
NanoFlowNet
Real-time optical flow estimation on
a nano quadcopter

R.J. Bouwmeester

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

NanoFlowNet
Real-time optical flow estimation on a nano

quadcopter
by

R.J. Bouwmeester
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday October 13, 2022 at 01:00 PM.

Thesis committee: Prof. dr. ir. G. C. H. E. de Croon, TU Delft, MAVLab, supervisor
Assoc. Prof. dr. ir. J. C. van Gemert, TU Delft, Computer Vision Lab
Dr. ir. C. de Wagter, TU Delft, MAVLab
Ir. F. Paredes-Vallés, TU Delft, MAVLab, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This report on real-time convolutional neural networks for optical flow estimation on nano quadcopters
is the result of my MSc graduation research project at the Delft University technology. I have conducted
this research under the supervision of Prof. dr. Guido C.H.E. de Croon and Federico Paredes-Vallés
at the MAVLab. The project has been an excellent combination of my interests in machine learning
and robotics while maintaining a strong link with my prior education in aerospace engineering. The
opportunity to see our ideas come to life has been incredible.

The document is structured in two parts. The first part contains a scientific paper. I’m proud to
say we have submitted an altered version of this article to ICRA 2023. The second part includes a
supplementary literature review, providing background information to the research article.

I want to thank Nilay Sheth, who helped me in the early stages of the project by effectively giving me
a crash course in embedded hard- and software engineering. I want to thank the people at Bitcraze,
who wholeheartedly welcomed me for an internship to develop these embedded skills further and in-
troduced me to Malmö falafel. I want to thank my supervisors and collaborators, Guido and Federico,
for their contagious passion; it would not have been the same without your intelligent contributions. I
am incredibly grateful for my family, who have always supported me in my every decision. Finally, I
would like to thank my girlfriend for all her valuable advice; you make me a better and happier person.

R.J. Bouwmeester
Delft, September 2022

III

Contents

I Research paper VII

II Literature research XIX

V

I
Research paper

VII

NanoFlowNet: Real-time Optical Flow CNN on a Nano
Quadcopter

Rik J. Bouwmeester, Federico Paredes-Vallés and Guido C.H.E. de Croon

Abstract— Nano quadcopters are small, agile, and cheap
platforms well suited for deployment in narrow, cluttered
environments. Due to their limited payload, nano quadcopters
are highly constrained in processing power, rendering conven-
tional vision-based methods for autonomous navigation incom-
patible. Recent machine learning developments promise high-
performance perception at low latency, while novel ultra-low
power microcontrollers augment the visual processing power
of nano quadcopters. In this work, we present NanoFlowNet,
an optical flow CNN that, based on the semantic segmenta-
tion architecture STDC-Seg, achieves real-time dense optical
flow estimation on edge hardware. We use motion boundary
ground truth to guide the learning of optical flow, improving
performance with zero impact on latency. Validation on MPI-
Sintel shows the high performance of the proposed method
given its constrained architecture. We implement the CNN on
the ultra-low power GAP8 microcontroller and demonstrate it
in an obstacle avoidance application on a 34 g Bitcraze Crazyflie
nano quadcopter.

Index Terms— MAV, CNN, edge AI

I. INTRODUCTION

Due to their miniature size and weight, nano quadcopters
are well suited for deployment in narrow, cluttered environ-
ments and safe to operate near humans [1]. Autonomous
navigation on these platforms can enable search-and-rescue
operations, monitoring, inspections, surveillance, and gas
source seeking. Conventional mapping-based methods for
aerial autonomy require sensors and processors that are
incompatible with the nano quadcopter’s constrained payload
[2]. However, with the right algorithm design, nano quad-
copters have been demonstrated performing complex tasks
such as exploration [3], gas source seeking [4], [5], and
visual navigation [6].

Given the constrained payload capabilities of MAVs, most
attention has been given to monocular solutions. The camera
is a lightweight and energy-efficient passive sensor that
captures rich information of the environment. One of the
most important monocular visual cues is optical flow, which
has been extensively exploited on MAVs with higher payload
for obstacle avoidance [7], depth estimation [8] and several
bio-inspired methods for autonomous navigation [9]–[13].

Traditionally, the task of monocular optical flow estimation
has been performed by hand-crafted methods [15], [16]. Re-
cently, the field has been dominated by deep learning meth-
ods [17]–[28], which outperform traditional, hand-crafted
methods in accuracy and latency. Although the focus has
primarily been on improving performance, efforts have been
made to find models of reduced size, and faster inference

Fig. 1: Top: NanoFlowNet consists of i) an encoder that extracts features
from the concatenated input images, ii) a fusion module that combines
features from different paths, iii) a motion boundary-guided detail head,
which is only enabled during training, to guide the learning with zero cost
to inference latency. Stages 1-3 of the encoder each consist of a regular
STDC block [14], followed by our modified strided STDC block. Bottom:
We demonstrate NanoFlowNet in an obstacle avoidance application on a 34
gram nano quadcopter.

[18], [19], [21], [22], [25], [26], [29]. However, these meth-
ods are still computationally expensive, with network timings
ranging from several to tens of FPS on modern desktop
GPUs and requiring millions of parameters, rendering these
networks incompatible with edge hardware.

In this work, instead of improving the accuracy of state-of-
the-art approaches, we focus on inference speed and, more
particularly, on the deployment of a dense optical flow net-
work on edge devices. To this end, we present NanoFlowNet,
a lightweight CNN architecture for optical flow estimation
that, inspired by semantic segmentation network STDC-
Seg [14], achieves real-time inference on a 34 gram nano
quadcopter.

The key contributions of this paper are listed as follows.
First, we introduce NanoFlowNet, a novel lightweight con-
volutional neural network architecture that performs, for the
first time, real-time dense optical flow estimation on edge
hardware. Through quantitative and qualitative evaluations
on optical flow datasets, we validate this network, which runs
at 5.5-9.3 FPS on the ultra-low power GAP8 microcontroller.
Second, we show, for the first time, that using motion
boundary ground truth to guide the learning of optical flow
improves performance while having zero impact on inference
latency. Third, we demonstrate the proposed NanoFlowNet
in a real-world obstacle avoidance application on board a
Bitcraze Crazyflie.

The remainder of this paper is organized as follows.
Section II reviews related work in autonomous navigation
on nano quadcopters and real-time inference with CNNs. In
Section III, we propose our CNN architecture and pipeline.
Section IV presents performance on public benchmarks, an
ablation study, and a real-world obstacle avoidance imple-
mentation. Finally, in Section V, we conclude and provide
further discussion.

II. RELATED WORK

A. Autonomous navigation on nano quadcopters

The limited computational capacity of the nano quadcopter
puts a constraint on the types of methods that can be
used for autonomy. Methods demonstrated on-board nano
quadcopters can be broadly grouped into model-based re-
inforcement learning for hovering [30], obstacle avoidance
based on dedicated laser ranging sensors [3]–[5], and self-
motion estimation using optical flow from dedicated optical
flow sensors [31] or estimated with multi-camera setups
[32], [33]. With monocular dense optical flow estimates, our
method can exploit complex visual cues without requiring
additional sensor systems and lends itself to more advanced
navigational tasks.

Other methods circumvent the computational constraints
of nano quadcopters by running methods off-board [34]–
[36]. Our method runs entirely on board to negate reliability,
latency, and security concerns of transmitted data and the
required proximity to a base station.

Yet other methods rely on augmenting the computational
power of the nano quadcopter. Methods based on application-
specific integrated circuits (ASICs) [37]–[40] can efficiently
provide information for specific tasks such as SLAM and
visual-inertial odometry but have not yet been presented on a
flying drone. More recently, parallel ultra-low-power (PULP)
microcontrollers have introduced energy-efficient multi-core
processing to parallelize visual workloads on edge devices.
This work exploits the COTS AI-deck equipped with the
GreenWaves GAP8 SoC. This nine-core microcontroller has
been used for several end-to-end methods that integrate
perception and navigation by directly regressing visual inputs
through a CNN into control commands [6], [41], [42].
Instead, in our approach, we calculate optical flow, which
gives us direct control over quadcopter behavior and can
support multiple optical flow-based tasks to be performed

simultaneously or interchangeably. Our work, motivated by
these benefits, is the first to present a dense regression task
on the AI-deck.

B. Real-time inference
Several low latency methods [43]–[47] utilize depthwise

separable convolutions for their low computational expense.
Depthwise separable convolutions effectively factorize a con-
volution into a depthwise and a pointwise convolution. The
use of depthwise separable layers allows us to use more
complex model structures on our constrained platform at the
cost of reduced representational capacity per layer.

We draw inspiration from real-time semantic segmentation
methods to speed up vision calculations for optical flow
while retaining performance. Specifically, we draw inspira-
tion from STDC-Seg [14]. This work is based on former
study BiSeNet [48], which identifies a sacrifice of spatial
information in real-time methods and improves performance
by introducing a separate path designed for encoding spatial
information. A feature fusion module (FFM) fuses features
from the high and low-level paths. Attention refinement
modules (ARM) refine features through channel attention.

STDC-Seg builds on BiSeNet and introduces the STDC
module, which increases the receptive field size per layer at
low computational cost. Furthermore, it replaces BiSeNet’s
spatial path with a train-time-only detail head and accom-
modating detail loss to mimic the encoded spatial details
while shrinking the model and decreasing latency. The de-
tail guidance ground truth is generated by convolving the
segmentation map ground truth using a Laplacian kernel.

A few critical elements of STDC-Seg and BiSeNet have
been separately investigated in the context of optical flow.
AD-Net [49] shows that channel attention can benefit optical
flow estimation. EDOF [50] fuses features from an edge
detect net and an optical flow encoder network for detail-
guided optical flow estimation. Instead, like STDC-Seg, we
use edges to guide the learning only.

III. METHOD

We adopt the STDC-Seg network and modify it. First,
we replace all regular convolutions with depthwise separable
convolutions. To further reduce latency and the number of
parameters, we globally reduce the number of filters by
a factor four. The semantic segmentation head is replaced
with an optical flow head. We introduce an even smaller
model with half of NanoFlowNet’s filters globally and call
it NanoFlowNet-s. Further modifications to the architecture
are discussed in detail in the following sections.

A. Motion boundary detail guidance
The closest analogy to the detail guidance used in STDC-

Seg is generating edges from the optical flow ground truth.
Instead, we replace this "edge-detect" detail guidance ground
truth with motion boundary ground truth from the optical
flow datasets. While closely related, we argue that using
ground truth data is less prone to error than manually
generated data. We adopt Focal Loss [51] to counter the
class imbalance problem.

B. Strided STDC module redesign

We modify the strided STDC modules to further decrease
latency. The original strided STDC module can be found in
Fig. 2. The modified strided STDC module can be found
in Fig. 3. We identify the first pointwise convolution in the
strided STDC module as the most expensive operation. By
relocating the pointwise convolution to the bottom path after
the average pooling operation, we reduce the overall latency
of the module while allowing an increase of the number of
features in the top path and the number of features with
a large receptive field size in the concatenated output. For
stage 1, this results in a reduction of over 50% of the MAC
operations. For stage 2 and stage 3, this results in a MAC
operation reduction of over 10%.

C. Reduced input/output dimensionality

We design the network for low-resolution input and
downscale all dataset’s input frames, optical flow and mo-
tion boundary ground truth accordingly. The scaling factor
is picked such that the resulting data resolution closely
matches the target application resolution (160x112 pixels,
approximately qqVGA). Horizontal and vertical scaling is
identical to fix the aspect ratio to retain naturalism. This
allows us to make the network shallower by dropping the
first convolution altogether and thus decrease latency while
maintaining feature sizes in the deepest layers. As an added
benefit, working with downscaled data speeds up training.
The primary drawback of reduced input resolution is the
loss of information; in particular, we will miss out on small
objects and small displacements that are not captured by
the resolution. To compare with existing optical flow works,
we benchmark performance at native dataset resolution since
downscaling flow magnitudes results in lower EPE without
a qualitative improvement.

Furthermore, we design our network for grayscale input
images, saving two third of the onboard memory dedicated
to the input frames and decreasing the cost of the first layer
at a loss of input information. We convert input images from
the datasets to grayscale.

IV. EXPERIMENTS

A. Implementation details

All models are trained for 300 epochs on FlyingChairs2
[17], [52], a regenerated FlyingChairs dataset with motion
boundary ground truth. We use the Adam optimizer [53],
with learning rate 1e−3, β1 = 0.9, β2 = 0.999, ϵ = 1e−07.
We fine-tune on FlyingThings3D [54] for 200 epochs with a
learning rate of 1e− 4. We train with a batch size of 8.

Given the scaling and conversion to grayscale of input
data, our network is not directly comparable with results
reported by other works. For comparison, we retrain one
of the fastest networks in literature, Flownet2-s [19], on the
same data. Given the reduction in resolution, we drop the
deepest two layers to maintain a reasonable feature size in
the deepest layers. We name the model Flownet2-xs.

We run all experiments in a docker environment with
TensorFlow 2.8.0, CUDA 11.2, CUDNN 8.1.0, and TensorRT
7.2.2 on an NVIDIA GeForce GTX 1070 Max-Q with batch
size 1 for benchmarking latency.

B. Performance and latency on public benchmarks

We evaluate the trained networks on the MPI Sintel [55]
train subset. We evaluate on both the clean and final pass.
Quantitative results can be found in Table I. NanoFlowNet
performs better than FlowNet2-xs, despite using less than
10% of the parameters. FlowNet2-xs does not fit on the AI-
deck due to the network size. To put the achieved latency
of NanoFlowNet in perspective, we execute FlowNet2-xs’
first two convolutions and the final prediction layer on the

Fig. 2: Strided STDC module. The module is identical to the original strided STDC block [14], with the exception that we use depthwise separable (DS)
convolutions in place of all non-pointwise convolutions. We use relu activations after all layers in the block. M is the number of input features, N is the
number of output features.

Fig. 3: Our modified strided STDC module. We reorganize the operations to reduce latency while increasing the number of features with large receptive
field size in the output. M is the number of input features, N is the number of output features.

Method MPI Sintel (train) [EPE] Frame rate [FPS] ParametersClean Final GPU¹ GAP8²
FlowNet2-xs 9.054 9.458 150 - ³ 1,978,250
NanoFlowNet (ours) 7.122 7.979 141 5.57 170,881
NanoFlowNet-s (ours) 9.559 10.047 151 9.34 46,749

TABLE I: Results on MPI Sintel. NanoFlowNet is more accurate than FlowNet2-xs while using less than 10% of the parameters. NanoFlowNet-s is the
fastest network tested. ¹At a resolution of 96x224. ²At a resolution of 112x162, including vision thread. ³Does not fit on on-board memory.

(a) Input frame I (b) Ground truth (c) NanoFlowNet (ours) (d) NanoFlowNet-s (ours) (e) FlowNet2-xs

Fig. 4: Qualitative comparison of optical flow estimates by NanoFlowNet(-s) and FlowNet2-xs on MPI Sintel (train) clean pass. NanoFlowNet and
NanoFlowNet-s pick up on smaller moving objects, such as the person in the bottom row. NanoFlowNet-s’ outputs are highly noisy.

GAP8. The three-layer architecture achieves 4.96 FPS, which
is slower than running the entire NanoFlowNet (5.57 FPS).
On GPU hardware, NanoFlowNet achieves comparable FPS
to FlowNet2-xs. NanoFlowNet-s has lower performance than
both other models but has a low parameter count with
only 27% of NanoFlowNet’s and 2.4% of FlowNet2-xs’s
parameters and is the fastest out of all the networks tested.

Qualitative results, presented in Fig. 4, confirm that
NanoFlowNet makes the most accurate optical flow esti-
mates out of the networks tested. Both NanoFlowNet and
NanoFlowNet-s appear to detect displacements of smaller
objects, which FlowNet2-xs misses. NanoFlowNet-s’ flow
estimates are highly noisy.

C. Ablation study

1) Motion boundaries detail guidance: We verify the
effectiveness of motion boundary detail guidance by re-
training the network with i) detail guidance based on the
optical flow ground truth convolved with a Laplacian kernel
and ii) disabling the detail guidance altogether. Quantitative
results can be found in Table II. Motion boundary detail
guidance improves results and outperforms edge detect detail
guidance. All methods only affect training behavior and have
identical latency.

A qualitative comparison of detail guidance methods can
be found in Fig. 5. Motion boundary-guided optical flow
best defines moving objects and shows the least leakage of
foreground objects into the background.

2) Strided STDC module redesign: Table III shows the
effects of the strided STDC module redesign. The network
with the redesigned module is both faster and more accurate.

Detail guidance method MPI Sintel (train)
Clean Final

None 7.636 8.119
Edge detect 7.404 8.141
Motion boundaries 7.122 7.979

TABLE II: Different methods of detail guidance. Edge detect detail guidance
improves MPI Sintel (train) clean pass results but slightly deteriorates results
on the final pass. Motion boundary-guided learning improves results on both
MPI Sintel (train) clean and final pass.

