2 and matters important to structure-preservation will be highlighted. In chapter 3
a structure-preserving FOM will be introduced and its implementation will be verified. In
chapter 4 a structure-preserving ROM will be introduced, alongside hyper-reduction. Following
this, three structure-preserving hyper-reduction methods will be proposed which will be applied
to the aforementioned ROM. Finally, in chapter 5 the performance of the proposed structure-
preserving hyper-reduction methods will be analysed using two convection-dominated test cases.

1Contrary to what the name suggests ECSW does not preserve structure for the fluid dynamical simulations
of interest to this thesis.



2
The Governing Equations

In this chapter the incompressible Navier-Stokes equations are introduced. These equations
govern the motion of incompressible flows and are ubiquitous in fluid mechanics. From the in-
compressible Navier-Stokes equations additional equations will be derived that describe the evo-
lution of two conserved quantities: total momentum and total kinetic energy. These derivations
will require consideration of the mathematical properties of the operators in the incompressible
Navier-Stokes equations. Conserving these quantities in reduced order models (ROMs) of the
incompressible Navier-Stokes equations will be the topic of this thesis.

2.1. The Incompressible Navier-Stokes Equations
The incompressible Navier-Stokes equations describe the conservation of mass and momentum
of a fluid in a domain Ω ⊂ Rd during a time interval [0, T ], with d ∈ {2, 3} being the dimensions
of the spatial domain and T ∈ R+ being a time. The set of equations constituting the incom-
pressible Navier-Stokes equations can be derived from first principles by considering Reynolds
transport theorem:

d

dt

∫
V (t)

ϕdV =

∫
V (t)

(
∂ϕ

∂t
+∇ · ϕu

)
dV, (2.1)

where V (t) : R+ → Rd is a volume of infinitesimal fluid particles moving with the flow referred
to as a material volume, ϕ(x, t) : Ω × R+ → R is a scalar field describing a quantity related
to the flow, u(x, t) : Ω × R+ → Rd is the fluid velocity vector, x ∈ Ω is a spatial coordinate
and t ∈ R+ is time. A derivation of (2.1) may be found in [103]. Considering the scalar field
ρ(x, t) : Ω× R+ → R describing the density of the flow, Reynolds transport theorem states:

d

dt

∫
V (t)

ρdV =

∫
V (t)

(
∂ρ

∂t
+∇ · ρu

)
dV. (2.2)

For any material volume the term on the left-hand side of (2.2) should be zero as a result of
mass conservation, hence, using (2.2), it can be stated that:

d

dt

∫
V (t)

ρdV =

∫
V (t)

(
∂ρ

∂t
+∇ · ρu

)
dV = 0. (2.3)

Relation (2.3) equals zero for any arbitrary V (t), therefore the integrand must itself be equal
zero, resulting in:

∂ρ

∂t
+∇ · ρu = 0. (2.4)

This partial differential equation (PDE) is referred to as the continuity equation. If, addition-
ally, the density of each infinitesimal fluid particle in the flow remains constant, ρ(y(t), t) =
ρ(y(0), 0), where y(t) : R+ → Rd is the trajectory of an infinitesimal fluid particle, the conti-
nuity equation (2.4) simplifies further to:

∇ · u = 0. (2.5)
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2.1. The Incompressible Navier-Stokes Equations 4

If the fluid flow satisfies (2.5) it is said to be incompressible.
Considering now the scalar field of the momentum per unit volume in direction i, ρui(x, t) :
Ω× R+ → R, Reynolds transport theorem states:

d

dt

∫
V (t)

ρuidV =

∫
V (t)

(
∂ρui
∂t

+∇ · ρuiu
)
dV. (2.6)

Using Newton’s second law, the term on the left-hand side of (2.6) can be equated to the sum
of forces in direction i as follows:

d

dt

∫
V (t)

ρuidV =

∫
V (t)

(
∂ρui
∂t

+∇ · ρuiu
)
dV =

∫
S(t)

fsi dS +

∫
V (t)

ρf bi dV, (2.7)

where S(t) : R+ → Rd is the surface of the material volume V (t), fsi (x, t) : Ω×R+ → R is the
surface stress in direction i and f bi (x, t) : Ω×R+ → R the body force per unit mass in direction
i. Following [10], it can be stated that the vector of surface stresses fs = [fsi ]

T can be written
as the contraction between a second order stress tensor, σ(x, t) : Ω × R+ → Rd×d, and the
outward pointing normal vector to the material volume referred to as n̂(x, t) : Ω× R+ → Rd:

fs = σ · n̂.

Collecting all momentum equations (2.7) in a vector equation and applying the divergence
theorem to the surface integral on the right-hand side of (2.7) results into:

d

dt

∫
V (t)

ρudV =

∫
V (t)

(
∂ρu

∂t
+∇ · ρ (u⊗ u)

)
dV =

∫
V (t)

∇ · σ + ρf bdV. (2.8)

Relation (2.8) holds for any arbitrary material volume V (t), hence it holds on a differential
level. This allows the following to be written:

∂ρu

∂t
+∇ · ρ (u⊗ u) = ∇ · σ + ρf b. (2.9)

Relation (2.9) is referred to as the Cauchy momentum equation. Typically (2.9) is supplemented
with a constitutive relation for the stress tensor σ. When the fluid is Newtonian the constitutive
relation is [31, 103]:

σ = −pI + 2µ

(
1

2

(
∇u+∇uT

)
− 1

3
∇ · u

)
, (2.10)

where p(x, t) : Ω × R+ → R is the pressure, I is the d dimensional second order identity
tensor and µ is the dynamic viscosity (assumed constant). Substituting (2.10) into (2.9) and
considering (2.5), the incompressible Navier-Stokes equations are obtained:

∂ρu

∂t
+∇ · ρ (u⊗ u) = −∇p+ µ∆u+ ρf b (2.11)

∇ · u = 0, (2.12)

where ∆ denotes the Laplace operator. Furthermore, the incompressible Navier-Stokes equa-
tions can be normalized by introducing a characteristic velocity Uc ∈ R+ and a characteristic
length scale Lc ∈ R+ determined from the physical setting of the flow. A normalization proce-
dure is described in [103] and results into:

∂u

∂t
+∇ · (u⊗ u) = −∇p+Re−1∆u+ f b (2.13)

∇ · u = 0,

where Re = ρUcLc/µ is the so-called Reynolds number. Although the notation of the variables
has not changed, implicitly they have been normalized following the procedure in [103]. To
ease notation the inverse of the Reynolds number will be denoted Re−1 := ν in this thesis, as
it is more compact. For the sake of brevity, this quantity will be referred to as the kinematic
viscosity1, although it should be understood that in fact it refers to Re−1. Note that, whereas
the physical kinematic viscosity has units m2 · s−1, this kinematic viscosity is dimensionless, as
it is normalized against UcLc.

1Instead of “the inverse of the Reynolds number” or “the inverted Reynolds number”.
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2.1.1. Mathematical Properties of Convection, Diffusion and Incom-
pressibility

To derive the evolution equations of total momentum and total kinetic energy, a discussion of
the mathematical properties of the spatial operators in (2.13) is in order. To facilitate this
discussion the functional setting of relation (2.13) is considered. In operator form (2.13) is
given by:

∂u

∂t
+ C (u,u) = −Gp+ νDu (2.14)

Mu = 0, (2.15)

here C : U × U → U is the nonlinear convection operator, G : P → U is the linear gradient
operator, D : U → U is the linear diffusion operator and M : U → P is the linear divergence
operator. Here P and U are suitably defined function spaces for the pressure and velocity
respectively (for more details one can refer to [97, 77]).

Although in the previous paragraph an explicit formulation of the Navier-Stokes equa-
tions was derived, more formulations exist which are mathematically equivalent given sufficient
smoothness and divergence-freeness of u. Specifically, the convection operator can take several,
mathematically identical, forms:

(Divergence form) Cdiv(c,u) := ∇ · (c⊗ u)

(Advective form) Cadv(c,u) := (c · ∇)u

(Skew-symmetric form) Cskew(c,u) :=
1

2
∇ · (c⊗ u) +

1

2
(c · ∇)u

among others. It is straightforward to show that all these operators are identical. Applying the
product rule to Cdiv(c,u) results into:

Cdiv(c,u) = (c · ∇)u+ (∇ · c)u
= (c · ∇)u
= Cadv(c,u)

since c satisfies (2.5). Equivalence for Cskew then follows trivially. The skew-symmetric form
of the convection operator Cskew is useful for proving an important property of the convection
operator. Namely, that the convection operator is skew-adjoint. To proof this property an inner
product is required, to this end the L2(Ω)-inner product is used. The L2(Ω)-inner product will
be denoted ⟨u,v⟩L2 =

∫
Ω
u · vdΩ and its induced norm will be denoted as ||u||L2 . With

this choice of inner product the skew-adjoint property implies that for the adjoint operator
C∗ : U ×U → U of the convection operator C satisfying ⟨v, C(c,u)⟩L2 = ⟨C∗(c,v),u⟩L2 it holds
that C∗ = −C. The proof is given as follows. Firstly, the contraction between Cskew(c,u) and
v is calculated:

Cskew(c,u) · v =
1

2
(∇ · (c⊗ u)) · v +

1

2
((c · ∇)u) · v

=
1

2
[((c · ∇)u) · v + (∇ · c)(u · v)] + 1

2
[∇ · ((u · v)c)− u · (∇ · (c⊗ v))]

=
1

2
[((c · ∇)u) · v + (∇ · c)(u · v)] + 1

2
[∇ · ((u · v)c)− ((c · ∇)v) · u− (∇ · c)(u · v)]

=
1

2
[((c · ∇)u) · v] + 1

2
[∇ · ((u · v)c)− ((c · ∇)v) · u] .

Note that in the third line, the second term is cancelled with the last term. It was not necessary
to invoke ∇ · c = 0. Secondly, the integral of the contraction over the domain Ω is calculated
to complete the L2(Ω)-inner product:

⟨Cskew(c,u),v⟩L2 =

∫
Ω

1

2
[((c · ∇)u) · v] + 1

2
[∇ · ((u · v)c)− ((c · ∇)v) · u] dΩ

=
1

2
⟨((c · ∇)u) ,v⟩L2 −

1

2
⟨((c · ∇)v),u⟩L2

= −⟨u, Cskew(c,v)⟩L2 .
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The second term under the integral in the first line disappears for appropriate boundary condi-
tions (periodic or homogeneous Dirichlet) as a result of the divergence theorem. As discussed
in [86], it should be noted that the skew-symmetric form, Cskew, is skew-adjoint regardless of
the divergence-freeness of c. The other forms of the convection operator are only skew-adjoint
when ∇ · c = 0, since then they are mathematically equivalent to Cskew

2.
Another important mathematical property of the spatial operators in (2.14) is that the

diffusion operator is self-adjoint and negative-definite. Here, self-adjoint refers to the property
that D∗ = D. The proof of this is an exercise in integration by parts:

⟨Du,v⟩L2 =

∫
Ω

(
∇ ·
(
∇u+∇uT

))
· vdΩ

=

∫
Ω

∇ · (∇uTv)−∇u : ∇vdΩ

= −∇u : ∇vdΩ
= ⟨u,Dv⟩L2 .

The first term under the integral in the second line disappears after using the divergence theorem
for periodic or homogeneous Dirichlet boundary conditions. Taking v = u gives:

⟨Du,u⟩L2 = −
∫
Ω

∇u : ∇udΩ = − ||∇u||2L2 ≤ 0,

proving the diffusion operator is negative-definite.
The last property that is of importance is that the divergence and the gradient are each

other’s negated adjoints, i.e. G∗ = −M. For a scalar function ϕ ∈ P and a vector valued
function u ∈ U the following holds:

⟨u,Gϕ⟩L2 =

∫
Ω

u · GϕdΩ =

∫
Ω

∇ · (ϕu)− ϕ(∇ · u)dΩ = −⟨Mu, ϕ⟩L2 , (2.16)

proving the statement. The first term under the integral, ∇·(ϕu), disappears after applying the
divergence theorem for periodic or homogeneous Dirichlet boundary conditions in case ϕ = p
and u is the velocity vector.

2.1.2. Total Momentum Conservation
The first conserved quantity that will be considered in this thesis is the total momentum. Total
momentum P (t) : R+ → Rd will be defined as:

P (t) =

∫
Ω

udΩ. (2.17)

The momentum equations (2.13) can be integrated over the domain Ω to find an evolution
equation for the total momentum P :

dP

dt
=

d

dt

∫
Ω

udΩ =

∫
Ω

∂u

∂t
dΩ =

∫
Ω

−∇ · (u⊗ u)−∇p+ µ∆u+ f bdΩ

=

∫
Ω

∇ ·
[
−(u⊗ u)− pI + µ(∇u+∇uT )

]
dΩ+

∫
Ω

f bdΩ,

using the divergence theorem, the first integral on the right-hand side disappears for periodic
boundary conditions. Setting f b = 0, it is found for periodic boundary conditions that:

dP

dt
= 0. (2.18)

This implies that for periodic domains the total momentum is a conserved quantity given
there are no body forces. This may be interpreted as a statement of Newton’s second law.
Namely, every stress vector is an internal stress vector on a periodic domain hence cancelling
out. Furthermore, on periodic domains there is zero net inflow of momentum due to convection,
such that indeed there is no net force on the fluid in the periodic domain Ω = Td.

2Given the velocity field is sufficiently smooth.
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2.1.3. Total Kinetic Energy Conservation
The second conserved quantity that will be considered in this thesis is the total kinetic energy.
The total kinetic energy K(t) : R+ → R+ is defined as:

K(t) =
1

2
||u||2L2 . (2.19)

An evolution equation of the total kinetic energy can be found by taking the L2(Ω)-norm of
relation (2.14):

dK

dt
=

1

2

d

dt
⟨u,u⟩L2 =

〈
u,
∂u

∂t

〉
L2

= ⟨u,−C(u,u)− Gp+ µDu⟩L2

= −⟨u, C(u,u)⟩L2 − ⟨u,Gp⟩L2 + µ ⟨u,Du⟩L2 .

Since the convection operator is skew-adjoint it holds that ⟨u, C(u,u)⟩L2 = −⟨C(u,u),u⟩L2 =
−⟨u, C(u,u)⟩L2 , which can only hold if ⟨u, C(u,u)⟩L2 = 0. Additionally, since the gradient
operator and the divergence operator are each other’s negated adjoints it can be stated that
⟨u,Gp⟩L2 = −⟨Mu, p⟩L2 . Condition (2.5) may now be invoked to state that this inner product
also equals zero. Lastly, the negative-definiteness of the diffusion operator can be employed to
simplify the evolution equation of the total kinetic energy further to:

dK

dt
= −ν ||∇u||2L2 ≤ 0. (2.20)

Relation (2.20) implies that the kinetic energy, or the norm of the velocity field u, is a mono-
tonically decreasing quantity and is conserved in the inviscid case (ν = 0) for periodic or
homogeneous Dirichlet boundary conditions.

Although it is not strictly the case that kinetic energy is conserved in the inviscid limit for
three-dimensional flows due to the so-called energy cascade [35], sometimes in this thesis the
phrase “kinetic energy is conserved in the inviscid limit” will be used. From now on it will be
clear that this phrase bares the same intention as “kinetic energy is conserved for an inviscid
flow”. There is some sense behind this as will be seen in chapter 5. Namely, in two spatial
dimensions kinetic energy is conserved in the inviscid limit (ν → 0) and thesis will primarily
deal with this simplification3.

3Though, all results are equally valid in the three dimensional space.



3
A Structure-Preserving FOM of the

Incompressible Navier-Stokes Equations
In this chapter a so-called structure-preserving full order model (FOM) will be introduced. The
notion of structure-preservation will be discussed and its implications on numerical stability
will be highlighted. Following this, a discussion on the spatial discretization and temporal
discretization of the FOM is provided. The FOM is based on discretization algorithms provided
in a set of papers [86, 85, 87]. In this master thesis research an implementation of these
algorithms was made in the C++ programming language using a combination of the Armadillo
template-based linear algebra library [89, 88] and the Lis library of iterative solvers for linear
systems [67]. The implementation is verified using an exact solution of the two dimensional
incompressible Navier-Stokes equation, called the Taylor-Green vortex, by analysing the spatial
and temporal convergence behaviour of the numerical error. Upon this structure-preserving
FOM, a structure-preserving reduced order model will be constructed in later chapters.

3.1. Structure-Preservation and Nonlinear Stability
Structure-preservation is understood as preserving at least part of the mathematical structure
underlying a continuous model in a numerical discretization of the corresponding model. The
mathematical structure of a continuous model is not a strictly defined object. For the model of
interest to this research, the incompressible Navier-Stokes equations, a part of the mathematical
structure is the conservation of mass, total momentum and total kinetic energy in the inviscid
limit. However, this is not the full structure of the model; indeed there are other conserved
quantities like helicity [106]. Furthermore, mathematical symmetries may be considered as part
of the structure of a mathematical model e.g. those associated to Noether’s theorem [69].

This thesis will focus on the preservation of mass (satisfying relation (2.5) discretely) and
satisfying discrete analogues to the conservation of total momentum (2.17) and total kinetic
energy (2.20). Especially, the conservation of a discrete analogue to the total kinetic energy
will be of interest as it has strong implications on the numerical stability of the discretization
schemes used [8, 75, 53, 33, 100]. Namely, the discrete kinetic energy will be defined as a norm
of the numerical solution. Hence, if this kinetic energy is monotonically decreasing in time
like (2.20) the norm of the numerical solution will be monotonically decreasing. This in turn
provides point-wise, finite bounds on the numerical solution, proving stability. In contrast to
linear stability, the type of stability discussed in this thesis does not concern linear perturbations
around a steady state but refers to the full nonlinear numerical model. For this reason this
type of stability is referred to as nonlinear stability.

3.2. Spatial Discretization
In order to discretize (2.13) the finite volume method (FVM) will be used which is a method
especially suitable for conservation laws like the incompressible Navier-Stokes equations. The
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method of lines will be used to split the discretization over a spatial and temporal discretization.
In what follows the used spatial discretizations schemes for the incompressible Navier-Stokes
equations in d = 2 dimensions will be exhibited. This will result in a system of coupled ordinary
differential equations (ODEs) complemented by a set of linear conditions:

Ωh
duh

dt
+ Ch(uh) = −Ghph + νDhuh (3.1)

Mhuh = 0. (3.2)

Here uh(t) : R+ → RN are the numerical velocity values arranged in a vector, Ωh ∈ RN×N is
a diagonal matrix originating from application of the FVM, Ch(uh) : RN → RN is the spatial
discretization of the nonlinear convection operator, Gh ∈ RN×Np is the spatial discretization
of the gradient operator, ph(t) : R+ → RNp are the numerical pressure values arranged in a
vector, Dh ∈ RN×N is the spatial discretization of the diffusion operator, Mh ∈ RNp×N is the
spatial discretization of the divergence operator, N = Nu +Nv is the total number of velocity
unknowns and Nu and Nv are the numbers of velocity unknowns in the x and y directions
respectively and Np is the number of pressure unknowns. Relations (3.1)-(3.2) are in turn
complemented by a vector of initial conditions u0 = uh(0) and suitable boundary conditions.
The choice of boundary conditions for the flows considered in this thesis will be periodic.

3.2.1. Staggered Grid
The FVM partitions the domain Ω into a mesh Mh of NΩp non-overlapping control volumes
Ωp

i ⊂ Ω such that Ω = ∪NΩ
i=1Ω

p
i . The numerical solution values ui and pi in uh = [ui]

T and
ph = [pi]

T are nodal values associated to nodes placed on this mesh. The exact arrangement
of nodes is an important choice to make. A natural choice is the staggered grid where the
unknowns are configured such that a control volume Ωp

i has a pressure node in its centre and
has velocity nodes on its faces. The specific velocity component on the volume face is chosen
such that it is normal to the respective face it is on. In this thesis periodic domains are
considered of which a period can be represented on a rectangular domain. As an example, a
mesh of Nx = 3 by Ny = 3 finite volume cells with a staggered configuration of unknowns
and periodic boundaries is shown in Figure 3.1; here Nx and Ny refer to the number of cells
in the x and y directions respectively. The black cells in Figure 3.1 correspond to pressure
unknowns. For the FVM finite volume cells centred on the velocity unknowns will also be
required. In Figure 3.1 an example of a finite volume cell Ωu

i corresponding to a u-unknown
is given using a dashed red line. An example of a finite volume cell Ωv

i corresponding to a
v-unknown is given using a dashed blue line. Because the domain is considered to be periodic
the u-unknowns on the left and right boundaries will be equal in value and should be considered
as one column of unknowns. Similarly the v-unknowns on the upper and lower boundary are
equal and should also be considered as only one row of unknowns. This treatment of periodic
boundaries requires Ωu

i and Ωv
i finite volume cells on the boundary to be wrapped around their

associated boundaries; this is also depicted for a Ωu
i cell in dashed orange lines and a Ωv

i cell
in dashed green lines. Indeed, the choice will be made to use a staggered configuration of
unknowns. This choice is beneficial for the construction of structure-preserving schemes [86]
and furthermore it prevents well-known numerical problems like pressure-decoupling [44].

3.2.2. Finite Volume Formulation of the Incompressible Navier-Stokes
Equations

Using the FVM, (2.13) is discretized by integrating it over a Ωu
i cell for u-unknowns and a Ωv

i

cell for v-unknowns like:∫
Ωu

i

∂u

∂t
dΩ =

∫
Ωu

i

∇ · [−(uu)− pδu + ν∇u] dΩ, (3.3)

and similarly for v-unknowns. Here δu = [1, 0]T for d = 2 and equivalently for v-unknowns a
vector δv = [0, 1]T will multiply the pressure. The divergence theorem can now be applied to
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Figure 3.1: Staggered finite volume grid of Nx = 3 by Ny = 3. The black cells are pressure finite volumes Ωp
i ,

the dashed red cell is a finite volume for a u unknown Ωu
i and the blue cell is a finite volume of v unknown Ωv

i ,
the green and orange cells are finite volumes belonging to v and u unknowns on the periodic boundary, these

should be considered as connected.



3.2. Spatial Discretization 11

(3.3) to obtain:∫
Ωu

i

∂u

∂t
dΩ =

d

dt

∫
Ωu

i

udΩ =
∑

k∈{N,E,S,W}

∫
∂kΩu

i

[−(uu)− pδu + ν∇u] · n̂kdΓ. (3.4)

Note that due to the divergence theorem the volume integral has been rewritten to a surface
integral over the faces of the finite volume Ωu

i . These faces are denoted ∂kΩu
i where the subscript

k refers to the orientation of the face. The orientation will be referred to through using a
compass-like naming convention. n̂k is a normal vector to face k. Note also that the temporal
derivative has been taken outside of the volume integral on the left-hand side. This volume
integral is approximated using the midpoint rule as:

d

dt

∫
Ωu

i

udΩ ≈ d

dt
∆xui ∆y

u
i uC = ∆xui ∆y

u
i

duC
dt

.

Here, ∆xui and ∆yui are the face sizes of volume Ωu
i . Indeed, the terms ∆xui ∆y

u
i are collected

on the diagonal of Ωh. The other terms under the surface integral in (3.4) will be dealt with in
subsequent subsections.

In similar fashion (2.5) is integrated over a pressure volume Ωp
i :∫

Ωp
i

∇ · udΩ =
∑

k∈{N,E,S,W}

∫
∂kΩ

p
i

u · n̂kdΩ = 0. (3.5)

Following [86], the surface integrals on the right-hand side are approximated using the midpoint
rule: ∑

k∈{N,E,S,W}

∫
∂kΩ

p
i

u · n̂kdΩ ≈ vN∆xpi + uE∆y
p
i − vS∆x

p
i − uW∆ypi = 0, (3.6)

here ∆xpi and ∆ypi are the cell face sizes of pressure volume Ωp
i in the x and y-direction

respectively. For simplicity the following notation is introduced:

uk := uk∆y
p
i , vk := vk∆x

p
i ,

thus, (·) denotes numerical integration using the midpoint rule over the pressure volume face
of the associated velocity unknown. Relation (3.6) can be written in matrix vector form when
collecting the expression over all Ωp

i inMh, taking appropriate care of the periodic boundaries.
This results in (3.2).

3.2.3. Convection
Following [86], the term under the surface integral in (3.4) originating from the convection
operator is discretized by introducing mesh-free interpolation procedures:∑
k∈{N,E,S,W}

∫
∂kΩu

i

(uu) · n̂kdΩ ≈
1

2
(uN + uC)

1

2
(vNW + vNE) +

1

2
(uE + uC)

1

2
(uE + uC) (3.7)

−1

2
(uS + uC)

1

2
(vSW + vSE)−

1

2
(uW + uC)

1

2
(uW + uC).

The term u in the surface integral is approximated by averaging the nodal value uC in the centre
of Ωu

i and the neighbour uk for ∂kΩu
i . The term u · n̂k in the surface integral is approximated

by averaging the neighbouring velocity values corresponding to orientation k, integrated over
their associated pressure volume faces ∂kΩ

p
i . A similar procedure is used for v-unknowns.

Rearranging (3.7) gives:∑
k∈{N,E,S,W}

∫
∂kΩu

i

(uu) · n̂kdΩ ≈
1

4
uC [(vNW + uC − vSW − uW ) + (vNE + uE − vSE − uC)]

+
1

4
uN (vNW + vNE) +

1

4
uE(uE + uC)

− 1

4
uS(vSW + vSE)−

1

4
uW (uW + uC).
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Using (3.6) it can be stated that the terms in brackets multiplying uC are both zero. Therefore,
the final approximation of the convective term is:∑
k∈{N,E,S,W}

∫
∂kΩu

i

(uu)·n̂kdΩ ≈
1

4
uN (vNW+vNE)+

1

4
uE(uE+uC)−

1

4
uS(vSW+vSE)−

1

4
uW (uW+uC).

