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Abstract

Semi-supervised algorithms have been shown to possibly have a worse performance than the corre-
sponding supervised model. This may be due to a violation of the assumptions on the data that are
introduced in most classification systems. We study an approach that was previously shown to have
guarantees of improvement for the LDA classifier in terms of log-likelihood on the full data-set of
labeled and unlabeled observations. This method is based on two key concepts: contrast and pes-
simism. We extend this approach to a broader class of probabilistic generative models, in which the
class conditional distributions can be modeled with any parametric class that belongs to the expo-
nential family. In this case, we prove that the classifier is never worse and, under mild assumptions,
strictly improves the log-likelihood on the complete data-set. The case of Gaussian densities is an-
alyzed in detail, both for LDA and QDA. Moreover, we study this method in the case of least squares
classification. In terms of square loss we prove the contrastive pessimistic classifier is guaranteed
not to degrade the performance and, with a further requirement on the data, it strictly outperforms
the supervised model.
Finally, we apply contrast and pessimism to the task of parameter estimation of a multivariate Gaus-
sian density in a missing data framework. We fully characterize the case of a missing block of data
and we show that a strictly increased likelihood on the complete data-set is obtained for any mono-
tone sample. In other terms, the contrastive pessimistic estimates are guaranteed to fit better the
complete data-set composed of both observed and hidden components.

Keywords: semi-supervised learning, contrast, pessimism, parameter estimation, monotone sam-
ple, maximum likelihood.
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1
Outline of the Thesis

The field of Machine Learning has grown rapidly in the last decades and is currently one of the
most active research areas. The range of applications of machine learning techniques is very wide
and spans from speech recognition and computer vision, to medical imaging and autonomous sys-
tems. In this thesis we focus on a particular branch of this broad discipline that is known as semi-
supervised learning (SSL). SSL concerns the study of algorithms that solve the problem of classifi-
cation when the available data-set is composed of labeled and unlabeled observations. This frame-
work is very frequent in real world applications for which the classification of the observed samples
must be performed manually by humans and is thus considerably expensive. Examples of typical
SSL applications include speech recognition and webpage classification.
In Chapter 2 we define the fundamental notions and terminology required to analyze this problem.
Section 2.1 is dedicated to supervised learning (SL), which is the study of classification tasks in case
we have fully labeled data to train a learning system. SL represents the foundation upon which we
obtain SSL by the addition of an unlabeled data-set. An overview of SSL is formally discussed in
Section 2.2. It will become clear that a crucial problem of present SSL algorithms is the possible per-
formance degradation that may be observed. This highly undesirable behaviour is the main subject
of this work and motivates the following research questions:

Is it possible to build a semi-supervised classifier that is guaranteed not to be worse than
the corresponding supervised model in a finite sample setting? In which cases is this pos-
sible? And when can we expect the semi-supervised classifier to strictly outperform its
supervised counterpart?

In Section 2.3 we first focus on an example in which a performance degradation takes place and
then on two algorithms that propose a solution. From our point of view, these classifiers repre-
sent interesting first steps towards a solution but do not address some of the key issues. In Section
2.3.4 we discuss a contrastive pessimistic approach to SSL, which was first introduced in [33]. This
method was shown to have the properties we look for in the specific setting of linear discriminant
analysis. In this thesis we extend this approach to other general frameworks and we formally and
rigorously investigate the guarantees on its performance compared to the corresponding super-
vised model. Chapter 3 is dedicated to least squares classification. In this case, the contrastive
pessimistic approach is shown to have a non degradation guarantee and, under an additional as-
sumption, a property of strict performance enhancement in terms of square loss on the full data-set
for any labeling of the unlabeled observations. In Chapters 4 and 5 we study the maximum con-
trastive pessimistic likelihood (MCPL) approach, which is a semi-supervised generative probabilis-
tic model that considerably extends and completes the analysis conducted in [33]. In particular, we
consider classifiers that model the class conditional densities with any parametric class that is in

1



2 1. Outline of the Thesis

the exponential family. With Theorem 4.5 we show that the MCPL approach is never worse than its
supervised counterpart in terms of likelihood on the full data-set. This once again holds for any la-
beling of the unlabeled observations. Then, the entire Section 4.2.5 is dedicated to the investigation
of the possibilities of strict performance improvement. In Corollary 4.11 we show that under mild
assumptions this happens almost surely with respect to the underlying distribution generating the
unlabeled data. Considerable attention is then devoted to a thorough study of the main features of
the proposed algorithm. For instance we point to Sections 4.2.7 and 4.3. The setting of Gaussian
densities is then specifically studied in Chapter 5. The results of our analysis provide a clear and
formal vision of when safe semi-supervised learning is possible and how we can build such a safe
classifier.
The results obtained in SSL by the contrastive pessimistic approach motivate an additional research
question:

Assume we are interested in estimating a multivariate probability density and we decide
to use a parametric model. Suppose we have a data-set which contains both complete
and incomplete observations. Is it possible to take advantage of the incomplete observa-
tions to find parameters that fit the data better than an estimate computed by using the
subset of complete observations only?

This question is addressed in Chapter 6 for the case of Gaussian densities. A brief answer to the
question above is that this is the case at least for a data-set with a specific structure. In Theorem 6.3
we formally state and prove that this holds for a particular block-structure of the missingness, while
in Corollary 6.5 we extend this result to more general data-sets.
In Chapter 7 we conclude the thesis with a discussion of the results we obtained and with some
suggestions for future research.



2
Preliminaries on Supervised and

Semi-Supervised Learning

Pattern Recognition is the field that studies the task of automatically classifying objects into cate-
gories, or classes. Objects can be, depending on the application, images or vectors of measurements
that we are interested in assigning to a class. This problem is faced by learning from a set of avail-
able examples and thus defining a decision rule that can be applied on unseen measurements. The
goal is then to have an accurate prediction for the unobserved output value y given an observed
input vector x. For instance, suppose we are interested in learning a decision function that predicts
whether a papaya is tasty or not [43]. We can select a number of criteria that in our experience
are indicators of the tastiness, such as the color and the papaya’s softness. A set of papayas is then
measured and the color and softness of each fruit are grouped in a corresponding feature vector
xi = (xi 1, xi 2). Afterwards, we can taste each papaya to establish whether it is tasty, in which case we
assign class label yi = +1, or whether it is not, which is encoded as yi = −1. The data-set we have
obtained is denoted by Dl =

{
xi , yi

}N
i=1 and is used for the training phase of a decision function. The

trained classifier is then ready to be applied on new observations, for which the class label is hidden.
This can result in an error, which is referred to as misclassification, or in a correct prediction. The
ultimate goal of a classifier is a low percentage of misclassified test examples and more generally a
small probability of error:

L( f ) = P(x,y)∼px y

({
x : f (x) 6= y

})
,

where f (x) is the prediction of the decision rule f (·) for the observation x, y is the true correspond-
ing label and px y the underlying distribution that generates the sample (x, y). An instance of a
data-set with a corresponding decision function is shown in Figure 2.1, in which it can be observed
how some points of the training set are misclassified.
The setting we described is called supervised learning and is characterized by the availability of a
labeled data-set, which means that every training measurement comes with its corresponding class
label. In some cases, the class tags are unknown and the classifier has to be trained with unla-
beled observations only. This setting is known as unsupervised learning. In the previous example
an unsupervised classification would consist in separating the papayas without knowing their true
membership in two classes, one of which is the group of tasty papayas and the other is that of non-
tasty papayas. Furthermore, there is a third framework in between supervised and unsupervised
learning. This setting is called semi-supervised learning (SSL). SSL consists in learning a classifier
under partial supervision, which means that some of the observed papayas are labeled while others
are not. The task of learning a classifier under partial supervision is the focus of this thesis and in
Section 2.2 we present an overview of the main algorithms for SSL. On the other hand, the specific

3



4 2. Preliminaries on Supervised and Semi-Supervised Learning

problem we treat in this work is stated and motivated in Section 2.3. However, let us first describe
the fundamental aspects of Pattern Recognition and, in particular, of supervised learning.
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Figure 2.1: Example of a classification task, showing a training set in R2 and a possible decision line. The plot
is obtained with a Matlab toolbox called PRTools [16].

2.1. Fundamentals of Pattern Recognition
The design of a classification system is conceptually divided in distinct phases, as illustrated in Fig-
ure 2.2. Given a data-set of measurements, the first two stages are called feature generation and
feature extraction. The former concerns the use of algorithms such as the Principal Component
Analysis (PCA) or the Singular Values Decomposition (SVD), that reduce the number of features
while retaining a certain percentage of the information. On the other hand, feature selection con-
sists in choosing a subset of the features that were present in the original measurements. In this
phase, the discrimination effectiveness of the features is measured and the least representative are
discarded. After these two stages, the data-set is defined and the focus is on the design of the clas-
sifier. For this task, there are several techniques that are based on diverse ideas and approaches to

Sensor
Feature

Generation
Feature

Selection

Classifier
Design

System
Evaluation

Figure 2.2: Diagram of the basic stages in the design of a classifier [46].

the problem. It has to be noted that the performance of a classifier depends on the data-set and
it is in general necessary to select the classifier and/or tuning its parameters for the specific task.
After having fixed the data-set and the classifier, the last stage consists in an evaluation of the sys-
tem. This can be done for instance by applying a technique called cross validation (CV), in which
the data-set is divided in K parts, leaving one out in the training phase and later using it to evaluate
the goodness of the model. This process is then repeated K times changing the set that is used for
testing, hence obtaining an estimate of the classification error that the classification system has on
unseen data. This method is called K -folded CV, but several different variations of it exist. As explic-
itly illustrated in Figure 2.2, at the end of the evaluation stage it is possible, and recommended, to
go back to one of the precedent stages and repeat the process. For instance, different classifiers or
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different representations of the data-set can be tested and the classification system that seems the
most accurate can finally be selected.

The design of a classifier is the focus of this thesis and from now on the data-set is assumed to
be fixed. In the following subsections we discuss some broad groups of classifiers in a supervised
framework, which is then used as a starting point for SSL algorithms.