Strided STDC block MPI Sintel (train) [EPE] Frame rate [FPS]
Clean Final GPU¹ GAP8²

Unmodified 7.483 8.114 136 4.84
Modified 7.122 7.979 141 5.57

TABLE III: Modification impact of strided STDC block. The modified
strided STDC block improves accuracy and reduces latency on laptop GPU
and the GAP8 MCU. ¹At a resolution of 96x224 ²At a resolution of 112x162,
including vision thread

(a) Input frame I (b) Ground truth optical flow (c) Motion boundary guided
optical flow

(d) Edge detect guided optical
flow

(e) No detail guidance optical
flow

Fig. 5: Qualitative comparison of detail guidance methods on MPI Sintel (train) clean pass. Motion boundary-guided optical flow shows best-defined objects
and characters, with the least leakage of foreground objects into the background.

Mode MPI Sintel (train) [EPE] Frame rate [FPS]
Clean Final GPU¹ GAP8²

Color 7.726 8.344 141 5.18
Grayscale 7.122 7.979 141 5.57

TABLE IV: Grayscale versus color input frame-based architectures.
NanoFlowNet trained on and inferring on grayscale input images reduces
EPE over a color-NanoFlowNet. The latency on the GAP8 is reduced due
to reduced data transfer and a cheaper first convolution. ¹At a resolution of
96x224 ²At a resolution of 112x162, including vision thread

3) Reduced input dimensionality: A comparison between
training and inferring on grayscale images compared to color
images can be found in Table IV. Our grayscale model
outperforms the color variant. We hypothesize this is due
to the limited capacity of the network. The latency on the
GAP8 is reduced due to reduced data transfer.

D. Obstacle avoidance implementation

As a proof-of-concept, we implement NanoFlowNet on an
AI-deck equipped Crazyflie 2.x for obstacle avoidance. We
use the Flow deck v2 for positioning only. See Fig. 6. The
total flight platform weighs 34 grams.

1) Control strategy: We implement the horizontal balance
strategy [56], [57], where the quadcopter balances the optical
flow in the left and right half plane. The yaw rate ψ̇ is set
based on the error between the sum of flow magnitudes in the
left and right half of the optical flow estimate, see equation 1.
We set gains kp = 0.0126 and kd = 0.0018 experimentally.
The error between the sum of flow magnitudes is determined
with equation 2. The derivative of the error is calculated
numerically using equation 3, where ∆erl is the difference
in error between the current and previous estimate, and ∆t
is assumed to be constant. The forward velocity is set at a
constant 0.2m/s.

We augment the balance strategy by implementing active
oscillations (a cyclic up-down movement, T = 2s), resulting
in additional optical flow generated across the FOV. This is
particularly helpful for avoiding obstacles in the direction of
horizontal travel. Up-down rather than left-right surveying
favors detecting obstacles broader than taller but is simpler
to combine with the left-right balance strategy. Additionally,
left-right surveying requires rolling, which introduces rota-
tional flow which does not contain depth information.

We implement the CNN and calculate erl on the GAP8
microcontroller. Calculating the flow error on the AI-deck
reduces the amount of data that needs to be transmitted
over UART. The calculation of the yaw rate is done on the
Crazyflie 2.x, and fed into the controller. See Fig. 6 for an
overview of the application.

ψ̇ = kperl + kd ˙erl (1)

erl =
∑
left

√
u2i + v2i −

∑
right

√
u2j + v2j (2)

˙erl =
∆erl
∆t

(3)

Fig. 6: We use the Crazyflie 2.x as the flight platform for our experiments.
We use the AI-deck to capture images with the front-facing camera and
to run optical flow inference and processing. The downward-facing optical
flow deck is used for positioning only. The total flight platform weighs in
at 34 grams.

Fig. 7: Inspired by GapFlyt [8], we deliberately let the quadcopter oscillate
vertically to generate additional optical flow.

2) AI-deck implementation: The CNN processing power
on the AI-deck comes from the GreenWaves Technologies
GAP8. The chip is organized around the central single-
core fabric controller (FC) and the eight-core cluster (CL)
for parallelized workloads. For our application, we run
FC@250MHz, CL@230MHz, and VDD@1.2V.

Our AI-deck is equipped with the HM01B0 monochrome
camera, which supports a resolution of up to 324x324,
a QVGA (244x324) window mode, a 2x2 monochrome
binning mode, and cropping. For our application, we enable
both the window mode and binning mode (122x162) and
take a central crop of 112x160 to ensure a matched spatial
resolution of upsampled and skipped features in the network
architecture. At our input resolution, using grayscale versus
color reduces the L2 memory usage on the AI-deck by
14%. This additional L2 memory is made available to the
AutoTiler, which improves inference time by reducing the
number of data transfers.

In this work, we utilize the GreenWaves Technologies
GAPflow toolset for porting our CNN to the GAP8. NNTool
takes a TensorFlow Lite or ONNX CNN description and
maps all operations and parameters to a representation com-
patible with AutoTiler, the GAPflow tiling solver. We use
NNTool to implement 8-bit post-training quantization to our
CNN. We quantize on images from the MPI Sintel dataset
and achieve an average SQNR of 10.

(a) Open environment. (b) Cluttered environment.

Fig. 8: Overview of the two obstacle avoidance environments in the Cyber Zoo. Obstacles are outlined in purple. Texture-enhancing mats and curtains are
outlined in orange.

3) Experimental set-up: The experiments are conducted
in ’the Cyber Zoo’, an indoor flight arena at the faculty
of Aerospace Engineering at the Delft University of Tech-
nology. We compose two environments for obstacle avoid-
ance. First, an open environment, with obstacles exclusively
placed at the outline of the environment. Second, a cluttered
environment, with obstacles placed throughout. Obstacles
include textured and untextured poles, artificial plants, flags,
or panels. Both environments are enclosed with textured
panels to trap the quadcopter inside. Panel textures consist
of forest texture, data matrix texture, and a drone racing
gate texture. We augment the enclosure’s texture in both
environments with highly textured mats and curtains. Plants
and flags are placed around, and textured curtains are hung
on inadequately textured obstacles.

The simple proof-of-concept control algorithm has no ded-
icated method of dealing with head-on collisions. By placing
obstacles around the perimeter of the open environment, we
minimize the risk of a head-on collision with the panels as
they introduce an imbalance of optical flow, even on a fully
perpendicular collision path with a panel.

For each experiment, we start the quadcopter at an approx-
imately identical location, with a varying heading. We let the
quadcopter run until a collision or empty battery. We record
flight positioning data with an OptiTrack Motion Capture
System for post-flight analysis only and record experiments
with an ISO view and top view camera.

4) Results: Flight paths extracted from logged OptiTrack
position estimates are plotted on maps of the environment
and can be found in Fig. 9. The control algorithm is most
robust in the open environment, with the quadcopter manag-
ing to drain a full battery without crashing. In the cluttered
environment, performance is more variable. Especially on
occasions where obstacles are close to one another, the
quadcopter tends to avoid the first obstacle successfully, only
to turn straight into the second and crash into it. Adding
a head-on collision detection based on FOE detection and

divergence estimation (e.g., [13]) should help avoid obstacles
in these cases.

In several successful avoidances, the quadcopter initially
responds weakly to the obstacle, only to turn away more
harshly when the course has already been corrected suffi-
ciently. This behavior is expected because of two reasons.
First, the optical flow due to forward movement is zero at
the FOE and maximum at the edge of the peripheral vision.
Second, the obstacles generate optical flow across a more
significant part of the FOV when near the quadcopter. This
behavior could be corrected by weighing the optical flow
more heavily towards the center of the image.

Another notable feature of the flight paths is that the
quadcopter frequently appears to enter a spiraling path. The
control algorithm is overreacting to stimuli from across the
environment. Better tuning can help. Despite this, behavior
is consistent, the resulting paths are still exploring the
environments, and the quadcopter is able to break out of
the spiraling motion by approaching a panel (Fig. 9a) or
approaching an obstacle (Fig. 9b).

V. CONCLUSIONS & DISCUSSION

In this work, we introduced a lightweight CNN archi-
tecture for dense optical flow estimation on edge hardware
called NanoFlowNet. We achieved real-time latency on the
AI-deck. Furthermore, we showed that training our network
guided on motion boundaries improves performance at zero
cost to latency. Finally, we implemented NanoFlowNet in a
real-world obstacle avoidance application on board a Bitcraze
Crazyflie nano quadcopter.

For future work, we expect to see improved performance
by fine-tuning on more naturalistic datasets such as MPI
Sintel, KITTI, and H1D1. We expect applications that take
more advantage of the dense information in the generated
optical flow field. The achieved signal to quantization noise
ratio could be improved with quantization aware training
(QAT) or by considering quantization in the architecture
design.

(a) Legend. Connection loss indicates that po-
sition tracking is lost.

(b) Run in the open environment. (c) Run in the cluttered environment.

(d) Run in the cluttered environment. Position
tracking was lost near the end of the run, and
the remainder of the flight path was sketched
based on video reference.

(e) Run in the cluttered environment. (f) Runs in the cluttered environment.

Fig. 9: Obstacle avoidance runs. Positioning logs from OptiTrack are plotted on maps of the Cyber Zoo environments. The simple proof-of-concept control
strategy most successfully avoids collision in the open environment. In the cluttered environment, the limitations of the control strategy become apparent,
with the quadcopter frequently colliding with a subsequent obstacle after an initial successful avoidance.

REFERENCES

[1] D. Floreano and R. J. Wood, “Science, technology and the future of
small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
may 2015.

[2] B. Bodin, H. Wagstaff, S. Saecdi, L. Nardi, E. Vespa, J. Mawer,
A. Nisbet, M. Lujan, S. Furber, A. J. Davison, P. H. Kelly, and M. F.
O’Boyle, “SLAMBench2: Multi-Objective Head-to-Head Benchmark-
ing for Visual SLAM,” in Proceedings - IEEE International Confer-
ence on Robotics and Automation, sep 2018, pp. 3637–3644.

[3] K. N. McGuire, C. de Wagter, K. Tuyls, H. J. Kappen, and G. C.
de Croon, “Minimal navigation solution for a swarm of tiny flying
robots to explore an unknown environment,” Science Robotics, vol. 4,
no. 35, oct 2019.

[4] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu,
A. Faust, G. C. de Croon, and V. J. Reddi, “Tiny Robot Learning
(tinyRL) for Source Seeking on a Nano Quadcopter,” in Proceedings
- IEEE International Conference on Robotics and Automation, vol.
2021-May, no. Icra, 2021, pp. 7242–7248.

[5] B. P. Duisterhof, S. Li, J. Burgues, V. J. Reddi, and G. C. De
Croon, “Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking
Nano Quadcopters in Cluttered Environments,” in IEEE International
Conference on Intelligent Robots and Systems, jul 2021, pp.
9099–9106.

[6] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64-mW DNN-Based Visual Navigation Engine for
Autonomous Nano-Drones,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8357–8371, may 2019.

[7] P. Gao, D. Zhang, Q. Fang, and S. Jin, “Obstacle avoidance for micro
quadrotor based on optical flow,” in Proceedings of the 29th Chinese
Control and Decision Conference, CCDC 2017, jul 2017, pp. 4033–
4037.

[8] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermuller, and
Y. Aloimonos, “GapFlyt: Active vision based minimalist structure-
less gap detection for quadrotor flight,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 2799–2806, 2018.

[9] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert, “Im-
plementation of wide-field integration of optic flow for autonomous
quadrotor navigation,” in Autonomous Robots, vol. 27, no. 3, oct 2009,
pp. 189–198.

[10] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV navigation
through indoor corridors using optical flow,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2010, pp.
3361–3368.

[11] G. C. De Croon, “Monocular distance estimation with optical flow
maneuvers and efference copies: A stability-based strategy,” Bioinspi-
ration and Biomimetics, vol. 11, no. 1, jan 2016.

[12] J. R. Serres and F. Ruffier, “Optic flow-based collision-free strate-
gies: From insects to robots,” Arthropod Structure and Development,
vol. 46, no. 5, pp. 703–717, sep 2017.

[13] G. C. de Croon, C. De Wagter, and T. Seidl, “Enhancing optical-flow-
based control by learning visual appearance cues for flying robots,”
Nature Machine Intelligence, vol. 3, no. 1, pp. 33–41, jan 2021.

[14] M. Fan, S. Lai, J. Huang, X. Wei, Z. Chai, J. Luo, and X. Wei,
“Rethinking BiSeNet For Real-time Semantic Segmentation,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, apr 2021, pp. 9711–9720.

[15] B. D. Lucas and T. Kanade, “Iterative Image Registration Technique
With an Application To Stereo Vision.” in Proc 7th Intl Joint Conf
on Artificial Intelligence, 1981, pp. 674–679.

[16] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1-3, pp. 185–203, aug 1981.

[17] A. Dosovitskiy, P. Fischery, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2758–2766.

[18] A. Ranjan and M. J. Black, “Optical flow estimation using a
spatial pyramid network,” in Proceedings - 30th IEEE Conference on
Computer Vision and Pattern Recognition, nov 2017, pp. 2720–2729.

[19] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox, “FlowNet 2.0: Evolution of optical flow estimation with
deep networks,” in Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1647–1655.

[20] S. Zhao, X. Li, and O. El Farouk Bourahla, “Deep optical flow
estimation via multi-scale correspondence structure learning,” in
IJCAI International Joint Conference on Artificial Intelligence, vol. 0,
jul 2017, pp. 3490–3496.

[21] D. Sun, X. Yang, M. Y. Liu, and J. Kautz, “PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2017, pp. 8934–8943.

[22] T. W. Hui, X. Tang, and C. C. Loy, “LiteFlowNet: A Lightweight
Convolutional Neural Network for Optical Flow Estimation,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8981–8989.

[23] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution
decomposition for match density estimation,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, dec 2019, pp. 6037–6046.

[24] G. Yang and D. Ramanan, “Volumetric correspondence networks for
optical flow,” in Advances in Neural Information Processing Systems,
vol. 32, 2019.

[25] T. W. Hui, X. Tang, and C. C. Loy, “A Lightweight Optical
Flow CNN - Revisiting Data Fidelity and Regularization,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 8, pp. 2555–2569, feb 2021.

[26] T. W. Hui and C. C. Loy, “LiteFlowNet3: Resolving Correspondence
Ambiguity for More Accurate Optical Flow Estimation,” in European
Conference on Computer Vision, 2020, pp. 169–184.

[27] S. Zhao, Y. Sheng, Y. Dong, E. I. Chang, and Y. Xu, “Maskflownet:
Asymmetric feature matching with learnable occlusion mask,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, mar 2020, pp. 6277–6286.

[28] Z. Teed and J. Deng, “RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow (Extended Abstract),” in European Conference on
Computer Vision, aug 2020, pp. 402–419.

[29] J. Hur and S. Roth, “Iterative residual refinement for joint optical
flow and occlusion estimation,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, apr
2019, pp. 5747–5756.

[30] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. Pister, “Low-Level Control of a Quadrotor with Deep Model-
Based Reinforcement Learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4224–4230, jan 2019.

[31] A. Briod, J.-C. Zufferey, and D. Floreano, “Optic-Flow Based Control
of a 46g Quadrotor,” in Workshop on Vision-based Closed-Loop Con-
trol and Navigation of Micro Helicopters in GPS-denied Environments,
IROS 2013, 2013.

[32] R. J. Moore, K. Dantu, G. L. Barrows, and R. Nagpal, “Autonomous
MAV guidance with a lightweight omnidirectional vision sensor,”
in Proceedings - IEEE International Conference on Robotics and
Automation, sep 2014, pp. 3856–3861.

[33] K. McGuire, G. De Croon, C. De Wagter, K. Tuyls, and H. Kappen,
“Efficient Optical Flow and Stereo Vision for Velocity Estimation
and Obstacle Avoidance on an Autonomous Pocket Drone,” in IEEE
Robotics and Automation Letters, vol. 2, no. 2, apr 2017, pp. 1070–
1076.

[34] O. Dunkley, J. J. Engel, J. Sturm, and D. Cremers, “Visual-
Inertial Navigation for a Camera-Equipped 25g Nano-Quadrotor,” in
IROS2014 aerial open source robotics workshop, 2014, p. 2.

[35] F. Candan, A. Beke, and T. Kumbasar, “Design and Deployment of
Fuzzy PID Controllers to the nano quadcopter Crazyflie 2.0,” in 2018

IEEE (SMC) International Conference on Innovations in Intelligent
Systems and Applications, INISTA 2018, sep 2018.

[36] A. Anwar and A. Raychowdhury, “Autonomous Navigation via Deep
Reinforcement Learning for Resource Constraint Edge Nodes Using
Transfer Learning,” IEEE Access, vol. 8, pp. 26 549–26 560, oct 2020.

[37] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mW Fully Integrated Real-Time Visual-Inertial Odometry Accel-
erator for Autonomous Navigation of Nano Drones,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 4, pp. 1106–1119, apr 2019.

[38] Z. Li, Y. Chen, L. Gong, L. Liu, D. Sylvester, D. Blaauw, and
H. S. Kim, “An 879GOPS 243mW 80fps VGA Fully Visual CNN-
SLAM Processor for Wide-Range Autonomous Exploration,” in IEEE
International Solid-State Circuits Conference, mar 2019, pp. 134–136.

[39] M. Hosseini and T. Mohsenin, “Binary Precision Neural Network
Manycore Accelerator,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 17, no. 2, pp. 1–27, apr 2021.