(3.8)
An equivalent expression for v-unknowns can also be found using this procedure. Collecting
the expressions for all Ωu

i and Ωv
i in a vector function, Ch(uh) is obtained. Additionally, the

convected velocity components uk (those without (·)) can be extracted into a vector to write
Ch(uh) as a matrix vector product C̃h(uh)uh with C̃h(uh) : RN → RN×N . As discussed in [86]
the matrix C̃h(uh) is skew-symmetric C̃h(uh) = −C̃h(uh)

T , this is a key-property for discrete
total kinetic energy-conservation as will be shown in subsection 3.2.7. The boundary conditions
can be taken care of by appropriately wrapping the discretization around the periodic domain.

3.2.4. Convection Jacobian
In the solution procedure of (3.1) it is required to solve a nonlinear set of equations when implicit
time-stepping schemes are used. These nonlinear systems will be solved iteratively using the
Newton-Raphson algorithm. The nonlinearity of this system stems from the discrete convection
operator Ch(uh). To apply the Newton-Raphson algorithm it will therefore be necessary to
determine the Jacobian matrix Jh(uh) : RN → RN×N (from here on referred to as the Jacobian)
of the convection operator. The row of the Jacobian corresponding to the evolution equation
of a u-unknown uC has the following nonzero entries:

∂Ch

∂uN
=

1

4
(vNW + vNE),

∂Ch

∂vNE
=

1

4
uN∆xpIu

E(i)

∂Ch

∂uE
=

1

4
(2uE + uC),

∂Ch

∂vSE
= −1

4
uS∆x

p
Iu
E(i)

∂Ch

∂uS
= −1

4
(vSW + vSE),

∂Ch

∂vSW
= −1

4
uS∆x

p
Iu
W (i)

∂Ch

∂uW
= −1

4
(2uW + uC),

∂Ch

∂vNW
=

1

4
uN∆xpIu

W (i)

∂Ch

∂uC
=

1

4
(uE − uW )∆yui .

Here Iuk (i) : Z→ Z is a mapping from the index i of volume Ωu
i to the index of the neighbouring

pressure volume Ωp
Iu
k (i) in direction k. Following an equivalent procedure the nonzero entries

of a row of Jh(uh) associated to the evolution equation of a v-unknown can be calculated. A
similar mapping Ivk (i) : Z→ Z will need to be introduced to take care of the indices belonging
to pressure volumes neighbouring the volume Ωv

i .

3.2.5. Diffusion
The contribution of the diffusion operator in (3.4) is approximated using the midpoint rule for
the surface integral and central differences for the directional derivative ∇u · n̂k as follows:

∑
k∈{N,E,S,W}

∫
∂kΩu

i

ν∇u·n̂kdΩ ≈
∑

k∈{N,E,S,W}

ν
((δNk + δSk )∆x

u
i + (δEk + δWk )∆yui )

((δNk + δSk )|yk − yC |+ (δEk + δWk )|xk − xC |)
(uk−uC).

Here δji is the Kronecker delta function and xk and yk are the spatial coordinates of the node
associated to uk. A similar expression can be derived for v-unknowns. Collecting the equations
for all Ωu

i and Ωv
i in a matrix produces the discrete diffusion operator Dh. As stated in [86] this

matrix is symmetric, Dh = DT
h , and negative definite, xTDhx ≤ 0 ∀x ̸= 0. As a consequence

of this there exists a matrix Qh with N columns such that Dh = −QT
hQh.
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3.2.6. Pressure
As noted in [86] the discrete gradient operator Gh can be taken equal to negated transpose of
the discrete divergence operator Mh:

Gh = −MT
h . (3.9)

This is a discrete analogue to (2.16) as the adjoint of a linear operator in the form of a matrix
is the respective matrix’s transpose. Relation (3.9) is a natural result of using central dis-
cretizations on a staggered grid. Like the continuous case, this property will prove important
in cancelling the contribution of the pressure gradient in (3.1) to the discrete analogue to total
kinetic energy.

3.2.7. Conservation Properties
It will now be shown that the discretization (3.1)-(3.2) conserves mass, total momentum and
kinetic energy. Discrete mass conservation is satisfied by virtue of (3.2). Now a discrete analogue
to (2.17) is required. To this end the discrete total momenta:

Pu
h (t) := eTuΩhuh (3.10)
P v
h (t) := eTv Ωhuh, (3.11)

are defined. Where Pu
h (t) : R+ → R and P v

h (t) : R+ → R are the discrete total momenta
in the x and y-direction respectively and eu, ev ∈ RN are vectors containing ones at indices
corresponding to evolution equations of u and v-unknowns respectively and zeros otherwise. It
is clear that the discrete total momenta approximate the integral over the domain in (2.17)
using the composite midpoint rule. An evolution equation for these discrete momenta can be
found by differentiating (4.39) and (4.40) with respect to time:

dPu
h

dt
= eTuΩh

duh

dt
= −eTuCh(uh)− eTuGhph + νeTuDhuh = 0 (3.12)

dP v
h

dt
= eTv Ωh

duh

dt
= −eTv Ch(uh)− eTvGhph + νeTvDhuh = 0. (3.13)

Where the equality with zero holds due to the well-known telescoping property of the flux
terms used in the FVM. Thus, the discrete total momentum is a conserved quantity on periodic
domains.

A definition of discrete total kinetic energy has to be made on the basis of an inner product,
hence the Ωh-inner product is introduced. The Ωh-inner product and its induced norm are
defined by:

⟨u,v⟩Ωh
:= ⟨u,Ωhv⟩ , ||u||2Ωh

:= ⟨u,u⟩Ωh
,

where ⟨·, ·⟩ denotes the standard Euclidean inner product. After deriving an evolution equation
for the discrete total kinetic energy it will be clear why this is a natural choice. Using the
Ωh-inner product the discrete total kinetic energy Kh(t) : R+ → R+ is defined as:

Kh(t) :=
1

2
||uh||2Ωh

.

An evolution equation is found by temporal differentiation of Kh(t):

dKh

dt
=

1

2

d

dt
⟨uh,uh⟩Ωh

=

〈
uh,Ωh

duh

dt

〉
(3.14)

= ⟨uh,−Ch(uh)−Ghph + νDhuh⟩

= −
〈
uh, C̃h(uh)uh

〉
− ⟨uh, Ghph⟩+ ν ⟨uh, Dhuh⟩

= −ν ||Qhuh||2 ≤ 0,

where || · || denotes the Euclidean norm. The last equality is a result of the following properties
of the discrete operators; skew-symmetry of C̃h(uh), the duality between the discrete divergence
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and gradient in (3.9) and the symmetry and negative-definiteness of Dh. In detail, the inner
product with the discrete convection operator satisfies:〈
uh, C̃h(uh)uh

〉
= uT

h C̃h(uh)uh = −uT
h C̃h(uh)

Tuh = −(C̃h(uh)uh)
Tuh = −uT

h C̃h(uh)uh = 0,

where skew-symmetry of C̃h(uh) was invoked in the right-hand sice of the second equality. The
inner product with the discrete pressure gradient satisfies:

⟨uh, Ghph⟩ = uT
hGhph = −uT

hM
T
h ph = −(Mhuh)

Tph = 0,

where (3.9) was used in the right-hand side of the second equality and (3.2) was used in the
last equality. The last equality in (3.14) is obtained through considering the properties of the
discrete diffusion operator:

ν ⟨uh, Dhuh⟩ = νuT
hDhuh = −νuT

hQ
T
hQhuh = −ν ||Qhuh||2 .

Indeed this term is always less than or equal to zero (where equality only happens when Qhuh =
0). In this derivation the decomposition Dh = −QT

hQh as described in subsection 3.2.5 was
used after the second equality. It is clear that (3.14) is a discrete analogue to (2.20) and that
the discrete total kinetic energy is conserved in the inviscid limit. Having derived an evolution
equation for discrete total kinetic energy, the choice to use the Ωh-inner product in the definition
of Kh becomes evident. Namely, this prevented terms like Ω−1

h to show up in the right-hand side
of (3.14). Furthermore, using the Ωh-inner product has the natural interpretation of a numerical
approximation of integration over the domain Ω, mimicking the continuous definition of total
kinetic energy in (2.19). Most importantly, the numerical solution of the semi-discrete systems
(3.1) has been bounded in the Ωh-norm by:

||u(t)||Ωh
≤ ||u0||Ωh

.

3.3. Temporal Discretization
Having obtained a structure-preserving semi-discretization (3.1), it is now required to introduce
a numerical time-integration scheme to solve the system. In this thesis the broad family of
Runge-Kutta methods will be considered to this end. Two matters are now of importance.
Firstly, is the matter of assuring condition (3.2) is satisfied for all newly predicted numerical
solutions. Secondly, is the matter of assuring that the time-integration scheme preserves the
invariance in the inviscid limit of Kh enabled by the previously discussed spatial discretization.
Before these matters are discussed, a brief introduction to general Runge-Kutta methods is
provided.

Runge-Kutta methods are time-integrations schemes for ODEs or systems of ODEs of the
form:

du

dt
= f(u, t), u0 = u(t = 0), (3.15)

where f(u, t) : Rn × R+ → Rn and n is the dimension of the system of ODEs (being n = 1
for a single ODE). These time-integration schemes predict a numerical solution at a new time
by using the solution’s temporal rate of change or ’slope’ at different time points or ’stages’
between the new and old time. In its generality a Runge-Kutta method for (3.15) takes the
form:

U i = un +∆t

s∑
j=1

aijf(U j , tn + cj∆t) (3.16)

un+1 = un +∆t

s∑
i=1

bif(U i, tn + ci∆t). (3.17)

Here the superscripts n and n+1 specify the time at which the numerical solution is given. The
time instance t = tn belongs to superscript n and n+1 belongs to t = tn+1 = tn+∆t, where the
time-step ∆t is defined as ∆t := tn+1− tn. The vectors Uk are intermediate results and will be
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c1 a11 a12 . . . a1s
c2 a21 a22 . . .

...
...

...
... . . . ...

cs as1 . . . . . . ass
b1 . . . . . . bs

Table 3.1: A general Butcher tableau.

0
c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 3.2: A general Butcher tableau of an explicit Runge-Kutta method.

referred to as the stage vector at stage k. The constants aij , bi and ci fully determine a specific
member of the Runge-Kutta family. Often these constant are summarized in so-called Butcher
tableau’s as in Table 3.1. A noteworthy convention for these methods is that cj =

∑s
j=1 aij .

Finally, s denotes the number of intermediate stages used to approximate un+1.

3.3.1. Time-Integration and Enforcing Incompressibility
An added complexity for the incompressible Navier-Stokes equations over the time-integration
procedure described for (3.15) is that every new numerical solution un+1

h has to satisfy (3.2).
Methods to deal with this complexity that are of interest to this thesis have been proposed
in [87] for explicit time-integration and in [85] for implicit time-integration. The overarching
theme of these approaches is a pressure projection step. This step derives from the following
relation. Considering (3.1) and (3.2), taking the discrete divergence of (3.1) results into:

Mh
duh

dt
= −MhΩ

−1
h Ch(uh)−MhΩ

−1
h Ghph + νMhΩ

−1
h Dhuh = 0,

since, Mh
duh

dt = 0. This equation can be interpreted as a discrete pressure Poisson equation [87],
where Lh :=MhΩ

−1
h Gh is similar to a discrete Poisson operator. Rearranging then provides an

equation for the numerical solution for the pressure ph:

Lhph = −MhΩ
−1
h Ch(uh) + νMhΩ

−1
h Dhuh. (3.18)

The solution ph to relation (3.18) can be used to project the newly predicted numerical solution
of the velocity un+1

h on a divergence-free space.
Explicit Runge-Kutta methods are characterized by a Butcher tableau taking a form as in

Table 3.2. Using such an explicit time-integration method for (3.1) in combination with relation
(3.18) to eliminate the pressure results in a formula for the stages U i:

U i = un
h +∆t

i−1∑
j=1

aijΩ
−1
h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U j) + νDhU j) , i ∈ {2, ..., s}. (3.19)

The importance of constructing divergence-free stage vectors in addition to a divergence-free
un+1
h is highlighted in [87], namely that it is required to obtain correct convergence orders. As it

stands (3.19) requires the solution of a Poisson problem for every evaluation of the slope, indeed
this is undesirable from a computational perspective. [87] solves this using a rearrangement of
(3.19) followed by the introduction of a new pressure-like variable ϕ as follows. Firstly, (3.19)
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is rearranged as:

U i = un
h+∆t

i−1∑
j=1

aij
(
−Ω−1

h Ch(U j) + νΩ−1
h DhU j

)

− Ω−1
h GhL

−1
h

∆t

i−1∑
j=1

aij
[
−MhΩ

−1
h Ch(U j) + νMhΩ

−1
h DhU j

] .

Secondly, the stage variable ϕi is introduced:

Lhϕi = ∆t

i−1∑
j=1

aij
[
−MhΩ

−1
h Ch(U j) + νMhΩ

−1
h DhU j

]
, i ∈ {2, ..., s}, (3.20)

such that (3.19) can be written as:

U i = un
h +∆t

i−1∑
j=1

aij
(
−Ω−1

h Ch(U j) + νΩ−1
h DhU j

)
− Ω−1

h Ghϕi. (3.21)

Following [87], this motivates the following solution procedure, based on a prediction-correction
algorithm:

V i = un
h +∆t

i−1∑
j=1

aij
(
−Ω−1

h Ch(U j) + νΩ−1
h DhU j

)
Lhϕi =MhV i

U i = V i − Ω−1
h Ghϕi,

where it is required that Mhu
n = 0. Similarly, un+1

h can now be determined as:

vn+1 = un
h +∆t

s∑
i=1

bi
(
−Ω−1

h Ch(U i) + νΩ−1
h DhU i

)
Lhϕ

n+1 =Mhv
n+1 (3.22)

un+1
h = vn+1 − Ω−1

h Ghϕ
n+1,

to obtain a divergence-free prediction to the numerical solution at t = tn+1. A version of this
algorithm that deals with the presence of body forces and non-periodic boundary conditions is
discussed in [87]. Moreover, the Poisson problems for ϕi and ϕn+1 can be solved very efficiently
in the Fourier domain by virtue of the periodic boundary conditions [39].

The implementation of implicit Runge-Kutta methods follows [85]. The Butcher tableau of
implicit methods takes the more general form as in Table 3.1. Similarly to explicit Runge-Kutta
methods, a pressure-like variable ϕ is introduced at every stage to obtain the following:

U i = un
h +∆t

s∑
j=1

aij
(
−Ω−1

h Ch(U j) + νΩ−1
h DhU j

)
− Ω−1

h Ghϕi, i ∈ {1, ..., s}. (3.23)

The derivation of (3.23) is analogous to (3.21), with the only difference being the use of the
general Butcher tableau in Table 3.1 instead of Table 3.2. The primary difficulty in using
implicit methods is that all stage vectors U j are required for the evaluation of (3.23) for any
i. Hence, all stage vectors must be solved for simultaneously. Because (3.23) is a nonlinear
set of equation it will be solved using the iterative Newton-Raphson procedure. Denoting the
iteration index using a superscript k, the Newton-Raphson procedure takes the form:

Uk+1
i = un

h+∆t

s∑
j=1

aij

(
−Ω−1

h

[
Ch(U

k
j ) + Jh(U

k
j )
(
Uk+1

j −Uk
j

)]
+ νΩ−1

h DhU
k+1
j

)
−Ω−1

h Ghϕ
k+1
i .
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To complete the set of equation, s ·Np more equations are necessary. Instead of using (3.20) to
complete the set of equations, [85] uses the condition (3.2) applied to all Uk+1

j individually. A
compact expression can now be set up for the iterative procedure:[

I −∆tA ◦ F1(U
k) −Is ⊗ (Ω−1

h Gh)
Is ⊗Mh 0

] [
Uk+1

ϕk+1

]
=

[
es ⊗ un

h +∆tAF2(U
k)

0

]
, (3.24)

where Uk ∈ Rs·N and ϕk ∈ Rs·Np are block-vectors containing the corresponding stage vectors
in chronological order, I is the (s ·N)× (s ·N) identity matrix, Is is the s× s identity matrix,
es ∈ Rs is a vector of all ones, A ∈ Rs×s is a matrix such that (A)ij = aij , (·)⊗ (·) here denotes
the Kronecker product, F1(U) : Rs·N → R(s·N)×(s·N) is a function producing an s × s block
matrix with blocks satisfying:

(F1(U))ij =
(
−Ω−1

h Jh(U j) + νΩ−1
h Dh

)
∀i ∈ {1, ..., s},

F2(U) : Rs·N → Rs·N is function producing an s-dimensional block vector with blocks satisfy-
ing:

(F2(U))i = −Ω−1
h (Ch(U i)− Jh(U i)U i) ,

(·) ◦ (·) denotes the block-element-wise product and AF2(U
k) is a partitioned matrix vector

product such that:

(AF2(U))i =

s∑
j=1

(A)ij(F2(U))j .

In the current implementation of the algorithm it was found that solving this system using a
preconditioned GMRES [81] sparse linear solver provided by the Lis [67] linear algebra library
is a robust out-of-the-box solution algorithm. The specific preconditioner is a standard incom-
plete LU preconditioner. Although in this research the choice was made to use out-of-the-box
methods, specified algorithm have been developed to attain faster convergence and higher effi-
ciencies for constrained saddlepoint problems like (3.24), e.g. [96]. Once all stage vectors U j

are solved for to a predetermined convergence condition, un+1
h is found using the procedure

(3.22).

3.3.2. Energy-Conserving Runge-Kutta Methods
To have a fully structure-preserving numerical scheme for solving the incompressible Navier-
Stokes equations, it is necessary that the discrete total kinetic energy, Kh, is also conserved in
the inviscid limit for a fully-discrete scheme. This means that the time-integration method has
to conserve the norm of the solution at a discrete level when the semi-discretization preserves
this norm. The analysis of a change in the norm of a numerical solution from one time step to
the next using Runge-Kutta methods is a classical analysis and provided here too for (3.15):

∣∣∣∣un+1
∣∣∣∣2
Θ
− ||un||2Θ =

∣∣∣∣∣
∣∣∣∣∣un +∆t

s∑
i=1

bifi

∣∣∣∣∣
∣∣∣∣∣
2

Θ

− ||un||2Θ (3.25)

= ||un||2Θ + 2∆t

s∑
i=1

bi ⟨un, fj⟩Θ +∆t2
s∑

i,j=1

bibj ⟨fi, fj⟩Θ − ||u
n||2Θ

= 2∆t

s∑
i=1

bi ⟨U i, fi⟩Θ + 2∆t

s∑
i=1

bi ⟨un −U i, fi⟩Θ +∆t2
s∑

i,j=1

bibj ⟨fi, fj⟩Θ

= 2∆t

s∑
i=1

bi ⟨U i, fi⟩Θ − 2∆t

s∑
i,j=1

biaij ⟨fj , fi⟩Θ +∆t2
s∑

i,j=1

bibj ⟨fi, fj⟩Θ

where fi := f(U i, t+ ci∆t), ⟨u,v⟩Θ = ⟨u,Θv⟩ and ||u||2Θ = ⟨u,u⟩Θ for any symmetric positive
definite (SPD) matrix Θ. In the fourth line the definition a stage vector (3.16) was used in the
second term on the right-hand side. Denoting B = diag(bi), b = [bi]

T , i ∈ {1, ..., s} the last
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two terms in the last line of (3.25) can be taken together in a bilinear form:

−2∆t
s∑

i,j=1

biaij ⟨fj , fi⟩Θ +∆t2
s∑

i,j=1

bibj ⟨fi, fj⟩Θ = −∆t2
s∑

i,j=1

mij ⟨fi, fj⟩Θ ,

where M ∈ Rs×s, satisfying (M)ij = mij , takes the form:

M = BA+ATB − bbT .

Considering the Ωh-norm, which is indeed captured in the definition of the Θ-norm since Ωh

is a diagonal matrix with positive entries, (3.23) and (3.20) the Ωh-norm of the solution uh

changes as:

∣∣∣∣un+1
h

∣∣∣∣2
Ωh
− ||un

h||
2
Ωh

= 2∆t

s∑
i=1

bi
〈
U i,Ω

−1
h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U i) + νDhU i)

〉
Ωh

−∆t2
s∑

i,j=1

mij

〈
Ω−1

h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U i) + νDhU i) , ... (3.26)

... Ω−1
h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U j) + νDhU j)

〉
Ωh
.

The following holds for the first term on the right-hand side of (3.26):

2∆t

s∑
i=1

bi
〈
U i,Ω

−1
h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U i) + νDhU i)

〉
Ωh

=

2∆t

s∑
i=1

biU
T
i ΩhΩ

−1
h

(
I −GhL

−1
h MhΩ

−1
h

)
(−Ch(U i) + νDhU i) =

2∆t

s∑
i=1

bi

[
UT

i (−Ch(U i) + νDhU i)−UT
i GhL

−1
h MhΩ

−1
h (−Ch(U i) + νDhU i)

]
=

2∆t

s∑
i=1

bi

[
−ν ||QhU i||2 + (MhU i)

TL−1
h MhΩ

−1
h (−Ch(U i) + νDhU i)

]
=

−2∆t
s∑

i=1

biν ||QhU i||2 .

If additionally it holds that:
mij = 0 ∀i, j ∈ {1, ..., s}, (3.27)

it can be stated for the discrete total kinetic energy:

Kn+1
h −Kn

h = −∆t
s∑

i=1

biν ||QhU i||2 .

Thus, the Runge-Kutta method conserves discrete total kinetic energy in the inviscid limit.
Furthermore, if bi ≥ 0 ∀i ∈ {1, ..., s} the method is nonlinearly stable in the viscous case and
the inviscid limit. Runge-Kutta methods satisfying (3.27) exist. An example is the family
of Gauss-Legendre methods. In fact, Gauss-Legendre methods will be the energy-conserving
methods of interest to this thesis. The Butcher tableaus for two well-known Gauss-Legendre
methods, namely the implicit midpoint method and the Gauss-Legendre 4 method, are provided
in Table 3.3 and Table 3.4, respectively.

Strictly, the only consistent energy-conserving Runge-Kutta methods are implicit. However,
due to the substantial computational cost of solving (3.24) an interest has recently been gen-
erated in energy-conserving explicit Runge-Kutta methods. This then will come at the cost
of not having consistency of the time-integration schemes. Such an energy-conserving explicit
Runge-Kutta method has been proposed in [51]. Here a factor γ multiplying the time step ∆t
in (3.17) has been introduced in order to effectively conserve energy in the inviscid limit. These
methods are referred to as relaxation Runge-Kutta methods.
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1/2 1/2
1

Table 3.3: The Butcher tableau of the implicit midpoint method.

1/2 - 1/6
√
3 1/4 1/4 - 1/6

√
3

1/2 + 1/6
√
3 1/4 + 1/6

√
3 1/4

1/2 1/2

Table 3.4: The Butcher tableau of the Gauss-Legendre 4 method.

3.4. Verification
The structure-preserving discretization methods proposed in the previous sections have been
implemented in the C++ programming language using a combination of the Armadillo template-
based linear algebra library [89, 88] and the Lis library of iterative solvers for linear systems
[67]. To verify that the implementation contains no mistakes several convergence studies will
be performed. A spatial convergence study will be done to verify the spatial discretization and
a temporal convergence study will be done to verify the different time integration schemes that
have been implemented. It is useful to base these studies on an analytical solution of (2.13) as
this provides precise notions of the error of the numerical solution. The exact solution of choice
is the Taylor-Green vortex.

3.4.1. An Exact Solution: The Taylor-Green Vortex
The Taylor-Green vortex is a well-known exact solution of the two-dimensional incompressible
Navier-Stokes equations with periodic boundary conditions. In the CFD community it is often
used for the convergence analysis of numerical methods to solve eq. (2.13). Several formulations
of the flow are possible. In this thesis the flow will be defined on a periodic domain Ω =
[0, 2π]× [0, 2π], which gives rise to the following formulation of the solution:

u(x, y, t) = cos(x) sin(y)e−2νt

v(x, y, t) = − sin(x) cos(y)e−2νt.

It can easily be verified that this solution satisfies the incompressibility condition (2.5) and the
periodic boundary conditions on Ω. The solution is plotted for ν = 0.001 at t = 1 in Figure 3.2.

3.4.2. Spatial Convergence Study
The spatial convergence study will be performed by calculating the numerical error between
the exact and numerical solutions for increasingly finer numerical grids. Following theoretical
results [84], the discussed spatial discretization is of second order in the spatial stepsize O(h2),
where h is the characteristic step size of the grid. Hence, as the grid is refined by a factor of two
the numerical error should decrease by a factor of four. The range of gridsizes n× n that will
be considered is n ∈ {5, 10, 20, 40, 80, 160, 320} and a uniform grid will be used. To observe this
scaling behaviour care should be taken such that the numerical error is dominated by errors
of spatial origin. This is realized by using a fourth order explicit Runge-Kutta time-integrator
with a temporal stepsize of ∆t = 0.001 such that the temporal integration error is practically
negligible. The value of the kinematic viscosity considered is ν = 0.01. Finally, the numerical
error ϵx(t) : R+ → R+ will be measured in the ∞−norm as:

ϵx(t) = ||uTG,h(t)− uh(t)||∞ ,

where uTG,h(t) : R+ → RN is a function that provides the exact Taylor-Green vortex solution
at time t as a vector of suitably ordered unknowns on a staggered grid with characteristic spatial
stepsize h. Similarly uh(t) : R+ → RN is the numerical solution at time t on a staggered grid
with characteristic spatial stepsize h.

The results of the spatial convergence study are provided in Figure 3.3. As predicted by
the theory a scaling of O(h2) is observed in the error. Based on this it is concluded that the
spatial discretization has been implemented correctly.
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Figure 3.2: The exact absolute velocity field of the Taylor-Green vortex evaluated at t = 1 for ν = 0.001.

