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ABSTRACT

A numerical procedure for the analysis of the hydrodynamic

performance of ships and the design of optimized hull forms is

presented. The emphasis of the paper lies on two essential

aspects of the problem: (i) how the hydrodynamic performance of a

ship can be predicted in a more accurate way, and (ii) how the

performance can be improved through systematic variation of the

shape of the hull form in a more efficient way.

A boundary layer method of the integral type is developed based

on the first and higher order approximations to predict the

viscous resistance and flow properties around ship hulls and

different levels of approximation are compared to find the most

suitable one for a hull form optimization procedure.

A higher order panel method for calculating free surface

potential flows is developed based on the Hess-Smith-Dawson

theory. Source singularities are distributed on the hull and

part of the free surface and the strengths of these sources are

determined to satisfy the hull and free surface boundary

conditions. In contrast to a first-order panel method that uses

flat panels, usually with constant source density, the present

method uses curved panels generated by polynomials of the second

degree with linearly varying source density. Other improvements,

as compared to the original Dawson method, are that the panel

grid on the free surface is independent of the streamlines and

that the resistance is computed in a more accurate way.

Promising results are obtained for the method based on linearized

free surface boundary conditions. An improvement, over first

order linear methods, in the prediction of wave resistance has

been achieved.
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A more accurate method, based on non-linear free surface boundary

conditions has also been developed. The variable strength of
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source singularities is adjusted to satisfy the normal velocity

boundary condition on the wetted hull surface and the non-linear

form of the free surface condition on the wavy surface. An exact

solution is obtained through iterations and in each iteration the

free surface boundary condition is linearized based on the small

perturbation principle, about the previous solution. Much better

converged solutions have been achieved.

Having all the numerical tools for hydrodynamic analysis, a

mathematical procedure for optimizing hull forms is developed.

The optimal hull form design system enables the designer to

include advanced hydrodynamic performance predictions at an early

stage of the design process, allowing a systematic evaluation of

the hydrodynamic performance characteristics as a function of the

hull geometry. This system is based on a rapid design oriented

first order boundary layer method and the linear type of wave

resistance theory for hydrodynamic analysis. The objective

function is taken as a linear combination of viscous and wave

resistance. The resulting large, highly constrained non-linear

optimization problem is solved by a dual method of mathematical

programming.

The entire process of hydrodynamic analysis, geometrical

modelling and optimization thus attempts to imitate the

traditional hull form design procedure. The system of computer

programs can be used to develop mathematically faired and

hydrodynamically desirable hull forms from an existing ship.

Keywords:

Ship flow, viscous resistance, wave resistance, resistance

minimization, viscous flow, wake, boundary layer theory, integral

method, potential flow, free surface boundary condition, panel

method, optimization, objective function, constraints,

mathematical programming, dual technique

Footnote: The term "hydrodynamic performance" used in the present
paper identifies "resistance performance".
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I. INTRODUCTION

An optimal design of a hull form may be defined as the rational

establishment of a hull form that is the best of all possible

designs within a prescribed objective and a given set of

geometrical limitations. This topic is intellectually attractive

as well as technically significant, since it combines a

comprehensive mathematical model for the evaluation of the

hydrodynamic performance and the important sensitivity analysis

and the capability of geometrical modelling and optimization with

respect to the governing design variables. The development of

each element has taken place particularly over the last 20-25

years, and has been strongly boosted by the availability of

large, high speed computers.

Until recently, the only way to evaluate ship performance was

through experiment. Although computational ship hydrodynamics

including a free surface has a long history, its usefulness has

been limited due to the rather drastic simplifications required

for an analytical approach to the problem. The past 10 years

have, however, seen major achievements not only in the free

surface potential flow prediction but also in the ability to

predict the viscous flow in the boundary layer and wake.

Numerical predictions of ship performance have become an

important part of the design procedure.

Currently, research on the prediction of ship performance may

very roughly be said to follow two main paths. Along the first

one, research is primarily devoted to the development of

calculation methods of ship viscous resistance.

Boundary layer theory has been frequently applied to investigate

the flow ptoperties around ships and to predict the viscous

resistance. Many methods are found in the literature; a number of

good ones were tested at the SSPA-ITTC WORKSHOP in 1980, [1], and

more have been presented since then [2, 3]. These include

11
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integral types of boundary layer calculation methods, more

complicated methods based on partial differential equations, and

higher order modifications of these.

Successful predictions have been made of the flow over a large

part of the hull. However, most boundary layer calculations

usually fail to give sufficient accuracy in the prediction of the

stern flow. This failure is due to a number of reasons, including

the neglect of the higher order effects, such as the curvature

effect, the normal pressure gradient effect and the

viscid/inviscid interaction effect, the possibility of a local

region of separated flow and the existence of the free surface.

Several attempts, based on partial differential equations, have

been made to overcome these difficulties in total or in part

[2, 3]. At SSPA such a method has recently been developed by

Broberg & Zhang, [4]. Methods of this kind are, however, too

expensive to be used in an optimization process where systematic

changes of the hull form are to be made.

Paper A describes four numerical methods, which are capable of

determining the local flow properties and overall drag on ship

hulls. The simplest one is of first order and represents a

simplification of Larsson's method [5] to enable very rapid

calculations. Three methods are of higher order, incorporating a

varying number of higher order effects to find the best trade off

between accuracy and computational effort [6].

Along the other main path of research, the emphasis is laid on

the free surface potential flow around ships.

This problem is very well defined in a purely mathematical sense,

but a number of numerical methods based on different

approximations are found in the literature; a number of good ones

were tested on several well specified test cases at the DTNSRDC

WORKSHOPS in 1979 [7] and 1983 [8], and many interesting papers

have also been presented at international seminars [9] and
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conferences [10-13]. A major break-through was the paper

presented by C W Dawson at the Second Conference on Numerical

Hydrodynamics in 1977 [14]. As had been suggested by Gadd two

years earlier [15] the free surface boundary condition could be

approximately satisfied by covering part of the undisturbed

surface close to the hull with simple Rankine sources. In

Dawson's method the free surface boundary condition is linearized

along the streamlines of the double model solution and a backward

difference scheme in the implementation of the free surface

condition is used to satisfy the radiation condition. This method

turned out to be very successful and was adopted by many

organizations. Many Dawson-like methods, which are variations and

extensions of the original Dawson method, have been published

[16-18]. Considerable effort has been made also at SSPA in the

past five years to extend and improve the theory. Much of this

work is described in the two PhD theses by Xia in 1986 [19] and

Ni in 1987 [20].

Xia developed a first order linear panel method based on Dawson's

approach for treating the linear free surface condition and the

Hess-Smith method [21] with flat panels covered by constant

source density for the solution procedure. This program is one of

the family of Dawson-like methods, but has a number of special

features of its own for ship flow with a transom stern and

lifting surfaces [22]. It has been used extensively in

commercial work and has given reasonably good predictions for

simple types of hull forms. However, some tests for more complex

types of hull forms with bulbous bows and bluff stern shapes

indicate that certain improvements would be desirable. Ni

improved the accuracy by introducing higher order (curved) panels

of the second degree with linearly varying source density, as

suggested by Hess [23]. The higher order panel method has been

applied to the linear free surface problem [24]. The principal

disadvantage of this method or any three-dimensional panel method

is that of computing expense. The computing cost for a flow

calculation increases as the square of the panel number or



14

faster and the major expenses are due to the calculation of the

velocity influence coefficient matrix and the routine for

inverting it. These calculations take about 95% of the total

computation costs for a larger number of panel elements than 800.

Accordingly, there is a need for an increase in efficiency and

this has been the aim of the work described in Paper B [25]. A

higher order linear panel method with a better overall efficiency

of the solution procedure and better accuracy has been developed

and used in the optimization procedure.

Considerable improvements, both in increasing the accuracy and

efficiency, and in reducing the amount of work required for the

input preparations have been obtained for many cases of interest.

Other improvements, as compared to the original Dawson method,

are that the panel grid on the free surface is independent of the

streamlines and that the resistance is computed in a more

accurate way.

It should be noticed that the free surface panels are still flat

and that linear free surface boundary conditions are considered.

This is clearly an oversimplification in the bow and stern

regions of the free surface.

Further attempts to improve the accuracy have been made by taking

the non-linear effects into account in the free surface boundary

condition.

Ogiwara took the non-linear effect into account iteratively by

using relaxation factors in 1985, [26] and Xia proposed an

iterative procedure in 1986, [27]. In his method the free

surface boundary condition is linearized about the initial wavy

surface, using the small perturbation principle and new wave

elevations and source distributions are solved in the next

iteration. It was found that the convergence problem for the

iterative procedure is quite severe.
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A higher order global algorithm was applied to the non-linear

three-dimensional free-surface problem by Ni [28]. The results of

the test computations were always convergent if a relaxation

factor was used for the wave elevation modification. A single

model with a new panelling to fit the wavy free surface was used

and the vertical derivatives of the induced velocity were kept in

the free surface boundary condition.

In order to fulfill the basic requirements of generality, economy

and accuracy for the application to practical hull form design,

some improvements and modifications have been made in Paper C,

based on the earlier work by Xia [27] and Ni [28]. An exact

solution is obtained through iterations and in each iteration the

free surface boundary condition is linarized, based on the small

perturbation principle, about the previous solution. The

iteration starts from the linear solution. In each iteration the

hull and free surface panels are adjusted according to the new

wavy surface and the sources are moved accordingly to simulate

the boundary condition more exactly. In the new solution the

kinematic and dynamic boundary conditions are satsified

simultaneously, i e the new source strength as well as the new

wave elevation are obtained at the same time.

One of the major improvements is that the hull panels just below

the wavy surface are generated in a more accurate way by

considering the hull shape above the designed load waterline. In

the early work on this method by Ni the hull was considered wall-

sided. This simplification may lead to some limitation in its

application to ships with barge-type stern sections, or inclined

bows and sterns. This restriction is now removed.

Currently there is also a development towards the use of

optimization methods in the ship design process. One example is

the development of optimization procedures for ship structures.

Another example is the application of the optimization procedure

in the routine design of a propeller to suit a given radially
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varying axial wake and having maximum efficiency while producing

a given thrust at a given ship speed and rate of revolution.

Optimization procedures have been studied, which can optimize the

ship hull form and general layout, taking resistance and

transportation capacity into account. Traditionally such design

procedures are mainly based on empirical relations between

resistance and the principal hull characteristics. The design of

such a preliminary optimization procedure is relatively uncertain

due to very approximate empirical functional relations.

More recently optimal hull form design studies based on an

analysis procedure have been made by many investigators. Among

the more significant research work on the optimization of hull

forms, reference can be made to work at shipyards in Japan and

Korea. An attempt was made by Nagamatsu & Baba in 1983 [29] to

minimize the viscous resistance of three-dimensional full form

ships by means of the Hook and Jeeves direct search method. Other

attempts to minimize the wave resistance were made by Min & Kim

[30] and Suzuki [31] using a similar type of direct search method

with a penalty function technique. These methods suffer from some

computational disadvantages and are not entirely efficient for

non-linear multivariable constrained problems. Nowaki [32]

applied a mathematical optimization technique of the non-linear

programming type to the minimum viscous drag design of

axisymmetric bodies.

A numerical method for the design of optimized hull forms with

respect to the total resistance is described in Paper D. The main

objective is to obtain an integrated computer system which will

enable the designer to include advanced hydrodynamic performance

predictions at an early stage of the design process, allowing a

systematic evaluation of the hydrodynamic performance

characteristics as a function of the hull geometry. This system

of computer programs is based on a synthesis of hydrodynamic and

sensitivity analysis, geometrical modelling and optimization. The
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hull surface is represented mathematically using a boundary

variation technique as a function of governing design variables

and all of the geometry descriptions (for instance, panel element

mesh) and hydrostatic computations (wetted surface area, volume,

etc) needed for the hydrodynamic predictions are generated. Then

the hydrodynamic performance is estimated using a rapid design

oriented first order boundary layer method [33] described in

Paper A for viscous resistance and a linear type wave resistance

method [25, 34] described in Paper B. An optimum hull form is

obtained through a systematic variation of the shape by changing

the design variables. The optimum value of the design variables

is determined in order to minimize the total resistance of the

ship subject to a number of geometrical constraints. The general

optimization code ALIBABA [35], which is based on the dual

technique of mathematical programming, is used to find an optimum

hull form in combination with a shape description module ALADDIN

[36].

This system of computer programs has been tested to develop an

optimized shape of hull forms for two relatively simple design

test cases. The study had to be rather restricted due to computer

speed and core memory size limitations, but the present method

can be used to develop mathematically faired and hydrodynamically

desirable hull forms for more commercial types of ships starting

from an existing ship.

The optimal hull form design system (SINDBAD) based on subsystems

for hydrodynamic analysis, geometrical modelling, design and

optimization has thus attempted to imitate the traditional hull

form design procedure.



II. MATHEMATICAL STATEMENT OF THE PROBLEM

As in the usual analysis, the flow is considered steady,

irrotational and incompressible and a right-handed coordinate

system OXYZ is employed with the origin on the mean free

surface, X positive in the direction of the uniform flow, and Z

positive in the upward direction. A ship, piercing the free

surface, is assumed to be in a uniform onset flow of velocity

U. Then the flow field around the ship may be divided into two

principally different regions: the potential flow, where

viscosity may be neglected, and the boundary layer-wake flow,

close to and behind the body, where viscosity is important. The

reason why this division may be made even though the physical

properties of the flow may be the same everywhere, is that the

velocity gradients, responsible for the shear stress generation

are different. Close to the body the flow is very much dominated

by the no-slip condition on the surface, and the velocity changes

rapidly within the relatively thin boundary layer, which extends

into a wake behind the body. Outside the boundary layer/wake

velocity gradients are very small and the generated shear stress

is negligible.

Due to the differences in flow characteristics stated above, the

flows are governed by different equations and have to be solved

by a different method.

The governing equations for viscous and potential flow are

described in the following two subsections and the basic

principle of optimization theory is discussed briefly in section

11-3. Section III is devoted to the solution methods, which are

an essential feature of the present paper.

18



II-1. The Formulation of the Viscous Flow Problem

1. Boundary Layer Equations

The boundary layer equations for a three-dimensional turbulent

flow in a curvilinear orthogonal coordinate system are given by

Nash and Patel [37].

Continuity equation:

1 au av 1aw
hi

1,1- + Knu + (K12-K32 )V + K13W = 0
3

x - Momentum equation:

au au w u
Dx

+ V 71; + Ei Ti + K12uv + (Knu-Knw)w + 1- 9(p/p)
h1 Px

1

hih3 x
(hih3Txy/p) = 0

D

y - Momentum equation:

DV DV W
hi D x y h3 z Kl2U2 K32W2 y (Pip) = 0

z - Momentum equation:

W
V W W w 1,,TT T7T,

hi Dx ' Hi Ti k-31w-A-13u)u A32vw

1 D

+ (pin )hih3 (h03-czy/p) = 0
h3 9 z 9 y

Here hl and h3 denote the metric coefficients which are a measure

of the stretching of the corresponding x- and z-axes; h2 is

assumed to be identically equal to unity and this has already

19
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been introduced in the derivation of the governing equations.

The parameters K13 and K31 are known as the geodesic curvature of

the curve z = const and x = const respectively. They are given by

ah11
K13 - hih3

31

K31 h1h3 Bx

and the normal curvatures K32 and K12 are defined by

1 h3
K32 = h2h3 y

a h
1 1

K12 = h1h2 Dy

U, V and W represent the velocity components in x, y and z

directions respectively. The parameters p, n and v are the fluid

static pressure, density and kinematic viscosity; Txy and izy are

the components of the shear stress.

au
txy = P u'v' )

3
T = P (vw - v'W)zy

The prime quantities u', v and w' are the fluctuating parts of

the components of the velocity vector.

11-2. The Formulation of the Potential Flow Problem

The flow field around the ship may be described by a velocity

potential O which is generated by a certain distribution of

20
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sources on a surface S and by the uniform onset flow in the x-

direction

i0(X,Y,Z)

= a(q)/r(p,q)dS + U.X (5)

where a(q) is the source density on the surface element dS and

r(p,q) is the distance from the point q to the field point

p(X,Y,Z) where the potential is being evaluated.

The potential 0 is given in Eq (5) is governed by the Laplace

equation.

V20 = 0 (6)

in the fluid domain and satisfies the regularity condition at

infinity

VØ => (140,0) as r ( 7 )

The source density a should be determined from the boundary

conditions on the hull and free surface. On the wetted hull

surface the solid boundary condition is

0 ( 8 )

where n denotes the outward normal to the hull surface. At the

free surface, two boundary conditions must be imposed, i e the

flow must be tangent to the free surface

(1)XhX C511hY (4)Z = (9)



and the pressure should be constant

1
gh + -(V95 - U.2) = 0

2

Further, no upstream waves should be generated.

11-3. The Formulation of the Optimization Problem

The mathematical formulation of the present design oriented

problem which finds an optimum shape of the ship with a minimum

resistance subject to geometric constraints can be expressed as

Find y * E Rn

Minimize RT (Yj) j = 1, ND

Subject to hk (Yj) = 0 k = 1, EC

gi Yj 0 i = 1, IC

Where y* is a vector representation of ND design variables

defining the hull surface and hull form characteristics. The

total ship resistance, which includes the wave and/or viscous

resistance component, is used as an objective function R. The

geometrical and practical design constraints about the hull are

contained in hk(Yj) and gi(Yj). EC and IC are the numbers of

equality and inequality constraints.

The functions RT, hk and gi depend both on design and state, and

the equality constraints comprise the state equations. Under the

assumption that RT, hk and gi are continuous and differentiable

functions of yj, the Lagrangian function L may be expressed as:

L(1(j, pk, Xi) = RT( + E pk hk( ) + E yi + si] (12)

where the equality and inequality constraints in (11) are

adjoined by means of the Lagrangian mulitipliers pk and Xi

22
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DRT
ahk

ayi E 1-1k Byi

and stationarity with respect to the Lagrangian multipliers pk

recovers the equality constraints in (11),

hk(yj) = 0 (14)

The stationarity of L with respect to si yields the so called

switching conditions Xi-si=0, and the necessary conditions

32L/3si > 0 for a minimum of L imply that the Lagrangian

multipliers Xi must be non-negative, i e Xi > 0. A combination of

the latter result with the switching conditions and the defining

equations for si yields the conditions

if g1(Y) < 0

if g1(Y) = 0

which are seen to imply simplification in (13) if one or more of

the inequality constraints are not tight.

Equations (13)-(15) constitute the formal set of governing

equations for the present hull form optimization problem and are

called the generalized Kuhn-Tucker conditions. Mathematically

these governing equations must be solved since the ND optimality

conditions (13) and EC+IC constraint equations (14) and (15) form

a set of (ND+EC+IC) simultaneous equations for the solution of

23

respectively, after the inequality constraints have been

converted into the equalities g(Y)+s=0 by introducing the real

slack variables si. The conditions of stationarity of L with

respect to an arbitrary admissible variation of Yj lead to a

number of ND so called optimality conditions,

Dgi
+ E X. (13)1 Dyi

(15)
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ND unknown variables yi and EC+IC unknown Lagrange multipliers pk

and Xi. A characteristic feature is, however, that the governing

equations can only be solved analytically for relatively simple

problems, because the optimality conditions are in general

implicit and nonlinear in design variables, and a non-negative

value is required for the Lagrange multipliers in the solution.

Thus an iterative numerical method has to be applied for the

solution of the present resistance minimization problem.



III. NUMERICAL SOLUTION OF THE PROBLEM

III-1. The Solution of the Viscous Flow Problem

To solve the boundary layer equations given in (1-2) in a more

efficient way, an integral type of method rather than a method

based on finite difference is employed. The momentum integral

equations based on the streamline coordinate system are obtained

by integrating the equation (2) with respect to y from the wall,

y=0 to some point y>8 in the potential flow outside the boundary

layer and solved together with empirical correlations by the

Runge-Kutta-Gill procedure along the streamlines. Different

levels of approximation are made to investigate the generality,

accuracy and efficiency for the application to practical hull

form design.

To develop the most simple solution procedure the first order

momentum integral equations and entrainment equation are derived

under the small cross flow approximation. They are given by the

following equations. See Larsson [5].

B11 Ue1 1 1
+ K310011 = 1 Cf

eh10
+ (2011+51)

Uh10

DO21DUe1 1
+ 2021 U

( + K310) - K130(011 + 51) =
h10

Dx
9eh x10

11 Cf tank

1
= {U (6 - 61)} + -uKe 31062 = E

h10
c e

(16a)

( 16b)

Subscripts e and o are used to denote values at the edge of the

(17)
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boundary layer (y=5) and on the surface (y=0). Cf and po are the

skin friction coefficient and wall cross flow angle defined by

Cf = Tox/1/2 101.Q (18)

po = tan-1 Toz/T OX (19)

where To=(Tox,°,Toz) is the wall shear stress vector.

h10 and h30 denote the metric coefficients, which are measures of

the stretching of the corresponding x and z co-ordinates on the

surface.

The parameters K130 and K310 are the geodesic curvatures of the

curves z=const and x=const, respectively on the surface. They are

given by

1 ah10
K130 = h10h30 3z

/-1301
K310 - h h-10-30

The influence of higher order terms is neglected in the above

derivations, but will be considered later for the higher order

equations.

The higher order momentum integral and entrainment equations are

derived by retaining the first order terms of 6/R and the larger.

6/R is the ratio of the boundary layer thickness to the radius of

the surface curvature R. The equations are as follows. See

Larsson [38].

(20)
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'6511 aue1 1
+

h10
Dx + (2611 +1) Uh K310

=

e 10

+1px iklx + I13x
(21a)

3621 aue1 1+ 2O(
h + K310) - K130(011 +11) =

h10
Dx21 Ue10

1 Cf tanpo + I + Iklz + Ik3zpz

1

h {lje(6 - (51
)} + UeK310(8 - 81) - UeK13082 =

10

(1 + K1206) (1 + K3208)E

The equations (21) and (22) differ from the corresponding first

order ones (16) and (17) in three respects: the pressure and

curvature integrals on the right hand side and the bars over

certain quantities.

The "I" quantities on the right hand side members are integrals,

which appear due to the inclusion of, on the one hand, pressure

gradients through the layer (Ipx, Ipz) and, on the other hand,

normal curvature of the surface (Ikx, Ikz).

1
-2 Cf

In the present work Head's entrainment relations are used for the

boundary layer

27
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(22)



CE = = 0.0306(H1 - 3.0)-0.653

(23a)

H1 = 1.535(H12-0.7)-2.715 + 3.3

A relation due to Kang is employed in the wake

CE = = 0.11299 - 0.048275 ln(H1) + 0.0051395 fln(H1)}2 (23b)

For the tangential velocity components the well known power-law

and Mager assumptions are made.

1 H12-1
lUje

(8)fl

(i) 2 (24a)

H12-1

117% = (i) 2 {1 - p2tanpo (24b)

For the normal velocity component a linear variation is assumed.

V y
Ve - 6

In the wake calculation, an approximation of Coles' wake function

is employed for the streamwise velocity profile, while Mager's

assumption is used for the cross flow.

2 n v
= 1 - Acos (-

ue 2 6

v 2 Ufl _
ue = L- 6J u tanp

(24c)

(25a)

(25b)
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Introducing these expressions in the definitions of the basic

integral parameters, the following relations appear

61 = 6A1

611 = 8(A1 X - A22,2)

82 = -6tanpo(A3 - A4X)
(26)

(27)

29

(29)

X - A2 H12

A1 H12-1

The constants Al - A8 attain the following numerical values

Al = 0.5 A2 = 0.375 A3 = 0.333

A4 = 0.268 A5 = 0.233 A6 = 0.200 (28)

A7 = 0.359 A8 = 0.165

Finally, Ludwieg-Tillmann's law is used for the skin friction

Cf = 0.246.(10.0)-0.678H12(
Ue')611)0.268

612 = 8tanp0(A4 A- A5 A2)

622 = -otan2p0(A6 - A77 + A8X2)

021 = 62+612

By definition H12=61.011, which yields

A1
H12 = Al_A2



In the present calculation, the viscous resistance is calculated

by computing the momentum loss in the far wake. This momentum

area can be determined either from the continuation of the

boundary layer calculation along the streamlines extending into

the wake region, or from the Squire & Young method [39]. Both

have been tried in the present work. Applying the Squire & Young

formula, and extending it to three dimensional boundary layer

flow, the momentum thickness ell in the far wake may be given

by:

= ellt (U:)
Ue (H12+5)/2

(30)

where ent represents the momentum thickness at the trailing

edge.

