
Effects of Artifact Age on Maven Dependency Resolution

Gints Kuļikovskis1,?

Supervisor: Sebastian Proksch1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 29, 2024

Name of the student: Gints Kuļikovskis?
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Casper Poulsen

∗

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This study conducts an investigation of the chal-
lenges faced by aging projects in Maven Central, fo-
cusing on the issue of missing dependencies. Using
the Maven Explorer indexer, we systematically ex-
amine the correlation between the age of a project
and the frequency of dependency resolution fail-
ures. Our analysis reveals a notable trend: older
packages in Maven Central are more likely to en-
counter dependency resolution issues compared to
newer ones. A widespread cause that was identi-
fied is the reliance on repositories without Trans-
port Layer Security (TLS). Through this research,
we highlight the prevalent issues within the Maven
Central ecosystem and also offer insights into com-
mon causes of dependency resolution failures. We
advocate for uploading new versions of libraries to
multiple repositories to mitigate these issues. This
study reviews the current state of Maven Central
and extends some of the findings to other package
management systems, contributing to a broader dis-
course on software longevity and dependency man-
agement.
Keywords: Maven Central, Dependency resolu-
tion, Software longevity

1 Introduction
This research is motivated by the need to understand to what
extent aging projects in Maven Central become unusable due
to missing dependencies. While Maven Central itself pre-
serves all past versions of artifacts, the artifacts themselves
often have dependencies that are either located on alterna-
tive repositories or file hosting services, or are linked as in-
dividual files on the developer’s machine. In fact, there have
even been cases where such alternative repositories have been
completely taken down, as in the case of JCenter [1]. Conse-
quently, a user of some Maven project that has not been up-
dated in a while might find that it is impossible to build the
project, even though nothing has changed in the project itself.

This issue is particularly significant for open-source
projects. A small but popular project that goes missing can
cause worldwide disruption, such as in the case of the package
“kik” from 2016 [2]. Similarly, researchers trying to replicate
a previous experiment that now has a missing dependency may
find themselves unable to do so [3]. This problem extends to
researchers looking into historical trends of the Maven ecosys-
tem as well, for example, because they cannot reproduce the
results of their predecessors.

We build upon an existing indexer, Maven Explorer [4]
in order to answer the question of whether dependencies be-
come unavailable as a project ages and, for those that do, what
are the most common causes. There exist more than 12 mil-
lion distinct artifacts in Maven Central and at least 37 million
global artifacts, with this figure representing artifacts that are
indexed by [5] at the time of writing. We highlight stategies
for having older releases remain resolvable for longer, in the
context of Maven and Maven Central. We also question the

relevance of our findings with respect to other package man-
agement systems such as Microsoft NuGet [6] or Debian’s Ad-
vanced Packaging Tool (apt) [7] in Section 5.

The research topic is answered in two sub-questions:
1. What is the correlation between the age of artifacts on

Maven Central and the frequency of their dependency
resolution failures?

2. What are the predominant causes of dependency resolu-
tion failures in artifacts on Maven Central, and how do
these causes vary by artifact age?

We present the results relevant to the research questions in
Sections 3.1 and 3.2, with an explanation and further discus-
sion in Section 5.

We have found that, in general, older dependencies are more
often unresolvable: refer to Section 3. Furthermore, we in-
vestigate the proportion of dependency resolution errors re-
lated to now-blocked non-HTTPS repositories, estimating that
close to 0.3 percent of all requested artifacts could fail to be
downloaded because of this.

2 Methodology
In this section, we explain our overall approach for research-
ing dependency resolution issues in aging packages as well as
the approach for identifying some of the underlying causes.
First, we explain the general steps, after which, in Section 2.1,
we introduce some core definitions with respect to Apache
Maven. After that, in Sections 2.2 and 2.2, we highlight the
general data collection and processing steps used in this re-
search. Lastly, we cover expected causes for dependency res-
olution failures.

This study utilized a quantitative research approach, fo-
cusing on indexing Maven Central’s artifacts to assess how
many of them have missing dependencies. We also checked
the impact of having insecure HTTP-based repositories now
automatically blocked by assessing whether the project refer-
ences repositories with an address beginning with “HTTP://”.
Lastly, we gather information about the original transitive de-
pendencies that are responsible for failing the dependency res-
olution step of packages in our data set.

2.1 Maven Repositories and Dependency
Resolution

In this subsection, we introduce specific Maven concepts rele-
vant to this research. The definitions are documented in more
detail in [8], which is our main source for this subsection.

Maven dependencies are generally located in a repository
that hosts information that is necessary to build and reference
the package. In theory, any file that can be uniquely identi-
fied by its group ID, artifact ID and version, abbreviated as
“GAV”, constitutes a maven artifact. A developer can refer-
ence artifacts in their project by adding them to a file called
POM.xml, providing the group and artifact identifiers and op-
tionally the version of the desired package. Here, the desired
scope of the dependency can be specified as well, for instance,
to separate compile-time dependencies from those required in
the testing stage.