3.4.3. Temporal Convergence Study
Similarly to the verification of the spatial discretization implementation, the correct implemen-
tation of the temporal integration schemes is also verified using convergence analyses. Again,
the Taylor-Green vortex will be used an analytical solution. The temporal error will be denoted
as ϵt(t) : R+ → R+ and a range of ∆t ∈ {0.1, 0.05, 0.025, 0.0125, 0.00625} will be considered
for the study. The following temporal integrators will be considered; the implicit midpoint
method of theoretical order O(∆t2), explicit RK4 of theoretical order O(∆t4) and implicit GL4
of theoretical order O(∆t4). Due to the high order of accuracy of most of these methods it
is expected that the difference between the exact solution and numerical solution at a given
instance in time will be dominated by errors of spatial origin. To obtain an accurate picture of
the error from temporal sources the numerical solution will not be subtracted from the exact
solution but from a numerical solution with a very short timestep size ∆t = 0.001, this has the
effect of eliminating contribution from spatial errors in ϵt(t). Thus, ϵt(t) is calculated as:

ϵt(t) = ||uh,∆t=0.001(t)− uh(t)||∞ ,

where uh,∆t=0.001(t) : R+ → RN is the numerical solution found using the fine timestep size
∆t = 0.001. For efficiency a numerical grid of size 20× 20 will be considered. Furthermore, the
kinematic viscosity will be set at ν = 0.1, the Newton-Raphson method combined with a direct
linear solver will be used to solve nonlinear problems arising from implicit methods and time
integration will be performed until t = 0.5.

The results of the temporal convergence study are provided in Figure 3.4. It can be observed
that the predicted theoretical error behaviour is exhibited until machine precision effects take
place. Based on this it is concluded that the temporal discretization has been implemented
correctly.
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Figure 3.5: Conservation properties of the FOM.

3.4.4. FOM Conservation
The conservation properties of the FOM will also briefly be verified. This will be done by
plotting the temporal evolution of both components of the discrete total momentum P h(t) and
the discrete total kinetic energy Kh(t) for a simulation using the Taylor-Green vortex as an
initial condition and ν = 0. To verify that the discrete velocity field satisfies condition (3.2) the
time evolution of ||Mhuh(t)||∞ will additionally be analysed. When condition (3.2) is satisfied
this quantity should be of the order of machine precision. The simulation will take place on a
20 × 20 grid for efficiency. The system will be integrated in time using the energy-conserving
implicit midpoint method, where integration takes place until t = 1 using a timestep of size
∆t = 0.01. The nonlinear system arising from application of the implicit midpoint method is
solved using the Newton-Raphson method combined with a direct linear solver.

The results are provided in Figure 3.5. It can be observed that ||Mhuh(t)||∞ and both com-
ponents of P h(t) have values of the order of machine precision and that Kh remains steadily at
the value of its initial condition. This verifies that the implementation conserves all theoretically
conserved quantities.



4
A Structure-Preserving hROM of the

Incompressible Navier-Stokes Equations
In this chapter a structure-preserving hyper-reduced order model (hROM) of the incompressible
Navier-Stokes equations will be constructed based on the structure-preserving FOM discussed
in the previous chapter. The hROM is constructed by introducing so-called structure-preserving
hyper-reduction methods to the structure-preserving reduced order model (ROM) proposed in
[86]. The structure-preserving POD-Galerkin ROM proposed in [86] will be described, alongside
a more general and brief introduction to the POD-Galerkin method. Subsequently hyper-
reduction will be introduced and the need for efficient, structure-preserving hyper-reduction
methods will be discussed. Then, three structure-preserving hyper-reduction methods will be
proposed and their energy-conserving properties will be analysed. These methods constitute
the main novelty of this research.

4.1. Structure-Preserving Model Reduction
In [86] a nonlinearly stable structure-preserving ROM is proposed that is based on the structure-
preserving FOM described in the previous chapter. The ROM is constructed using a POD-
Galerkin method. Here POD stands for proper orthogonal decomposition and Galerkin refers
to Galerkin-projection, which is the method used to arrive at a reduced order (approximate)
formulation of the dynamical system in equation (3.1). The ROM is pressure-free, meaning
that the effect of the pressure variable ph in (3.1) is exactly eliminated in the ROM. In the
following a brief introduction is provided to POD-Galerkin model reduction and after this the
structure-preserving ROM as proposed in [86] will be introduced.

4.1.1. The Reduced Space
Fundamentally, the POD-Galerkin method revolves around restricting the solution of a ROM
to evolve strictly in a low-dimensional linear subspace V ⊂ RN , referred to as the reduced space.
Here, dim(V) = r ≪ N . Given such a linear subspace V, a linear basis Φ ∈ RN×r may be found
such that:

span(Φ) = V.
Now, using the POD-Galerkin method, the approximation is made that the FOM solution
uh ∈ RN can be well approximated with a ROM solution ur as:

uh(t) ≈ ur(t) = Φa(t) ∈ V , (4.1)

where a(t) : R+ → Rr are generalized coordinates of the subspace V. There are many well-
known methods to construct a basis Φ: one may consider e.g. (pseudo-)spectral methods [83].
However, using the POD-Galerkin method an optimal, data-driven basis is constructed using
the POD. Here optimality is in the sense that a certain reconstruction error is minimized as
will be seen later. The basis Φ is constructed at the hand of a snapshot matrix X ∈ RN×ns

22
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which may be considered as ns equidistant-in-time samples of the FOM solution manifold Mh
u

defined as:
Mh

u := {uh(t) | t ∈ [0, T ]},
hence X takes the form:

X =
[
uh(t

0),uh(t
0 +∆t), ...,uh(t

0 + (ns − 1)∆t)
]
.

Note that this notion can easily be extended to a case where the model parameters (like ν)
are varying by adding dimensions to the solution manifoldMh

u corresponding to the parameter
values. Nonetheless, this chapter will not consider such extensions. To obtain a good approx-
imation (4.1), V should contain as much as possible of Mh

u. Namely, in this case the ROM
is most capable of reproducing the FOM solutions, as most elements of Mh

u then lie in the
space V to which ur is restricted. The POD finds a basis Φ, referred to as the POD basis, in
accordance with this objective by posing the following optimization problem [101]:

{ϕ1,ϕ2, ...,ϕr} = arg max
ϕ̃1,...,ϕ̃r∈RN

ns∑
i=1

r∑
j=1

∣∣∣〈X,i, ϕ̃j

〉∣∣∣2 s.t.
〈
ϕ̃k, ϕ̃l

〉
= δkl ∀ k, l ∈ {1, ..., r},

(4.2)
where {ϕ1,ϕ2, ...,ϕr} form the columns of Φ, X,i denotes the ith column of X and δij denotes
the Kronecker delta function. The orthogonality constraint is introduced to obtain a unique
minimizer to the optimization, as the solution to the unconstrained optimization may be shown
to be non-unique [101]. Intuitively, this optimization provides a set of vectors, referred to as
POD modes, which can optimally reconstruct the data in X in an average sense. This is a
result of the fact that the projection of the columns of X onto these POD modes is maximal
and thus that the POD modes form a good orthogonal basis to X. The solution of optimization
problem (4.2) is given by the first r left singular vectors of the singular value decomposition
(SVD) of X:

X = Φ̂ΣΨT .

A proof of this statement can be found in [101]. Here, Φ̂ ∈ RN×N is a matrix containing the
eigenvectors of the correlation matrix XXT as columns, referred to as left singular vectors,
Ψ ∈ Rns×ns is a matrix containing the eigenvectors of the correlation matrix XTX as columns,
referred to as right singular vectors and Σ ∈ RN×ns is a matrix with the following block
structure:

Σ =

[
D 0
0 0

]
,

where D = diag(σ1, ..., σdr
) ∈ Rdr×dr is a diagonal matrix with diagonal entries satisfying

σ1 ≥ σ2 ≥ ... ≥ σdr
> 0, referred to as singular values. Furthermore dr is the rank of X. Thus,

to obtain an r-dimensional POD basis the first r columns of Ψ̂ are used, where r ≤ dr. In
addition, it may be shown ([101]) that the POD basis can also be found from the following
minimization:

Φ = arg min
Φ̃∈RN×r

∣∣∣∣∣∣X − Φ̃Φ̃TX
∣∣∣∣∣∣2
F

s.t. Φ̃T Φ̃ = I. (4.3)

The solution of minimization problem (4.3) is also the SVD of X and is captured in the Schmidt-
Eckart-Young-Mirsky theorem [7]. In minimization problem (4.3), ||A||2F =

∑m
i=1

∑n
j=1 |(A)ij |

2
, A ∈

Rm×n denotes the Frobenius matrix norm. It is clear that minimization problem (4.3) mini-
mizes the difference between X and the reconstruction of the columns of X in the POD basis
measured using the Frobenius norm.

4.1.2. Galerkin Projection
After finding the POD basis using the SVD of the snapshot matrix X, the approximation
u(t) ≈ ur(t) = Φa(t) can be substituted into the dynamical system of interest. The general
case of equation (3.15) will be considered for the purpose of this introduction. After substitution
of the approximation ur(t) into equation (3.15), the general dynamical system takes the form:

dΦa

dt
= Φ

da

dt
= f(Φa(t)) + r(t), (4.4)
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Figure 4.1: An orthogonal projection of f(Φa) onto V resulting in an approximation ΦΦT f(Φa), depicted for
n = 3 and r = 2.

note the presence of the residual vector r(t) : R+ → Rn. This is a result of the left-hand side
of the second equality being an element of the reduced space, Φda

dt ∈ V , whereas the output
space of the function f on the right-hand side is not necessarily an element of V ⊂ Rn. Rather,
the function f on the right-hand side evaluated for ur is an element of the larger state space
Rn, since f(Φa(t)) : R+ → Rn. Hence, to assure that the right-hand side of (4.4) is also an
element of V, the residual vector r(t) is introduced. However, as it stands there is no explicit
formula for this residual and the system (4.4) is highly over-determined. To resolve this, the
system (4.4) is projected onto V through the Galerkin projection. The Galerkin projection can
be interpreted as an orthogonal projection onto V. An illuminating example for n = 3 and
r = 2 is provided in Figure 4.1. By projecting orthogonally onto V the residual r(t) as in
(4.4) is minimized. Mathematically, the Galerkin projection is performed by taking the inner
product with the columns of Φ:

ΦTΦ
da

dt
=
da

dt
= ΦT f(Φa(t)). (4.5)

Note that ΦTr(t) = 0, since the difference between a vector and its orthogonal projection
onto a linear subspace is orthogonal to the respective linear subspace, a defining feature of
Galerkin projections. Note also that in the first equality it was used that the columns of Φ are
orthogonal. Having projected (4.4) onto V to obtain (4.5) an r-dimensional dynamical system
is found, constituting a ROM of (3.15). The r-dimensional system (4.5) can now be evolved
in time to some time t = tn to obtain the generalized coordinates a(tn) of a reduced order
approximation ur(t

n) to the FOM solution uh(t
n), for an initial condition u0 ∈ V .
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4.1.3. A Structure-Preserving ROM of the incompressible Navier-Stokes
equations

Having introduced the POD-Galerkin method, the structure-preserving ROM of the incom-
pressible Navier-Stokes equations as proposed in [86] can be introduced. The ROM has three
key-properties to preserve the structure of (3.1) and (2.13). Namely: d extra modes are inserted
into the r-dimensional POD basis that are specifically constructed such that the reduced ana-
logue to total momentum is conserved; the altered POD basis is discretely divergence-free; the
skew-symmetry of the operator C̃h(u), where Ch(u) = C̃h(u)u, and the negative-definiteness
and symmetry of the diffusion operator Dh are preserved on the reduced level.

Without specifying the exact construction of the altered POD basis Φ ∈ RN×r yet, the
approximation ur(t) = Φa(t) is inserted into (3.1)-(3.2), resulting into:

ΩhΦ
da

dt
+ Ch(Φa) = −Ghph + νDhΦa+ r (4.6)

MhΦa = 0. (4.7)

Where r(t) : R+ → RN is a residual vector such that both sides of the equality in (4.6) are
elements of the reduced space V. [86] now proposes to generalize the orthogonality conditions
in the construction of the POD basis from orthogonality in the Euclidean inner product to
orthogonality in the Ωh-inner product. This has as a result that the Galerkin projection of
(4.6) onto Φ can be taken immediately to obtain an r-dimensional evolution equation for a:

ΦTΩhΦ
da

dt
=
da

dt
= −ΦTCh(Φa)− ΦTGhph + νΦTDhΦa. (4.8)

The residual as defined by the difference between (4.6) and (4.8) multiplied by Φ is then
orthogonal to V, i.e. ΦTr = 0. Furthermore, if the individual modes of the altered POD basis
are discretely divergence-free, ur satisfies (4.7). This is the case due to linearity of both the
discrete divergence operator Mh and the approximation ur = Φa. In addition to satisfying
(4.7), the ROM as in (4.8) will also become pressure-free. Following [86], this may be shown by
analysing the projected pressure term in (4.8):

−ΦTGhph = ΦTMT
h ph = (MhΦ)

Tph = 0,

where the duality of the discrete gradient and divergence of the FOM were leveraged. Under
these conditions (Ωh-orthogonality and mode-wise divergence-freeness) the ROM will take the
form:

da

dt
= −ΦTCh(Φa) + νΦTDhΦa, (4.9)

where (4.7) is satisfied for all times t by construction.
The following operators are now defined:

Cr(a) := ΦTCh(Φa) (4.10)
C̃r(a1)a2 := ΦT C̃h(Φa1)Φa2 (4.11)

Dra := ΦTDhΦa, (4.12)

where Cr(a) : Rr → Rr is referred to as the reduced convection operator, C̃r(a1)a2 : Rr×Rr →
Rr is referred to as the reduced quasi-linear convection operator and Dr ∈ Rr×r is referred to
as the reduced diffusion operator. Additionally, it holds that:

Cr(a) = C̃r(a)a,

for the reduced convection and quasi-linear convection operators. Relation (4.9) may now be
written in terms of these reduced operators as follows:

da

dt
= −Cr(a) + νDra = −C̃r(a)a+ νDra. (4.13)
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When time-integration of (4.13) is performed using implicit methods, like the energy-conserving
Gauss-Legendre family of Runge-Kutta methods discussed in the previous chapter, it will be
required to evaluate the Jacobian of the reduced convection operator. This Jacobian can be
expressed in terms of the Jacobian of the FOM operator Ch(u), a derivation of this is given in
section B.1. Having performed the derivation, the following can be written for the Jacobian of
the reduced convection operator:

Jr(a) =
∂Cr

∂a
(a) = ΦTJh(Φa)Φ.

Using this expression the Newton-Raphson algorithm can be performed at the reduced level to
solve nonlinear systems of equations resulting from the application of implicit time-integration
schemes.

Momentum
The first conservation property that will be considered is the conservation of total momentum
at the reduced level. Analogously to the discrete total momentum P h(t), the reduced total
momentum P r(t) : R+ → Rd will be defined based on the reduced velocity vector ur:

Pu
r (t) := eTuΩhur = eTuΩhΦa (4.14)
P v
r (t) := eTv Ωhur = eTv ΩhΦa, (4.15)

where the vectors eu, ev are those used in (4.39)-(4.40) and d = 2. The temporal evolution
equations of the reduced momentum components Pu

r , P
v
r are found in similar fashion to (4.41)-

(3.13), i.e. by temporal differentiation. Doing so, results in the following evolution equations:

dPu
r

dt
= eTuΩhΦ

da

dt
= eTuΩhΦ [−Cr(a) + νDra] (4.16)

dP v
r

dt
= eTv ΩhΦ

da

dt
= eTv ΩhΦ [−Cr(a) + νDra] . (4.17)

Here, (4.13) was used in the right-hand side of the second equality. To preserve structure at
the reduced level, both (4.16) and (4.17) have to equal zero for periodic boundary conditions,
analogously to (2.9). In [86] this property is attained by making sure the telescoping property
of the discrete FOM operators can still be invoked. In detail, rewriting (4.16)-(4.17) to be
expressed in FOM operators as:

dPu
r

dt
= eTuΩhΦΦ

T [−Ch(Φa) + νDhΦa] (4.18)

dP v
r

dt
= eTv ΩhΦΦ

T [−Ch(Φa) + νDhΦa] , (4.19)

the telescoping property can be invoked to set the right-hand side of (4.18)-(4.19) to zero if:

eTuΩhΦΦ
T = eTu (4.20)

eTv ΩhΦΦ
T = eTv . (4.21)

These conditions imply that the Ωh-orthogonal altered POD basis Φ has to exactly embed
the vectors eu, ev. One may see this by considering the action of ΦΦTΩh on an element of V
denoted by v = Φav ∈ span(Φ) and taking the transpose:

vTΩhΦΦ
T = (ΦΦTΩhv)

T = (ΦΦTΩhΦav)
T = (Φav)

T = vT .

Indeed, if eu, ev ∈ span(Φ), conditions (4.20) and (4.21) are satisfied. In [86] this is achieved
by altering the procedure to construct Φ to explicitly include eu, ev in the columns of Φ. Note
that the Ωh-orthogonality of the POD basis can be satisfied since eTuΩhev = 0 holds. Fur-
thermore, because the vectors eu, ev have ones at indices corresponding to u and v-unknowns
respectively and zeros otherwise, they can be thought of as constant velocity fields. Therefore
they are discretely divergence-free. Thus to obtain (4.13) and conserve P r, the conventional
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POD procedure should be altered to produce both Ωh-orthogonal and discretely divergence-free
modes. Additionally, they should span eu, ev by e.g. explicitly containing the Ωh-orthogonal
and divergence-free vectors eu and ev in the set of modes like [86].

The procedure to construct such a basis is described in [86] and uses the work in [104].
Defining the matrix E ∈ RN×d as:

E :=

[
eu

||eu||Ωh

,
ev

||ev||Ωh

]
,

the procedure can be understood quite intuitively. Firstly, the components of the snapshot
matrix X that are non-Ωh-orthogonal to the Ωh-orthogonal basis modes in E are subtracted
from the data set X. This results in a remainder X̃ that is Ωh-orthogonal to the modes in
E. Secondly, the POD is applied to this remainder X̃ where the orthogonality condition is
generalized to Ωh-orthogonality. The solution to this generalized POD procedure is well-known
and described in e.g. [101]. It still has a sense of optimality as it solves the minimization ([86,
101]):

Φ̃ = arg min
Φ∗∈RN×m

∣∣∣∣∣∣X̃ − Φ∗Φ∗TΩhX̃
∣∣∣∣∣∣2
F

s.t. Φ∗TΩhΦ
∗ = I.

Finally, concatenating the Ωh-orthogonal modes in E and the first r − 2 POD basis modes
found from the generalized POD procedure, a complete basis is obtained. Indeed, E forms a
basis for the data set X − X̃ and the other r− 2 POD basis modes form an approximate basis
set for X̃. Together they can approximately span X, given r < dr. The complete algorithm is
given in Algorithm 1.

Algorithm 1 Algorithm to determine Ωh-orthogonal and divergence-free POD basis explicitly
containing the columns of matrix E.

1: X̃ = X − EETΩhX ▷ Remove Ωh-projection of X on span(E) from data
2: X̂ = Ω

1/2
h X̃ ▷ Transformation for Ωh-orthogonality

3: X̂ = Φ̂Σ̂Ψ̂T ▷ SVD truncated at r − 2
4: Φ̃ = Ω

−1/2
h Φ̂ ▷ Transformation for Ωh-orthogonality

5: Φ =
[
E, Φ̃

]
▷ Concatenate E and Φ̃

The proof that the resulting POD basis is divergence-free is given in [86]. It requires
considering the eigenvector problem underlying the SVD in step 3 of Algorithm 1, transforming
that to Φ̃ and showing the discrete divergence of this expression equals zero everywhere on the
grid. For completeness a proof is provided in Appendix C.

Summarizing, to state relation (4.13) requires that the POD-basis Φ is divergence-free for
every individual mode and that the modes are mutually Ωh-orthogonal. If it is furthermore
desired to conserve reduced total momentum P r(t) conditions (4.20)-(4.21) must hold. The
previous conditions are satisfied if eu, ev ∈ span(Φ), a condition which is in turn satisfied by
including them explicitly in the columns of Φ. Algorithm 1 is a method to construct such
an Ωh-orthogonal POD basis that explicitly contains eu and ev. Considering the eigenvector
problem underlying the SVD in Algorithm 1, it can be shown that the resulting altered POD
basis is divergence-free. Since, the set of the columns of E combined with the POD modes
constructed in Algorithm 1 are mutually Ωh-orthogonal, Φ is Ωh-orthogonal. Finally, it can
therefore be stated for relation (4.13) that:

dPu
r

dt
= 0 (4.22)

dP v
r

dt
= 0, (4.23)

meaning that total reduced momentum is conserved. In addition, (4.7) is satisfied by construc-
tion.
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Kinetic energy
The last conserved quantity to be addressed is the total kinetic energy at the reduced level Kr.
The reduced total kinetic energy will be defined by inserting the reduced velocity vector ur in
the definition of discrete total kinetic energy Kh as follows:

Kr :=
1

2
||ur||2Ωh

=
1

2
⟨ur,Ωhur⟩ =

1

2
⟨Φa,ΩhΦa⟩ =

1

2
aTΦTΩhΦa =

1

2
aTa =

1

2
||a||2 . (4.24)

Note that Kr is proportional to the squared Euclidean norm of a. This has as a significant result
that when Kr is bounded, the ROM (4.13) is nonlinearly stable in the generalized coordinates
a. Indeed this would be the case if the evolution of Kr satisfied an analogue to (2.20) i.e.
by preserving structure at the reduced level. An evolution equation can be derived by taking
temporal derivatives of (4.24):

dKr

dt
=

1

2

d

dt
⟨a,a⟩ =

〈
a,
da

dt

〉
=
〈
a,−C̃r(a)a+ νDra

〉
(4.25)

= −aT C̃r(a)a+ νaTDra.

The last line in (4.25) may be analysed term by term to check if Kr is conserved in the inviscid
limit like in (2.20). Firstly, the leftmost term will be analysed. Rewriting the reduced quasi-
linear convection operator in terms of FOM operators it holds that:

C̃r(ac)
T = (ΦT C̃h(Φac)Φ)

T = ΦT C̃h(Φac)
TΦ = −ΦT C̃h(Φac)Φ = −C̃r(ac).

Here ac ∈ Rr are generalized coordinates of the convecting reduced velocity vector. Hence, the
reduced quasi-linear convection operator is also skew-symmetric. Therefore the first term in
the last line of (4.25) satisfies:

aT C̃r(a)a = 0,

due to skew-symmetry. The reduced diffusion operator in the second term of the last line of
(4.25) can also be rewritten in terms of FOM operators to obtain:

Dr = ΦTDhΦ = −ΦTQT
hQhΦ = −(QhΦ)

T (QhΦ) = −QT
r Qr,

where Qr := QhΦ. The second term in the last line of (4.25) now satisfies:

aTDra = −aTQT
r Qra = − ||Qra||2 ≤ 0.

Substituting the results for both terms into (4.25) results in the following evolution equation
for the reduced total kinetic energy:

dKr

dt
= −ν ||Qra||2 ≤ 0, (4.26)

which is a reduced analogue to (2.20). Indeed, Kr is conserved in the inviscid limit and in the
presence of nonzero ν it remains bounded following:

Kr(t) ≤ Kr(0),

as from (4.26) it is clear the Kr is monotonically decreasing. Equivalently, the norm of the
generalized coordinates satisfies:

||a(t)|| ≤ ||a0|| ,

where a0 are generalized coordinates of the ROM approximation of the initial condition. For
this reason the ROM proposed by [86] as in (4.13) is nonlinearly stable and conserves mass,
reduced total momentum and reduced total kinetic energy (in the inviscid limit).
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4.2. Hyper-Reduction
The ROM (4.13) as constructed in the previous section is r-dimensional as it is a system of r
variables. However, as it stands, evaluating (4.13) strictly as it is represented in the equation
requires a computational effort that scales with the FOM dimensions N . This will be the case
for every newly calculated value of a in a simulation of (4.13). This is a result of:

• having to compute ur = Φa explicitly, which scales computationally as O(rN);
• having to evaluate Ch(ur), which scales computationally as O(N);
• having to perform the Galerkin projection ΦTCh(uR), which scales computationally as
O(rN).

Therefore, the ROM is not truly low-dimensional. It is the objective of so-called hyper-reduction
methods to eliminate the dependence of the computational effort on the FOM dimensions N .
This may be achieved by either finding exact formulations of the reduced convection operator
such that there is no computational scaling with N or by making suitable approximations
that are low-dimensional. Two such methods will be discussed in this section. Namely, the
exact tensor decomposition, a method that results in an exact low-dimensional representation
of the nonlinearity and the discrete empirical interpolation method (DEIM) [29], a method
constructing a low-dimensional approximation to the nonlinearity.

Both methods will require some preliminary operations having a computational effort pro-
portional to a power of N . However, it is the aim of hyper-reduction methods to construct
algorithms where these operations can be performed on a one-time basis before the simulation
of (4.13) starts. The phase of the simulation of a ROM where these preliminary computations
are performed is known in the reduced order modelling community as the offline phase of the
simulation. In turn, the low-dimensional computations to find new values of the generalized
coordinates a by time integrating (4.13) is referred to as the online phase. In fact, this so-called
offline-online paradigm is not just associated to hyper-reduction but is generally applied to any
ROM. Indeed, computation of the reduced diffusion operator Dr = ΦTDhΦ is a calculation per-
formed in the offline phase of the simulation referred to as a pre-computation. The calculation
of the POD basis Φ is also a part of the offline-phase of the simulation and collecting FOM
data in X may be considered part of that as well.