The integration of equation (30) over the girth of a cross

section therefore gives the resistance due to the momentum loss

which is accumulated in the upstream portion of the body.

Rv = PuZ j elim dq (31)

Despite of the relative simplicity the method is known to give a

fair estimation of the viscous resistance.

111-2. The Solution of the Potential Flow Problem

The exact problem described in section 11-2 is nonlinear, since

the free surface boundary condition itself is nonlinear and

should be exactly satisfied on the wavy surface Z=h(X,Y), which

is unknown, and must be computed as a part of the solution. Thus,

numerical methods, which have been applied to solve the problem

usually entail some kind of linearization procedure.

Unknown sources a on the hull and wavy surface Z=h(X,Y) will
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induce a potential 0 and a wave elevation h which satisfy the

boundary conditions (9) and (10).

Di(o,h) = Oxhx + Oyhy - Oz = 0

= h - -1- 'U 2- 2+ 2+ 2 = 0D2(a,h) 2g L co (0)( 0Y 95ZZ )]

These non-linear forms of the free surface boundary conditions

can be linearized by introducing small perturbations Su and oh

with respect to the previous solution in a first order Taylor

expansion.

D1 (a,h) = D1(0°,h°) + AD1(0,h° + AD1(0°,h)

a
D1(0°,h°) + 7Ta D1(0,h°)*8u + TTE Di(u°,h) oh = 0

D2(u,h) = D2(0°,h°) + AD2(u,h°) + AD2(00,h)

D2(0°,h°) + 7FT, D2(0,11°) 60 + 77E D2(0°,h) Oh = 0

It is a fundamental assumption of the present method that the

perturbations of source (60) and wave elevation (6h) are small in

certain senses. In a Taylor series, higher order terms in these

quantities then become very small and can be neglected.

Here the superscript, °, corresponds to the previous solution

which is assumed to be known a priori.

D1 (0°,h°) = xhx° + - = 0

D2 (0°,h°) = h° - 1 {U_2 _ (Dx2 4,y2 z2)] = 0
2g

where 4,x, (Dy and 4,z mean the velocity components induced by

a° on the free surface Z=h°(X,Y).

(33)

(32)
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The partial increments of D1 and D2 should be found in such a way

that a new velocity potential 0=c1)-1,50 induced by introducing



small perturbations Su and oh should satisfy Eqs (9) and (10) on

the new wave surface h=h°+Sh. AD1 and AD2 can be linearily

expanded based on 00 and h°

AD1(u,h°) = SOxhx° + 80-yhy° - SOz

AD1(u°,h) = 4.)(Shx + yShy + (4))(Zhf (1)YZhI7* 4)ZZ)51-1

AD2 (a,h°) = + ,Dy.50y + 4.z.545z)

AD2 (a°,h)= oh + .1.d" (4)XcDXZ (1)Y(1'YZ cl'Zci'ZZ)811

Therefore the linearized free surface boundary conditions are

OXII*X 4)N17h°Y OZ 4'r5hX 4)T5hY

(cl'XZtlk (1)ZZ)511 = °

1
(1 'I'Ycl'IrZ cl'ZZZ))511 =

- (Dx2 - 4.y2 - 4,z2 - 2(4,x(ScAx + 1.y60y cPZ(50Z)) h°

In the linear solution, a linearization of the free surface

condition is performed with respect to the flow at zero Froude

number, i e the flow with an undisturbed flat free surface and

the terms containing the second derivative of velocity potential

(cDXZ, "DYZ, (I'ZZ) are not included, based on the assumption that

these terms are relatively small and can be neglected. Therefore

the free surface boundary conditions for the linear solution are

further approximated as:
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Oxhx° + Oyhy° - Oz + 4,x6hx + .4).T5hy = 0 (38)

oh = ( U.2 + x2 + 4.y2 - 2(x0x + 4,y0y) }/2g - h° (39)

Here the double model potential 4, and the Bernoulli wave

elevation h° are assumed to be known from the double model

solution, and these conditions are to be applied at Z=0.

In the nonlinear solution an exact solution is obtained through

iterations and in each iteration the free surface boundary

condition is linearized, based on the small perturbation

principle, about the previous solution. The iteration start from

the linear solution. In each iteration the hull and free surface

panels are adjusted according to the new wavy surface and the

sources are moved accordingly to simulate the boundary condition

more exactly. In the new solution the kinematic and dynamic

boundary conditions are satisfied simultaneously, i e the new

source strength as well as the new wave elevation are obtained at

the same time. Upon convergence, which is usually obtained after

5-6 iterations, the non-linear terms go to zero and the solution

is exact with respect to the boundary conditions.

Once the final source density a and wave height h are determined

the flow velocity and pressure may be calculated at any point.

With known pressure and velocity distributions, the wave pattern

and the wave resistance can be predicted

Rw = pUZ f Cp Nx dS (40)

111-3. The Solution of the Optimization Problem

The minimization problem formulated in section 11-3 is a

nonlinear programming problem, and it can be solved using a

standard mathematical optimization algorithm with possible

gradients estimated numerically. But such a procedure (for



hk(Yi) = 0 < ---> -8k hk(Yj) 6k

then the total number of constraints NC become 2*EC+IC and their

upper bounds ii are newly introduced.

To solve the optimization problem P in (11), an iterative

application of sequential convex programming is employed. The

34

instance, an iterative mathematical programming method) can be

expected to be fairly computer-time consuming, because it will

require an accurate evaluation, at each iteration, of the

objective and constraint functions and their gradients. These

evaluations are very expensive as each evaluation involves a flow

calculation which leads to the solution of a large system of

linear equations. Therefore the resulting solution method must

have the essential features of accuracy and efficiency.

The method to be presented in the following is based on the Kuhn-

Tucker conditions (13), which state that at optimum the gradient

of the objective function is a linear combination of the active

constraint gradients.

312T
NC 3gi

777 + E Xi -- 0 j = 1, ND
J i=1

xi(gi - gi) = 0 i = 1, NC (41)

Xi > 0

where the equality constraints hk(Yj)=0, k=1, EC, and inequality

constraints gi(Yi)0, 1=1, IC in (11) are converted into

inequalities gi(yi)34, 1=1, NC, by introducing the following

relations with very small positive real variables 6k



,gi g.1(y) gi(1)
Ayi

By this approach, the original nonlinear problem P is now reduced

to a sequence of linear subproblems P(k) which is given by

(42)

(43)
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optimization starts at an arbitrary initial design estimate,

which can be one of the best existing ships selected from a hull

form data base. The geometry of the initial hull form is modelled

mathematically with a number od design variables and exposed to

uniform onset flow at design speed. A systematic evaluation of

the hydrodynamic performance characteristics is performed as a

function of the hull geometry. With an objective hull form and

knowing its hydrodynamic performance, a convex subproblem P(k),

which converges to the solution of the optimization problem P, is

created. Linear approximations of nonlinear functions RT(yi) and

g(y1) are obtained first by replacing the nonlinear function of

the problem by their first order Taylor series approximations

expanded at the preceding design point Yj(k)

ND 4tT
RT(Yi) = RT(Y1) + E (Yi - Y1)

j=1 a)j

ND Dgi

gi"j) = g1(Y1) 7-7 (Yi 11)
j =1 YJ

The derivatives needed to get the Taylor series approximation can

be estimated numerically as differences obtained by re-

calculation or by a quasi-analytically based procedure

DRT RT
(y.) - RT(y)j)j

Ayi



;(k)
ND

min RT(Ij) = RTC1) + E (yj -
j=1 °Yi

Subject to (44)

4i(Yj) = g1(11) E (I < giJ

Yj < Yj < 11 i = 1, NC, j = 1, ND

The design variables yj are modified so that the current design

moves towards a design satisfying the applicable optimality

criteria. The A) are restricted to be less than some move limits

so that the design remains in the neighbourhood of the initial

design. Thus there is a relationship between the nonlinearity of

the functions RT(yj) and g(1j) and the appropriate values of the

move limit which will allow an efficient solution.

In the solution made in paper D, a strictly convex approximate

subproblem P(k) is generated in each step of the iterative

process based on Method of Moving Asymptots (MMA).

In the MMA approximation, both the objective function RT and the

constraints gi are linearly approximated by a first order Taylor

series expansion in variables of the type 1/(Y - Lj) or

1/(U1-xj) depend on the signs of the derivatives of RT (or gi)

around the preceding design point, where Lj and Uj are the lower

and upper asymptotes to Yj, and Yj will always lie somewhere in

between. Then a more complicated subproblem P(k) can be

generated, but the detail derivations will not be given here. See

Svanberg [40].

-

The approximated subproblem P(k) is explicit, convex and

separable, so this may be solved by using dual methods of

mathematical programming [41-42]. The Lagrangian function
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corresponding to P(k) is given by

L(y,X) = RT(y) + E Xi (ai(y) - gi) X 0 (45)

L is separable which implies

ND
L(1,X) = E L(Y,X) (46)

j=1

The minimization of the Lagrangian function can be obtained from:

= 0 => yj = yj(x) j=1,ND (47)

The resulting equations are uncoupled, due to the separa-

bility, and of second degree which implies that yj can be

expressed explicitly by the Lagrangian multipliers.

Let Ip(X) =L(y(X),A). It can be shown that 11)(X) is concave. X

is found from the solution of the dual problem D.

D: max 1P(X)

(48)

subject to Xj > 0

D can be solved by an arbitrary method for unconstrained

maximization, for instance the quasi-Newton method [43], which

OASIS uses. The method has to be modified to handle the simple

non-negative constraints on X. It should be noticed that the

value of the dual function is equal to the value of the

objective function at optimum, i e:

max 11)(X) = min RT(Y) (49)
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Min L(Y,A) implies:

,-(k)(k)
NC ugiT

+ E =
)(

0 (50)
-.j i=1 1 DYj

which is the Kuhn Tucker condition for optimum. A new design

point, at which the Kuhn-Tucker conditions would be satisfied,

can be generated directly. Naturally, because of the

approximations of the Taylor series expansion, the solution

procedure developed in this manner still requires some steps of

iteration. After each approximate subproblem is solved, a full

hydrodynamic analysis is conducted to calculate the object

function, constraints and their gradients for the next

approximated problem. This iteration procedure is repeated until

a convergence criterion is met and an optimum hull form, with a

design satisfying the optimum criterion is guaranteed to be at

least a local minimum, is finally generated.
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IV. CONCLUSIONS

A numerical procedure for the analysis of the hydrodynamic

performance of ships and the design of optimized hull forms is

presented in the present thesis. Special emphasis has been laid

on two essential aspects of the problem: (i) how the hydrodynamic

performance of a ship can be predicted in a more accurate way,

and (ii) how the performance can be improved through a more

efficient systematic variation of the shape of the hull form.

According to the studies presented in the appended papers, the

following conclusions can be drawn:

- Four methods for calculating the viscous resistance and flow

properties around ship hulls of arbitrary shape have been

developed, based on different levels of approximation, to

investigate the efficiency and accuracy for application to

practical hull form design. The simplest method is accurate

enough to predict differences due to changes in the hull

form and can therefore be used in the optimization

procedure. The higher order methods predict the absolute

value of the viscous resistance with acceptable accuracy and

provide a reasonable quantitative prediction of local flow

properties, including skin friction and pressure

coefficients.

- A higher order panel method for calculating the potential

flow about ships has also been developed, based on linear

and non-linear free surface boundary conditions. The linear

method is efficient for evaluating the wave pattern and the

wave resistance of practical ship hull forms. The non-linear

method provides a possibility of obtaining more accurate

results for relatively simple hull forms, but further

investigations on the numerical procedure should be carried

out for more complicated hull forms.
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- To improve the traditional hull form design procedure, a

numerical method for the design of an optimum hull form with

minimum resistance has been developed by synthesis of

hydrodynamic analysis, geometrical modelling and

optimization. The system of computer programs can be used to

develop mathematically faired and hydrodynamically desirable

hull forms, starting from an existing ship.



V. FUTURE APPLICATIONS AND DEVELOPMENTS

The method presented here is only the first step in a more

comprehensive effort to develop a complete Optimum Hull Form

Design System (SINDBAD). All of the important factors for

determining ship performance have not yet been incorporated in

this system. In particular, it is important in the design of

ships that the considerations of propulsion and seakeeping have

to be included at a very early stage of the design. (Furthermore,

the minimum weight design procedure should be an integral part of

the design process.)

Future work will integrate the ship resistance program SINDBAD

with the structural optimization system OASIS in order to solve

problems with mixed objective or constraint functions. An example

of this is: minimize a combination of ship resistance and weight

with constraint on load volume, stresses, displacements,

eigenfrequencies etc.

With significant advances in computer technology and successful

development at SSPA of a numerical code for solving the Navier-

Stokes equation with or without a propeller [44, 41, we are

presently considering the inclusion of these numerical codes to

extend the capability and generality of the Optimal Hull Form

Design System (SINDBAD). The SINDBAD System has been constructed

in a general form so that inclusion of other hydrodynamic

computational methods can easily be made.
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VI. SUMMARY OF APPENDED PAPERS

Paper A: Calculation of ship viscous resistance using boundary

layer theory based on first or higher order

approximations

Four methods for calculating the viscous resistance and flow

properties around ship hulls of arbitrary shape are described.

The methods are based on generalizations of Larsson's first and

higher order boundary layer integral methods. Their generality,

economy and accuracy for application to practical hull form

design is investigated. The objective is thus to compare

different levels of approximation to find the most suitable one

for a hull optimization procedure.

The simplest method is based on the assumption of a thin boundary

layer to enable fast computations. No higher order effects are

taken into account and the choice of numerical scheme is made on

the basis of simplicity and economy. The higher order version III

takes full account of the influence of longitudinal and

transverse surface curvatures and normal pressure gradients on

the development of boundary layers, and also of the

viscid/inviscid interaction in the stern region. In order to

examine the effect of the higher order terms on the prediction of

flow properties, the higher order version I with only surface

curvature effects and the higher order version II with curvature

and normal pressure gradient effects have also been developed.

The results of test computations for an SSPA 720 and an HSVA

Tanker indicate that the simplest method is accurate enough to

predict differences due to changes in the hull form and can

therefore be used in an optimization procedure. The higher order

versions predict the absolute value of the viscous resistance

with acceptable accuracy and provide a reasonable quantitative

prediction of local flow properties including skin friction and

pressure coefficients.
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Paper B: A higher order panel method for calculating free surface

potential flows with linear free surface boundary

conditions

A method for calculating the potential flow about ships is

described.

The hull and part of the free surface are imagined to be covered

with distributions of source singularities, and the source

strengths are adjusted to satisfy boundary conditions. An exact

boundary condition is satisfied on the hull, while on the free

surface the boundary condition is linearized with respect to the

double model solution. Higher order panels are used, so the

panels are parabolic rather than flat and the source density

distribution on each panel is not constant but varies linearly.

The objective is to increase the efficiency and accuracy of the

method by introducing the higher order panels. Another

improvement, as compared to the original Dawson method [14], is a

body-fitted panel grid, which is independent of streamlines on

the free surface. This is introduced to get better wave pattern

predictions in the bow and stern and also the wave resistance is

computed in a more accurate way.

A definite improvement over the first order method is achieved

for several test cases in the prediction of the wave pattern and

the wave resistance.

Paper C: A higher order panel method for calculating free surface

potential flows with non-linear free surface boundary

conditions

The linear method described in Paper B is extended to be fully

non-linear.
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An exact solution is obtained through iterations and in each

iteration the free surface boundary condition is linearized,

based on the small perturbation principle, about the previous

solution. The iteration starts from the linear solution. In each

iteration the hull and free surface panels are adjusted according

to the new wavy surface and the sources are moved accordingly to

simulate the boundary condition more exactly. In the new solution

the kinematic and dynamic boundary conditions are satisfied

simultaneously, i e the new source strength as well as the new

wave elevation are obtained at the same time. Upon convergence,

which is usually obtained after 5-6 iterations, the non-linear

terms go to zero and the solution is exact with respect to the

boundary conditions.

In order to fulfill the basic requirements of generality, economy

and accuracy for the application to practical hull form design,

some improvements and modifications have been made based on the

earlier work by Xia [27] and Ni [28]. One of the major

improvements is that the hull panels just below the wavy surface

are generated in a more accurate way by considering the hull

shape above the designed load waterline. In the early work on

this method by Ni the hull was considered wall-sided. This

simplification may lead to some limitaiton in its application to

ships with barge-type stern sections, or inclined bows and

sterns. This restriction is now removed.

It is believed that this is important for wave pattern prediction

since the influence of the sources on hull panels just below the

free surface is considerably greater than that of sources on the

other parts of the hull. On the other hand, this might cause

some problems of convergence due to the fact that the change of

the panel location may be large enough to violate the validity of

the small perturbation principle. In order to improve the

convergence, special care has been taken to select the initial

condition and also to compute the velocity potential and the

associated derivative terms in the free surface equation.



The present method has been applied to compute the wave pattern,

pressure distribution over the hull surface and wave resistance

for the Wigley hull and SSPA Ro-Ro ship, and converged solutions

were usually obtained after 5-6 iterations.

Paper D: Numerical method for minimizing ship resistance

The hydrodynamic performance prediction methods described in

Papers A and B are integrated with an optimization procedure in

order to develop a numerical method for the design of an optimum

hull form with minimum resistance. The main objective is to

obtain an integrated computer system which will enable the

designer to include advanced hydrodynamic performance predictions

at an early stage of the design process allowing a systematic

evaluation of hydrodynamic performance characteristics as a

function of the hull geometry.

In the optimum hull form design process the hull surface is

represented mathematically by a number of design variables and a

systematic evaluation of the hydrodynamic performance

characteristics is performed as a function of the hull geometry.

An optimum hull form is obtained through a systematic variation

of the shape by changing the design variables. The optimum value

of the design variables is determined in order to minimize the

total resistance of the ship subject to a number of geometrical

constraints. The general optimization code ALIBABA, which based

on the dual technique of mathematical programming, is used to

find an optimum hull form in combination with a shape description

module ALADDIN. The entire process of hydrodynamic analysis,

geometrical modelling and optimization has thus attempted to

imitate the traditional hull form design procedure. The system

of computer programs can be used to develop mathematically faired

and hydrodynamically desirable hull forms starting from an

existing ship.
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FOREWORD

This paper describes one phase of the work done in the

development of a general design procedure for the opti-

mization of the ship hull form with respect to resistance.

It is well-known that the ship's resistance in still

water is made up of two components, namely wave making

resistance and viscous resistance, of which the viscous

resistance component becomes the major part of the total

resistance with the increase of fullness and the decrease

of design speed. At the initial design stage of the ship

hull form, the exact understanding of the characteristics

of the boundary layer flow field around the ship is very

important, not only for the prediction of the ship's

hydrodynamic performance but also to improve the ship form.

In this paper we address ourselves to the problem of

computing the boundary layers near the stern region and

wake; this is essential for the calculation of the vis-

cous resistance and for the prediction of the momentum

deficit in the far wake.
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ABSTRACT

This paper will describe a general method for calculating the

viscous resistance and flow properties around ship hulls of

arbitrary shape. The method developed is based on a generali-

zation of Larsson's first, [1], and higher order integral

method, [2], to fulfil the basic requirements of generality,

economy and accuracy for the application to practical hull

form design.

The simple version of the method developed is based on the

assumption of a thin boundary layer for fast computation in

the hull form optimization routine. No higher order effects

are taken into account and the choice of numerical scheme is

made on the basis of simplicity and economy, while the higher

order version III, developed for the purpose of final evalua-

tion of optimized hull forms, takes full account of the in-

fluence of longitudinal and transverse surface curvatures and

normal pressure gradients on the development of boundary

layers, and also of the viscid-inviscid interaction in the

stern region. In order to examine the effect of the higher

order terms on the prediction of flow properties, the higher

order version I with surface curvature effects and the higher

order version 11 with curvature and normal pressure gradient

effects have been developed.

Numerical predictions have been made for two cases - an SSPA

Model 720 at Reynolds number 5.0*106 and an HSVA Tanker at

6.6*106. The results demonstrate that the simple version of

the method is accurate enough to predict differences due to

changes in the hull form and can therefore be used in an opti-

mization procedure. The higher order versions predict the abs-

olute value of the viscous resistance with an acceptable accur-

acy and provide a reasonable quantitative prediction of local

flow properties including skin friction and pressure coefficients.
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LIST OF SYMBOLS

A Area

Amn
Surface equation coefficient matrix

Half-beam of ship

CB
Block coefficient

CE
Entrainment coefficient

CF
Skin friction coefficient (total)

Cf
Skin friction coefficient (local) in x-direction

Pressure coefficient

C Viscous resistance coefficient

Entrainment rate

Fn Froude number VsArgTi
Acceleration of gravity

H1
Head's shape factor for the velocity profile

H12 Shape factor for the velocity profile

hl h2 h3 Metric coefficients

I , I Pressure integrals defined by (18a) and (18c)
px pz

Ik1x' Ik3x
Curvature integrals defined by (18)

Iklz, Ik3z
K32 Normal curvatures of surfaces y=const. along

lines z=const. and x=const respectively

K120, K320 As above, but for y = 0

K31 Geodesic curvatures of lines z=const. and x=const.

on surfaces y=const.

K130, K310 As above, but for y = 0

Ship length

M-1 Degree of polynomials fitted in X-direction

Number of terms in mapping of individual sections

Unit normal vector of the coordinate lines

Static pressure

Po Static pressure on the surface

pe
Static pressure at the edge of the boundary layer

Arc length along the girth line

Radius of curvature of the surface

Rn Reynolds number Vs.L/v
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Rv
Viscous resistance

Wetted surface area

Arc length along the streamline

Unit tangent vector of the coordinate lines

U, V, W Mean velocity components

u', v', w' Fluctuating velocity components

Ue, Ve, We
Mean velocity components at the edge of the

boundary layer

U. Freestream velocity

Displacement volume of ship

VN
Transpiration velocity

Ship speed

X, Y, Z Global coordinate system (X downstream, Z upwards)

x, y, z Local coordinate system (x along Ue, y normal)

Yr
Correction to the aft end of the hull

Zk
Z coordinate of keel line at station

(30
Wall cross flow angle

ACp
Pressure change across the boundary layer

ACpk
Contribution to the pressure change by the normal

curvature of the surface

AC Contribution to the pressure change by the first
pv

accelation term in the y-momentum equation

ACpv2
Contribution to the pressure change by the second

accelation term in the y-momentum equation

d Boundary layer thickness

d
Generalized boundary layer thickness, eq. (13)

S1, 62 Displacement thickness, eq. (14)

6*, 6t, Defined by eq. (14)

61, (- .2
Generalized displacement thickness, eq. (13)

ell, 012 Momentum thickness, eq. (14)

021, 022
*ell, 012 Defined by eq. (14)
*

021, 022
012 Generalized momentum thickness, eq. (13)

e21, e22
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TT
xy zy

YXY' YXZ

Momentum thickness at trailing edge

Momentum thickness at far wake

Kinematic viscosity

density

Wall shear stress in x and z direction respectively

Polar coordinates of mapped plane

Velocity directional coefficients
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I. INTRODUCTION

This paper describes one phase of the work done in the develop-

ment of a numerical method for hull form optimization with

respect to resistance. The work of hull form optimization con-

tains four basic elements: a procedure for representing the

hull mathematically, a method for calculating the viscous flow,

a potential flow (wave resistance) and an optimization method.