When a project is built, the local repository is searched first
to see if the required version of each artifact has already been

downloaded. Otherwise, Maven Central and all explicitly de-
clared repositories are searched for the artifact, until a match
is found that fits the version requirements. The assembly of
a project’s dependencies is one of the first steps of a Maven
build pipeline, executed using the ‘dependency:resolve‘ task
of the Maven executable [9]. Dependency resolution itself
is a complicated process that often involves situations such
as clashing dependency requirements, missing dependencies,
and complex build lifecycles and plugin configurations. This
research focuses on investigating the different errors that oc-
cur in dependency resolution; such errors generally interrupt
the process itself and any subsequent build steps.

2.2 Data Collection
The original data source for this project was the metadata of a
portion of Maven Central artifacts that was indexed over a set
period of time using the [4] project. The collected data was
recorded in a database and summarized using statistical meth-
ods to get an overview of the amount and types of dependency
resolution errors. We looked at some of these categories to at-
tempt to explain their general causes and, for some of those,
suggested concrete mitigation steps.

Procedure
In order to answer the research questions, we rely on an index
of the Maven Central repository. The repository is indexed us-
ing the Maven Explorer tool [4], which publishes its results as
messages to separate Apache Kafka topics. Currently, around
five million different releases are indexed, which is a number
that is significant enough to develop an understanding of the
overall state of the platform.

Apache Kafka is a platform for transporting messages from
a producer to a consumer, with a focus on scalability and fault
tolerance, as well as the ability to handle large volumes of
data[10].

We implemented a Kafka consumer for processing the mes-
sages, storing the artifact’s creation date, any encountered er-
ror messages, and useful metadata like the artifact’s location,
repository address, etc. This information is stored in a relation
database and is later queried to compute statistics about the
indexed artifacts. We then generate a histogram of the num-
ber of dependency resolution errors out of the total number of
packages for each year.

The metadata was made available in Kafka Messages,
which are categorized in three Topics follows:

1. Requested—Releases found in indices of Maven Central,
to be downloaded;

2. Downloaded—Releases for which downloading was at-
tempted, including the required dependencies; This topic
was the focus of this research.

3. Analyzed—Releases for which additional processing
was performed, such as the construction of an effective
POM.

Each of the topics is divided into Kafka Lanes–Normal, Er-
ror, and Priority, based on the success of the previous task.
The Priority lane was created to enable certain processing
stages to re-enqueue artifacts with additional priority, skip-
ping a line of potential thousands of other messages.

We analyze all available messages in the ‘Downloaded’
lane, merging Normal and Priority lanes into a “success”
group, and investigate the “error” group separately. For calcu-
lating the proportion of artifacts with dependency resolution
errors, we separated the artifact releases by year and divided
the number of packages with errors by the total number of
packages published that year.

Error Classification
The error messages consist of two parts: Exception class name
and stack trace. We match the messages by the exception name
to generate an overview of the most common errors that oc-
cur while retrieving the projects and their dependencies. We
check the frequency of each type of exception in the set of
packages that were attempted to be downloaded and manu-
ally inspect some examples from each of the broader excep-
tion classes.

Finding the Publishing Date
This research compares the age of the artifact with the pres-
ence of issues with dependency resolution. We considered
two approaches to obtain the publication date. The most ac-
curate way would be to execute a HEAD request to the HTTP
resource that contains the analyzed artifact. An alternative
and computationally lighter approach is to use the build date
that is available with the indexed artifact. Although the build
date might differ slightly from the actual publication date, we
expected the difference to not exceed one or two months, in
the worst case.

2.3 Potential Causes of Resolution Errors
Having approximated the general causes of a given category of
errors, it is useful to investigate the underlying causes. In the
scenario where the immediate error is an unsuccessful HTTP
request, depending on the status code of the response, cer-
tain conclusions about the underlying cause could be drawn.
Otherwise, the error source can be narrowed using the ‘depen-
dency:resolve‘ task of the Maven program, discussed in more
detail in Section 3.

The HTTP 403 (Forbidden) status code is returned when the
user is not authorized to access the requested resource. We en-
countered this issue in scenarios where the repository requires
authentication, such as the GitHub Package Registry. In this
case, the user can register their credentials in their Maven set-
tings.xml, which will then be used to authenticate the request
to the GitHub domain.

Repository Down
For a package with a URL pointing to a resource that is un-
available, it could be checked if the domain name can be re-
solved, or it could potentially be simply checked against a list
of known former repositories that have been taken down. For
example, while the JCenter repository was taken offline in
2018, in 2023 still more than 9.3 thousand pom.xml files on
GitHub reference this former repository [11]. Note that a sub-
set of these GitHub repositories is the source code of existing
Maven artifacts.

Changes in the Surrounding Configuration
Migrations to the Maven system likely affected the availability
of some artifacts. A conflict with the POM.xml schema is an

unlikely but possible cause, since the schema has been devel-
oped to be backward compatible to some extent. More likely,
incompatibilities with new maven plugins or other artifacts
could cause issues after an upgrade of a Maven repository.

2.4 Exploring Solutions for Missing Dependencies
When trying to recover a missing artifact, several strategies
emerge. A valid approach could be to use a mirror of the
repository if the artifact’s version is available there. How-
ever, it might be wise to verify the authenticity of the pack-
age. Checking for the GPG signature of the author can help,
but this approach has its challenges, especially if the original
package and the details of the original author are lost. This
raises the possibility that the mirrored version’s author could
be different, with a distinct GPG key.