[40] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash, N. R. Waytowich,
and T. Mohsenin, “An Energy Efficient EdgeAI Autoencoder Accel-
erator for Reinforcement Learning,” IEEE Open Journal of Circuits
and Systems, vol. 2, pp. 182–195, jan 2021.

[41] D. Palossi, F. Conti, and L. Benini, “An open source and open hard-
ware deep learning-powered visual navigation engine for autonomous
nano-UAVs,” in Proceedings - 15th Annual International Conference
on Distributed Computing in Sensor Systems, DCOSS 2019, may 2019,
pp. 604–611.

[42] D. Palossi, N. Zimmerman, A. Burrello, F. Conti, H. Muller, L. M.
Gambardella, L. Benini, A. Giusti, and J. Guzzi, “Fully Onboard
AI-Powered Human-Drone Pose Estimation on Ultralow-Power Au-
tonomous Flying Nano-UAVs,” IEEE Internet of Things Journal,
vol. 9, no. 3, pp. 1913–1929, feb 2022.

[43] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, oct 2017, pp. 1800–1807.

[44] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,” apr
2017.

[45] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, jul 2018, pp. 6848–6856.

[46] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C.
Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, jan 2018, pp. 4510–4520.

[47] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann, “BlazeFace: Sub-millisecond Neural Face Detection
on Mobile GPUs,” CVPR Workshop on Computer Vision for
Augmented and Virtual Reality, jul 2019.

[48] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral segmentation network for real-time semantic segmentation,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 325–341.

[49] M. Zhai, X. Xiang, R. Zhang, N. Lv, and A. E. Saddik, “Ad-net:
Attention Guided Network for Optical Flow Estimation Using Dilated
Convolution,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, may 2019, pp. 2207–
2211.

[50] G. Zuo, C. Zhang, J. Tong, D. Gong, and M. You, “Edge Detection-
Based Optical Flow Estimation Method,” in 2021 IEEE 11th Annual
International Conference on CYBER Technology in Automation, Con-
trol, and Intelligent Systems, CYBER 2021, jul 2021, pp. 873–878.

[51] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss
for Dense Object Detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, no. 2, pp. 318–327, aug 2020.

[52] E. Ilg, T. Saikia, M. Keuper, and T. Brox, “Occlusions, Motion and
depth boundaries with a generic network for disparity, optical flow or
scene flow estimation,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, pp. 614–630.

[53] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, dec 2015.

[54] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A Large Dataset to Train Convolutional Networks for
Disparity, Optical Flow, and Scene Flow Estimation,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2016-Decem, dec 2016, pp. 4040–4048.

[55] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic
open source movie for optical flow evaluation,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2012, pp.
611–625.

[56] K. Souhila and A. Karim, “Optical flow based robot obstacle
avoidance,” International Journal of Advanced Robotic Systems,
vol. 4, no. 1, p. 2, mar 2007.

[57] G. Cho, J. Kim, and H. Oh, “Vision-based obstacle avoidance strate-
gies for MAVs using optical flows in 3-D textured environments,”
Sensors, vol. 19, no. 11, p. 2523, jun 2019.

II
Literature research

XIX

Literature research
Lightweight optical flow CNNs for application on a nano quadcopter

by

R.J. Bouwmeester

in partial fulfillment of the requirements for the degree of
Master of Science Aerospace Engineering

at the Delft University of Technology

supervised by
Prof. dr. ir. G.C.H.E. de Croon, Control and Simulation, LR, TU Delft

Ir. F. Paredes Vallés, Control and Simulation, LR, TU Delft

Abstract

Nano quadcopters are miniature (<100 mm) micro aerial vehicles that are well accommo-
dated for navigation in highly constrained spaces. Optical flow estimation on these flight
platforms can be used for (self)motion estimation, monocular depth estimation, tracking,
visual odometry, and autonomous navigation. The field of optical flow estimation is dom-
inated by convolutional neural networks (CNNs), both in terms of accuracy and latency.
These networks are of substantial size, ranging from 1E+06 to 2E+08 parameters, and
achieving a throughput of several to tens of frames per second (FPS) on modern high-end
desktop computer graphics processing units (GPUs). Preliminary results show that, in
spite of internet of things (IoT) hardware and kernel improvements, the current state of
the art optical flow CNNs have a too low throughput for application on a nano quadcopter.
A literature survey is proposed, covering i) supervised, end-to-end optical flow estimation
CNNs, ii) CNNs from closely related fields designed for inference on IoT hardware, and
iii) recent IoT hardware developments that contribute to faster CNN inference on nano
quadcopter. We highlight insights that contribute to a CNN architecture with a latency-
accuracy trade-off more in favor of high throughput than those architectures presented
in current literature. A proposal to research low latency optical flow CNNs for on-board
inference is presented.

ii

Contents

Abstract ii

List of Figures v

List of Tables vii

Nomenclature ix

1 Introduction 1
1.1 Scope . 2
1.2 Report Structure . 2

2 Optical Flow Estimation 5
2.1 Optical Flow Definition . 5
2.2 Optical Flow Estimation Challenges . 5
2.3 Optical Flow Evaluation Metrics . 6
2.4 Optical Flow Datasets . 6
2.5 Supervised End-to-end CNN Optical Flow Estimation 9

2.5.1 Self-reported Results . 16
2.6 Self-supervised End-to-end CNN Optical Flow Estimation 23

3 CNNs on the Edge 25

4 Flight & Computing Platform 27
4.1 Technical Specifications . 27
4.2 Comparison With Other Flight Platforms 28

5 Research Question & Objective 29
5.1 Research Question(s) . 29
5.2 Research Objective . 29

6 Research Plan 31
6.1 Methodology . 31

6.1.1 Define performance metrics . 31
6.1.2 Set-up pipeline . 32
6.1.3 Define baseline model . 32
6.1.4 Identify bottlenecks . 32
6.1.5 Update, iterate . 32

6.2 Experimental Set-up . 33

iii

6.2.1 Network Architecture Design and Training 33
6.2.2 GAP SDK . 33
6.2.3 GAP Unsupported Operations . 34
6.2.4 Hardware . 35

6.3 Results, outcome, relevance . 36
6.3.1 Future Result Interpretation . 36
6.3.2 Verification & Validation . 36
6.3.3 Relevance . 37

7 FlowNetS encoder on the GreenWaves GAP8 SoC 39

8 Conclusion 41

iv

List of Figures

2.1 Optical flow color coding . 7
2.2 Middlebury [23] . 8
2.3 FlyingChairs [9] . 8
2.4 MPI Sintel [24] . 8
2.5 KITTI 2015 [26] . 8
2.6 FlyingThings3D [27] . 8
2.7 FlowNetS architecture . 10
2.8 FlowNetS channel width vs. accuracy and run-time [30] 10
2.9 SpyNet architecture . 11
2.10 PWC-Net architecture . 13
2.11 Sampling bias [21] . 15
2.12 MPI Sintel Clean self-reported benchmark results 19
2.13 MPI Sintel Final self-reported benchmark results 20
2.14 KITTI 2012 self-reported benchmark results 21
2.15 KITTI 2015 self-reported benchmark results 22

6.1 GAPflow [63] . 34

v

vi

List of Tables

2.1 Common optical flow datasets . 7
2.2 Self-reported benchmark results . 18

7.1 FlowNetS encoder with 3x3 kernel size - number of parameters, GAP8 SoC
run-time performance and memory usage 40

7.2 FlowNet2-s encoder with 3x3 kernel size - number of parameters, GAP8
SoC run-time performance and memory usage 40

7.3 FlowNet2-s encoder with 3x3 kernel size and depthwise separable convolu-
tions - number of parameters, GAP8 SoC run-time performance and mem-
ory usage . 40

vii

viii

Nomenclature

CNN Convolutional neural network

EPE End-point error

FPS Frames per second

GPU Graphics processing unit

GRU Gated recurrent unit

ICP Iterative closest point

IoT Internet of things

MAC Multiply-accumulate operations

MAV Micro aerial vehicle

PULP Parallel ultra-low power

RISC Reduced instruction set computer

RNN Recurrent neural network

SDK Software development kit

SoC System on a chip

ix

x

Chapter 1

Introduction

Optical flow is a concept first introduced by Gibson et al. [1]. It describes the apparent
visual variations caused by relative motion between the observer and its surroundings.
Nano quadcopters are miniature (<100 mm) micro aerial vehicles that are well accommo-
dated for navigation in highly constrained spaces. Optical flow estimation on these flight
platforms can power (self)motion estimation, monocular depth estimation [2], tracking,
visual odometry, and obstacle avoidance [3].

The field of optical flow estimation has been long dominated by variational methods, intro-
duced by Horn et al. [4]. However, like many computer vision fields, optical flow has been
significantly affected by recent developments in deep learning. Several proposed methods
use convolutional neural networks (CNNs) as feature extractors [5–8]. The first fully end-
to-end optical flow CNN was proposed by Dosovitskiy et al. [9]. Their network, FlowNet,
achieved state-of-the-art accuracy among real-time methods, but failed to match the most
accurate of the variational methods. This network has been the first in a series of quickly
improving networks, and the current state-of-the-art of flow estimation is dominated by
end-to-end CNNs. These networks are of substantial size, ranging from 1E+06 to 2E+08
parameters, and achieving a throughput of several to tens of frames per second (FPS) on
modern high-end desktop computer graphics processing units (GPUs).

Simultaneously, advancements in reduced instruction set computer (RISC) microproces-
sors and kernels have been increasingly enabling embedded devices to employ neural net-
works. The ultra-low power GAP8 [10] by GreenWaves technologies1 has been designed
for CNN inference. Improved neural network kernels [11, 12] allow for even faster infer-
ence. Palossi et al. [13] propose PULP-Shield, an expansion deck for a CrazyFlie 2.0. The
PULP-Shield is based on a GAP8 SoC, and deployed an autonomous navigation CNN
onboard. In collaboration with ETH Zurich, BitCraze2 released a commercial off-the-shelf
expansion deck, the AI-deck, for their CrazyFlie 2.X nano quadcopter series, based on
the design of the PULP-shield, allowing faster network inference on the nano quadcopter.
Most proposed optical flow networks in literature focus on improving prediction accuracy
while maintaining throughput on high-end desktop computer hardware in the order of 10s
of FPS. Despite RISC performance improvements, real-time application of optical flow
CNNs on a GAP8 requires much higher throughput.

1https://greenwaves-technologies.com/
2https://www.bitcraze.io/

1

2

The objective of this research is to design an end-to-end CNN architecture for real-time
optical flow estimation on a nano quadcopter. Real-time optical flow estimation on a nano
quadcopter can power (self-)motion estimation, monocular depth estimation, autonomous
navigation, tracking, and visual odometry, requiring only the camera most quadcopters
are already equipped with.

This work might contribute to the field with insights into optical flow CNN miniaturiza-
tion. The extremely limited hardware brings the project back to the essentials of optical
flow estimation, with no room to brute force a result. Its contributions may be extended
to optical flow CNNs in general, and other computer vision CNN tasks such as pose esti-
mation, semantic segmentation, super-resolution.

1.1 Scope

There are a large number of methods for optical flow estimation. This review only concerns
optical flow estimation using CNNs. Insights from traditional (e.g., variational) methods
of optical flow estimation can contribute to methods using CNNs, but the pool of articles
concerning optical flow estimation using CNNs is vast and must be prioritized.

Several multi-frame networks are proposed [14–17]. These networks can yield accuracy
improvements by using more than two input images, but the significant performance im-
pact makes these methods unsuitable for the very limited hardware on nano quadcopters.
This review will as such not explore multi-frame networks.

The flight platform considered in this document is a CrazyFlie 2.0, equipped with an
AI-deck, designed for neural network inference. This literature review will be based on
the computational constraints of this specific platform. The literature review proposes a
comparison between this and other popular flying computational platforms.

1.2 Report Structure

In Part I, a literature review is provided. Chapter 2 introduces this work’s definition
of optical flow, optical flow evaluation metrics, optical flow datasets, the state-of-the-
art CNN architectures and training techniques. Finally, an overview of state-of-the-art
benchmarking performance is provided and discussed. Chapter 3 treats literature from
related CNN tasks that contribute to lower latency for application on edge devices. In
chapter 4, the flight and computing platform used in this research are presented. A
comparison with similar platforms is proposed.

In part II, a research proposal is presented. In chapter 5, research questions and objectives
for the remainder of the project are given. Chapter 6 introduces the methodology that
will be used to answer these research questions and achieve the objectives given, it also
details the experimental set-up used to implement the methodology and lists the expected
results, how to interpret them, how to verify and validate the work, and the relevance of
the outcome of the experiments.

Part III covers preliminary results. In chapter 7, the inference time of an encoder from
one of the fundamental optical flow CNNs, FlowNetS, is benchmarked on the GAP8. Two

3

insights that follow from the literature review are applied and benchmarked, too. Finally,
the report is concluded in chapter 8.

4

Chapter 2

Optical Flow Estimation

2.1 Optical Flow Definition

Optical flow is a concept first introduced by Gibson et al. [1]. It describes the apparent
visual variations caused by relative motion between the observer and its surroundings. In
a computer science context, optical flow is described as a series of vectors that describes
the movement of pixels between two input images, a source and target image. There is a
distinction between dense optical flow, for which optical flow is calculated for every pixel
in the image frame, and sparse optical flow, for which optical flow is calculated for certain
detected features. Dense optical flow estimation is more computationally-intensive but the
complete representation of optical flow allows it to be deployed for a much wider variety
of applications than sparse optical flow. This work covers dense optical flow, which from
here on is often simply referred to as optical flow. In optical flow, the motion field [18]
of the 3D motion as projected on our observer is determined, rather than the actual 3D
motion of the scene (scene flow). As a direct result of being the flow of a projection, the
resulting flow vectors give information on the ratio between the relative velocity between
observer and object and the distance between them. With an external source of either
velocity or distance information, the opposing quantity in the ratio can be estimated.

2.2 Optical Flow Estimation Challenges

Occlusions are a large and inevitable problem in optical flow estimation. It is in the nature
of the problem that several pixels in the source or target image are occluded in the other
image, leading to ghosting effects and a higher estimation error.

A limited receptive field size can cause the aperture problem, where without capturing
certain contours of an object, its motion cannot be unambiguously detected. In the context
of optical flow estimation, this can translate to missing flow information parallel to the
flow direction of objects with large untextured surfaces or ambiguous direction of motion.

Most optical flow estimation methods have low robustness when it comes to illumina-
tion changes. Classical methods involve a brightness constancy constraint, and CNNs
are trained on datasets without illumination changes. However, in most applications,
illumination changes should be minimal between two frames.

5

6 2.3. OPTICAL FLOW EVALUATION METRICS

2.3 Optical Flow Evaluation Metrics

A commonly used metric for benchmarking and training in dense optical flow is the end-
point error (EPE). The EPE is the Euclidean distance between the predicted flow vectors
(vp) and the ground truth vectors (vgt), as in equation 2.1. In most works, the EPE is
synonymous with the end-point error averaged over all pixels. Another common metric
is the Fβ score. F1 is relatively common in benchmarking, and F2 is commonly used as
training loss. This metric uses type I and type II errors (true/false positive/negative - t/f
p/n). Any Fβ score is calculated as in equation 2.2. Some papers [19–21] report more
detailed accuracy metrics, such as the EPE for different flow velocities and distances from
motion boundaries. These metrics provide insight into the proposed networks’ strengths
and weaknesses (e.g., difficulty estimating high-velocity optical flow) and a such are vital
in the design of any network.

Low latency and high throughput is crucial to this project, considering the step down in
computing power from desktop computers to nano quadcopters. Latency or inference time
is the time between inputting an image (pair) and receiving an output flow. The inverse
of that is the refresh rate or the number of frames per second (FPS). These metrics are
highly dependent on the hardware the algorithm is run on.

The required accuracy (e.g., EPE, F1) and inference time depend highly on the application.

EPE = |vgt − vp| (2.1)

Fβ =
(1 + β2 · tp

(1 + β2) · tp+ β2 · fn+ fp
(2.2)

2.4 Optical Flow Datasets

As there is no way to directly and accurately extrapolate optical flow ground truth from
a random image sequence, the challenge of obtaining such data has been the origin of
many papers. The first effort to generate the optical flow ground truth data required
to evaluate optical flow algorithms is by Barron et al. [22]. The data consists of real
images with parametric transformations applied and synthetic image pairs, for which
ground truth optical flow is extracted from construction parameters. To address the
lack of large displacements and lack of discontinuities (Barron et al.’s flow sequences
contain mostly smooth flow fields, without motion borders), Baker et al. propose the
Middlebury dataset [23]. Several image pairs are generated using real images, shot in a
strictly controlled environment, providing ground truth. To compensate for Middlebury’s
lack of size, complexity, and variety, Butler et al. propose the MPI Sintel dataset [24].
The dataset is derived from the open-source 3D animated film Sintel and includes long
sequences, large motions, and realistic lighting effects. The dataset is rendered at three
levels of complexity. An Albedo Pass with flat, unshaded surfaces and constant albedo,
a Clean Pass with smooth shading and specular reflections, and a Final Pass with all
effects such as blur due to depth of field, motion, and atmospheric effects. The sequences
are compared to real video footage to make the data as naturalistic as possible. Naturally,
the Final Pass is the most naturalistic out of the three render complexity options. Geiger,
Lenz, et al. propose the KITTI dataset [25], comprising several real image pairs recorded
from a car. Semi-dense (50%) ground truth is generated using an iterative closest point

CHAPTER 2. OPTICAL FLOW ESTIMATION 7

(ICP) algorithm, using the car’s equipped laser scanner. To provide ground truth data
for scene flow, Menze et al. propose a new KITTI dataset [26], generated using raw data
provided by Geiger, Lenz, et al. The dataset also includes significantly more image pairs
and, like the original KITTI dataset, optical flow ground truth. To discern between the
two datasets, the publishing year is appended, resulting in KITTI 2012 and KITTI 2015,
respectively.

