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Abstract

A frequency-domain cumulant spectral analysis method is developed in this study to estimate the higher-order statistics of the linear
oscillator responses driven by Morison wave force. The fourth-order cumulant function of the nonlinear drag force is formulated in terms of
the autocorrelation functions of water particle velocity. Price’s theorem is applied to evaluate the associated higher-order joint moments.
Three-dimensional Fourier Transforms are employed to obtain the trispectra of Morison force and oscillator responses. The estimated force
and response kurtosis are in good agreement with those obtained from time-domain simulations; while the proposed method is found to be
much more efficient. The numerical results also show that the drag force cubicization based on the least square approximation results in an
overestimation of the kurtosis values; in addition, it is necessary to include the joint moments of order higher than eighth.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

!

It is known that due to the nonlinearities of wave forces,
the dynamic structural responses of an offshore system tend
to be non-Gaussian in stochastic ocean waves, even if linear
waves are assumed and the structural nonlinearity is not
considered. Liaw and Zheng [1] reported that for fixed
offshore structures, like jack-up and jacket platforms, the
nonlinear effects mainly arise from two Morison-type wave
forces: the distributed Morison force and the wave elevation
induced inundation force. Both forces lead to significant
super-harmonic phenomena [2-5]. In the absence of current,
the power spectra of these two wave forces exhibit obvious
peaks respectively at triple and twice the peak wave
frequency (w,). Since the natural frequency of a fixed
offshore platform (w,) is usyally higher than w,, and lower
than 4w, the structural responses incurred by these two
forces can be rather significant.

The non-Gaussian description of the structural response
manifests itself on how well the probability density
distribution (PDF) is fitted in the tail regions. It has been
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shown [6,7] that the quasi-static response of a linear system
driven by Morison force follows the Pierson-Holmes type
distribution of the force [8]. This is however true only for a
very rigid structure with w, much higher than w), [9]. If w,, is
lower than 4w, an approximate but reasonable PDF of the
response can still be obtainable based on the first four
statistical moments of the response [10]. Nonetheless,
estimation of higher-order moments, like kurtosis, is not
straightforward. To obtain the response moments, stochastic
analysis can be conducted, in either time domain or
frequency domain. In time-domain analysis, Monte Carlo
simulation based on spectral representation method is
commonly applied. To acquire converged higher-order
statistics, the computing time could be excessive [11]
because of large number of frequency components involved
and sample functions employed in simulations.

On the other hand, stochastic analysis in the frequency
domain can be an efficient alternative. The Volterra series-
based model has been used to estimate the associated
cumulant spectra (power spectrum, bispectrum and trispec-
trum) of the responses of offshore structures [12—14]. The
application of Volterra model demands that the nonlinear
Morison drag term be approximated by polynomials for
determining the transfer functions. With increasing poly-
nomial degrees, such a model has two drawbacks that
significantly reduce its applicability: dramatic increase of
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complexity in deriving higher-order spectra [15] and, rapidly
growing numerical efforts in estimating the higher-order
statistics that involves multi-dimensional integrals [11,15].

Another frequency-domain approach, which is based on
the correlation functions of wave kinematics, was also
developed to obtain the desired cumulant spectra of
response. For a linear time-invariant (LTI) system, the
relationship of nth-order cumulant spectra of the input
(wave force) and the output (structural response) has been
established [16]; and we know that most fixed offshore
structures can be idealized as LTI vibration systems [11].
Therefore, the major task is to obtain the cumulant spectra
of wave force.

Power spectral analysis of Morison wave loading based
on correlation functions has been reported in some works. In
the absence of current, Borgman [17] used Price’s theorem
[18] to derive the autocorrelation function of the Morison
drag force in terms of the autocorrelation of water particle
velocity. The corresponding power spectrum could be
evaluated by multi-convolutions or Fourier Transform. In
the presence of current, fourth-degree drag approximation
has been utilized [3] to obtain the autocorrelation of
Morison force. The correlation function based scheme was
also extended to higher-order spectral analysis [9,19,20]. Hu
and Lutes [19] derived the fourth-order cumulant function
of Morison drag force using power series expansion, which
involved the product of up to four correlation functions of
velocity, i.e. the eighth-order joint moment. Utilizing cubic
polynomial fit of the drag based on the least squares
approximation (LSA), Hu and Dixit [20] obtained the
similar cumulant function of drag. The authors noticed that
the drag cumulant functions obtained were actually
truncated without including 10th- and 12th-order joint
moments of the water particle velocity; moreover, the drag
trispectrum and response kurtosis were respectively eval-
uated using 1D FFT and multi-fold integration, instead of
the more efficient triple FFT. Also, as pointed out by
Bouyssy et al. [11], Tognarelli and Kareem [21], if LSA
method is applied, the drag cubicization fails to capture the
proper response kurtosis; unless a fifth or higher-degree
approximation is introduced. As a result, the difficulties in
both mathematical manipulation and numerical compu-
tation will increase significantly. However, if the moment-
based approximation (MBA) is employed for drag cubiciza-
tion, the kurtosis values of force and response could be
preserved reasonably [14,22,23]. This study aims to develop
a more convenient and accurate method for cumulant
spectral analysis of the Morison wave force.

