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Abstract. Regularities in the world are human defined. Patterns in iserved
phenomena are there because we define and recognize theshasstomatic
pattern recognition tries to bridge the gap between humdgnent and mea-
surements made by artificial sensors. This is done in twesstgpresentation
and generalization.

Traditional representations of real world objects to beogmized, like features
and pixels, either neglect possibly significant aspecthefdbjects, or neglect
their dependencies. We therefor reconsider human redogind observe that it
is based on our direct experience of similarity or dissintijeof objects. Using
these concepts, a pattern recognition system can be defireedatural way by
a pairwise comparison of objects. This results in the didaiity representation
for pattern recognition.

An analysis of dissimilarity measures optimized for perfance shows that they
tend to be non-Euclidean. The Euclidean vector spacedtitraally used in pat-
tern recognition and machine learning may thereby be suhaptThe causes
and consequences of the use of non-Euclidean represestatilh be discussed.
It is conjectured that human judgment of object differen@=slt in these non-
Euclidean representations as object structure is takeragtount.

1 Introduction

Pattern recognition is an intrinsic human ability. Even Brefzildren are able to do this
surprisingly well. Already at a very young age they can regog subtle patterns in
the objects that surround them. During our whole life pattercognition stays with
us and it constitutes implicitly a base for our judgement beldavior. Scientists make
explicitly use of this human ability in their professionifél

Science usually starts with a categorization of the phemamghe differences be-
tween the various pattern classes are, at least initiadfinedd by the human observer
based on his personal interest, e.g. following from thetyitilater they may explicitly
be related to observable properties.

The research area of automatic pattern recognition studeeslesign of systems
that are able to simulate this human ability. In some apfitioa it is aimed to simulate
an expert, e.g. a medical doctor, performing a recognitisk.tThe design is based on
an analysis of recognized examples and is guided by knowletape explicit by the
expert for the observations he makes and possibly for theegitres he follows.



In order to learn from examples it is necessary to represem such that they can
easily be compared. A statistical analysis of a set of examfthe training set) should
be possible in order to pave the ground for an appropriaigrasent of the pattern
class to new examples. So we distinguish in this processnwaitant steps:

Representation. In this first stage real world objects, observed by sensoesiepre-
sented such that the comparison with other objects is ethahlieavailable knowl-
edge about the objects, their properties and the pattessedao be distinguished
should be used here.

Generalization. Using the representation, sets of objects (classes) aidisant func-
tions between them are modeled from their statistics. Thisalsed on statistical
estimators and machine learning procedures. The goal isstitecthe models in
such a way that the assignment of class membership of neaming objects is
facilitated (classification).

In the first of these two steps the emphasis is on the use dfrexisnowledge. In
the second step 'new’ knowledge is generated from obsen&fiearning from exam-
ples). Occasionally however it happens as well that theessgtation is optimized by
observations and that additional knowledge is used dutatgsscal modelling.

It is the purpose of this paper to discuss conditions andlpnadin obtaining good
representations. It will be shown that proper represettatiin agreement with human
observations and judgements, may be in conflict with the delséor the next step, the
generalization. In some problems (and perhaps in many) ayrbper representation
is non-Euclidean, but the present set of generalizatiols isdased on the assumption
of an Euclidean space. Examples will be discussed as webssllities to solve this
problem.

2 The Representation Problem

The purpose of the representation is that it should enakléousompare sets or classes
of objects in a numerical way. It should be possible to buitatieis for such a class or
to construct decision functions between classes. The domifavorite way in pattern
recognition is the vector space. Objects are representpdiats in such a space and
operations on sets of points (classes of objects) resultictions that describe domains
for the classes or separation functions between them.

The multi-dimensional vector space representation esdabéapplication of many
tools as developed in linear algebra, multi-variate stetisand machine learning. A
point of concern however is whether it pays respect to theaibjand their relations.
If we want to learn from the representation of a set of obj#t#d is given to us as
examples for the recognition (classification) of new olgetten a demand is that a
small variation in one of the example objects should resulsmall variation in its
representation. If this is not the case, if the represantgtimps in space, how can
we expect that we learn from the set of examples in terms ofdinstruction of class
domains or separation boundaries?