The present paper treats the first two parts of the work with

special focus on the second one, concerning the problem of

computing the boundary layer near the stern region and wake:

this is very important for the calculation of viscous resis-

tance and also for the prediction of momentum deficit in the

far wake.

Boundary layer theory has been conveniently applied to investi-

gate the flow properties around the ship and to predict the

ship's viscous resistance. A great many methods are to be found

in the literature; a number of good ones were tested at the

SSPA-ITTC WORKSHOP in 1980, [4], and more have been presented

since then, [3, 5, 6]. These include largely integral types of

boundary layer calculation methods, such as simple first order

methods, higher order modifications of these, and also more

complicated methods based on partial differential equations.

Successful predictions have been made of the flow over a large

part of the hull. However, most boundary layer calculations

usually fail to give sufficient accuracy in the prediction of

the stern flow. This failure is due to a number of reasons,

including the neglect of the higher order effects, such as

the curvature effect, the normal pressure gradient effect and

the viscid-inviscid interaction effect, the possibility of a

local region of separated flow and the existence of the free

surface. Several attempts, based on partial differential equa-

tions, have been made to overcome these difficulties in total

or in part, [5, 6]. So far no complete success has, however,

been reported.
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Although these difficulties may be overcome, the resulting com-

plicated methods require considerable effort and enormous com-

puting time. Consequently, and in addition to being hard to

compute, these calculation methods are uneconomical when the

influence of hull form parameters on the overall drag of the

ship is to be systematically examined.

This paper describes a general practical purpose numerical

method, which is capable of determining the local flow proper-

ties and overall drag on ship hulls. The method is developed

on the basis of a generalization of Larsson's first, [1], and

higher order integral method, [2], to fulfil the basic require-

ments of generality, economy and accuracy for the application

to practical hull form design.

Several versions of a computer program have been developed

under the concept of different numerical strategies. The simple

version of the method is developed on the assumption of a thin

boundary layer for fast computation in the hull form optimization

process. No higher order effects are taken into account and the

choice of numerical scheme is made on the basis of simplicity

and economy. One of the main reasons for the development of

such a simple method is that a convenient method, capable of

providing a reasonable qualitative prediction of the relative

change of the hull performance due to the change of the frame

lines, is most desirable, particularly in the hull form optimi-

zation process, while the higher order versions of the com-

puter program have been developed for the final evaluation of

the boundary layer characteristics of the optimized hull form.

The choice of the numerical scheme is made on the basis of

generality and accuracy. The higher order version III takes

full account of the influence of longitudinal and transverse

surface curvatures and noimal pressure gradients on the develop-

ment of boundary layer and wake, and also of the viscid-

inviscid interaction in the stern region.

9



In order to examine the effect of the higher order terms on

the prediction of flow properties, higher order version I,

containing surface curvature effects only, and higher order

version II, containing curvature and normal pressure curva-

ture effects have been developed.

The coordinate system and the practical calculation method

for the general geometrical properties are described in

detail in the following section. In section III, the govern-

ing boundary layer equations in a streamline coordinate

system and the required empirical correlations are described.

The numerical method is briefly discussed in section IV and

the calculated results of different versions of the computer

program are presented in section V, which includes comparisons

with the measurements for two hull forms: an SSPA Model 720

and an HSVA Tanker Model. A demonstration of the ability of

the method to represent the geometry of different hull con-

figurations analytically is also made. A summary and conclu-

sions are presented in section VI. A description of the com-

puter boundary layer program is given in Kim, [28].

10



II. COORDINATE SYSTEM

The generation of a suitable coordinate system is one of the

most important tasks in ship boundary layer calculation,

since the accuracy of the numerical solutions is greatly

dependent of the coordinates used. This is also one of the

most difficult tasks as, in general, a ship's hull is a

complicated non-developable surface. Most existing commercial-

purpose ships have a bulbous bow, a flat bottom and a sharply

curved stern section shape. In addition, the problem is further

complicated by the existence of the free surface. The chosen

coordinate system must be sufficiently general to allow these

various features to be represented in the boundary layer cal-

culation.

There are several numerically generated coordinates available,

which fulfil all the requirements noted above. The most popular

one is body-fitted and quite attractive because of its general-

ity, but the determination of control functions and the associ-

ated geometrical parameters requires considerable effort. This

coordinate system is uneconomical to use for the present purpose.

In the present study, a streamline coordinate system has been

adopted to handle the geometry and the boundary condition more

simply.

The major advantage of the coordinate system is its simplicity

in the boundary layer equation, due to the fact that one co-

ordinate direction coincides with the predominant direction of

the flow, and the surface of the hull is the coordinate surface.

The coordinate system also has other desirable features includ-

ing the possibilities of treating arbitrary shapes and the con-

tinuous evolution of the coordinates from the stern to the near

wake. On the other hand, there are several disadvantages. The

system is dependent on Froude number and also Reynolds number

11



NM
Z = Z(X,cP) = Zc AmnXm-1 sin{ (3 - 2n)}

n=1 m=1

where

T -
Zk 1 - eTr

zc = 1 +

Zk 1 - e-c

Yr = correction to the aft end of the hull (constant)

= angle between positive y-axis and position vector it

c = constant

T = design draught

Zk = z-coordinate of keel line at each section

Here the matrix coefficient Amn can be determined from the off-

sets in such a way that each cross section of the ship is fitted

by a conformal mapping function in a least squares sense. There-

after each coefficient, corresponding to a given term in the

mapping function, is fitted with a lengthwise polynomial,

(1)

12

if the displacement effect is taken into account. To remove these

difficulties, double model solutions only are considered and a

fixed coordinate is used under the assumption that the change of

coordinate between successive iteration steps is negligible in

the present calculation.

II-1. Mathematical Model of Hull Forms

To make it possible to couple the present method with hull form

optimization routines and also to make it easier to determine

geometrical properties, such as metric coefficients and surface

curvatures, a modified mathematical hull form representation

method, very similar to that developed by von Kerczek & Tuck,

[9], is employed. According to the new method the hull surface

can be expressed by the mathematical equation in the parametric

form as

N M
Y = Y(X,cp) = Y + A Xm-1 cos{ (3 -2n)}

r n=1 m=1 mn



also in a least squares sense. A modified version of the Newton

(Broyden-Fletcher-Goldfard-Shanno) method with the golden sec-

tion line search technique is used to determine the matrix co-

efficient A . Two additional terms, Y and Z, are introduced
mn r c

in the hull surface equation to give a better representation

in the bow and stern regions. This is in contrast to the method

of von Kerczek, which is limited either to ship's hulls with

conventional types of sections or to ships with small bulbous

bows.

11-2. Streamline Coordinate System

Fig 1 depicts the streamline coordinate system (x,y,z) together

with Cartesian coordinates (X,Y,Z). The parametric curves z =

const and x = const on the ship surface are chosen to coincide

with the potential flow streamlines and the equipotential lines

respectively. The y-axis is locally normal to the hull surface.

These lines are obtained from a potential flow solution using

the Hess & Smith (Douglas) method, [10]. The details of this

coordinate system are described briefly in the following para-

graph.

From the output of the potential flow computation, the direction

cosines of the velocity and hence also of the streamlines at a

large number of points on the hull surface are known. By means

of spline functions these direction cosines are interpolated

along the girth at certain sections. Then streamlines may be

traced section by section along the hull. No equipotential lines

have to be traced, however.

In the present version of the streamline tracing method, the

tracing is carried out by numerically integrating the relation

d¢ = (y
111)1Tcf)XY XdX

or

(2a)

13



dZ N MdZ c m-1 .

T
AmnX

sin{(3-2nW
dcp dcP n=1 m=1

N M

+ Zc T (3- 2n)AmnXm-1cos{ (3 - 2n)}
n=1 m=1

2
2

i-ccp
dZ T-Zk --cec 7

d(1) Zk 1- e-c

The integration of equation (2) is carried out using the Runge-
Kutta-Gill procedure. All streamlines are traced simultaneously
with the same step size. The major advantage of the present
streamline tracing method is its simplicity and generality. To
use this method to find the coordinate system, it is only neces-
sary to solve one of equation (2). The remaining one provides a
check on the numerical accuracy of the mathematical expression
of the ship's hull given by equation (1). Once the angle cb is
determined at a certain step, the corresponding coordinates Y
and Z are obtained from equation (1), so there is a guarantee

(3)

14

dX XZ dXdgb =
dZ dZ (2b)

where the directional cosine of the velocity,yxy, and y ,are
XZ

known over the whole hull surface and the other derivative
terms are easily calculated from the hull surface equation (1).

dY
N m

dX E (m- 1)AmninX-2cos{ (3 - 2n)0
n=1 m=1

N M
dY - E E (3- 2n)AmnXm-1sin{ (3 - 2n) cP1
Gig) - n=1 m=1

d N M
Z m-2

- Zc E E (m - 1)AmnX sin{ (3 - 2n) q)}
dX n=1 m=1



that the traced streamline points always are located on the hull
surface. This is in contrast to many previous streamline tracing
methods, for example that of Engevall (1984), [12]. Another
advantage is that streamlines can be traced on the upper part of
a bulbous bow. This is not possible in Larsson's method (1975),
[11], for instance.
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III. BASIC EQUATIONS

The three dimensional boundary layer equations and their boundary

conditions for streamline coordinate system are well known, so

the detail derivation will not be given here. See references [13]

and [14].

III-1. Governing Boundary Layer Equation

The governing higher order boundary layer equation for a steady,

incompressible turbulent flow are given by:

Continuity equation:

Here hl and h3 denote the metric coefficients which are a

measure of the stretching of the corresponding x and z axes;

h2 is assumed to be identically equal to unity and this has

already been introduced in the derivation of the governing

equations.

16

1 DU DV 1 aW
= (4)+ K31U + (Ki2 K32)V Ki3W

hi ax ay h3 az

x - Momentum equation:

U aUaU W DU 1
(P/P)

hi ax -p-- K12UV (K13U-K31W)W + hi ax

1 a (5a)(hih3T /p) = 0
hih3 ax xy

y- Momentum equation:

U aVaV W DV 2 2, = 0 (5b)- Kl2U K32W + (p/p)
hl +" ay h3 az ay

z - Momentum equation:

U aW all W314 f, T., Ty r,,,, _,K3 ,,,,,
+ V + +11,31,, -1,13u) u -, 2vvv

hi ax ay h3 az

1 a 1 a
/p) = 0 (5c)(P/P)(h1h3T

h3 h1h3 ay zy



(8)
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The parameters K13 and K31 are known as the geodesic curvature of

the curve z=const. and x=const., respectively. They are given by

1 9111

K13
111113 aZ

1 ah3
(6)

K31
11013 ax

and the normal curvatures K32 and K12 are defined by

K32 =
h2h3 3y

1 ahl
(7)

K12 =
h1la2

U,V and W represent the velocity components in x, y and z direc-

tions respectively. The parameters p,p and v are the fluid static

pressure, density and kinematic viscosity; Txy and Tzy are the

components of the shear stress.

au
T = (\) UV

ID
)

xy ay

aw t
T = p(V v\.)
zy ay

The prime quantities u', v' and w' are the fluctuating parts of

the components of the velocity vector.

111-2. Momentum Integral Equations

The momentum integral equations based in the streamline coordi-

nate system are obtained by integrating the equation (5) with

respect to y from the wall, y=0 to some point y>6 in the poten-

tial flow outside the boundary layer. The first order momentum

integral equations and entrainment equation are derived under

small cross flow approximation. They are given by the following

equations. See Larsson [1].



Streamwise momentum integral equation:
aell

1 1 91-le n 1 ,
+ (2011+ SD + 1\310 10,11 =

h10 Uehio 9x 2 f

Crosswise momentum integral equation:

1 (3121 1 9Ue ,
A

in z , 1 _ .L.

u
0

+2021(
Uehn

+ 310 i 130 ku 11+ U1) = k....7 f anPo (9h)
hn 9x 9x

A

Entrainment equation:

1

(6-61)} +UeKno (6-61) - UeK13062 =E
hn 9x e

The influence of higher order terms are neglected for the first

order equations, but will be considered later for the higher

order equations.

The higher order momentum integral and entrainment equations are

derived by retaining the first order terms of 6/R and the larger.

d/R is the ratio of the boundary layer thickness to the radius

of surface curvature R. They are given by the following equations.

See Larsson [2].

Streamwise momentum integral equation:

1 30 ii 1 9Ue 1
+ 21311+ 61)

h10 9x Uehio
h30

1 9Ue
4- K130

e
Uh 30 Z

1 r31 +

h10

) K310 O 1n-822) = C f

Crosswise momentum integral equation:

9Ue
K 310 )

Ueh

+ (812+ 021)

I + Ik1x + Ik3x (11a)
px

aa 1 9Ue
+e22(

hn Z ueh 30

- Kno (011+61-02) = i-C tan80+ I + Ik1z + Ik3z
2 f pz

Entrainment equation:

1 1

(-6177)} + Ue}(310
(6-di ) T2) -U K 130 TS-2

h10 e h3ez e e

( 1 +Ki208 )( 1 + K 3206)E

+ K130)

(10)

(1 1b)

(11c)
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The small cross flow approximation has not been applied when

deriving the higher order momentum integral equation (11),

however, in the computations to be presented in this paper it

has been applied throughout. The six bar quantities are newly

introduced in the higher order equations (11) and (12). They

are defined with the relation S* = 62/2 by

ell = ell 4. K320 011
n*012 = 012 K120 012
n*021 = 021 K320 021
n*022 = 022 4. K120 .2 2

6-61 = 6-61 4- K320 (e-el)

S262 = 6 2 + K1 2 0 02

Where the integral parameters are defined by

S

61 = f(1-Lt)dy
0 e6U

ell = f(171J1-)u-dy
0 e e

UW
021 =

o Ue

St = fy(1-TIL)dy0e
e*, = .1; ( 1 _uu ) 82 =utj dy

U W
1 fy(1-7)1T- dy

e e 0 e e

uw, ,* W2021 - 2 - y A-2- LLy

u2
0 e o e

and two relations follow directly from the definitions

(13)

(15)

19

62

012

022

6*2

- -

-

= 1-y7

6

w dy17;

16 U W d
(1-17- ) y

e e

W2

(14)
0 e

a w
dy

e

el 2 = 021 - 62

012 = 021 - 52



Subscrips e and o are used to denote values at the edge of the

boundary layer (y=8) and on the surface (y=0). Cf and 80 are the

skin friction coefficient and cross flow angle defined by

C = T /IpU2
f ox 2

-1
130 = tan T IT

OZ OK

Where To = ( T 0, T ) is the wall shear stress vector.
ox oz

The equations (11) and (12) differ from the corresponding first

order ones (9) and (10) in three respects: the pressure and cur-

vature integrals on the right hand side and bars over certain

quantities. The "I" quantities on the right hand side members

are integrals, which appear due to the inclusion of, on the one

hand, pressure gradients through the layer (1,1) and, on thepx pz
other hand, normal curvature of the surface (Ikx,Ikz).

They are defined as

-
1 f_EIT2e. eldy

px
I

hioh30U.10 ax p 2

6
1

I -
kx h10h30U2

fhlh3K12 UV dy
e0

6
1 a 2

I - ---(p/p) - ueh3K131dypz h10h3oU2 fhifaz
e 0

6

kz
-

h1oh30U2
fhih3K32VW dy

e0
9K120

1 913e

k1x =kx - Ki20[( et+
Ueh30az

+ K130)] -
h30 az

k3x

*
1 1-le * * 1

aK 320

- -K320 [(20ii+i
Ueh103x

,n11310 1,- 22) - 0
22 L.

K120
2 9U * 1

Ik1z = -K120[e22{ (et1±6t+et) (eIi+6'1+ 022) (18g)

Ueh
+Kin} K130 h30 az

K320[201
1

(k3z = Ikz U hn ax + K310)]
19K320 n*

o21hn ax
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111-3. Empirical Correlations

The solution of the system of equations given by (9) or (11)

requires additional relations; a correlation is needed for the

skin friction coefficient Cf' a velocity profile family and an

auxiliary equation are necessary. The latter can be any one of

a number of possibilities, but the most popular choice is the

entrainment equation, given by (10) or (12), which is essen-

tially an integral form of the continuity equation for the

boundary layer. A recent report by Childs et al, [15], shows

that this is the best choice among the equations in common use.

Entrainment Correlation

An empirical relation between the entrainment rate and the vel-

ocity profile form factor is needed. Several of these already

exist, but Head's correlation [16] is one of the better ones

available. In the present calculation, Head's correlation for

the boundary layer and Kang's relation [17] for the wake cal-

culation are employed. The Head's entrinment rate may be related

to
H1

via relation

-0
C = = 0.0306 (H1- 3.0) .653
E

Ue
H1 = 1.535 (H12-0.7)-2.715+3.3

The relation due to Kang are given by

CE = = 0.11299 - 0.048275 ln(H1) + 0.0051395fln(H1)12 (20)

Velocity Profile Family

In order to compute a number of relations between the unknowns,

functional relationships for the velocity profile and static

pressure have to be assumed. For the tangential velocity com-

ponents the most well known power-law and Mager assumptions

(19)
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are made.

1
H -

12

,ir,n= 2 (21a)

ue ' a '
Hi2-

= (Y-)
2

{1_-Y-}2tan3o (21b)

ue

For the normal velocity component a linear variation is

assumed.

Ve
cs

In the wake calculation, an approximation of Cole's wake function

is employed for the streamwise velocity profile, while Mager's

assumption is used for the cross flow.

2 7V (22a)= 1 X cos )

ue
2

W = tan(30 (22b)

ue

Introducing these expressions in the definitions of the basic

integral parameters, the following relations appear

(51 = 6A1

011 = 6(Ax A2x2)

62 = 6tana0(A3A4x)
(23)

012 = 8tan30(A4X-A5X )

022 = -dtan2(30 (A6 - A7X +A8X2)

021 = 62+°12

By definition H12 = Si ell, which yields

(21c)
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Al
H1 2 =

A1-A2

A1
H12-1

X =
A2 HI2

The constants A1-A8 attain the following numerical values

3. Skin - friction Correlation

Ludwieg and Tillmann [18] proposed a semi-empirical law in

which the skin friction is related to the boundary layer momentum

thickness and velocity profile factor. This law is supposed to

be valid for mild pressure gradients and employed here.

The Ludwieg-Tillmann skin friction correlation reads:

-0.678H12 v 0.268
Cf

= 0.246.(10.0)
Ue.011

( 24)

23

A1

A2

A3

A4

A5

A6

A7

A8

=

=

=

=

=

=

=

=

0.5
0.375
0.333
0.268
0.233
0.200
0.359
0.165

(25)



IV. NUMERICAL METHOD AND CALCULATION STRATEGY

The numerical method developed in the present paper is based on

a generalization of Larsson's first, [1], and higher order inte-

gral method, [2]. Larsson's first order method has so far been

applied to several different types of ship hulls including the

SSPA Model 720 and an HSVA Tanker at the SSPA-ITTC WORKSHOP in

1980, and the higher order method has been applied only to a

simple mathematical Wigley model. These methods have been found

to be efficient and accurate. However, they have a limitation

in their application to practical hull form design due to the

fact that the one of the first order requires relatively high

computing costs for routine computation in the optimization

process and the one of the higher order did not have a re-

liable procedure for calculating normal curvatures of the ship

surface.

A general practical purpose numerical method for calculating

the viscous resistance and flow properties around ship hulls

is presented. Several versions of a computer program have been

developed under the concept of different numerical strategies.

A simple version of the method has been developed for fast

computation in the hull form optimization routine, while higher

order versions have been developed for the final evaluation of

the boundary layer-wake characteristics of the optimized hull

form. The choice of the numerical scheme is made on the basis

of simplicity and economy for the simple version of the method,

and on the basis of generality and accuracy for the higher order

versions during the development of the computer program. The de-

tails of the different versions of the method are summarized in

Table 1.

To illustrate the basic differences in calculation strategy of

the numerical method, we shall at first consider the solution

of the first order flow equation (9), and then the solution of

the full flow equation given in (11).
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IV-1. First Order Method (FITBL.F77)

A simple numerical method is developed under the assumption of

a thin boundary layer for the prediction of global flow proper-

ties and overall drag on ship hulls. The most simple numerical

schemes have been adopted for fast computation and several ap-

proximations have been made to make the calculation procedure

as simple as possible. The first order boundary layer equation

(9) expressed in a streamline coordinate system together with

empirical correlations, which are given in section II1-3, are

solved by the Runge-Kutta-Gill procedure along the streamline.

No higher order effects are taken into account and the pressure

distribution at the boundary layer edge is assumed to be the

same as the distribution at the hull surface. The metric coeffi-

cients and the curvatures are computed as follows.

hi(i,j) = 1/Ue(i,j)

h3(i'j) = V(Y(i,j)-Y(i,j-1))2 + (Z(i,j)-Z(i,j-1))2

D
1 1h1 h1(i,j)-h1(i,j-1)K _

13
h1

Dq h1(i,j) q(i,j)-q(i,j-1)

11 Dh3 h3(i,j)-h3(i-1,j)
=

K31
h3

Ds
h3(i,j) s(i,j)-s(i-1,j)

where s and q represent the arc length along the streamline and

the girthline respectively. The index i and j denote the i-th

station and the j-th streamline.

One of the main reasons for the development of such a simple

method is that a convenient method, capable of providing a

reasonable qualitative prediction of the relative change of

the hull performance due to the change of the frame lines,

is most desirable, particularly in the hull form optimization

process.

(27)
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IV-2. Higher Order Method (HITBL.F77)

Successful predictions can be made by the previously described

first order method over a large part of the hull. However, the

accuracy in the stern region is relatively poor. The poor re-

solutions are due to a number of reasons, including the turbu-

lent nature of the three-dimensional boundary layer, the

complexity and wide range of geometrical configurations em-

ployed and the neglect of the higher order effects. In order

to improve the accuracy and to examine the effects of the

higher order terms on the prediction of the stern flow, three

versions of the higher order method have been developed. The

details of the higher order methods are described in the fol-

lowing subsections.

1. Surface Curvature Effects (HITBL-I)

In the present version of the higher order method, HITBL-I,

a numerical investigation of the effect of normal curvatures

on the development of the boundary layer has been made. The

numerical method takes into account the variation of metric

coefficients and curvatures across the boundary layer. In the

first order method h1 and h3 are assumed to be independent of

y, which is clearly an oversimplification in the stern region

of a ship. In the present approximation they are now functions

of all three coordinates and a linear dependence is assumed.

h1 = h10(x,z)(1+K120y) : h3 = h30(x,z)(1+K320y)
(28)

here K120 and K320 are taken as the normal curvature of the

surface, and h2 is still assumed identically equal to unity.



In using this method special care must be taken in obtaining

normal curvatures of the coordinate system, since the predic-

tion of the viscous resistance of a ship hull as a function

of the hull form partly depends on our ability to evaluate

these quantities. The curvatures may be computed as follows.

The geodesic curvatures

d.71's

K13 = ds s
x 11)

dT
K31= dq

(ir* x g)

and normal curvatures

dl
S

K32 = ds

K21
= dqg

where and g represent the unit tangent and normal vector of the

coordinate lines.

Using the velocity profiles (21) and the relations given by (28),

the curvature integrals defined in (18b) and (18d) can be written

as

2 K 12)Ve e B(H12)

IK1x Ue (H12+ 3)

Hr+ 5 BUe2

IK3x
= -K320 11 A(H12) .[

2uehio

2

K1 z
= O. 5K 120Kno e A (H12) (H32+ 3)

IK3z = 0.0

+ K310]

(30)
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2. Normal Pressure Gradient Effects (HITBL-II)

In the present version of the higher order method, HITBL-II, a

numerical investigation of the effects of normal curvature and

also normal pressure gradient on the development of the boun-

dary layer and wake has been made. The numerical method takes

into account the variation of normal curvature and pressure

across the boundary layer.

A quite complicated expression for the pressure variation is

obtained by integrating equation (5b) with a velocity profile given

by either eq. (21) for the boundary or eq. (22) for the wake.