2. Input-output spectral relationship

The dynamic motion of a LTI oscillator driven by the
Morison force is governed by the following equation:

my +cy+ky=f e

where m, ¢ and k are the oscillator mass, damping and
stiffness, respectively; y is the displacement; fis the Morison
force per unit length describing the in-line force impinging
on a stationary and slender vertical cylinder:

[ =f+p @)

where f; and fp are, respectively, the inertia and drag forces,
ie.

fD = CDADLllltl = lel-llll (4)

where A= ﬂpDZq/4 and Ap=pD.4/2; p, the water density;
D,q, the equivalent diameter of the cylinder; Cy; and Cp, the
inertia and drag coefficients; 1 and # are the horizontal water
particle velocity and acceleration, respectively, u=u(z,f)
and 1= Ju/dt; z, the submerged position measured from the
still water level (SWL), positive upward. To include wave-
structure interactions, the modified Morison equation should
be used. Considering the structural velocity of a fixed rig is
usually much smaller than the water particle velocity [3,4],
the modified drag term can then be approximated as:

o = kpu — Nl — 3| = kpulu| — 29|ul )

The term 2y|u| incurs a fluid damping, the effect of which
can be taken into account [3,4,9] by adjusting the system
damping in Eq. (1). This allows us to retain the zero-
memory term in Eq. (4). In addition, to account for the
effects of current, velocity u should be replaced by u+c; cis
the current speed. Based on drag force cubicization, it has
been found that [24] the existence of current will soften the
nonlinearity of drag force by reducing the force kurtosis.
The effects of current on variance and higher-order statistics
of structural response have been also investigated [3,13].
This study will not include current effects and the focus is on
the interested cumulant spectral analysis.

In the spectral analysis of a LTI system, the relationship
of the nth-order (n>2) cumulant spectra S(wy,...,w,—1) of
the stationary input f and output y is given as [16]:

Sy(wh W5 ++es wn—l)
= Hf),((.L)l)ny(CL)z) "'ny((i)nfl)Hf;((l)l E5 Wy S
T wn—l)Sf(wI: Wos ooy CL’n*‘l) (6)

where Hp(w) is the linear transfer function from f'to y:

1
m(w? — w? + 2itw,w)

with the natural frequency , = +/k/m, damping ratio £ =c/
2mw and i=+/—1. Obviously that Sy(w1, wW,..., Wy—1)
depends on S{w1, ws,..., w,_1), which is available through
the (n— 1)-dimensional Fourier Transform of the nth-order
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Fig. 1. Cumulant spectral analysis of a LTI system.

cumulant functions of the force [16]:

Sp(Wi, Wy eves Wy—y)

= [ [ZaRp(71, T2, ..., TuyJexp{—j(w1 Ty + woTy
e wn—lTn-—l)}dTI dT2' "dTn—l (8)

Analogously, if Sy(w1, wy,..., w,—;) is known, the nth-
order cumulant functions of displacement can be estimated
through the (n— 1)-dimensional inverse Fourier Transform:

Ry(TlvTZ"”7Tn—l)

1 0
:WJI.. 'J‘-——~°°S)’(w1’w27' ”’w”_l)

Xexp{j(w171 + wyTy+ +w,1_lr,,_])}dw1dw2...dw,,_1
©

By choosing n=2,3,4, S(w;, ws,..., w,—1) represents the
power-spectrum, bispectrum and trispectrum, respectively,
and R(74,72,...,T,—1) represents the autocorrelation func-
tion, third- and fourth-order cumulant functions. Setting
T1=T,=13=0, the skewness and kurtosis are obtained in
the following normalized form:

__R(0,0) p __R(0,0,0)
RS/Z(O)’ 4 RZ(O)
Fig. 1 depicts the procedures in cumulant spectral

analysis of a LTI system. The critical issue here is how to
formulate the input cumulant functions.