This demand, the continuity of the variation in the représéon as a result of a
variation in the object, is directly related to what is cdli@ the early literature on



pattern recognition asompactness: classes of similar objects cover a finite domain
in the representation space. We reformulate the demandhaitarsreal world objects
should be similar in the representation.

Are similar representations thereby also related to simatgects? Not necessar-
ily. If two-dimensional objects like hand-written charext are represented by area and
perimeter then the representation is compact: small clsaingle shape of a character
will result in small changes in area and perimeter. Objedts @ntirely different shapes
however may have the same area and perimeter and therebgrtieersepresentation.
An additional demand for representations, usually notlfedfj is that similar represen-
tations should refer to similar objects. If this is the cabe, representation is taue
representation.

If the representation is not true entirely different objeety be found close to each
other in the representation. They may even belong to diiterlasses. This is the cause
of class overlap. Given the representation classes mayenitlly separated anymore.
In spite of the fact that an expert observes essential difilegs and assigns them to dif-
ferent classes, they may be represented on the space pldweergpresentation space.
This can only be solved by statistics: this area in the splageld be assigned to the pat-
tern class that is most probable. Consequently, it is netedesk statistics as probability
densities have to be measured.

We like to emphasize that the need of using statistics ipatecognition is caused
by class overlap resulting from a non-true representatfahe representation would
have been a true representation then class differenceweldd®sy a human expert would
have been reflected in the representation and objects a@reliff classes would not
have been represented on the same place. The intrinsic arabalass overlap, in
pattern recognition called the Bayes error, is the resuh@fepresentation. A different
representation will yield a different Bayes error. A trupnesentation will result in a
zero Bayes errot.

3 Feature Representation

The feature representation has for a long time been the eatpwrepresentation used
in pattern recognition. It is still dominant and the vectpaeses resulting from other
representations are still often called 'feature spacesj|ecting their different origin.

Features are object properties that contribute in distsigiog classes. They are
defined or suggested by the experts that are also able tavdeéethe true class mem-
bership (class label) of objects. For many problems it apgpabe difficult to define
exactly what the feature are. For instance, doctors carwaya exactly defined what
should be measured in a lung X-ray or in a ECG signal for thegeition of some dis-
ease. Also in daily life it is for humans not easy to descrikgieitly how to recognize
a particular person.

If an expert has a good knowledge about the physical backgrotia pattern class
he may well be able to define a small set of powerful featuras ¢an be used to

1 In this reasoning we neglect here the fact that some objeetarabiguous and can belong to
more than a single class, e.g. the digit '0’ and the letterifDsome fonts. We also assumed
that the class labels are generated without any noise.



construct a well performing recognition system. If he isita¢ise however he may
supply long lists of possible measurements that might bd asefeatures. Obtaining
many features is the result of a lack of knowledge. This shdne compensated by
many, well labeled examples to be used by the pattern retogrinalyst to train a
classification system and possibly to determine a smallfga@d features.

In application areas where many feature have been propesedn OCR, optical
character recognition, this is the result of a lack of knalgke. We don't know, in the
sense that we cannot make it explicit, how we recognize ckens Such applications
become only successful if large amounts of data becomeadlaito compensate this
lack of knowledge.

4 Pixel Representation

If good features cannot be found for objects like imagesetsignals and spectra, an
obvious alternative is to take everything: just to sampéedhject. For images these are
the pixels and we will use that word for the resulting repnéagon: the pixel represen-
tation. It has the advantage that it still contains evenghseemingly no information is
lost (see below for a discussion), but it is not specific. Mpixgls may be needed to
generate a good result.

In the above mentioned OCR application area, a break-throwas established
when pixel representations became possible due to theabil#jl of large datasets
and big and fast computers to handle them. OCR systems aa#lyusased on a com-
bination of many approaches, including pixel based ones.