It may however be simplified considerably making an order of

magnitude analysis of the different terms with the assumptions

that x, z, U, hl and h3 are of order unity while y, v, w, K1206

and K3208 are of order (8/R). Only terms of order unity and (8/R)

will be retained in the relations given in this section.

For the boundary layer:

1 +2 2+1
AC = AC 11-(-Y-)n + pv2AC [1-(1-)21- AC [1- (-Y-)n (32)pvL 8 8 pk 8

P - pp
Where AC =

lioU2

H12- 1

n -
2

AC ,pv2' AC areare contributions from the first, second and
pv

fourth term respectively in equation (5b) and they are given by

28

A(H12) =

Where A(1112) and 3(H12) are functions of H12.

2 ,

H1211124-1) (31a)
(H12-1) (H12+3)

B(1112) -

H12 (H12+1
(31b)

F12 -1
'



2

(5 Ve
AC

4 6 1

pv (H12 + 3)
Ue

h 1 0 6

Ve 2
ACpv2 = (u--)

2K120 6
ACpk H12

The pressure integrals I and I in equations (18a) and (18d)
px pz

can be obtained by introducing the pressure given by equations

pz
1

(ue2csAcpv) +
2u2 L H12+5 h30 Dz

e

H12 K3206H12 31
{ + } (u2dAc )

H12+1 H12 + 2 h3o3z e pk j

1 9
2

1
6 2 2

+ (K1206 ) (K/206 )
2 h30 9z 4 1-1309z

and for the wake:

I =0pz

K 61-1 af 12 320 121 ,u26Ac 1]
H12+1 H12+ 2 hio3x' e pk'

r H12+3
D 2 3

3 h309z(Ue6ACpv2)

(33)

29

AC = AC ri{1-(-17-2-1-X{77(1-(i.)2)pvL

(-Y--)sinTr(-Y-)
6

7

- ( 1+cos7 (i-)2) /
(35)

+ ACpv2 [1- (-2L )1
6

2

2,5 1 3 VeWhere AC
( )pv 3x cSUe hlo

(36)

Ve 2
ACpv2 = (77)

1 1 1 3 1[11___x(

px
2ue2

3 6 Tr2)111103x (Ue6ACpv) 3 SACpv2)11 10 Bx (Ue

(37)

(32) and (33).

1 H12+3
ACU2

1 9 2

px
2ue

Spv[ H12+5 h1o3x (Ue) LACpv23 hio 3x(Ue)



3. Viscid Inviscid Interaction (HITBL-III)

As well known, the interaction between the boundary layer and

the external inviscid flow may become important near the stern.

In the present version of the higher order method, HITBL-III,

this viscid-inviscid interaction problem has been investigated.

There are several methods available for calculating the mutual

influence between the boundary layer and the potential flow.

One of the more popular among them is the displacement surface

method, which takes the boundary layer effect on the potential

flow into account by adding the displacement thickness to the

original hull surface. This is, however, quite difficult in a

three-dimensional case, because the potential flow and boundary

layer calculations are carried out for a fictious hull surface

and new hull lines would probably have to be faired in each

iteration step. Therefore an alternative approach has been em-

ployed here. All the necessary calculations are carried out for

the fixed original body surface and also the location of the

sources is unchanged. However, the noimal velocity at the centre

of each element is no longer put equal to zero, but to some fi-

nite value which will displace the whole fluid outwards equally

much as the displacement thickness.

This transpiration velocity is computed according to Lighthill,[19].

In principle his derivation could be extended to take into account

higher order effects in a manner similar to the one of section III

but this was not considered necessary, since the effect of the

transpiration velocity is in itself of higher order. The normal

velocity component can be obtained by integrating the continuity

equation through the boundary layer.

1 9Ue D61 DS
VN =U K "+ + U + U h30az1 e

ue
e h10 ;x

In accordance with the small cross-flow approximation, the last

term has been dropped in the present calculation.

(38)

30



IV-3. Numerical Calculation Procedure

The general derivation of the momentum integral equations and

a suitable iterative numerical procedure for its solution have

been described in detail by Larsson, [2]. This procedure was

utilized with some minor modifications in the present study.

The details of the numerical procedure for the prediction of

ship viscous resistance are described step by step in the fol-

lowing paragraph.

Step 1. Hull Form Representation (HULSEC.F77, HULGEN.F77)

A ship hull is represented by a mathematical hull surface equa-

tion with seven terms mapping coefficients and a nine degree

polynomial curve fit of the coefficients in the longitudinal

direction.

Step 2. Coordinate System (GEOM1H.F77)

A streamline system is constructed on the hull surface based on

the potential flow solution of the Douglas program with the

double model approximation.

Step 3. Geometrical Properties (GEOM2H.F77)

The metric coefficients and curvatures of the hull surface are

obtained from the evaluation of either eq (27) for the first

order version or eq (29) for the higher order version of the

method.

Step 4. First Order Boundary Layer Calculation (FITBL.F77)

The boundary layer calculation is performed based on the coordi-

nates of Step 2 and the values of C and Ue on the hull surface.

In order to provide initial data for the higher order calculation,

the first order boundary layer calculations are reperformed based

on a new coordinate system, which is generated in such a way that
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the streamlines are traced along the hull surface based on the

potential flow solution at the boundary layer edge.

Step 5. Higher Order Boundary Layer Calculation (HITBL.F77)

The governing higher order boundary layer equations are basic-

ally three ordinary differential equations, namely two momentum

integral equations and one entrainment equation, which have to

be solved for three basic variables 011,021 and H12. All other

equations are simply inter-relationships between the various

quantites occurring in these differential equations. Then the

governing equations (11) and (12) can be simply expressed in

terms of 711,-6721 and 777 instead of 011,021 and (5-61.

den
al f 1 ( llr H12, B,, s, " ) = 0

ds

deal
a2 f 2 ( e H11, 021, (39)

ds

d (7=7-1.) dena3 + b3
ds ds

f 3 ( en, H12, 021, 5, ) =0

This system of simultaneous first order ordinary differential

equations is solved using the Runge-Kutta-Gill procedure by

marching downstream along a streamline.

Since the first order method is based on the unbarred variables,

the necessary relations between the barred and unbarred variables

must be provided. Introducing the velocity profiles (21) and

the definition of the integral thickness (14) and (15), the ini-

tial value of the barred quantities may be obtained from ell,

621 and H12.

2
= e + K 320A (FI 12) e 11

7).21 = 011 + K 320A (H12) e D. ea (40)

6-61 = 8-61 + 051<320eil4 B(11 12)-A(1112) (H12+1) }
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In the present version of higher order method, the "I" integrals

have to be included. In the expression for Ipx, Ikix, I andk3x

I , the derivative terms of
Ue and 8 have been retained. Inser-pz

ting the velocity profiles (21) in (13), 8 may be obtained from

ell and H12 in the previous iteration and Ue, Ve may be assumed

known from the off-body calculation. In this way the derivatives

of
Ue,

8 and "I" integrals can be computed in advance.

In order to proceed with the calculations a further step, the

inverse calculation from barred quantities to unbarred quanti-

ties is needed. It is thus possible to obtain a solution for

011, e21 and H12 from the system of equations (36) knowing Til,
021 and 8-8i. The equations are, however, non-linear and special

care has to be exercised. The gradient projection method, which

is one of the constrained multi-dimensional non-linear optimiza-

tion methods, is used in the present calculation. A simple

interpretation of the method arises from the fact that the in-

verse solution of (36) is equivalent to a solution of the con-

strained optimization problem which might be formulated in the

following mathematical statements.

Minimize F(1112,811) = 1E11+1E21
Hi2 en.

subject to ell ell when K320 0.0 (41)

ell < ell K320 > 0.0

H12 1.0

H12 2.5

where El = 17)-11-011-1-K32oA(H12)el
2

E2 = CS-S1 - + 0. 5K32001 {B(H12)-A(H12) (H12+1)} (42)

Knowing 011, H12 and 8-81, a new calculation may be performed

a further step down along the streamline to the far wake region.

Although the gradient projection method works well even in the

thick boundary layer region near the stern end, numerical

break-down happens when K320 is extremely large in negative or
poor resolution of -611 and 8-81 is taken from the first order
solution.
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This means that there is no real solution to eqs. (40). In order

to avoid this difficulty, an approximate solution procedure is

proposed. ell is determined first from the following equation.

2= eii{ 1K320A(f12)(011 /-5-1,) 011} (43)

Where the superscript - denotes the value in the previous iter-

ation step. With the computed 011,B12 can be solved from the

same calculation procedure.

Step 6. Viscid-Inviscid Interaction (HITBL-III)

A set of transpiration velocities for simulating the boundary

layer effect on the potential flow is computed from eq (34)

based on the displacement thickness distribution obtained

using the solution of the higher order version II. The poten-

tial flow is then recalculated taking the transpiration velo-

cities as the boundary condition and the higher order version

II is used to obtain a new boundary layer solution.

Step 7. Calculation of the Viscous Resistance (FITBL .F77, HITBL .F77)

The mostobviousway to obtain the viscous resistance from the

boundary layer is to integrate the skin friction and pressure

all over the surface to get the frictional and viscous pressure

resistance. This method givesfairpredictions for tangentional

force, however, the difficult part is the estimation of viscous

pressure drag. The viscous pressure drag is calculated by allow-

ing for the displacement effect of boundary layer on the pressure

distribution. It is difficult to do accurately because in the

region of very close to the stern, the accuracy of the pressure

distribution becomes less reliable and such a estimation is very

sensitive to small errors in stern region.

In the present calculation, the viscous resistance is calculated

by computing the momentum loss in the far wake. This momentum

34



area can be determined either from the continuation of the boun-

dary layer calculation along a streamline extending to the wake

region or from the Squire & Young method. Both of them have been

tried in order to demonstrate the difference in the prediction

of viscous resistance. Applying the Squire & Young formula, [20],

and extending it to three dimensional boundary layer flow, the

momentum thickness 811 in the far wake may be given by:

ue (H12+5)/2ell - alit {7z71

where elit represents the momentum thickness at trailing edge.

The integration of equation (44) over the girth of a cross

section therefore gives the resistance due to the momentum loss

which is accumulated in the upstream portion of the body.

2
R = pUco f dq

Despite of the relative simplicity the method is known to give

a fair estimation of the viscous resistance [21,22].
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V. RESULTS AND DISCUSSION

Several different versions of the computer program described

in the previous sections have been tested to investigate the

accuracy of the method and to define its limits of application.

Two well-known hull forms, which have all the features of most

commercial ships, have been used in the present study. The

first one, discussed in section V-1, is the SSPA Model 720

and the other one, discussed in section V-2, is an HSVA Tanker

with a rather complex shape.

V-1. Results for the SSPA Model 720

The body plan, represented by a mathematical hull surface

equation with seven term mapping coefficients and nine degrees

of polynomial curve fit, of L:T:B = 2.0 : 0.11808 : 0.14167

together with the streamlines on the hull surface is shown in

Fig 2. The stern parts after 2x/L = 0.9 have been modified so

as to make variations of the normal curvature smoother and to

avoid boundary layer edge interaction problems.

The modified sections are represented by solid lines, and the

original ones by chain lines. The streamlines are traced on

the basis of the potential flow solution of the Douglas com-

puter program with the double model approximation. To obtain

the solution 795 panel elements on the hull and wake are used.

As can be seen from the figure, the uppermost streamlines are

quite steep at the stern and merge into the waterline. In

real flow, the waterline is a separation line and all upper

streamlines at the stern merge into this line and separate.

This happens fairly abruptly and quite large vertical velocity

components may be found also very close to the waterline. Very

similar flow patterns have been observed by Larsson, [23], in

visualization tests (see Fig 3). Although significant sepa-

rations are not observed, the effect of the separation is

beyond the scope of the present study. To avoid this diffi-
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culty and to keep the whole momentum area to the far wake,

the uppermost streamlines at the stern part are modified.

The modified streamlines are represented by solid lines

and the original ones by chain lines.

The boundary layer-wake calculations are carried out at a

Reynolds number, based on the length of the ship, equal to

5.0 x 106, starting at 2x/L = -0.6. The initial values are

obtained from the measurements by Larsson, [24], which are

given in Fig 4. A comparison of calculated and experimental

values of the streamwise momentum thickness 011, the local

skin friction coefficient
cf' the transverse distributions

of the pressure coefficients c and the cross flow angle

8o are shown in Figs 5-8 respectively, at (a) 2x/L = 0.5,

(b) 2x/L = 0.7 and (c) 2x/L = 0.8.

As can be seen from the figures, the boundary layer para-

meters vary greatly near the keel, where the curvatures and

the pressure gradients are large and remain almost unchanged

near the water surface, where the curvatures and pressure

gradients are small. The most striking results for the keel

line are the overprediction of the momentum thickness (Fig 5)

and the irregular pressure distribution (Fig 7). This line is

in the vertical plane of symmetry, where the boundary layer

is thin and no longitudinal curvature effects appear. The

main reason for the overprediction is probably small cross

flow approximation, see Larsson, [4].

Judging from the girthwise distribution of the results in

Figs 5-8 the boundary layer integral parameters are fairly

well predicted by all the present methods, including first

order theory at 2x/L = 0.5, where the boundary layer still

is thin.
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At 2x/L = 0.7 higher order effects have already started to

play an important role. In general, the first order method

produces a peak in the momentum thickness around 20/L = 0.11.

Large cross flow angle gradients also appear around this

position.

At 2x/L = 0.8 the higher order methods seem to produce

reasonable distributions, with some exception of the cross

flow angle. The first order method produces too high a peak

in the momentum thickness around 2G/L = 0.1, resulting in

an overprediction of the viscous resistance. Even though

the results are not perfect, the higher order versions II

and III give better predictions of momentum thickness and

pressure distribution from the results of the inclusion of

the effects of normal pressure gradients and viscid-

inviscid interaction.

Fig 9.a shows the distribution of the boundary layer thick-

ness at 2x/L = 0.7, 0.8 and 0.9, calculated by higher order

theory with a comparison with measured values. The distri-

bution does not seem unreasonable.

The calculated viscous resistance coefficients cv are corn-

pared with measured ones in Table 2. The measurements were

carried out by Freimanis & Lindgren, [25], in the SSPA

towing tank. In the present calculations, the viscous resis-

tance has been estimated by computing the momentum loss in

the far wake (2x/L = 2.0). This momentum area was determined

from the continuation of the boundary layer calculation

along streamlines extending to the wake region and the

Squire-Young method. There is a small duantative difference

between these two methods, but the qualitative agreement is

fairly good. On the other hand, the viscous resistance cal-

culated according to the simple version of first order theory

differs considerably from the measured one, while the higher

order versions produce reasonable predictions with 4-5%
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difference. A probable reason for the difference in the first

order theory is the overprediction of the momentum thickness

in the stern region due to the neglect of higher order terms.

V-2. Results for the HSVA Tanker Model

The HSVA Tanker model, unlike the one discussed in section V-1,

has a rather complex geometrical shape. The model posseses all the

special features of a commercial ship, that is, a flat bottom and a

sharply curved section shape in aftbody, and consequently serves

an excellent case on which to investigate the accuracy of the

methods and make clear their limit of application.

The bodyplan, represented by a mathematical hull surface

equation with seven terms mapping coefficients and nine

degrees of polynomial curve fit, of L:T:B = 2.0 : 0.11228

: 0.15146 together with the streamlines on the hull surface

is shown in Fig 10. The streamlines are traced based on the

potential flow solution with 741 panel elements for the

Douglas program, treating the model as a double ship model.

The boundary layer calculations are carried out at a Reynolds

number, based on the length L between perpendiculars, equal to

6.6 x 106, starting at 2x/L = -0.790. The initial values are

obtained from measurements, which are given in Fig. 11. A com-

parison of computed results of 811, Cf, C and 50 and Hoffmann's

measurements [26] is shown in Figs 12-15 respectively, at (a)

2x/L = -0.744, (b) 2x/L = 0.291, (c) 2x/L = 0.502 and (d) 2x/L =

0.884.

As can be seen from the figures, similar tendencies as for the

SSPA Model 720 case are observed. The correspondence between

calculations and measurements is fairly good at 2x/L = -0.744

as expected from the fact that this station is very close to

the initial station.
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Station 2x/L = 0.291 is on the parallel middle body. As expected

the measured variations in the integral parameters are very

smooth compared with the first station. There is one marked peak,

however. It occurs at the mid-girth for the momentum thickness.

This was not observed in SSPA Model 720 case and all of the pre-

sent methods miss it entirely. The only possible explanation is

the existance of a bilge vortices in the boundary layer. It

should be kept in mind that the hull is extremely full at the

forebody and the radius of curvature of the bilges is cruite

small. If this explanation is correct, it is not surprising that

no one of the present methods is able to predict the very high

momentum thickness at the bilge, since the effect of a longi-

tudinal vortex is not taken into account in the present calcu-

lation.

Also at station 2x/L = 0.502, the same situation as for as the

previous station occurs, but the variations are rather small.

In fact even this station is not too far from the parallel part

of hull.

At the final station 2x/L = 0.884, similar tendencies as for the

SSPA Model 720 are observed. The higher order methods seem to

produce reasonable distributions for momentum thickness and

pressure coefficients.

It should be noted that the deviation of the calculated skin

friction from the measured one is relatively large, as can be

seen from Fig 13. Possible reasons for this large deviation are

the numerical errors in the computer program and/or measurement

errors. The first explanation is not likely to be true, since the

deviation is not to be found in the case of the SSPA Model 720

and the prediction of the other boundary layer parameters is

reasonably good. A more possible reason is probably measurement

errors, as indicated by the fact that the skin friction calcu-

lated by the Ludwieg-Tillmann equation with the measured momen-

tum thickness Reynolds number Reo and the shape factor H12 has

almost the same magnitude as the one predicted by the present
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calculation method.

Fig 16 shows the ditribution of the boundary layer thickness 5

at 2x/L = 0.7, 0.8 and 0.9 calculated by higher order theory

with comparison with measured values. It seems to be reasonable.

The calculated viscous resistance coefficient Cv is shown in

Table 2. In this case only the Squire-Young method is applied

at station No 1 (2x/L = 0.9) to calculate the viscous resistance.

It is noticed that the values predicted by different methods have

almost the same magnitude. The measured value obtained from the

towing test, [27], is shown in Table 2. The calculated viscous

resistance is only 4-7 per cent lower than the measured one. It

may therefore be concluded that the first order method is gener-

ally applicable to practical use with qualitative accuracy and

the higher order versions of the present method predict the vis-

cous resistance with acceptable accuracy.

V-3. Computation Time

The numerical procedure described in section IV was programmed

for a Data General Computer at SSPA Maritime Consulting. The

program was designed to be sufficiently general to allow it to

be applied to practical hull form design and to be very flex-

ible at the choice of numerical schemes in the boundary layer

calculation. The details of the boundary layer computer program

are given in reference [28].

One of the main advantages of the present calculation method

compared to the method based on partially differential equa-

tions is the low computation time. Particularly the first order

method is designed to be very simple and to be used in an opti-

mization procedure. The necessary computation time for calcula-

tion of the viscous resistance depends much not only on the

number of elements, streamlines and stations, but also on the

numerical schemes chosen. The total CPU times for the HSVA

Tanker case are as follows:
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- Hull form representation (40 stations) 210 sec

- The basic potential flow (741 elements) approx. 780 sec

- Coordinate system (17 streamlines) 250 sec

- Geometrical properties (17 x 40 points) 150 sec

- First order method 38 sec

- Higher order version I 278 sec

- Higher order version II 503 sec

- Higher order version III 1 623 sec



VI. CONCLUDING REMARKS AND FUTURE WORK

A general method for calculating the viscous resistance and

flow properties around ship hulls is presented. A simple

version of the method has been developed for fast computation

in the hull form optimization routine, while higher order

versions have been developed for the final evaluation of

optimized hull forms. Numerical calculations of the boundary

layer/wake have been made for two ship models at zero Froude

number. According to these studies the following conclusions

can be drawn:

- The first order method is accurate enough to predict the

differences in hull performance due to changes in the hull

form and can therefore be used in an optimization procedure

with its essential features of numerical economy and quali-

tative accuracy.

- The higher order versions predict the viscous resistance

with acceptable accuracy and provide a reasonable quanti-

tative prediction of the local flow properties including

skin friction and pressure coefficients.

- The importance of higher order effects becomes more domi-

nant in the stern resion. The only reasonable distributions

of the momentum thickness and pressure coefficients were

obtained with the method incorporating higher order effects.

However, there is no big difference in the solutions with

or without viscid-inviscid interaction. Stronger techniques

may be necessary for the interaction problem, particularly

in the presence of bilge vortices.

There is, however, a problem that needs to be considered and

investigated before the present method can become a more

effective tool in the design of ships, namely:
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- The quality of the computed results is rather sensitive to

the initial conditions, particularly to the initial distri-

bution of cross flow angle. Additional work on the develop-

ment of a general method for the generation of the initial

conditions on arbitrary bow configurations is required.
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LISF OF FIGURES

Fig 1 : General Coordinate System

Fig 2 : Body plan and streamline coordinate system(SSPA Model 720)

Fig 3 : Visualization of the flow around the stern of a

double model (SSPA Model 720)

Fig 4 . Initial values of ell, H12 and 130 at station 2x/L=-0.6

Fig 5 : Comparison of computed momentum thickness ell with

Larsson's measurement data at 2x/L=0.5, 0.7 and 0.8

Fig 6 : Comparison of computed skin friction Cf with measurements

Fig 7 : Comparison of computed pressure coefficient C with

measurement data

Fig 8 : Comparison of computed cross flow angle o with

measurement data

Fig 9 : Distribution of boundary layer thickness at 2x/L=0.7,

0.8 and 0.9

Fig 10: Body plan and streamline coordinate system(HSVA Tanker)

Fig 11: Initial values of ell, H12 and 130 at station 2x/L=-0.790

Fig 12: Comparison of computed momentum thickness ell with

Hoffmann's measurement data at 2x/L=-0.744, 0.291, 0.502

and 0.884

Fig 13: Comparison of computed skin friction Cf with measurements

Fig 14: Comparison of computed pressure coefficient C with

measurement data

Fig 15: Comparison of computed cross flow angle (30 with

measurement data

Fig 16: Distribution of boundary layer thickness at 2x/L=0.7,

0.8 and 0.9
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Table 2. Calculated Viscous Resistance Coefficients

Note :
M-DMomentum area is determined from wake

calculation.

S-YMomentum area is determined from Squire-

Young formula

Nu erical Methods SSPA Model 720 HSVA Tanker

-
o S-Y 2.929 3.490

- FITBL M-D 2.950 -
>

U S-Y 2.530 3.499

o

HITBL-I M-D 2.790 -

S-Y 2.270 3.521-1
4-)

(c-, HITBL-II M-D 2.490 -

u
-1 S-Y 2.250 3.560

(11u HITBL-III M-D 2.470 -

Measurement ( Cv*103)
2.357 3.749
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ABSTRACT

In the present paper a method for calculating the potential flow

about ships is described. The problem is discretized by covering

the hull and part of the free surface with panels. An exact

boundary condition is satisfied on the hull, while on the free

surface the boundary condition is linearized with respect to the

double model solution.

The main difference between the present method and others of the

same kind is that the panels are parabolic rather than flat and

that the source density distribution on each panel is not

constant but linearly varying. Other improvements, as compared to

the original Dawson method, are that the panel grid on the free

surface is independent of the streamlines and that the resistance

is computed in a more accurate way.