10

K3

3. Drag approximation and autocorrelation of f

The wave elevation, 7(f), at a fixed location can be
considered as a Gaussian process of a zero mean. Based on
linear wave theory, the linear transfer functions from ntou
and u are:

Hy(z, ) = 0r(2) (11)

Hy(z, 0) = i0’r(z) = iwH,,(z, ) (12)

where r(z) = cosh k(z + d)/sinh kd. The wave number k is
related to the wave frequency w by the dispersion function
w*=kg tanh kd; g is the gravity constant. Note that « and
preserve the Gaussian properties because of the linear

transformations. Their respective spectra can be obtained
from a given wave spectrum S, (w):

{ Sz ) = Sy (@) Hyi (2, 0)[*

(13)
Sz, ) = Sy ()| Hyu(z, 0)[*

Under the joint-Gaussian assumption, random variables
1(z, ) and u(z,?) at the same time point ¢ are independent [7,
8]. In this study, the random processes ii(z, ) and u(z,r) are
assumed to be independent. Hence, f; and fp are also
independent, which allows the cumulant spectra, including
the power, bi- and tri-spectra, of f to be written as [16]:

Sf(“)la W25 ++vs ('L)n—l) :Sfl(wl, W25 -eey wn—l)
+SfD(ﬁ)1,CL)2, "'7(‘)}1—1) (14)
and cumulant functions:
Rf(Tl, Ty vovs T,,Ml) =RfI(T1’ T9y w50y Tn—l)
+RfD(T1,72, ...,T”_l) (15)

For brevity, the Morison force f treated hereafter is the
one acting at SWL, i.e. z=0.

Borgman [17] derived the closed-form and complete
expression of the autocorrelation of fi, in a series expansion.
In numerical computation, the polynomial approximation
of the drag term u|u| is more often accepted for derivation
[3,25]. Let x=u/c,, the x follows the standard Gaussian
distribution with the corresponding PDF expressed as:

PO 16
px) me (16)

The cubic approximation of the drag based on LSA
method is [25]:

r=xlx| = \@(,\ -I—%xB) an

and that based on MBA method is [22]:

r = 1.0079x + 0.2142x> (18)
The nth-order moment of » can be estimated [3,24] based

on p(x) in Eq. (16), e.g.,:

my, = [(xlx])"p(x) dx 19
For odd 7, all moments of r vanish and the solutions for

even n are:

my, = 2n—1)2n —3)---1 (20)
The variance is equal to the 2nd-order moment and

kurtosis is defined as [16]:

cmy

K, = — (21)
o-l' =

where cmy} is the fourth-order central moment of », which in

this case is:

cmy = mj (22)
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The kurtosis defined here and in Eq. (10) is also termed
coefficient of excess or kurtosis excess in some books. For a
Gaussian process, it is equal to zero and for the drag term
r=x|x|, it is equal to 8(2/3) that will be considered as an
important criterion for time simulations later in this study.
The autocorrelation of f based on drag cubicization is [2]:

Re(r) = Ry(7) + Ry, (7) (23)

The autocorrelations of the inertia and drag parts on the
RHS are [26]:

Ri(1) = ki Riu(T) 24)

Ry, (1) = kp[(c1 + 3302 Ru(7) + 6¢3R;,(7)] (25)

where ¢;=a;0, and c3=azo,; a; and as are the linear and
cubic polynomial coefficients in Eqs. (17) and (18). It is
obvious that R(7) involves only the autocorrelations of u
and iz, which can be easily obtained through the inverse
Fourier Transforms of the corresponding power spectra:

1 5
Ruu(T) = ’2—7]_ JStlll(w)eer dw

i f (26)
Ry(m) = -y Jsz(w)e YT dw
The power spectrum of Morison force is then:
Sp(w) = ij(T)e*"“’TdT 27

According to Eq. (6), the power spectrum of the
oscillator response is simply:

$y(@) = |Hy(@)*Sy() (28)

4. Fourth-order cumulant function of f

Since both the inertia and drag forces are odd-degree
functions of Gaussian wave kinematics, the odd-order
statistics, including mean and skewness, of Morison force
and the induced oscillator response are zeros. One only
needs to be concerned about the fourth-order cumulant
function for kurtosis estimation. Considering that the inertia
force is simply a linear function of #, it is Gaussian and its
cumulant functions of order 3 and 4 vanish [16]. Hence,
according to Eq. (15), the 4th-order cumulant function of fis
only attributable to the drag part:

Rp(71, 72, T3) = Rp (71,72, 73) (29)

Let wy=u(t), up=u(t+71), us=u(t+7,), ug=u(t+7s3)
and x,=fp(0)=kp(cu®+csu’(®), x=fp(t+71), x3=
Sot+72), x4=fp(t+73), recall that f has a zero mean, Rg,
(71,72, T3) is expressible in terms of its 2nd- and 4th-order
moment functions [16]:

Ry, (71, T2, T3) = Rx1, %9, %3, 4] = E[x125%3%4] — R

(30)

where
RH = E[x1x,]E[x3x4] + E[x1x3]1E[xox4] + E[x1x4]E[x2x3]
(31)

Obviously Ry involves only double convolutions of the
autocorrelation of f;, and can be obtained straightforwardly.
For instance, the first term on the RHS is
E[x1%,]E[x3x4] = Ry, (T1)Ry, (T3 — 72), where Ry (7) is avail-
able in Eq. (25). The problem reduces to finding the
complicated fourth-order moment function of fp in an
expectation form:

mﬁ" =E[x1XyX3x4] = k]gE[(clul + 03u?)(01u2 + c3ug)

X (ciuz + cgug)(qm + c;;ui)] (32)

which consists of the joint moments of u with even orders
from fourth to twelfth. The 4th-order moment comes only
from the linear drag term, i.e.

E4 = ki cTE[ugupusy] (33)

while the 12th-order moment consists of only the cubic drag
terms, i.e.

E12 = kbAEM1315313] (34)

The 6th-, 8th- and 10th-order moments arise from the
cross effects of linear and cubic drag terms. The 6th-order
moments E6 have four different forms and one of them is
[27]:

E6 = kﬁ. c? c3Eluy uzu3ui] (35)

The 8th-order moments E8 have six different forms and
one of them is:

E8, = kb2 AE[uyuyudug] (36)

The 10th-order moments E10 also have four different
forms and one of them is:

E104 = kﬁ,cl cgE[ulu%ugui] (37

Since the velocities u; (i=1,2,3,4) are jointly Gaussian,
Price’s theorem [18] is suitable for decomposing the
above higher-order joint moments into products of the
autocorrelation R, (7). The most complicated joint
moment E12 in Eq. (34) was found to consist of as
many as 11:9-7-5-3-1=10395 products and was actually
the main stumbling-block of previous studies [9,19].
Fortunately, because u has only four distinct time lags
(t, t+71, t+7,, t+73), most of the 10395 products are
repetitive and E12 can be reduced to a sum of much fewer
basic products. Therefore, two algorithms have been
developed: one is a recursive algorithm to perform the
complete moment decomposition according to Price’s
theorem; the other is for moment condensation [27].
Table 1 lists the condensed 47 non-repetitive products of
E12. The first row, e.g., symbolizes such a product of
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Table 1
Non-repetitive products of £12

Products Repeating times
111222333444 81
111222343434 54
111223233444 162
111223243344 162
111223243434 324
111224243334 162
111322233444 162
111322243344 81
111322243434 162
111323232444 162
111323242434 324
111324242433 54
111422233344 81
111422233434 162
111422243334 162
111423232344 54
111423232434 324
111423242433 162
121212333444 54
121212343434 36
121213233444 324
121213243344 162
121213243434 324
121214233344 y 162
121214233434 324
121214243334 324
121313223444 162
121313232444 324
121313242434 324
121314223344 162
121314223434 324
121314232344 324
121314232434 1296
121314242433 324
121414223334 162
121414232334 324
121414232433 324
131313222444 54
131313242424 36
131314222344 162
131314222434 324
131314232424 324
131414222334 324
131414222433 162
131414232324 324
141414222333 54
141414232323 36
correlation functions: &

E1214 = 81R11R1a2Rp»R33R34Ryy (38)

where Rll = R22 = R33 = R44 = Rzm(o) = Uﬁ’ R12:R1¢z¢(71):
R13:R11u(7'2)1 R14:Rllll(T3)7 R23:R1u{(72—71)a Ryy=
Ruu(T?:—Tl)a R34=Rzlz¢(73_72)' Eq (38) 1rnphes that!
like Rpp in Eq. (31), E12 and other lower-order joint
moments (E6, E8, E10) can all be evaluated based on
Ry, (7). The 4th-order cumulant function of f;5 in Eq. (30)