There is a paradox related to this development. High reisolirhages yield high di-
mensional vector spaces resulting from the pixel reprasient To build classification
systems for such spaces many examples (large trainingasetsieeded. For a given,
limited size of the training set, it may be better (yieldinbigher performance) to re-
duce the dimensionality by taking less pixels, e.g. by subding the images. This
is entirely different from the human recognition. It is @nly not true that the human
recognition is improved by the use of low-resolution imagess points to a possible
defect of this whole approach: the representation andéotltissification schemes used
in it are not appropriate.

What is definitely wrong with the pixel representation istttee pixel connectivity,
the relations between neighboring pixels in the image,st Ierom the representation
it cannot be retrieved anymore which axes that participateoinstituting the space
correspond to neighboring pixels. We have cut the objecgsdoes, have put them on
a heap and we try now to use this heap for recognizing the bhfeother words, we
have lost ourselves in many minor details and the sight oartkiee object is completely
gone. This has already been observed and discussed erfgisivGoldfarb [1].

5 Structural Representations

An approach to pattern recognition that definitely resptws objects should be con-
sidered in their entirety and that it takes into account thatdangerous to break them



down in unrelated sets of properties is structural pattecognition. Unfortunately, this
approach does not produce a vector space, but represeetssotyy strings or graphs.

Generalization from sets of strings or graphs has been dana fong time by
template matching. E.g. a dissimilarity measure betweaphyg is defined and by the
resulting graph match procedure new objects are classifi¢det class of the object
with the most similar graph. Much work has been done on thedrement of the rep-
resentation as well as on the matching procedure. Clagsificisself relied for a long
time just on template matching, corresponding to the néasgghbor rule in statistical
pattern recognition.

6 Dissimilarity Representation

Between the above representations clearly a gap can bevedsEor vector spaces very
nice sets of tools are available to describe class domaits aynstruct classification
functions. The feature and pixel representations howéarapply such vector spaces
suffer from the fact that they describe the objects justigldytresulting in strong class
overlap, or cut them entirely in pieces by which their stmetis lost. The structural
representations respect object structure but fail to coaish good representation space
for which a broad collection of tools is available.

The dissimilarity representation [2] tries to bridge thigpg It takes the pairwise
dissimilarities as found in the matching procedures ofcstnal pattern recognition and
uses them to construct a vector space in which every objeepiesented as a point.
Instead of template matching now classifiers in such vegaceas can be considered.
The two main approaches to construct a vector space fromea gt dissimilarities,
the dissimilarity matrix, will be shortly treated. Thereanany references that describe
these in mathematical terms, e.g. [2],[3].

6.1 TheDissimilarity Space

In the first approach the dissimilarity matrix is consideasca set of row vectors, one
for every object. They represent the objects in a vectorespanstructed by the dissim-
ilarities to the other objects. Usually, this vector spacteated as a Euclidean space.

If there arem objects given to construct the space, then each of them éndiy
m dissimilarities (including the dissimilarity with itseléisually zero). The initial dis-
similarity space is thereby given asradimensional vector space with objects in it.
This is a degenerate situation in which many classifierslyii@ld results due to over-
training or the the curse of dimensionality [4]. Some cléss like the SVM can still
produce good results in this situation, but for many it maybbger either to fill the
space with more objects, or to reduce the dimensionality,l®; some procedure for
prototype selection or feature selection (which coincide®). Even random selection
of objects works well as nearby objects are similar and aoansdelection produces
some sampling of total set.

The result is a vector space built by a so called representatt of objects and
which is filled by an appropriate training set. The standanlst of statistical pattern



recognition can be used to construct classifiers. New abget mapped into the space
by just measuring their dissimilarities to the represeotesdet.