Table 2.1: An overview of common optical flow datasets. (* varying resolutions, indicated
resolution accurate for most frames)

Dataset No. training frames No. test frames Resolution Optical flow ground truth density

FlyingChairs 22872 - 512x384 100%

FlyingThings3D 21818 4248 960x540 100%

MPI Sintel 1064 564 1024x436 100%

KITTI 2012 194 195 1240x376 50%

KITTI 2015 800 800 1242x375 50%

Middlebury 74 - 640x480* 100% (for 8 frames)

The Middlebury, MPI Sintel, and KITTI datasets’ size is limited, particularly in the
context of training optical flow CNNs. To compensate for the lack of available training
data, Dosovitsky et al. [9] propose a new synthetic training dataset, with over 20 times the
image pairs with ground truth optical flow than any previous dataset, called FlyingChairs.
The dataset consists of images with one or several chairs projected on a real image as
background. The image pair is generated by applying affine transformations to both the
chairs and the background. Ground truth is generated using the associated transformation
parameters. Mayer et al. follow a similar approach and aim as Butler et al. to propose
FlyingThings3D [27], which is contains more than twenty times the training frames of the
MPI Sintel dataset. FlyingThings3D is created using the free and open source creation
suite Blender1, allowing true 3D motion (in contrast to FlyingChairs) and the extraction
of ground truth optical flow. Table 2.1 contains an overview of the treated datasets and
the number of training/test frames, the image resolution and the density of the optical
flow ground truth.
Figures 2.2 through 2.6 show the first image of an image pair and the corresponding optical
flow ground truth for several of the mentioned datasets. The optical flow is visualized using
the color coding of figure 2.1 or similar, where e.g. blue corresponds to a up and left moving
pixel, and the intensity of the color corresponds to the magnitude of the displacement.
There are slight inconsistencies between papers in the used color coding. Several works
use a vertically flipped version of figure 2.1, or a gradient from white to full intensity
colors, rather than from black.

Figure 2.1: Optical flow color coding

1https://www.blender.org/

8 2.4. OPTICAL FLOW DATASETS

(a) Flow ground truth (b) Image 1

Figure 2.2: Middlebury [23]

(a) Flow ground truth (b) Image 1

Figure 2.3: FlyingChairs [9]

(a) Flow ground truth (b) Image 1 (Final) (c) Image 1 (Albedo) (d) Image 1 (Clean)

Figure 2.4: MPI Sintel [24]

(a) Flow ground truth (b) Image 1

Figure 2.5: KITTI 2015 [26]

(a) Flow ground truth (b) Image 1

Figure 2.6: FlyingThings3D [27]

CHAPTER 2. OPTICAL FLOW ESTIMATION 9

2.5 Supervised End-to-end CNN Optical Flow Estimation

The first proposed convolutional neural network to effectively estimate optical flow, trained
end-to-end, is FlowNet [9]. The model is based on a U-Net [28] shaped convolutional neural
network. Dosovitskiy et al. propose two variants of the network; FlowNetS, which con-
catenates two images to a single input, and FlowNetC, which inputs each image to either
one of two identical encoder parts and employs a correlation layer to combine the result-
ing feature maps. The architecture of FlowNetS can be seen in figure 2.7. FlowNetC’s
correlation layer promises more accurate results to compensate for its significantly longer
inference time. FlowNetC’s architecture is similar to the FlowNetS’ architecture in figure
2.7, but with the input images entering separate but identical encoders up to c3, after
which they are combined in the correlation layer. The rest of the architecture is identical.
The correlation layer calculates the correlation between image patches. With equation
2.3, the correlation between two such patches, centered around x1 and x2, and with patch
size 2k + 1 by 2k + 1, can be calculated. A limit is put on the maximum displacement
between compared patches, and a stride is introduced to limit the computational expense.
The four-dimensional results (w× h×w× h) of the correlation layer are organized into a
three-dimensional tensor by folding out the displacement into the channel dimension.
Best benchmark results were obtained by first extensively training on the relatively simple
but large FlyingChairs dataset, and then finetuning on a dataset of the benchmarking en-
vironment, rather than train on the environment directly, or training on a mix of datasets.
Dosovitskiy et al. show that directly training on the more realistic data by skipping train-
ing on FlyingChairs deteriorated results. They hypothesize that by training on the simpler
datasets, the networks learn the base concepts, which the network has a hard time learning
if more complex visuals are introduced from the start. Neither FlowNetS nor FlowNetC
achieve state of the art accuracy but have low inference time compared to most traditional
methods, thus providing a promising result to spark further research.
De Jong et al. [29] show that reducing deepest level kernel sizes of FlowNetS reduces the
receptive field size and thus the network’s ability to solve the aperture problem. They
also show that the decoder part of the network is, to a certain extent, able to extrapolate
motion cues to the center of the moving object.

c(x1,x2) =
∑
〈f1(x1 + o), f2(x2 + o)〉 (2.3)

o ∈ [−k, k]× [−k, k]

Ilg et al. [30] improve on FlowNet in several ways. They propose several new networks,
built out of one or several stacked units of FlowNetS and/or FlowNetC (e.g., FlowNet2-
SS). Stacking the networks helps refine the flow. Based on FlowNetS, a network to better
deal with small displacements, called FlowNet-SD, is proposed. The network replaces
the first three convolutions of FlowNetS with relatively large kernel size with several
smaller kernel size convolutions with a lower stride. Convolutions are added between
transposed convolutions in the decoder part to smoothen the estimates. This architecture
effectively deals with noise. Combining a several stacked units (FlowNet2-CSS) and a
small displacement unit (FlowNet-SD) results in FlowNet2. This final proposed network
achieved state of the art accuracy, with significantly lower latency than most classical
methods.
The authors make a trade-off between flow prediction accuracy and inference time by
varying the number of channels for FlowNetS, for all layers’ channels multiplied with the

10 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

Figure 2.7: FlowNetS schematic architecture. Convolutions c, kernel sizes k, strides s,
flow prediction convolutions pf, predicted flows f, upsampled predicted flows fu, transpose
convolutions tc, and bilinear upsampling layer bu. The numbers under the feature maps
indicate the number of channels.

same factor, simultaneously, and with the prediction accuracy in EPE measured only for
Sintel Clean during training. Below a factor of 3/8, the latency improvement is small, and
the EPE increases more significantly. The results are visualized in figure 2.8. Networks
with 3/8th the number of hidden layer channels are named FlowNet2-s and FlowNet2-c.

The paper proposes several training practices (improved learning rate scheduling, use of
additional training dataset FlyingThings3D [27]) that significantly improve the results of
this network, and FlowNetC and FlowNetS alike, and have become standard for the field.

Figure 2.8: ”Accuracy and run-time of FlowNetS depending on the network width. The
multiplier 1 corresponds to the width of the original FlowNet architecture. Wider networks
do not improve the accuracy. For fast execution times, a factor of 3

8 is a good choice.
Timings are from an Nvidia GTX 1080.” [30]

Ranjan et al. propose a network that treats optical flow in a coarse-to-fine pyramid
structure called SPyNet [19]. The network is built up out of five pyramid layers, with a
further downsampled input image each coarser layer. The flow estimate of a coarser layer
is both used to warp the and is concatenated onto one of the two input images to the

CHAPTER 2. OPTICAL FLOW ESTIMATION 11

next, finer layer. The warping allows the next, finer layer to compute only the residual
flow. Thanks to the image pyramid structure, the individual networks do not need to
handle large motion, which solves the need for a big receptive field per layer. Each layer
predicts flow using a sub-network consisting of five regular convolutions with shallow
feature maps (FlowNet has 64 feature maps after a single convolution, whereas SpyNet
has 64 feature maps at most), and large kernel size compared to FlowNet. Using no stride
and zero padding, each convolution retains the same spatial resolution. Feature maps
channel width goes from shallow to deep to shallow. Layers can be trained individually,
but flow predictions of coarser layers must be accounted for. The architecture reduces
the number of model parameters by 96%, compared to FlowNet, while achieving equal or
slightly better results. Inference time is slightly lower than that of FlowNetS.

The low number of parameters is particularly relevant for memory-limited applications.
The reduction is mostly obtained due to the residual structure of the network. A smaller
part of the reduction is due to the direct implementation of a warping layer, not requiring
the network to learn it. This still remains one of the networks with the lowest number of
parameters.

Figure 2.9: SPyNet architecture schematic of a single pyramid layer. Convolutions c,
kernel sizes k, strides s, predicted flows f, warping operations w, upsampling operations
u. The numbers under the feature maps indicate the number of channels. The network
initializes the lowest spatial resolution flow estimate at 0.

Shanshan Zhao et al. propose a multi-scale correspondence structure learning (MSCSL)
approach [31]. Pyramid-shaped architectures with coarse to fine layers have a learned fixed
correspondence range per layer, which is undesirable as video by definition has varying
properties and scale of displacements. These architectures also propagate error from the
coarser to finer layers. The proposed network deals with these problems by concatenating
all different (coarse to fine) dependency maps onto one of two input frames and making
a flow prediction out of this, rather than only taking the finest prediction (that only
carries the information of coarser predictions through image or feature warping as in, e.g.,
SPyNet, and not concatenating). Rather than using downsampled images as in SPyNet,
the network uses downsampled feature maps using a series of convolutions followed by, for
each representation, a different convolution with varying stride, with or without pooling
to generate varying spatial resolution representations. The network uses gated recurrent
units (GRUs) from the field of recurrent neural networks (RNNs) to incrementally update
a stack of intra-level dependency maps. Rather than using fully connected layers, these

12 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

GRUs use convolutions.

Flow prediction results are slightly better than for SPyNet. Still, whether using a feature
pyramid rather than an image pyramid, the resolutions for error propagation, or the rein-
troduction of a correlation layer contribute most to the improved results is unclear.

Concurrently, Sun et al. propose PWC-Net [20], which also employs feature maps gener-
ated with convolutions, rather than downsampled images, as inputs to the coarser layers.
Unlike MSCSL’s concurrent convolutions, this feature pyramid is generated with sequen-
tial convolutions. Similar to SPyNet, the predicted flow from coarser levels is used to
warp one of the two feature maps. Every PWC-Net level has a cost volume layer, which
holds the matching cost for matching pixels in the two frames, defined as the correlation
between the feature map of the first, and warped feature map of the second input image.
This layer is processed to estimate the flow. Having a correlation layer at every pyramid
level allows for a smaller matching distance, especially since feature maps are warped to
each-other, to improve run-time performance. Flow estimation feature maps are twice
as deep as SPyNet, and in contrary start deep (128 channels) and reduce throughout.
The convolutional layers use DenseNet [32] connections, shown to be easier to train and
produce more accurate results. A smaller network variant without DenseNet connections,
PWC-Net-small, is proposed. DenseNet layers improve results when fine-tuning is ap-
plied and deteriorate results otherwise. The second last flow prediction is fed through a
context network that refines the flow with dilated convolutions, allowing the use of more
contextual information [33, 34]. PWC-Net is the first network to outperform traditional
methods, both in prediction accuracy and run-time performance.

In a follow-up article [35], Sun et al. improve the training procedure and achieve signif-
icantly better results. The retrained model is named PWC-Net+ to distinguish between
the two differently trained but otherwise identical networks. The training improvements
include horizontal flips, the removal of added Gaussian noise and a sudden increase in
learning rate halfway through training. They also retrain FlowNetC and achieve better
results on some benchmarks than reported for FlowNet2 (which includes FlowNetC as a
sub-network), proving the importance of training. The retrained FlowNetC and FlowNetS
architecture are named FlowNetC+ and FlowNetS+, respectively.

Hui et al. propose LiteFlowNet [36], which has a similar architecture to PWC-Net. The
differences lie in the addition of flow regularizing convolutions. This allows per-layer
regularization using flow estimate, feature maps and an occlusion probability map. These
convolutions sharpen boundaries, and smooth the rest of the flow estimate. In a follow-
up paper, Hui et al. propose LiteFlowNet2 [37], with modifications to the final flow
inference that improves both run-time performance and accuracy. In the third update,
LiteFlowNet3 [38], accuracy is improved by imposing local flow consistency conditions
and removing outliers in the cost volume at the cost of inference speed.

The ’lite’ in the name is mostly true when comparing to FlowNet2. LiteFlowNet achieves
significantly better results than FlowNet2 while achieving more than a third decrease
in inference time. However, PWC-Net achieves similar flow prediction results with an-
other three times decrease in inference time. LiteFlowNet2 is the best performing out
of the three variants in terms of latency, with approximately 130% of the inference time
of PWC-Net, while achieving better flow prediction results in most benchmarks. The
authors propose LiteFlowNetX, a lightweight version of LiteFlowNet. This architecture

CHAPTER 2. OPTICAL FLOW ESTIMATION 13

Figure 2.10: PWC-Net architecture schematic of a single pyramid layer. Convolutions
c, kernel sizes k, strides s, predicted flows f, warping operations w, correlation layer
construction operations c, and upsampling operations u. The numbers under the feature
maps indicate the number of channels. The network initializes the lowest spatial resolution
flow estimate at 0. Context network (at highest spatial resolution pyramid layer) not
shown.

has fewer parameters than SPyNet, while outperforming it. The reported run-times for
LiteFlowNetX are only slightly lower than those for LiteFlowNet2.

In particular LiteFlowNet2’s modifications of the final flow inference are relevant. By
measuring the EPE and run-time at individual pyramid levels, the authors were able to
identify an exponential increase in run-time per layer and identified that such an expo-
nential increase in run-time was not worth the relatively small increase in EPE of the
final flow inference level (of the highest spatial resolution feature pyramid level). The
authors remove this layer of the network, and to compensate for the loss of EPE, add
two convolutional layers to all remaining flow decoders. This shows the power of detailed
performance metrics.

Yang et al. [39] propose several simple modifications relating to the cost volume calcu-
lations. They promise fewer parameters and lower computation time at no loss of accu-
racy by approximating 4-dimensional convolutional operations with 2-dimensional convo-
lutions. Their proposed VCN network can handle true volumetric (4D) processing of cost
volumes at increased efficiency. Additionally, they propose multi-channel cost volumes to
handle multi-channel pixel matching. The proposed network requires significantly fewer
training iterations, few parameters, and promises lower GFLOPs while achieving state of
the art accuracy. However, the lower GFLOPs currently do not translate to lower infer-
ence time, as kernel and hardware support for convolutions and poolings of non-standard
shapes is limited.

Shengyu Zhao et al. propose MaskFlowNet [40], which improves flow estimation accuracy
at negligible run-time performance cost by filtering the image immediately after feature
warping with a learnable occlusion map (without occlusion ground truth). The final

14 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

flow and occlusion predictions are concatenated and fed into a refinement network that
further refines the flow with the occlusion predictions. An alternative network, without
refinement, called MaskFlowNet-S is proposed. MaskFlowNet-S has a similar architecture
and run-time performance as PWC-Net but achieves higher accuracy predictions. Mask-
FlowNet improves on these results at a considerable cost of run-time performance. The
authors hypothesize that the learnable occlusion maps only contribute significantly to the
achieved accuracy when used in the refinement network. Feature warping and occlusion
masking is done on one of each pyramid level’s two input feature maps. The authors
show that the network benefits from the big differences between the two input feature
maps that result from the asymmetry in the architecture, despite that the fact that these
feature maps are to be compared.

Yin et al. propose the probabilistic framework HD3 [41]. This framework generates the
global match density of pixel correspondence between input images. Where all previously
mentioned networks directly regress into optical flow, this framework uses the global match
density to convert to optical flow. Naturally, this framework can output the confidence of
an estimation. Such information is relevant, but run-time performance is poor (although
the authors do not disclose what hardware is used to achieve the reported timings, a ques-
tionable decision). Flow prediction accuracy, while good, is not worth the high run-time.

Hur et al. propose an iterative refinement scheme called IRR [42], which can be applied
to numerous base optical flow architectures. The refinement scheme shares parameters
between refinement iterations and can improve flow estimation accuracy while maintaining
the same number of parameters. The refinement scheme is applied to both PWC-Net
(PWC-Net+IRR) and FlowNetS (FlowNetS+IRR2). For PWC-Net-IRR, the authors lower
the number of parameters by 2.39M while significantly increasing the prediction accuracy.
Each refinement step uses the predicted flow from the previous step to warp the feature
maps of one of the two input images. Of course, PWC-Net already employs such refinement
between pyramid levels, but with varying weights per decoder level. PWC-Net+IRR
replaces the various per-level decoders with a single, shared decoder and iterates over the
pyramid levels. The context network is now used every iteration, at every pyramid level.
A single 1x1 convolution is added at the decoder’s start to equalize the number of channels
that enter the encoder for every pyramid level.