9
8.
7.
& 6f
=
g sl —e— Drag Kurtosis |
g ‘ —6— Response Kurtosis
s 4} —— Response Variance (Normalized) A
£ —— Exact Drag Kurtosis (8.6667)
3 3l
2t 4
N S e G
or/”/a?/// . . . . .
7 8 9 10 11 12 13 14
log,NW

Fig. 2. Effects of frequency number on simulated moments.

can then be rewritten as:
Ry (11,72,73) = E4 + E6 + E8 + E10 + E12 —RH
(39

Setting 71, 7, and 73 to be zeros, the kurtosis of fp and
f are:
KZ _ R (0,0,0) R (0,0,0)

R©) 7 Ry + RO i

Following the procedures described in Fig. 1, tripec-
trum of Morison force Sf (wy, w,,ws) is obtained by the
triple Fourier transform of Ry (71, 7,,73); and response
trispectrum  Sy(w;,wo,w3) is evaluated according to the
input-output relationship in Eq. (6); then, using the triple
inverse Fourier transform, we have the fourth-order
response cumulant function R,(71,75,73) and the corre-
sponding kurtosis is:

y J— Ry(oa 0’ 0)

Ky = 0 41)

where response variance R,(0) can be evaluated from the
power spectrum in Eq. (28).

5. Numerical evaluation of R{7,7,,73)

The power spectra of wave force can be numerically
evaluated with negligible computer time [26], in that there is
only one time shift 7 involved and 1-D FFT is needed.
However, the foregoing cumulant spectral analysis involves
a triple FFT of RA71,75,73) which in its discrete form is a
cube of the size NP X NP X NP (NP: number of FFT points),
with the three dimensions corresponding to 74, 75 and 7.
Thus, if NP is large, the numerical effort is significant for
generating R{7,72,73) and implementing the triple FFT. In
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addition, the computer memory is another problem of
concern because both R{(71,7,,73) and trispectrum are huge
matrices. To formulate RA(71,72,73), loops about 71, 75 and
73 should be avoided. A ‘page-by-page’ scheme was
proposed [27] to do the loop just about 73 with the ‘page’,
a 2-D matrix about 7; and 7, formed using efficient matrix
multiplications. Such a scheme not only saves numerous
numerical efforts but makes coding easier. Another scheme
[27] to facilitate computation was based on symmetries of
RA71,72,73) itself-only half of the pages need to be
produced.

6. Example and results

The stochastic displacement response of a LTI oscillator
(unit length) excited by the Morison force at SWL is
investigated. Ocean wave conditions are considered by
employing a JONSWAP spectrum [28] with the following
parameters: significant wave height of 9.9 m; peak wave
frequency w, of 0.521 rad/s, peak enhancement factor 7y of
3.3 and water depth of 30 m. Inertia and drag coefficients for
calculating Morison force are, respectively, 1.78 and 4.0.
The vibration system of oscillator has a damping ratio of
0.07, mass 1000 kg and natural frequency 1.422 rad/s—a
value close to 3w), indicating the existence of third-order
super-harmonic responses.

6.1. Time-domain simulation

In time-domain simulations, the standard spectral
representation method is applied to obtain time records
of the inertia, drag and local Morison force. The exact
expression of the drag is adopted without polynomial
approximation. The induced oscillator response is calcu-
lated using the linear acceleration time-integration
method.

To acquire converged statistical moments, as many as
120 sample functions [11] are simulated. Each simulation
corresponds to a wave storm lasting for 3h, as rec-
ommended by SNAME [28]. Considering that the conver-
gence of higher-order moments is also dependent on the
number of frequency components (NW) in spectral
discretization, Fig. 2 plots drag kurtosis, response kurtosis

and variance versus log,NW. The value of variance is
normalized by the one corresponding to the largest NW =
21%=16384. It can be easily seen that there is little variation
of variance with NW; even a small NW = 27=128 is able to
make a good estimation of the variance. However, both drag
and response kurtosis increase with NW. The drag kurtosis
approaches the exact value 8.6667 and the response kurtosis
becomes stable when 16384 harmonic components are used.
The value, 8.6667, may act as an important criterion to test
the effectiveness, of simulations: a reasonable response
kurtosis demands that the drag kurtosis be simulated close to
8.6667. On the other hand, to meet this criterion means
excessive computation time [11].

Table 2 presents the simulated variances and fourth-order
cumulants (underlined) of forces fi, fp and f, for NW=
16384. The cumulants of f are found very close to the sum of
the inertia and drag cumulants and the fourth-order
cumulant of f is almost identical to that of fp, which to
some extent supports the assumption that u and i are
independent.