In situations where an older version of a required depen-
dency is removed from the repository due to its age, newer
versions might retain information about the author’s GPG key.
This detail can be useful for validating the integrity of the
older version sourced from the mirror.

2.5 Manual Workarounds
Since some errors are the result of the resolver refusing to
download dependencies from insecure HTTP repositories, po-
tential workarounds were investigated and are covered in Sec-
tion 3.

Furthermore, a trend was observed for POM.xml files to
contain invalid xml tags (that is, those that conflict with its
XML schema (POM.xml schema: [12]). In cases where this
is the main cause of dependency resolution failure, these tags
could be removed for parsing, further explained in Section 3.

3 Experimental Setup and Results
In this section, we provide specific steps that were made to
answer the research questions,

The general setup of our experiment consists of a program
called “Maven Error Stats” which parses the results of the
Maven Explorer project, in the form of Kafka messages, and
persists them in a relational database. The relational database
is by default auto-generated based on our model classes, but
can be reviewed in Appendix A.

Afterwards, we generate summaries using our repository
containing Python scripts, called “Maven Error Summarizer”.
Here, we take advantage of our relational database, such as ef-
ficient storage and querying of rows; explained, for instance,
in [13] among many others. These advantages are especially
relevant in the context of generating an overview of a large
number of rows. We therefore chose to build the project
around executing most of the selecting logic inside our queries
to the relational database, to use features like indexing and
query optimization.

1. For packages that failed the dependency resolution task,
we execute the task ‘mvn dependency:resolve‘ and parse
its output to find out exactly which dependencies are un-
available. With this functionality, it is possible to locate
clusters of packages that all fail dependency resolution
because of the same missing package. The results of this
are available in Table 2

2. For all packages, we support locating the artifact in the
local repository and persisting its POM file(s). This is
useful because an error in the POM file of a package often
causes the Maven dependency resolution plugin to fail.
However, this was not used for this research.

3. To attain an approximate proportion of artifacts failing
dependency resolution due to missing Transport Layer
Security for the repository address, we evaluate the ef-
fective POM [14] of the artifact and search it for “<repos-
itory>” tags that contain an address attribute beginning
with “http://”.

Either of these additional processing tasks can be toggled
using the appropriate flag in the system environment as ex-
plained in the README of our repository.

3.1 Research Question 1:
Correlation Between Age and Resolution Errors
The Maven Explorer program is used to index packages found
in the Maven Central repository. Maven Explorer caches the
found packages in the local repository and publishes a Kafka
message on the appropriate topic, ‘normal’ or ‘error’, depend-
ing on whether its dependencies could be resolved. These
messages are then stored in a relational database system to en-
able querying on the collected information, including the re-
lease information, publishing date, and the type of error found
while trying to resolve the dependencies of the package.

At the time of the experiment, our Maven Explorer instance
has we used has saved 3.5 million versions from index number
700 starting on 2021-09-28, caching dependencies of projects
released until January, 2024. The use of these indices there-
fore causes the releases published after 2021-09-28 to be over-
represented in our sample, as shown in Figure 2. In light of
that, we exclude release dates after the first index, this way
only showing packages that were stored because they are ref-
erenced by projects covered by the indices.

This research found that older packages are indeed more
likely to fail dependency resolution, based on Figure 1, with
the margin of error of 0.26% assuming a population size esti-
mate by [5] of 37 million artifacts and 140’527 included in the
experiment with a confidence level of 95%, calculated using
[15]. Note that the estimate is a low estimate due to the fact
that it only represents packages indexed by [5].

A numerical summary of the results from Figure 1 is as
follows:

• Mean Proportion: 0.0312
• Median Proportion: 0.0248
• Standard Deviation: 0.0226
• Correlation Coefficient (R value): −0.838

• Linear Regression: y = −0.004118x+ 8.322981

3.2 Research Question 2:
Predominant Causes and Relation to Age
A number of different error messages were found when query-
ing the database for artifacts whose dependency resolution has
been unsuccessful. The most common general errors and their
prevalence are illustrated in Figure 2 and Table 2. One of the

Figure 1: The proportion of artifacts with missing dependencies per
release year. Data table available in Appendix C.

Figure 2: The proportion of artifacts with missing dependencies per
release year, including over-respresentation of packages explicitly
downloaded by the Maven Explorer (from 2021 onwards).

most common errors occurs due to a security measure in place
by default on the maven system to block repositories that do
not support HTTPS, instead only providing HTTP-based ac-
cess. While blocking unencrypted HTTP transport is a use-
ful security measure to prevent various types of attacks or
eavesdropping, it also prevents the dependency resolution of
a significant amount of older artifact versions. Consider Fig-
ure 3 where the proportion of two most common error types
plus the BlockerMirrorException, which indicates that depen-
dency resolution failed because the transport layer security re-
quirement was not met. Considerations and workarounds for
this problem are discussed in Section 5.

By evaluating the effective POM [14] of the artifact and
searching for “<repository>” tags that contain an address at-
tribute beginning with “http://”, we attempted to estimate how
frequently artifact releases depend on repositories that do not
support Transport Layer Security. We did not collect a signif-
icant amount of data points using this approach, estimating a
share of 0.3% based on 1197 artifact releases.