2.1.1. Generative Probabilistic Models
Generative models tackle the classification problem by estimating the joint probability over the fea-
ture vectors and the class labels, which we denote p(x, y). Here we assume x ∈RD and y ∈ {−1,+1

}
,

which means there are two classes. Now, the discrete distribution on the class labels are denoted by
a capital letter P (·), while we use the notation p(·) for continuous densities. The Bayes formula can
then be used to obtain the posterior probability that x is a sample from class y as

P (y |x) = p(x |y)P (y)

p(x)
.

Here p(x|y) is called class conditional distribution and P (y) is referred to as prior probability.
An observed object x is then assigned class label +1 if

P (y =+1|x) > P (y =−1|x)

and label −1 otherwise. Note that this condition is equivalent to

p(x |+1)P (y =+1) > p(x |−1)P (y =−1) .

Now, we can define the decision error in this setting as

Pe =
∫

R+1

P (y =−1)p(x|y =−1)d x +
∫

R−1

P (y =+1)p(x|y =+1)d x ,

where
R+1 :=

{
x : p(x |+1)P (y =+1) > p(x |−1)P (y =−1)

}
and R−1 = RC

+1 , that is the complementary set. This scheme is known as the Bayes classification
rule if we have full knowledge of the involved distributions. Notably, the Bayes classification rule
achieves the lowest possible error, which is called Bayes error. We have then a lower bound for the
accuracy that a classifier can reach. However, this bound is useful only on a theoretical level, since
the true densities are unknown.
The prior probabilities are usually estimated by the fraction of observations from each class, thus
the class conditionals are the quantity of interest in generative probabilistic models. Estimates of
p(x|y) can then be obtained through any statistical method for density estimation. For instance,
parametric methods like the maximum likelihood (ML) and the maximum a posteriori (MAP), or
nonparametric methods like kernel density estimators, can be used. A very famous example of
maximum likelihood-based generative classifier is known as linear discriminant analysis (LDA), in
which the conditional distributions are assumed to be Gaussian with equal covariance.
Generative models are clearly suitable for situations in which we know that a particular model can
accurately describe the data.

2.1.2. Discriminative Probabilistic Models
Discriminative models estimate directly the posterior probability p(y |x), which is the object of in-
terest in classification. This agrees with Vapnik’s principle, which suggests that one should always
directly solve the problem of interest without trying to solve a more difficult one [49].
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Several discriminative methods have been developed and there is a wide variety of different ap-
proaches that fall into this class of algorithms. The most prominent example of a discriminative
probabilistic classifier is the logistic discrimination. In this setting, the logarithm of the likelihood
ratios is modeled as a linear function:

log
P (y =+1|x)

P (y =−1|x)
= w0 +wT x ,

where we limit our analysis to the two class case for simplicity of exposition and we assume both x
and w to be d-dimensional. It is then possible to take advantage from

P (y =+1|x) + P (y =−1|x) = 1

to obtain the following structure of the posterior probabilities

P (y =+1|x) = exp(w0 +wT x)

1+exp(w0 +wT x)
,

P (y =−1|x) = 1

1+exp(w0 +wT x)
.

The parameters w, w0 are then usually estimated with a maximum likelihood approach. The marginal
densities do not influence the optimization and thus the optimal parameters are obtained by

(ŵ , ŵ0) = argmax
(ŵ ,ŵ0)

N∑
i=1

log P (yi |xi ) ,

which define a linear classifier.

2.1.3. Surrogate Loss Functions
The logistic discriminant analysis can also be expressed in a different formulation, that is as the
minimizer of an appropriately defined empirical risk. Indeed, let us define the logistic loss as

`log i st i c ( f (x), y) = log
(
1+exp(−y f (x))

)
,

where f (x) is the decision function and y is the label corresponding to observation x. We can then
decide to restrict our attention to a specific hypothesis class, such as for instance that of linear clas-
sifiers. In this case f (x) = wT x and the logistic discriminant classifier is found by minimizing the
following risk:

Rl og i st i c (w |Dl ) = 1

N

N∑
i=1

log
(
1+exp(−yi (wT xi ))

)
.

This principle goes by the name of empirical risk minimization (ERM) and can naturally be ex-
tended to a wide range of loss functions. As we are interested in minimizing the misclassification
error, it is tempting to use the 0/1 loss, which is defined as

`0/1( f (x), y) = 1
(
sign( f (x)) 6= y

)
,

where 1
(
sign( f (x)) 6= y

) = 0 if sign( f (x)) = y , and 1
(
sign( f (x)) 6= y

) = 1 otherwise. This loss seems
the most appropriate, as the prediction of the linear classifier is defined by sign(wT x). However, per-
forming ERM with the 0/1 loss is known to be a NP-hard problem even for very simple hypothesis
classes [17]. For this reason it becomes necessary to use loss functions that lead to a computation-
ally tractable optimization, while having a somewhat close relation to the 0/1 loss. Because of the
former observation, surrogate loss functions are very often chosen to be convex, hence having a
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well defined minimization task. Another desirable property of a loss function `( f (x), y) would be to
define an upper bound to the value of the 0/1 loss, that is

`0/1( f (x), y) ≤ `( f (x), y) ,

which then straightforwardly implies a bound on the empirical risk:

R0/1( f |Dl ) ≤ R( f |Dl ) .

A well known class of such loss functions is that of margin based losses. These are losses of the par-

Figure 2.3: Plot of several convex margin based surrogate loss functions, taken from [29].

ticular form `( f (x), y) = φ(y f (x)), where y f (x) is usually called margin. Figure 2.3 shows some of
the most common members of this family, among which we observe the logistic loss. A particularly
celebrated margin based loss is the the hinge loss:

φhi ng e (y wT x) = max(0, 1− y wT x ) .

The hinge loss is used to build, together with an additional convex regularization term, the support
vector machine (SVM), which was first introduced in [12]. Intuitively, the SVM maximizes the mar-
gin between the decision line and the training observations. This simple idea turned out to be very
effective and as a consequence this is one of the most well known classifiers.

It is reasonable to wonder whether there are some guarantees that minimizing an empirical risk
based on a surrogate loss translates to a minimization of the classification error. This question has
been addressed extensively in the literature, for instance in [4, 5, 40, 41, 52, 53]. It turns out that,
under some assumptions on the loss function and on the flexibility of the hypothesis class, the ERM
framework asymptotically converges to the Bayes rule [4]. Nonetheless, it has to be noted that the
rate of convergence remains hard to characterize and thus in a finite sample setting this guarantee
may not be too informative.

2.1.4. Other Classification Algorithms
There is a large number of approaches that do not fall into the previous categories. For instance,
the k-nearest-neighbour (k-NN) [1] classifier assigns an unseen observation to the class to which
correspond more than half of the k nearest neighbours in the data-set Dl . Another very famous



8 2. Preliminaries on Supervised and Semi-Supervised Learning

alternative is known as neural networks [19] and use a combination of several layers and activation
functions to predict the output of a feature vector. Then, we can cite the decision trees [39]. These are
multistage decision systems in which a sequence of logical conditions is used to finally select and
accept a class. More classifiers can be considered at once, resulting in a combined classifier [23].
This procedure combines several independently trained classifiers using some rule. An example
of selection method is the majority voting rule, which defines the overall classifier by assigning a
feature vector to the class that is the most frequently chosen by the considered classifiers. Finally,
we cite kernel methods [14], in which the feature vectors are mapped to a different space in which
a classifier is trained. Kernel methods can be ideally used to transform the data so that the points
from each class can be separated more easily.

Other approaches to solve a classification problem are available, but are out of the scope of this
work. A more detailed literature survey can be found, for instance, in [34].

2.2. Semi-Supervised Learning

In many real world applications the labeling of large amounts of observations can be very expensive
and time consuming. This is the case in many applications of machine learning, such as for instance
speech recognition and webpage classification [11]. Semi-supervised learning (SSL) is the field of
research that studies the problem of learning from both labeled and unlabeled data. It is then evi-
dent how SSL is in between supervised and unsupervised learning. As such, SSL can be seen as an
unsupervised task with partial supervision or as supervised learning with additional information on
the distribution of the feature vectors. Most applications are easier to interpret in the former formu-
lation. The particular structure of the data-set favors the definition of two different ways of building
a semi-supervised classifier. These are inductive and transductive learning. In the former the goal
is to learn a general decision rule which can be applied to unseen data, while in the latter the goal is
to label (a subset of) the unlabeled observations that are available for the training phase. Either of
these principles can be adopted depending on the specific application.

2.2.1. Assumptions in SSL
Most SSL algorithms rely on assumptions on the distribution of the data. Here we mean to highlight
some of the most used. For the interested reader, an extensive introduction can be found in [11].
The meaning of these assumptions is in general that the distribution of the examples provides useful
information for the classification task. In other terms, the knowledge of p(x) that is obtained using
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(a) Plot of two labeled data-points, one for each
class, and of several unlabeled observations.
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(b) Plot of all the data-points with the correspond-
ing membership to either class.

Figure 2.4: Typical example of the information that can be added by the unlabeled data-set. The scatter-plots
are of the "banana data-set" from PRTools with 500 observations per class.
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the unlabeled observations should be meaningful in the inference of p(y |x).
A first assumption is called the semi-supervised smoothness assumption, which states that if two
points x1, x2 in a high density region are close, then so should be the corresponding outputs y1, y2.
In other terms, if two points are linked by a path of high density, then their outputs are likely to be
close. This can then be formulated slightly differently: if the points are in the same cluster, they are
likely to be of the same class. This is known as the cluster assumption and is justified by the fact that
classes should be identifiable in a classification problem. Clearly, we could consider a high density
region as a cluster, hence the two assumptions above have a similar meaning. Equivalently, the low
density separation assumption states that the decision boundary should lie in a low-density region.
These hypotheses are evidently similar, but inspire different classes of algorithms.
Another important assumption is the manifold assumption: the (high dimensional) data lie roughly
on a low dimensional manifold. This allows to avoid the curse of dimensionality. In some sense, the
manifold assumption is again similar to the previous assumptions, as a manifold can be seen as an
approximation of high density regions.