4.2.1. The Exact Tensor Decomposition
The exact tensor decomposition leverages the simple quadratic nonlinearity of the convection
operator. The method can exactly represent the nonlinearity after a Galerkin projection on Φ
with a computational effort that solely scales as a function of the reduced space dimensions r.
It is derived by considering the entries of C̃h(Φa) as in (3.8) (the terms between brackets). It
is enough to consider one component of the matrix C̃h(Φa), e.g. the component multiplying
uN in (3.8), to see how the decomposition works. Substituting the reduced velocity vector into
the matrix component multiplying uN in (3.8) results into:

1

4
((ur)iNW

+ (ur)iNE
) =

1

4

 r∑
j=1

ajΦiNE ,j +

r∑
j=1

ajΦiNW ,j

 .

Here the bar over Φ represents integration over appropriate pressure cell surfaces of the compo-
nents of Φ in identical fashion to (3.8). The integers iNW and iNE are the indices of the velocity
unknowns vNE and vNW in (3.8) in the reduced velocity vector respectively. The generalized
coordinates can simply be taken outside of the brackets as follows:

1

4

 r∑
j=1

ajΦiNE ,j +

r∑
j=1

ajΦiNW ,j

 =

r∑
j=1

aj
1

4

(
ΦiNE ,j +ΦiNW ,j

)
. (4.27)

Similar expressions can be found for the other nonzero components of C̃h(Φa). Hence, the
generalized coordinates can be taken outside of the full matrix, resulting in a sum of matrices
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evaluated for individual modes multiplied by corresponding generalized coordinates. Thus,
instead of calculating C̃h(Φa) directly the following can also be computed:

C̃h(Φa) =

r∑
j=1

ajC̃h(Φ,j).

Indeed, the matrices C̃h(Φ,j) are computable during the offline phase of the simulation. Us-
ing the exact tensor decomposition the reduced quasi-linear convection operator can also be
calculated as follows:

C̃r(a)a =

r∑
j=1

ajΦ
T C̃h(Φ,j)Φa, (4.28)

where the terms ΦT C̃h(Φ,j)Φ ∈ Rr×r are computable during the offline phase. The scaling of
the computational effort to evaluate the expression on the right-hand side of (4.28) is O(r3).
This is the case because r matrix-vector products between an r×r matrix, ΦT C̃h(Φ,j)Φ, and an
r-dimensional vector, a, are necessary to be computed. The order of precomputing all necessary
ΦT C̃h(Φ,j)Φ is O(N2r2), a cost noted in [86] to become prohibitively for large r. Especially
when N is large due to high spatial resolutions of the FOM. For notational simplicity, the
following formulation for the reduced convection operator in exact tensor decomposition form
will be introduced:

Cr(a⊗ a) :=

r∑
j=1

ajΦ
T C̃h(Φ,j)Φa. (4.29)

The formulation Cr(T ) should be thought of as a tensor contraction over the indices k and j

between the third order tensor (ΦT C̃h(Φ,k)Φ)ij and the second order tensor Tkj . The ROM as
in (4.13) then takes the form:

da

dt
= −Cr(a⊗ a) + νDra. (4.30)

This form is still identical to the formulations using the other two reduced convection operators,
however, evaluating the right-hand side requires only O(r3) operations instead of O(r ·N).

As the exact tensor decomposition is an exact representation of the reduced convection
operator it inherits all its conservation properties. Thus, it is structure-preserving. However,
using energy-conserving Runge-Kutta methods to temporally discretize (4.30) it will be neces-
sary to find an expression for the Jacobian of Cr(a⊗ a). Considering (4.29) the Jacobian can
be calculated as follows:(

∂Cr(a⊗ a)

∂a

)
ij

=

r∑
k,l=1

(ΦT C̃h(Φ,k)Φ)il (alδkj + akδlj) , (4.31)

which will be denoted as Jr(I⊗a+a⊗ I), here I is the r× r identity tensor. The derivation of
this expression is provided in section B.2. Evaluating (4.31) requires a computational effort of
O(r4). The relatively high computational cost of working with the exact tensor decomposition
can be prohibitive for real-time and multi-query situations with slow Kolmogorov N-width
decay and therefore high r. For this reason it may be of interest to use inexact hyper-reduction
methods like the DEIM. In what follows an introduction to the DEIM will be provided.

4.2.2. The DEIM
Generally, precomputation is efficient when models are affine or linear. Namely, in this situation
the Galerkin projection of the operator is known for any reduced velocity vector in advance, i.e.
a linear operator A ∈ RN×N acting on the reduced velocity ur has the Galerkin projection ΦTA
for any value of ur. Indeed, the Galerkin projection of a nonlinear operator N(u) : RN → RN

acting on ur also has the form ΦTN(ur), however the explicit Galerkin projected operator can
not be formed in a precomputation. It is the DEIM’s objective to find an affine approximation
of a nonlinear operator N(u) [29, 30, 28]. The approximation is based on evaluating N(u) in
only a low-dimensional subset Ph ⊂Mh of nodes on the computational meshMh. This subset
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Ph is referred to as the measurement space and nodes that are elements of Ph are referred to
as measurement points. The affinity of the approximation allows the Galerkin projection of the
approximation to be precomputed.

For the discrete convection operator the DEIM approximation takes the form:

Ch(u) ≈Mc(u). (4.32)

Here M ∈ RN×m is the affine basis for the DEIM approximation and c(u) : RN → Rm are
the generalized coordinates of the approximation to Ch(u) in the DEIM basis M , referred to
as the DEIM coordinates. Note the difference between M and the discrete divergence operator
Mh. For low-dimensional approximations it holds that dim(Ph) = m≪ N . The DEIM may be
considered as an algorithm that constructs a separate m-dimensional reduced spaceMd ⊂ RN

for approximation of the convection operator such that:

span(M) =Md.

Since m≪ N , determining c(u) as in (4.32) is a highly over-determined problem. Furthermore,
if Ch(u) /∈Md exact equality in (4.32) cannot be attained. To solve this, the DEIM coordinates
c(u) are calculated by solving equation (4.32) only in the measurement space. To this end a
basis to the measurement space is introduced and denoted by P ∈ RN×m, such that:

span(P ) = Ph.

The matrix P will be referred to as the measurement matrix and takes the form:

PT =


0 0 1 0 . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . . . . 0 1 0 . . . . . . . . . 0

 .
The measurement matrix P consists of selected columns of the N × N identity matrix corre-
sponding to the vector indices of the measurement points. This has a result that multiplication
of a vector or matrix from the left with PT is equivalent to evaluating the components or rows
of the vector or matrix, respectively, in the measurement points exclusively. Calculating the
nonlinearity in only the measurement points can then be written as PTCh(u). In turn, the
DEIM coordinates are found by solving:

PTCh(u) = PTMc. (4.33)

Note the exact equality, unlike (4.32). Indeed, the DEIM coordinates are chosen such that
the DEIM approximation Mc exactly corresponds to the nonlinear convection operator Ch(u)
evaluated in the measurement space Ph. Solving for c gives the formula:

c(u) = (PTM)−1PTCh(u). (4.34)

As the DEIM’s efficiency partly stems from evaluating Ch(u) only in the measurement points
in Ph, the computational stencil underlying Ch(u) should be cheap to evaluate. If this was
not the case, then evaluating the nonlinearity in only a small set of measurement points would
still be expensive. For the discrete convection operator that is used in this thesis (see equation
(3.8)) the computational stencil is sufficiently small but this may not hold in more general cases
(e.g. for integro-differential equations [19]).

Indeed, the DEIM constitutes an interpolation procedure where the measurement space
forms the set of interpolation points and the DEIM basis M are interpolation modes. The
Galerkin projection ΦTCh(ur) can now be approximated efficiently as:

ΦTCh(ur) ≈ ΦTM(PTM)−1PTCh(ur), (4.35)

where ΦTM ∈ Rr×m can be precomputed, (PTM)−1 ∈ Rm×m can be performed efficiently using
e.g. a precomputed LU-decomposition and PTCh(ur) requires to only evaluate the convection
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operator in m nodes. Here, (4.34) is substituted into the DEIM approximation Mc followed
by a Galerkin projection. Alternatively, the DEIM can be thought of as an oblique projection
of the nonlinearity Ch(Φa) on Md orthogonally to Ph. The computational cost of evaluating
(4.35) is then of order O(max(rm,m2)), depending on if matrix-vector multiplication with ΦTM
or solving (PTM)−1PTCh(ur) using an LU-solve procedure is most expensive.

The quality of the approximation Mc for nodes that are not elements of Ph depends on
how well both the basis M and the measurement space Ph are chosen. The choice of Ph and
M are well-established in the literature [29]. Firstly, the choice of M will be considered. The
DEIM basis is, similarly to the POD basis Φ, constructed from an SVD of a snapshot data
set. However, instead of solution snapshots, these snapshots consist of operator evaluations at
different equidistant time instances. The DEIM snapshot matrix Ξ ∈ RN×ns is given by:

Ξ =
[
Ch(uh(t

0)), Ch(uh(t
0 +∆t)), ..., Ch(uh(t

0 + (ns − 1)∆t))
]
, (4.36)

which can be obtained during the same simulation as the snapshots in the snapshots matrix
X. The DEIM basis M is now chosen as the first m left singular vector of an SVD of Ξ.
Equivalently to Φ, this choice of M is an optimal data-driven choice for a basis M in the sense
that it solves the following minimization problem:

M = arg min
M̃∈RN×m

∣∣∣∣∣∣Ξ− M̃M̃TΞ
∣∣∣∣∣∣2
F

s.t. M̃T M̃ = I.

This choice is quite natural in the current data-driven setting and, when combined with a
principled choice of measurement points, may nearly solve the above minimization problem [29,
28] based on evaluating Ch(u) only in Ph.

The choice of measurement space following the DEIM algorithm was first proposed in [29].
It is based on a greedy algorithm that iteratively builds P one column at a time. Following
[29] the measurement points are found from Algorithm 2. In this algorithm, ξi is the ith left
singular vector of the SVD of Ξ, pi is the vector index of the ith measurement point and ei
is a vector of all zeros with a one at component i. This algorithm may be interpreted as
placing new measurement points at locations where the old measurement space is least capable
of representing large correlations in the snapshot data. This may be observed from the fact
that it places measurement points where the residual r = ξi−Mc is maximal in absolute value.
[29] remarks that since the DEIM modes are linearly independent the residuals will never be
exactly zero. This motivates a lemma which is used to proof that PTM is always non-singular,
a statement that is important for (4.34). The DEIM may be considered to be consistent in the
sense that when P = I and m = N the exact operator output Ch(u) is recovered. This is due
to the fact that when m = N the DEIM modes span the full state space RN . This makes M
non-singular allowing the following to be stated for (4.32):

Ch(u) = ITCh(u) = ITMc =Mc, where m = N.

The condition m = N in the notion of consistency can even be relaxed further to the condition
Ch(u) ∈Md, a proof of this is provided in Appendix A.

Algorithm 2 DEIM interpolation indices
1: p1 = arg max(|ξi|)
2: M = [ξi], P = [ep1

]
3: for i = 2 to m do
4: Solve PTMc = PT ξi for c
5: r = ξi −Mc
6: pi = arg max(|r|)
7: M ← [M, ξi], P ← [P, epi

]

Having constructed the DEIM approximation to the nonlinear convection operator, (4.13)
is approximated as follows:

da

dt
= −ΦTMc(a) + νDra, (4.37)
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where c(a) : Rr → Rm are the DEIM coordinates calculated for Ch(Φa)
1. In turn the DEIM

coordinates are determined from:

c(a) = (PTM)−1PTCh(Φa). (4.38)

In evaluating PTCh(Φa) it will be necessary to reconstruct components of the reduced veloc-
ity vector ur corresponding to the computational stencil of the discrete convection operator.
Component i of the reduced velocity vector may be found in O(r) operations by the Euclidean
inner product between row i of Φ and the generalized coordinates a.

Momentum
It will now be shown that, using the altered POD basis of [86], the ODE in (4.37) conserves
total momentum for periodic boundary conditions. To the author’s knowledge this construction
to conserve total momentum has not been considered before. Conservation of reduced total
momentum can be shown by considering the eigenvector problem underlying the SVD used
in the construction of M . The reduced total momentum evolution due to (4.37) is found by
substituting (4.37) into the temporally differentiated definition of reduced total momentum:

dPu
r

dt
= eTuΩhΦΦ

T [−Mc(a) + νDhΦa] , (4.39)

here ΦT was taken outside of the brackets. Since the POD basis Φ is constructed to exactly
embed eu and ev it can be stated that:

dPu
r

dt
= eTu [−Mc(a) + νDhΦa] . (4.40)

Using the telescoping property of the FOM operators this results into:

dPu
r

dt
= −eTuMc(a). (4.41)

Now considering the eigenvector problem underlying the construction of M and taking the
Euclidean inner product with eu results into:

eTuΞΞ
T ξj = λ2je

T
u ξj ,

where λj is the singular value associated to the left singular vector ξj which is the jth column
of M . It can now be stated that, because every column of Ξ satisfies the telescoping property,
eTuΞ = 0 holds. In turn, because λj > 0 holds for the singular values given j is less than the rank
of Ξ it must mean that eTu ξj = 0. Therefore, the inner products −eTuMc(a) in (4.41) is zero for
periodic boundary conditions and total reduced momentum is conserved by the hyper-reduced
order model (hROM) (4.37):

dPu
r

dt
= 0 .

Equivalent results hold for dP v
r

dt .

Kinetic energy
Using the DEIM, the hROM (4.37) does not conserve reduced total kinetic energy. Going through
the derivation (4.25) again using the DEIM approximation (4.32) results into:

dKr

dt
=

1

2

d

dt
⟨a,a⟩ =

〈
a,
da

dt

〉
=
〈
a,−ΦTMc(a) + νDra

〉
(4.42)

= −aTΦTMc(a)− ν ||Qra||2 .
1This is a slight change in notation from the notation introduced in (4.34)
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Formulating the term aTΦTMc(a) explicitly in a, using the quasi-linear form of the discrete
convection operator gives the following:

aTΦTMc(a) = aTΦTM(PTM)−1PT C̃h(Φa)Φa.

The matrix:
ΦTM(PTM)−1PT C̃h(Φa)Φ,

is not skew-symmetric and simple empirical testing shows that generally aTΦTMc(a) ̸= 0.
Thus, in the case of (4.37) and (4.42) structure is not preserved by the hROM. This can lead
to instability as the norm of the generalized coordinates a is not bounded from above. It is for
this reason that the present thesis concerns itself with developing structure-preserving DEIM
algorithms, as for structure-preserving DEIM algorithms the norm of a is bounded.

4.3. The LSDEIM
It has been shown in the previous section that the conventional DEIM conserves reduced total
momentum, but it does not conserve reduced total kinetic energy (for inviscid flow). However,
energy conservation is a property that is crucial for nonlinear stability. Therefore it is of
interest to design a DEIM-like hyper-reduction technique that conserves both reduced total
momentum and reduced total kinetic energy. Such an energy and momentum-conserving DEIM-
like algorithm will be referred to as a structure-preserving DEIM algorithm. The first of three
structure-preserving methods proposed in this thesis will be referred to as the least-squares
discrete empirical interpolation method (LSDEIM) and will be discussed in this section.

A sufficient condition for reduced total kinetic energy to be conserved as stated in (4.42), is
that the interpolated quasi-linear convection operatorM(PTM)−1PT C̃h(Φa) be skew-symmetric,
yet this is generally not the case. However, considering the last line of (4.42), skew-symmetry
of the interpolated quasi-linear convection operator is not a necessary condition for energy-
conservation. Instead, a necessary condition to conserve reduced total kinetic energy in the
inviscid limit is:

aTΦTMc(a) = 0. (4.43)

Condition (4.43) can be satisfied even if the operator ΦTMc(a) : Rr → Rr is not skew-adjoint
and, when satisfied, results in the correct reduced kinetic energy evolution equation (4.26).
The idea of the LSDEIM is to enforce this condition by posing the DEIM as a constrained
minimization problem.

4.3.1. The Method: Constrained Minimization
The conventional DEIM finds the DEIM coordinates c by minimizing the Euclidean norm be-
tween the nonlinearity and the DEIM approximation in the measurement space. The Euclidean
norm can be considered as minimized since the difference in Ph i.e. PTCh(Φa) − PTMc, is
zero. The new idea of the LSDEIM is to constrain this minimization problem to take place
over the set F(a) of DEIM approximations satisfying condition (4.43) defined using the DEIM
coordinates as:

F(a) := {c ∈ Rm | aTΦTMc = 0}.

The set F(a) is referred to as the feasible set. As DEIM approximations with c(a) ∈ F(a)
satisfy condition (4.43), the LSDEIM produces approximations that conserve reduced total
kinetic energy in the inviscid limit. The constrained minimization problem to find the DEIM
coordinates c underlying the LSDEIM will be posed as the following linearly constrained least-
squares problem:

c(a) = arg min
c̃∈Rm

∣∣∣∣PTCh(Φa)− PTM c̃
∣∣∣∣2 s.t. aTΦTM c̃ = 0. (4.44)

This means the LSDEIM relaxes condition (4.33) of exact correspondence between the FOM’s
convection operator and the DEIM approximation in the measurement space imposed by the
conventional DEIM. Rather, the LSDEIM minimizes the differences between the DEIM ap-
proximation and the FOM operator in the measurement space, simultaneously constraining the
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approximation to be energy-conserving. Note that the LSDEIM has a sense of consistency in
the same way as the conventional DEIM when the underlying FOM operator is skew-symmetric.
This is the case as the constraint does not prevent equality between the DEIM approximation
and the FOM operator when m = N or more generally when Ch(Φa) ∈ Md. A proof of this
statement is provided in a later section (subsection 4.5.3).

Considering the objective function and the geometric interpretation of the conventional
DEIM, the LSDEIM can be interpreted geometrically as an oblique projection of Ch(Φa) onto
the subspace MF ⊂ RN of all DEIM approximations Mc with c ∈ F(a). The subspace MF
is defined as:

MF =Md ∩ ker(aTΦT ),

as these are all vectors in RN that can be written as a linear combination of the columns of
M and satisfy condition (4.43). Since MF is the intersection between two linear subspaces of
RN it is also a linear subspace of RN . Contrary to the conventional DEIM, the LSDEIM also
projects obliquely through the measurement space Ph. Hence, the orthogonal projection of the
DEIM residual r(t) ∈ RN onto Ph, as given by:

PTr(t) = PT [Ch(Φa(t))−Mc(t)] ,

is generally not zero. However, the LSDEIM projector ΠMF : RN →MF does project Ch(Φa)
ontoMF such that the orthogonally projected residual PTr(t) is minimal in the Euclidean norm.
This statement follows exactly from the formulation of the LSDEIM minimization problem
(4.44).

Furthermore, the DEIM basis M and the measurement space Ph can simply be found
following the procedures of the conventional DEIM algorithm. Indeed, using the conventional
DEIM basis the reduced total momentum will remain a conserved quantity for the LSDEIM.

The constrained minimization problem can be solved using the method of Lagrange multi-
pliers. The Lagrangian L(c, λ) : Rm × R→ R of this minimization is defined as:

L(c, λ) =
∣∣∣∣PTCh(Φa)− PTMc

∣∣∣∣2 + λaTΦTMc,

where λ ∈ R is a Lagrange multiplier. Taking partial derivatives of the Lagrangian results in:

∂L(c, λ)
∂c

= 2cTMTPPTM − 2Ch(Φa)
TPPTM + λaTΦTM

∂L(c, λ)
∂λ

= aTΦTMc.

As optimality condition it is required that:

∂L
∂c

(co, λo) = 0,
∂L
∂λ

(co, λo) = 0,

where (co, λo) constitutes an optimum. It will be verified that the optimum is a local minimum
in subsection 4.3.3 by proving the Lagrangian’s Hessian is positive definite. A set of equations
for the optima can be found as:

∂L(co, λo)
∂c

= 2cToM
TPPTM − 2Ch(Φa)

TPPTM + λoa
TΦTM = 0T

2cToM
TPPTM + λoa

TΦTM = 2Ch(Φa)
TPPTM

2(MTPPTM)T co + (aTΦTM)Tλo = 2(PTM)TPTCh(Φa)

2(PTM)TPTMco + (aTΦTM)Tλo = 2(PTM)TPTCh(Φa)

∂L(co, λo)
∂λ

= aTΦTMco = 0,

where 0 ∈ Rm is a column vector of zeros. This system can be written in block matrix form as:[
2(PTM)TPTM (aTΦTM)T

aTΦTM 0

] [
co
λo

]
=

[
2(PTM)TPTCh(Φa)

0

]
. (4.45)
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Note that this matrix is symmetric and has constant coefficients with the exception of the
last row and column which depend on a. Solving (4.45) can be done explicitly. Namely, [57]
provides the inverse of a symmetric 2× 2 block matrix as:[

A B
BT D

]−1

=

[
A−1 +A−1B(D −BTA−1B)−1BTA−1 −A−1B(D −BTA−1B)−1

−(D −BTA−1B)−1BTA−1 (D −BTA−1B)−1

]
,

where A and D are symmetric. Taking:
A := 2(PTM)TPTM ∈ Rm×m

B := (aTΦTM)T ∈ Rm

D := 0, ∈ R

the DEIM coordinates co solving (4.44) are determined by:
c(a) =

(
A−1 +A−1B(D −BTA−1B)−1BTA−1

)
2(PTM)TPTCh(Φa).

It will be insightful to denote explicitly the dependence of B on a and take into account that it
is a vector, hence the notation B := b(a) will be used from here on. Now using that D = 0 and
that BTA−1B = b(a)TA−1b(a) and BTA−12(PTM)TPTCh(Φa) = b(a)T (PTM)†PTCh(Φa)
are simply scalars, a final expression for co can be obtained:

c(a) = (PTM)†PTCh(Φa)−
b(a)T (PTM)†PTCh(Φa)

(b(a)TA−1b(a))
A−1b(a) . (4.46)

Here (PTM)† denotes the Moore-Penrose pseudoinverse of PTM and is simply the normal
inverse for square and non-singular PTM . The value of the DEIM coordinates found from
equation (4.46) is used for the LSDEIM and results in a DEIM approximation Mc satisfying
condition (4.43).

4.3.2. Practical Implementation of the Algorithm
Using the DEIM coordinates as determined by the LSDEIM in (4.46) should result in competi-
tive performance in comparison with the conventional DEIM. However, there are many different
orders in which a practical implementation to evaluate (4.46) can compute the different terms
involved. Therefore, a practical implementation will be provided that scales computationally
in the same way as the LU-solve step in the conventional DEIM algorithm. This keeps the
computing work minimal and remains equivalent to the conventional DEIM in terms of speed.
The offline stage of the practical implementation is provided in Algorithm 3 and the online
stage is provided in Algorithm 4.

Algorithm 3 Evaluating DEIM coordinates using the LSDEIM (Offline phase)
1: L,U = LU-Decompose(2(PTM)TPTM)
2: M1 = LU-Solve(L,U, 2(PTM)T )

Algorithm 4 Evaluating DEIM coordinates using the LSDEIM (Online phase)
1: v1 = PTCh(Φa)
2: v2 = (aTΦTM)T

3: v3 = LU-Solve(L,U,v2)
4: v4 =M1v1

5: c = v4 − ⟨v2,v4⟩
⟨v2,v2⟩v3

The most expensive steps in Algorithm 4 in terms of scaling are step 3 where an LU-solve is
performed and step 4 where a matrix-vector product is performed. The computational complex-
ity of both the LU-solve step and the matrix-vector product is O(m2). Hence the algorithm’s
computational cost scales with O(m2). The evaluation of (4.46) can thus be performed in a
number of computations that scales equivalently to the determination of the DEIM coordinates
using the conventional DEIM.
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4.3.3. Existence and Uniqueness
Existence of a solution to the LSDEIM minimization (4.44) can be proved by analysing the
expression in (4.46). There are two conditions that must hold for a solution to (4.46) to be
defined namely:

1. A is non-singular,
2. b(a)TA−1b(a) ̸= 0, ∀ a ∈ {a ∈ Rr | a /∈ ker

(
MTΦ

)
}.

It can be shown easily that A is non-singular as it is the product of two non-singular matrices
PTM and (PTM)T , where invertibility of PTM , and hence (PTM)T , is shown in [29]. Using
that:

b(a) = 0 ⇐⇒ a ∈ ker
(
MTΦ

)
,

condition 2 holds at least for all a ∈ {a ∈ Rr | a /∈ ker
(
MTΦ

)
} if A−1 is positive-definite, i.e.:

xTA−1x > 0 ∀ x ∈ {x ∈ Rm | x ̸= 0}. (4.47)

Condition (4.47), holds if A is positive-definite, since:

xTA−1x = yTATA−1Ay = yTAy,

and col(A) = Rm. Positive-definiteness of A may then be shown by:

yTAy = 2yT (PTM)TPTMy

= 2(PTMy)T (PTMy)

= 2||PTMy||2,

where, as PTM has linearly independent columns, it may thus be stated that:

yTAy = 2||PTMy||2 > 0 ∀ y ∈ {y ∈ Rm | y ̸= 0},

proving condition 2 holds for all a ∈ {a ∈ Rr | a /∈ ker
(
MTΦ

)
}. Clearly, using the definition

of b(a), condition 2 does not hold if a ∈ ker
(
MTΦ

)
. Thus (4.46) is not defined when a ∈

ker
(
MTΦ

)
. However, this is no problem. Namely, if a ∈ ker

(
MTΦ

)
, it holds for the feasible

set F(a) that:
F(a) = Rm,

since condition (4.43) holds for any c ∈ Rm. Therefore, minimization (4.44) is essentially
unconstrained and the unconstrained least-squares version of (4.46) can be solved while still
conserving energy, i.e. the conventional DEIM for which there exists a unique solution by virtue
of PTM being invertible.