It should be realized that the Euclidean distances betwbgtis in the dissimilar-
ity space are only in very special cases identical to thergdissimilarities. In general
they are different. However, it is expected that almostiidahobject have very similar
dissimilarities to all representation objects, so theybelvery close in the dissimilarity
space and have thereby a small distance. Consequentlyssimdarity representation
is compact. If the dissimilarity measure that is used is appate then the reverse is
also true: different objects will have different dissinitees to the representation ob-
jects under the condition that this set is sufficiently laagel well distributed over the
domain of objects. The dissimilarity representation haseahy the potential to be a true
representation.

6.2 Embedding the Dissimilarity Matrix

In the second approach, an attempt is made to embed the iggymatrix in a Eu-
clidean vector space such that the distances between #ha®hj this space are equal to
the given dissimilarities. This can only be realized erreef of course, if the original set
of dissimilarities are Euclidean themselves. If this isthetcase, either an approximate
procedure has to be followed or the objects should be emldddtiea non-Euclidean
vector space. This is a space in which the standard inneuptaifinition and the re-
lated distance measure are changed (among others, rgsultindefinite kernels). It
appears that an exact embedding is possible for every symerdéetsimilarity matrix
with zeros on the diagonal. The resulting space is the deebpseudo-Euclidean space.

The pseudo-Euclidean space consist of two orthogonal sebspa 'positive’ sub-
space and a 'negative’ subspace. Every object has a repaiearin both subspaces.
Both subspaces are normal Euclidean spaces. The squatadcdibetween two ob-
jects represented in the pseudo-Euclidean space has tédsmieed by subtracting the
squared distances between their representations in theulspaces instead of adding
them is in a ordinary Euclidean space. The negative subsmatée considered as a
correction of the given dissimilarities w.r.t. proper Edelan distances.

Many of the dissimilarity measures used in the pattern reitimg practice appear
to be indefinite: they cannot be understood as distances unchdgéan vector space,
they are sometimes even not metric and they do not satisfiyl#reer conditions that
are needed for optimizing the SVM classifier.

A small but growing number of classifiers can be trained ingbeudo-Euclidean
space [5], but a general toolbox is certainly not yet avéglaBor this reason and others
Euclidean corrections are studied: ways to transform thergdissimilarity matrix or
the pseudo-Euclidean embedding in such a way that an Eaalidector space is con-
structed that is as close as possible to the original. Thisriginly useful if the cause of
the non-Euclidean characteristic of the data is non-inédive, i.e. that it is unrelated
to the class differences. Measurement noise and approxiopimizations in deter-
mining the dissimilarities may result in non-Euclidearat&ns between objects. Such
noise may be removed by Euclidean corrections. In case, \veswihe non-Euclidean
characteristics are informative Euclidean correctiorlbdeiteriorate the performance.
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Fig. 1. lllustration of the difference between Euclidean, metig, non-Euclidean and non-metric

dissimilarities. If the distances between the four point8AC and D are given as in the left plot

then an exact 2-dimensional Euclidean embedding is pesdibthe distances are as given as
in the middle plot, the triangle inequality is obeyed. So ¢finen distances are metric. but no
isometric Euclidean embedding exist. The distances inigint plot are non-Euclidean as well as
non-metric.

In the present state-of-the-art the dissimilarity spacgbée preferred over embed-
ding combined with corrections. It is from a computationairp much more feasible
and it does not suffer from non-Euclidean problem. The digarity space however,
treats dissimilarities as properties and neglects thetadte character. For that reason
research into embedding approaches continuous from tpgetive that may preserve
better the information contained in the dissimilarity maasnents.

7 Thenon-Euclidean World of Human Pattern Recognition

In [6] we extensively studied the causes of the non-Euchdsearacteristics of many
real world datasets. We will summarize some results heretfaard discuss this topic
from a slightly shifted point of view in order to gather supipfor our main conjecture.

In fig. 1 the difference between non-metric and non-Euchdeiatances is illus-
trated. Distances can be metric and still non-Euclideam-Netric relations constitute
a strong example of non-Euclidean relations, but if theatlises are metric it is still
very well possible that the distances between more thae fhoets do not fit in a Eu-
clidean space. In fact this is very common. In many applicetithe analyst defines
a distance measure that is metric while he demands that tbet diistance between
objects is always smaller than any detdur.