2.2.2. Classes of Algorithms for SSL

A first illustrative approach to SSL was introduced in the 1960s, then applied to the setting of Gaus-
sian discriminant analysis in [37] and is generally referred to as self-learning or self-training. The
simple idea is the following. First, suppose that N labeled observation Dl =

{
(xi , yi )

}N
i=1 and M un-

labeled observations
{
u j

}M
j=1 are available, where xi , u j are feature vectors and yi are the labels

representing the membership of a data point to a class. In self-learning a supervised inductive clas-
sifier is trained on the labeled data-set of observations. This can be done in a generative model
for instance by computing the parameters that maximize the likelihood on Dl . Then, the obtained
classifier is used to label the unlabeled feature vectors

{
u j

}M
j=1, according for instance to the Bayes

classification rule. This starts an iterative procedure in which a new supervised classifier is trained
on the full data-set, where the labels of the unlabeled points are given by the previous classifier. The
iterations stop when the method converges to a model that is then the returned semi-supervised
classifier. Self learning has in some cases a puzzling behaviour and is known to sometimes lead to
performance degradation with respect to the original supervised learner.

Since then, SSL has become a very active field of research and here we present some broad groups
of algorithms. A first class of algorithms is composed by generative models. As defined earlier, these
models choose to estimate the class conditional densities p(x|y), thus information on p(x) is use-
ful. For instance, each conditional density can be modeled as a Gaussian and the optimal parameter
can be computed with the EM algorithm [15], which is a standard tool for inference in missing data
settings. A well known application of this framework to text classification can be found in [38]. Gen-
erative approaches have the useful property that knowledge of the structure of the data can be easily
incorporated in the model. However, in Section 2.3.1 we discuss how the wrong modeling assump-
tions can negatively affect the classifier.
Another class of methods is composed by algorithms that try to directly implement the low-density
separation assumption we introduced in Section 2.2.1, that is by pushing the decision boundary
away from the unlabeled observations. The underlying idea is evidently very similar to SVM, for
which a semi-supervised version called transductive SVM was introduced in [21]. Because of the
transductive nature of the algorithm, predictions are made only at a fixed number of test points.
A different SVM-based approach that takes advantage of the low-density assumption is [31] and is
discussed in more detail in Section 2.3.
The last class we discuss is that of graph-based methods. The basic idea is to represent the observa-
tions as nodes of a graph and to use the edges to represent the distance between the incident nodes.
Then, a decision function is chosen by minimizing the preferred measure on labeled and unlabeled
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data. A possible choice is for instance the quadratic energy function, as discussed in [56], [54]:

E( f ) = 1

2

∑
i , j

wi j
(

f (i )− f ( j )
)2 ,

where wi j is the distance between nodes i and j , while f (·) is the function that is learned by mini-
mizing the energy. Several methods rely on the graph Laplacian [50]. For instance, in [6] the Lapla-
cian is used to define a Bayesian approach to graph-based learning that allows for uncertainty quan-
tification in predictions. Graph based methods are naturally transductive, but generalizations to
inductive classifiers have been studied.

It should by now be clear that there are several approaches to semi-supervised learning. We point
to [55] for a comprehensive and detailed survey, which is out of our scope. In this work however we
focus on a specific problem that arises in SSL, which is discussed in the next section.

2.3. Safe Semi-Supervised Learning
Semi-supervised learning has been shown to be a useful tool in many areas of application. How-
ever, semi-supervision can lead to a performance degradation with respect to the corresponding
supervised classifier. This unwanted and worrying behaviour goes against the fundamental idea
that the addition of unlabeled data results in a more accurate model. There has then been increas-
ing attention on this issue and here we discuss the most interesting works in this direction. We start
with a theoretical analysis of the case in which a wrong model is chosen in a generative setting, as
discussed in [13]. Then, we introduce two methods that try to mitigate this effect in different ways.
These are [22, 31]. Finally, we dedicate a longer section to the approach that is the focus of this thesis
[29, 33].

2.3.1. Risks of Semi-Supervised Learning
The literature of semi-supervised learning contains a number of papers guaranteeing benefits from
unlabeled data for generative models that are based on a correct model. For instance, we can cite
[9], [10]. On the other hand, there is strong empirical evidence that unlabeled data may cause a
performance degradation. As stated in [13] "performance degradation may occur whenever the
modeling assumptions adopted for a particular classifier do not match the characteristics of the
distribution generating the data". This is a crucial problem, as it is generally very difficult to show
that a model is correct and the same holds for the assumptions that are very often made in semi-
supervised learning algorithms. This claim is supported by an asymptotic analysis of the maximum
likelihood estimates. To understand this better, we assume a generative model is adopted and thus
that the joint probability is modeled by a parametric family of distributions p(x, y |θ). Suppose now
that the labels are missing completely at random (MCAR) [32]. This is assumed through the en-
tire thesis. Suppose then and that the semi-supervised estimates are computed by maximizing the
following log-likelihood:

L(θ) =
N∏

i=1
p(xi , yi |θ)

M∏
j=1

p(u j |θ) ,

where the marginal density of x is a mixture p(x|y = +1,θ)p(y = +1|θ)+p(x|y = −1,θ)p(y = −1|θ)
that is assumed to be identifiable. Furthermore, we call λ the probability that a label is not hid-
den. Then, it is possible to show that the limiting value of the maximum likelihood estimates is the
following:

θ∗λ = argmax
θ

(
λEp(x,y)

(
log p(X ,Y |θ)

)+ (1−λ)Ep(x,y)
(
log p(X |θ)

))
. (2.1)

It is possible to see that the semi-supervised objective function is asymptotically a combination
of objective functions for supervised and unsupervised learning. We can then denote the labeled
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and unlabeled limits respectively as θ∗1 and θ∗0 . Now, for a correct model we have that there is a
parameter θT such that p(x, y |θT ) = p(x, y). In this case the model is consistent by identifiability,
thus θ∗1 = θ∗0 = θT and the classification error converges to the Bayes error, that is the lowest value
attainable. Hence, the addition of unlabeled observations is useful to converge to the Bayes error if
the model is correctly specified.
It can also happen that the true underlying distribution is not in the parametric family that is used by
the model. In that case, let us denote by e(θ) the classification error with parameter θ and suppose
e(θ∗0 ) > e(θ∗1 ). Then, for a large number of labeled objects the error converges to e(θ∗1 ). But the limit
approaches e(θ∗0 ) if we add a large number of unlabeled observations. Therefore, the classification
error is higher using the complete data-set compared to using labeled data only. In this sense we
can expect this undesired asymptotic behaviour of the semi-supervised classifier. It has however to
be noted that this analysis does not imply that, in a finite sample setting, the addition of unlabeled
data cannot result in an improvement even with a wrong model.
In the following sections we discuss three proposals to overcome this issue.

2.3.2. Safe Semi-Supervised Learning Based on Weighted Likelihood
We present here a first approach to safe semi-supervised learning, that is discussed in [22] and is an
extension of [45]. Here we mean to highlight the main ideas, assumptions and results.
Given labeled and unlabeled data, the authors choose the following statistical models

P y |x =
{

p(y |x,α) :α ∈A ⊂Rd
}

and

Px =
{

g (x|η) : η ∈N ⊂Rk
}

.

A key assumption is that Px is assumed to be correctly specified, which means that it contains the
true marginal density. Nonetheless, P y |x is not necessarily correctly specified. This is then a weaker
assumption than [10] and it implies that the model for the joint density may be incorrect.
Now, the approach uses a weight factor, that is

wN (x|η,η′) := g (x|η′)+ρNν

g (x|η)+ρNν
,

where −1/2 < ν< 0 and ρ ≥ 0 are used for regularization purposes. The model is then defined by

η̂ := argmax
η

N∑
i=1

log(g (xi |η)) ,

η̂′ := argmax
η

M∑
j=1

log(g (u j |η)) ,

α̃ := argmax
α

N∑
i=1

wN (xi |η̂, η̂′) log(p(yi |xi ,α) .

The estimator α̃ is called DRESS (Density Ratio Estimation-based Semi-Supervised estimator) I. A
different estimator can be obtained by slightly changing the previous formulation by

η̂′ := argmax
η

N∑
i=1

log(g (xi |η))+
M∑

j=1
log(g (u j |η)) ,

while the remaining estimates are left unchanged. This alternative is called DRESS II and is showed
geometrically to be better than DRESS I. It is then proved by asymptotic theory that DRESS I never
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performs worse asymptotically than the respective supervised estimator in terms of parameter esti-
mation if g (x|η) is correctly specified and there are more unlabeled than labeled points, i.e. M > N .
Furthermore, DRESS I improves the supervised model if P y |x is not correctly specified, while if it is
then DRESS I is equivalent to the supervised estimate. Under these assumptions, it is also shown
that DRESS II is asymptotically better than DRESS I, hence it improves even more the supervised
model if P y |x does not contain the true density. It is worth noting that the improvement happens in
the asymptotic variance.
While these results are interesting, some arguably strong assumptions are required. Moreover, in
practical applications the amount of data is limited and an asymptotic result of improvement can
be unreliable, thus meaning that a degraded performance can still be observed in a finite sample
setting. In the next section we discuss a method with a finite sample guarantee.

2.3.3. SV4Ms
In [31] Li and Zhou proposed a safe semi-supervised version of the support vector machine called
SV4Ms. The method is first based on the assumption that the data-set is such that there exist mul-
tiple low density separators M = {

ŷt
}T

t=1. This is claimed to be usually the case with large amounts
of unlabeled data. Denote now the supervised inductive SVM as wsvm , its output on the unlabeled
data as ysvm and the ground truth labels as y∗. Then, for any label assignment y ∈ {−1,+1}M intro-
duce ear n(y, y∗, ysvm) and lose(y, y∗, ysvm), which are respectively the number of points in which
y is right and ysvm is not and the other way around, where the truth is y∗. We can then define

J (y, y∗, ysvm) = ear n(y, y∗, ysvm) − λ l ose(y, y∗, ysvm) ,

where λ is a parameter that determines the amount of risk that the user would like to undertake.
Intuitively, we would like to maximize J (y, y∗, ysvm). However, y∗ is unknown. To mitigate this
difficulty the ground truth labeling is assumed to be realized by a low density separator in

{
ŷt

}T
t=1,

i.e. y∗ ∈M . The semi-supervised SVM classifier is then defined as

ȳ = argmax
y∈{−1,+1}M

min
ŷ∈M

J (y, ŷ , ysvm) .