Uniqueness of the optimum of the constrained minimization (4.44) may be shown through
the well-known theory of convex optimization [20]. In what follows the special, well-posed
case of a ∈ ker

(
MTΦ

)
will be ignored. It may be stated that for a constrained minimization

problem:
min f(x) s.t. C(x) = 0

there exists no more than one optimum if the objective function f(x) : Rn → R is strictly
convex:

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), ∀ (x,y) ∈ {x,y ∈ Rn | x ̸= y}, ∀ θ ∈ (0, 1),

and the feasible set FC associated to C(x) = 0 is convex:

θx+ (1− θ)y ∈ FC , ∀ x,y ∈ FC , ∀ θ ∈ [0, 1],

and closed. Using that the constraint in (4.44) is affine, convexity of the feasible set F(a) is
easily derived:

C(θc1 + (1− θ)c2) = aTΦTM(θc1 + (1− θ)c2)
= θaTΦTMc1 + (1− θ)aTΦTMc2

= 0,
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for any arbitrary c1, c2 ∈ F(a) and θ ∈ [0, 1], hence θc1 + (1 − θ)c2 ∈ F(a), thus proving
convexity of F(a). Furthermore, since F(a) is a linear subspace of Rm for all a /∈ ker

(
MTΦ

)
it is a closed set. A sufficient condition for strict convexity of the objective function is if its
Hessian is positive-definite [20]. It is straightforward to show that this is the case. The Hessian
matrix of the objective function is:

∂2

∂c∂cT
(∣∣∣∣PTCh(Φa)− PTMc

∣∣∣∣)
=

∂2

∂c∂cT
(
cTMTPPTMc− 2Ch(Φa)

TPPTMc+ Ch(Φa)
TPPTCh(Φa)

)
=

∂

∂cT
(
2cTMTPPTM − 2Ch(Φa)

TPPTM + λaTΦTM
)

= 2MTPPTM.

Indeed, the matrix 2MTPPTM = 2(PTM)TPTM has already been shown to be positive
definite. The objective function is therefore strictly convex. Since a solution to the LSDEIM
minimization (4.44) exists following the previous paragraph and can be found using the method
of Lagrange multipliers, it can be concluded from the strict convexity of the minimization over
a closed, convex set that this solution is unique and therefore the only solution.

4.3.4. The LSDEIM Jacobian
As the hROM (4.37) using the LSDEIM satisfies condition (4.43), it conserves reduced total
kinetic energy. For this reason it can be desirable to integrate the hROM in time using an
energy-conserving implicit Runge-Kutta method. However, as will be seen in section 4.6, this
requires determination of the Jacobian Jm(a) : Rr → Rr×r of the Galerkin projected LSDEIM
approximation of the convection operator. This Jacobian can be calculated as follows:

Jm(a) =
∂

∂a

(
ΦTMc(a)

)
= ΦTM

∂c

∂a
.

Where the partial derivative ∂c
∂a is given by:

∂c

∂a
=2A−1(PTM)TPTJh(Φa)Φ− 2γ(a)A−1MTΦ

− 2A−1b(a)⊗
[

1

b(a)TA−1b(a)

(
ΦTMA−1c(a) +

[
b(a)TA−1(PTM)TPTJh(Φa)Φ

]T)]
− 2A−1b(a)⊗

[
γ(a)

b(a)TA−1b(a)

(
ΦTMA−1MTΦa+

[
b(a)TA−1MTΦ

]T)]
.

A derivation of this expression is provided in section B.4.
To calculate the LSDEIM Jacobian in practise the following computing algorithms are pro-

posed. In Algorithm 5 the offline phase of the algorithm is provided and in Algorithm 6 the
online phase is provided. The most expensive step in Algorithm 6 is the matrix-matrix multi-
plication of M1 ∈ Rm×m and M5 ∈ Rm×r which is of order O(m2r). The calculation of the
LSDEIM Jacobian requires an additional matrix-matrix multiplication of ΦTM ∈ Rr×m and
∂c
∂a ∈ Rm×r of order O(r2m). Hence, the full procedure of calculating the LSDEIM Jacobian
has computational scaling of O(max(m2r, r2m)), equivalently to the conventional DEIM.

Algorithm 5 Evaluating LSDEIM Jacobian (Offline phase)
1: L,U = LU-Decompose(2(PTM)TPTM)
2: M1 := LU-Solve(L,U, 2(PTM)T )
3: M2 := ΦTM ·M1

4: M3 := ΦTM ·M4

5: M4 := LU-Solve(L,U,MTΦ)
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Algorithm 6 Evaluating LSDEIM Jacobian (Online phase)
1: M5 := PTJh(Φa)Φ
2: v1 := PTCh(Φa)
3: α := aTM3a
4: β := aTM2v1

5: γ := β/α

6: ∂c
∂a :=M1M5 − γM4 −M4a⊗

[
1
α

(
M2v1 +MT

5 M
T
2 a
)
− γ

β

(
M3a+MT

3 a
)]

4.4. The SMDEIM
The LSDEIM introduced in the previous section produces results that do not exactly match the
nonlinearity Ch(Φa) in Ph. In an unfortunate case these differences could become substantial.
It may therefore be desirable to have exact correspondence between the DEIM approximation
Mc and Ch(Φa) in Ph. A method that can do this will be proposed in what follows and will
be referred to as the Sherman-Morrison discrete empirical interpolation method (SMDEIM).

4.4.1. The Method: Rank One Correction
Fundamentally, the problem of satisfying condition (4.43) and exact correspondence between
the nonlinearity and the DEIM approximation in the measurement space is over-determined.
Given m DEIM modes and DEIM coordinates and thus m degrees of freedom there are m+ 1
equations to be satisfied. Namely, m equations are required for the interpolation and another
equation is necessary to satisfy (4.43). To find a system with an equal number of equations
as unknowns an additional degree of freedom is therefore required. The SMDEIM provides
this degree of freedom by taking into consideration an additional (m + 1)th DEIM mode and
coordinate but leaving the measurement space Ph m-dimensional. This allows the following
system to be written: [

PTM
aTΦTM

]
c =

[
PTCh(Φa)

0

]
. (4.48)

A solution to this system simultaneously results in the nonlinearity being matched by the m+1
DEIM modes in the m DEIM interpolation points and additionally satisfies the extra condition
for energy conservation (4.43). In some sense this approach is similar to the manner in which
momentum conservation is enforced in the altered POD basis. Namely, both methods sacrifice
accuracy for structure-preservation. Whereas the SMDEIM sacrifices the accuracy offered by an
(m+1)th measurement point to impose an energy-conservation condition, the altered POD basis
sacrifices d descriptive POD modes for d less descriptive POD modes that provide momentum
conservation.

The linear system in (4.48) will now be solved. Although, the following procedure can be
performed for any of the m+1 components of c it will be chosen to perform it on the (m+1)th

component as a principled choice is lacking and the (m + 1)th DEIM mode carries the least
energy. Moreover, if the linear system in (4.48) is non-singular all choices should lead to the
same solution. The m+ 1 DEIM coordinates c can be solved for as follows:

aTΦTMc =

m+1∑
k=1

(aTΦTM)kck = 0→ cm+1 = −
m∑

k=1

(aTΦTM)k
(aTΦTM)m+1

ck. (4.49)

Note:

PTMc =

m+1∑
k=1

(PTM),kck = PTCh(Φa). (4.50)

Substituting the previous relation for cm+1 (4.49) in this equation (4.50) gives:

PTMc =

m∑
k=1

[
(PTM),k −

(aTΦTM)k
(aTΦTM)m+1

(PTM),m+1

]
ck = PTCh(Φa).
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For simplicity the following notation is defined, the m-dimensional vector r(a) : Rr → Rm

satisfying:

(r(a))i = −
(aTΦTM)i

(aTΦTM)m+1
,

and the non-singular ([29]) matrix Mp ∈ Rm×m satisfying:

(Mp),i = (PTM),i, i ∈ {1, 2, ...,m}.

The vector of the first m components of c is written as cm ∈ Rm. The previous definitions can
be introduced to find:

PTMc =
[
Mp + (PTM),m+1 ⊗ r(a)

]
cm = PTCh(Φa).

This is a rank one correction of the non-singular matrix Mp which would solve the conventional
DEIM using m DEIM modes and measurement points. The inverse of the corrected matrix can
be found using the Sherman-Morrison formula [93]:

cm(a) =

[
M−1

p −
M−1

p (PTM),m+1r(a)
TM−1

p

1 + r(a)TM−1
p (PTM),m+1

]
PTCh(Φa) . (4.51)

The last DEIM scaling factor is found using (4.49) by:

cm+1(a) = r(a)T cm(a) . (4.52)

The hROM (4.37) is now given by the dynamical system:

da

dt
= −ΦTM

[
cm
cm+1

]
+ νDra,

and satisfies (4.43).

4.4.2. Practical Implementation of the Algorithm
Like the LSDEIM, the SMDEIM should result in competitive performance in comparison with
the conventional DEIM in terms of speed. As with the LSDEIM there are many different orders
in which the terms in (4.51) can be evaluated. Hence, an algorithm to evaluate (4.51) and (4.52)
in practise is provided in Algorithm 7 and Algorithm 8. Evaluating the terms in (4.51) in this
order results in a computational effort scaling with the LU-Solve step in the conventional DEIM.
The most expensive step in Algorithm 8 is step 3, which scales as O(m2).

Algorithm 7 Evaluating DEIM coordinates using the SMDEIM (Offline phase)
1: L,U = LU-Decompose(Mp)
2: v1 := LU-Solve(L,U, ((PTM),m+1))

Algorithm 8 Evaluating DEIM coordinates using the SMDEIM (Online phase)
1: v2 = PTCh(Φa)
2: v3 = r(a)
3: v4 = LU-Solve(L,U,v2)

4: cm = v4 − ⟨v3,v4⟩
⟨v3,v1⟩v1

5: cm+1 = ⟨v3, cm⟩
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4.4.3. The SMDEIM Jacobian
As the DEIM approximations using the SMDEIM satisfy condition (4.43), implicit energy-
conserving Runge-Kutta methods can be used to integrate (4.37) in time. Indeed, it is necessary
to solve nonlinear systems of equations for such methods. These can be solved iteratively
using the Newton-Raphson method. However, this does require the Jacobian of the DEIM
coordinates to be known. For this reason a derivation of the SMDEIM Jacobian is provided
here. The SMDEIM Jacobian Jm(a) : Rr → Rr×r is found by taking partial derivatives to a
of the Galerkin projected DEIM approximation as:

Jm(a) =
∂

∂a

(
ΦTM

[
cm(a)
cm+1(a)

])
= ΦTM

∂

∂a

([
cm(a)
cm+1(a)

])
= ΦTM

[
∂cm

∂a
(∇acm+1)

T

]
,

here ∇a denotes the gradient with respect to a. The Jacobian is worked out further in sec-
tion B.5.

The expression for the SMDEIM Jacobian is quite long and may be evaluated in many
different orders. It is therefore of importance to choose the correct order to minimize the
computational effort required to set up the Jacobian. An evaluation algorithm to keep the
number of operations minimal is proposed here. In Algorithm 9 the offline phase has been
provided and in Algorithm 10 the online phase has been provided.

Algorithm 9 Evaluating SMDEIM Jacobian (Offline phase)
1: L,U = LU-Decompose(Mp)
2: v0 = ΦTM,m+1

3: v1 = LU-Solve(L,U, ((PTM),m+1))
4: M1 = ΦTMIm

Algorithm 10 Evaluating SMDEIM Jacobian (Online phase)
1: v2 = PTCh(Φa)
2: v3 = r(a)
3: v4 = (aTΦTM)T

4: v5 = LU-Solve(L,U,v2)
5: α = 1.0 + ⟨v3,v1⟩
6: M2 = 1

last-component(v4)

[
−MT

1 + v4v
T
0

]
7: M3 = PTJh(Φa)Φ
8: M4 = LU-Solve(L,U,M3)

9: v6 = 1
α

[
MT

2 v5 +MT
4 v3

]
− ⟨v3,v5⟩

α2 MT
2 v0

10: ∂cm

∂a =M3 − v1v
T
6

11: ∇acm+1 =MT
2

(
v5 − ⟨v3,v2⟩

α v0

)
+ ∂cm

∂a

T
v3

The most expensive step in the online phase denoted in Algorithm 10 is step 8. Here, an LU-
Solve step is performed for every column of a Rm×r matrix. Hence, the algorithm to compute
the partial derivatives of the DEIM coordinates calculated using the SMDEIM has order of com-
plexity O(m2r). The calculation of the SMDEIM Jacobian requires an additional matrix-matrix
multiplication of ΦTM ∈ Rr×m and ∂c

∂a ∈ Rm×r of order O(r2m). Hence, the full procedure
of calculating the SMDEIM Jacobian has computational scaling of O(max(m2r, r2m)), equiva-
lently to the conventional DEIM and LSDEIM.

4.5. The Decoupled LSDEIM
When the flows that are modelled become more convection-dominated (ν becomes smaller) the
Kolmogorov N-width decay of both the POD and the DEIM approximations becomes slower.
Furthermore, for the incompressible Navier-Stokes equation (2.13) increasingly finer spatial
features start appearing, making velocity fields highly fluctuating in space. It is known that
for such conditions the DEIM can have stability issues [72]. Moreover, it can be shown [72,
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9] that the approximation error increases as a function the DEIM space dimension according
to O(

√
m). In the case of the proposed structure-preserving DEIM methods this cannot lead

to unbounded solution norms due to the nonlinear stability, but it can lead to a deterioration
of approximation accuracy and non-convergence of any iterative algorithms to solve implicit
timesteps (this will be observed in chapter 5). A solution to this problem applied in this thesis
is oversampling. The concept of oversampling is not new and has been analysed in [72, 82], other
references regarding oversampling are [107, 59]. The idea of oversampling is to increase dim(Ph)
while keeping the number of DEIM modes m constant, essentially decoupling the dimension of
the measurement space and the DEIM space Md. Thus more measurement points are added
to the DEIM solution algorithm.

Although it is difficult to employ this concept in the SMDEIM setting, the LSDEIM can
easily be generalized to encapsulate this. The generalization of the LSDEIM to decoupled mea-
surement and DEIM space dimensions will be referred to as the decoupled least-squares discrete
empirical interpolation method (DLSDEIM). Denoting the dimension of the measurement space
mp := dim(Ph) with mp ≥ m, the measurement matrix now becomes a matrix P ∈ RN×mp .
The constrained least squares problem (4.44) underlying the LSDEIM is still equally valid for
the DLSDEIM when m ≤ mp and has the same solution (4.46). Note that no more measurement
points can be determined following Algorithm 2 than the number of operator snapshots ns as
this is the number of DEIM modes available. However, situations might be encountered where
more measurement points than ns are required. In such situations it is recommended to apply
any of the results in [59, 107] to find further measurement points in addition to those provided
by Algorithm 2. Yet for simplicity, this thesis will use randomly selected extra measurement
points in such situations.

4.5.1. Practical Implementation of the Algorithm
Since the measurement and DEIM space dimensions are now decoupled the algorithm to con-
struct the measurement space changes slightly. The loop in Algorithm 2 is now carried out
until i = mp. Additionally, not all DEIM basis modes used to determine the measurement
space are retained in the DEIM basis, only the first m modes are kept. The resulting algorithm
is given in Algorithm 11.

The algorithms to determine the DEIM coordinates using the DLSDEIM approach are the
same as Algorithm 3-4, where only the dimensions of some objects change due to the dimensions
of the measurement matrix P changing. This does influence the scaling of the computational
effort required to evaluate the DEIM approximation using the DLSDEIM. Namely, the matrix
M1 in Algorithm 3 is now M1 ∈ Rm×mp , therefore the cost of step 4 in Algorithm 4 will now be
of order O(mpm). When mp > m the computational scaling of step 4 will thus dominate the
computational scaling of Algorithm 4. Equivalently, the algorithms to compute the DLSDEIM
Jacobian are the same as Algorithm 5-6. Furthermore, the scaling of the computational effort
of the most expensive step in Algorithm 6 now changes due to the dimensions of P changing.
As M1 ∈ Rm×mp and M5 ∈ Rmp×r, step 6 in Algorithm 6 will now scale computationally as
O(mpmr).

Algorithm 11 DLSDEIM interpolation indices
1: p1 = arg max(|ξi|)
2: M̃ = [ξi], M = [ξi], P = [ep1 ]
3: for i = 2 to mp do
4: Solve PT M̃c = PT ξi for c

5: r = ξi − M̃c
6: pi = arg max(|r|)
7: M̃ ← [M̃, ξi], P ← [P, epi

]
8: if i <= m then
9: M ← [M, ξi]

10:
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4.5.2. Existence and Uniqueness
Proving existence and uniqueness of the minimizer to the DLSDEIM is similar to proving
existence and uniqueness of the LSDEIM. Conditions 1 and 2 in subsection 4.3.3 still must
be satisfied for the DEIM coordinates using the DLSDEIM to be defined. However, proving
that A is non-singular can now not be done directly on the basis of PTM being non-singular
as PTM is no longer a square matrix. However, the symmetric matrix A is non-singular if
it is positive-definite. A proof that A is positive-definite is as follows. Consider the matrix
M1 := PT [M, M̃ ] ∈ Rmp×mp where the columns of M̃ ∈ RN×(mp−m) consist of the mp − m
DEIM modes succeeding the mth DEIM mode. Following [29] the matrix M1 is non-singular,
hence it has linearly independent columns. Since the set of columns of PTM is a subset of
the set of columns of M1, PTM also has linearly independent columns. Now considering the
condition for A to be positive-definite results into:

xTAx = 2xT (PTM)TPTMx

= 2(PTMx)T (PTMx)

= 2||PTMx||2 > 0, ∀ x ∈ {x ∈ Rm | x ̸= 0},

since the columns of PTM are linearly independent. Hence, matrix A is positive-definite and
thus non-singular, meaning condition 1 in subsection 4.3.3 is satisfied. Furthermore, by virtue
of the same reasoning as in subsection 4.3.3, A−1 is positive-definite and thus in turn satisfies
condition 2. As a result a solution to the constrained least-squares problem (4.44) where the
dimensions of the measurement and DEIM space are decoupled can always be found using the
method of Lagrange multipliers assuming mp ≥ m.

As the constraint did not change, the feasible set F(a) is still closed and convex for all
a /∈ ker

(
MTΦ

)
and coincides with Rm in case a ∈ ker

(
MTΦ

)
. The Hessian of the objective

function in (4.44) is still 2(PTM)TPTM , and using that this matrix is positive-definite, it can be
stated that the objective function is strictly convex. Thus, the constrained least-squares problem
(4.44) has a unique minimizer and it can be found using the method of Lagrange multipliers.
The unconstrained least-squares problem in cases a ∈ ker

(
MTΦ

)
and thus F(a) = Rm is also

strictly convex and therefore also has no more than one minimizer. Furthermore, the solution to
the unconstrained problem is well-known [20] and is given by the Moore-Penrose pseudoinverse
of PTM multiplied by PTCh(Φa):

c = (PTM)†PTCh(Φa) =
(
(PTM)T (PTM)

)−1
(PTM)TPTCh(Φa)

which, due to (PTM)TPTM being invertible, is defined. Hence, a unique solution to the
DLSDEIM exists for both cases a /∈ ker

(
MTΦ

)
and a ∈ ker

(
MTΦ

)
.

4.5.3. Consistency
The DLSDEIM and the LSDEIM both possess a sense of consistency when the underlying FOM
discretization is energy-conserving and when m = N or, more generally, when:

Ch(Φa) ∈Md. (4.53)

Here consistency is in the sense of subsection 4.2.2. A proof of this statement is given in the
following. If condition (4.53) is satisfied, it may be written that:

Ch(Φa) =Mca, (4.54)

since M is a basis of Md. Now considering equation (4.46) it may be written that:

c(a) = (PTM)†PTCh(Φa)−
b(a)T (PTM)†PTCh(Φa)

(b(a)TA−1b(a))
A−1b(a)

= (PTM)†PTMca −
b(a)T (PTM)†PTMca

(b(a)TA−1b(a))
A−1b(a),
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when condition (4.53) is satisfied. Using the definition of the Moore-Penrose pseudoinverse it
holds that:

(PTM)†PTMca = ((PTM)T (PTM))−1(PTM)TPTMca = ca.

Using the previous result, the following may be written for the DEIM coordinates found using
the LSDEIM or DLSDEIM:

c(a) = (PTM)†PTMca −
b(a)T (PTM)†PTMca

(b(a)TA−1b(a))
A−1b(a)

= ca −
aTΦTMca

(b(a)TA−1b(a))
A−1b(a).

Finally, using (4.54) and that the FOM operator is energy-conserving it may be stated:

aTΦTMca = aTΦTCh(Φa) = 0,

and thus that:

c(a) = ca when Ch(Φa) ∈Md and aTΦTCh(Φa) = 0 ,

proving consistency of the LSDEIM and DLSDEIM in the sense of the conventional DEIM (see
subsection 4.2.2).

4.6. Temporal Discretization of Structure-Preserving hROMs
Having found three different structure-preserving DEIM algorithms, the dynamical system
(4.37) can now be integrated in time. In what follows, the time-integration of (4.37) will
be discussed and the conservative properties of the structure-preserving DEIM algorithms will
be analysed.

4.6.1. Time Integration
Like the FOM, the family of time-integration schemes to integrate the hROM of interest to
this thesis are Runge-Kutta methods. Both implicit and explicit Runge-Kutta methods will be
considered. Firstly, the implementation of explicit Runge-Kutta methods with Butcher tableaus
characterized by Table 3.2 will be discussed. By virtue of the duality between Gh and Mh and
the FOM being projected on a divergence-free subspace and expanded in a divergence-free basis
to the aforementioned subspace the hROM is pressure-free and (4.7) is implicitly satisfied by any
hROM solution. This makes it relatively straightforward to implement explicit Runge-Kutta
integrators to integrate the hROM (4.37) in time, as the incompressibility constraint does not
have to be explicitly enforced any longer. Using an s-stage explicit Runge-Kutta method the
time-integration of the hROM (4.37) is performed as:

Ai = an +∆t

i−1∑
j=1

aij
(
−ΦTMc(Aj) + νDrAj

)
(4.55)

an+1 = an +∆t

s∑
i=1

bi
(
−ΦTMc(Ai) + νDrAi

)
, (4.56)

where Ak is the stage vector of generalized coordinates a at stage k of the time-integration.
The DEIM coordinates at the different stages c(Ak) k ∈ {1, 2, ..., s} are then evaluated using
any of the previously discussed methods i.e. DEIM, LSDEIM, SMDEIM or DLSDEIM.

Time-integration using implicit Runge-Kutta methods might present more difficulties, even
though the hROM is clearly still pressure-free and divergence-free by construction. Namely,
implicit Runge-Kutta methods are characterized by the general Butcher tableau Table 3.1.
Due to this implicit nature these methods require at least the current or later stage vectors in
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evaluation of the slope at some stage k, thus:

Ai = an +∆t

s∑
j=1

aij
(
−ΦTMc(Aj) + νDrAj

)
(4.57)

an+1 = an +∆t

s∑
i=1

bi
(
−ΦTMc(Ai) + νDrAi

)
. (4.58)

Hence, in its generality, using implicit methods, any stage vector may depend on any other
unknown stage vector and therefore (4.57) must be solved simultaneously for all stages. How-
ever, as the DEIM coordinates are determined from nonlinear functions, solving (4.57) requires
solving large systems of nonlinear equations. To cope with the nonlinearity of the DEIM coor-
dinates, (4.57) is solved for iteratively using the Newton-Raphson algorithm. The terms c(Aj)
in (4.57) are therefore linearized to obtain the iterative procedure:

Ak+1
i = an+∆t

s∑
j=1

aij

(
−
[
ΦTMc(Ak

j ) + Jm(Ak
j )
(
Ak+1

j −Ak
j

)]
+ νDrA

k+1
j

)
, ∀ i ∈ {1, ..., s}.

(4.59)
Equation (4.59) can be written in compact form for all i ∈ {1, ..., s} as:(

I −∆t(A⊗ Ir)F1(A
k)
)
Ak+1 = es ⊗ an +∆t(A⊗ Ir)F2(A

k) (4.60)

where Ak ∈ Rs·r is a block-vector containing the stage vectors of the generalized coordinates in
chronological order, I is the (s ·r)×(s ·r) identity matrix, Ir is the r×r identity matrix, es ∈ Rs

is a vector of all ones, A ∈ Rs×s is a matrix such that (A)ij = aij , (·) ⊗ (·) here denotes the
Kronecker product, F1(A) : Rs·r → R(s·r)×(s·r) is a function producing an s× s block diagonal
matrix with nonzero blocks satisfying:

(F1(A))ii = (−Jm(Ai) + νDr) ∀i ∈ {1, ..., s},

F2(A) : Rs·r → Rs·r is function producing an s-dimensional block vector with blocks satisfying:

(F2(U))i = −
(
ΦTMc(Ai)− Jr(Ai)Ai

)
.

The system in (4.60) is now solved repeatedly until a predetermined convergence criterion is
reached, resulting in a set of stage vectors collected in a block vector A. The converged stages
are then used in (4.58) to determine the generalized coordinates an+1 at the new time-step,
completing the computation process of a new time-step.