It is not always possible to avoid non-metric relations. [Suge we have to define
a dissimilarity measure between real world objects likeafes of) cups. They may
be observed from different orientations, having differgimes that should not result in
contributions to the dissimilarity as they are invariamtsthe class memberships. So in
a pairwise comparison transformations for all orientatiand sizes are considered and
the smallest dissimilarity that is found is defined as theexirone, made insensitive

2 For local consistency we used in this example everywherevtrd 'distance’ instead of dis-
similarity. On other place again 'dissimilarity’ will be ed to emphasized that we are dis-
cussing distance-like relations that are possibly slopdindd
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Fig. 2. Vector space with the invariant trajectories for three otg©,, O, andO:s. If the chosen
dissimilarity measure is the minimal distance betweenehegectories, triangle inequality can
easily be violated, i.el(O1, O2) + d(O1,03) < d(O1, O3).

for the invariants. In other pairwise comparisons this pesds repeated for other pairs
of cups. Observed in some high-dimensional parameter gpsit@ation as sketched in
fig. 2 may exist, showing that in case the transformationgdaroving the invariants
are non-linear the triangle inequality may be violated.

Another example is given in fig. 3 which illustrates how arifiaial dataset has
been generated that we used for studying non-Euclidean ldagamulti-dimensional
cube two sets of non-overlapping balls are positioned ataan The balls in the two
sets have different radii. Their values are assumed to baawk For every ball all
distances to all other balls are measured from surface facrWe asked ourselves
the question whether it is possible to distinguish the twis,s2g. can we determine
whether an arbitrary ball belongs to the class of large lmalte the class of small balls
if we just measure the distances as defined and if the labal$ ather balls are given.
This appears to be possible making use of the negative péinegiseudo-Euclidean
space. If this is not given it is impossible. The surprisiaguit was that if the positive
part is neglected and just the negative part is given itlispsissible, even much better.

This example makes clear how we may interpret the negath&psce of the pseudo-
Euclidean space. If all balls would have had zero radii therjust had a collection of
proper Euclidean distances. Because the balls have a sigivéin distances are some-
what shorter. A small value is missing and as a result thetivegsubspace is needed
as a compensation. To phrase it somewhat poetic: as thetohpaee an inner life that
cannot directly be observed, but that influences the medslissimilarities, we end up
with non-Euclidean data.

Let us now return to recognition problems for which feature difficult to define,
like characters and medical images. Euclidean distanceisecdefined for such objects,
e.g. by putting them on top of each other and adding the sdudifferences pixel by
pixel. Researchers trying to improve this create diffediasimilarity measures, e.g.
by a non-linear deformation of the pixel grid, see [7]. Thiegreby try to simulate the
human way of observing objects implicitly, as they aim to imje the performance of
the automatic recognition system such that it approxinmtheehuman recognition. This
is done by deviating from the Euclidean distance measure.



Fig. 3. lllustration of an artificial experiment in which sets of Isavith different radii are distin-
guished by the distances between their surfaces.

There are many examples in the literature of non-Euclidéssirdilarity measures
[2]. In particular in relation with shape recognition thessimilarity approach using
such measures produces good results. This brings us tolkwifa conjecture:

The way humans judge differences between real world objectsis non-Euclidean.
Thisis caused by the fact that they include object structure next to object features.

The above mentioned 'inner life’ of objects is thereby idied as structure.

8 Discussion and Conclusion

For the recognition of real world objects measured by imatiyee signals and spectra,
simple features or samples may not be sufficient. They netjlednternal structure of

objects. Structural descriptions like graphs and striagk the possibility of the use of
an appropriate vector space. The dissimilarity represientaridges this gap, but has
thereby to be able to deal with non-Euclidean dissimilesitiWe conjecture that this
deviation from the Euclidean distance measure is causetedintlusion of structure

in the human judgement of object differences which is laghmthe traditional feature

representations.
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