It can then be proved that if y∗ ∈ M and λ ≥ 1, then the accuracy of ȳ is never worse than that
of ysvm in the sense that ear n(ȳ , y∗, ysvm) ≥ lose(ȳ , y∗, ysvm). This is equivalent to saying that
the classification error of ȳ on the unlabeled data-set is lower than that of the supervised classifier
ysvm . Note that on the labeled data ysvm is likely a better predictor than ȳ as it is chosen on the
labeled data-set. Moreover, there are no guarantees on the generalization performance of SV4M on
unseen data. Finally, it has to be noted that the assumption that the true labeling of the unlabeled
observations is assigned by one of the low density separators is very strong. This assumption can
in no way be checked and is a key argument in the analysis in [31]. Therefore, violations of this
assumption have a crucial effect on the validity of the improvement guarantee. It is then unclear
whether one can expect an improvement given a real data-set.

2.3.4. Contrastive Pessimistic Semi-Supervised Learning
A different approach to safe semi-supervised learning was proposed in [33] for a specific generative
classifier, and then extended to margin based losses in [29]. We do not discuss [33] in this section, as
we extend its analysis in Chapters 4 and 5. Therefore, here we report the main findings in [29] and
we use this as a first introduction to the main concepts.
The idea is to explicitly compare the performance of the semi-supervised with that of the supervised
classifier on both the labeled and unlabeled data in the worst case scenario. This pessimistic choice
can in some cases be used to establish whether we can conclude our classifier is never worse than
the supervised model. The performance measure that is adopted to compare the two models is
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the same that is used for the training of the supervised classifier. For instance, if a specific loss
is selected, then the model minimizes a semi-supervised version of that loss which includes the
unlabeled feature vectors. This makes sure that the result is not affected by other factors and that
really reflects a possible improvement.
Here we discuss how the application of these principles proves that there is no safe semi-supervised
learner for some choices of margin based losses, as discussed in [29].

We can then consider the task of binary classification with a restriction to linear classifiers. This
means that the vector of labels is y ∈ {−1,+1

}N , while the labeled feature vectors are grouped in the
N ×d design matrix X . Then, any new measurement x ∈Rd is classified according to sign(xT w).
We can now define a supervised linear classifier by minimizing the following empirical risk:

Rφ(w |X , y) =
N∑

i=1
φ(yi xT

i w)+λ(w) ,

whereφ is a margin based loss andλ(w) is a regularization term that is assumed convex in w . There-
fore, the supervised estimate of w is

ŵsup = argmin
w∈Rd

Rφ(w |X , y) .

We can then add M unlabeled observations u j , which define a M×d dimensional design matrix Xu .
In order to take advantage of this additional data-set, a semi-supervised risk is defined:

R semi
φ (w, q |X , y, Xu) = Rφ(w |X , y) +

M∑
j=1

(
qiφ(uT

i w)+ (1−qi )φ(−uT
i w)

)
, (2.2)

in which q ∈ [0,1]M are coefficients that expresses the unknown and possibly soft membership of
each unlabeled object to a class. Naturally, the true labels would correspond to hard memberships
qtr ue =

{−1,+1
}
. Now, we can compare a classifier w with the supervised classifier by defining the

following difference

Dφ(w, q|ŵsup , X , y, Xu) = R semi
φ (w, q|X , y, Xu)−R semi

φ (ŵsup , q|X , y, Xu) .

A semi-supervised classifier ŵsemi is then said to be safe if the following condition is satisfied:

max
q∈[0,1]M

Dφ(ŵsemi , q|ŵsup , X , y, Xu) ≤ 0. (2.3)

In other words, the classifier is safe if it has a lower semi-supervised risk than ŵsup even for the
worst possible labeling. This guarantees that in any other case the semi-supervised classifier can
never result in a degradation in terms of the chosen loss. We can then note that qtr ue ∈

{−1,+1
}M ⊂[

0,1
]M , so this property holds in particular on the full data.

It is useful to define the set of classifiers induced by different responsibilities as

Cφ =
{

argmin
w∈Rd

R semi
φ (w, q|X , y, Xu) : q ∈ [

0,1
]M

}
. (2.4)

This set is called the constraint set and plays an important role in determining whether a safe classi-
fier can be built at all. Indeed, Lemma 1 in [29] states that if Rφ(w |X , y) is strictly convex, ŵsup ∈Cφ

and ŵsemi 6= ŵsup , then there exists a q∗ such that

R semi
φ (ŵsemi |X , y, Xu , q∗) > R semi

φ (ŵsup |X , y, Xu , q∗) .
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It is easy to see that this happens for q∗ such that

ŵsup = argmin
w∈Rd

R semi
φ (w |X , y, Xu , q∗) .

This result serves as an intermediate step to prove that ŵsup is always in the constraint set if the
chosen margin based loss is decreasing and convex, while the supervised risk is strictly convex. For
such losses the supervised vector of coefficients can always be retrieved by choosing

qi = φ′(−uT
i ŵsup )

φ′(uT
i ŵsup )+φ′(−uT

i ŵsup )
,

which is sufficient to set to zero the gradient of the semi-supervised risk evaluated at ŵsup . This re-
sult shows that for decreasing convex margin based losses it is not possible to build a semi-supervised
classifier that satisfies Condition (2.3) while strictly improving over the supervised classifier for at
least a choice of q . It is then clear that several well known losses cannot be used to build a safe semi-
supervised learner. Examples of decreasing convex losses are the hinge loss, which is used to build
the support vector machine, the logistic loss and the exponential loss. On the other hand, losses
that do not fall into this analysis are for instance the quadratic and the absolute loss.
In order to understand when an improvement is to be expected we can focus on the following min-
imax problem:

min
w∈Rd

max
q∈[0,1]M

Dφ(w, q |ŵsup , X , y, Xu , q) . (2.5)

This is equivalent to searching for the classifier that minimizes the risk for the most adversarial
choice of the soft assignments of each unlabeled observation to a class. Now, in [29] it is claimed
that for convex losses Sion’s minimax theorem (Corollary 3.3 in [44]) can be applied to show that
indeed no degradation can occur if ŵsemi is computed by (2.5). We comment and clarify this claim
rigorously in Chapter 3. Nonetheless, a strict improvement is not guaranteed if the supervised clas-
sifier is in the constraint set. It is then necessary to define at least some sufficient conditions that
certify that this does not happen. We can for instance consider the gradient of R semi

φ , evaluate it in
ŵsup and check when it is null. In the cases where this condition does not hold, it is possible to state
that the semi-supervised classifier comes with a performance improvement. This line of reasoning
results in the following equation:

M∑
j=1

qiφ
′(uT

i w)ui − (1−qi )φ′(−uT
i w)ui = 0. (2.6)

If only one unlabeled observation is available , that is Xu = uT , Equation (2.6) is equivalent to re-
quiring that there is no q ∈ [

0,1
]

such that(
φ′(uT w)+φ′(−uT w)

)
uq =

(
φ′(−uT w)

)
u . (2.7)

In addition, a different condition is expressed for convex losses that are decreasing to the left of 1
and increasing to the right of 1, which means

φ′(a)

≤ 0, if a ≤ 1,

> 0, if a > 1.

Theorem 3 in [29] states that for these losses an improved semi-supervised estimator is obtained if
|uT

i ŵsup | > 1 for all unlabeled observations. As the authors discuss, this is a very strong requirement
and is not in general usable in practical applications. The quadratic loss is in particular included in
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this theorem, but a sharper result is obtained. An improved semi-supervised classifier is expected
in case d ≤ M if

||Xu ŵsup ||22 > U .

It is then clear that for the quadratic loss it is not necessary that all unlabeled points lie outside of
the margin, but it is sufficient that some observations are sufficiently far outside of it.

This work illustrates that guarantees of performance improvement are very hard to obtain in the set-
ting of empirical risk minimization with margin based losses. For decreasing convex losses it even
shows that it does not exist a safe classifier that improves over the supervised estimator for some
choices of q . Nonetheless, classifiers with such properties do exist for non-decreasing losses if the
data-set satisfies some requirements.
The use of contrast and pessimism seems to be the only way to verify whether safe improvements
are at all possible. While being a strong restriction, we previously discussed that determining the
existence of this type of classifiers is of great importance in semi-supervised learning. For instance,
if it is proved that a safe improved classifier cannot be found using a certain loss function, then we
should avoid using that particular loss. Finally, it is crucial to observe that no assumptions on the
data are made. This differentiates this method from the previous works and makes its analysis more
reliable and meaningful.

In the next chapter we formulate the contrastive pessimistic semi-supervised version of least squares
classification. As we will see, in that setting we are able both to show a non degradation property
and to define a condition for strict performance improvement.





3
Contrastive Pessimistic Least Squares

Classification for Semi-Supervised
Learning

We start our analysis with the extension of the contrastive pessimistic approach to least squares clas-
sification. This setting was studied in [27, 28] and therefore allows also an interesting comparisons
of the proposed method with other algorithms. The first sections are dedicated to the introduc-
tion of the necessary theoretical tools on minimax problems and on least squares classification.
We then move to the contrastive pessimistic least squares (CPLS) classifier, for which properties of
non-degradation and strict improvement are proven in Theorems 3.6 and 3.8.

3.1. Theory of Minimax Problems
Minimax problems play an important role in the analysis of the contrastive pessimistic approach,
so we dedicate this section to an introduction of the necessary theory.

In order to define a minimax problem we first introduce two non-empty sets X and Y and a generic
function K : X ×Y →R. We are then interested in taking for each x ∈X the infimum of K (x, y) over
y ∈Y and then taking the supremum of the infimum as a function of x ∈X , which results in

sup
x∈X

inf
y∈Y

K (x, y) .

Symmetrically, we could need to take the supremum before the infimum

inf
y∈Y

sup
x∈X

K (x, y) .

The two minimax formulations generally have different values. This is illustrated by the following
inequality, which is Lemma 36.1 in [42]:

sup
x∈X

inf
y∈Y

K (x, y) ≤ inf
y∈Y

sup
x∈X

K (x, y) . (3.1)

In some cases equality is attained in (3.1), that is equivalent to saying that the order of the optimiza-
tion does not influence the result. The common value is called minimax or saddle value of function
K . In case the supremum on the left hand side of inequality (3.1) and the infimum on the right are
attained, then the solution is said to be a saddle point. This is a point (x̄, ȳ) such that

K (x, ȳ) ≤ K (x̄, ȳ) ≤ K (x̄, y) ∀x ∈X , ∀y ∈Y .