4.6.2. Energy-Conserving Runge-Kutta Methods
At the semi-discrete level the hROM (4.37), using a structure-preserving DEIM algorithm,
conserves both reduced total momentum and reduced total kinetic energy in the inviscid limit.
To conserve reduced total kinetic energy Kr in the inviscid limit at the fully discrete level
however, the time-integration scheme has to conserve the norm of the generalized coordinates
||a|| while integrating (4.37) for ν = 0. In the following a short analysis is provided to show
that for energy-conserving Runge-Kutta methods like the family of Gauss-Legendre integrators
this is possible. Following the analysis provided in (3.25) it may be stated for the squared norm
of the generalized coordinates found by integration using Runge-Kutta methods that:

∣∣∣∣an+1
∣∣∣∣2
Θ
− ||an||2Θ = 2∆t

s∑
i=1

bi ⟨Ai, fi⟩Θ −∆t2
s∑

i,j=1

mij ⟨fi, fj⟩Θ , (4.61)

where fi = −ΦTMc(Ai) + νDrAi i ∈ {1, ..., s}. Taking Θ = I in (4.61), where clearly I is
SPD such that it is captured by the definition of the Θ-inner product and induced norm, the
reduced total kinetic energy changes as:

Kn+1
r −Kn

r = ∆t

s∑
i=1

bi ⟨Ai, fi⟩ −
∆t2

2

s∑
i,j=1

mij ⟨fi, fj⟩ . (4.62)
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The first term in (4.62) can be written as:

∆t

s∑
i=1

bi ⟨Ai, fi⟩ = ∆t

s∑
i=1

bi
〈
Ai,−ΦTMc(Ai) + νDrAi

〉
= −∆t

s∑
i=1

bi
〈
Ai,Φ

TMc(Ai)
〉
+∆t

s∑
i=1

biν ⟨Ai, DrAi⟩

= −∆t
s∑

i=1

biA
T
i Φ

TMc(Ai) + ∆t

s∑
i=1

biνA
T
i DrAi.

Using a structure-preserving DEIM algorithm the first term on the right-hand side of the third
line will be zero as condition (4.43) is satisfied for these methods. The second term on the
right-hand side of the third line can be rewritten using the properties of the reduced diffusion
operator to obtain:

∆t

s∑
i=1

bi ⟨Ai, fi⟩ = −∆t
s∑

i=1

biν ||QrAi||2 .

As (3.27) holds for energy-conserving Runge-Kutta methods, the change in reduced total kinetic
energy Kr using these methods is given as:

Kn+1
r −Kn

r = −∆t
s∑

i=1

biν ||QrAi||2 . (4.63)

Thus in the inviscid limit it can be seen from (4.63) that the hROM (4.37) using the LSDEIM,
SMDEIM or DLSDEIM integrated using energy-conserving Runge-Kutta methods conserves
reduced kinetic energy. Additionally, in the viscous case the resulting hROM will be nonlinearly
stable when bi ≥ 0 ∀ i ∈ {1, ..., s}, a condition that holds for the implicit midpoint rule and
Gauss-Legendre 4 method.

4.7. Bypassing the Kolmogorov Barrier
Most fluid flows that are of interest to engineering applications are characterized by high
Reynolds numbers, meaning they are dominated by convection phenomena. This has signif-
icant effects on the performance of linear projection-based ROMs like those obtained using the
POD-Galerkin method. Namely, convection-dominated flows are well-known to be difficult to
capture in a low-dimensional linear subspace of the state space RN , where the discrete flow
field’s solution manifoldMh

u resides. This also holds for the POD basis found from a snapshot
matrix XTs associated to a FOM simulation of a significantly longer duration Ts than a char-
acteristic timescale T ≪ Ts of e.g. a large scale turbulent eddy. That is to say of a duration
such that substantial spatial transport of any coherent structures in the flow can take place.

The reason that transport phenomena are difficult to capture for linear and projection-
based ROMs is that the associated solution manifold Mh

u typically is a trajectory traversing a
considerable portion of the phase space RN . For example, consider the solution manifold of a
thin traveling wave under linear advection [18]. Many of its states are not correlated as their
inner-product equals zero. Geometrically, this implies that the solution indeed visits a large
portion of the phases space and that it cannot be accurately embedded on a low-dimensional
linear manifold. Analytically, it shows that the correlation matrix XTX of its associated
snapshot matrix nearly equals some scalar multiple of the identity matrix I. As the eigenvalues
of the identity matrix, and thus approximately the singular values of X, do not decay there are
no POD modes that carry significantly more energy than others. Consequently, the solution
manifold cannot be well-expressed in a low-dimensional basis of POD modes. Furthermore,
the short timescales present in turbulent flows are difficult to resolve by global linear methods,
like the POD, that attempt to approximate the entire snapshots matrix. Instead, all short
timescales are smeared out over the full duration of the snapshot set such that the POD basis
is only accurate in an average sense.
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A measure for how well a problem can be reduced in dimensionality is given by the decay
of the Kolmogov N-width d(Mh

u) : MN
u → R+:

d(Mh
u) := inf

V⊂RN ;dim(V)=r
sup

u∈Mh
u

inf
v∈V
||u− v||2,

where MN
u is a set of all possible solution manifolds in RN . Essentially, the Kolmogorov N-

width is a measure of the largest error that occurs between Mh
u and the best possible solution

trajectory approximating Mh
u that is restricted to the best possible r-dimensional subspace of

RN . The decay d(Mh
h)→ 0 as r → N indicates how well the problem can be represented in a

low-dimensional linear subspace of RN . Indeed, this decay is typically slow for convection-
dominated flows. However, the Kolmogorov N-width decay is often difficult to determine,
instead the decay of the singular values of a respective snapshot matrix is mostly used as
a proxy for the Kolmogorov N-width.

Finding ways around the slow Kolomogorov N-width decay, also referred to as the Kol-
mogorov barrier, has been the topic of considerable research. To deal with the Kolmogorov
barrier in this thesis the application of the principal interval decomposition (PID) [49] for both
the DEIM and reduced space construction will be proposed. The use of the PID or localization
in other forms for the construction of reduced spaces is not new. In [18, 4] the PID was used
to construct reduced spaces specifically to overcome the difficulties associated to convection-
dominated flows, in [71] the construction of DEIM spaces was localized in parameter and state
space and in [41] the ECSW hyper-reduction method was constructed for parametric and tem-
poral intervals on the solution manifold. In [32] temporal localization has been applied for the
DEIM, but not in a structure-preserving framework.

4.7.1. Temporal Localization of Reduced and DEIM Spaces Using PID
The premise of the PID is to decompose the snapshot set over np intervals in time [ti, ti+1] and
apply the POD algorithm to the individual intervals. The hope is then that by calculating modes
tailored to specific intervals, the local timescales within the respective interval are captured
significantly better than by a set of modes calculated from the full set of snapshots. Based on
snapshot sets:

X = [X0, X1, ..., Xnp−1], Ξ = [Ξ0,Ξ1, ...,Ξnp−1],

the PID provides sets of POD modes:

Φi,Mi, i ∈ {0, 1, ..., np − 1}

applicable to use at times t ∈ [ti, ti+1] within their respective intervals. It is not necessary to
use the same number of intervals for the calculation of either bases, however for simplicity this
will be the case in this thesis. Using the PID, the POD modes now solve:

Φ̃i = arg min
Φ∗∈RN×m

∣∣∣∣∣∣X̃i − Φ∗Φ∗TΩhX̃i

∣∣∣∣∣∣2
F

s.t. Φ∗TΩhΦ
∗ = I

Mi = arg min
M̃∈RN×m

∣∣∣∣∣∣Ξi − M̃M̃TΞi

∣∣∣∣∣∣2
F

s.t. M̃T M̃ = I.

where Φi is calculated from Φ̃i using steps 4 and 5 from Algorithm 1 and X̃i = Ω
1/2
h

[
Xi − EETΩhXi

]
.

The temporally localized DEIM measurement space Pi
h for the ith interval should now also be

determined solely based on the operator snapshots in Ξi using Algorithm 2 specifically for Ξi.
Setting up the hROM using the PID, the dynamical system (4.37) now takes the form:

dai

dt
= −ΦT

i Mici(ai) + νDi
rai t ∈ [ti, ti+1], (4.64)

the notation Di
r = ΦT

i DhΦi has been introduced to not clutter the subscripts. Note that it
is also necessary to introduce subscripts for the generalized and DEIM coordinates ai and
ci respectively, as they are only valid during the interval [ti, ti+1]. The DEIM coordinates
are calculated using either the DEIM, LSDEIM, SMDEIM or DLSDEIM algorithms using the
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appropriate measurement spaces and DEIM and POD bases. It should be noted that all the
conservation properties of the previously discussed structure-preserving DEIM methods hold
within intervals. This is somewhat trivial as nothing changes in the ways the DEIM coordinates
are calculated. In what follows, a hROM using the PID and a certain structure-preserving DEIM
algorithm will be referred to as PID-DLSDEIM hROM when, for example, the DLSDEIM is
used.

The reason why the PID might give improved solutions over ordinary POD is that it has the
potential to more accurately capture nonlinearity in the FOM solution manifold Mh

u. Specif-
ically, where the POD provides a low-dimensional linear subspace approximation of the full
solution manifold, the PID provides linear subspaces for individual intervals of the solution
manifold. Hence, a piecewise linear subspace is provided to approximate the full solution man-
ifold, allowing a sense of nonlinearity of the full reduced space. However using the PID comes
at a price, precomputed operators have to be calculated for every individual interval. This
may have negative effects on the computational costs of the offline phase of the calculation.
When the offline phase becomes restrictive due to this method it is suggested to consider online
adaptive methods [74].

4.7.2. Transitioning between Intervals
After integrating (4.64) over an interval using a suitable time-integration scheme, the reduced
velocity vector ur(ti+1) expressed in the generalized coordinates ai ∈ Rri has to be mapped
to an expression in terms of the generalized coordinates ai+1 ∈ Rri+1 , where ri ̸= ri+1 in
general. In the setting of Galerkin projection a natural choice for this transition mapping is
the following:

find ai+1 ∈ Rri+1 s.t.
〈
u−
r (ti+1)− u+

r (ti+1), (Φi+1)j,
〉
Ωh

= 0 ∀j ∈ {1, 2, ..., ri+1},
(4.65)

where u−
r (ti+1) = Φiai and u+

r (ti+1) = Φi+1ai+1. Condition (4.65) selects the new generalized
coordinates ai+1 such that the residual of the approximation is orthogonal to the new reduced
space span(Φi+1) in the Ωh-inner product. Solving condition (4.65) results in a precomputable
and low-dimensional mapping for ai+1 in terms of ai:

ai+1 = ΦT
i+1ΩhΦiai.

Unfortunately, this transition mapping does not preserve-structure. The reduced total kinetic
energy and reduced total momentum are the following for either side of the interval boundary:

(P k
r )

i = eTkΩhΦiai, (P k
r )

i+1 = eTkΩhΦi+1ai+1 = eTkΩhΦi+1Φ
T
i+1ΩhΦiai,

Ki
r =

1

2
aT
i ai, Ki+1

r =
1

2
aT
i+1ai+1 =

1

2
aT
i Φ

T
i ΩhΦi+1Φ

T
i+1ΩhΦiai.

For (P k
r )

i+1 = (P k
r )

i to hold, the following must hold Φi+1Φ
T
i+1Ωh = I, note that this is

equivalent to ΩhΦi+1Φ
T
i+1 = I. However generally the matrix ΩhΦi+1Φ

T
i+1 is not equal to

the identity matrix. For Ki+1
r = Ki

r to hold, it must hold that ΦT
i ΩhΦi+1Φ

T
i+1ΩhΦi = I. A

condition that is in general also not satisfied. Thus, although structure is preserved within the
interval, upon transitioning between intervals the preservation of structure is lost.

Structure-preserving transition mappings could be derived by considering that the solution
to condition (4.65) solves the following least squares problem:

ai+1 = arg min
a∈Rri+1

||Φiai − Φi+1a||Ωh
. (4.66)

To preserve structure one may consider adding constraints to this minimization problem that
enforce reduced total kinetic energy and reduced total momentum conservation. Hence a new
structure-preserving interface condition is proposed in this thesis in the form of a constrained
minimization problem:

ai+1 = arg min
a∈Rri+1

||Φiai − Φi+1a||Ωh
s.t. 1

2
aTa = Ki

r, eTkΩhΦi+1a = (P k
r )

i .
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If it is only desired to guarantee nonlinear stability a less constrained minimization problem
may be solved as transition mapping:

ai+1 = arg min
a∈Rri+1

||Φiai − Φi+1a||Ωh
s.t. 1

2
aTa ≤ Ki

r .

For the rest of this thesis only the transition mapping obtained from (4.65) will be considered
2. It is expected that, due tot the accuracy of the reduced bases and the optimality of the
transition mapping in the sense that it minimizes (4.66), severe deviations from exact structure-
preservation will not take place in many practical scenarios.

2Due to time constraints.
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Pros and Cons
A brief summary in the form of Table 4.1 is provided to gather all expected pros and cons
of the proposed structure-preserving hyper-reduction methods. In short, both the LSDEIM

LSDEIM SMDEIM DLSDEIM
Pros • Existence and uniqueness • Exact correspondence in Ph • Existence and uniqueness

• Consistency • Consistency
• Larger measurement space

Cons • Not clear a priori • Invertibility not guaranteed • Not clear a priori
how accurate minimizer is how accurate minimizer is

• Expensive

Table 4.1: Table summarizing pros and cons of the proposed methods.

and DLSDEIM provide guaranteed unique solutions, this is a strong point in favor of their
robustness. Furthermore, as the DLSDEIM employs oversampling, it can be expected that its
approximations may be more accurate. This does come at the cost of more function evaluations
making the DLSDEIM a more expensive method. The nature of the optimization problem
underlying the the LSDEIM and DLSDEIM also forms a con as it is difficult to say a priori
how accurate the methods will be. This is the strong point of the SMDEIM. Namely, it does
provide exact correspondence in the measurement space. However, for the SMDEIM there are
no guarantees on the underlying linear system of the SMDEIM being non-singular. Finally, the
LSDEIM and DLSDEIM provided consistency.



5
Results and Discussion

In this chapter the structure-preserving DEIM algorithms developed in the previous chapter
will be tested to determine their robustness, accuracy and efficiency in modelling convection-
dominated flows. Two test cases, both on periodic domains, will be considered to this end.
The first test case is the roll-up of a shear layer which will be used to determine which hyper-
reduction algorithm is the most accurate and provides the most computational gain with respect
to the FOM. Robustness will also be checked with this test case. The hyper-reduction method
with the overall best performance will be used in the second test case, which is a two-dimensional
isotropic and freely decaying turbulent flow. Using this test case the capability of the hROM
to capture the relevant physical phenomena of this type of turbulence in the reduced spaces
V and Md is analysed. As will be discussed shortly there are significant differences between
two-dimensional turbulence and three-dimensional turbulence, however being able to accurately
model two-dimensional turbulence is considered as a minimum requirement for the feasibility
of simulating three-dimensional turbulence.

5.1. The Test Suite
In what follows the previously mentioned test cases will be described. The acquired under-
standing will aid in the construction and interpretation of numerical experiments to test and
compare the proposed hROMs.

5.1.1. Shear Layer Roll-Up
The shear layer roll-up [62, 52] is a flow on a double-periodic domain [0, 2π] × [0, 2π] with a
central band of flow in a positive coordinate direction and neighbouring bands of flow in the
opposite direction. The bands are joined with a thin region of very strong velocity gradients
and hence strong shear-forces. The flow has the following initial conditions:

u(x, y, 0) =

tanh
(

y−π/2
δ

)
, y ≤ π

tanh
(

3π/2−y
δ

)
, y > π

, v(x, y, 0) = ϵ sin(x).

The parameter δ ∈ R determines the initial thickness of the shear layers and the parameter
ϵ ∈ R determines the initial amplitude of an unstable perturbation in the second coordinate
direction to trigger the so-called roll-up. The value for these parameters will be kept constantly
at δ = π

15 and ϵ = 0.05 in this thesis. The roll-up refers to the behaviour of the flow after the
perturbation has grown to significant size. Namely, this is when the thin layers of strong shear
spiral into a vortex like pattern until local gradients become sufficiently strong for the energy
to be dissipated. The flow has become a useful benchmark to test numerical methods for high
Re as high Reynolds numbers will postpone the dissipation process and induce very rapidly
fluctuating spatial velocity gradients, which are challenging to capture numerically.

The presence of strong spatial gradients motivates the use of the shear layer roll-up in this
thesis to study the effect of different reduced and DEIM space dimensions on the numerical

51
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error between the hROM and the FOM for different values of Re. Furthermore, before the
roll-up stage the flow is sufficiently simple to do inviscid calculations without any spurious
oscillations using the previously introduced FOM. This means that some high-fidelity data can
also be obtained to construct fully inviscid hROMs to test the energy conservation properties
of the structure-preserving DEIM algorithms proposed in the previous chapter.

5.1.2. Freely Decaying Two-Dimensional Turbulence
Freely decaying two-dimensional turbulence [35, 54, 15, 83, 4] (2DT) is a complex flow to
model with strong vortex dynamics and behaviour according to some distinct physics. This
test case will serve to test if such physics can be captured in reduced spaces using a hROM and
to determine if the Kolmogorov N-width decay of the convection-dominated vortex dynamics
can be increased using the PID. A brief discussion of the phenomenology of freely decaying
two-dimensional turbulence will be provided such that the experiments in what follows can be
interpreted. In this thesis the initial conditions for the 2DT will be formed from an adapted
version of those proposed in [91]. A 16× 16 lattice of pairwise oppositely rotating vortices will
be placed in the centre of a periodic domain Ω = [0, 1]× [0, 1]. To trigger the complex motion
the centres of all vortices will be perturbed according to a normal distribution N (µ, σ) with
mean µ = 0 and standard deviation σ = 0.01. The initial flow field is obtained from numerical
differentiation of the streamfunction ψ0(x) : R2 → R:

ψ0(x) =

17∑
i,j=2

0.05 · (−1)i+j · e−2000
[
(x+Nx

ij(0,0.01)−
j
19 )

2
+(y+Ny

ij(0,0.01)−
i
19 )

2
]
,

evaluated in the vertices of pressure cells on the numerical grid. Here:

u0(x) =
∂ψ0

∂y
, v0(x) = −

∂ψ0

∂x
.

The numerical differentiation operation is such that its resulting discrete velocity field is an
element of ker(Mh) and hence is discretely divergence-free [43].

Phenomenology
The dynamics of two-dimensional turbulence are strongly associated to the behaviour in two
spatial dimensions of a quantity referred to as vorticity. Vorticity can be interpreted as mea-
suring the rotation of a differential fluid element and is defined (in full-three dimensional space)
as:

ω := ∇× u
2D−−→ ω :=

∂v

∂x
− ∂u

∂y
.

Note that vorticity essentially becomes a scalar under the assumption of two-dimensional flow.
An evolution equation for this quantity can be found by taking the curl of (2.13):

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u︸ ︷︷ ︸

vortex stretching

+ν∆ω
2D−−→ ∂ω

∂t
+ (u · ∇)ω = ν∆ω. (5.1)

In two-dimensional flow the mechanism of vortex stretching can no longer take place, conse-
quently the physics of 2DT exhibit notable differences to three-dimensional turbulence. Another
set of equations in two spatial dimensions that, together with (5.1), are central to classical phe-
nomenological discussions of 2DT is the set:

dK
dt

= −2νE (5.2)

dE
dt

= −2νPa (5.3)

dPa

dt
= Πa − Sa, (5.4)

where E := 1
2 ||ω||

2
L2(Ω) ≥ 0 is referred to as total enstrophy and Pa = 1

2 ||∇ω||
2
L2(Ω) ≥ 0 is

referred to as total palinstrophy. The terms Πa and Sa are terms that behave as a source and a



5.1. The Test Suite 53

sink of Pa, respectively. From equations (5.1) - (5.4) several distinct phenomenological features
can be extracted. In this thesis it will be tested if the proposed hROMs can reproduce these
features and in what follows the features will be introduced briefly.

Kinetic energy
First the behaviour of the total kinetic energy dK

dt in the limit ν → 0 will be considered. As
(5.3) shows that E is bounded from above by its initial value it can be stated that:

lim
ν→0

dK
dt

= 0. (5.5)

This result is in stark contrast with three-dimensional turbulence where a source term in (5.3)
due to vortex-stretching allows E to attain arbitrarily large values. In turn the limit in (5.5) for
three-dimensional turbulence becomes nonzero [35]. This reflects the so-called energy cascade
where kinetic energy is passed from large to progressively smaller turbulent spatial structures
referred to as eddies. Finally arriving at sufficiently small spatial structures, the energy is
dissipated to heat through viscosity. As ν → 0 the three-dimensional turbulence will simply
give rise to smaller eddies such that energy can always be dissipated. This does not happen for
2DT and hence it is very long-lived for high Re.

The enstrophy cascade
Equation (5.1) shows that in the limit ν → 0, isovortical lines (lines of constant ω) start
evolving like material lines (a curve following distinct sets of fluid particles [31]). Material
lines are commonly believed to be continually stretched in chaotic vortex flows. Some simple
heuristic arguments confirming this belief are provided in [15]. Hence, isovortical lines for ν → 0
will also be stretched. Consequently, neighbouring isovortical lines will come closer together
increasing local vorticity gradients and thus local values of Pa. This process is referred to as
vorticity filamentation. A graphical representation of vorticity filamentation is provided in [35].

Note that due to neighbouring isovortical lines coming progressively closer through vorticity
filamentation, the enstrophy is increasingly associated to the smaller length scales of the flow.
This continues until length scales become sufficiently small such that viscosity can dissipate
local values of E . As the rate of filamentation is determined by large scale vortices and the
filamentation process transports enstrophy to smaller length scales, it is implied that enstrophy
does follow a cascade process in 2DT. This is supported by the fact that Pa can take arbitrarily
large values such that:

lim
ν→0

dE
dt

> 0,

analogously to the energy cascade in three-dimensional turbulence. These ideas are well-
established in classical literature on 2DT [15, 54].

The energy spectrum
Consider eddies of length scale O(l) in the so-called inertial range where L≫ l≫ η and where
L are the largest and η the smallest turbulent length scales in the flow. If there is an enstrophy
cascade process present in the flow these eddies should only be aware of eddies of slightly larger
and slightly smaller length scales and not of the length scales at the top and bottom of the
cascade. Hence, spectral properties associated to the 2DT for these length scales can only scale
with the local wavenumber k (or wavevector magnitude), time t and β := νPa. Indeed, β
determines the rate of enstrophy dissipation and thus the rate at which enstrophy must pass
through the cascade. Using (5.3) it may be shown that β has dimension β ∼ t−3 [35]. Following
dimensional analysis and arguments of self-similarity (see [35]) a scaling may then be found for
the spectral distribution of kinetic energy E(k) over the inertial range:

E(k) ∼ β2/3k−3 ∼ t−2k−3,

a result first described specifically for the freely evolving version of 2DT considered in this thesis
in [15].
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The inverse energy cascade
In 2DT the energy does not cascade to small scale structures but accumulates in large spatial
scales. Hence, there is an inverse cascade of energy in 2DT. The inverse cascade will only be
briefly touched upon as there is an abundance of different explanations for this phenomenon
[35]. The simplest explanation is that like-signed vortices tend to merge. Therefore, as time
proceeds progressively larger vortices start to appear. As a consequence, kinetic energy is seen
to redistribute to larger length scales.

5.2. Results: Shear Layer Roll-Up
In this section results will be described of numerical experiments carried out on the proposed
structure-preserving hyper-reduction methods using the SLR flow. Here the methods will be
tested to determine their structure-preserving capabilities, accuracy and computational perfor-
mance. Structure-preservation will be tested by considering the temporal evolution of reduced
conserved quantities. Accuracy will be tested by considering the error behaviour as a function
of time, Re and reduced space sizes. Finally, the computational performance will be tested by
measuring execution times associated to the off- and online phases of the hROMs and comparing
these the FOM. The best performing hyper-reduction method will then be used in section 5.3
for the challenging two-dimensional turbulence test case.

5.2.1. FOM Convergence Study
However, before this will be done, a convergence study is performed on the SLR flow to find
out when the numerical FOM solution is sufficiently grid converged. When computationally
feasible, numerical experiments will be held on these fine grid sizes. Whenever this is not
possible due to a large amount of repeated precomputations being necessary to perform an
experiment, less fine grids will be used. Using a Reynolds number Re = 1000 and a timestep
size of ∆t = 0.01, the grid sizes {128× 128, 256× 256, 512× 512, 1024× 1024} are tested in
order of increasing size. Due to the staggered grid used in the FOM actual numerical solution
values of u- and v-unknowns are not available in the same spatial location. Therefore, the
u-velocity components will be analysed on the line (x = π, y) and the v-velocity components
will be tested on the line (x, y = π

2 ). Note that due to the choice to change the grid size in
factors of two, there are always unknowns present on these lines in the grid. Furthermore, these
specific lines were chosen as the numerical solution values demonstrated the most spatially and
temporally varying behaviour in these locations.

The results of the grid convergence study are displayed in Figure 5.5. It is clear that at a
grid size of 512×512 the numerical solution largely overlaps with the numerical solution on the
finer grid 1024× 1024 and that 256× 256 is also still close to the solution using a 1024× 1024
grid. As 1024 × 1024 is a quite demanding grid size, both in terms of computational effort to
integrate the solution in time and memory requirements to save snapshot matrices, the choice
will be made to use either 512×512 or 256×256 grids. Some snapshots of the flow are provided
in Figure 5.1 and Figure 5.2 in terms of absolute velocity:

U(x, t) =
√
u(x, t)2 + v(x, t)2,

calculated by interpolating the respective unknowns to pressure cell centres. In Figure 5.3 and
Figure 5.4 the corresponding 2D vorticity values are provided which are calculated by taking
second order central differences centred on the vertices of pressure cells. In comparison to the
results of [83] the contour lines of the vorticity seem equally smooth in the rolled up shear layer,
providing some additional confidence in the convergence of the solution.