In order to retrieve more detailed information about the
source of errors in dependency resolution, the maven action
‘mvn dependency:resolve’ is executed with the given artifact

Figure 3: Proportion of different exception types encountered per
artifact release year.

Figure 4: Most frequently encountered exception types in analysis
pipeline.

as input. With this, it is possible to find the path to the spe-
cific dependency that cannot be retrieved, allowing for better
insight into the underlying issue.

In Table 1, we list artifacts that are most often found missing
when running ‘mvn dependency:resolve‘. It may be interest-
ing to look into the specific cases of each artifact. Note that the
number indicated by the first element, the Maven Downloader
Plugin, is the first dependency that needs to be fetched when
checking any artifact. Therefore, it is present in the output
for all analyzed packages, consequently indicating the exact
number of artifacts that were analyzed. These results are not
indicative of an issue in the context of this research, instead
showing an interesting correlation that could be investigated
in future studies.

4 Responsible Research

This research investigates a topic that affects open research—
when a repository containing a research experiment no longer
compiles, it is no longer easily repeatable.

In this section, we cover the topics of data collection ethics,
auditability of our source code, and potential threats to valid-
ity.

maven-downloader-plugin org.apache.maven.plugins 40404
glide com.github.bumptech.glide 962
annotation androidx.annotation 943
appcompat androidx.appcompat 938
hilt-android com.google.dagger 807
wasp-model_2.11 it.agilelab 765
core-ktx androidx.core 693
booster-android-gradle-compat com.didiglobal.booster 638
network me.proton.core 608
network-data me.proton.core 600

Table 1: Top 10 artifacts that are most often missing, causing depen-
dants to fail dependency resolution. A full version of this table in
Appendix B.

4.1 Data Collection Ethics
The data that was collected as part of this research consists of
metadata of publicly available Maven packages. Our exporter
program supports cataloging the contents of files found in arti-
facts, but this functionality was not used for this research. Fur-
thermore, this information was already available in the source
repository, and our project does not make it easier to traverse
it. We therefore consider the collected data not to be especially
sensitive.

The database is available upon request.

4.2 Open Science
Every step of the analysis pipeline is open source and is also
available as a self-contained docker image. We published the
source code under the MIT license, so that anyone can reuse,
adapt, and distribute it without restrictions.

The program created as part of this research is w with sim-
plicity in mind, to prevent technical complexity from posing
as a barrier for review efforts. The source code is available at
https://gitlab.com/gintsk/maven-error-stats, and a Docker
image is published at https://hub.docker.com/repository/dock
er/gints1/maven-error-stats.

The program depends on the Spring JPA Starter repository,
which has some drawbacks, but greatly reduces the amount of
repetitive code by auto-generating the database access layer.
Some of the drawbacks include unnecessary transitive depen-
dencies and essentially forcing to choose the Spring ‘@Bean‘
dependency injection instead of, for instance, Google Guice.
Additionally, the relevant database connection libraries are
updated as a single package, reducing the chances of future
dependency conflicts.

The project that was created as part of this research was
built to be extendable with new features. It is published as a
self-contained docker image, for easy replication of the work.

A core decision that we made is to avoid extending third-
party Java code, even if this requires additional work. In
early development, we modified parts of the Maven Explorer
project[4] and the Kafka wrapper project Franz[16], to make
changes and add needed functionality. Later we switched to
using Confluent’s parallel-consumer library[17], for a simple
multithreaded consumer support. This way we were able to
remove the last remaining references to packages hosted on
GitHub Maven Package Registry, consequently removing the
need for user authentication when building our project or its
docker image. As a result, the resulting JAR is smaller (50 MB
instead of 220 MB) and the program takes only 15 seconds
to compile instead of close to two minutes, informally tested

on the author’s machine (x86-64, 24-core i7-12800HX, 32GB
RAM, 100Mb ISP link; command ‘docker build .‘). This
makes it easier to test the self-contained image while mak-
ing incremental changes. In the program, it is also possible to
specify the exact configuration of Kafka, which is the event
management system that we use. We also support changing
the number of virtual threads, opening up the possibility to
run the project reliably on resource-limited systems as well as
vast server clusters that have a lot of resources to spare.

4.3 Repeatability and Generalizability
Our image was manually tested on multiple systems running
the Maven Explorer on other systems, and the analysis was
repeated on the dataset from a colleague’s machine. Using
our Docker image, it is easy to repeat our experiment on var-
ious different systems, and the results databases are easily
merged using PostgreSQL pg_dump utility. We consider that
our code repository opens the possibility to explore other re-
search questions, using the same data set.

With regard to internal validity, we consider that, using the
explanation in Section 3 for the experimental setup and the
README.md of our repository for practical information, it
is possible to replicate the experiment. We consider that there
is at least one significant threat to internal validity, as in our
experiment, TLS-lacking repositories were enabled half-way
through the experiment. When collecting a new dataset to re-
peat our experiment, one would make a choice of whether to
allow through insecure HTTP requests before starting the col-
lection. This would result in a different proportion. Moreover,
it is highly likely that a dataset collected by another researcher
will contain different artifact releases, even if they are using
the same Maven Central indices for choosing which artifacts
to request.