The final proposed networks, IRR-PWC and IRR-Flownet, include bi-directional flow es-
timation and occlusion prediction (trained on ground truth occlusion). These additions
improve flow prediction accuracy at the cost of using 1.87 and 1.40 times the parameters
of PWC-Net+IRR and FlowNetS+IRR, respectively. The authors do not mention run-
time whatsoever. FlowNetS+IRR must take significantly longer to run, as each iteration
requires almost a full pass of the network, except for part of the encoder. PWC-Net+IRR
should see a small increase in run-time, with the addition of the 1x1 convolution and
context network at every pyramid level. The findings of this work can be applied to refine
flow at the cost of run-time performance while maintaining the number of parameters and
limiting memory usage.

Bar-Haim et al. [21] show the powerful effects of regularization and data augmentation on
optical flow CNN training. Their presented network ScopeFlow uses IRR-PWC with a new

2Hur et al. do not name this network, this name is in line with naming for PWC-Net variant

CHAPTER 2. OPTICAL FLOW ESTIMATION 15

proposed cropping augmentation and generally applicable training schedule, significantly
improving results without a change in architecture. The authors propose future research
to apply the augmentation scheme and training schedules to other architectures, such as
FlowNet-like ones.

The authors identify a large bias towards pixels in the center of an image when fixed size
cropping is applied, see figure 2.11. Pixels of fast moving objects are often closer to the
borders of an image, and thus sampled much less frequently. The authors minimize the
sampling bias by introducing a varying zoom range and random crop. Additionally, re-
moving of regularization (such as random noise, weight decay) during fine-tuning, helped
improve results further.

Figure 2.11: ”Sampling bias caused by fixed size random crops. (a),(b),(c): Pixel sampling
probability maps for a fixed sized crop, with ratios of 50%, 70% and 90% respectively, for
each axis. The probability to sample a marginal pixel shrinks drastically with the crop
size. (d),(e): areas with strong prevalence for motion categories. High velocities tend to
start from lower corners, while small ones tend to occur in the middle and upper part of
the scene.” [21]

Teed et al. propose RAFT [43], which uses convolutional GRUs to incrementally update
the flow prediction using 4D correlation volumes. Input images are fed into separate fea-
ture encoders, a single 4D correlation volume is created, and pooling is used to create
reduced spatial resolution correlation volumes. Both the 4D correlation volumes and the
feature maps from a separate context encoder are fed into a series of GRUs. Unlike Zhao
et al.’s MSCSL approach [31] (which interestingly, the authors do not refer to), Teed et
al. use GRUs to directly update a flow prediction, initiated at zero or with the previous
frame pair’s flow prediction (warm-start). The idea of using RNNs on the feature maps
generated by a CNN draws similarities with IRR, which also iteratively refines the flow.
However, rather than using the varying resolution 4D correlation volumes to generate flow
at varying resolutions, RAFT consistently updates a single, full-resolution flow prediction.
This reduces error propagation, improves fast flow detection, and vastly (a factor 35 com-
pared to FlowNet2) reduces the number of required training epochs.

De Jong et al. [29] exploit feature visualization to show that over half of deepest-level
features of FlowNetS can be represented by Gabor filters. Detect translational, dilation,
rotation, occlusion filters. This work provides insights into how CNNs actually estimate
optical flow, which most papers overlook. Gabor filters could be fed directly into the
network, effectively shrinking the networks size.

16 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

2.5.1 Self-reported Results

Given the memory and computing power constraints of a nano quadcopter, the most
important insights from literature are those relating to a decrease in run-time and number
of parameters. Although authors rarely report memory usage, a decrease in number of
parameters translates to a decrease in memory usage, too. Theoretically, an insight that
causes an increase in flow estimation accuracy at a fixed parameter and/or run-time budget
could be used instead for a decreased parameter and/or run-time budget at a fixed flow
estimation accuracy, but given the highly non-linear nature of CNNs, it is not possible to
extrapolate such information. In this section, the most revealing networks from literature
are discussed with respect to this trade-off between the run-time budget, parameter budget
and flow estimation accuracy.

Self-reported run-times, number of parameters, and benchmarked inference accuracy are
available for most proposed networks. Though these are gathered on varying (but all
comparatively powerful) hardware, they provide some insight. For many network con-
figurations, only training results are reported, with test results being reported only for
the best-performing configurations. The MPI Sintel Final and the KITTI datasets are
among the most naturalistic of all datasets considered. They are thus most comparable to
real-life scenarios that a nano quadcopter might encounter. An overview of self-reported
results, inference-times, and the number of parameters for supervised, end-to-end optical
flow CNNs can be found in table 2.2. A dash (-) indicates that the value is not reported.
A citation indicates a data source other than the original paper. Figures 2.12 through
2.15 show the benchmark results for MPI Sintel Clean, MPI Sintel Final, KITTI 2012, and
KITTI 2015, respectively. In each of the graphs, a Pareto front is identified (blue line).
Note that most authors do not vary parameters or do an ablation study, and thus that by
varying parameters of individual networks, the drawn Pareto front may change. E.g., we
do not know how SPyNet would perform if it had a parameter budget similar to PWC-
Net. The dots are grouped and colored by base architecture. For example; PWC-Net,
PWC-Net-small, IRR-PWC, PWC-Net + IRR are all colored the same.

ft indicates that the network was fine-tuned (trained) on the benchmarked dataset. These
values should be disregarded when looking at training results, as the network was trained
on the same data. For fine-tuned networks, only consider test results. The trend of testing
networks on the train set of a benchmark is odd in itself. It is valid, as long as the network
is not trained on that train set, but at the same time, it is unnecessary given the large test
sets that are included in the same benchmarks and confusing to readers. Many authors
actually report results for networks that were fine-tuned on the same data they are tested
on, likely because of the resulting low error (which is more likely from overfitting than
anything else).

FlowNet2-s has the lowest run-time of all networks considered. This method’s number
of parameters is not reported but should be considerably lower than for FlowNetS. How-
ever, even if the factor of 3/8th of the channels of FlowNetS would apply directly to
the number of parameters, the resulting network would still have ten times the num-
ber of parameters of SPyNet and approximately 1.4 times the parameters of PWC-Net.
None of the FlowNet-like networks would contribute to the identified Pareto front in the
parameter-related graphs, even when giving FlowNet2-s a favorable estimation of 3/8th of
the parameters. Clearly, FlowNet-like networks are straightforward and might even run
well if small enough, but are not memory friendly. FlowNet2 is so large and slow that

CHAPTER 2. OPTICAL FLOW ESTIMATION 17

it is out of the limits of all graphs. The drop in run-time for FlowNetS+ compared to
FlowNetS in figure X is caused by excluding reading and writing times from the run-time
benchmarks by Sun et al. Dosovitskiy et al. do not elaborate on how run-times are mea-
sured. A significant boost in flow estimate accuracy is achieved by retraining the networks
(FlowNetS+, FlowNetC+, retrained by Ilg et al.), but the results are far from the state
of the art.

The used GPU for inference, if reported, can be found in table 2.2. The only serious outlier
is the NVIDIA K80 used for SPyNet, which results in a higher run-time than expected for
the comparatively small and simple network. Comparing figure 2.9 and 2.10, SPyNet has
a similar architecture as PWC-Net, but with fewer channels and no correlation layer. If
anything, it should have a lower run-time. If so, it could be a serious competitor among
the lightweight methods. It would be interesting to see how much flow estimation accu-
racy could increase by implementing an IRR-like framework and, being one of the first
end-to-end networks proposed, better training. Additionally, it could be interesting to see
a SPyNet with a feature rather than an image pyramid. This would effectively be a low
channel PWC-Net, without correlation layer and context network.

The importance of proper training becomes apparent from the benchmark results. PWC-
Net+ outperforms PWC-Net on all reported benchmarks, except on Sintel Clean. Scope-
Flow (only test results are available, which, unlike vice versa, is forgivable, good training
results might only indicate overfitting) outperforms the identical IRR-PWC architecture
in all benchmarks.

LiteFlowNet architectures are not the best in their class when it comes to just run-time
or number of parameters, but they are pretty solid when both are considered simulta-
neously. LiteFlowNetX has impressive accuracy for one of the networks with the fewest
parameters, but it does not translate to a low inference time. This is likely due to the
correlation layer, which has no learnable parameters but still consumes time to run. The
only source that gives an indication of the time consumption of a correlation layer is the
official GitHub repository for VCN3. The authors state that approximately 8.7% of the
run-time is due to the correlation layer, compared to 4.7% due to the feature encoder.
It would be interesting to see a LiteFlowNetX variant that skips the final flow inference
layer, like LiteFlowNet2, which saw a significant run-time performance improvement over
LiteFlowNet.

RAFT is currently the most promising network in terms of parameter efficiency. In the
number of parameters vs. flow prediction error graphs, RAFT achieves lower flow predic-
tion errors of other Pareto points at a minimal cost in the number of parameters, resulting
in nearly vertical lines in the identified Pareto front. It is not unthinkable that the entire
Pareto front in these graphs could be dominated by the method, given more data points
(e.g., by varying hyperparameter settings or the number of channels). The parameter
efficiency does not directly translate to low run-times, but there is still room to reduce
RAFT-small’s network size further. The poor run-time performance, while having high
parameter efficiency, likely originates from the construction of the 4D correlation volume.
It is a pity no test results are available for RAFT-small.

3https://github.com/gengshan-y/VCN

18 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

MaskFlowNet performs very well on Sintel Final and KITTI. Sadly, the authors do not
disclose any information on the number of parameters. As such, the network is hard to
compare with other methods.

Table 2.2: Self-reported benchmark results, number of parameters, run-time performance.
Parentheses indicate the network was trained on the same benchmark dataset.

Network
Sintel clean Sintel final KITTI 2012 KITTI 2015

Hardware
Inference

FPS
Number of

EPE train EPE test EPE train EPE test EPE train EPE test EPE train F1-all train F1-all test time [s] parameters

FlowNetS 4.50 7.42 5.45 8.43 8.26 - - - - TITAN 0.080 13 3.21E+07

FlowNetS+ft (3.66) 6.96 (4.44) 7.76 7.52 9.1 - - - TITAN 0.080 13 3.21E+07

FlowNetC 4.31 7.28 5.87 8.81 9.35 - - - - TITAN 0.150 7 3.26E+07

FlowNetC+ft (3.78) 6.85 (5.28) 8.51 8.79 - - - - TITAN 0.150 7 3.26E+07

FlowNetS (retrained [30]) 3.79 - - - - - - - - 1080 0.018 56 3.21E+07

FlowNetC (retrained [30]) 3.04 - - - - - - - - 1080 0.033 30 3.26E+07

FlowNetS+ (2.80) 6.49 (2.76) 6.54 - - - - - TITAN X 0.011 88 -

FlowNetC+ (2.31) 5.04 (2.34) 5.47 - - - - - TITAN X 0.050 20 -

FlowNet2-s 4.55 - 5.21 - 8.89 - 16.42 56.81 - 1080 0.007 143 -

FlowNet2-ss 3.22 - 3.85 - 5.45 - 12.84 41.03 - 1080 0.014 71 -

FlowNet2-sss 3.12 - - - - - - - - 1080 0.020 50 -

FlowNet2-SS 2.56 - - - - - - - - 1080 0.037 27 -

FlowNet2-c 3.62 - - - - - - - - 1080 0.017 59 -

FlowNet2-cs 2.65 - - - - - - - - 1080 0.024 42 -

FlowNet2-css 2.51 - 3.54 - 4.49 - 11.01 35.19 - 1080 0.031 32 -

FlowNet2-css-ft-sd 2.50 - 3.50 - 4.71 - 11.18 34.10 - 1080 0.031 32 -

FlowNet2-csss 2.49 - - - - - - - - 1080 0.036 28 -

FlowNet2-CS 2.20 - - - - - - - - 1080 0.051 20 -

FlowNet2-CSS 2.10 - 3.23 - 3.55 - 8.94 29.77 - 1080 0.069 14 -

FlowNet2-CSS-ft-sd 2.08 - 3.17 - 4.05 - 10.07 30.73 - 1080 0.069 14 -

FlowNet2 2.02 3.96 3.14 6.02 4.09 - 10.06 30.37 - 1080 0.123 8 1.62E+08

FlowNet2-ft-sintel (1.45) 4.16 (2.01) 5.74 3.61 - 9.84 28.20 - 1080 0.123 8 1.62E+08

FlowNet2-ft-kitti 3.43 - 4.66 - (1.28) 1.8 (2.30) (8.61) 11.48 1080 0.123 8 1.62E+08

SPyNet 4.12 6.69 5.57 8.43 9.12 - - - - K80 0.069 14 1.20E+06

SPyNet+ft (3.17) 6.64 (4.32) 8.36 4.13 4.7 - - - K80 0.069 14 1.20E+06

MSCSL/wosr 3.63 - 4.93 - 5.98 - - - - TITAN X 0.050 20 -

MSCSL/wosr+ft (3.18) 5.68 (4.21) 7.49 5.89 6.9 - - - TITAN X 0.050 20 -

MSCSL/wor 3.37 - 4.72 - 5.80 - - - - TITAN X 0.060 17 -

MSCSL/wor+ft (3.07) 5.79 (4.16) 7.42 5.87 6.8 - - - TITAN X 0.060 17 -

MSCSL 3.39 - 4.70 - 5.87 - - - - TITAN X 0.060 17 -

MSCSL+ft (3.07) 5.78 (4.15) 7.12 5.77 7.1 - - - TITAN X 0.060 17 -

PWC-Net-small 2.83 4.08 - - - - - - - TITAN X 0.020 50 4.08E+06

PWC-Net-small-ft (2.27) 5.05 (2.45) 5.32 - - - - - TITAN X 0.020 50 4.08E+06

PWC-Net 2.55 3.93 - - 4.14 - 10.35 33.67 - TITAN X 0.030 33 8.75E+06

PWC-Net-ft (1.70) 3.86 (2.21) 5.13 (1.08) 1.7 (1.45) (7.59) 7.90 TITAN X 0.030 33 8.75E+06

PWC-Net-ft-final (2.02) 4.39 (2.08) 5.04 - - - - - TITAN X 0.030 33 8.75E+06

LiteFlowNetX-pre 3.70 - 4.82 - 6.81 - 16.64 36.64 - 1080 0.036 28 9.00E+05

LiteFlowNetX 3.58 - 4.79 - 6.38 - 15.81 34.90 - 1080 0.036 28 9.00E+05

LiteFlowNet-pre 2.78 - 4.17 - 4.56 - 11.58 32.59 - 1080 0.090 11 5.37E+06

LiteFlowNet 2.48 - 4.04 - 4.00 - 10.39 28.50 - 1080 0.090 11 5.37E+06

LiteFlowNet-ft (1.35) 4.54 (1.78) 5.38 (1.05) 1.6 (1.62) (5.58) 9.38 1080 0.090 11 5.37E+06

HD3F 3.84 - 8.77 - 4.65 - 13.17 23.99 - - 0.080 13 -

HD3F-ft (1.70) 4.79 (1.17) 4.67 (1.05) 1.4 (1.31) (4.10) 6.55 - 0.080 13 -

IRR-PWC (1.92) 3.84 (2.51) 4.58 - - (1.63) (5.32) 7.17 1080Ti 0.200 5 6.36E+06

IRR-FlowNet 3.32 4.92 - - - - - - - - - 4.51E+07

PWC-Net + IRR 2.79 4.10 - - - - - - - - - 3.40E+06

FlowNetS + IRR 3.77 - 5.00 - - - - - - - - - 3.21E+07

LiteFlowNet2-pre 2.78 - 4.14 - 4.11 - 11.31 32.12 - 1080 0.040 25 6.42E+06

LiteFlowNet2 2.32 - 3.85 - 3.77 - 9.83 28.45 - 1080 0.040 25 6.42E+06

LiteFlowNet2-ft (1.41) 3.48 (1.83) 4.69 (0.95) 1.4 (1.33) (4.32) 7.62 1080 0.040 25 6.42E+06

LiteFlowNet3 (1.32) 2.99 (1.76) 4.45 (0.91) 1.3 (1.26) (3.82) 7.34 1080 0.059 17 7.50E+06

LiteFlowNet3-S (1.43) 3.03 (1.90) 4.53 (0.94) 1.3 (1.39) (4.35) 7.22 - - - 5.20E+06

PWC-Net+ (1.71) 3.45 (2.34) 4.60 - 1.4 - - 7.72 TITAN X 0.030 33 8.75E+06

VCN-small (1.84) 3.26 (2.44) 4.73 - - (1.41) (5.50) 7.74 - - - 5.20E+06

VCN (1.66) 2.81 (2.24) 4.40 - - (1.16) (4.10) 6.30 1080Ti 0.260 4 6.20E+06

MaskFlowNet-S 2.33 2.77 3.72 4.38 3.21 1.1 - 23.58 6.81 TITAN Xp 0.030 33 -

MaskFlowNet 2.25 2.52 3.61 4.17 2.94 1.1 - 23.14 6.11 TITAN Xp 0.060 17 -

ScopeFlow - 3.59 - 4.10 - 1.3 - - 6.82 TITAN X - - 6.36E+06

RAFT (2 view) + ft (0.76) 1.94 (1.22) 3.18 - - (0.63) (1.50) 5.10 1080Ti 0.100 10 5.30E+06

RAFT (warm start) + ft (0.77) 1.61 (1.27) 2.86 - - - - - 1080Ti 0.100 10 5.30E+06

RAFT-small 2.21 - 3.35 - - - 7.51 26.90 - 1080Ti 0.050 20 1.00E+06

CHAPTER 2. OPTICAL FLOW ESTIMATION 19

(a) Train

(b) Test

Figure 2.12: MPI Sintel Clean self-reported benchmark results

20 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

(a) Train

(b) Test

Figure 2.13: MPI Sintel Final self-reported benchmark results

CHAPTER 2. OPTICAL FLOW ESTIMATION 21

(a) Train

(b) Test

Figure 2.14: KITTI 2012 self-reported benchmark results

22 2.5. SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

(a) F1 train

(b) F1 test

Figure 2.15: KITTI 2015 self-reported benchmark results

CHAPTER 2. OPTICAL FLOW ESTIMATION 23

2.6 Self-supervised End-to-end CNN Optical Flow Estima-
tion

One of the biggest challenges of supervised optical flow CNNs is the disrepancy between
the synthetic training data and the target domain, resulting in much poorer accuracy in
target domain applications. Several self-supervised networks are proposed to train the
CNNs directly on representative domain data while lacking ground truth optical flow.
These methods are slightly behind in accuracy on established benchmarks but promise
better results on target domains for which there is no available ground truth data. The
value of such frameworks highly depends on the desired application of the flow network.
Often, these methods are an extension of existing CNN architectures.