5.2.2. hROM Conservation
Attention is now turned to the hROMs. The proposed structure-preserving hyper-reduction
methods will be tested for their conservation properties. Both the reduced total momentum P k

r

(here k is used to indicate either u and v) and reduced total kinetic energy Kr will be calcu-
lated for all hROMs as a function of time and Reynolds number using both energy-conserving
and standard Runge-Kutta time-integration methods. Where P k

r should be conserved for any
Reynolds number on a periodic domain and any time time integration method, Kr should
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Figure 5.1: SLR velocity field at t = 5, Re = 1000
on a 512× 512 numerical grid.
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Figure 5.2: SLR velocity field at t = 8, Re = 1000
on a 512× 512 numerical grid.
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Figure 5.3: SLR vorticity field at t = 5, Re = 1000
on a 512× 512 numerical grid.
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Figure 5.4: SLR vorticity field at t = 8, Re = 1000
on a 512× 512 numerical grid.

only be conserved for the fully inviscid case using energy-conserving Runge-Kutta methods.
Due to the nonlinear stability of the hROMs, Kr should monotonically decrease for nonzero
Re, where the rate of energy dissipation increases as Re is decreased. The DEIM, tensor
decomposition, SMDEIM, LSDEIM and DLSDEIM will be tested for the Reynolds numbers
Re ∈ {100, 1000, inviscid} using a timestep size ∆t = 0.01, similarly to the FOM, and both the
GL4 and RK4 Runge-Kutta methods on a 256×256 grid. Time integration will take place until
t = 4. The reason for this is that the inviscid case will develop numerical oscillations shortly
after this time. It should be noted that these numerical oscillations will generally not destabilize
the FOM solution due to the nonlinear stability property, but they render the simulation results
inaccurate (and useless). Consequently, they will corrupt the snapshot data set and result in
oscillatory POD modes. In turn the DEIM algorithms will place measurement points around
the location of these oscillations and produce highly sub-optimal approximations. As the flow
until t = 4 does not exhibit any quickly varying spatio-temporal behaviour the FOM solution
until this point has a quickly decaying Kolmogorov N-width. Therefore usage of only 8 POD
and 8 DEIM modes in the following conservation experiments suffices to accurately reduce the
FOM dimensionality. The POD and DEIM modes are obtained from snapshots taken at every
individual timestep of the FOM simulation.

Momentum
Figure 5.6 shows the reduced total momentum as a function of time and Re for all discussed
hyper-reduction methods using both the GL4 and RK4 time-integrators. The discrete total
momentum for the FOM is also shown. Here the RK4 time-integration scheme was used and
the Reynolds number had a value Re = 1000. The reduced total momentum evolution profiles
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Figure 5.5: Convergence study of u and v velocity unknowns along the centreline and quarterline of
the numerical domain at t = 8, Re = 1000.

are very similar among all hyper-reduction methods. They vary smoothly around zero1 in the
machine-precision range O(10−14). Similar accuracy in momentum conservation seems to be
attained in [86], which uses only the tensor decomposition (abbreviated as ‘tens. dec.’). As the
momentum evolution for the tensor decomposition and DEIM algorithms are nearly identical
and the smooth excursion from the more noisy evolution of the FOM momentum are of order
O(10−14), the momentum will be considered conserved. Note that the conventional DEIM
equally conserves P k

r as the theory in chapter 4 has stated. Furthermore, the smooth behaviour
of the momentum evolution for the DEIM algorithms and the tensor decomposition, in contrast
to the noisy results for the FOM, will be attributed to both the implementation details as well
as the precision of Armadillo’s SVD implementation.

Energy
Figure 5.7 shows the reduced total kinetic energy as a function of time and Re for all discussed
hyper-reduction methods using both the GL4 and RK4 time-integrators. A panel with only
the inviscid case for all methods is also provided. It can clearly be observed for all methods
that as the Reynolds number is decreased the rate of energy dissipation increases, as expected.
Furthermore, looking at the panel containing only the inviscid cases, it can be seen that all hyper-
reduction methods except for the conventional DEIM conserve reduced total kinetic energy.
Indeed, where the structure-preserving DEIM algorithms seem to exactly conserve the norm
of the generalized coordinates, the norm of the DEIM’s generalized coordinates appears to
be oscillating around its initial value. Moreover, the amplitude of the oscillation is increasing
which could possibly result in instability of the hROM. The presence of sufficient diffusion seems

1Note that Pk(t = 0) = 0 and dP
dt

= 0.
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Figure 5.6: Momentum conservation properties for different hyper-reduction methods and Reynolds numbers
using 8 POD and 8 DEIM modes.

stabilize the evolution of the kinetic energy of the conventional DEIM. However, for highly
turbulent simulations with large values of Re this may not be enough. Another noteworthy
observation that can be made from the panel containing the inviscid case is that the use of the
RK4 time-integrator does not seem to induce significant errors in the kinetic energy evolution
for the structure-preserving DEIM variants, even though it is not an enegy-conserving time-
integrator. In [86] equivalent observations are made on the influence of high-order explicit time-
integrators on the reduced total kinetic energy (given an energy-conserving semi-discretization
of the hROM).

5.2.3. Error Comparison
Having concluded that the proposed DEIM algorithms are capable of preserving the structure
of the underlying model at the ROM level, the next question to consider is what method is
the most accurate. Before this can be assessed some error metrics must be introduced. The
first error metric is the error between the hROM and the FOM; this error will be measured in
Ωh-norm:

ϵu(t) = ||uh(t)− ur(t)||Ωh
,

clearly this metric provides a measurement of how far the predicted hROM solution is from the
high-fidelity data calculated by the FOM at a given instance in time. Using this metric it is
assumed that both a reduced and FOM velocity vector ur and uh are available at equal time
instances, which is indeed the case when equal timesteps are used in integrating the FOM and



5.2. Results: Shear Layer Roll-Up 58

0 1 2 3 4
time

15

16

17

K r
DEIM

0 1 2 3 4
time

15

16

17

K r

Tens. Dec.

0 1 2 3 4
time

15

16

17

K r

SMDEIM

0 1 2 3 4
time

15

16

17

K r

LSDEIM

0 1 2 3 4
time

15

16

17

K r

DLSDEIM(16)

0 1 2 3 4
time

17.131

17.132

17.133

K r

inviscid
GL4 DEIM
RK4 DEIM
GL4 SMDEIM
RK4 SMDEIM
GL4 LSDEIM
RK4 LSDEIM
GL4 DLSDEIM(16)
RK4 DLSDEIM(16)
GL4 Tens. Dec.
RK4 Tens. Dec.

GL4 Re= 100
GL4 Re= 1000
GL4 inviscid
RK4 Re= 100
RK4 Re= 1000
RK4 inviscid

Figure 5.7: Kinetic energy conservation properties for different hyper-reduction methods and Reynolds
numbers using 8 POD and 8 DEIM modes.

hROM in time. The second metric is the best approximation error that forms an lower bound
for what can be obtained using r POD modes:

ϵb(t) =
∣∣∣∣(I − ΦΦTΩh)uh(t)

∣∣∣∣
Ωh
.

This error simply measures the difference between a FOM snapshot and its reconstruction in
the Ωh-orthogonal POD basis. Essentially, this provides some idea on how far the FOM solution
is outside of the reduced space V by providing the shortest distance between the FOM solution
and a point in V (measured in the Ωh-norm). Indeed, a hROM cannot provide a solution closer
to the FOM snapshot than this. Comparing ϵu and ϵb will give an indication on how close to
optimal the hROM is.

For these experiments the choice of using ∆t = 0.01 for both the hROM as the FOM,
saving snapshots every timestep, will be made again. Firstly, the behaviour of ϵu with respect
to changes in POD and DEIM space dimensions will be analysed. Secondly, the temporal
evolution of ϵu and ϵb will be analysed.

Effect of reduced and DEIM space dimensions
To assess the effect of increasing r := dim(V) and m := dim(Md) on ϵu, several experiments
will be performed increasing both r and m independently. This will be done for the SLR on a
128× 128 grid. To prevent problems associated to modelling convection-dominated flows using
hROMs (instability, inaccuracy, slow Kolmogorov N-width decay) a low Reynolds number of
Re = 100 will be used. As the error between the usage of GL4 and RK4 has thus far been
negligibly small, the RK4 time-integrator will be used for its efficiency. During the experiments
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both dimensions will have the ranges r,m ∈ {5, 15, 30} and the truncated bases will capture
about 97%, 99.99% and 99.99999% of the energy present in the full POD bases, respectively.
The dimensions of the measurement space of the DLSDEIM will simply be taken as twice its
DEIM space dimension. This size of the measurement space is considered to emphasize the
difference between using and not using oversampling. Finally, the error will be measured at
t = 8.

The results of this experiment are displayed in Figure 5.8. It is clear that increasing r and
m generally has positive effects on the accuracy of the reduced velocity. The SMDEIM, even
in this simple case, seems to perform poorly in comparison with the other methods in most
cases. Its error also does not necessarily go down as the reduced spaces increase in dimension.
It even became unstable for r = 30,m = 15, note that the RK4 time-integrator was used which
does not offer nonlinear stability in a fully-discrete setting. On average the DLSDEIM(2m)
performs best, as it tends to give the smallest error ϵu. However, due to the low value of
Re this experiment is not very representative of the performance of the methods for practical
cases. For this reason the experiment mainly serves to provide an understanding of the effect of
increasing r and m on the hROM error obtained from using certain hyper-reduction methods.
The error ϵu of the DEIM, LSDEIM and DLSDEIM seems to decrease monotonically as r and
m are increased, whereas the error of the SMDEIM behaves more erratically as a function of r
and m.

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.0

0.1

0.2

0.3

0.4

0.5

||u
fo
m

−
u r

om
|| Ω

h

r = 5 m = 5

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.0

0.2

0.4

0.6

0.8

1.0

||u
fo
m

−
u r

om
|| Ω

h

r = 5 m = 15

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

||u
fo
m

−
u r

om
|| Ω

h

r = 5 m = 30

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.0

0.1

0.2

0.3

0.4

0.5

||u
fo
m

−
u r

om
|| Ω

h

r = 15 m = 5

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

||u
fo
m

−
u r

om
|| Ω

h

r = 15 m = 15

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

||u
fo
m

−
u r

om
|| Ω

h

r = 15 m = 30

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

||u
fo
m

−
u r

om
|| Ω

h

r = 30 m = 5

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0

1

2

3

4

5

||u
fo
m

−
u r

om
|| Ω

h

1e−5 r = 30 m = 15

DEIM SMDEIM LSDEIM DLSDEIM(2m)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

||u
fo
m

−
u r

om
|| Ω

h

1e−8 r = 30 m = 30

Figure 5.8: Errors between FOM and hROM for different hyper-reduction methods using the Runge-Kutta 4
time-integrator at t = 8, Re = 100 on a 128× 128 grid. The value of the SMDEIM error at r = 15,m = 30 is

NaN.

Temporal error evolution
In the following experiment both ϵu and ϵb will be measured as a function of time. This will
give precise insights into what phase of the SLR flow presents the most difficulties for the
respective hROMs. The Reynolds number of this experiment will be set to Re = 1000 to
test the hROMs’ limits of performance. The experiment will be carried out on a 256 × 256
grid with a timestep of ∆t = 0.01, both the RK4 and GL4 time-integrators will be tested
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to investigate whether the unconditional stability offered by GL4 for the structure-preserving
DEIM variants offers some benefits to the accuracy. All hROMs will have r = 30 and m = 40,
which are appropriate amounts to capture about 99.99% of the energy in the full POD and DEIM
bases, respectively. To obtain accurate solutions it was found that the DLSDEIM required a
measurement space of 900 measurement points. This is in line with the findings of [26], in
which 884 measurement points were used to model a similar flow, namely the Kelvin-Helmholtz
instability, on a 200× 200 grid. A measurement space of 900 measurement points is more than
can be found using Algorithm 2 with the available number of 800 DEIM modes. The extra
points are found by sampling 100 non-repeating vector indices (ranging from 0 to 2× 2562− 1)
from a uniform distribution and adding them to the measurement space. To ensure a set of
unique measurement points is obtained, a realization that is already present in the measurement
space is discarded and a new random sample is taken until a point is found that is not already
in the measurement space. The spatial distribution of the measurement points is depicted in
Figure 5.9.

The evolution of ϵu and ϵb is displayed in Figure 5.10. The SMDEIM can be seen to per-
form poorly. For GL4 the Newton-Raphson iteration procedure to solve the involved nonlinear
systems of equations (4.60) does not converge and for RK4 the simulation becomes unstable.
The other methods start to diverge significantly in accuracy around t = 5, with the LSDEIM
performing poorly, the conventional DEIM performing somewhat acceptably and the DLS-
DEIM(900) performing well. As depicted in Figure 5.1, at t = 5 the roll-up of the shear layer
starts to occur. This may explain this divergence in hROM performance. Namely, the roll-
up, being a convective phenomenon, is difficult to capture for the hROMs. The difference in
performance between the DLSDEIM and the other methods could now be explained by its mea-
surement space. As depicted in Figure 5.9, the DEIM measurement space algorithm managed
to identify the problematic vortex edges where a lot of the convection happens and has placed
many measurement points there. This seems to have sufficiently increased the capability of
the DLSDEIM to capture the nonlinear operator output and hence to stay close to the best
approximation error.

The velocity and vorticity fields produced by the hROMs using GL4 are shown in Figure 5.11.
The LSDEIM clearly shows traces of POD modes associated to the first four seconds of the
SLR still being present in the velocity field. Namely the horizontal lines of low velocity are
associated to the shear layer’s initial shape. Other spurious modes that are present are highly
oscillatory modes in the roll-up region of the flow. These highly oscillatory spurious modes also
seem to be excited in the conventional DEIM solution to a much lesser extent. This can be
seen in the DEIM’s vorticity plot in Figure 5.11, where the contour lines are not very smooth
and a wavey pattern is present near the roll-ups2. Using the DLSDEIM these modes are not
present or to a negligible extent.

5.2.4. Computational Performance
To test the computational performance of the hROMs, measurements will be made of the
execution times of their offline and online phases. These measurements will be compared
against the FOM execution time. To promote stability, a low Reynolds number of Re = 100
will be considered on a 256× 256 numerical grid. These measures are predominantly taken for
the SMDEIM, which was shown to not be very robust. The simulation will be run until t = 8
with a timestep size of ∆t = 0.01. A reduced space dimension of r = 35 will be maintained
throughout all experiments. This seems unnecessarily large; however, this is to simulate the
computational burden of a larger ROM for higher Reynolds numbers without actually having
to simulate higher Reynolds numbers. The offline phase measurements will be split in time
spent on precomputing operators and time spent on performing the SVD. This is to prevent
implementation specific aspects of the SVD giving a skewed perspective on the time spent on the
offline phase. The online phase will be considered to be the time spent integrating the system
in time. Implementation details like setting up a mesh for the FOM will be excluded from
the timing. Also the time for saving snapshot data by the FOM integrator will be excluded.
The DEIM spaces considered will be m ∈ {5, 10, 20, 40, 80} and the DLSDEIM will have a

2When the digital format of this document is used, consider zooming on the DEIM’s vorticity panel.



5.2. Results: Shear Layer Roll-Up 61

0 1 2 3 4 5 6
0

1

2

3

4

5

6

DEIM measurement points

Figure 5.9: DEIM measurement points on a 256× 256 grid for Re = 1000 (Red: first 40 points, Orange:
following 760 points, Blue: 100 random extra points).
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Figure 5.11: hROM velocity and vorticity fields for different hyper-reduction methods (r = 30, m = 40) on a
256× 256 grid for Re = 1000 using the Gauss-Legendre 4 time-integrator.

measurement space dimension of 2m.
The results for RK4 are provided in Figure 5.12. A speedup of the hROM online phase

compared to the time integration phase of the FOM of several orders of magnitude can be
observed. Here the more practical cases of m ∈ {20, 40, 80} have speed ups ranging from
approximately 100× to 500×. Recalling that eight seconds of physical fluid flow time were
simulated, the hROMs provided significantly faster than real-time simulations. Precomputing
the operators happens on equivalent timescales as the full online phase for all DEIM algorithms
for the ranges of m tested. However the DLSDEIM’s precomputation phase will overtake the
cost of its online phase when the measurement space dimensions get sufficiently large due to
the large number of linear solve steps required in Algorithm 2 in this case. Furthermore, all
hROM related computational scalings appear linear in m. This is in contrast to the theoretical
estimates in chapter 4, which predict O(m2) scaling due to the LU-Solves required to determine
the DEIM coordinates c. This typically happens when the dimensions of the problem are
not large or when constants multiplying the O(m) computation times present in the DEIM
algorithms outweigh the O(m2) operations. The DLSDEIM can be observed to be the slowest
method as may be explained by the fact that the costs of the O(m) operations dominate the
higher order costs in the cases tested. Since any sampling operation is an O(m) operation,
these types of operation will clearly be more expensive for the DLSDEIM. This is a result of
its measurement space being of size 2m and thus twice the amount of samples compared to
the other methods will need to be taken. The SMDEIM and the conventional DEIM are the
fastest, however the SMDEIM produced NaN results for several of the smaller m values. The
costs of the SVD are relatively large compared to the rest of the hROM operations, this is an
implementation detail of Armadillo and outside the control of this research. If it is desired to
accelerate this step one may consider the use of the method of snapshots [94], however as it is
not very relevant to the research in this thesis this will not be done here.
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Figure 5.12: Execution times of the FOM and the online phase of several hROMs (r = 35) using RK4 on a
256× 256 grid for Re = 100 and t = 8 with ∆t = 0.01, the SVDs for the POD and DEIM and the

precomputation of the hyper-reduction operators.

5.2.5. Discussion
The experiments in this section were intended to select the overall best-performing hyper-
reduction method. This method will be used in the 2DT case in the following section. De-
termining the overal performance of the proposed methods has been done by considering the
structure-preserving capabilities, accuracy and computation times for the relatively complicated
SLR flow using either Re = 1000 or Re = 100. It was confirmed that the structure-preserving
DEIM algorithms managed to conserve both reduced total momentum, as does the conven-
tional DEIM, using the altered POD basis of [86] and also reduced total kinetic energy using
energy-conserving Runge-Kutta methods. The observation made in [86] that high-order explicit
Runge-Kutta methods in a lot of practical cases are also sufficient to keep errors in energy conser-
vation negligible was confirmed for the proposed structure-preserving hyper-reduction methods
as well. Analysing an inviscid case without strong convective effects being present (yet) it was
shown that the kinetic energy of the reduced velocity field produced by the conventional DEIM
was already oscillating with increasing amplitude. This indicates that for high Re flows where
much spatial transport occurs, the conventional DEIM cannot be expected to remain stable,
providing an advantage to using structure-preserving methods.

In all accuracy tests the SMDEIM failed to perform well. Independently increasing the
reduced and DEIM space dimensions r and m was observed to have a positive effect on the
accuracy of the solutions produced by the DEIM, LSDEIM and DLSDEIM. To a lesser extent,
this also appeared to be the case for the SMDEIM, due to the erratic behaviour shown by the
error as a function of r and m. Applying the methods to a convection-dominated flow, the
SLR at Re = 1000, it was observed that when the convection phenomena started to dominate
the flow field, the LSDEIM, DEIM and DLSDEIM started to diverge in accuracy. After this
moment the DLSDEIM performed the best. This may be attributed to its increased measure-
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ment space dimension, where the additional points found by Algorithm 2 managed to identify
problematic convection dominated regions of the flow. This builds quite a strong case for the
use of oversampling in the hyper-reduction of high Re flow simulations, which is an observation
shared by [107, 59].

In the experiments for computational performance it was found that the operations scaling
linearly in m dominated the computational cost. This resulted in the DLSDEIM performing
the worst, due to its larger measurement space. However the differences in execution times are
still negligible to the cost of the FOM. Moreover, all hyper-reduction methods were faster than
real-time.

To conclude, although the DLSDEIM was slower than the other methods in terms of exe-
cution times, its flexibility in increasing the measurement space dimensions and the effect it
had on its capability to capture convective phenomena compared to the other methods make it
the best performing structure-preserving hyper-reduction method. Especially the DLSDEIM’s
performance for convection-dominated flows is relevant, as most flows of interest to engineering
purposes often have high Reynolds numbers and a lot of convected spatial details. For this
reason, the DLSDEIM will be used in the numerical experiments of the following section.

5.3. Results: Freely Decaying Two-Dimensional Turbulence
In this section results will be described of numerical experiments carried out on the DLSDEIM
using the 2DT flow. Besides testing if the hROM using the DLSDEIM is capable of reproducing
the complex spatiotemporal features of the 2DT flow, emphasis will be laid on if the correct
two-dimensional turbulent physics are maintained in a reduced setting. In this section the PID
will be used in the construction of the reduced spaces V andMd in an attempt to increase the
system’s Kolmogorov N-width decay. As the actual Kolmogorov N-width decay is difficult to
determine, the effect of the PID will be measured by comparing the decay of the singular values
of the full snapshot matrices and the individual partitioned snapshot matrices. The replication
of two-dimensional turbulent physics will be tested by considering the temporal evolution of
reduced total kinetic energy and reduced total enstrophy and also by comparing the angle
averaged energy spectra of the hROM and FOM velocity fields.

To make sure the FOM simulation is well resolved, simulation parameters will be chosen
based on relevant non-dimensional numbers. In this thesis simulation parameters will be sought
that satisfy the following conditions:

CFL =

√
u2max + v2max∆t

∆x
≤ 1 (5.6)

Reh =

√
u2max + v2max∆x

ν
= O(1) (5.7)

Diff =
ν∆t

∆x2
≤ 1

2
. (5.8)

Condition (5.6) is the well-known CFL-number which makes sure information propagation
through the grid is well-resolved, condition (5.7) is the grid Reynolds number and condition
(5.8) is the stability limit of diffusion based on diffusive time scales being well-resolved. It
may be checked that a combination of Re = 1000, ∆x = 1/1024 and ∆t = 2 × 10−4 satisfy
all conditions. All experiments will thus be performed on a 1024 × 1024 numerical grid using
these parameters (FOM and hROM). Using the theory described in [35], the two-dimensional
turbulent length- and timescales, scaling as O(LcRe

− 1
2 ) and O(Lc/

√
u2max + v2max) respectively,

are also resolved. The realization of the stochastic initial conditions used for all experiments in
this thesis is displayed in terms of absolute velocity and vorticity in Figure 5.13 and Figure 5.14
respectively. All experiments will be carried out until t = 3.5 using the RK4 time-integrator
(FOM and hROM) for computational efficiency. Saving snapshots every timestep for this test
case is not feasible given the simple workstation used to perform all calculation in this thesis.
Hence, the simulation will be sampled such that the Nyquist-Shannon criterion is met [3, 4];
this criterion is satisfied by sampling every ∆ts = 0.005 . This will result in two data sets
(solution snapshots and convection operator snapshots) of 2×10242× 3.5

0.005 ×8 Bytes ≈ 11.7GB
of data each when using double precision.
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Figure 5.13: 2DT absolute magnitude of initial
velocity field.
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Figure 5.14: 2DT initial vorticity field.

5.3.1. The Need for Temporal Localization
As illustrated in [4] the PID is a useful tool for increasing the Kolmogorov N-width decay
and to capture small timescales that would otherwise be averaged out in ordinary POD. Now
some experiments will be performed to demonstrate that the application of the PID can also
be extended from the construction of V to the construction of Md for use in hyper-reduced
models.

Singular value decay
The first experiment will be to compare the singular value decay of both X and Ξ to those
of individual submatrices Xi and Ξi of the respective snapshot matrices. Before this can be
done a partition must be made. For simplicity this will be done in equal parts. The number
of intervals is chosen such that each interval has sufficient snapshots to work with, yet are still
minimal in duration to optimally resolve local timescales. To this end intervals of length 0.5s
are chosen, which means every interval has 100 snapshots. This division will be maintained
throughout all other experiments using the 2DT flow throughout this thesis.

The singular values of X, Ξ, all Xi and all Ξi are shown in Figure 5.15 and Figure 5.16
for the solution snapshots and operator snapshots, respectively. Every set of singular values
is normalized against the largest value in the set. The number of singular values of X and Ξ
is cut off at approximately 400 as the singular values with higher indices were valued NaN3

(Not a number). It can clearly be seen that the singular values associated to the individual
intervals decay significantly faster than those of the full snapshot matrices for both the solution
snapshots and the operator snapshots. This indicates that the individual intervals are more
amenable to dimensionality reduction using the POD than the full snapshot matrices.

Interestingly, it can also be seen that later intervals have a faster decay of singular values
than earlier intervals. This is reflective of the inverse energy cascade as a result of which large
scale coherent structures dominate the flow after sufficiently long times. Flows containing large
scale coherent structures are well-known to have fast Kolmogorov N-width decay [47, 94].

FOM and PID-DLSDEIM hROM comparison
Now a simulation will be done using the PID-DLSDEIM hROM and the RK4 time-integrator as
it has shown to lead to negligible energy errors thus far. The reduced, DEIM and measurement
space dimensions are tabulated in Table 5.1. The resulting FOM and PID-DLSDEIM hROM
velocity fields are provided in Figure 5.17a and the associated vorticity fields are provided in
Figure 5.17b, both for several instances in time. Both the velocity and vorticity fields calculated
by the PID-DLSDEIM hROM and FOM are almost identical. Additionally, an inverse energy

3This is a result of the fact that the singular values have been determined from the eigenvalues of XTX and
ΞTΞ by taking their square-root; however, many eigenvalues had values of approximately −|ϵ|, where ϵ denotes
machine-precision, resulting in NaN -values.
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Figure 5.15: 2DT singular values for several
intervals of duration 0.5 labeled in chronological
order and the total solution snapshot matrix X.
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Figure 5.16: 2DT singular values for several
intervals of duration 0.5 labeled in chronological
order and the total operator snapshot matrix Ξ.

cascade has clearly taken place in both the FOM as the PID-DLSDEIM hROM, as both produce
fields with increasing presence of large scale coherent structures.

interval 0 1 2 3 4 5 6
r 37 19 12 12 12 12 12
m 37 19 14 14 14 14 14
mp 300 100 100 100 100 100 100

Table 5.1: Table of reduce space dimensions used for the individual interval of the PID-DLSDEIM hROM.