About external validity, we consider that the problem cov-
ered by our research is relevant for other package manage-
ment systems like Microsoft’s NuGet and Debian’s Advanced
package tool (apt). When dependencies become unavailable,
projects usually cannot be used without making changes to the
source code or the surrounding configuration. Other package
management systems also experience similar issues, for exam-
ple, as NuGet’s Documentation about insecure HTTP repos-
itories[18] shows, this topic is relevant in their ecosystem as
well. Debian’s apt approaches this issue differently, not re-
quiring transport layer security but instead checking that all
packages are signed with a GPG key [19]; whereby this as-
pect of our research does not currently apply.

Although there have been existing studies like [20] compar-
ing the properties of different package managers, we consider
that it might be interesting to compare the results of this study
with other package managers.

5 Discussion and Future Work
The findings show that older packages are more likely to fail
dependency resolution than newer packages, with a downward
trend towards the present. We explain this as breakage due to
external changes that are made to the host repository or the
Maven ecosystem such as repository migration or upgrades
to surrounding configuration such as POM file structure. The

https://gitlab.com/gintsk/maven-error-stats
https://hub.docker.com/repository/docker/gints1/maven-error-stats
https://hub.docker.com/repository/docker/gints1/maven-error-stats

problem of increased dependency resolution failures for older
packages are likely further exacerbated by the use of external
repositories, or other factors that we have not considered—
which is worth looking into in future research.

The experiments conducted in this research do not indicate
a connection between different dependency resolution errors
and the release date of the artifact.

Although from an insufficiently large data set, we estimate
that around 0.3% of artifacts could be located on repositories
that are reached over HTTP without Transport Layer Security,
further discussed in Section 5.3.

5.1 Bloated Dependencies
Numerous other projects have been created for analyzing the
issues relating to the decentralized nature of Maven. [20]
found that 75% of all declared dependencies across the Maven
ecosystem are unnecessary. These dependencies are declared
in the pom.xml file, and even though they are not used in the
project, maven will still attempt to resolve them.

We think that this might be explained by the fact that de-
velopers are not always aware of the dependencies that are
included in their projects. Dependency management could be
considered a chore to some, in contrast to managing the ac-
tual program that interacts with the linked libraries. Reason-
ably, developers may forget to revisit this task unless problems
arise, meaning that a dependency that had been added tem-
porarily might not be removed before the project is published.

There also exist so-called “starter” dependencies, which al-
low the developer to start working with a certain framework
without worrying about individual components [21]. These
take away the task of updating every individual component
while significantly increasing the resulting artifact size. We
think that it is generally advantageous to use these dependen-
cies as they reduce the risks of individual components being
outdated or incompatible with each other.

5.2 Sources of Failure for Missing Dependencies
We recommend investigating individual artifacts that are most
often found in the trace obtained when executing the depen-
dency resolution task. This research does not cover this ques-
tion, but we consider that this could provide useful insight into
this research area.

5.3 The Lack of TLS in Maven Repositories
The use of a repository that lacks transport layer security
(TLS) is the most common issue. For individual developers, if
there is a need to use an older project that relies on dependen-
cies hosted on an HTTP-based repository, it might seem ap-
propriate to remove the HTTP-based repository blocker. How-
ever, this could introduce a security risk [22]. It is a much
better idea to unblock individual repositories as needed, as
explained in this StackOverflow answer: [23].

In light of the issues discussed, a general recommendation
is to avoid using more than one repository in open-source
projects. Especially for more popular open-source projects,
we recommend uploading new versions of your library to mul-
tiple repositories.

‘System’ and ‘Provided’ Scopes
Maven allows declaring local dependencies using the scope
‘system’, specifying that the location of the package is a URL
not inside a repository but the local system [12]. Maven de-
pendency resolution fails if any path specified in this way is
absent. Similarly, the scope ‘provided’ indicates that the jar is
expected to be present in the environment, such as one of the
Java system libraries. We did not investigate whether the use
of these scopes is widespread; it may be worth investigating
in future work.

5.4 GitHub Package Registry
Why do developers choose to publish packages in the GitHub
package registry instead of Maven Central? One reason is that
it is simply easier to do, rather than having to meet the re-
quirements to publish a package on Maven Central [8]. [24]
found that the GitHub package registry is the third most pop-
ular hosting repository for Java packages, highlighting that
it is more popular for publishing than for referencing pack-
ages. We believe that this is reasonable, given that the use
of packages from the GitHub package registry requires addi-
tional configuration. Based on our results, we generally dis-
courage the publishing of open-source packages on package
registries that require authentication, like the GitHub package
registry.

5.5 Summary
In conclusion, this study provides insight into the challenges
faced by aging projects in Maven Central due to missing de-
pendencies. Our analysis, using the Maven Explorer[4] in-
dexer, confirms that older packages are indeed more prone
to dependency resolution failures, with the lack of Transport
Layer Security (TLS) in repositories being a frequent cause.
This trend poses a significant risk, especially for open source
projects that form an integral part of the software ecosystem.
We recommend that developers and maintainers of popular
open source projects consider uploading new versions of their
libraries to multiple repositories. Furthermore, this research
underlines the importance of active maintenance and the po-
tential risks associated with dependencies from repositories
requiring authentication, such as the GitHub package registry.
Our findings emphasize the need for better dependency man-
agement practices and highlight areas for future research. The
insights gained from this study contribute to enhancing the
longevity of software projects in the Maven ecosystem, with
some extension to other package management systems.