17
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The existence of a saddle point is a necessary and sufficient condition for the minimax equality :

max
x∈X

min
y∈Y

K (x, y) = min
y∈Y

max
x∈X

K (x, y) . (3.2)

Nonetheless, there may not be a saddle point of the minimax problem unless the objective function
satisfies some assumptions. It is still important to establish whether equality holds in (3.1), and even
more if a saddle point exists. An important result in this direction is Lemma 36.2 in [42], which we
now state.

Lemma 3.1. Let K : X ×Y →R and let X ×Y be a non-empty product set. A point (x̄, ȳ) is a saddle
point if and only if the following conditions hold:

i. the supremum in sup
x∈X

inf
y∈Y

K (x, y) is attained at x̄,

ii. the infimum in inf
y∈Y

sup
x∈X

K (x, y) is attained at ȳ ,

iii. equality in (3.1) holds.

Moreover, if (x̄, ȳ) is a saddle point, then the saddle value of K is K (x̄, ȳ).

There are several theorems in the literature that give conditions under which the supremum and the
infimum are interchangeable. The first result of this kind was von Neumann’s theorem [51], which
was restricted to compact sets X , Y . Since then, many researchers have proved that equality in
(3.1) holds under weaker assumptions. In particular, Sion proved a very interesting generalization
that holds when only one of the two sets is compact. This is Corollary 3.3 in [44]. The result is stated
in a rather technical form and uses advanced notions as topological spaces and semicontinuous
functions. However, the settings that are treated in this thesis do not require such an abstraction.
We will deal with vector spaces on which it is trivial to define a topology and it will be sufficient to
know that a continuous convex function is also semicontinuous and quasi-convex. The interested
reader can find the more abstract definitions in Appendix A.

Theorem 3.2. Let X be a convex subset of a linear topological space and Y be a compact convex
subset of a linear topological space. Let K : X ×Y → R be a function which satisfies the following
properties:

i. K (·, y) is upper semicontinuous and quasi-concave on X for each y ∈Y ,

ii. K (x, ·) is lower semicontinuous and quasi-convex on Y for each x ∈X .

Then
sup
x∈X

min
y∈Y

K (x, y) = min
y∈Y

sup
x∈X

K (x, y). (3.3)

Note that the theorem is here stated similarly as in [25], where the infimum is replaced by a mini-
mum because Y is a compact set and we can use the Weierstrass theorem for lower semicontinuous
functions (see Theorem 2.8 in [3]).

3.2. Least Squares Classification
In Section 2.1 we discussed several alternative approaches to solve the problem of supervised learn-
ing. Here we focus on learning a classifier by minimizing the square loss:

`l s(y, f (x)) = (y − f (x) )2 .
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The training set in the supervised setting is assumed to be composed of N labeled points
{

xi , yi
}N

i=1,

where xi ∈ RD and yi ∈
{
0,1

}N for any i = 1, . . . , N . We consider the class of linear classifiers with
intercept, that is

f (x) = wT
s x + w0 ,

where ws ∈RD , w0 ∈R. In order to lighten the notation, the intercept can be embedded in the slope
coefficient as w = (wT

s , w0)T . The feature vectors are also modified as xi = (xT
i ,1)T , with a clear

abuse of notation. Therefore, the dimensionality of w and of each xi becomes (D + 1). It is quite
useful to express the problem in matrix notation, thus we call X ∈ RN×(D+1) the design matrix that
has xT

i at the i -th row. Similarly, yi ∈
{
0,1

}N is the vector of labels.
The least squares classifier is obtained by minimizing the following empirical risk:

R(w |X , y) =
N∑

i=1
`(yi , wT xi )

=
N∑

i=1
(yi −xT

i w)2

= ∥∥y −X w
∥∥2 ,

(3.4)

that is the sum of the squared errors. Then, the optimal vector w is

ŵsup = argmin
w∈RD+1

R(w |X , y) . (3.5)

By convexity of the objective function, we can compute ŵsup by setting the gradient of R(w |X , y) to
0. The resulting solution is the following

ŵsup =
(

N∑
i=1

xi xT
i

)−1 N∑
i=1

yi xi

=
(

X T X
)−1

X T y .

(3.6)

Note that the matrix X T X =∑N
i=1 xi xT

i is usually referred to as the sample correlation matrix, while
X † = (X T X )−1X T is the pseudo-inverse of X . Clearly, this notation for the pseudo-inverse is mean-
ingful if X T X is invertible, which is not the case for instance if d > N . In case invertibility does not
hold, the optimal vector of parameters can be computed either using the singular value decompo-
sition to compute the pseudo-inverse X † or adding a regularization term in the loss function. In
particular, the most common choices of regularization are the Lasso [48] and Ridge, which consist
in adding respectively the L1 or L2 norm of w .

3.2.1. Semi-Supervised Least Squares Classification

In the semi-supervised setting we incorporate M additional unlabeled observations
{
u j

}M
j=1, which

are contained in the design matrix Xu ∈ RM×(D+1). The complete design matrix is then defined as
Xe = (X T , X T

u )T . In order to avoid any issue, in the following theoretical framework we assume
both X T X and X T

e Xe to be invertible. We can then define the complete vector of labels as y∗
e =

(yT , (y∗
u )T )T , where y∗

u ∈ {
0,1

}M is unknown to the user in SSL. Let us now define the oracle solution
as the minimizer of the empirical risk on the complete data-set (Xe , y∗

e ):

ŵor acl e =
(

X T
e Xe

)−1
X T

e y∗
e . (3.7)

The oracle solution is then the optimal classifier and serves as a benchmark solution. Semi-supervised
algorithms should aim to have a performance as close to the oracle as possible, while outperform-
ing the supervised solution.
In the next section we discuss two least squares-based approaches to semi-supervised learning.



20 3. Contrastive Pessimistic Least Squares Classification for Semi-Supervised Learning

3.3. Preexisting Least Squares Methods for Semi-Supervised Learning
The two approaches we discuss in this section are the projection method [28] and the implicitly
constrained least squares (ICLS) approach [27]. These methods possess some properties on their
robustness that are very desirable in practical applications.

3.3.1. Projection Method
The projection method [28] is an approach based on the intuitive idea that it is possible to get closer
to the oracle solution by defining a set that contains it and then projecting the supervised model
onto this set. Clearly, there are several choices as of how to measure the distance between two
parameter vectors. As a consequence, different choices of the metric lead to different results. In one
of the available formulations the semi-supervised solution is guaranteed to be at least as good as the
supervised solution in terms of the square loss on both labeled and unlabeled data. This robustness
property shows that for some classifiers it is possible to build a semi-supervised version that is at
least as good as their supervised counterpart on the full data set for any labeling of the unlabeled
observations.

First, it is necessary to define a set that contains the oracle solution. The key observation is that
by varying the labels on the unlabeled observations it is possible to obtain the optimal vector of
parameters using the closed form solution to the least squares criterion for any specific labeling.
Then, choosing y∗

e we obtain ŵor acl e . This set can be defined as

Cw :=
{

w = (X T
e Xe )−1X T

e

(
y

yu

)
: yu ∈ [0,1]M

}
. (3.8)

Note that soft labels are allowed.
Then, a notion of distance has to be chosen. The authors consider the following metric:

d(w1, w2) =
√

(w1 −w2)T X T
o Xo(w1 −w2) , (3.9)

where matrix X T
o Xo is assumed to be positive definite. The semi-supervised estimate is then defined

as
ŵpr o j = argmin

w∈Cw

d(w, ŵsup ) . (3.10)

Different choices of matrix Xo lead to different solutions of the minimization task. Selecting the full
design matrix Xe it is possible to show that the obtained vector of parameters is robust as discussed
earlier. More precisely, given the design matrices X and Xe and assuming X T

e Xe positive definite,
the projected estimator satisfies the following inequality:∥∥∥y∗

e −Xe ŵpr o j

∥∥∥2 ≤
∥∥∥y∗

e −Xe ŵsup

∥∥∥2
.

This means that in terms of the least squares criterion the projected solution performs always at
least as well as the supervised parameter vector. The empirical tests performed in [28] corroborate
this result and also show that the projection method succeeds in lowering the classification error.

There are other choices for matrix Xo that could seem natural. One of the most natural is certainly
the design matrix of labeled observations. This choice seems to lead to a less conservative method
known as the Implicitly Constrained Least Squares (ICLS) classifier, which is discussed in the next
section.

3.3.2. Implicitly Constrained Least Squares
The ICLS approach [27] builds a least squares-based semi-supervised classifier using a particular
choice of distance in the setting of the projection method, that is choosing Xo to be the design
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matrix of labeled observations. This results in an estimate that performs better empirically, but that
does not have the robustness guarantee discussed above.

The ICLS estimate is defined as the element of Cw which minimizes the supervised least squares
criterion. This idea can be formulated mathematically as:

min
w∈RD+1

∥∥y −X w
∥∥2

subject to w ∈Cw .
(3.11)

This results in a standard quadratic programming problem which is stated to be efficiently solvable
using a quasi-Newton approach.
Now, we can show the claim that the ICLS approach is in fact equivalent to the projection method
when the metric is induced by the design matrix X . Indeed, we can express the minimization as

min
w∈Cw

∥∥y −X w
∥∥2 = min

w∈Cw

(
‖X w‖2 −2yT X w

)
+ ∥∥y

∥∥2 ,

where the last term is out of the minimum because it does not depend on w . On the other hand, the
minimization task of the projection method can be written as

min
w∈Cw

(w − ŵsup )T X T X (w − ŵsup ) = min
w∈Cw

(
‖X w‖2 −2yT X w

)
+ yT X (X T X )−1X T y ,

where we used that ŵsup is of the form defined in (3.6). It is then clear that the semi-supervised
vector of parameters is the same for both methods, hence the equivalence between them.