A detailed description of the theory is given in the paper,

which also presents results for several different cases, showing

the improvement over first order methods.
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Fig 19b Intermediate design
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canoe design
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Perspective view of optimized bulb

shape ( initial + optimal design
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Wave profiles at Fn = 0.28

the SSPA Ro-Ro ship

FIG. 9

Large bulb

Medium bulb

5

Fig 9a Calculated bow wave profile

-0.02

Fig 9b Measured bow wave profile



SSPA
&

CTH

Wave profiles at Fn = 0.21

the SSPA Ro-Ro ship
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Geometry modeling of the SSPA RoRo

ship with large bulb using ALADDIN

Fig 2a Side view

Fig 2b Top view

Fig 2c Perspective view

Fig 2d Perspective view
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V. CONCLUDING REMARKS AND FUTURE WORK

The objective has been to obtain an Optimum Hull Form Design

System (SINDBAD), which will enable the designer to include

advanced hydrodynamic performance predictions at an early stage

of the design process, allowing a systematic evaluation of the

hydrodynamic performance characteristics as a function of the

hull geometry. The SINDBAD system has been applied to the bow

shape optimization of a fine form, high speed ship and to the

entire hull form optimization for a canoe type of vessel. Through

the two optimum hull form design examples it has been

demonstrated that the SINDBAD system can be used to develop

mathematically faired and hydrodynamically desirable hull forms

for commercial types of ships starting from an existing ship.

The method presented here is only the beginning of the work done

in the development of a complete Optimum Hull Form Design System.

All the important factors for determining a ship's performance

have not yet been incorporated in this system. In particular, it

is important in the design of ships that the considerations of

propulsion and seakeeping are included at an early design stage.

Furthermore, the determination of the optimal principal

dimensions of the ship is also an integral part of the design

process. Further development of the evaluation methods for ship

motion, propulsion, manoeuvring characteristics have to be made

and should be incorporated as they become available. However,

this effort is not that simple, since it involves many different

fields of ship hydrodynamics. Thus it seems that the most

important next step is further improvement of the performance

evaluation method.

The viscous flow method that is included in the present version

of the Optimal Hull Form Design System (SINDBAD) is based on a

first order integral method. A more advanced method for solving

the Navier-Stokes equation will have to be incorporated to extend

its capability and generality.
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The optimization was performed starting from the Wigley hull and

reduced the total resistance by 7.2% after eight iterations (see

Fig 16). The sectional view of the optimized canoe design is

compared with the initial design in Fig 17a and the intermediate

one after two iterations in Fig 17b. The comparison of

nondimensional design load waterline shapes for the optimal

design with the initial one is made in Fig 18. Perspective

comparisons are also made in Fig 19.
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It can be seen from the convergence history curve presented in
Fig 12 that a reduction of 8.5% in wave resistance is achieved

after six iterations. The sectional and perspective views of the

original and the optimal design are shown in Figs 13 and 14. It

is interesting to note that the maximum section area is

considerably increased, this being accomplished by reducing the

volume in the lower part of the bulb. This indicates that the

lower part of the bulb is not so important for the bow wave or

wave resistance.

IV-3. Canoe Shape Optimization

As a more practical design example for the total resistance

minimization, an optimization study of interest in the design of

a racing canoe has been made. The entire hull form was optimized

starting from the Wigley hull. Fig 15 shows the geometrical

modelling of the original hull form with 132 panel elements. The

hull surface is represented by using 8 master shape and 22 slave

design variables.

The following design criteria were taken into account when

optimizing the hull form with respect to total resistance:

The design speed for which the optimization is to be

performed is 1.78 m/sec. This corresponds to Fn = 0.25 and

Rn = 9.28 x 106 based on LPP = 5.2 m.

Constant volume limitation (CB = 0.44).

The geometrical shape changes are allowed along the y

direction only, which means that the design draught is kept

constant (T = 0.325 m) during the optimization process.
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The resistance study with the SSPA Ro-Ro ship model 2062 has

shown that a larger bulb size seems to increase a bulb's

resistance reducing effect and the bow bulbs should be made as

large as possible. There are, however, several practical

constraints, associated with ship handling such as anchoring and

dry docking, which have to be considered in the optimal bulb

design.

An attempt to design an optimized bow shape has been made using

the Optimal Hull Form Design System (SINDBAD) starting from the

SSPA Ro-Ro ship with a large bulb. A symmetry half of the

original bulb is modelled with 152 panel elements using 11

master shape and 10 slave design variables, as shown in Fig 11

and connected to the main hull. The wave resistance to be

minimized is calculated from the momentum approach given in (11)

with 726 elements (404 hull elements + 322 free surface panels).

The design criteria considered in the present optimization study

are as follows:

The design speed for which the optimization is to be

performed is Fn = 0.28. This corresponds to the ship speed

22.86 knots, based on LPP = 180 m

It is required that the bulb volume is kept constant, so

that the location of the longitudinal centre of buoyancy

should be maintained at the original position after

optimization.

The original bulb contour on the XZ centreplane and the

connection points between the bulb and the main hull are

assumed not to be changed during the optimization process.

Zero transverse slope boundary conditions at points on the

contour line are required.
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As can be seen from the figure the present method predicted

lower wave resistance than the measured residual resistance for

the different bulb configurations at nearly all speeds. Although

absolute quantitative differences are observed between computed

wave and measured residual resistance curves, similar trends are

evident and an identical ranking, large - medium - small - no

bulb, can be obtained from the relative comparison of these

curves. These rankings are arranged from best to worst, with best

being a bulb which had the lowest resistance within the 15-22

knots speed range. These identical relative rankings indicate

that the present method can be used with confidence to obtain the

best bulb shape in the optimization procedure if minimizing a

ship resistance is of main concern.

Another good indication in this respect can be found in the

prediction of wave patterns as shown in Fig 8-9. The wave

profiles vary greatly near the bow region depending on the bulb

shape and remain almost unchanged on the remaining part of the

free surface. The present method predicted this phenomenon very

well.

IV-2. Optimal bulb design

The bulbous bow has been considered an effective means to reduce

the resistance of the ship [34]. A bulb reduces wave resistance

by lowering the bow wave system and it also reduces viscous

resistance by smoothing the flow around the forebody.

For slender, fast hull forms such as a Ro-Ro ship, the primary

reduction in resistance is due to the cancellation of the bow

wave system, which is accomplished by interference, dependent

upon the phase and amplitudes of the waves created by the bulb

and the ship. At optimal conditions the two waves may cancel

each other totally. The phase difference of the two wave systems

is determined by the location of the bulb, and the amplitude of

the bulb's wave determined by bulb volume.



IV. OPTIMIZATION EXAMPLE

In order to examine the validity of the optimization algorithm

described in the previous section, the Optimal Hull Form Design

System has been tested to develop mathematically faired and

hydrodynamically desirable hull forms starting from an existing

ship. As a first example, the method was applied to design an

optimal bow shape of a Ro-Ro ship by minimizing the wave

resistance. This design study was performed using the SSPA Ro-Ro

ship model 2062 with a large bulb as the reference hull form. As

a more practical design example, an attempt was made to optimize

the entire hull form based on the Wigley hull for the application

to the design of a canoe type of vessel. Each of these

optimization examples will be discussed separately.

IV-1. Sample Resistance Calculation

Before proceeding to the optimization procedure, the hydro-

dynamic performance prediction method described in the previous

section was tested to investigate the numerical accuracy and its

applicability.

First the higher order linear free surface potential program

(DHBHFL) was tested to evaluate its usefulness in bulbous bow

design. DHBHFL computed the wave resistance based on the momentum

approach and wave patterns of the SSPA RoRo ship model 2062 with

and without bulb forms. Three different bulbous bow shape

variations and the panel representation for the large bulb are

presented in Fig 6 and Fig 11, respectively.

The computed wave resistance coefficient versus ship speed is

presented in Fig 7 and a comparison with the measured residual

resistance coefficient is made in a relative sense. It should be

noted that the computed wave resistance is not comparable in an

absolute sense to the measured residual resistance since this

contains also other components like the viscous pressure

resistance.
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For the first two iterations (k = 1,2):

.100 = yj(k) - (7j - yj)Lj

u.(k) = ii(k) + (Ti - ij)

and for the following iterations ( k > 2):

1...(k)=y.(k)_a*(.(k-1) L(k-1))

u.(10 y.(10 s*(tjAlc-1) _Alc-1))
Y j

where

S = 0.7 if a < 0, i e oscillating variables

s = 1/57; if a > 0, i e monotonous variables

and

a = cyj(k) yj(k-1)) * (yi(k-1) yk-2))

In the present calculation, the convergence tolerance for El and

E2 are specified as 0.01 respectively and the optimum solution

usually obtained after seven iterations.
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111-5. Convergence

D30

The iteration procedure described in the preceding sections is

continued until the following convergence criterion is satisfied

R(k) (k-1)
- RTT

<- E1R(k)
T

--

and

g(k)

< 1 + E2_
gw

4k) is the value of the objective function and 4k) is the worst

constraint at iteration k.

The number of necessary subproblems to achieve convergence is in

general rather small but strongly dependent on the quality of the

chosen approximation. In the Method of Moving Asymptots used

here, the solution of a subproblem is restricted to a small

region in the vicinity of the current design by specifying move-

limits on design variables and the upper Uj and lower limit Li

are arranged to be adjusted successively during the iteration to

improve the approximations.

If the subproblem solutions are oscillating in a variable yj, Lj

and Uj will be forced closer together. On the other hand, if the

variable Yj is monotonous, i e increasing or decreasing Lj and

Uj will be pushed further apart.



the maximum perturbation are not included when computing the

perturbated velocity influence matrix A(y + Ay) in order to

reduce the amount of required calculation without loss of

numerical accuracy. With all derivative terms in eqs (30) and

(31) known, the wave resistance gradient can now be estimated.

This calculation procedure turned out to be very efficient and

surprisingly stable considering the approximation involved.

2. Gradient of Constraints

The shape to be optimized is subject to geometric constraints

which include bounds on form parameters, set limits on the

principal dimensions and prevention of an undesired local shape.

These restrictions have to be specified by the ship designer, but

all of them are not always desirable. The designer has the option

to impose these constraints or to allow the optimization to

proceed without any constraints.

In this section, a volume constraint implemented on the Hull Form

Optimization Design System (SINDBAD) is described and the

additional constraints which have to be supplied by the designer

are considered separately in section IV.

It is required that the volume of the hull, VH, is kept constant

during the optimization process. This requirement results in the

following constraint:

VH - JE Z NzdA = 0

where Nz is the Z component of the normal vector of a panel

element.

The gradient of volume constraint is estimated by finite

difference:

dVHVH(y + Ay) -
VH(y)

di = Ay
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The source strength derivative can also be approximated by the

finite difference:

acy u('Y + AY) - a(Y)= (31)
Ay

The source strength u(Y) for the hull shape of interest can be

obtained from

a.(Y) = A..-1(Y) B(y) (32)

To determine the perturbated source strength u(Y + AY), an

iterative approach has been applied. The iteration scheme

actually solves

(3111(Y+All Alk(Y)04) Alk..(Y)u .(y)] (33)j

The iteration is stopped when the following criterion is

satisfied, where the superscript m represent iteration
m-1

number and ACTi(y) is normally assumed to be zero at the

first iteration

NE

j=1 /NE -4 E

The prescribed convergence parameter E has to be decided

depending on the shape of the ship (here the default value of

E = 1.0E - 04 is used) and the number of iterations needed is

between 3 and 5.

The iteration method has its own feature of numerical efficiency.

Only one determination of the inverse matrix A-1 for each

subproblem is required and the perturbated source strength
a(y +Ay ) for each design variable can easily be calculated by

changing the right-hand side only in eq (25). A filtering routine

is introduced, so that smaller perturbated elements than 20% of
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NE
Rw = 4n E ugiaiSi

NH+1

Here ugi is the X component of induced velocity at the free

surface panel by sources distributed on the hull and its image

surfaces. This can be calculated from

NH
ugi = E Xijaj

j=1

where Xij is the X-wise velocity component induced at the

control point on the i-th free surface panel by a unit source

density at the control point of the j-th hull surface panel.

Then it can be shown that

NE
DuBi

Da. DSi
dRW i

= 4n E ( aiSi + uBiSi 4- uBiai 77)d y ay
NH+1

NH
a DX.. Da.
uBi _E (__1/ + Xij

j=1 J

@X.. @S.

The terms ---11 and can easily be estimated from the finiteay ay
difference

X. X. .(y AY) )(..(y)
= 1J 1J

ay Ay

DS. Si(i + Ay) - Si(y)

Ay

(30)
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=)Bie(25)

In the numerical computations, the velocity influence

coefficients A.- have to be calculated accurately and invertedij

directly. The required number of induced velocity coefficent

calculations due to only one disturbed node point can be up to

8 x NE - 42 as shown in (25). The number of disturbed panel

elements (or node points) due to a small increment of the design

variable Ay is almost the same as the total number of panel

elements (or node points) within the surface, on which the point

supported by the master design variable is located. This number

can easily be increased up to the total number of panel elements

if the design variable is supported on the common point between

several surfaces.

This calculation procedure remains quite expensive and takes up

to 95% of the total computation costs for larger numbers of

panel elements than 800. Therefore, this direct approach becomes

uneconomical when the wave resistance gradient is to be examined

for all master design variables.

In the following it is described how the gradient of wave

resistance can be effectively and quasi-analytically estimated.

The wave resistance can be written in summation form
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The optimization algorithms in this chapter are implemented in

ALIBABA [33] which requires one evaluation of the objective and

constraint functions and their gradients for each subproblem.

111-4. Sensitivity Analysis

1. Gradient of the Objective Function

The optimization algorithm described in the previous section

requires an accurate evaluation of the gradient of the objective

function RT with respect to design variables. This can be derived

analytically

dRT dRV dR

dY dY dY

The gradient of viscous resistance is usually easily obtained by

numerical differentiation

dRv Rv(y+Ay) - Rv(y)
dy Ay

On the other hand, a direct numerical differentiation for the

wave resistance gradient is not usable in practice because it

requires a large number of induced velocity coefficient

calculations and the linear solution of a large system of

equations. In the panel method used here, the source strength a

at every control point has to be solved first to determine the

wave resistance. The source strength fa) is related to the

boundary vector {13} through the velocity influence coefficient

matrix [A]



L is separable which implies

L( y, X) = E Li( yj,A

The minimization of the Lagrangian function can be obtained from:

3L.(y.' A)J J -0=>. =Y-() j=1,NDayi yj
J

The resulting equations are uncoupled, due to the separa-

bility, and of second degree which implies that yi can be

expressed explicitly by the Lagrangian multipliers.

Let 4)(X) = L(y(A),A). It can be shown that Ij(X) is concave.

is found from the solution of the dual problem D.

D: max 1,b( X)
A

subject to Ai > 0

D can be solved by an arbitrary method for unconstrained

maximization, for instance the quasi-Newton method [32], which

OASIS [36] uses. The method has to be modified to handle the

simple non-negative constraints on A. It should be noticed that

the value of the dual function is equal to the value of the

objective function at optimum, i e:

max Ip(X) = min RT(y) (21)

Min L(Y,X) implies:

VRT(y) + E Ai . 0 (22)

which is the Kuhn Tucker condition for optimum, see Fig 5.
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Subject to

4(y)
g(k)

(k)
3g. 2

(k) (k)E (--1) (y -L. )

a i JYj

(k)
3g. 2

4. (7.7( ) (U -j . )

J

(k) (k) L:
Yj

(U

1

. - Y .)
J

(k)

J
(U. -y. )

J

(k) (k) gi
1

J

_
Y. < Y. < v
J J ri

i = 1, NC, j = 1, ND

^

in which E and stand for the summation of those terms for

which the gradients (3RT/3yj), (3g1/3)(j) are negative and

positive respectively.

The approximated subproblem 13(k) is explicit, convex and

separable, so this may be solved by using dual methods of

mathematical programming [30,31].

The Lagrangian function corresponding to .13(k) is given by

wy,A) = R(y) + E Ai (gi(y) - gi) X

The solution of fi(k) is obtained from

i
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0 (16)

max ( min L(y,A) ) (17)
A y

.-Lj )

J

(k) (k) (k)
)-



P(k) : Min -14T(y) = R(k)
T

(k)aRT2(k) (k)
- (77) (Y. -L. )

J J
J

(k)
BRT

4- V77)
J

(1.-L(1<)) (y.(k)-L(k))
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In the present calculation, a strictly convex approximate

subproblem P(k) is generated in each step of the iterative

process based on Method of Moving Asymptots (MMA) [29], and

solved using dual techniques. Generally, it is a very effective

method where each iteration consists of two steps. The first step

is the creation of the convex subproblem P(k) formed by a first

order approximation of the objective function and the

constraints at the preceding design point. The second step is the

determination of the optimum design point by solving the

subproblem using the duality theory for convex programming. The

creation of P(k) requires one evaluation of the objective and

constraint functions and their gradients.

In the MMA approximation, both the objective function RT and the

constraints gi are linearly approximated by a first order Taylor

series expansion in variables of the type 1/(y - Lj) or

1/(Uj-yi) depend on the signs of the derivatives of RT (or gi)

around the preceding design point, where Lj and Uj are the lower

and upper asymptotes to yj, and yj will always lie somewhere in

between.

By this approach, the original non-linear problem P is now

reduced to a sequence of approximate subproblems P(k) which is

given by

(k)
(U.

J

(k)
- Yj

2
1 1

(15)

(k)
(U. -Y.)

3 3

(k)
(U.

3
- . (k))Y3
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require an accurate evaluation, at each iteration, of the

objective and constraint functions and their gradients. These

evaluations are very expensive as each evaluation involves a flow

calculation which leads to the solution of a large system of

linear equations.

Therefore, an alternative method [28] based on a sequence of

linearized problems has frequently been used. In this technique,

the minimization starts at an arbitrary initial design point and

proceeds until a convergence criterion is met. Moreover both the

objective function RT and the constraints gi are approximated by

a first order Taylor expansion around the preceding design point
y(k).

ND BRT (k)
i(k) : min RT(y) = Rick) + E (7--) tyj - yl)

j=1

Subject to (14)

gi(y) . gik) 4. E (

g1 (k)

D yi (Yj - Y1) gi i = 1, NC

.1.i
Yi ! Yj i = 1, ND

By this approach, the original non-linear optimization problem is

reduced to a sequence of linear subproblems, see Fig 4. In Fig 4a
_

the objective function R(y) is now linear and the approximated

subproblem P(k) is marked by a dashed line and its solution is
y(k+1). The procedure is repeated but now around (k+1) in Fig

4b. The new solution is 1(k+2) and the solution y(k), (k+1) and
y(k+2) is moving closer to the optimum of the original problem P.

This is a regular linear programming (LP) problem which can be

solved by using the Simplex method [32]. The sequence of linear

approximations, however, may result in an unstable convergence.
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No higher order effects are taken into account and the pressure

distribution at the boundary layer edge is assumed to be the same

as the distribution at the hull surface.

In the present calculation, the viscous resistance is cal-

culated by computing the momentum loss in the far wake. This

momentum area can be determined either from the continuation of

the boundary layer calculation along a streamline extending to

the wake region or from the Squire & Young method [26, 27].

Applying the Squire & Young formula, and extending it to three-

dimensional boundary layer flow, the momentum thickness 011 in

the far wake may be given by:

Ue (H12+5)/2

= 131 1 t u. (12)

where Olit represents the momentum thickness at the trailing

edge. H12 is the shape factor for the velocity profile. Ue and Uco

denote mean velocity components at the boundary layer edge and

freestream velocity respectively.

The integration of equation (12) over the girth of a cross

section therefore gives the resistance due to the momentum loss

which is accumulated in the upstream portion of the body.

Rv = PU! f 011w dq (13)

111-3. Optimization Method

In principle, the present optimization problem can be solved

using a standard mathematical optimization algorithm with

possible gradients estimated numerically. But such a procedure

(for instance, an iterative mathematical programming method) can

be expected to be fairly computer-time consuming, because it will



panels and required computing time (usually CPU time is

proportional to third power of number of panels) seem to be

possible in this approach.

Other advantages when compared to the original Dawson method are

that a more convenient body-fitted grid on the free surface,

which is independent of the double model streamlines, is

introduced to improve the solution accuracy particulary at the

end of the hull.

A momentum approach is employed to improve the numerical

accuracy of the resistance calculation.

Rw = - PfsFcUBWF dS ( 11 )

UB and WF are X and Z components of the induced velocity at the

free surface panel by hull sources and free surface sources

respectively. The integration domain SFc is the part of the free

surface covered by source panels.

In principle the free surface panel distribution should be

extended over the entire region where there are significant

waves. A limited region of free surface panels is only

considered in the present calculation due to computer storage

limitations.

2. Viscous Resistance

The first order integral type boundary layer method based on that

described in reference [23] has been used to predict a viscous

resistance component for the candidate hull in the optimization

routine.

The first order boundary layer equations expressed in a

streamline coordinate system together with empirical correlations

are solved by the Runge-Kutta-Gill procedure along streamlines.

D19
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To avoid these difficulties, the total resistance is taken as a

linear combination of wave and viscous resistance

(Rv = RF + Rvp).

RT = Rv + Rw (10)

The first order boundary layer method and the linear wave

resistance theory have been applied to predict the resistance

components of ships. Quantitative prediction of ship resistance

by these linear type methods may not be completely satisfactory

due to the assumptions and simplifications involved. However,

they are accurate enough to predict differences due to a small

change of hull form and can therefore provide useful qualitative

information regarding hull form improvement in the optimization

procedure.

1. Wave Resistance

The linear higher order panel method based on that described in

reference [24] has been used to predict a wave resistance

component for the candidate hull in the optimization routine.

The hull surface and part of the free surface are imagined to be

covered by a number of small panels with distributions of source

singularities and the variable strengths of these distributions

are adjusted to satisfy the boundary conditions. An exact

boundary condition is satisfied on the hull while on the free

surface the boundary condition is linearized with respect to the

double model solution.

This method contains desirable features for the application to

optimal hull form design compared to other methods of the same

kind. In contrast to a first order panel method which uses flat

panel usually with constant source density, the present method

make use of parabolic panels with a linear variation of the

source strength. A considerable reduction in the number of hull
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111-2. Hydrodynamic Performance Prediction

The objective function in the present problem is the total

resistance of the ship. The ship resistance in still water is

made up of two major components, namely skin friction resistance

RF and pressure resistance R.

RT = RF + Rp (8)

The pressure resistance mainly depends on the hull shape, while

the skin friction is not sensitive to change of hull form but is

proportional to the wetted surface area. Therefore a substantial

reduction of the total resistance can only be achieved by

reducing the pressure resistance. The pressure resistance may be

further subdivided into components of viscous pressure

resistance Rvp and wave resistance Rw

Rp = Rvp + Rw (9)

For fine high speed ships, the wave resistance component

dominates in the pressure resistance, while the viscous

resistance dominates for full low speed ships.

The frictional and pressure resistance can be obtained directly

from the hydrodynamic analysis by integrating skin friction and

pressure all over the hull surface.

This gives fair predictions for the tangentional force. The

difficult part, however, is the estimation of viscous pressure

drag. Separately this is calculated by allowing for the

displacement effect of the boundary layer on the pressure

distribution. This is difficult to do accurately because in the

region very close to the stern, the accuracy of the pressure

distribution becomes less reliable and such an estimation is very

sensitive to small errors in the stern region_
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Fig 3 shows how a variation of master variable Yj influence the

internal node points of the whole surfaces. Due to a small

variation of master variable Yj, the governing point

Po(Xop,Y0p,Zop) moved to P(Xp,Yp,Zp) which coordinate is

Xp = Xop + ax Yj

Yp = Yop + ay Yj (4)

Zp = Zop + az Yj

where ax, ay and az are linking factors to the coordinate of the

point.

The coordinate of a point Q(X(1,Yq,Z0 where a slave variable r is

assigned, is calculated in a similar way.

Xq = Xoq + pxj Yj

Yq = Yoq Pyj Yj (5)

zq = zoq + pzj yj

Then all internal node points variation can be calculated by

defined interpolation functions such as straight lines, circular

arcs, splines etc. within this restricted definition. It then

follows that a variation of a master design variable yj causes a

variation of all internal node points within the surface

Y-4-8Yj => r + Ar

This can be related in following equation

Dr A r

Dyj

Once the hull surface is defined, hydrostatic quantities such as

wetted surface area, displaced volume and center of buoyancy are

calculated using the surface mesh described above.
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With all different sets of body types defined, a geometry

modelling of SSPA Ro-Ro ship with large bulb is made in Fig. 2

using ALADDIN to illustrate some of the versatility of the

system. Since the shape of the upper hull above the waterline

does not influence the hydrodynamic performance, the only

starboard side of the wetted hull surface is modelled assuming

symmetry about the centerplane. The hull surface is divided into

five sections and each section is described with lofted surfaces.