Acknowledgments
This project would not have been possible without
Dr.Ir. Sebastian Proksch. Thank you for all the advice
you have given over the course of this research and for
providing access to the large dataset of Maven artifacts.

Many thanks to my parents and friends who supported me
while I was working on this project.

Special thanks to Mathijs van der Schoot, who tested my
data collection program and in this way provided a large
dataset which helped a lot for my experiment. I had the
pleasure of working with Vivian Roest, Jelle Sandifort and
Yifei Lu, who all gave invaluable feedback and insights dur-
ing my research.

References
[1] S. Greene, “JCenter Shutdown Impact on Gradle

Builds,” Gradle, Feb. 2021. [Online]. Available: https:
//blog.gradle.org/jcenter-shutdown

[2] P. Boldi, “How network analysis can improve the reli-
ability of modern software ecosystems,” in 2019 IEEE
First International Conference on Cognitive Machine In-
telligence (CogMI), 2019, pp. 168–172.

[3] F. C. Y. Benureau and N. P. Rougier, “Re-run, repeat,
reproduce, reuse, replicate: Transforming code into
scientific contributions,” Frontiers in Neuroinformatics,
vol. 11, 2018. [Online]. Available: https://www.frontier
sin.org/articles/10.3389/fninf.2017.00069

[4] “maven-explorer,” Jan. 2024, [Accessed 23. Jan. 2024].
[Online]. Available: https://github.com/cops-lab/maven
-explorer

[5] “Maven Repository: Repositories,” Jan. 2024,
[Accessed 28. Jan. 2024]. [Online]. Available:
https://mvnrepository.com/repos

[6] “NuGet Gallery | Home,” Jan. 2024, [Accessed 28. Jan.
2024]. [Online]. Available: https://www.nuget.org

[7] “PackageManagement - Debian Wiki,” Jan. 2024,
[Accessed 28. Jan. 2024]. [Online]. Available: https:
//wiki.debian.org/PackageManagement

[8] S. Authors, “Requirements,” Maven Central Repository
Documentation, Jan. 2024, [Accessed 22. Jan. 2024].
[Online]. Available: https://central.sonatype.org/publi
sh/requirements/#sufficient-metadata

[9] “Apache Maven Dependency Plugin – dependency:re-
solve,” Oct. 2023, [Accessed 28. Jan. 2024]. [Online].
Available: https://maven.apache.org/plugins/maven-d
ependency-plugin/resolve-mojo.html

[10] “Apache Kafka,” Jan. 2024, [Accessed 24. Jan. 2024].
[Online]. Available: https://kafka.apache.org/intro

[11] “GitHub Search Results for “path:**/pom.xml jcen-
ter.bintray.com”,” Jan. 2024, [Accessed 28. Jan. 2024].
[Online]. Available: https://github.com/search?q=path:
**/pom.xml+jcenter.bintray.com&type=code

[12] E. al. Eric Redmond and K. H. Marbaise, “Maven –
POM Reference,” Dec. 2019, [Accessed 24. Jan. 2024].

[Online]. Available: https://maven.apache.org/pom.htm
l#Dependencies

[13] J. L. Harrington, Relational Database Design and
Implementation, 4th Edition. Morgan Kaufmann, Apr.
2016. [Online]. Available: https://www.oreilly.com/libr
ary/view/relational-database-design/9780128499023

[14] J. van Zyl and E. Redmond, “Maven – Maven
Documentation,” Aug. 2009, [Accessed 28. Jan. 2024].
[Online]. Available: https://maven.apache.org/guides

[15] “Sample size calculator - CheckMarket,” Jun. 2021,
[Accessed 28. Jan. 2024]. [Online]. Available: https:
//www.checkmarket.com/sample-size-calculator/#sam
ple-size-margin-of-error-calculator

[16] cops lab, “Franz,” Jan. 2024, [Accessed 24. Jan. 2024].
[Online]. Available: https://github.com/cops-lab/franz

[17] C. Inc., “parallel-consumer,” Jan. 2024, [Accessed 24.
Jan. 2024]. [Online]. Available: https://github.com/con
fluentinc/parallel-consumer

[18] nkolev92, “NuGet Warning NU1803,” Jan. 2024,
[Accessed 27. Jan. 2024]. [Online]. Available: https:
//learn.microsoft.com/en-us/nuget/reference/errors-and
-warnings/nu1803

[19] D. K. Julian Andres Klode, Michael Vogt, “apt-get
Manual Page,” Jan. 2024, [Accessed 27. Jan. 2024].
[Online]. Available: https://salsa.debian.org/apt-team/
apt/-/blob/main/doc/apt-get.8.xml

[20] C. Soto-Valero, N. Harrand, M. Monperrus, and
B. Baudry, “A comprehensive study of bloated depen-
dencies in the Maven ecosystem,” Empir. Software Eng.,
vol. 26, no. 3, pp. 1–44, May 2021.

[21] C. Walls, Spring in Action, Sixth Edition. Riverside,
NJ, USA: Simon and Schuster, 2022.