The ICLS has an interesting theoretical result which is now discussed to close this subsection.
Assume the measurements xi and ui are scalars and assume exact knowledge of the marginal dis-
tribution p(x). This assumption is basically equivalent to having unlimited unlabeled data, as this
means solving a density estimation problem with an infinite amount of observations. Then, con-
sider a linear model without intercept, i.e. y = xw . In this setting, the expected risk is defined as

R∗(w) = ∑
y∈{0,1}

∫ ∞

−∞
(y −xw)2p(x, y)d x

and the optimal value is w∗ = argminw∈RR∗(w). It is then proven that the ICLS estimate has an
equal or lower risk than the supervised solution:

R∗(ŵsemi ) ≤ R∗(ŵsup ) .

This result shows how in this specific setting the ICLS approach always obtains an estimate which
is at least as good as the supervised one. While this property is shown in a very specific and limited
setting, empirical tests indicate that the performance of this semi-supervised classifier is usually
better than that of the supervised case one.

3.4. Contrastive Pessimistic Semi-Supervised Least Squares Classification

We now extend the principles discussed in Section 2.3.4 in order to define a semi-supervised least
squares-based classifier that is at least guaranteed to be at least as good as the corresponding super-
vised model. This property is formally stated in Theorem 3.6, while a condition for strict improve-
ment is Theorem 3.8. Moreover, in Proposition 3.4 the CPLS approach is showed to be equivalent to
the projection method for a specific choice of matrix Xo .



22 3. Contrastive Pessimistic Least Squares Classification for Semi-Supervised Learning

3.4.1. Definition of the CPLS Classifier
First, a risk that includes both labeled and unlabeled data has to be defined. We define the semi-
supervised risk as

R(w, q|Xe , y) = R(w |X , y) +
M∑

j=1

(
q j (uT

j w)2 + (1−q j )(1−uT
j w)2

)
, (3.12)

where each q j = p(y = 0|u j ) is the conditional probability of observing label 0 given measurement
u j . Each u j is partially assigned to either class where the weight is assigned by vector q . Alterna-
tively, we could define a soft label yu

j = 1− q j that describes partial membership. We will switch
from one formulation to the other, depending on the current situation.
The semi-supervised risk of w has to be compared to that of ŵsup , thus defining the contrastive risk:

C R(w, q|ŵsup , Xe , y) = R(w, q|Xe , y) − R(ŵsup , q|Xe , y) . (3.13)

This quantity allows us to explicitly compare our semi-supervised solution with the supervised one.
Note that Equations (3.12) and (3.13) are functions of the vector of posterior probabilities q , which
is clearly unknown. We choose the most pessimistic posteriors, i.e. the vector q that minimizes the
improvement of our estimate w with respect to ŵsup . This results in the contrastive pessimistic risk
(CPR):

C PR(w |ŵsup , Xe , y) = max
q∈[0,1]M

C R(w, q|ŵsup , Xe , y) . (3.14)

The CPLS semi-supervised solution is then defined as follows.

Definition 3.3. Let ŵsup be the minimizer of the supervised risk R(w |X , y). Let Xe be the full design
matrix, which includes the M unlabeled observations. The CPLS solution is the minimizer of the CPR:

ŵC PLS = arginf
w∈RD+1

C PR(w |ŵsup , Xe , y) .

We have thus defined a minimax problem that can be written as

inf
w∈RD+1

max
q∈[0,1]M

(
R(w, q|Xe , y) − R(ŵsup , q|Xe , y)

)
. (3.15)

In the next subsection we show that this formulation can be interpreted differently.

3.4.2. Interchangeability of the Minimization and the Maximization
In Section 3.1 we stated the very powerful Sion’s minimax theorem, which was Theorem 3.2. This
result proves to be extremely useful in the analysis of the CPLS, for instance in the proof of Theo-
rem 3.6. The assumptions on the objective function are perfectly satisfied by the contrastive risk
a defined in (3.13). Indeed, C R(w, q |ŵsup , Xe , y) is continuous in both variables, and in addition
concave in q and convex in w . Moreover, the vector of posteriors q varies in a compact set, that is
the multi-dimensional box [0,1]M . As a consequence, the infimum and the maximum can be freely
interchanged:

inf
w∈RD+1

max
q∈[0,1]M

(
R(w, q|Xe , y) − R(ŵsup , q |Xe , y)

)
= max

q∈[0,1]M
inf

w∈RD+1

(
R(w, q|Xe , y) − R(ŵsup , q|Xe , y)

)
.

This property allows us to compute the structure of w that results by solving the infimum first. Since
the objective function is strictly concave in w , we can simply set its gradient to 0 to obtain

−2
N∑

i=1
(yi −xT

i w)xT
i +2

M∑
j=1

(
q j wT u j uT

j + (1−q j )(wT u j uT
j −uT

j )
)
= 0.
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We can then rearrange the above equation as

ŵ(yu) =
 N∑

i=1
xi xT

i +
M∑

j=1
u j uT

j

−1  N∑
i=1

yi xi +
M∑

j=1
yu

j u j


=

(
X T

e Xe

)−1
X T

e

(
y

yu

)
.

(3.16)

The second equality is obtained by noting that
∑N

i=1 xi xT
i +∑M

j=1 u j uT
j = X T

e Xe . It is then evident
that ŵ(yu) is the least squares solution of a supervised classification task with design matrix Xe and
vector of labels ye = (yT , yT

u )T . Therefore, ŵC PLS is in the constraint set Cw we introduced in (3.8)
independently of the labeling that is chosen in the maximization task.

3.4.3. Equivalence with the Projection Method
We can now prove that the CPLS solution as in Definition 3.3 is equivalent to the projected estimator
for a particular choice of X0, which is the matrix that defines the distance measure according to (3.9).

Proposition 3.4. Let the data-set be represented by a design matrix Xe ∈ R(N+M)×(D+1) and a partial
labeling y ∈ {

0,1
}N . Suppose the projected classifier ŵpr o j is trained as in (3.10), where the distance

d(w, ŵsup ) is defined setting Xo = Xe . Then both ŵC PLS and ŵpr o j are computed by solving the
following optimization:

inf
w∈RD+1

max
yu∈[0,1]M

(
R(w |Xe , ye )−R(ŵsup |Xe , ye )

)
, (3.17)

hence
ŵC PLS = ŵpr o j .

Proof. First, we show that the CPLS estimate can be obtained by solving the optimization defined
in Equation (3.17). To this end, we focus on the unsupervised part of R(w, q|Xe , y), which can be
written as

M∑
j=1

(
q j

(
uT

j w
)2 + (1−q j )

(
1−uT

j w
)2

)
=

M∑
j=1

((
uT

j w
)2 + (1−q j )−2(1−q j )uT

j w
)

.

Then, we switch to yu
j = 1−q j in order to obtain

M∑
j=1

((
uT

j w
)2 −2yu

j uT
j w +

(
yu

j

)2 )
+ C =

M∑
j=1

(
yu

j −uT
j w

)2 + C ,

where C = ∑M
j=1 yu

j −∑M
j=1

(
yu

j

)2
is used to obtain the square loss. Note that C is present also in the

unsupervised part of the risk evaluated in ŵsup , therefore it cancels out in the expression for the
contrastive risk:

C R(w,1− yu |ŵsup , Xe , y) = ∥∥y −X w
∥∥2 −

∥∥∥y −X ŵsup

∥∥∥2 +∥∥yu −Xu w
∥∥2 −

∥∥∥yu −Xu ŵsup

∥∥∥2

= ∥∥ye −Xe w
∥∥2 −

∥∥∥ye −Xe ŵsup

∥∥∥2
,

where 1 is the M-dimensional vector of ones.
It then follows that the CPLS minimax problem can be expressed using the formulation of the con-
trastive risk as above:

inf
w∈RD+1

max
yu∈[0,1]M

(
R(w |Xe , ye )−R(ŵsup |Xe , ye )

)
.
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Now, it remains to prove that the projection method can be written in this form as well. This task
can be done by expanding the distance, which is the objective function of the problem defined in
(3.10), as follows:

d(w, ŵsup )2 = (w − ŵsup )T X T
e Xe (w − ŵsup )

= ∥∥Xe w
∥∥2 − 2〈Xe w, Xe ŵsup〉 +

∥∥∥Xe ŵsup

∥∥∥2

= ∥∥Xe w
∥∥2 − 2〈ye , Xe ŵsup〉 +

∥∥∥Xe ŵsup

∥∥∥2

= −∥∥Xe w
∥∥2 + 2〈ye , Xe w〉 − 2〈ye , Xe ŵsup〉 +

∥∥∥Xe ŵsup

∥∥∥2

=
∥∥∥ye −Xe ŵsup

∥∥∥2 − ∥∥ye −Xe w
∥∥2 ,

where we used that w = ŵ(yu). In particular, by expanding the expression for w in the third equality
we took advantage of 〈Xe w, Xe ŵsup〉 = 〈ye , Xe ŵsup〉, in the second to last equality we used

∥∥Xe w
∥∥2 =

〈ye , Xe w〉, while to obtain the last equality we added and subtracted
∥∥ye

∥∥2.
It is now clear that the semi-supervised estimate of the projection methods can be expressed as

min
yu∈[0,1]M

(∥∥∥ye −Xe ŵsup

∥∥∥2 −∥∥ye −Xe ŵ(yu)
∥∥2

)
.

Now we can change the sign of the objective function, hence transforming the minimum to a max-
imum. We can finally observe that the constraint that w = ŵ(yu) is obtained by the minimization
of R(w |Xe , ye )−R(ŵsup |Xe , ye ) with respect to w . It then follows that we can reformulate the opti-
mization as

max
yu∈[0,1]M

inf
w∈RD+1

(∥∥ye −Xe w
∥∥2 −

∥∥∥ye −Xe ŵsup

∥∥∥2 )
.

Note then that in Section 3.4.2 we showed that the infimum and the maximum can be swapped.
Therefore, the CPLS solution and the projected estimate computed with X0 = Xe are equal.

3.4.4. Robustness of the CPLS solution
The same theoretical result reported for the projection method can be proved by taking advantage
of the CPLS formulation. This result is obvious by the equivalence between the two methods, but
here we are interested in proving this property using only the definition of the CPLS approach and
the theory of minimax problems. In order to do so, we first introduce the following assumption.