A simple fairing algorithm is used to connect two surfaces

smoothly according to the specified fairing parameter (slope) by

the designer. These four figures presented in Fig 2 demonstrate

the flexibility of the fairing method used to connect the

surfaces, particularly the bulb and fore hull surface.

This indicated that the disturbances due to change of design

variable are to be confined to its own surface. This is one of

the essential features of ALADDIN in connection with

optimization. Another advantage is that an inverse routine for

obtaining initial design variables from given geometric input

data is not required in ALADDIN. The initial values of design

variable are specified as zero and used to make corrections in

the geometry without changing the coordinates.

The design variables are assigned to governing points and they

affect the coordinates of the points. There are two types of

design variables, namely master variables and slave variables.

Master variables are used as main shape variation purpose while

slave variables are linearly dependent on master variables and

are used to reduce the number of master variables needed for a

proper modelling. The slave variables r are connected with master

variables according to the following principle:

r = ro + E fik yk (3)

where ro is original value and pk is linking factor for master

variable Yk.



representation. These are also the most difficult tasks in

general, since a ship hull is a complicated non-developable

surface. Most existing commercial purpose ships have a bulbous

bow, a flat bottom and a sharply curved stern section shape.

Therefore, the hull surface generation method must be

sufficiently general to allow these various features to be

represented in the hull form design process.

In the Optimum Hull Form Design System the geometric definition

of the hull form is represented by the interlinked program

ALADDIN [25]. ALADDIN is a general three-dimensional preprocessor

for creating input data to the optimum hull form design system.

In ALADDIN the hull geometry is defined by a set of bodies of

different types (points, lines, combined lines and surfaces). A

set of governing points is a basic element in geometric modelling

and directly linked to shape design variables. The lines are

defined by a set of points and tangent vectors. Several different

types of lines are used depending on which part of hull surface

that is supposed to be generated. For more details see Ref [35].

straight line in parallel middle body

circle defined by three or four points in bilge keel

area

parabola defined by three points

Ferguson spline defined by 0-2 tangent vectors and

2-9 points

Bezier spline defined by 2-14 points

Three kinds of surfaces are used in ALADDIN. These are a four-

sided Coon's surface, a three-sided Coon's surface and a four-

sided lofted surface. On a Coon's surface (edge surface) the

interior geometry is defined by the edge of the surface. The

curvature of the surface will adjust to the angles and elevation

of the edges. The lofted surface is used when the interior of the

surface cannot be described by the edge line alone. By defining

interior lines, the interior geometry becomes controlled by them,

making it possible to define doubly curved surfaces.
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III. OPTIMAL HULL FORM DESIGN PROCEDURE

The minimization problem formulated in the previous section can

conveniently and efficiently be solved by using a mathematical

programming method, where the optimality condition for the

problem is solved directly through an iterative scheme. The

optimization starts at an arbitrary initial design estimate which

can be one of the best existing ships selected from a hull form

data base. The geometry of the initial hull form is modelled

mathematically with a number of design variables and exposed to

uniform onset flow at design speed. A systematic evaluation of

hydrodynamic performance characteristics is performed as a

function of the hull geometry. Then the numerical form of Eq (2)

is obtained at each iteration and used to compute new design

variables. The new design variables are determined in order to

minimize the total resistance of the ship subject to a number of

geometrical constraints. This iteration procedure is repeated

until a convergence criterion is met and an optimum hull form is

finally obtained through a systematic variation of the shape by

changing the design variables.

This optimum Hull Form Design System includes a comprehensive

computer program module for the evaluation of the hydrodynamic

performance characteristics and the important sensitivity

analysis is mainly based on numerical derivatives of the

resistance and the capability of the ship geometry modelling and

optimization procedure. This design procedure is illustrated in

Fig 1 and will be described in the following subsections.

III-1. Mathematical Modelling of Hull Geometry

A proper definition of the hull surface is one of the most

important tasks in hull form design since most of the

hydrodynamic performance prediction methods require a detailed

surface geometry description and the accuracy of the numerical

predictions is greatly dependent on the ability of hull surface
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vRT + xi vg i = 0
1

X1( gi - ai) = 0

x > 01 _

D12

i = 1, NC (2)

VRT and Vgi are the gradients of RT and gi in a design point Yj.

The KT criterion is based on the assumption that at optimum the

gradient of the objective function is a linear combination of the

active constraint gradients. Active are those constraints for

which gi = 0. Ai are the Lagrange multipliers.

Mathematically these ND+NC optimality conditions must be solved

for ND unknown design variables and NC unknown Lagrange

mulitipliers. However, it is difficult to solve directly, since

this set of equations is implicit, highly nonlinear and a non-

negative value is required for the Lagrange multiplier in the

solution. An iterative approach has to be employed and the

details of the solution procedure will be described in the

following sections.



II. MATHEMATICAL FORMULATION OF THE PROBLEM

The mathematical formulation of the present design oriented

problem which finds an optimum shape of the ship with a minimum

resistance subject to geometric constraints can be expressed as

Find y * E Rn

Minimize RT (lj) j = 1, ND (1)

Subject to gi (Yj) < 5i i = 1, NC

*
Where y is a vector representation of ND design variables

defining the hull surface and hull form characteristics. The

total ship resistance, which includes the wave and/or viscous

resistance component, is used as an objective function RT. The

geometrical and practical design constraints about the hull are

contained in gi(Yj). NC is the number of constraints and gi are

their upper bounds.

P is a nonlinear optimization problem since the objective

function RT and the constraints gi are implicit, non-linear

functions of the design variable yj. P is in many cases non-

convex and has often multiple minima. In fact, there is no

general reliable optimization method available to find a global

minimum and no general agreement on the best approach to solve

non-linear multivariable constrained problems. A method that

works well on one problem may perform very poorly on another

problem of the same kind.

In the present paper the optimization problem is solved by the

general optimization code ALIBABA which uses the dual technique

of mathematical programming. The mathematical programming method

is based on the Kuhn Tucker (KT) criterion which states that at

optimum the following conditions are satisfied:
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problem and is solved using the dual technique of mathematical

programming.

The derivatives needed to get the first order approximation (a

Taylor series expansion) can be estimated numerically as

differences obtained by recalculation or by a quasi-analytically

based procedure.

The optimum values of the design variables are determined so as

to minimize the total resistance of the ship, subject to a number

of geometrical constraints, and an optimum hull form is obtained

through a systematic variation of the shape by changing the

design variables.

The entire process of hydrodynamic analysis, geometrical

modelling, design and optimization has thus attempted to imitate

the traditional hull form design procedure.

This system of computer programs has been tested to develop an

optimized hull forms for two relatively simple design test cases.

As a first example, the method was applied to design an optimal

bow shape of a Ro-Ro ship by minimizing the wave resistance. This

design study was performed using the SSPA Ro-Ro ship model 2062

with a large bulb as the reference hull form. As a more practical

design example for the total resistance minimization an attempt

was made to optimize the entire hull form starting from the

Wigley hull. The present study had to be rather restricted due to

computer speed and core memory size limitations, but the results

indicate that the method can be used to develop mathematically

faired and hydrodynamically desirable hull forms for more

commercial types of ships starting from an existing ship.
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on. Thus hull form optimization must compromise with other design

features that it faces in order that the total design will meet

its optimization goal. This kind of integrated system has not yet

been developed, however.

In the present paper a numerical method for the design of

optimized hull forms with respect to the total resistance is

developed by integrating a numerical hydrodynamic prediction

method with an optimization procedure. The interactive system

enables the designer to include advanced hydrodynamic performance

predictions at an early stage of the design process, allowing a

systematic evaluation of hydrodynamic performance characteristics

as a function of the hull geometry. This system of computer

programs is based on a synthesis of hydrodynamics (WAVCAL,

VISCAL), sensitivity analysis (GRADFC), geometrical modelling

(ALADDIN) and optimization (ALIBABA).

In the geometry definition module, the hull surface is

represented mathematically using a boundary variation technique

as a function of the governing design variables, and the

geometry description (for instance, panel mesh) and hydrostatic

computations (wetted surface area, volume, etc) needed for the

hydrodynamic predictions are generated. Then the hydrodynamic

performance is estimated using a rapid design oriented first

order boundary layer method [20] for viscous resistance and a

linear type wave resistance method [21] in the hydrodynamic

module.

Having all the numerical tools for geometrical definition and

hydrodynamic analysis, a design procedure for an optimized hull

form is developed. The optimized problem is very non-linear

since the objective function and constraints are implicit and

non-linear functions of the design variables. In order to solve

this non-linear problem a series of convex separable subproblems

is created using the method of Moving Asympto-es (MMA) [29]. Each

subproblem is the first order approximation of the original
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mathematical hull surface representation. Taylor D.W. in 1915

[16] mathematically generated the hull forms in his strandard

series, defining sectional area curve and design waterline by

fifth-degree polynomials in accordance with form parameters, and

experimentally investigated the systematic variations of

resistance characteristic due to the change of form parameters

and coefficients to find hydrodynamic optimization of hull forms.

Another origin based on theoretical approach can be referenced to

Inui T. in 1957 [17]. In his work, based on Michell's thin ship

approximation, an optimized hull form is obtained indirectly by

determining the best polynomial singularity distributions in the

ship centerplane to give a low wave resistance. Further

investigations were made by Yim B. in 1963 [18]. In his work, the

ship is represented as polynomical singularity distribution, and

the doublet and quadruple distribution are also expressed in

polynomials along the straight front perpendicular of the bow.

Then optimum value of coefficients of the doublet and quadruple

polynomials are determined under the condition that the bow wave

resistance is minimum with a given ship polynomial.

More recently this goal has been pursued by numerous

investigators. An attempt was made by Nagamatsu & Baba in 1983

[19] to minimize the viscous resistance of three-dimensional full

form ships by means of the Hook and Jeeves direct search method.

Other attempts to minimize the wave resistance were made by Min &

Kim [20] and Suzuki & Maruo [21] using a similar type of direct

search method with a penalty function technique. These methods

suffer from some computational disadvantages and are not entirely

efficient for non-linear multivariable constrained problems.

Nowaki [22] applied mathematical optimization technique of non-
linear programming type to minimum viscous drag design of

hydrodynamic shapes of axisymmetric bodies.

In fact resistance minimization is only one aspect of the ship

design in addition to propulsion, seakeeping, structure and so



I. INTRODUCTION

Traditionally the practical hull form design has been based on

variation of existing hull forms, whose hydrodynamic

characteristics are stored in a data base [1-5]. These methods

may be adequate for the generation of the initial hull form at

the conceptual design stage as long as the hull form variates lie

within the limit of the data base. However, this traditional

method has its own limitations in the application to practical

hull form design due to the fact that most existing hull form

data do not fully cover the design parameters and neither do they

meet today's demand for fuel economy.

Today there exist numerical calculation methods capable of pre-

dicting the flow pattern and hydrodynamic performance of the ship

hull. These methods are now used in many different stages of ship

design. They are used for directing modifications of hull, as

guidance for model testing, for calculation of scale effects and

so on. These methods are the results of extensive work in the

fields of computational fluid dynamics during the last 10 years.

SSPA has developed a large number of computer programs to

perform various ship design tasks as well as to analyse the

hydrodynamic performance of ships. These include mainly boundary

layer theory [6-9] and Navier-Stokes methods [10] for viscous

flow and the linear [11, 12] and non-linear wave resistance

methods [13, 14, 15].

Although the capabilities have been used in an individual manner

for various research and commercial design purposes, their full

potential within the context of a total design has until recently

not been fully exploited.

Optimal hull form design procedures have been studied by many

investigators, which can optimize the ship hull form taking part

of the resistance into account. The resistance minimization can

be traced back to the beginning of scientific developments in
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a Linking factor to governing point

Pk Linking factor for master design variable yk

y Master design variable

A Lagrange multipliers

ell Momentum thickness

ell. Momentum thickness in the far wake

ellt Momentum thickness at the trailing edge

E Convergence parameter for sensitivity analysis

El Convergence tolerance for optimization procedure
E2 Convergence tolerance for optimization procedure

a Source density
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LIST OF SYMBOLS

[A], Ai j Coefficient matrix for the linear equation system

(B), Bi Right hand side vector for the linear equation

system

Fn Froude number

gi, gi Geometrical constraints and their upper bound

H12 Shape factor for velocity profiles in boundary

layer

Lj Lower asymptotes for design variable

NC Number of constraints

ND Number of design variables

NE Total number of panels

NF Number of panels on the free surface

NH Number of panels on the body

r Slave design variable

RF Skin friction resistance

RN Reynolds number

Rp Pressure resistance

RT Total resistance of ship

RV Viscous resistance

Rvp Viscous pressure resistance

Rw Wave resistance

S Wetted surface area of ship

SFC Area of free surface covered by source panel

UH X component of the induced velocity at the free

surface by hull source

Ue x component of mean velocity at the boundary

layer edge

Uj Upper asymptotes for design variable

Ucc, Free stream velocity

VH Displacement volume of ship

WF Z component of the induced velocity at the free

surface by free surface source

[X], Xij Matrices of induced velocities

X,Y,Z Global reference co-ordinates

x,y,z Local curvelinear orthogonal coordinates
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ABSTRACT

A numerical method for the design of optimized hull forms

with respect to the total resistance is presented. The main

objective is to obtain an integrated computer system which will

enable the designer to include advanced hydrodynamic performance

predictions at an early stage of the design process allowing a

systematic evaluation of hydrodynamic performance characteristics

as a function of the hull geometry.

The Optimal Hull Form Design System (SINDBAD) contains four main

modules. The first one generates a faired hull surface

mathematically with a number of design variables, performs

hydrostatic computations and generates geometry descrip-

tions needed for the optimization process. The second and third

modules compute total calm water resistance including viscous and

wave resistance. The last module of the method produces a hull

form of minimum resistance through a systematic variation of the

shape by changing the design variables. The optimum values of the

design variables are determined in order to minimize the total

resistance of the ship subject to a number of geometrical

constraints. The general optimization code ALIBABA, which is

based on the dual technique of mathematical programming, is used

to find an optimum hull form in combination with a shape

description module ALADDIN.

This system of computer programs can be used to develop

mathematically faired and hydrodynamically desirable hull forms

starting from an existing ship. The method has been applied to

the bow shape optimization of a fine-form, high speed ship and to

the entire hull form optimization for a canoe type of vessel.

Footnote: The term "hydrodynamic performance" used in this paper
identifies "resistance performance".
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d. Additional studies are required to improve the convegence of

the iterative procedure. A large shift between the initial

wave and the first iteration wave profile might cause some

convergence problem, due to the fact that the change of the

panel location may be large enough to violate the validity

of the small perturbation principle.

One possible way is to compute the initial condition using

the present method for a given design speed. This can be

done by repeating the calculation of the first iteration

wave profile for increasing speed condition by small steps,

starting from the known non-linear wave profile. If the step

is small the initial wave profile will not differ much from

the actual one; as a result, the iterative calculation

should be convergent.

Another way to improve convergence is the introduction of an

under-relaxation factor. However, special investigations

have to be made to ensure that only one converged solution

is obtained, although different values for the under-

relaxation factor are used in the iterative procedure.



V. CONCLUDING REMARKS AND FUTURE WORK

A more accurate prediction of the wave resistance and wave

pattern around ships has been made by solving the normal velocity

boundary condition on the wetted hull surface and the non-linear

form of the free surface boundary condition on the wavy surface.

An exact solution is obtained through iterations. In each

iteration, an exact hull surface boundary condition and

linearized free surface boundary conditions, which are obtained

from the first order Taylor series expansion around the previous

solution are solved simultaneously. In the new solution the hull

and free surface panels are adjusted according to the new wavy

surface and the sources are moved accordingly to simulate the

boundary condition more exactly.

The present method has been applied to two hull forms and the

results are compared with experiment. According to these studies

the following conclusions can be drawn:

Converged solutions are obtained after 5-6 iterations for

the two test cases and they generally give better agreement

with measurements than the linear method.

To get better convergence, a higher order global algorithm

with an initial linear wave profile is recommended.

The present method provides a possibility of obtaining more

accurate results for relatively simple hull forms. There are,

however, additional studies and problem areas that need to be

considered and investigated before the present method can become

a more effective tool in the design of ships. They are briefly

described below.

Further investigations of the numerical procedure should be

made in order to achieve a convergence solution for more

complicated hull forms, such as transom stern ships and

sailing boats.

C28



C27

yielded Cw = 0.990 x 10-3 for the wall-sided case and Cw = 1.012

x 10-3 for the exact hull. The difference is only

0.22 x 10-4 or 2.2% of C. The relatively small differences may

be due to the fact that the hulls are very thin. Large

differences may be expected for bluff hulls.

As a more practical study the present method was applied in an

investigation of the importance of non-linearity on the effect of

a bow bulb on the free surface flow for the SSPA Ro-Ro ship model

2062 with small and medium size bulbs. A body plan with a small

bulb and the panel representation for a medium bulb with 1 250

effective panel elements are presented in Figs 8 and 9.

Comparison between computed and measured wave profiles is made in

Fig 10 for the small bulb and in Fig 11 for the medium bulb. The

wave pattern predicted by the present method is better than the

one from the linear method. Similar wave resistance convergence

tendencies as for the Wigley case can be observed in Figs 12 and

13. It can be seen from Figs 14 and 15 that the predicted wave

resistance is still lower than the measured residual resistance

at all speeds, but better agreement with the measured one that

with that of the linear method can be observed.



IV. RESULTS AND DISCUSSION

The solution of the wavy potential, which satisfies the exact

boundary condition on the hull and the free surface was obtained

by the iterative method and an extensive convergence study was

performed using the Wigley hull and the SSPA Ro-Ro ship model

2062 with a small and a medium size bulb.

The panel representation for the Wigley hull with 532 effective

panel elements is presented in Fig 2. The computed wave profiles

at Fn = 0.22 and Fn = 0.31 are presented in Fig 3 and compared

with the corresponding linear solutions and measurements. The

iteration procedure started from the linear wave and converged

after seven iterations. It can be seen from the figures that no

great difference can be observed between linear and non-linear

wave profiles. This might be explained by the fact that the non-

linear effect does not seem to be very significant for such a

fine hull at low speed. However, a small but distinctive

improvement is achieved by the present method in the prediciton

of bow and stern wave profiles. Fig 4 shows the convergence

history of the calculated wave resistance obtained from a higher

order pressure integration method [4]. It is interesting to note

that the change from linear wave resistance to the first

iteration resistance is most significant and the successive

changes are not large. A similar trend can be observed in the

convergence history of the calculated wave profiles (Fig 5). The

converged wave resistance coefficient versus ship speed is

presented in Fig 6 and compared with the linear and measured

ones.

In order to investigate the influence of the sources on the

panels just below the free surface, a comparison study was

performed at draught condition T = 0.375 B. One calculation was

performed with a wall-sided hull and one with the exact hull at

Fn = 0.40 (see Fig 7). For comparison, the wave resistance was

computed from an integration of the pressure distribution. This

C26



EH = Oxhx + Oyhy - Oz 0

EF = gh + 1/2( VO VO - W. ) 0

The iteration procedure is continued until the following

convergence criterion is satisfied

(k) i 2 2

1
E = EH + EF 81

and

NF
(k)

E2
= ii.E 8h2 / NF < 621=1 i

6hi is the small change of wave elevation at the i-th control

point on the free surface and k is the iteration number.

In the present calculation, the convergence tolerance 61 and 62

are specified as 1.0 x 10-6 and 1.0 x 10-5 respectively.
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The equations (29) and (30) are more complicated than the

corresponding linear ones. the second derivatives of the velocity

potential (-4'xz,4'yz,(1)zz) appear due to the inclusion of non-

linarity in the free surface boundary conditions. These terms are

zero in the linear method asuming symmetry about the falt free

surface.

111-4. Iterative Procedure and Convergence

The major difficulty of an iterative solution procedure is that

of convergence. Several types of panel distributions and

iteration techniques were tested by Xia [2]. One of the important

findings was that in order to achieve convergence of the

iterative process, the wave height change and the new source

distribution must be computed simultaneously and also a three

point finite difference operator should be used to calculate the

derivative terms in free surface equation. It was possible for

him to get a converged solution only for one simple hull (the

Wigley hull) within a limited ship speed range. Ni [3] improved

the convergence stability by introducing higher order panels and

two under-relaxation factors in the non-linear iterations.

In the present work, the iteration start from a linear solution

[4]. In each iteration the hull and free surface panels are

adjusted according to new wavy surface and the sources are moved

correspondingly to simulate the boundary condition more exactly.

In the new solution the kinematic and dynamic boundary conditions

are satisfied simultaneously, i e the new source strength as

well as the new wave elevation are obtained from (28) at the same

time. However, the new solution a and h does not satisfy the

exact boundary conditions (5) and (6) due to the nature of the

first order (linear) approximation involved in the derivation of

(12) and (13).



where

CKli = f ax114 - ax2hL )i / 2Fg

CK21 = f - ayihi + ayyhf, )i / 2Fg

CK3i = - axi,txi + ayitFyi

CK41 = ax2tx1 - ay2tyi

2CK51 = 2Fn( CKlit-xzi + CK2i4,1,xi ) - ,t

2CK61 = 1 + 2Fn( (1'xi4)xzi 4- (Dyi'Dyzi + (Dzi4)zzi)

CK71 = 1 + qi + qi + 4,L - 2txi - hi / Fg

CK81 = CKli - CK5i4xi /CK61

CK9i = CK2i - CK514yi / CKEd

CKloi = - 1/2Fg - CK5itzi / CK61

AVij = ( txiXij + .1)171Yij + CDziZij ) / CK6i

A similar procedure is followed in the generation of the right-

hand side arrays of Eq (25), i e

For the upper part

Bi = Nxi i = 1, NH (30a)

For the lower part

Bi = - CKli + CKiii

+ CK3i ( GAiBVi + GB1BV1+1 + GC1BV1+2 ) (30b)

+ CK41 ( CAiBVi + CBiBVi-NL + GCiBVi -2NL )

where

CKiii = - 0.5 CK5i CK7i / CK61

BVi = 0.5( cq,j_ + 4i 4- qi - 24 ,xi - hi/Fri ) / cK61

C23



array.

The upper part (corresponding to the hull boundary condition) of

the A matrix is easily generated by setting

= Vij = xijNxi + YijNyi + zijNzi (29a)

i = 1NH
j = 1, ,NE

where NH is again the number of panels on the hull surface.

Xij, Yij and Zij are the components of velocity influence

coefficient. Vij is induced at the control point of the i-th

panel by a linearly varying source density at the j-th panel.

Nxi, Nyi and Nzi are the components of the unit normal vector to

the hull surface at i-the panel element. These are the only

source equations to be solved in the double model case.

For the free surface, the lower part (corresponding to the free

surface boundary condition) is generated in a more complicated

form as

Aij = CK8iXi1 + CK9iY11 + CKloiZij

+ CK31t GAiAVij + GB1AVi+1,1 + GC1AV1+2,1 } (29b)

+ CK41f CAlAVij + CBiAVi -NL,j + CCiVAl_ 2NL,j )

C22



XZ

1 :yz

zz

NE is here again the total number of panels.

111-3. The Linear Equations for the source strength

C21

Integration of the higher order derivative terms of (23) leads to

an expression even more complicated than (24). To avoid

complicated computations, the magnitude of the second derivative

terms related to the curvature and linear variation of source

density are assumed to be small and vanish rapidly during the

iteration. In the present paper the second order derivative

terms are calculated from a source velocity which corresponds to

the flat panel with constant source density.