6.2. Cumulant spectral analysis

The kurtosis of oscillator response is also evaluated using
the proposed cumulant spectral analysis method, with the
computing time around 9 min for as many as 256 FFT
points. Table 2 shows the variance and kurtosis values of
wave forces f;, fp and f. The response variance and kurtosis
are displayed in Table 3. A comparison between MBA and
LSA cubicization is made based on these statistics. In these
two tables, frequency-domain results are further compared
with those of time simulations. To investigate the
contributions by joint moments E10 and E12, the kurtosis
values of drag force, Morison force and response without
these two moments included are shown in brackets. The
following observations can be made:

(1) The variance and kurtosis produced in the frequency-
domain approach, based on MBA drag cubicization,
tally well with those from time simulations. The relative
difference of the kurtosis, for both Morison force and
response, is less than 2%. For variance, the difference is
even smaller. However, there is a large difference in

Table 2
Variance and kurtosis of wave forces
Approach Inertia f; Drag fp Morison f
Variance MBA 1.9956x 10100 8.1219x 10102 1.0118 107003
LSA 1.9965 % 1002 8.5420x 10792 1.0539x 107003
Simulation 2.0026 % 107002 8.1155x 10190 1.0118x107903
Kurtosis MBA 0 8.6225 (2.0539) 5.5565 (1.3522)
LSA 0 1.3515x 101! 9.0097
Simulation 9.9161 X109 8.6544 5.5708

4.2227x10"%!

5.7358 10700

5.7384 101006
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Table 3
Variance and kurtosis of response
Approach Oscillator
Variance (m?) MBA 9.3238 1010
LSA 9.6542X 107>
Simulation 9.4105X 10702
Kurtosis MBA 1.6984 (0.0361)
LSA 2.6913
Simulation 1.6737

computing time between the two domains: 9 min versus
30 h.

(2) Applying MBA cubicization in the proposed approach
generates an accurate value of drag kurtosis with the
relative error with respect to the exact 8.6667 for less
than 1%.

(3) Compared with the proper results obtained from MBA
approach and simulations, LSA drag cubicization
causes a significant overestimation of the force kurtosis:
56% (valued around 13.51) for fp and more than 35%
for f, which in turn results in an overestimation of
response kurtosis for over 50%. This can be explained
by looking into the cubic polynomial coefficient that
controls system nonlinearity.

(4) The contributions of the joint moments E10 and E12 are
of great importance. Ignoring these two terms leads to
large underestimations of kurtosis: the drag kurtosis is
only around 2 and the response kurtosis is close to
zero; which incorrectly implies that the response tends
to be Gaussian. After all, E10 contains the cross-
correlation among three cubic drag terms and one linear
drag term, (Eq. (37)), and E12 has the highest-order
correlation information from the cubic drag terms
(Eq. (34)) They reflect the most complicated but
.important mechanism in formulating RAT1,T2,73), albeit
some 90% of computational efforts are attributable to
them actually.

(5) Similar to observations in previous works, the kurtosis
reduction from f to y is noticed: the Morison force
kurtosis (>5.5) is much larger than that of the response
(<2). The fact that the non-Gaussianity of a LTI
response is weaker than that of the force excitation can be
explained by the linear filtering effect of the system [6].

7. Conclusions

In this study, a correlation function-based cumulant
spectral analysis method is proposed for evaluating the
fourth-order cumulant function of Morison drag force
without current effect. This cumulant function is expres-
sible in terms of the autocorrelation function of water
particle velocities and a complete expression needs the
involvement of tenth- and twelfth-order joint moments of
velocities. Three-dimensional FFT/IFFT techniques are

applied to numerically estimate the trispectra of Morison
force and induced response of a LTI oscillator. It is found
that the force and response kurtosis obtained are in
favourable agreements with those from time simulations,
but with far less computational efforts. A reasonable
estimation of kurtosis relies on a proper selection of the
drag cubicization: the moment-based approximation is
recommended.

In the presence of current where the skewness values of
Morison force and response are non-zeros, the proposed
cumulant spectral analysis method is still applicable to bi-
and tri-spectral analyses. For an actual offshore cylinder, the
excitation is the total (i.e. modal) wave force that consists of
Morison forces at various underwater positions and
inundation force [27]. The approach developed in this
study forms a good basis, upon which the relevant
discussions will be included in a separate paper.
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