Ahmadi et al. [44] propose a CNN architecture (USCNN) that is self-supervised by a cost
function inspired by the classical Horn et al. [4] method. By minimizing the cost function,
the network learns to estimate optical flow. It closely resembles a teacher-student learning
paradigm, where the network learns from a classical method. The CNN architecture is
very similar to SPyNet, where one of two input images is warped with an upsampled flow
estimate from a lower resolution iteration. The flow estimate network used is much larger
than SPyNet, and has an encoder-decoder architecture quite similar in shape and size to
FlowNet. The only self-reported benchmarks are on MPI Sintel and UCF101, for which
no ground truth optical flow is available, hence results are compared with the state of the
art EpicFlow. The very brief report does not cover the number of parameters or run-time
performance.

Yu et al. [45] apply a self-supervised loss function to FlowNetS. The loss is a combination
of a traditional photometric loss, comparing the target image, warped to source using the
flow prediction, with the source image, and a smoothness loss function. The approach
allows for training on raw KITTI data (80k image pairs, larger than any dataset treated
in section 2.4), for which ground truth optical flow is unavailable. The only self-reported
benchmarks are on FlyingChairs and KITTI 2012. Compared to the regular FlowNetS,
the self-supervised method by Yu et al. performs significantly worse on FlyingChairs and
slightly worse on KITTI 2012, except for non-occluded pixels, where it performs better.
Concurrently, Ren et al. [46] apply a very similar loss function to an architecture heavily
inspired by FlowNetS.

Zhu et al. [47] propose a novel architecture inspired by DenseNet [48]. The architecture
has a typical encoder-decoder shape, but features several dense blocks between convolu-
tions. These blocks are built up out of several convolutions with skip connections between
all layers. These blocks help combat overfitting, and require fewer parameters. A sim-
ple photometric loss function is used, see equation 2.4, where I ′1 is the target image I2,
inversely warped with the flow estimate, and N the number of pixels, and ρ(x) the gener-
alized Charbonnier penalty (ρ(x) = (x2 + ε2)α).

Lreconst =
1

N

N∑
i,j

ρ
(
I1(i, j)− I ′1(i, j)

)
(2.4)

In another work, Zhu et al. [32] propose a framework that uses the classical FlowFields
method, which at that point was still state of the art, to generate proxy ’ground truth’

24 2.6. SELF-SUPERVISED END-TO-END CNN OPTICAL FLOW ESTIMATION

data. Further refinement done is with a photometric loss. Urban et al. [49] show that
distillation methods, similar to the one presented by Zhu et al., can result in student
models that are shallower than the teacher model they mimic. Still, student models need
sufficient representational capacity to learn functions of comparable accuracy. Bucila et
al. [50] show that a small network with 1000x fewer parameters, can be trained to closely
approach the accuracy of an ensemble of architectures.

Given the fact that the proxy loss function dictates what the network will learn, Meister
et al. [51] propose a novel occlusion-aware loss, through a bidirectional flow estimation
(where input images are exchanged) and the use of a higher order smoothness loss. Occlu-
sions can be determined from bidirectional flow estimation, since occlusions from source to
target image, are the inverse of disocclusions from target to source image. By warping the
source image with the estimated flow, disocclusions can be detected. The photometric loss
is applied only in non-occluded areas. Inspired by Ilg et al., the authors use FlowNetC,
FlowNet2-CS, and FlowNet2-CSS as base architectures for UnFlow-C, UnFlow-CS, and
UnFlow-CSS, respectively. Concurrently, Wang et al. [52] propose a very similar frame-
work. The difference lies in that Wang et al. use a modified FlowNetS as base architecture.
The modification is that flow estimates in the decoder are used to warp downsampled input
images, which are then upsampled to the next flow prediction resolution and concatenated
to the information flow in the decoder.

Chapter 3

CNNs on the Edge

Several deep learning fields closely related to optical flow have investigated the applica-
tion of networks on embedded hardware. To the best of our knowledge, no such works
has been conducted for optical flow. In this section findings from other CNN tasks that
reduce latency and are applicable to optical flow networks are discussed.

Wofk et al. [53] propose FastDepth. This work combines several findings from other works
to design a monocular depth estimation with very low latency. The network architec-
ture used is similar to those used in optical flow estimation, in particular to FlowNetS.
MobileNet [54] is used as encoder, which uses depthwise separable convolutions. These
convolutions can be seen as two separate convolutions. The first convolution has kernels
with a length of 1 in the channel dimension, effectively iterating over one channel of the
image at a time. This convolution is followed by a 1x1 - or pointwise convolution that
convolves all input channels. This reduced the number of multiply-accumulate operations
(MAC) by a factor h×w, where h and w are the height and width (spatial resolution) of
input feature map, respectively. The use of depthwise separable convolutions is expanded
to the decoder. The use of hardware-specific TVM [55] compiler further reduces latency.
NetAdapt [56] is used to prune the network. It empirically and iteratively tweaks the
number of channels in all layers, by picking the network with the best trade-off between
accuracy and a user-defined metric (such as latency on a nano quadcopter), out of a series
of generated networks based on a reference model.

Dilated convolutions, first applied in the field of semantic segmentation by Yu et al.
[34], introduce a dilation between kernel values, effectively creating a checkerboard-like
filter. Using dilated convolutions increases the receptive field size without the need of a
larger kernel and without loss of spatial resolution. They can be used as a replacement
for upsampling/transposed convolutional layers. They have seen limited application in
optical flow. Zhu et al. [57] replace c3 1, c4 1, c5 1 of FlowNetS (figure 2.7) with dilated
convolutions. The resulting increased receptive field allows the authors to remove the
entire encoder, except for the final flow predicting convolution pf2. The authors promise
improved run-time performance. Zhai et al. [58] apply dilated convolutions to limit
computational expense and improve flow estimation for large motion.

25

26

Chapter 4

Flight & Computing Platform

Advancements in reduced instruction set computer (RISC) microprocessors and kernels
have been increasingly enabling embedded devices to employ neural networks. The ultra-
low power GAP8 [10] by GreenWaves technologies1 has been designed for CNN inference.
Improved neural network kernels [11, 12] allow for even faster inference. Palossi et al. [13]
proposed PULP-Shield, an expansion deck for a CrazyFlie 2.0. The PULP-Shield is based
on a GAP8 SoC, and succeeded in running an autonomous navigation CNN onboard. In
collaboration with ETH Zurich, BitCraze2 released a commercial off-the-shelf expansion
deck, the AI-deck, for their CrazyFlie 2.X nano quadcopter series, based on the design of
the PULP-shield, allowing faster network inference on a nano quadcopter. An overview
of GAP8 speedups compared to the pure RISC-V ISA is available online3. With the
hardware being novel, the only CNN inference time benchmark available is of SqueezeNet
[59], taking approximately 400 ms for a single inference [60] of the 0.36 GFLOP4 network.

4.1 Technical Specifications

The BitCraze AI-deck features a nona-core 32-bit GAP8 SoC, and an ESP32 NINA-W102
WiFi module. The GAP8 SoC features 1+8 RISC-V ISA cores. One core to rule them
all, and 8 to perform tasks in parallel. It features 64kB level 1 memory and 512kB level 2
memory. The CrazyFlie 2.X nano quadcopter features 512 Mbit HyperFlash and 64 Mbit
HyperRAM, up to 16Mb of which the GAP8 can access. The ESP32 NINA WiFi will be
used to stream results and/or image data back to a personal computer. The AI-deck is
equipped with a Himax HM01B0 ultra low power 320×320 Bayer RGB camera that can
be used to feed images into an optical flow network.

The AI-deck can be mounted on the CrazyFlie 2.X nano quadcopter series. It adds 4.4g
to the 27g flight platform. The dimensions of the combination of the quadcopter and the
expansion deck do not exceed the dimensions of the quadcopter itself. The CrazyFlie 2.X
measures 92x92x29mm (excluding rotors).

1https://greenwaves-technologies.com/
2https://www.bitcraze.io/
3https://greenwaves-technologies.com/gap8-cnn-benchmarks/
4https://github.com/albanie/convnet-burden

27

28 4.2. COMPARISON WITH OTHER FLIGHT PLATFORMS

4.2 Comparison With Other Flight Platforms

The CrazyFlie 2.X is classified as a nano quadcopter. Drones of this class of micro
aerial vehicles (MAVs) are very small in size (<100mm in width and height) and are
very lightweight. Due to strict size, weight and power consumption constraints these
nano quadcopters are conventionally equipped with chips of comparatively limited com-
putational power. The AI-deck brings significantly faster CNN inference to the small
hardware.
Larger flight platforms may carry more computing power, or have their computational
power extended similar as done by the AI-deck. The NVIDIA Jetson series of GPUs
can bring significant computational power to larger flight platforms, but require a much
more powerful (and thus larger) flight platform. Sanket et al. [61] use optical flow to
estimate depth and detect a gap in a wall. Including the gap detection algorithm, the
used NVIDIA Jetson TX2 achieves a run-time of 0.12 s for SpyNet and a run-time of
1.00 s for FlowNet2. FlowNet2 having the largest self-reported inference time of all con-
sidered networks. These results indicate that such hardware might benefit from latency
improvements, but is already capable of running existing optical flow CNNs. The TX2
weighs 85 grams, 20 times the weight of the AI-deck. Considering the implications for the
required flight platform (mounted on a 380x328x89mm, 500g Parrot Bebop 2) and power
consumption, this justifies the categorization into a separate class. For an indication of
the inference times on the AI-deck, refer to chapter 7.

Chapter 5

Research Question & Objective

This chapter consists out of two sections. First, in section 5.1, the research questions are
formulated. In section 5.2, the research objective is proposed.

5.1 Research Question(s)

How can an end-to-end convolutional neural network for dense optical flow
estimation for on-board, real-time deployment on a nano quadcopter be de-
signed?

1. What is the trade-off between memory usage, run-time performance and optical flow
prediction accuracy?

• What is the trade-off between flow prediction accuracy at varying flow veloci-
ties?

• What is the trade-off between flow prediction accuracy for varying distances
from motion boundaries?

• How can the representational capacity of a tiny convolutional neural network
be maximized while maintaining the run-time and memory budget of a nano
quadcopter?

2. How does the approach perform compared to traditional methods of optical flow
estimation on nano quadcopters in terms of optical flow prediction accuracy, run-
time performance and memory usage?

5.2 Research Objective

The main research objective of this thesis is:

“To achieve real-time, on-board, dense optical flow estimation on a nano quad-
copter by means of an end-to-end convolutional neural network”.

29

30 5.2. RESEARCH OBJECTIVE

Chapter 6

Research Plan

In this chapter, a research plan is presented to answer the research questions. First,
in section 6.1, the methodology is introduced. Next, in section 6.2 the accompanying
experimental set-up is introduced. This mainly covers the software and hardware used to
conduct the experiments from the previous section. In section 6.3, the expected results
and how to interpret them, the verification and validation of the experiments, and the
relevance of the work are discussed.

6.1 Methodology

The process of designing the architecture can be split up into the five following major
steps, which are further explained in their respective sections below.

1. Define performance metrics

2. Set-up pipeline

3. Define baseline model

4. Identify bottlenecks

5. Update, iterate

6.1.1 Define performance metrics

The first step is to define what performance metrics will be measured, and what results for
these metrics are desired. To get proper insight into the strengths and weaknesses of each
base network, more than just the EPE at the final flow prediction should be measured.
Metrics such as EPE for varying flow velocities, EPE for varying distances from image
boundaries, and EPE for all levels of flow prediction (if applicable) should be benchmarked
from an early stage.

Considering the applications and high mobility of nano quadcopters, a slight preference
goes to low EPE in high velocity flow. Predictions far away from motion boundaries should
be sufficiently accurate in an obstacle avoidance application. All these error metrics shall
be minimized, while sticking to the memory and run-time budget that come with the
AI-deck and possible applications.

31

32 6.1. METHODOLOGY

6.1.2 Set-up pipeline

Next, before any architecture is implemented, a pipeline will be set up to both train and
evaluate the model using the chosen performance metrics. This includes a data pipeline,
that loads training images and ground truth flows, and a training pipeline in the deep
learning framework of choice (see chapter 6.2). Considering the high number of epochs
optical flow networks are trained with, it is worth investing in an efficient data and training
pipeline. The training pipeline should support early stopping [62] and store the latest state
of the network, so that training can be resumed after a stop.

Run-time performance is another important metric in this project. Whereas inference
performance achieved on other hardware (such as on a desktop computer) is relevant,
and metrics such as FLOPs do give insight into the run-time performance of networks
and hardware alike, for a proper indication of the power of the AI-deck some physical
tests must be done. After all, kernels have a large influence on the achieved framerate
[39]. Hence, architectures should be benchmarked on the AI-deck itself. For simplicity,
these can be randomly initialized, as this does not affect run-time significantly (unless
training is accompanied by heavy pruning). Run-time performance could be measured on
a desktop computer to compare with previous iterations, but ultimately should be tested
on the AI-deck for any candidate architecture.

6.1.3 Define baseline model

A baseline model will be designed, based on literature and considering the memory and
run-time performance limitations of the AI-deck. The earlier executed benchmarks will
give an indication of the possibilities. On the very limited hardware there is no room to
compensate for an unsuitable architecture or improper training/hyperparameter selection
with a larger network architecture.

6.1.4 Identify bottlenecks

After training the baseline model, the earlier discussed metrics will be used to measure
network performance, and identify shortcomings.

6.1.5 Update, iterate

The identified bottlenecks will be used to improve the design. The goal is to minimize the
error metrics, while keeping to a memory and run-time budget. According to GoodFellow
et al. [62], the performance of a network is dictated by ”the representational capacity of
the model, the ability of the learning algorithm to successfully minimize the cost function
used to train the model, and the degree to which the cost function and training procedure
regularize the model”.

Using a higher number of nodes in a network (in CNNs this could mean increasing spatial
resolution and/or number of channels per feature map) is a direct way of increasing the
network’s representational capacity, but a direct way of increasing the run-time and mem-
ory usage at the same time. Ilg et al. [30] showed that reducing the number of network
channels is a direct way of speeding up a network, at a loss of flow prediction accuracy.
Reducing the number of channels could even be applied at the input, e.g. by reducing the
number of input image channels to 2 or 1 (greyscale), at a considerable loss of informa-
tion. Other parameters that can be varied are spatial resolution (which depends on the

CHAPTER 6. RESEARCH PLAN 33

used stride, use of pooling, input/output resolution), and more fundamental architectural
decisions such as the number of convolutional layers/depth of the network, or more optical
flow specific architecture choices such as the number of multi-level flow predictions or use
of correlation/warping operations.

The reduction of output resolution is already used in networks from literature, such as
FlowNet, where bilinear upsampling is used to upscale the highest resolution flow predic-
tion 4 times to bring it back to input resolution. The bilinear upsampling step does not
add additional flow information so might just as well be left out for practical applications.

One of the most important aspects is to properly train the networks. As shown by PWC-
Net+ [35] and ScopeFlow [21], different training methods can significantly improves re-
sults. An IRR-like iterator can be added if there is still room for a slight increase in
run-time, but the memory/parameter budget is filled. Further pruning can be applied
reduce the number of parameters Quantization can improve run-time performance and
memory usage significantly, at a small cost in accuracy.

There are several methods of automatically tweaking hyperparameters, such as Network
Architecture Search. Automatic hyperparameter tweaking is not realistic for optical flow
networks due to the very high required number of training epochs.