From a purely mathematical point of view, the problem considered

here is well defined. The mathematical solution of (4), (12) and

(13) considering the radiatoin condition is a unique and

continuous function for source density and wave elevation. The

boundary condition is satisfied at all the points on the fluid

boundary.

In the numerical computation, the flow boundary is taken into

account in a discrete maner and the boundary condition is

satisfied at only a finite number of control points. Through a

numerical discritization procedure, eq. (12) and (13) can be

transformed into a set of algebraic equation in a as

[A]fa) =fEi) (28)

where [A] is a NE x NE matrix and 03} is the right-hand side

=

i

NE
E

j=1

a13

la23

a33

T

i

-
all

al2

a13

a21

a22

a23

-
a31

a3

a33-

-
CC Cn Cc

$ 4) 4,
TIC flrl T1C

4, 4) 4)cn cc
ij

(27)



velocities in Eq (24) can be obtained analytically.

Then the velocity in the reference coordinate can be calculated

from the coordinate transformation

These velocities may also be written as

NE
= E X.-o + U.xi 13 3

j=1

NE
y..o.13 3

j=1

NE

zi = E Zijcrj
j=1

Here the velocity influence coefficients Xij, Yij and Zij are the

velocity components in the reference coordinate system (x, y, z)

at the i-th control point, induced by a source density which is

unity at the control point of the j-th panel. In the first order

method the velocity induced by a panel depends only on the panel

itself. The essentially new feature of the higher order method is

that the velocity induced by a panel depends on the values of

source densities also at the control points of adjacent elements.

Thus the influence coefficients for a panel depend not only on

the geometry of that panel but also on the geometry of adjacent

panels. The assembly of the influence coefficient matrix is more

complicated and special care must be taken in obtaining them.

The second derivative terms (xzi,4) yzi, zzi) can be calculated,- 4) 4)

in a similar way. Unfortunately they are much more complicated.

C20

all

a12

an

a21

a22

a23

a31

a32

a33

(25)



(pii(lC) = fAi Cj / rf dCdn

4'..(1n) r . n. / rf dCdn1J JAJ J

where rf is the distance between (Ci,n Ci) and the

j-th control point (Cj, nj,0) on the flat panel (see Fig 2 in

[4]). Then the velocity induced by the panel is obtained by

taking the gradient of the corresponding potential.

M-1
= + E (Ck(C)4, (10 + Ck(11)1n)) ak" k=1

M-1
4,7-] = cPri*ai + E fCkM4,n(1C) + Ck(11)47-1(")) ak

k=1

m-1
cDc = *cri + E (CkMci, (1C) + Ck(n)4,c(11-1)) ak

k=1

Notice that subscript ij is omitted in the equation (24) for

simplicity and new velocity terms (e e, e) are introduced.

They are velocity components induced at the i-th control point by

a unit source density on the j-th panel. All the induced

C19

variation of the source density. All these terms only depend on

the geometry of the j-th panel, but the curvature terms P, Q, R

and the source derivative coefficients 4C) and CV) depend on

the surrounding

The individual

lj
=

=

(Pij(Q) =

(tii(R) =

panels. For more details see Ref [4,

4s in Eq (22) are

f 1
dCdn

6].

(23)

JAj rf

Aj
C.2 / rf3 dCdn

fAi nj/ rf3 dCdn

fAj ci nj2 / rf3 dCdn



calculated from the distance between the successive points on

the free surface panels, see [5].

As pointed out by Dawson, upstream waves are prevented by the use

of upstream finite difference operators.

111-2. Initial condition and velocity potential

The numerical computation of Eq. (12) and (13) requires as a

starting point a very accurate velocity potential and its first

(CDx, CDy, 4),) and second derivative values ( "Dzz) at the

exact boundary control points. A slight error in these terms

gives a magnified error in final solution. For instance a small

error near the bow leads to a non-realistic set of waves bouncing

along the ship hull. A linear solution is adapted as the initial

condition and considerable care has been taken to compute the

associated velocity gradients accurately in order to improve the
convergency.

The velocity potential 4ij at the i-th control point induced by

the j-th panel on which the source density at the control point

is a is given by the following equation in a panel element co-

ordinate system

= 4ii(°)ai + f P4ij(P) + 2Q4(Q) + R4ii(R) }ai

4,..(1)cy . (1r0aij
1-1

*cri
M-1

= 4).i + E f Ck(04ii(10 + ck(1-04ii(111) )akk=1

Here M is the number of the adjacent panel.

All the 4 terms in (22) can be calculated numerically and they

may be interpreted as follows: 443) corresponds to a flat panel

with a constant source density, 40), 4i9) and 40) are caused

by the parabolic panel shape, 4) and 4iin) come from the

C18
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previous work [4]. As can be seen from the Figs 2 and 10, the

longitudinal lines are smooth arbitrary boundary fitted curves

y = fL(x) and the transverse lines are parallell to the y-axis

(y=ft(x)). Then the derivative terms in the free surface boundary

condition (12) and (13) may be expressed by finite differences in

the two directions of the grid.

hx°= axihT°- ax2hL°

.

(18)

hY = hT

and

Shx = axiShT - ax2ShL
(19)

Shy = - ShT

where

axi = ft:

ax2 = - i 1 + fC2

Three point finite difference operators are used to calculate the

derivative terms in Eqs (12), (13) along the L and T directions.

h°Li = CAih°i + CBih°i -NL + CCih° i-2NL
(20)

h°Ti = GAihei + GBih°i+1 + GC1h°14.2

ShLi = CAjohi + CBiShi -NL + CCiohi -2NL
(21)

ShTi = GAiShi + GBi8hi+1 + GC1Shi+2

where NL is the number of the longitudinal strips on the free

surface.

The coefficient of the upstream three point operator (CAi, CBi

and CCi) and the downstream operator (GAi, GBi and GCi) are
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g(xFp, 0) - h(xFp, 0) = 0
Point P: {

zFp = g(xFp, 0) = h(xFp, 0)

g(xAp, 0) - h(xAp, 0) = 0
Point Q:

ZAP = g(xAp, 0) = h(xAp, 0)

The x-position of the original stations is adjusted according to

the intersection points P and Q. The new hull definition points

at the xi-station can be interpolated by a cubic spline

function. The expression for the hull surface at the new station

(xi = const) may be written

F = y' - f(xi,z')

= z' - g(xi,y') = 0

The intersection point R of the hull and wave surface at each xi-

station is the solution of the following equation

g(xi,yAi) - h(xi,yAi) = 0

= g(xi,yAi) (17)

= h(xi,yAi)

Once the intersection point Ri is determined, the girthline

between the keel and the intersection point Ri may be divided in

some regular way to generate the quadrilateral panel on the hull

surface. The rearrangement of the panels on the free surface can

also be generated in a similar way.

Unlike most other panel methods the present one employs a free

surface grid, which is boundary fitted and independent of double

model streamlines. A much better resolution at the bow and stern

was obtained in the boundary fitted grid as described in the
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surrounding the hull due to computer storage limitations. The

neglect of the panel distribution outside this region must

inevitably cause a certain amount of errors. In the present

calculation, the disturbance outside this region due to the

existence of the hull is assumed to be small and only a small

portion of the free surface between -2.0 x 2.0 and -0.750 y

0 is used as a boundary domain, as recommended by Xia [5].

The solution of the integral equation (1) subject to the boundary

conditions (4), (12) and (13) requires an initial definition of

the integral domain where the panel should be distributed. (The

boundary conditions should be satisfied.) In principle, this is

unknown a priori and must be computed as part of the solution

through iterations. To start the calculation an initial panel

arrangement is made, based on linear wave profiles. In the

following iteration the hull and free surface panels are adjusted

according to the new wavy surface and the sources are moved

correspondingly. For this reason, a repanelling routine has to be

incorporated in the solution procedure and the details of the

panel generation procedure will be described below.

First the hull geometry including the part above the waterline

has to be defined as a family of points in the x = const planes

(xi stations) to approximate the hull surface by the cubic spline

function

F = y-f(xi,z)

= z-g(xi,y) = 0 (14)

With known wave profiles z=h(x,y), the intersection points

P(xFp,0,zFp) and Q(xAp,O,ZAp) of the hull and wave surface at FP

and AP in the y=0 plane are obtained by solving the following

equations:



III. NUMERICAL METHOD

The central problem of the present method of flow calculation is

the numerical solution of the boundary conditions (4), (12) and

(13). The problem is highly non-linear since the free surface

boundary condition itself is non-linear and should be exactly

satisfied on the wavy surface, which is unknown a priori, and

must be computed as a part of the solution. Thus numerical

methods which have been applied to solve the problem usually

entail some kind of linearization procedure. In the present

method, an exact solution is obtained through iterations and in

each iteration the free surface boundary condition is linearized

about the previous solution based on the small perturbation

principle. Upon convergence, which is obtained after 5-6

iterations, the non-linear terms left out in the equations go to

zero and the solution is exact with respect to boundary

conditions.

Once the final source density a and wave height h are determined

the flow velocity and pressure may be calculated at any point.

With known pressure and velocity distributions, the wave pattern

and the wave resistance can be predicted. The details of the

numerical procedure for the prediction of ship wave resistance

are described in the following sections.

III-1. Panel Arrangement

C14

In the numerical implementation of the present method the first

step is to discretize the integral domain S in (1) into a large

number of small panels. In the wave resistance problem, the

integration domain S consists of the hull surface and part of the

free surface. In principle the free surface panel distribution

should extend over the entire region where there are significant

waves. In numerical computation, however, the region of free

surface panels has to be severely limited to the region



1
AD2 (a,h°) = - (cl,x8.0x + (Py.50y + (Pz.50z)

g

AD2 (a°,h)= oh + 01'ePxz + (Py(Dyz + (Pz(l'zz) Oh

Therefore the linearized free surface boundary conditions are

0N+Oyhi - Oz+4,x6hx + 4,y6hy + (47xzhil+4,yzhi,_ 41zz)511 = ° (12)

t 1 +
1

- (4)x"Pxzi4y4)yz-14z4)zz)
) Oh =

g

2_2(4,2,50)0400y+zocpz) } -h°T5 coxyz

C13
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D1 (a,h) = D1(sr:.,11.°) + AD1(a,chAD1(0°,h) =

Di(a°,h°) + D1(0,411°)*Sa_* B911 Di(a°,h) :1 oh =

1.48)

D2(a,h) = D2(a°,h°) + AD2(a,h°) + AD2(a°,h)

D2(a°,h°) + 7;aa D2(a,h°) 6a + 7;1E D2(a°,h) oh . 0
ri_

It is a fundamental assumption of the present method that the

perturbations of source (Oa) and wave elevation (8h) are small in

certain senses. In a Taylor series, higher order terms in these

quantities then become very small and can be neglected.

Here the superscript, o, corresponds to the previous solution

which is assumed to be known a priori. In the first iteration

this may be either a double model solution, which gives the

Bernoulli wave or a linear solution [4].

D1 (a°,h°) = 4N1 + Syhi - 4z = 0

(9)

D2 (a°,h°) =- 1h._" [U.2 (cx2 +-4,y2 4,z2)] 0

where and 4, mean the velocity components induced byY
a° on the free surface z = h°(x y).

The partial increments of D1 and D2 should be found in such a way

that a new velocity potential 0 = 4 + 80 induced by introducing

small perturbations 60 and Oh should satisfy Eqs (5) and (6) on
-

the new wave surface h = h° + oh. ADI and AD2 can be linearily

expanded based on a° and h°

AD1(a4h°) = (504,N1 + Oyh -
eas(a
(10)

in11 ad asp
AD1(a°,h) = 40hx + 4yohyal- p1,454 417zhi 7 4z,),511

C12



SIO C11

where n denotes the outward normal to the hull surface. (d,D) la
At the free surface, two boundary conditions must be - + (*da°1:01u

Imposed, i e the flow must be tangent to the free surface

o)saA (°d,P)&-- (°.(1,°D)s - oi,o)La
Oxhx + Oyhy - Oz = 0 (51

-F., *15)&0 + Do (°d,n)sU Ti-LET + (ed,po)&0

and the pressure should be constant

..,V7 715(11 bod19m Insaeaci ecU io noilqmuses IsInsmsbnuI s 21 tI
gh t 2-4' 70:fs° (7/A)icUO22.1 = 9V6W bn6 (no) soalloe lo anoilsdauAll

ai emasl asbao asdpid ,291T92 aolysT 6 nI .esense nislaso

d t
Further, no upstream waves should be generated. nsil asilitnsim

The exact problem desckibed above is nonlinear, since the freaa9H

surface boundary condition itserejii nonlinear and should be 3111w

exactly satisfied on the wavy surfade z=h(x,y), which is unknown,

and must be computed as a part of the solution. Thus, numerical-9

methods, which have been applied to solve the problem usually

entail some kind of linearization procedure. In the present paper

an iteration procedure is applied and the free surface boundary

condition in each iteration is linearized,about the previous ,)

solution.

sJ-nsnoqmoo y/looiev e: 369M - sasdi.4
Unknown sources a on the hull and wavy surface z=h(x,y) will ob

induce a potential 0 and a wave elevation h which satisfy the

boundary conditions 0) and (6 /(1 lo elnsmsaoni Isi/asq ee
gniouboalni yd bsoubni 08 + 0 islInstoci y/loolsv Ws(' s 1s6

(a) brIE f foluoda do b1!6 no enoi/sdautasq
Di(a,h) = Ozhx + Ovhv - oz u

11assn1ns:' bn5 ruL + 'd = cr. sosIaue svi7)ven 9(11
D2(a,h) = h [U.2- (0x2+ 0y2+ Cbz2)A En2 °D no bsesa iJsbnsqxS2g

(bA = rTA

These non-linear forms of the free surface boundary conditions

can be linearized by introducing small perturbations Oa and oh

with respect to-the previous solution in a first order Taylor a°

expansion.



II. MATHEMATICAL FORMULATION OF THE PROBLEM

As in the usual analysis, the flow is considered steady,

inviscid, irrotational and incompressible and a right-handed

coordinate system Oxyz is employed with the origin on the mean

free surface, x positive in the direction of the uniform flow,

and z positive in the upward direction. A ship, piercing the free

surface, is assumed to be in a uniform onset flow of velocity U.

(See Fig 1.) Then the flow field around the ship may be

described by a velocity potential 0 which is generated by a

certain distribution of sources on a surface S and by the uniform

onset flow in the x-direction.

0 (x,y,z) = a(q)/r(p,q)dS + U.x (1)

where o(q) is the source density on the surface element dS and

r(p,q) is the distance from the point q to the field point

p(x,y,z) where the potential is being evaluated.

The potential 0 given in Eq (1) is governed by the Laplace

equation.

C10

(3)

On 0 (4)

V20 = 0 (2)

in the fluid domain and satisfies the regularity condition at

infinity

VO = > (U.,0,0) as r

The source density a should be determined from the boundary

conditions on the hull and free surface. On the wetted hull

surface the solid boundary condition is
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based on the earlier work by Xia [2] and Ni [3]. One of the major

improvements is that the hull panels just below the wavy surface

are generated in a more accurate way by considering the hull

shape above the designed load waterline. In the early work on

this method by Ni the hull was considered wall sided. This

simplification may lead to some limitation in its application to

ships with barge type stern sections, or inclined bows and

sterns. This restriction is now removed.

It is believed that this is important for wave pattern

prediction since the influence of the sources on hull panels just

below the free surface is considerably larger than sources on the

other parts of the hull. On the other hand, this might cause some

convergence problems due to the fact that the change of the

panel location may be large enough to violate the validity of the

small perturbation principle. In order to improve the

convergence, special care has been taken to select the initial

condition and also to compute the velocity potential and the

associated derivative terms in the free surface equation.

The present method has been applied to compute the wave pattern,

pressure distribution over the hull surface and wave resistance

for two different hull forms. The importance of non-linearity is

discussed in more detail with relation to the effect of a bow

bulb on the free surface flow and wave resistance in comparison

with experiment.
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Ogiwara took the non-linear effect into account iteratively by

using relaxation factors in 1985, [1] and Xia proposed an

iterative procedure in 1986, [2]. In his method the free surface

boundary condition is linearized about the initial wavy surface,

using the small perturbation principle and new wave elevations

and source distributions are solved in the next iteration. It was

found that the convergence problem for the iterative procedure is

quite severe.

A higher order global algorithm was applied to the non-linear

three-dimensional free-surface problem by Ni [3]. The results of

the test computations were always convergent if a relaxation

factor was used for the wave elevation modification. A single

model with a new panelling to fit the wavy free surface was used

and the vertical derivatives of the induced velocity were kept in

the free surface boundary condition.

In the present paper, the solution of the wavy potential, which

satisfies the exact boundary condition on the hull and the free

surface is obtained through iterations and in each iteration the

free surface boundary condition is linearized, based on the small

perturbation principle, about the previous solution. The

iteration start from the linear solution. In each iteration the

hull and free surface panels are adjusted according to the new

wavy surface and the sources are moved accordingly to simulate

the boundary condition more exactly. In the new solution the

kinematic and dynamic boundary conditions are satisfied

simultaneously, i.e. the new source strength as well as the new

wave elevation are obtained at the same time. Upon convergence,

which is usually obtained after 5-6 iterations, the non-linear

terms go to zero and the solution is exact with respect to the

boundary conditions.

In order to fulfill the basic requirements of generality,

economy and accuracy for the application to practical hull form

design, some of improvements and modifications have been made



I. INTRODUCTION

An accurate prediction of ship wave resistance is extremely

important not only for the analysis of ships' hydrodynamic

performance but also to improve the hull forms. There are

several different types of wave theories applicable to practical

hull forms which can be found in the literature. These include

largely linear types of theoretical methods, such as thin ship or

slender ship theory, Guilloton's theory, and methods based on a

numerical discretization using the surface singularity approach

(panel method). The methods for calculating free surface poten-

tial flows with linear surface boundary conditions has been

applied frequently to predict the wave pattern and ship wave

resistance. Successful predictions have been made for idealized

mathematical forms and simple types of hull forms without bulbous

bows and bluff stern sections. However, the accuracy for more

complex ship forms (very blunt bow and stern) is relatively poor.

The most significant inaccuracy can be found in the prediction of

the wave patterns near the bow and stern region. The poor

resolution may result partially from the fact that the wave

pattern near the bow and stern region is strongly influenced by

the non-linear terms and the linearized free surface condition

cannot simulate the exact boundary condition properly.

Further attempts to improve the accuracy have been made by taking

the non-linear effects into account in the free surface boundary

condition. In contrast to the linear wave theory, in this

nonlinear method an exact boundary condition is satisfied both on

the hull and on the free surface. This problem is highly non-

linear since the free surface bondary condition itself is non-

linear and should be exactly satisfied on the wavy surface, which

is unknown a priori, and must be computed as a part of the

solution. The numerical methods which have been applied to solve

the problem usually entail some kind of linearization procedure.

C7
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Subscripts and Superscripts

i,j Subscripts referring to the i-th or j-th panel

ij Double subscript referring to the effect of the

j-th panel at the i-th control point

Superscript referring to the double model solution

(o) Superscript referring to a constant source density

(P),(Q) Superscript referring to a panel curvature

(R)

(1)(1n) Superscript referring to a varying source density



LIST OF SYMBOLS

[A] Coefficient matrix for the linear equation system

(B) Right hand side vector for the linear equation

system

A0, B0, Coefficients of linear terms in the

Zo expression for the curved panel

CA,CB, Coefficients of the finite difference upstream

CC,CD operator

Pressure coefficent

C, Wave resistance coefficient

Fn Froude number

GA,GB, Coefficients of the finite difference downstream

GC,GD operator

Acceleration of gravity

h=z(x,y) Wave elevation

Number of adjacent panels

NH Number of panels on the body

NF Number of panels on the free surface

NE Total number of panels

Unit normal vector with components

(N, Ny, Nz ) in reference co-ordinatesx
_E

Unit normal vector with components (Nc,NTI,N) in
panel co-ordinates

Static pressure

P,Q,R, Coefficients of quadratic terms in the expression

P01Q0,R0 for the curved panel

Maximum C value of a panel

U. Magnitude of the uniform onset flow velocity

V Flow velocity with components (0x,0y,Oz) or

(u,v,w)

[X],[Y] Matrices of induced velocities

[Z]

x,y,z Global reference co-ordinates (see Fig 1)

Total velocity potential

Velocity potential from previous solution

a Source density
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ABSTRACT

In the present paper a method for calculating the potential flow

about ships is described. The problem is discretized by covering

the hull and part of the free surface with a large number of

source singularities and the variable strengths of these source

distributions are adjusted to satisfy the normal velocity

boundary condition on the wetted hull surface and the non-linear

form of the free surface boundary condition on the wavy surface.

An exact solution is obtained through iterations and in each

iteration the free surface boundary condition is linearized,

based on the small perturbation principle, about the previous

solution.

In contrast to a linear method, a single model with higher order

panels both on the hull and the free surface is used and special

care has been taken in the generation of panels above the

designed load water line to simulate more exact boundary

conditions and also in the computation of the velocity potential

and the associated derivative terms in the free surface equation.

Converged solutions are obtained after 5-6 iterations for two

different hull forms and are compared with measurement data

available.
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Table 1. Dynamic force coefficient of half

sphere in uniform flow
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Method First
order
solution

Higher
order
solution

Analytic
solution

C,
Error %

0.550
12

0.622
0.5

0.625
-
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VI. CONCLUSIONS

An effort has been made in the present work to investigate the

improvements of panel methods for calculating the double model

linearized free surface potential flow around ships. A higher

order method which uses curved panels of the second degree with

linearly varying source density, has been developed. Numerical

calculations have been made for five test cases and compared with

experiments. According to these studies the following conclusions

can be drawn:

The calculations of the flow around a sphere have shown that

for a given accuracy a much fewer number of panels are needed

in the higher order method.

A small but distictive improvement over first order method is

achieved by the present method in the prediction of the wave

pattern and wave resistance for the Wigley hull and Series 60

(CB=0.6) ship hulls in the Froude number range of 0.20 to

0.40.

C. For the SSPA Ro-Ro, the HSVA Tanker and the 12 M yacht, the

agreement between the wave pattern and wave resistance

predicted by the present method and experimental data is much

better than for the first order method.
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The second test case is the Series 60 hull (CB=0.6) with 249

effective panels on the hull surface and 440 body-fitted panel

arrangements on the free surface (see Fig 8). The same tendencies

as for the Wigley case can be observed in Figs 9 and 10.

The relatively small differences between the first and higher

order methods in the two cases may be due to the fact that the

hulls are very thin or simple. Larger differences may be expected

for more complicated hulls. A more practical study was performed

therefore using the SSPA Ro-Ro ship model 2062 with a medium size

bulb, the HSVA Tanker and a 12 M yacht.

The panel representation for the SSPA Ro-Ro ship with 1250

effective panel elements is presented in Fig 11. The computed

wave resistance coefficient versus ship speed is presented in

Fig 12 and compared with the measured residual resistance

coefficient. As can be seen from the figure the present method

predicted lower wave resistance than measured residual resistance

at all speeds. This might be explained by the fact that the

residual resistance contains other components like the viscous

pressure resistance. However, a good agreement between measured

and predicted bow wave profiles can be observed in Fig 13.

Another test case is the HSVA tanker with 1064 effective panel

elements shown in Fig 14. It also can be seen in Fig 15 that a

much better agreement in wave resistance prediction is obtained,

especially when using higher order panel method with the momentum

approach. The computed wave profiles (Fig 16) at Fn = 0,19

around the bow and stern region are improved considerably but

still more improvements are desired.

The 12 M yacht was also tested in the upright position and the

panel representations with 805 effective panels is presented in

Fig 17. A better agreement with measurement than the first order

one [8] can be observed in wave resistance results presented in

Fig 18.



IV. RESULTS AND DISCUSSIONS

To illustrate the improvements in accuracy due to the inclusion

of higher order effects in the present method, some cases have

been tested for which analytic solutions or experimental data are

available.