5.3.2. Kinetic Energy and Enstrophy
A way to confirm whether the conservation of kinetic energy and the enstrophy cascade are
captured by the PID-DLSDEIM hROM is to plot the temporal evolution of Kr and Er for
increasing Reynolds numbers. Following the theory of two-dimensional turbulence, the reduced
total kinetic energy curve should then flatten off as Re is increased, whereas the reduced total
enstrophy should be continuously decreasing after some initial organisation phase. However,
with the current second order implementation of the FOM this is computationally infeasible
due to the sizes of the numerical grids that would be necessary to resolve e.g. a Re = 1 × 106

flow. To still obtain an idea of whether the PID-DLSDEIM hROM captures the enstrophy
cascade and kinetic energy conservation, the results on the 2DT flow obtained in the numerical
experiment performed in this thesis will be compared to simulation results of other authors.
More specifically, it will be analysed if the evolution of reduced total kinetic energy and reduced
total enstrophy as calculated by the proposed PID-DLSDEIM hROM is in line with the results
for larger Reynolds numbers provided by [91]. Results for the currently implemented FOM
will also be provided for the experiment performed in this thesis such that the FOM and PID-
DLSDEIM hROM can be compared. The research of [91] has been chosen to compare the
current results to. This is both because [91] also uses a velocity-pressure formulation of the
incompressible Navier-Stokes equations and that the initial conditions in their simulations are
similar to those used in this thesis. Most other authors [4, 83] use vorticity-streamfunction
formulations and have initial conditions formed from an initial angle averaged energy spectrum
combined with random phases.

In Figure 5.18a and Figure 5.18b the results of the experiment are provided in terms of
reduced total kinetic energy and reduced total enstrophy evolution. The PID-DLSDEIM hROM
results follow the trend of increased dissipation of both quantities as the Reynolds number is
decreased. In accordance with the theory, the dissipation rate of both kinetic energy and
enstrophy is larger for 2DT with Re = 1000 than the higher Re cases. Consistently with the
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(a) 2DT velocity fields using the FOM and PID-DLSDEIM hROM at different instances in time (t = 0.5, 1.0, 2.0, 3.5)
for Re = 1000 on a 1024 × 1024 grid.
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(b) 2DT vorticity fields using the FOM and PID-DLSDEIM hROM at different instances in time (t = 0.5, 1.0, 2.0, 3.5)
for Re = 1000 on a 1024 × 1024 grid.

Figure 5.17
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case of Re = 2 × 104 by [91] there is also no presence of an initial transition period for the
Re = 1000 case due to the large dissipation in these cases. The curves for both total kinetic
energy and total enstrophy overlap well between the PID-DLSDEIM hROM and the FOM,
where the PID-DLSDEIM hROM seems to have dissipated marginally less kinetic energy than
the FOM nearing the end of the simulation.

It can also be seen in Figure 5.18a that at the interfaces between different PID intervals
there is no significant error in the total kinetic energy. This provides some evidence that in
practise a non-structure-preserving transition mapping, like the one obtained from condition
(4.65), may be sufficiently accurate to prevent significant energy errors between intervals. This
is similar to how RK4 in some practical scenarios also does not cause significant energy errors,
even though it is not part of the family of energy-conserving Runge-Kutta methods.

5.3.3. The Energy Spectrum
The angle averaged energy spectrum E(k, t) is a useful tool in the analysis of two-dimensional
turbulence. In this thesis a discrete version Ek(t) of this spectrum will be derived to analyse
the discrete velocity fields produced in numerical experiments. This spectrum is calculated on
a 1024× 1024 uniform grid using the following formula:

Ek(t) =
∑

k≤
√
m2+n2<k+1

4π2 · 1
2

(
m2 + n2

)
|ψ̂m,n(t)|2,

where k ∈ {0, 1, ..., ⌊kmax⌋}, kmax =
√
2·512 and m,n ∈ {−512,−511, ..., 511} and where ψ̂m,n(t)

is the Fourier coefficient with indices m and n of the Fourier series for the streamfunction:

ψ(x, t) ≈
511∑

m,n=−512

ψ̂m,n(t)e
i(m 2π

L x+n 2π
L y).

The angle averaged energy spectrum satisfies:

K̃h(t) =
∑

k∈{0,1,...,⌊kmax⌋}

Ek(t),

where:
K̃h(t) =

1

2
||ũ(x, t)||2L2(Ω) ,

and ũ(x, t) : Rd×R+ → Rd is the continuous velocity field found from representing the discrete
velocity field uh(t) : R+ → RN in terms of a Fourier series with 10242 two-dimensional Fourier
modes. Classical theory on two-dimensional turbulence [35] states that in the inertial region of
the turbulence Ek(t) should scale as O(k−3) in the inviscid limit.

Comparing energy spectra
In the following experiment the discrete angle averaged energy spectrum will be determined for
both the FOM and the PID-DLSDEIM hROM for different instances in time. It will be analysed
if the PID-DLSDEIM hROM can reproduce the correct turbulent physics across the full range
of physical length scales by comparing the discrete spectrum of the PID-DLSDEIM hROM to
that of the FOM. The following time instances will be considered t ∈ {0.5, 1.0, 2.0, 3.5}.

The results of the experiment are displayed in Figure 5.19. It can be seen that the spectra
of the FOM and the PID-DLSDEIM hROM generally overlap well for larger length scales. How-
ever, for the smaller length scales present in the flow, the PID-DLSDEIM hROM overestimates
the energy consistently at every time instance. It should be noted that these errors carry min-
imal amounts of energy, but they may still be important for correct energy dissipation. Two
reasons for this behaviour are hypothesized:

1. ROMs of fluid flow without closure models have been hypothesized to not accurately
capture dissipation [5, 13] as often truncated POD bases contain only slowly varying high
energy structures, whereas quickly-varying low-energy structures are typically responsible
for dissipation of energy. This would cause energy dissipation to be underestimated and
hence some remaining energy in the system.
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Figure 5.19: 2DT discrete angle averaged energy spectrum Ek(t) using the FOM and PID-DLSDEIM hROM
at several instances in time (t = 0.5, 1.0, 2.0, 3.5) for Re = 1000 on a 1024× 1024 grid.

2. Oscillatory spurious modes as in Figure 5.11 are present to a minimal extent causing small
scale structures in the reduced reconstruction of the flow to have too much energy.

Like already observed in Figure 5.17a and Figure 5.17b, an inverse energy cascade has clearly
taken place as the energy present in smaller length scales decays quickly over time whereas the
larger length scales keep their energy for longer times. The energy spectra of both the FOM
and PID-DLSDEIM hROM do not show evident scaling with O(k−3), in contrast to the results
for Re = 1000 obtained in [83].

5.3.4. Discussion
In the previous subsection the potential of the most accurate structure-preserving hyper-reduction
method (DLSDEIM) to reduce the dimensionality of very convection-dominated flows has been
tested using the 2DT flow. Specific attention was paid to the correct reproduction of the tur-
bulent physics that take place in this flow. Furthermore, it was tested whether the PID can aid
in the construction of a reduced space V that accurately captures the solution manifold of the
FOM in low-dimensional fashion. Even more importantly, it was tested whether this notion
also generalizes to the construction of DEIM spaces.

In the first experiment the decay of the singular values of several PID intervals was compared
to their snapshot matrix of origin. It was observed that the singular values of the intervals
decayed significantly faster than those of the associated full snapshot matrix for both the
solution as the operator snapshots. This implies that, using the PID, the FOM solution manifold
and the manifold on which the FOM operator evolves can be captured in low-dimensional ROMs
more easily. This was tested by running the simulation for the PID-DLSDEIM hROM and
comparing results with the FOM. A nearly identical match was obtained.

The second and third experiment focused on whether the turbulent physics could be accu-
rately captured in low-dimensional reduced spaces constructed using the PID. This was tested
by considering the decay of both reduced total kinetic energy and reduced total enstrophy.
As it was not feasible to run well-resolved high-fidelity simulations to gather data for high
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Reynolds numbers only the a simulation of Re = 1000 was run. It was then checked whether
the results of this simulation were in line with results from high-fidelity simulations of higher
Re from the literature [91]. This seemed to be the case; however, strong conclusions should not
be made on the capability of the PID-DLSDEIM method to accurately capture such high Re
flows until a structure-preserving FOM is constructed that can efficiently handle larger values
of Re, providing a starting point for model reduction. Finally, discrete angle averaged energy
spectra of both the FOM and PID-DLSDEIM hROM were considered. It was observed that
smaller length scales in the flow contained too much energy. Two possible causes based on the
literature and previous observations on the SLR were given. As noted these errors carry very
little energy and as seen in Figure 5.17a and Figure 5.17b have not resulted in significant effects
on the accuracy of the PID-DLSDEIM hROM for the case considered.



6
Conclusion

In this thesis three new structure-preserving hyper-reduction methods have been proposed that
are based on the discrete empirical interpolation method (DEIM) [29]. The first method has
been named the least square discrete empirical interpolation method (LSDEIM) and is charac-
terized by relaxing the condition of exact correspondence between the FOM nonlinearity and
the DEIM approximation in the measurement space. Instead, a residual minimization problem
is solved at the operator level which is constrained such that the DEIM approximation mimics
the energy-conservation property of the FOM’s convection operator. Due to the convexity of the
minimization problem and the feasible set of the associated constraint, it could be shown that
unique solutions exist for the LSDEIM making it particularly robust. The second method has
been named the sherman-morrisson discrete empirical interpolation method (SMDEIM). The
SMDEIM distinguished itself by decreasing the dimensions of the measurement space by one
such that an energy conservation condition could be imposed on the DEIM approximation. This
resulted in a linear system that depended on newly determined generalized coordinates in the
reduced space. The problem of having to solve this system every timestep was solved by using
the efficient Sherman-Morrison inverse formula. The last method is the decoupled least-squares
discrete empirical interpolation method (DLSDEIM), which constituted a generalization of the
LSDEIM to decoupled DEIM and measurement space dimensions. The DLSDEIM satisfied
similar existence and uniqueness properties as those satisfied by the LSDEIM. Both the LS-
DEIM and DLSDEIM were shown to be consistent in a similar sense as the conventional DEIM.
Namely, given a sufficiently accurate DEIM space, energy-conserving convection operator out-
puts could be exactly reconstructed. Furthermore, the potential to perform oversampling made
the DLSDEIM especially flexible and suitable for problems with a large range of spatio-temporal
features.

To bypass the slow Kolmogorov N-width decay of convection dominated turbulent flows
and to allow the reduced spaces to properly resolve short timescales in the flow, the use of
the PID [49, 18] for both the construction of the reduced space associated to the solution and
also the DEIM space has been applied in this thesis. Although reduced total momentum and
reduced total kinetic energy were conserved within the intervals of the PID, these conservation
properties were lost at interfaces between intervals. Some novel preliminary suggestions have
been provided to solve this problem, but these remain to be analysed further and to be put
into practise.

Numerical experiments were performed to test the structure-preservation properties, the ac-
curacy, robustness and efficiency of the proposed structure-preserving hyper-reduction methods
for increasingly more convection-dominated flows. The first test case considered was the shear
layer roll-up (SLR). This test case was intended to identify the best performing method among
the three newly proposed hyper-reduction methods in terms of the aforementioned criteria
of accuracy, efficiency and robustness. The test case was also used to confirm the structure-
preserving properties. It was shown that in the inviscid case all structure-preserving hyper-
reduction methods conserved reduced total kinetic energy, whereas the conventional DEIM
showed signs of increasingly unstable kinetic energy evolution. In the viscous case all methods
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showed dissipation of kinetic energy as expected. Analysing the error behaviour as a function of
reduced space dimensions for low Reynolds number flows the SMDEIM already showed poor ac-
curacy. The other hyper-reduction methods exhibited monotonic decreases in errors as reduced
space dimensions were increased. Increasing the Reynolds number to convection-dominated
flows it was shown that the DLSDEIM was the most accurate and only slightly more expensive
than the other hyper-reduction methods. It was therefore used in experiments using the second
test case; two-dimensional isotropic decaying turbulence (2DT).

The aim of the 2DT test case was to test if the DLSDEIM in combination with the PID
was capable of both simulating a very convection-dominated flow accurately and reproducing
several important features of two-dimensional turbulence physics. It was shown that the PID
in construction of both the reduced and DEIM spaces was a useful tool to resolve the short time
scales of 2DT and to increase the Kolmogorov N-width decay. Nearly identical velocity and vor-
ticity reconstructions were obtained from the PID-DLSDEIM hROM in comparison to the FOM
results. Moreover, a clear inverse energy cascade was exhibited by the hROM. Analysing the
decay of reduced total kinetic energy and reduced total enstrophy, the PID-DLSDEIM hROM
showed to be in line with the system’s physical behaviour at higher Reynolds numbers obtained
from simulations performed in [91]. Furthermore, the non-structure-preserving interface condi-
tion of the PID did not result in significant energy errors at interfaces between different PID
intervals. Finally, the discrete angle averaged energy spectra of the velocity fields predicted by
the PID-DLSDEIM hROM and the FOM were compared. Good correspondence was observed
for large spatial structures but the smaller low-energy structures showed some disparity. This
disparity did not cause notable differences in the velocity field as it only happened at very low
energies. Some hypotheses were provided as to the reason of this behaviour, attributing it to
either lack of dissipation due to the absence of higher-order modes or the negligible presence of
oscillatory spurious modes.

Other contributions of this thesis were that using the momentum conserving POD basis
proposed in [86], reduced total momentum could also be conserved by the DEIM approximations.
This was a result of the eigenvalue problem underlying the SVD in the construction of the basis
of the DEIM space. Moreover, it was demonstrated that the energy-conserving Runge-Kutta
methods could be used in combination with structure-preserving DEIM variants to obtain
nonlinearly stable fully-discrete hROMs as could be done with the FOM and ROM on which
the hROM is built [86]. The observation made in [86] that the use of high-order explicit Runge-
Kutta methods could result in negligible energy errors for a structure-preserving semi-discrete
ROM has been extended in this thesis to the structure-preserving hROMs. This provides a
cheap alternative to the implicit energy-conserving Runge-Kutta methods.

From all of the above reasoning it can be concluded that the PID-DLSDEIM is a useful
hyper-reduction method for larger convection dominated systems where exact methods are
prohibitively expensive or not available. It has shown to be the most accurate and robust
method and was comparable in terms of computational cost to the cheaper methods proposed
in thesis. It could also, to a satisfying extent, reproduce much of the physical behaviour shown
in two-dimensional turbulent flow providing some confidence that this can be extended to three-
dimensional turbulent cases. The research goal as formulated in the introduction of this thesis
seems to be achieved, at least for the cases considered in chapter 5. Of course, it remains to be
seen how well the PID-DLSDEIM will perform for industrial cases in three-dimensions as the
transition from 2DT to these flows is not trivial.

There are many topics regarding structure-preserving hyper-reduction left for future re-
search. Some of such topics are provided here:

1. Although, not the focus of this thesis, hyper-reduction of Hamiltonian systems is an
important field of model reduction. The methods proposed here form a cheaper alternative
to those suggested in [63]. Analysing the performance of the presently proposed methods
in a Hamiltonian setting would form an interesting topic of research.

2. Structure-preserving interface conditions for the PID are a topic of research that this the-
sis has not delved into. Though, for highly convection-dominated systems where the PID
could form an attractive solution it would be beneficial to have the certainty of nonlin-
ear stability offered by structure-preservation. Therefore, structure-preserving interface
conditions are suggested as possible future research topic.
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3. This thesis has dealt primarily with periodic boundary conditions to aid the develop-
ment process. However, in practical applications different boundary conditions are often
encountered. Developing the hyper-reduction methods further in a way that properly
captures the energy evolution in the presence of these boundary conditions is a useful
research topic.
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A
Consistency of the DEIM

The DEIM provides an exact reconstruction of a nonlinearity N(u) : RN → RN when the
following condition is satisfied:

N(u) ∈Md. (A.1)

The proof of this is as follows. If condition (A.1) holds then the output of the nonlinearity may
be written as:

N(u) =Mcu.

Approximating the nonlinearity using the DEIM approximation (eq.(4.32)) and performing the
procedure to find the DEIM coordinates (eq.(4.34)), the following can be written:

PTMc = PTN(u) = PTMcu.

Solving for c gives:
c = cu.

Thus, using the DEIM, the exact reconstruction of a nonlinear operator N(u) can be obtained
when condition (A.1) is satisfied. Condition (A.1) is definitely satisfied if m = N , but may be
satisfied in the case m ≤ N when Md is sufficiently accurate.
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B
Jacobian Derivations

B.1. ROM Jacobian
The Jacobian of the reduced convection operator Jr(a) = ∂Cr

∂a (a) can be expressed in terms of
the Jacobian of the FOM operator Ch as follows:

(Jr(a))ij =
∂

∂aj
Cr(a)i

=
∂

∂aj

(∑
k

(
ΦT
)
ik
Ch(Φa)k

)

=
∑
k

(
ΦT
)
ik

∂

∂aj
(Ch(Φa)k)

=
∑
k

(
ΦT
)
ik

∑
l

∂

∂ql
(Ch(q)k)

∂ql
∂aj

=
∑
k

(
ΦT
)
ik

∑
l

(Jh(q))kl
∂ql
∂aj

=
∑
k

(
ΦT
)
ik

∑
l

(Jh(Φa))kl
∂

∂aj

∑
m

(Φ)lm am

=
∑
k

(
ΦT
)
ik

∑
l

(Jh(Φa))kl (Φ)lj

=
(
ΦTJh (Φa)Φ

)
ij
.

B.2. Exact Tensor Decomposition Jacobian
(
∂Cr(a⊗ a)

∂a

)
ij

=
∂

∂aj

 r∑
k,l=1

(ΦT C̃h(Φ,k)Φ)ilakal


=

r∑
k,l=1

(ΦT C̃h(Φ,k)Φ)il
∂(akal)

∂aj

=

r∑
k,l=1

(ΦT C̃h(Φ,k)Φ)il (alδkj + akδlj) ,
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B.3. DEIM Jacobian
In case it is desired to integrate (4.37) in time using implicit time-integration schemes, the
Jacobian Jm(a) : Rr → Rr×r of the DEIM approximation can be determined as follows:

Jm(a) =
∂

∂a

(
ΦTMc(a)

)
= ΦTM

∂c

∂a
.

Now using (4.38) gives:

ΦTM
∂c

∂a
= ΦTM

∂

∂a

(
(PTM)−1PTCh(Φa)

)
= ΦTM(PTM)−1PTJh(Φa)Φ.

Thus, for the DEIM Jacobian Jm(a) it can then be written:

Jm(a) = ΦTM(PTM)−1PTJh(Φa)Φ,

which can be interpreted as selected rows of the FOM Jacobian being interpolated using the
DEIM procedure, written in terms of a using the chain-rule and reduced using the Galerkin
projection.

B.4. LSDEIM/DLSDEIM Jacobian
This Jacobian can be calculated as follows:

Jm(a) =
∂

∂a

(
ΦTMc(a)

)
= ΦTM

∂c

∂a
.

In turn ∂c
∂a can be calculated using (4.46). The Jacobian of the left term in the right-hand side

of (4.46) is relatively simple to determine and given as:

∂

∂a

(
A−1(PTM)TPTCh(Φa)

)
= A−1(PTM)TPTJh(Φa)Φ.

The term on the right in the right-hand side of (4.46) requires more attention. Denoting the
scalar factor in the right term as:

γ(a) :=
b(a)TA−1d(a)

b(a)TA−1b(a)
,

where the notation d(a) := (PTM)TPTCh(Φa) was introduced, the product rule can be ap-
plied:

∂

∂aj

(
γ(a)(A−1b(a))i

)
=

∂γ

∂aj
(A−1b(a))i +

m∑
k=1

γ(a)(A−1)ik
∂bk
∂aj

. (B.1)

Using the definition of b(a) the right term in (B.1) can be written as follows:
m∑

k=1

γ(a)(A−1)ik
∂bk
∂aj

=

m∑
k=1

γ(a)(A−1)ik(M
TΦ)kj .

The partial derivative in the left term in (B.1) can be calculated using the quotient-rule:

∂γ

∂aj
=

[
b(a)TA−1b(a)

]
∂

∂aj

(
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)
−
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]
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∂aj

(
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)
(b(a)TA−1b(a))

2 .

In turn the partial derivative of
(
b(a)TA−1d(a)

)
is given as:

∂

∂aj

(
b(a)TA−1d(a)

)
=
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∂aj
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= (ΦTMA−1c(a))j + (b(a)TA−1(PTM)TPTJh(Φa)Φ)j ,
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where the definitions of b(a) and d(a) were used to evaluate the partial derivatives in the second
line. Finally, the partial derivative of

(
b(a)TA−1b(a)

)
in (B.1) can be calculated as follows:

∂

∂aj

(
b(a)TA−1b(a)

)
=

∂

∂aj

(
aTΦTMA−1MTΦa

)
=

r∑
k=1

r∑
q=1

(
∂ak
∂aj

(ΦTMA−1MTΦ)kqaq + ak(Φ
TMA−1MTΦ)kq

∂aq
∂aj

)
= (ΦTMA−1MTΦa)j + (aTΦTMA−1MTΦ)j .

Combining all of the above an expression for ∂c
∂a is as follows:

∂c

∂a
=2A−1(PTM)TPTJh(Φa)Φ− 2γ(a)A−1MTΦ

− 2A−1b(a)⊗
[

1
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(
ΦTMA−1c(a) +

[
b(a)TA−1(PTM)TPTJh(Φa)Φ

]T)]
− 2A−1b(a)⊗

[
γ(a)

b(a)TA−1b(a)

(
ΦTMA−1MTΦa+

[
b(a)TA−1MTΦ

]T)]
,

multiplication from the left with ΦTM provides an expression for the Jacobian Jm(a).

B.5. SMDEIM Jacobian
Using the previously found expression (4.51) for cm it can be written:

∂cm
∂a

=
∂

∂a

([
M−1

p −
M−1

p (PTM),m+1r(a)
TM−1

p
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(
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p PTCh(Φa)Φa

1 + r(a)TM−1
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)
.

Using the quotient rule the gradient in the second term can be calculated as follows:

∇a

(
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1 + r(a)T b

)
=

[
∂r
∂a

T
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T
b
)

(1 + r(a)T b)2
,

with y(a) := Ch(Φa), A :=M−1
p PT and b :=M−1

p (PTM),m+1. The gradient of cm+1 is given
by:

∇acm+1 = ∇a

(
r(a)T cm(a)

)
=
∂r

∂a

T

cm(a) +
∂cm
∂a

T

r(a).

Finally, to construct the Jacobian it is necessary to find ∂r
∂a and ∂

∂a (Ch(Φa)). Firstly, the
partial derivative of r is considered:

∂

∂aj
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∂aj
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)2 ,

in matrix notation this is denoted as:
∂r

∂a
=

(
1

(aTΦTM)m+1

)[
−(ΦTMIm)T + r(a)⊗ (ΦTM),m+1

]
,

where Im ∈ R(m+1)×m is the first m columns of the (m+1)× (m+1) identity matrix. Secondly,
the partial derivatives of y(a) will be considered:

∂y

∂a
=

∂

∂a
(Ch(Φa)) =

∂(Ch(u))

∂u

∂u

∂a
= Jh(Φa)Φ.
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B.6. Efficient Evaluation of P TJh(Φa)Φ for DEIM-like Meth-
ods

To efficiently evaluate PTJh(Φa)Φ, the sparsity structure of Jh(Φa) has to be considered.
Firstly, multiplication from the left with PT requires to only evaluate the rows of the matrix
Jh(Φa)Φ associated to measurement points. Secondly, denoting J (i) as the set of all column-
indices of nonzero components in row i of Jh(Φa), the necessary rows of Jh(Φa)Φ should be
evaluated in practise as:

(Jh(Φa)Φ)i, =

 ∑
j∈J (i)

(Jh(Φa))ijΦj,0, ...,
∑

j∈J (i)

(Jh(Φa))ijΦj,r

 ,
where (Jh(Φa)Φ)i, denotes the ith row of Jh(Φa)Φ. Evaluation of PTJh(Φa)Φ scales as O(rm),
solving (PTM)−1PTJh(Φa)Φ scales computationally as O(m2r) as r LU-solves have to be
performed and multiplication with ΦTM is of order O(r2m) being a matrix-matrix product
with an r×m and an m×r matrix. Hence, evaluation of Jm(a) is of order O(max(m2r, r2m)).



C
A Proof of Divergence-Freeness of Φ

The eigenvector problem in step 3 is given as:

X̂X̂T Φ̂,j = σ2
j Φ̂,j(

Ω
1/2
h X̃

)(
Ω

1/2
h X̃

)T
Φ̂,j = σ2

j Φ̂,j(
Ω

1/2
h

[
X − EETΩhX

]) (
Ω

1/2
h

[
X − EETΩhX

])T
Φ̂,j = σ2

j Φ̂,j .

Transforming the eigenvectors as Φ̃,j = Ω
−1/2
h Φ̂,j gives:

Ω
−1/2
h

(
Ω

1/2
h

[
X − EETΩhX

]) (
Ω

1/2
h

[
X − EETΩhX

])T
Φ̂,j = σ2

jΩ
−1/2
h Φ̂,j = σ2

j Φ̃,j[
X − EETΩhX

] (
Ω

1/2
h

[
X − EETΩhX

])T
Φ̂,j = σ2

j Φ̃,j .

Now taking the discrete divergence results in:

Mh

[
X − EETΩhX

] (
Ω

1/2
h

[
X − EETΩhX

])T
Φ̂,j = σ2

jMhΦ̃,j[
MhX −MhEE

TΩhX
] (

Ω
1/2
h

[
X − EETΩhX

])T
Φ̂,j = σ2

jMhΦ̃,j

0 = σ2
jMhΦ̃,j ,

since both X and E are divergence-free column-wise. Since σj > 0 ∀ j ≤ dr and r < dr it must
hold that MhΦ̃,j = 0, ∀ j ≤ dr. As Φ is the concatenation of Φ̃ and E and both matrices are
column-wise divergence-free, Φ is divergence-free, completing the proof.
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