6.2 Experimental Set-up

6.2.1 Network Architecture Design and Training

As the provided GAP SDK (see section 6.2.2) can use TensorFlow Lite models as input,
the most straightforward method of network design and training is using TensorFlow. The
trained TensorFlow networks can be converted to TensorFlow Lite models directly using
the TensorFlow Lite Converter.

Several GitHub repositories exist for TensorFlow implementations of optical flow networks,
from which the data and training pipelines could be adapted to a novel network architec-
ture. These repositories have been mostly abandoned and are left outdated.

With the release of GAP SDK v3.8.0 support for Open Neural Network Exchange
(ONNX) filetypes has been released. This enables the use of other deep learning frame-
works than TensorFlow. Without direct support for ONNX, models would have to be
converted to ONNX, to TensorFlow, to TensorFlow Lite. This number of conversions is
prone to causing errors and incompatibility.

There are several PyTorch implementations that are kept up to date, and can be used to
quickly implement an efficient pipeline.

6.2.2 GAP SDK

GreenWaves technologies has provided an SDK online1 for the development and execu-
tion of software on the GAP8 processor. It allows for conversion of TensorFlow Lite and
ONNX models for execution on the GAP8 processor.

1https://github.com/GreenWaves-Technologies/gap_sdk

34 6.2. EXPERIMENTAL SET-UP

The conversion of a graph to GAP8 executable code is done in several steps, that can be
automated. This is intentional, to avoid a black box approach where debugging is more
difficult. Figure 6.1 shows the workflow (or GAPflow) split up in these steps.
NNTool can load a TensorFlow Lite graph, with or without quantization. NNTool has
the ability to do the quantization itself. Key to both quantization during TensorFlow
Lite conversion and in NNTool is to feed the quantizer representative data. This could be
actual image data, or randomly generated tensors. NNTool can convert the TensorFlow
Lite graph into an Autotiler Model, written in C, that the AutoTiler can interpret. This
C code contains the architecture and network parameters, and the paths to the separately
stored constant tensors (e.g. network weights). Certain combinations of layers can be
fused together to use optimized kernels for these combinations in AutoTiler.
The AutoTiler loads the AutoTiler Model and constant tensors, and produces NN opti-
mized code. This tool automatically assigns memory across L1, L2 and L3. The generated
code contains a network construct, destruct and inference function.
Together with user made application code (in C), which calls the AutoTiler generated
functions, the NN optimized code can be compiled and flashed to the GAP8 processor or
run in the GVSOC simulation.

Figure 6.1: GAPflow [63]

6.2.3 GAP Unsupported Operations

At the time of writing there are several unsupported operands that are very common in
optical flow CNNs.

Transposed convolutions
Also known as deconvolutions, upconvolutions. These are common in decoder networks.
Effectively they provide learnable upsampling, and could be seen as a regular convolution
with a fractional stride. A workaround is to use bilinear upsampling, followed by a regular
convolution. This workaround, however, requires four times the operations of a transposed
convolution [64].

CHAPTER 6. RESEARCH PLAN 35

Concatenations with multiple versions of the same input

These are widely used in optical flow literature for feature concatenation. These con-
catenated skip connections carry information from the encoder to the decoder part of
the network in order to preserve spatial information that might be lost in the encoder,
which reduces the spatial resolution with convolutions. Another very common use of con-
catenations is flow prediction concatenation, where lower resolution flow predictions are
upsampled and concatenated to a higher spatial resolution feature map in the decoder.

Information could be carried through the network with additions instead of concatenations
as done in residual networks [65], but this requires tensors of equal dimensions. The skip
connections lend themselves well to such a workaround, but flow predictions are 2-channel
tensors, and can as such not be added to numerous-channel feature maps. Without this
operation, conventional architectures are a no-go. On the bright side, conventional net-
works with numerous flow predictions at varying resolution would never be achievable due
to hardware constraints.

Image warping, correlation layer

A large number of networks use image warping (SPyNet, PWC-Net, ScopeFlow, Mask-
FlowNet, etc) and/or a correlation layer (PWC-Net, ScopeFlow, MaskFlowNet, RAFT,
etc). These operations are quite specific to optical flow, so there is not a large chance
they will be implemented to the supported operands in the future. There are other ways
of implementing such layers. A manual image warping operation or correlation layer can
be written in the application code, or kernels can be written following the instructions
provided by GreenWaves. However, the performance implications (and limited project
time) should be considered.

Resize

Upscaling of flow estimates occurs in all treated networks. Currently, (bilinear) resizing
layers are only supported for TensorFlow Lite graph imports.

All unsupported operations have been requested for implementation with GreenWaves.

6.2.4 Hardware

The BitCraze AI-deck features a nona-core 32-bit GAP8 SoC, and an ESP32 NINA WiFi
module. It can be mounted on the CrazyFlie 2.X nano quadcopter series. An overview
of GAP8 speedups compared to the pure RISC-V ISA is available online2. With the
hardware being novel, the only CNN inference time benchmark available is of SqueezeNet
[59], taking approximately 400ms for a single inference [60] of the 0.36GFLOP 3 network.

The GAP8 SoC features 1+8 RISC-V ISA cores. One core to rule them all, and 8 to
perform tasks in parallel. It features 64kB level 1 memory and 512kB level 2 memory. The
CrazyFlie 2.X nano quadcopter features 512 Mbit HyperFlash and 64 Mbit HyperRAM,
up to 16Mb of which the GAP8 can access. The ESP32 NINA WiFi will be used to
stream results and/or image data back to a personal computer. To flash to the AI-deck,
the Olimex ARM-USB-TINY-H with 20 to 10 pin adapter will be used. The AI-deck can
be powered with a Micro-USB connector.

2https://greenwaves-technologies.com/gap8-cnn-benchmarks/
3https://github.com/albanie/convnet-burden

36 6.3. RESULTS, OUTCOME, RELEVANCE

Accuracy and run-time performance can be evaluated not only on-board, but also on
a desktop computer. That is; accuracy or run-time performance gain on desktop will
translate to a similar improvement of results on-board. This will be used to quickly test
new features without having to run through the entire GAP SDK. Promising changes
can be more quickly implemented on-board by automating the GAP SDK workflow using
makefiles.

Evaluations can be done using images loaded into memory, or using the camera feed.
Run-time benchmarking must be done carefully, making sure to exclude influence of the
data pipeline, and using the correct level of optimization and disabling debugging features
for GAP8 application, for proper evaluation.

6.3 Results, outcome, relevance

6.3.1 Future Result Interpretation

During benchmarking accuracy and run-time performance will be measured. This will
result in EPE, F1, F2, inference time [s] measurements. These can be used to select
network features to trade-off accuracy and run-time performance. More specific accuracy
metrics such as accuracy for varying flow velocity and distance from motion boundaries
can be measured. By measuring all these metrics at different cnn levels (as they are
in training), these metrics can provide insights into receptive field size, and occlusion
behavior, respectively. The results will be compared to SOTA optical flow CNNs, but also
with traditional methods.

6.3.2 Verification & Validation

Verification of the models will be done in a number of ways. Programming will be checked
with code inspection, which is only realistically possible with well organized, structured
code. Visualization will be used throughout the network development process as a verifi-
cation tool. Tools such as Netron4 can visualize both the TensorFlow and the TensorFlow
Lite models. Both TensorFlow and NNTool can list network operations, the number of pa-
rameters associated, input/output dimensions. Visualizing the output at varying locations
of the network gives a qualitative performance indication. A full focus on quantitative
results might result in overlooking otherwise obvious errors. Visualizations are a quick
way to identify mistakes in the network architecture, and can be used throughout the
workflow. Visualizing the worst outcomes can give insight in the cause of the poor per-
formance. The train and test error should be tracked, to identify whether the network is
overfitting to the train data. If the network seems to underfit, a much smaller dataset can
be used to train to identify whether or not there is a software error or the network lacks
representational capacity.

The used synthetic training datasets will be split into a training and validation part.
Considering the high number of training epochs (O(1E6)) in literature cross-validation is
not a realistic option considering the time to train. Finally, the flight tests will validate
whether the network can predict flow in real life.

4https://netron.app/

CHAPTER 6. RESEARCH PLAN 37

6.3.3 Relevance

This work will provide insights into tiny optical flow networks. It will investigate how far
optical flow networks can be shrunk, and still provide accurate flow estimations. It will tell
if novel miniature hardware is powerful enough to estimate optical flow with convolutional
neural networks. If achieved, it will propose the first optical flow net to run on a nano
quadcopter.
The results might not only apply to tiny optical flow nets but tiny CNNs for computer
vision tasks in general. Some computer vision tasks in particular are very closely related
to optical flow, such as pose estimation, depth estimation, possibly allowing such networks
to run on miniature hardware.

38 6.3. RESULTS, OUTCOME, RELEVANCE

Chapter 7

FlowNetS encoder on the
GreenWaves GAP8 SoC

Having set up most of the pipeline1, some capacity testing of the GAP8 SoC can be done.
One of the most straightforward networks treated in this document is FlowNetS, consisting
of simple convolutions and transposed convolutions. Seeing that both transposed convo-
lutions and resize layers are currently unsupported (GreenWaves confirmed that bilinear
upsampling support would be added soon), only the encoders of these networks can be
implemented, for now, directly followed by a single flow estimating convolution (reducing
the number of channels to two).

The architecture of FlowNetS can be found in figure 2.7. The architecture of FlowNet2-s
is identical, but the number of channels per feature map is multiplied by 3/8.

The run-time is measured and averaged over 10 runs. The assigned available memory is
4.88E+04, 2.50E+05, and 8.39E+06 bytes for L1, L2, and L3. Note that the overhead of
kernels and application code fill a significant part of the memory. The inference input is
fixed at a 160x160 pixels image, half of the 320x320 pixels of the AI-deck camera.

The GAP8 has a difficult time running large kernel sizes. The first convolution of FlowNetS
with its 7x7 kernel size has an inference time of 459 ms. The first convolution of FlowNet2-
s with a 7x7 kernel takes 172 ms of inference time. By reducing the kernel size to 3x3, the
convolution takes only 20% and 12% of the time, respectively. The number of parameters
drops by 2/3 approximately. This allows for more convolutional layers before abysmal
performance is reached. Benchmark results for FlowNetS and FlowNet2-s can be found in
table 7.1 and 7.2, respectively. Benchmarking of FlowNetS was halted after adding layer
c4 1 and run-time approached a second.

It can be seen that the number of parameters gives an approximation of the memory
occupied but is not the only factor. Comparing the FlowNetS encoder architecture with
convolutions up to c3 1 with the FlowNet2-s encoder architecture with convolutions up
to c5. The former has 9.67E+05 parameters, the latter 9.70E+05. The total amount of
occupied memory is 1.65E+06 and 1.35E+05 bytes, respectively. The former network has
fewer parameters, but occupies more memory, and takes three times longer to run.

It can be seen that, at least for a FlowNet-like architecture, the first concern will be run-
time performance. There is sufficient memory to store a 3.30E+06 parameter network,
with 60% L3 memory to spare. Although L3 memory is slower, there is no obvious drop
in run-time performance when the Autotiler assigns memory to it. The effects of where

1Available on GitHub

39

40

memory is tiled could be further investigated by tiling a small, identical network to L1,
L2, or L3 memory, exclusively.
Run-times for the nominal 7x7 kernel in the first convolution are comparable to a net-
work with six 3x3 kernel convolutions with 100 times the parameters. For improved
performance, it is better to replace a single large kernel convolution with several smaller
kernel convolutions, which deliver a larger receptive field. The reduction of kernel size
comes at the cost of expressiveness [66]. The reduction in channels between FlowNetS
and FlowNet2-s delivers large memory usage and run-time performance improvements.

Implementing depthwise separable convolutions as done by Wofk et al. [53] reduces the
number of parameters by a factor 10, and the average run-time by over 90%.

Table 7.1: FlowNetS encoder with 3x3 kernel size - number of parameters, GAP8 SoC
run-time performance and memory usage

c1 c2 c3 c3 1 c4 c4 1 c5 c5 1 c6 c6 1
Parameters [-] Average Refresh L1 memory L1 memory L2 memory L2 memory L3 memory L3 memory

run-time [ms] rate [FPS] usage [bytes] usage [%] usage [bytes] usage [%] usage [bytes] usage [%]

x 4.67E+03 75 13 4.84E+04 99 2.42E+04 10 4.10E+05 5

x x 7.97E+04 206 5 4.85E+04 99 2.21E+05 88 4.86E+05 6

x x x 3.77E+05 352 3 4.85E+04 99 2.33E+05 93 7.78E+05 9

x x x x 9.67E+05 548 2 4.85E+04 99 2.35E+05 94 1.37E+06 16

x x x x x 2.15E+06 686 1 4.85E+04 99 2.42E+05 97 2.56E+06 30

x x x x x x 4.51E+06 903 1 4.85E+04 99 2.45E+05 98 4.92E+06 59

Table 7.2: FlowNet2-s encoder with 3x3 kernel size - number of parameters, GAP8 SoC
run-time performance and memory usage

c1 c2 c3 c3 1 c4 c4 1 c5 c5 1 c6 c6 1
Parameters [-] Average Refresh L1 memory L1 memory L2 memory L2 memory L3 memory L3 memory

run-time [ms] rate [FPS] usage [bytes] usage [%] usage [bytes] usage [%] usage [bytes] usage [%]

x 1.75E+03 22 46 4.86E+04 100 1.56E+05 62 0.00E+00 0

x x 1.26E+04 44 22 4.73E+04 97 1.74E+05 70 7.68E+04 1

x x x 5.50E+04 89 11 4.88E+04 100 2.17E+05 87 7.91E+04 1

x x x x 1.38E+05 117 9 4.88E+04 100 2.18E+05 87 1.63E+05 2

x x x x x 3.06E+05 137 7 4.88E+04 100 2.50E+05 100 3.85E+05 5

x x x x x x 6.38E+05 167 6 4.88E+04 100 2.50E+05 100 7.18E+05 9

x x x x x x x 9.70E+05 182 5 4.88E+04 100 2.50E+05 100 1.05E+06 13

x x x x x x x x 1.30E+06 195 5 4.88E+04 100 2.50E+05 100 1.38E+06 16

x x x x x x x x x 1.97E+06 221 5 4.88E+04 100 2.50E+05 100 2.05E+06 24

x x x x x x x x x x 3.30E+06 256 4 4.88E+04 100 2.50E+05 100 3.38E+06 40

Table 7.3: FlowNet2-s encoder with 3x3 kernel size and depthwise separable convolutions
- number of parameters, GAP8 SoC run-time performance and memory usage

c1 c2 c3 c3 1 c4 c4 1 c5 c5 1 c6 c6 1
Parameters [-] Average Refresh L1 memory L1 memory L2 memory L2 memory L3 memory L3 memory

run-time [ms] rate [FPS] usage [bytes] usage [%] usage [bytes] usage [%] usage [bytes] usage [%]

x x x x x x x x x x 3.76E+05 19 53 4.85E+04 99 2.50E+05 100 3.91E+05 5

Chapter 8

Conclusion

There is currently no dense optical flow CNN suitable to run on nano quadcopter hard-
ware. A literature review was conducted, in which it was found that the SOTA focuses on
improving prediction accuracy while maintaining several to 10s of FPS on modern desk-
top computer hardware. These networks are unsuitable for running on nano quadcopter
hardware.

Three classes of architectures can be identified in the literature. The first are U-Net
shaped networks. These networks are straightforward, versatile but not memory friendly.
Pyramid-shaped networks iterate flow predictions over an image or feature pyramid in a
coarse to fine manner. Lower spatial resolution flow estimates are used to warp one of
two input images or feature maps to the next, higher-resolution layer. By sharing a single
decoder between pyramid levels, a decrease in the number of parameters can be achieved.
The third class of architectures employ GRUs to iteratively update the optical flow. Sev-
eral papers are dedicated to improved training, data augmentation, and regularization
habits. Self-reported benchmark results of all discussed architectures are compared.

From the knowledge gap and literature review follows the following main research question:

How can optical flow estimation using end-to-end convolutional neural net-
works on nano quadcopters be achieved?

A framework was laid out to design a base optical flow CNN architecture and identify and
mitigate bottlenecks in the architecture optimization. Broadly, the steps to be taken are:

1. Define performance metrics

2. Set-up pipeline

3. Define baseline model

4. Identify bottlenecks

5. Update, iterate

A proper selection of performance metrics is vital in evaluating and monitoring the pro-
cess. Hui et al. [37] made large improvements to their network by monitoring the flow
prediction accuracy at several locations in the network. A proper pipeline can speed up

41

42

the process of updating, iterating and measuring data. A baseline will be defined based
on insights from the literature review. The measured performance metrics will indicate
bottlenecks in the tested architecture. Several options are presented for updating the net-
work, depending on the type of bottleneck. Generally, this implies a trade-off between the
network’s representational capacity, run-time performance, and the number of parameters.

The architecture will be designed for deployment on the CrazyFlie 2.X nano quadcopter,
equipped with an AI-deck for faster CNN inference. The architecture can be designed in
any deep learning framework that supports the open neural network exchange (ONNX)
filetype. Several up-to-date GitHub repositories are available for optical flow CNN train-
ing, written for PyTorch. The trained networks can be evaluated and benchmarked on a
personal computer or converted for use on the AI-deck using GAP SDK by GreenWaves
Technologies. Application code must be written in c to deploy the network. The supported
operations are limited by the kernels available for the GAP8 SoC that runs on the AI-deck.