In order to obtain a comparison with an analytic case, the flow

around a sphere in an unbounded flow was computed first. One

calculation was performed with the higher order method and one

with the first order method of reference [8]. Calculated and

analytic surface velocities along the curve in the xz plane are

compared in Fig 4. The total flow is axisymmetric and a high

accuracy solution was obtained by both methods with 880 effective

panels. The results of the two methods using a greatly reduced

number of panels (50 effective panels) are also shown in Fig 4.

In Table I the force coefficient on one half of the sphere is

compared with the analytical one. A considerable improvement in

accuracy is noted for the higher order method. The first order

solution is quite inaccurate in certain regions while the higher

order solution is scarcely distinguishable from the exact one.

To investigate the prediction of the wave pattern and wave

resistance, a mathematical hull due to Wigley was tested first. A

body plan with effective panels (22 x 6) and the body-fitted

panel arrangement (40 x 10) on the free surface are shown in Fig
5. It can be seen from Fig 6 that the wave resistance obtained by

the higher order method generally agrees better with measurements

than that of the first order method, especially using the

momentum approach.

Comparison between calculations and measurements of the wave

profile is made in Fig 7. The wave pattern predicted by the

present method is better than the one from the first order

method.
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In the practical calculation the wave resistance coefficent can

be expressed as

NF NB

Cw = - (2 E uBiwFiASi) / (14.2E AS1) (48)

If it is noted that wFi = -2na1 Eq (48) can be written

NF NB

Cw = (4n E uBicriASi) / (Lk:02E ASi) (49)



Furthermore,

NB+NF NB NF
ui= E X..a. = E X..a. + E X..a. = uBi + uFiij j ij j ij j

j=1 j=1 j=NB+1

NB+NF NB NF
wi= E Z.-a- = E Z..a. + E Z..a. = ww. + wFiij j ij j ij j

j=1 j=1 j=NB+1

where index B refers to the hull sources and their images, F to

the free surface sources. Because of the double model

linearization wB=0 on free surface SF. Eq (44) now becomes

Dw = -PJJ uBwFds - p ff uBwFds - p fj uFwFdS
SFc SFu SF

If it is imaged that the fictitious flow is generated by the

source distribution only on the free surface SFc the

conservation of momentum holds also

- pfl uFwFds _ pli uFwFdS = 0
SF SFi

where SFi is the part of the plane z = 0 inside the hull. Then it
is deduced that

wF = 0 on SFu and SFi

because no source is distributed on the two parts SFu and SFi.

Finally, Eq (45) is reduced to the following expression
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Dw = - P uBwFdS (47)
SFc



The mass conservation equation for the control volume is

11-

v ndS = 0

Eq (41) minus Eq (42) multiplied by pUe. yields

jjpuKi.ndS +
jj (p+pgz)nxdS = 0

The free surface SF consists of two parts: SFc which refers to

the part covered by source panels, and SFu which refers to the

rest of the free surface outside SFc. It can be assumed that the

front plane, aft plane, both side planes and the lower plane are

located infinitely far from the hull. The velocity in these

planes is equal to the onset flow U.. Since

fj pgznxdS = 0

and

jj pnxdS = If pnxdS = - Dw
SB

Equations (8-3) can be simplified as

Dw =-If pnxdS = pjf uV.ndS = - P II uw dS

SEI SF SF
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J

E
Cw = E(Cpo+Cp+Cprin) (aliNE,_ 4-a21 NI._ +a3iN)

(1+20)dcdn / E(1+20)dOn
I

(40)

2. Momentum Approach

The momentum conservation equation in the x-direction is applied

to the control volume within the surface S shown in Fig 3. Note

that the interior of the hull is outside the control volume.

ifsPOxV.ndS + jj (p+pgz)nxdS = 0 (41)
S

where

NB +NF

Ox = u + U. = E Xijaj+U.

J

NB 4-14F

0/7 = V = E Yijaj

J

NB +NF

Oz = w = E Zijaj

J

and

V = (Ox, Oy, 0,)
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CPC = E Ck()Cpk
k=o

Cpn = E Ck(n)Cpk
k=a

Note here that the wave resistance formula (36) is defined in the

reference co-ordinate, while the pressure coefficient (37) is

represented in terms of panel element co-ordinates. A transfor-

mation between the two co-ordinates thus is required. The

elements of this transformation matrix are the components of the

three unit vectors along the C,T-1,c directions, Y1,T2 and R.

From Eq (18) the x-component of the unit normal vector in the

reference co-ordinate system can be found

Nx = a21Nfl a3111
(39)

where the superscripts R and E denote the reference and panel co-

ordinate system, respectively. Finally the wave resistance

coefficient Cw is

B23

[T] =

all

a21

a31

al2

a22

a32

a23

a33

Tl

T2

Tl

T2

Nn

Tl

T2 (38)
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IV-3. Calculation of Wave Resistance

The most common way to obtain the wave resistance is to

integrate the x-components of the pressure forces acting on the

hull panels.

Cw = j CpNxds / ids (36)

Application of this approach to a number of full slow ships

showed large differences with measurements and the wave

resistance for the double model case was often far from zero. To

improve the numerical accuracy of the resistance calculation,

two different approaches have been tested for a given source

density on the hull and the free surface.

1. Higher Order Pressure Integration Method

In the first order panel method, the pressure integration is

performed based on the assumption that the pressure and normal

direction are constant over each panel. But in practice the

pressure coefficient is often found to vary considerably between

neighbouring panels. In the present method the pressure and

normal direction on each panel are assumed not to be constant but

vary continuously. With an analogy to the source density the

pressure coefficient on the panel in question is assumed to have

the following distribution

C (T-0 = Cp0 + + Cpnli (37)

where



A similar procedure is followed in the generation of the right-

hand side arrays of Eq (33), i e.

For the upper part

Bi = - Nxi i = 1,..., NB (35a)

For the lower part

Bi = - CKli + CKlit.xi + CK2yi

CK3i
(

2
GAiVBi+GBiVBi+1+GCiVBi+2+GDiVBi+3 )

CK41
( CAiVBi+CBiVBi_NL+CCiVBi -2NL+CDivBi -3NL )

2

i=NB+1,..., NE

where

VBi = 1.xi2 + 4./ri2 2.4'xi

B21

(35b)

The complete set of equations (34) and (35) compose a system of

NE equations in NE unknown values of a that is solved by Crout's

factorization method. Iterative procedures may not be used, since

the matrix of coefficients is not diagonally dominant.

CKli ( axi(GAih0i+GBih0i+1+GCih°i+2+GDih°i+3)

ax2(CAih0i+CBih° i-NL+CCill' i-2NL+Cpih°i-3NL) }/2Fn2

CK21 = ( GAih°i+GBih0i+1+GCih°i+2+GDih°i+3 }/2Fn2

CK31 = - ax14,xi + (Dyi

CK41 = aX24'x1

VAij = It'xiKij + 'DyiYij
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[A]a} = {13} (33)

where [A] is a NE X NE matrix and 03) is the right-hand side

array.

The upper part (corresponding to the hull boundary condition) of

the A matrix is easily generated by setting

= Vij.Ki = XijNxi + YijNyi + ZijNzi (34a)

i = 1,..., NB

j= 1,..., NE

where NB is again the number of panels on the hull surface. Nxi,

Nyi and Nzi are the components of the unit normal vector to the

hull surface at i-th panel element. These are the only source

equations to be solved in the double model case, in which NB=NE.

For the free surface case, the lower part (corresponding to the

free surface boundary condition) is generated as follows

Aij =

+

+

+

where

CKliXij + CK2iYi1

CK3if GAiVAij+GBiVAi+lj+GCiVAi+2j+GDiVAi+3j }

CK41( CAiVAij+CBiVAi-NLj +CCiVAi -2NLj +CDiVAi -3NLj

1T/Fn2 as 1 = j i = NB+1,..., NE

0 as i = j j = 1,...,NE

)

(34b)



and

oh, = axi8hT - ax28hL

oh = - 6hT

where

axl =

ax2 = - Ji + fL'2

Four-point finite difference operators are used to calculate the

derivative terms in Eqs (30), (31) along the L and T directions.

h°Li = CAih°i + CBih° i-NL

h°Ti = + GB1h°1+1 + GCih°i+2 + GDih°i4.3

OhLi = CAiShi + CBiShi _NL + CCiohi -2NL + CDiohi -3NL

OhTi = GAiohi + GB1Shi+1 + GCOhi+2 + GD1oh1+3

where NL is the number of the longitudinal strips on the free

surface.

The coefficient of the upstream four-point operator (CAi,CBi,CCi

and CDi) and the downstream operator (GAi,GBi,GCi and GDi) are

calculated from the distance between the successive points on the

free surface panels, see [8].

As pointed out by Dawson, upstream waves are prevented by the use

of upstream finite difference operators.

IV-2. The Linear Equations for the Source Strength

The central problem of the present method of flow calculation is

numerical solution of the boundary conditions (4), (12) and (13).

These boundary conditions can be transformed into a set of linear

algebraic equations in a as
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IV. NUMERICAL METHOD

In the numerical implementation of the present method the first

step is to discretize the integration domain S (hull surface +

free surface) into a large number of small panels. On the hull,

curved panels are employed, while on the free surface z - 0 the

panels are obviously flat. Over each panel the value of the

source density is assumed vary linearly. A double model solution

is obtained first by discretizing Eq (4). The free surface is

assumed to be a symmetry plane so only the hull panels are

considered. This solution yields a set of source strengths, Go,
and velocities, 4, 4, . Thereafter, the free surface solutionx z

is obtained by solving the same equation in combination with

equations (12) and (13). This yields the final source strength,

G, velocities, Ox, 0y, Oz, and wave height, h. Once the source

density is determined the flow velocity and pressure may be

calculated at any point. With known pressure and velocity

distributions, the wave pattern and the wave resistance can be

predicted.

IV-1. Panel Arrangement on the Free Surface

Unlike most other double model linearized free surface methods

the present one employs a surface grid, which is independent of

the streamlines. A much better resolution at the bow and stern is

obtained in the body-fitted grid shown in Fig 5. As can be seen

from the figure, the longitudinal lines are smooth arbitrary

body-fitted curves y=f1(x) and the transverse lines are parallel

to the y-axis (y=fT(x)). Then the derivertive terms in the free

surface boundary conditions (12) and (13) may be expressed by

finite differences in the two directions of the grid..

hx° = axihT° - ax2hL°
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where each individual velocity is the gradient of the

corresponding potential, Eq (27).

v(o) = 70(')
v(P)

= vo(P)
(Q)V = VO(Q)

y(R)
= VO(R)

V(1" = V95(1E)

1v(In)_

(n)- V

All the induced velocities in Eq (29) can be calculated

numerically and they may be interpreted as follows: V(*)
corresponds to a flat panel with a constant source density,

V(P), V(Q) and V(R) are caused by the parabolic panel

shape, V(1E) and V(11-1) come from the linear variation of the

source density.

Special care must be taken in obtaining influence coefficients

Xij, Yij and Zij, which are the velocity components in the

reference co-ordinate system (x,y,z) at the i-th control point,

induced by a unit source density on the j-th panel. In the first

order method the velocity induced by a panel depends only on the

panel itself. The essentially new feature of the higher order

method is that the velocity induced by a panel depends on the

values of source densities also at the control points of adjacent

elements. Thus the influence coefficients for a panel depend not

only on the geometry of that panel but also on the geometry of

adjacent panels and the assembly of the influence coefficients

matrix is more complicated.
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V = v(°)+ [PV(p)
+ 2Qv(Q) + Rv(1)]00Go

+
v(1C) (1n)or + V a

s n

B16

Thus the potential of the parabolic panel can be expressed as
follows

0. j 1 (a A- cy Erf 4_ a n )0. + i (13.J2 + 2Qc.n +
Rni

2))
-2-J i i ni rf2 J i

Ai

(1 + 2tP2)dEdn + (26)

= ajO(*) + Gi(p0(P) 4_ 200(Q) 4. Ro(R)) + a 0(1E) 4. a 0(17-1)
T1

The individual potentials in Eq (26) are

= t1-- cicarl
A. rfJ

. jf r 2f3j. . /r Wdn
A.

V S j
J

= j(CiEjnj/rf3)ddr1
J

= t(cinj2/rf3)adn
Ai

0(1c) I (j/rf)ddri
Ai

0(1n) f (ni/rf)dcin
Ai

The velocity induced by the panel is obtained as

(27)

(28)



where r2 = - )2 + (n -nj )2 + ci - )2

and S is the surface area of the parabolic panel. It is very

difficult to carry out direct integration along the curved panel

surface. Therefore it is desired to express 0 in terms of a

series of integrals over the projected flat panel. The distance r

can be written

r2 )2 (fli r11)2 Ci2 2cicj

= rf2( 1 + (- 2c1c1+c12)/rf2 } (23)

where rf is the distance between (i,ni,ci) and the point

(Cj,ni3O) on th flat panel (Fig 2). Thus

-
rf
_

13 Ci2 11Cj2

rf rf 2 rf2 21 rf2

1 1

Some simpler expression are obtained in the derivation above by

dropping higher order terms than second order of cj which is

assumed to be small everywhere on the panel in question.

The elementary surface dS on the parabolic panel is related to

the element area dA=dolnin the tangent plane by

1
dS = dA = (1 + 24)2) cid-ri

NE

where 4)2 = (p24.Q2)y 2(pQ+QR)11 (Q2+R2)n2

and NE is the r, component of the unit normal vector defined in

Eq (18).
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111-2. Source Distribution

B14

The source density distribution is assumed to be linear on the

panel in question

o( ,r- ) = ao + oc sang (19)

This is fitted in the least squares sense to the values of

source density at the control points of the M adjacent panels.

Thus the source derivatives on the panel in question may be

expressed in terms of the unknown values of the source density on

the adjacent panels in the form

a = E Ck()ak
k=o

a = E Ck(n)ak
k=o

The desired source density coefficients Ck() and Ck(r1) are

obtained by minimizing the error function E

Min E = Min
[ ak (cio+G nk) ]2 (21)

Ck(C)Ck(n) k=o

111-3. The Velocity Induced by a Curved Panel

As seen from Eq (1) the perturbation potential Oij at the i-th

field point (Ci,n) induced by the j-th panel on which the

source density a is distributed is

= (o/r) ds
Aj

(22)

(20)
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control point is characterized by the condition that the vector

from the origin is parallel to the local normal vector

[ E,--ei+ T-1' ei+c ' ( ' , n' )ek] x [- C' , e±-c' ej-Fek] = 0 (15)

This is equivalent to the two scalar equations

G( C' , n' ) = V + C ' ( ' , n' ) c'v (Y, n' ) = 0

(16)

11( ' , n' )= n' +c ' (E ' , n' ) c'n, ( V ,n ' ) = 0

These nonlinear equations are solved by Newton-Ralphson

iteration.

Once the control point is determined, the panel co-ordinate

system (E',W,V) is transformed to a new projected flat panel

which is tangent to the parabolic panel and the tangent point is

both the control point and the origin of new panel co-ordinate

system (7-1,c) see Fig 2. The equation of the panel may be

written

F(C,n,c) =c- [132 + 210n + Rn2] = 0 (17)

There are no constant or linear terms in (17) because the origin

is at the tangent point. The normal vector at any point is

NE(11) = NEe. + NE84 + NEeb.E 3_ rl -I C "

= f- 2(1)+Q11)ei - 2(Q+Rn)ei+ek} / 'grad Fl (18)

where ei,ej and di, are the unit vectors of the panel co-

ordinate system.



In the present method the control point is the point on curved

panel closest to the average point of the four input points. This
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III. HIGHER ORDER PANEL METHOD

The first order method [8] has been applied frequently to

investigate the linearized free surface potential flow around the

ship and to predict the wave resistance. Most three dimensional

ship flow problems, however, need a very large number of panels

to represent complicated configurations accurately and long

computational time is required. Moreover, the accuracy obtained

is not always what is desired. The inaccuracy of the first order

method may result partially from the fact that the body surface

is represented by flat panels with constant source density and

that the pressure and normal direction are assumed to be

constant over each panel. In order to increase speed and

accuracy a higher order method, using curved panels with varying

source density, has been developed. A similar method for flows

without a free surface was proposed by Hess [11].

III-1. Definition of the Curved Panel

A parabolic panel is defined in following form

ce = Zo + A0' Bon' + P0'2 + 2Q0E'n' + R0n'2 (14)

where a panel element co-ordinate system (Y,n',C') is

constructed using the four corner points. Thus, the origin is

defined as the average of the corner points, while the

C'-direction is normal to the two diagonal vectors. The six

parameters (Z0,A0,1301P0,Q0 and Ro) are determined from: (a)

requiring the panel to pass through the corner points of the

panel (four conditions), and (b) requiring the panel to pass as

closely as possible, in a least squares sense, to the eight

additional input points for the adjacent panels (two additional

conditions).
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In the present calculation, the terms containing the second

derivative of velocity potential (-4'xz, cl'yz, cl'zz) are assumed to

be small and neglected.

Therefore the linearized boundary conditions are

Oxhx° + Oyhy° - Oz + (DxShx + ,Dy6hy = 0 (12)

Sh = f U.244x2+4,y2 - 201,x0x44y0y) ) / 2g - h° (13)

These conditions are to be applied at z=0.



D1 (a,h) Di(a°,h°) +ADi(a,h° + A Di(a°,h) =

Di(a°,h°) + D1(a,h°)8a + Di(a°,h) oh 0

D2(a,h) D2(a°,h°) + D2(a,h°) + D2(a°,h)

D2(a°,h°) + D2(a,h°) 8a + D2(a°,h)oh = 0

It is a fundamental assumption of the present method that the

perturbations of source (80) and wave elevation (8h) are small in

certain senses. In a Taylor series, higher order terms in these

quantities then become very small and can be neglected.

Here the superscript, °, corresponds to the double model

solution which is assumed to be known a priori.

D1 (a°,h°) = 4)xhx° + Syhy° - 4)z = 0

D2 (a°,h°) = h° 2"g [U2 - (4,x2 + 2 + 2)] =0
(9)

where 4,x, 43/, and cl)z mean the velocity components induced by

a° on the undisturbed free surface.

The partial increments of D1 and D2 should be found in such a way

that a new velocity potential 0 = + 80 induced by introducing

small perturbations 80 and 8h should satisfy Eqs (5) and (6) on

the new wave surface h = h° + 8h. D1 and D2 can be lineary

expanded based on a° and h°

AD1(a,h°) = 80xhx° + (50yhy° - 60z

(10)

AD1(a°,h) = 4,x8hx + 4,y8hy + (4'xzhxe (1)yzhy* 4'zz)811

AD2 (a,h°) = (4,,e50x + 1.00y CDZOOZ)

AD2 (a°,h) = Oh + (4)1eDxz 4)0yz (1)z(1)zz)641
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At the free surface, two boundary conditions must be imposed, i e

the flow must be tangent to the free surface

4))chx ' Oyhy - Oz = 0 ( 5 )

and the pressure should be constant

1
gh + -(V0 - 1.10,2) = 0

2

Further, no upstream waves should be generated.

11-2. Linearization of the Free Surface Condition

The exact problem described in the previous section is

nonlinear, since the free surface boundary condition itself is

nonlinear and should be exactly satisfied on the wavy surface

z=h(x,y), which is unknown, and must be computed as a part of the

solution. Thus, numerical methods, which have been applied to

solve the problem usually entail some kind of linearization

procedure. In the present paper linearization of the free surface

condition is performed with respect to the flow at zero Froude

number, i e the flow with an undisturbed free surface.

Unknown sources a on the hull and flat free surface z= 0 will

induce a potential 0 and a wave elevation h which satisfy the

boundary conditions (5) and (6).

Di(a,h) = Oxhx + Oyhy - Oz = 0

D2(a,h) = h - 2g - (ox2+ 0y2+ oz2)] = o

These non-linear forms of the free surface boundary conditions

can be linearized by introducing small perturbations 8a and Sh

with respect to the double model solution in a first order Taylor

expansion.

( 6 )

( 7 )



II. THEORY

II-1. Mathematical Formulation of the Flow Problem

A ship, piercing the free surface, is assumed fixed in a uniform

onset flow of velocity U. and the flow is considered inviscid,

irrotational and incompressible. Then the flow field around the

ship may be described by a velocity potential 0 which is

generated by a certain distribution of sources on a surface S and

by the uniform onset flow in the x-direction (see Fig 1).

0(x,y,z) = a(q)/r(p,q)dS + U.x
i

(1)

where a(q) is the source density on the surface element dS and

r(p,q) is the distance from the point q to the field point

p(x,y,z) where the potential is being evaluated.

The potential 0 is given in Eq (1) is governed by the Laplace

equation.

V20 = 0 (2)

in the fluid domain and satisfies the regularity condition at

infinity

VO => (U.,0,0) as r ->w (3)

The source density a should be determined from the boundary

conditions on the hull and free surface. On the wetted hull

surface the solid boundary condition is

B8

On 0 (4)

where n denotes the outward normal to the hull surface.



1. INTRODUCTION

Although research in wave resistance has been a major interest

among theoretical ship hydrodynamicists for almost a century it

is not until fairly recently that predictions, useful for

arbitrary hulls, have become possible. A major break-through was

the paper presented by C.W. Dawson at the Second Conference on

Numerical Hydrodynamics in 1977 [1]. As had been suggested by

Gadd two years earlier [2] the free surface boundary condition

could be approximately satisfied by covering part of the

undisturbed surface close to the hull by sources. In Dawson's

method the boundary condition is linear and the linearization is

made about the so called double model solution, obtained assuming

a flat free surface. This is a major improvement, as compared to

thin ship theory, where the linearization is made about the

undisturbed flow.

Since 1977 many organizations have adopted Dawson's method and

several papers have been published, see i e [3], [4], [5], [6]

and [7]. A considerable effort has been made also at SSPA in the

past five years to extend and improve the theory. Much of the

work is described in the two PhD theses by Xia in 1986 [8] and Ni

in 1987 [9]. Xia investigated the original Dawson method in

several respects and extended it to include lifting surfaces

[10]. He also started investigations on the inclusion of

nonlinear effects in the free surface boundary condition. This

work was continued by Ni, who found that higher order accuracy

improved the convergence of the nonlinear iterations, so he

introduced the higher order technique, first in the linear method

and later in the nonlinear method.

In the present paper the extension of the linear Dawson method to

include higher order panels and source distributions is

described. An improvement in the panelization on the free surface

is also presented, as are two alternatives for calculating the

wave resistance, knowing the pressure and velocities.
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Subscripts and Superscripts

B6

i'l Subscripts referring to the i-th or j-th panel

ij Double subscript referring to the effect of the

j-th panel at the i-th control point

o Superscript referring to the double model solution

(o) Superscript referring to a constant source density

(P),(Q) Superscript referring to a panel curvature

(R)

(1. )(1n) Superscript referring to a varying source density



LIST OF SYMBOLS

[A] Coefficient matrix for the linear equation system

05} Right hand side vector for the linear equation

system

A B Coefficients of linear terms in the
o, o,

Zo expression for the curved panel

CA,CB, Coefficients of the finite difference upstream

CC,CD operator

C Pressure coefficent
P

Cw Wave resistance coefficient

Fn Froude number

GA,GB, Coefficients of the finite difference downstream

GC,GD operator

Acceleration of gravity

h=z(x,y) Wave elevation

M Number of adjacent panels

NB Number of panels on the body

NF Number of panels on the free surface

NE Total number of panels

N Unit normal vector with components

(Nx, Ny, Nz ) in reference co-ordinates

_E
Unit normal vector with components (N ,N ,N ) in

panel co-ordinates
E n c

p Static pressure

P,Q,R, Coefficients of quadratic terms in the expression

P0,Q0,R0 for the curved panel

Maximum C value of a panel

U. Magnitude of the uniform onset flow velocity

Flow velocity with components (0x,0y,0z) or

(u,v,w)

[X], [Y] Matrices of induced velocities

[Z]

x,y,z Global reference co-ordinates (see Fig 1)

Total velocity potential

Double model flow velocity potential

a Source density
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