[22] M. Veytsman, “How to take over the computer of any
Java (or Clojure or Scala) developer,” Max.Computer
Blog, Oct. 2017, [Accessed 23. Jan. 2024]. [Online].
Available: https://max.computer/blog/how-to-take-ove
r-the-computer-of-any-java-or-clojure-or-scala-devel
oper

[23] Sebu, “How to disable maven blocking external HTTP
repositories?” Stack Overflow, Jan. 2024, [Accessed 23.
Jan. 2024]. [Online]. Available: http://web.archive.org/
web/20240122233222/https://stackoverflow.com/a/67
002852

[24] V. Roest, “An analysis of Java release practices on
GitHub,” Jan. 2024, [Accessed 24. Jan. 2024, TU Delft
Bachelor thesis].

https://blog.gradle.org/jcenter-shutdown
https://blog.gradle.org/jcenter-shutdown
https://www.frontiersin.org/articles/10.3389/fninf.2017.00069
https://www.frontiersin.org/articles/10.3389/fninf.2017.00069
https://github.com/cops-lab/maven-explorer
https://github.com/cops-lab/maven-explorer
https://mvnrepository.com/repos
https://www.nuget.org
https://wiki.debian.org/PackageManagement
https://wiki.debian.org/PackageManagement
https://central.sonatype.org/publish/requirements/#sufficient-metadata
https://central.sonatype.org/publish/requirements/#sufficient-metadata
https://maven.apache.org/plugins/maven-dependency-plugin/resolve-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/resolve-mojo.html
https://kafka.apache.org/intro
https://github.com/search?q=path:**/pom.xml+jcenter.bintray.com&type=code
https://github.com/search?q=path:**/pom.xml+jcenter.bintray.com&type=code
https://maven.apache.org/pom.html#Dependencies
https://maven.apache.org/pom.html#Dependencies
https://www.oreilly.com/library/view/relational-database-design/9780128499023
https://www.oreilly.com/library/view/relational-database-design/9780128499023
https://maven.apache.org/guides
https://www.checkmarket.com/sample-size-calculator/#sample-size-margin-of-error-calculator
https://www.checkmarket.com/sample-size-calculator/#sample-size-margin-of-error-calculator
https://www.checkmarket.com/sample-size-calculator/#sample-size-margin-of-error-calculator
https://github.com/cops-lab/franz
https://github.com/confluentinc/parallel-consumer
https://github.com/confluentinc/parallel-consumer
https://learn.microsoft.com/en-us/nuget/reference/errors-and-warnings/nu1803
https://learn.microsoft.com/en-us/nuget/reference/errors-and-warnings/nu1803
https://learn.microsoft.com/en-us/nuget/reference/errors-and-warnings/nu1803
https://salsa.debian.org/apt-team/apt/-/blob/main/doc/apt-get.8.xml
https://salsa.debian.org/apt-team/apt/-/blob/main/doc/apt-get.8.xml
https://max.computer/blog/how-to-take-over-the-computer-of-any-java-or-clojure-or-scala-developer
https://max.computer/blog/how-to-take-over-the-computer-of-any-java-or-clojure-or-scala-developer
https://max.computer/blog/how-to-take-over-the-computer-of-any-java-or-clojure-or-scala-developer
http://web.archive.org/web/20240122233222/https://stackoverflow.com/a/67002852
http://web.archive.org/web/20240122233222/https://stackoverflow.com/a/67002852
http://web.archive.org/web/20240122233222/https://stackoverflow.com/a/67002852

A Relational Database Schema
CREATE TABLE artifact (

id BIGSERIAL PRIMARY KEY,

artifact_identifier VARCHAR(255),

group_identifier VARCHAR(255),

packaging VARCHAR(255),

repository VARCHAR(500)

);

CREATE TABLE artifact_release (
id BIGSERIAL PRIMARY KEY,

release_date TIMESTAMP(6) WITH TIME ZONE,

version_string VARCHAR(500),
artifact_id BIGINT REFERENCES artifact,
m2directory_id BIGINT UNIQUE,

CONSTRAINT uk_artifact_release UNIQUE (artifact_id, version_string)

);

CREATE TABLE explorer_result (
id BIGSERIAL PRIMARY KEY,

created_at TIMESTAMP(6) WITH TIME ZONE,

explorer_stacktrace VARCHAR(1000000),
is_release_date_found_automatically BOOLEAN,
kafka_lane SMALLINT

CONSTRAINT explorer_result_kafka_lane_check CHECK ((kafka_lane ^>= 0) AND (kafka_lane

^<= 2)),
kafka_topic SMALLINT

CONSTRAINT explorer_result_kafka_topic_check CHECK ((kafka_topic ^>= 0) AND

(kafka_topic ^<= 2)),

processed_by_explorer_at TIMESTAMP(6) WITH TIME ZONE,
artifact_release_id BIGINT REFERENCES artifact_release

);

CREATE TABLE error_summary (
id BIGSERIAL PRIMARY KEY,

message VARCHAR(500055),
explorer_result_id BIGINT REFERENCES explorer_result

);

CREATE TABLE m2_directory (
id BIGSERIAL PRIMARY KEY,

m2_path VARCHAR(3060),
artifact_release_id BIGINT UNIQUE REFERENCES artifact_release