The project will provide insights into the miniaturization of optical flow networks and
related computer vision fields and propose the first dense optical flow net to run on a
nano quadcopter. A nano quadcopter can use dense optical flow for a large variety of
applications including autonomous navigation, (self-)motion estimation, depth estimation
and obstacle avoidance.

Bibliography

[1] James J. Gibson and Leonard Carmichael. The Perception of the Visual World.
Houghton Mifflin, 1950, p. 235. doi: 10.2307/426044.

[2] Guido C.H.E. De Croon. “Monocular distance estimation with optical flow ma-
neuvers and efference copies: A stability-based strategy”. In: Bioinspiration and
Biomimetics 11.1 (Jan. 2016). issn: 17483190. doi: 10.1088/1748-3190/11/1/
016004.

[3] Andrew J Barry and Leslie A Kolodziejski Chair. High-Speed Autonomous Obstacle
Avoidance with Pushbroom Stereo Signature redacted LIBRARIES ARGhivti P o6I.
Tech. rep. 2016. url: https://dspace.mit.edu/handle/1721.1/103718.

[4] Berthold K. Horn and Brian G Schunck. “Determining Optical Flow”. In: Techniques
and Applications of Image Understanding. Vol. 0281. 12. SPIE, Nov. 1981, pp. 319–
331. doi: 10.1117/12.965761.

[5] Min Bai et al. Exploiting semantic information and deep matching for optical flow.
2016. doi: 10.1007/978-3-319-46466-4_10. arXiv: 1604.01827.

[6] Christian Bailer et al. CNN-based patch matching for optical flow with thresholded
hinge embedding loss. July 2017. doi: 10.1109/CVPR.2017.290. arXiv: 1607.08064.

[7] David Gadot and Lior Wolf. “PatchBatch: A Batch Augmented Loss for Opti-
cal Flow”. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. Vol. 2016-Decem. 2016, pp. 4236–4245. isbn:
9781467388504. doi: 10.1109/CVPR.2016.459. arXiv: 1512.01815.

[8] Fatma Güney et al. “Deep discrete flow”. In: Springer 10114 LNCS (2017), pp. 207–
224. issn: 16113349. doi: 10.1007/978-3-319-54190-7_13.

[9] Alexey Dosovitskiy et al. “FlowNet: Learning optical flow with convolutional net-
works”. In: Proceedings of the IEEE International Conference on Computer Vision.
Vol. 2015 Inter. 2015, pp. 2758–2766. isbn: 9781467383912. doi: 10.1109/ICCV.
2015.316. arXiv: 1504.06852.

[10] Eric Flamand et al. “GAP-8: A RISC-V SoC for AI at the Edge of the IoT”. In:
Proceedings of the International Conference on Application-Specific Systems, Archi-
tectures and Processors. Vol. 2018-July. Institute of Electrical and Electronics En-
gineers Inc., Aug. 2018. isbn: 9781538674796. doi: 10.1109/ASAP.2018.8445101.

[11] Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: Efficient neural net-
work kernels for arm cortex-M CPUs. Jan. 2018. arXiv: 1801.06601.

[12] Angelo Garofalo et al. PULP-NN: Accelerating Quantized Neural Networks on Paral-
lel Ultra-Low-Power RISC-V Processors. Feb. 2019. doi: 10.1098/rsta.2019.0155.
arXiv: 1908.11263v1.

43

44 BIBLIOGRAPHY

[13] Daniele Palossi et al. “A 64-mW DNN-Based Visual Navigation Engine for Au-
tonomous Nano-Drones”. In: IEEE Internet of Things Journal 6.5 (2019), pp. 8357–
8371. issn: 23274662. doi: 10.1109/JIOT.2019.2917066. arXiv: 1805.01831.

[14] Zhile Ren et al. “A fusion approach for multi-frame optical flow estimation”. In:
Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision,
WACV 2019. 2019, pp. 2077–2086. isbn: 9781728119755. doi: 10.1109/WACV.2019.
00225.

[15] Pengpeng Liu et al. “Selflow: Self-supervised learning of optical flow”. In: Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. Vol. 2019-June. Apr. 2019, pp. 4566–4575. isbn: 9781728132938. doi:
10.1109/CVPR.2019.00470. arXiv: 1904.09117.

[16] Daniel Maurer and Andres Bruhn. “Proflow: Learning to predict optical flow”. In:
British Machine Vision Conference 2018, BMVC 2018. BMVA Press, 2019. arXiv:
1806.00800.

[17] Michal Neoral, Jan Šochman, and Jǐŕı Matas. “Continual Occlusion and Optical Flow
Estimation”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11364
LNCS. Springer Verlag, 2019, pp. 159–174. isbn: 9783030208691. doi: 10.1007/978-
3-030-20870-7_10. arXiv: 1811.01602.

[18] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. “Optical flow modeling
and computation: A survey”. In: Computer Vision and Image Understanding 134
(2015), pp. 1–21. issn: 1090235X. doi: 10.1016/j.cviu.2015.02.008.

[19] Anurag Ranjan and Michael J. Black. “Optical flow estimation using a spatial
pyramid network”. In: Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017. Vol. 2017-Janua. Institute of Electrical and
Electronics Engineers Inc., Nov. 2017, pp. 2720–2729. isbn: 9781538604571. doi:
10.1109/CVPR.2017.291. arXiv: 1611.00850.

[20] Deqing Sun et al. “PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and
Cost Volume”. In: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. 2017, pp. 8934–8943. isbn: 9781538664209.
doi: 10.1109/CVPR.2018.00931. arXiv: 1709.02371.

[21] Aviram Bar-Haim and Lior Wolf. “ScopeFlow: Dynamic scene scoping for opti-
cal flow”. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. Institute of Electrical and Electronics Engineers
(IEEE), Feb. 2020, pp. 7995–8004. doi: 10.1109/CVPR42600.2020.00802. arXiv:
2002.10770.

[22] J L Barron, D J Fleet, and S S Beauchemin. “Performance of optical flow tech-
niques”. In: International Journal of Computer Vision 12.1 (1994), pp. 43–77. issn:
09205691. doi: 10.1007/BF01420984.

[23] Simon Baker et al. “A database and evaluation methodology for optical flow”. In:
International Journal of Computer Vision 92.1 (2011), pp. 1–31. issn: 09205691.
doi: 10.1007/s11263-010-0390-2.

[24] Daniel J. Butler et al. “A Naturalistic Open Source Movie for Optical Flow Evalu-
ation”. In: vol. 7577 LNCS. PART 6. 2012, pp. 611–625. isbn: 9783642337826. doi:
10.1007/978-3-642-33783-3_44.

BIBLIOGRAPHY 45

[25] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous
driving? the KITTI vision benchmark suite”. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. 2012, pp. 3354–
3361. isbn: 9781467312264. doi: 10.1109/CVPR.2012.6248074.

[26] Moritz Menze and Andreas Geiger. “Object scene flow for autonomous vehicles”.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 07-12-June. 2015, pp. 3061–3070. isbn: 9781467369640.
doi: 10.1109/CVPR.2015.7298925.

[27] Nikolaus Mayer et al. “A Large Dataset to Train Convolutional Networks for Dispar-
ity, Optical Flow, and Scene Flow Estimation”. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition. Vol. 2016-
Decem. IEEE Computer Society, Dec. 2016, pp. 4040–4048. isbn: 9781467388504.
doi: 10.1109/CVPR.2016.438. arXiv: 1512.02134.

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 9351. Springer Verlag, 2015, pp. 234–241. isbn: 9783319245737.
doi: 10.1007/978-3-319-24574-4_28. arXiv: 1505.04597.

[29] D. B. de Jong, F. Paredes-Vallés, and G. C. H. E. de Croon. “How Do Neural
Networks Estimate Optical Flow? A Neuropsychology-Inspired Study”. In: arxiv.org
(2020). arXiv: 2004.09317.

[30] Eddy Ilg et al. “FlowNet 2.0: Evolution of optical flow estimation with deep net-
works”. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017. Vol. 2017-Janua. 2017, pp. 1647–1655. isbn: 9781538604571.
doi: 10.1109/CVPR.2017.179. arXiv: 1612.01925.

[31] Shanshan Zhao, Xi Li, and Omar El Farouk Bourahla. “Deep optical flow estimation
via multi-scale correspondence structure learning”. In: IJCAI International Joint
Conference on Artificial Intelligence. July 2017, pp. 3490–3496. isbn: 9780999241103.
doi: 10.24963/ijcai.2017/488. arXiv: 1707.07301.

[32] Yi Zhu and Shawn Newsam. “DenseNet for dense flow”. In: Proceedings - Interna-
tional Conference on Image Processing, ICIP 2017-Septe (2018), pp. 790–794. issn:
15224880. doi: 10.1109/ICIP.2017.8296389. arXiv: 1707.06316.

[33] Liang Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40.4 (Apr. 2018), pp. 834–848.
issn: 01628828. doi: 10.1109/TPAMI.2017.2699184. arXiv: 1606.00915.

[34] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated convo-
lutions”. In: 4th International Conference on Learning Representations, ICLR 2016
- Conference Track Proceedings. International Conference on Learning Representa-
tions, ICLR, Nov. 2016. arXiv: 1511.07122.

[35] Deqing Sun et al. “Models Matter, so Does Training: An Empirical Study of CNNs
for Optical Flow Estimation”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 42.6 (Sept. 2018), pp. 1408–1423. issn: 19393539. doi: 10.1109/
TPAMI.2019.2894353. arXiv: 1809.05571.

46 BIBLIOGRAPHY

[36] Tak Wai Hui, Xiaoou Tang, and Chen Change Loy. “LiteFlowNet: A Lightweight
Convolutional Neural Network for Optical Flow Estimation”. In: Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2018, pp. 8981–8989. isbn: 9781538664209. doi: 10.1109/CVPR.2018.00936. arXiv:
1805.07036.

[37] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. “A Lightweight Optical Flow
CNN - Revisiting Data Fidelity and Regularization”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (Feb. 2020), pp. 1–1. issn: 0162-8828.
doi: 10.1109/tpami.2020.2976928. arXiv: 1903.07414.

[38] Tak-Wai Hui. Supplementary Material for LiteFlowNet3: Resolving Correspondence
Ambiguity for More Accurate Optical Flow Estimation 1 Color Code for Visualizing
Flow Fields. Tech. rep. 2020. url: https://github.com/twhui/LiteFlowNet3.

[39] Gengshan Yang and Deva Ramanan. “Volumetric correspondence networks for op-
tical flow”. In: Advances in Neural Information Processing Systems. Vol. 32. 2019.
url: http : / / papers . nips . cc / paper / 8367 - volumetric - correspondence -

networks-for-optical-flow.

[40] Shengyu Zhao et al. “MaskFlownet: Asymmetric Feature Matching With Learnable
Occlusion Mask”. In: openaccess.thecvf.com. Institute of Electrical and Electronics
Engineers (IEEE), Mar. 2020, pp. 6277–6286. doi: 10.1109/cvpr42600.2020.

00631. arXiv: 2003.10955.

[41] Zhichao Yin, Trevor Darrell, and Fisher Yu. “Hierarchical discrete distribution de-
composition for match density estimation”. In: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. Vol. 2019-June.
IEEE Computer Society, Dec. 2019, pp. 6037–6046. isbn: 9781728132938. doi: 10.
1109/CVPR.2019.00620. arXiv: 1812.06264.

[42] Junhwa Hur and Stefan Roth. “Iterative residual refinement for joint optical flow and
occlusion estimation”. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Vol. 2019-June. IEEE Computer Society,
Apr. 2019, pp. 5747–5756. isbn: 9781728132938. doi: 10.1109/CVPR.2019.00590.
arXiv: 1904.05290.

[43] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical
flow. Mar. 2020. arXiv: 2003.12039.

[44] Aria Ahmadi and Ioannis Patras. “Unsupervised convolutional neural networks for
motion estimation”. In: Proceedings - International Conference on Image Processing,
ICIP. Vol. 2016-Augus. 2016, pp. 1629–1633. isbn: 9781467399616. doi: 10.1109/
ICIP.2016.7532634. arXiv: 1601.06087.

[45] Jason J. Yu, Adam W. Harley, and Konstantinos G. Derpanis. “Back to basics: Un-
supervised learning of optical flow via brightness constancy and motion smoothness”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). Vol. 9915 LNCS. Springer
Verlag, 2016, pp. 3–10. isbn: 9783319494081. doi: 10.1007/978-3-319-49409-8_1.
arXiv: 1608.05842.

[46] Zhe Ren et al. “Unsupervised deep learning for optical flow estimation”. In: 31st
AAAI Conference on Artificial Intelligence, AAAI 2017. 2017, pp. 1495–1501. url:
www.aaai.org.

BIBLIOGRAPHY 47

[47] Yi Zhu et al. “Guided optical flow learning”. In: arXiv (2017). issn: 23318422. arXiv:
1702.02295.

[48] Gao Huang et al. “Densely connected convolutional networks”. In: Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
Vol. 2017-Janua. Institute of Electrical and Electronics Engineers Inc., Aug. 2017,
pp. 2261–2269. isbn: 9781538604571. doi: 10.1109/CVPR.2017.243. arXiv: 1608.
06993.

[49] Gregor Urban et al. “Do deep convolutional nets really need to be deep and con-
volutional?” In: 5th International Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings. International Conference on Learning Repre-
sentations, ICLR, Mar. 2017. arXiv: 1603.05691.

[50] Cristian Bucilǎ, Rich Caruana, and Alexandra Niculescu-Mizil. “Model compres-
sion”. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Vol. 2006. 2006, pp. 535–541. isbn: 1595933395. doi:
10.1145/1150402.1150464.

[51] Simon Meister, Junhwa Hur, and Stefan Roth. “UnFlow: Unsupervised learning of
optical flow with a bidirectional census loss”. In: 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018. AAAI press, 2018, pp. 7251–7259. isbn: 9781577358008.
arXiv: 1711.07837.

[52] Yang Wang et al. “Occlusion Aware Unsupervised Learning of Optical Flow”. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4884–4893. isbn: 9781538664209. doi: 10.1109/

CVPR.2018.00513. arXiv: 1711.05890.

[53] Diana Wofk et al. “FastDepth: Fast monocular depth estimation on embedded sys-
tems”. In: Proceedings - IEEE International Conference on Robotics and Automa-
tion. Vol. 2019-May. Institute of Electrical and Electronics Engineers Inc., May
2019, pp. 6101–6108. isbn: 9781538660263. doi: 10.1109/ICRA.2019.8794182.
arXiv: 1903.03273.

[54] Andrew G. Howard et al. MobileNets: Efficient convolutional neural networks for
mobile vision applications. Apr. 2017. arXiv: 1704.04861.

[55] Tianqi Chen et al. “TVM: An automated end-to-end optimizing compiler for deep
learning”. In: Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018. USENIX Association, Feb. 2007, pp. 579–
594. isbn: 9781939133083. arXiv: 1802.04799.

[56] Yanchao Yang and Stefano Soatto. “Conditional prior networks for optical flow”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 11219 LNCS. 2018, pp. 282–
298. isbn: 9783030012663. doi: 10.1007/978-3-030-01267-0_17. arXiv: 1807.
10378.

[57] Yi Zhu and Shawn Newsam. Learning optical flow via dilated networks and occlusion
reasoning. 2018. doi: 10.1109/ICIP.2018.8451790. arXiv: 1805.02733.

48 BIBLIOGRAPHY

[58] Mingliang Zhai et al. “Ad-net: Attention Guided Network for Optical Flow Esti-
mation Using Dilated Convolution”. In: ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings. Vol. 2019-May. Insti-
tute of Electrical and Electronics Engineers Inc., May 2019, pp. 2207–2211. isbn:
9781479981311. doi: 10.1109/ICASSP.2019.8682229.

[59] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and less than 0.5MB model size”. In: (2016). arXiv: 1602.07360.

[60] Face Identification on a mW power budget. Dec. 2019. url: https://greenwaves-
technologies.com/face_reid_on_gap8/.

[61] Nitin J. Sanket et al. “GapFlyt: Active vision based minimalist structure-less gap de-
tection for quadrotor flight”. In: IEEE Robotics and Automation Letters 3.4 (2018),
pp. 2799–2806. issn: 23773766. doi: 10.1109/LRA.2018.2843445.

[62] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[63] NN Quick Start Guide. June 2020. url: https://greenwaves-technologies.com/
sdk-manuals/nn_quick_start_guide/.

[64] Zbigniew Wojna et al. “The Devil is in the Decoder: Classification, Regression and
GANs”. In: International Journal of Computer Vision 127.11-12 (2019), pp. 1694–
1706. issn: 15731405. doi: 10.1007/s11263-019-01170-8. arXiv: 1707.05847.

[65] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. Vol. 2016-Decem. IEEE Computer Society, Dec. 2016, pp. 770–778. isbn:
9781467388504. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385.

[66] Christian Szegedy et al. Rethinking the Inception Architecture for Computer Vision.
Tech. rep. arXiv: 1512.00567v3.

	I Research paper
	II Literature research