Assumption 3.5. The following infimum is attained for any value of yu ∈ [0,1]M :

inf
w∈RD+1

(∥∥ye −Xe w
∥∥2 −

∥∥∥ye −Xe ŵsup

∥∥∥2 )
.

We can expect this assumption to hold by using the notion of generalized inverse, but we meant to
explicitly state it because it is useful to show the non-degradation property of the CPLS estimates.

Theorem 3.6. Let Xe ∈R(N+M)×(D+1) be the design matrix of labeled and unlabeled observations. Let
y ∈ {

0,1
}N be the labels on the labeled data-points and ye =

(
yT , yT

u

)T a vector of labelings on Xe . Let
Assumption 3.5 hold. Denote the vector containing the true labeling of the unlabeled data-points as
y∗

e . Then
R(ŵC PLS |Xe , y∗

e ) ≤ R(ŵsup |Xe , y∗
e ) .

Proof. Proposition 3.4 states that the minimax problem (3.15) can be written as

inf
w∈RD+1

max
yu∈[0,1]M

(
R(w |Xe , ye )−R(ŵsup |Xe , ye )

)
,
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where R(w |Xe , ye ) =∥∥ye −Xe w
∥∥2, that is the risk on the full data-set with labeling ye .

We now take advantage of Sion’s minimax theorem, that is Theorem 3.2, to show that the maximum
and the infimum are interchangeable and their order does not affect the solution. Furthermore,
Lemma 3.1 is applicable as the infimum is attained for any value of yu by Assumption 3.5. It then
follows that a solution of the minimax problem, which is denoted by

(
ŵC PLS , ŷu

)
is a saddle point,

i.e.
C R(ŵC PLS , yu |ŵsup , Xe , y) ≤ C R(ŵC PLS , ŷu |ŵsup , Xe , y) ≤ C R(w, ŷu |ŵsup , Xe , y)

for any yu ∈ [0,1]M and w ∈RD+1. The first inequality can be rewritten as

R(ŵC PLS |Xe , ye )−R(ŵsup |Xe , ye ) ≤ R(ŵC PLS |Xe , ŷe )−R(ŵsup |Xe , ŷe ) ∀yu ∈ [0,1]M ,

in which ŷe = (yT , ŷT
u )T . In other words, if we fix ŵC PLS then for any choice of labels that is not ŷe

the value of the objective function decreases. The last argument that is needed to end the proof is
the following:

R(ŵC PLS |Xe , ŷe )−R(ŵsup |Xe , ŷe ) ≤ 0.

This holds as ŵC PLS is the optimal vector for labels ŷe and by strict convexity it has the lowest risk.
Equality holds if and only if ŵsup is itself the optimum.
Finally, we can conclude that

R(ŵC PLS |Xe , ye ) − R(ŵsup |Xe , ye ) ≤ 0 ∀yu ∈ [0,1]M ,

where ye = (yT , yT
u )T . This clearly means that ŵC PLS has a lower risk than ŵsup for any labeling

of the unlabeled data. As the inequality is satisfied for any labeling yu , it holds in particular for the
true labels y∗

e :
R(ŵC PLS |Xe , y∗

e ) ≤ R(ŵsup |Xe , y∗
e ) .

It is interesting to note how differently this robustness result can be proven in the two formulations.
In the CPLS case it basically follows from convexity-concavity of the objective function in its two
variables and by convexity and compactness of (one of) the sets where a solution is searched. On
the other hand, if the method is thought in its projection formulation the result follows by prop-
erties of projections on convex subspaces of a Hilbert space. However the result is obtained, the
classifier is guaranteed not to be worse than the supervised model independently of the labeling on
the unlabeled data.

3.4.5. On a Condition for Strict Improvement
Theorem 3.6 ensures that the CPLS estimate is at least as good as the supervised estimate in terms of
the square loss on the full data. We may observe that this does not guarantee a strict improvement
and the method can indeed select ŵsup , thus sticking to the supervised model. In the next example
we qualitatively describe an example in which this happens.

Example 3.7. Assume we restrict our class of decision functions to linear models without an inter-
cept, that is y = w x. In addition, suppose the feature vectors are uni-dimensional values. Figure 3.1
shows an example with these characteristics. The two labeled observations, indicated by the blue
circles, define the linear classifier. Now, we add an unlabeled data point, denoted by the red circle.
If this point is within the margin, as in the figure, we can observe that there is a choice of the label
such that the unlabeled observation lies on the decision line. For that specific labeling, denoted
by the red cross in the figure, the supervised model is retrieved. This is evident as the sum of the
squared errors is null for that choice, hence that remains the optimal classifier. It is then clear that
in this case the CPLS is forced to select the supervised model and cannot improve over it.
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Figure 3.1: Example with uni-dimensional features. The dashed red line identifies the most adversarial choice
of the label for the unlabeled point.

This example illustrated that it is not possible to obtain a strictly improved model if the unobserved
feature is in the margin defined by the supervised classifier. Nonetheless, improvement is possible if
the additional data-point is sufficiently outside of the margin. This reasoning can be easily extended
to more complex models that with an intercept and multi-dimensional feature vectors. In case of
several unlabeled observations it is sufficient to ask that some of the points are far enough from the
margin, while the others are allowed to lie within it. In the next theorem we make this reasoning
explicit and we state a condition for strict improvement in the uni-dimensional case.

Theorem 3.8. Let the design matrix Xe be composed of N labeled and M unlabeled uni-dimensional
features. Assume the linear model to be of the form y = w x, i.e. without intercept, and define U =(∑M

j=1 u2
i

)
. Moreover, assume ŵsup satisfies the following condition:

ŵsup


>

∑
{ j :u j>0} u j

U
if ŵsup > 0,

<
∑

{ j :u j<0} u j

U
if ŵsup < 0.

(3.18)

Then, the CPLS estimate strictly outperforms the supervised model:

R(ŵC PLS |Xe , y∗
e ) < R(ŵsup |Xe , y∗

e ) .

Proof. The idea is to verify whether it is possible to select q so that the supervised model is retrieved.
In order to establish this possibility, we check if the risk on the full data reaches its minimum in
ŵsup for some value of yu ∈ [0,1]M . By strict convexity of the empirical risk this is expressed by the
following equation: (∇R(w |Xe , ye )

) |w=ŵsup = 0.

Intuitively, if we can choose values of q such that ŵsup satisfies this condition, then it is the CPLS
solution. We can now write the condition and evaluate it in ŵsup :

0 +
M∑

j=1
qi

(
2(ui ŵsup )ui

)
+ (1−qi )

(
2(1−ui ŵsup )ui

)
= 0,
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where the initial 0 follows from the fact that ŵsup is the minimizer of the supervised risk, thus(∇R(w |X )
) |w=ŵsup = 0. We can rearrange the equation above as

M∑
j=1

u2
j ŵsup =

M∑
j=1

(1−q j )u j . (3.19)

If the condition holds for some choice of q , then we can retrieve ŵsup .
Now, we can first consider the case of a positive slope coefficient of the supervised model, that is
ŵsup > 0. In this case, the term on the left hand side is always positive, while the sign of the term on
the right hand side is determined by the choice of q . However, if M∑

j=1
u2

j

 ŵsup > ∑
{ j :u j>0}

u j ,

then there is no choice of q that satisfies equality in (3.19), hence ŵsup is not the CPLS solution and
by Theorem 3.6 we have strict improvement for any yu . The same line of reasoning can be applied
to the opposite case, that is ŵsup < 0, thus leading to the condition in (3.18).

Observation 3.9. Condition (3.18) expresses the minimum slope that the supervised linear model
must have in order to allow for a strictly improved semi-supervised solution. In other terms, it
expresses quantitatively the intuitive reasoning we illustrated in Example 3.7. Indeed, the denomi-

nator
(∑M

j=1 u2
j

)
increases as unlabeled points outside of the margin get more numerous and as their

distance from the margin grows. The numerator increases as well, but with a lower order. Therefore,
the requirement becomes weaker as the unlabeled points follow the forementioned trend.

As a final comment to this section, we admit that the assumption that the model does not have
an intercept is indeed quite strong. Nonetheless, it hints that it may indeed be possible to obtain
a strictly improved model by using contrast and pessimism. An extension to multi-dimensional
feature vectors is complicated from a theoretical standpoint, but empirical results in [28] and [27]
suggest that a strict improvement is usually observed. This may be a consequence of the use of soft
labels in our analysis, when in practice one observes hard labels only.

3.4.6. A Deviation to Non-degradation for Convex (Margin Based) Losses
Theorem 3.6 is proved by tools from minimax theory that rely mainly on the structure of the objec-
tive function, which is linear in the adversarial labels and convex in the parameter. This line of rea-
soning can then be extended to other settings that share these properties. We can thus use the same
arguments to formally show the robustness property of the contrastive pessimistic solution for any
convex loss. For instance, in Section 2.3.4 we discussed a theoretical analysis of the contrastive pes-
simistic approach with margin based losses, i.e. the class of losses of the form `(y, f (x)) =φ(y f (x)).
However, in [29] it is not formally proved that the contrastive pessimistic solution is robust. Here we
do so by considering a general convex loss.
First, let us define the semi-supervised risk as

R semi
` (w |Xe , ye , q) =

N∑
i=1

`(yi , wT xi )+
M∑

j=1

(
qi `(+1, uT

i w)+ (1−qi )`(−1, uT
i w)

)
.

We then know that we can define the contrastive risk C R`(w, yu |ŵsup , Xe , y) by subtracting
R semi
`

(ŵsup |Xe , y, q) to the previous equation. Let us now postulate the following assumption, which
is an adaptation of Assumption 3.5 to general losses.
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Assumption 3.10. Suppose we are in the same setting as Assumption 3.5. Then, the following infi-
mum is attained for any yu ∈ [0,1]M :

inf
w∈RD+1

C R(w, yu |ŵsup , Xe , y) .

Theorem 3.11. Let ` : [0,1]×R→ R+ be a continuous convex loss function and let Assumption 3.10
hold. Call y∗

e ∈ {
0,1

}N+M the vector of the true labels on Xe . Then the contrastive pessimistic estimate
ŵC PL satisfies the following inequality:

R`(ŵC PL |Xe , y∗
e ) ≤ R`(ŵsup |Xe , y∗

e ) .