);

ALTER TABLE artifact_release

ADD CONSTRAINT fk_artifact_release_m2directory_id FOREIGN KEY (m2directory_id)
REFERENCES m2_directory;

CREATE TABLE m2_file (
id BIGSERIAL PRIMARY KEY,

content VARCHAR(500055),

filename VARCHAR(255),
m2directory_id BIGINT REFERENCES m2_directory

);

CREATE TABLE missing_dependency (
id BIGSERIAL PRIMARY KEY,
error_summary_id BIGINT REFERENCES error_summary

);

CREATE TABLE error_path_element (
id BIGSERIAL PRIMARY KEY,
index_in_path SMALLINT,
artifact_release_id BIGINT REFERENCES artifact_release,
missing_dependency_id BIGINT REFERENCES missing_dependency

);

B Most commonly missing dependency elements

maven-downloader-plugin org.apache.maven.plugins 40404
glide com.github.bumptech.glide 962
annotation androidx.annotation 943
appcompat androidx.appcompat 938
hilt-android com.google.dagger 807
wasp-model_2.11 it.agilelab 765
core-ktx androidx.core 693
booster-android-gradle-compat com.didiglobal.booster 638
network me.proton.core 608
network-data me.proton.core 600
wasp-core_2.11 it.agilelab 575
s2util org.seasar.util 553
material com.google.android.material 548
booster-android-gradle-api com.didiglobal.booster 469
booster-api com.didiglobal.booster 453
common-wrapper com.bihe0832.android 448
common-about com.bihe0832.android 394
framework com.bihe0832.android 379
lib-wrapper com.bihe0832.android 372
user-data me.proton.core 364
repository com.android.tools 357
common-feedback com.bihe0832.android 357
yinhesdk_ui com.github.vhall.sdk.yinhesdk 357
yinhesdk_baselib com.github.vhall.sdk.yinhesdk 357
common-photos com.bihe0832.android 350
constraintlayout androidx.constraintlayout 327
common-image com.bihe0832.android 315
common-list com.bihe0832.android 315
presentation me.proton.core 313
wasp-consumers-spark_2.11 it.agilelab 311
recyclerview androidx.recyclerview 300
viewbinding androidx.databinding 298
sdklib com.android.tools 281
common-coroutines com.bihe0832.android 280
common-webview com.bihe0832.android 280
gifdecoder com.github.bumptech.glide 274
micronaut-build io.micronaut.build.internal 245
common-ace-editor com.bihe0832.android 245
common-network com.bihe0832.android 245
common-praise com.bihe0832.android 245
kotlinx-coroutines-core-iosarm64 org.jetbrains.kotlinx 236
fragment androidx.fragment 236
support-annotations com.android.support 236
kotlinx-coroutines-core-iosx64 org.jetbrains.kotlinx 228
common-debug com.bihe0832.android 228
vhall-module-core com.github.vhall.android.base 221
tgbotapi.core-js dev.inmo 220
gradle-toolkit xyz.unifycraft.gradle 219
offline-acquirer-base com.opayweb 217
common-data-center com.bihe0832.android 214
coil-base io.coil-kt 212
common-splash com.bihe0832.android 210
challenge-data me.proton.core 196
docker-controller-scala-core_2.13 com.github.j5ik2o 196
lifecycle-viewmodel-ktx androidx.lifecycle 189
legacy-support-v4 androidx.legacy 188
binding com.hi-dhl 188
exifinterface androidx.exifinterface 185
lib-uiutils com.bihe0832.android 184
docker-controller-scala-core_3 com.github.j5ik2o 182
coil io.coil-kt 182
fragment-ktx androidx.fragment 180
appcompat-v7 com.android.support 177
docker-controller-scala-core_2.12 com.github.j5ik2o 175

Table 2: Top 64 artifacts that are most often missing, causing the dependant to fail dependency resolution.

C Proportion of artifacts with missing dependencies per release year

Year Proportion
2006 0.0624
2007 0.0866
2008 0.0692
2009 0.0342
2010 0.0245
2011 0.0285
2012 0.0237
2013 0.0236
2014 0.0393
2015 0.0346
2016 0.0253
2017 0.0170
2018 0.0133
2019 0.0074
2020 0.0060
2021 0.0047

Table 3: Proportion of artifacts with missing dependencies per release year to all found artifacts.

	Introduction
	Methodology
	Maven Repositories and Dependency Resolution
	Data Collection
	Procedure
	Error Classification
	Finding the Publishing Date

	Potential Causes of Resolution Errors
	Repository Down
	Changes in the Surrounding Configuration

	Exploring Solutions for Missing Dependencies
	Manual Workarounds

	Experimental Setup and Results
	Research Question 1: Correlation Between Age and Resolution Errors
	Research Question 2: Predominant Causes and Relation to Age

	Responsible Research
	Data Collection Ethics
	Open Science
	Repeatability and Generalizability

	Discussion and Future Work
	Bloated Dependencies
	Sources of Failure for Missing Dependencies
	The Lack of TLS in Maven Repositories
	`System' and `Provided' Scopes

	GitHub Package Registry
	Summary

	Relational Database Schema
	Most commonly missing dependency elements
	Proportion of artifacts with missing dependencies per release year