Proof. Analogous to Theorem 3.6.

In particular, this result holds for convex margin based losses. Observe however that in [29] the
authors show that for decreasing margin based loss strict improvement is not possible, therefore in
that case we have ŵC PL = ŵsup independently of the data-set.

3.4.7. Quadratic Programming Formulation
It is meaningful to study whether the CPLS classifier, which we proved to have very interesting prop-
erties, can be computed efficiently. It has been shown that the minimization with respect to w can
be solved first, thus resulting in the constrained structure of w as expressed in (3.16). Now, we focus
on the structure of the remaining maximization of C R(ŵ(yu),1− yu |ŵsup , Xe , y) with respect to yu .
The following proposition states that the final task is a quadratic programming problem [7].

Proposition 3.12. Let the data-set be Xe , y and suppose Assumption 3.5 holds. Then, the optimal
labels yu ∈ [0,1]M are defined by yu

j = v j+N for j = 1, . . . , M, where v is the solution of a quadratic
programming problem:

minimize vT Qv +qT v

subject to vi = yi for i = 1, . . . , N

0 ≤ v j ≤ 1 for j = N +1, . . . , N +M ,

with Q = Xe (X T
e Xe )−1X T

e symmetric and semi-definite positive, q = Xe ŵsup .

Proof. As a first step, we can rewrite the contrastive risk as

C R(w,1− yu |ŵsup , Xe , y) = wT X T
e Xe w − ŵT

sup X T
e Xe ŵsup −2

(
N∑

i=1
yi xT

i +
M∑

j=1
yu

j uT
j

)
(w − ŵsup ) .

Noting that
∑N

i=1 yi xT
i +∑M

j=1 yu
j uT

j = (yT , yT
u )Xe , we can rewrite the former equation as

C R(w,1− yu |ŵsup , Xe , y) = wT X T
e Xe w − ŵT

sup X T
e Xe ŵsup −2

(
yT yT

u

)
Xe (w − ŵsup ) .

We now take advantage of the fact that w is in Cw :

C R(ŵ(yu),1− yu |ŵsup , Xe , y) =
(

yT yT
u

)
Xe

(
X T

e Xe

)−1 (
X T

e Xe

)(
X T

e Xe

)−1
X T

e

(
y

yu

)
−

∥∥∥Xe ŵsup

∥∥∥2

−2
(

yT yT
u

)
Xe

(
X T

e Xe

)−1
X T

e

(
y

yu

)
+2(yT , yT

u )Xe ŵsup ,

which simplifies to

C R(ŵ(yu),1− yu |ŵsup , Xe , y) = −
(

yT yT
u

)
Xe

(
X T

e Xe

)−1
X T

e

(
y

yu

)
+2

(
yT yT

u

)
Xe ŵsup −

∥∥∥Xe ŵsup

∥∥∥2
.
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The norm
∥∥∥Xe ŵsup

∥∥∥ is not relevant in the maximization task, hence it is omitted and the resulting

optimization problem is

max
yu∈[0,1]M

−
(

yT yT
u

)
Xe

(
X T

e Xe

)−1
X T

e

(
y

yu

)
+2

(
yT yT

u

)
Xe ŵsup .

Finally, by changing the sign the maximum becomes a minimum:

minimize
(

yT yT
u

)
Xe

(
X T

e Xe

)−1
X T

e

(
y

yu

)
−2

(
yT yT

u

)
Xe ŵsup

subject to yu ∈ [0,1]M .

Observe that Xe
(
X T

e Xe
)−1X T

e is clearly symmetric, and also positive semi-definite as

zT Xe
(
X T

e Xe
)−1X T

e z = (
X T

e z
)T (

X T
e Xe

)−1(X T
e z

) ≥ 0

for any z by positive semi-definiteness of X T
e Xe .

The most adversarial posterior probabilities ŷu can thus be computed through a favorable optimiza-
tion. The last step is then to plug the obtained value in ŵ(ŷu), which is then the CPLS parameter
vector of the linear classifier.

3.4.8. The Importance of the Constraint Set
The CPLS approach was shown to select the item of Cw that minimizes the improvement of the
current estimates against ŵsup . This can be translated to the following constrained optimization:

max
yu∈[0,1]M

(
R(ŵ(yu)|Xe , ye )−R(ŵsup |Xe , ye )

)
where ŵ(yu) =

(
X T

e Xe

)−1
X T

e

(
y

yu

)
.

This formulation can be studied to better understand some dynamics of the CPLS approach.

For a fixed yu ∈ [0,1]M , the objective function compares the risk of the best solution on that labeling
with the risk of the supervised solution. Then, we can distinguish two different situations, either
ŵsup is the optimal parameter vector for some yu , or it is not:

• ŵsup ∈Cw . By the definition of Cw there is at least one choice of yu such that

ŵsup = arginf
w∈RD+1

R(w |Xe , ye ) ,

where ye = (yT , yT
u )T . Let us group all the vectors of labels that make this happen in a new set,

which we call Ȳ . It follows that for all ȳe ∈ Ȳ

R(w |Xe , ȳe ) − R(ŵsup |Xe , ȳe ) > 0,

for any choice of w ∈RD+1\ŵsup . Therefore, the only possibility to satisfy the non degradation
property is to select ŵsup as our semi-supervised estimate. Otherwise, the solution is worse
than the supervised model on any labeling in Ȳ .
It follows that the CPLS estimate can at most match the performance of the supervised solu-
tion:

R(w |Xe , ye ) = R(ŵsup |Xe , ye ) .
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• ŵsup ∉ Cw . In this case there does not exist a labeling of the unlabeled observations that
retrieves ŵsup . By the saddle point property it follows that

R(ŵC PLS |Xe , ye )−R(ŵsup |Xe , ye ) ≤ R(ŵC PLS |Xe , ŷe )−R(ŵsup |Xe , ŷe ) ∀yu ∈ [0,1]M .

Note that the term on the right hand side is strictly negative because ŵC PLS is the chosen to
be the optimal classifier on ŷe and ŵsup 6= ŵC PLS . As a consequence the term on the right
hand side is itself strictly negative, hence

R(ŵC PLS |Xe , ye ) < R(ŵsup |Xe , ye ) ∀yu ∈ [0,1]M . (3.20)

Therefore, if ŵsup ∉Cω the CPLS estimate obtains outperform the supervised model in terms
of the square loss on the full data.

In conclusion, the only option when ŵsup ∈ Cw is to copy the supervised solution, as there does
not exist a choice of w that is always at least as good as ŵsup while strictly improving on a subset
of labelings. On the other hand, when ŵsup ∉Cw the CPLS approach finds a solution that is strictly
better than the supervised model for any vector of labels yu and thus also for the true labeling.
We could then see the requirements in Theorem 3.8 also as a condition that makes sure that the
supervised classifier is not part of the constraint set. However, requiring ŵsup ∉Cw may be a weaker
condition, so we state this result in the following proposition.

Proposition 3.13. Suppose a data-set with design matrix Xe ∈ R(N+M)×(D+1) and a partial labeling
y ∈ {

0,1
}N is available. In addition, suppose ŵsup ∉ Cw . Then, ŵC PLS outperforms ŵsup for any

labeling on the unlabeled observations yu ∈ [0,1]M , meaning that (3.20) is satisfied.

3.4.9. Comparing the CPLS with the ICLS
Our interest is now in investigating and understanding why and how the choice of the metric that is
used to project the solution on the constraint set affects the classifier. Recall the metric introduced
in [28]:

dXo (w1, w2) =
√

(w1 −w2)T X T
o Xo(w1 −w2)

= ∥∥Xo(w1 −w2)
∥∥ .

As discussed in previous sections, the projection method consists in minimizing the distance to the
supervised parameter vector under the constraint that the semi-supervised solution is in Cw . In
particular, in the ICLS the distance is defined by the design matrix that contains the measurements
of labeled observations only, X , while the contrastive and pessimistic approach uses the full design
matrix Xe . The empirical tests shown in [28] hint that the former choice shows relevant improve-
ments over the supervised solution and seems to outperform the latter. In order to understand why
this is the case, we start by observing that the minimization task can be rewritten as

min
w∈Cw

∥∥∥Xo w −Xo ŵsup

∥∥∥ .

If the matrix Xo contains an observation on each row, then the matrix-vector product Xo w returns
the outputs of the linear classifier defined by w on the corresponding observations. The same ar-
gument clearly applies to Xo ŵsup . Since the Euclidean norm is the sum of square distances, the
weight vector that solves the optimization task is then forced to generate outputs for the considered
feature vectors as similarly to ŵsup as possible while being part of the constraint set.
The ICLS method uses the feature vectors of labeled observations only and chooses w so that its
output is close to the supervised one on these observations. As a consequence, the ICLS estimate
has more freedom in assigning the outputs on the unlabeled data. On the other hand, the CPLS
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solution is computed with Xo = Xe , so ŵC PLS is built to have an output on the unlabeled observa-
tions that is similar to ŷ sup

u = Xu ŵ sup . It is thus clear that the CPLS estimate will in general be more
related to ŵ sup than the ICLS solution. This represents a limit when the unlabeled data-set carries
considerable information and can thus be used to significantly improve the classifier, in which case
the ICLS method can outperform the CPLS.

We have thus illustrated that the CPLS approach has a conservative nature. This is because it explic-
itly compares the outputs of the current estimate with those defined by the supervised model on the
full design matrix Xe . The CPLS estimate is then the parameter vector that minimizes the distance
from the outputs of the supervised model while being in the constraint set. While being able to ob-
tain significant performance improvements, the CPLS approach may also result in a performance
degradation in a finite sample setting. Theorems 3.6 and 3.8 suggest that this is never the case for
the contrastive pessimistic approach. This approach then seems to answer our research question.
Therefore, we are motivated to study the application of the notions of contrast and pessimism in
other settings, such as that of generative probabilistic models.





4
Maximum Contrastive Pessimistic

Likelihood Estimation with Exponential
Families

We now focus on a contrastive and pessimistic semi-supervised generative classifier. A very specific
classifier of this kind, i.e. the LDA, was previously studied in [33]. Here we extend the analysis
to a much broader framework in which we can model the class conditional probabilities with any
exponential family. This classifier is shown to have a non-degradation guarantee in Theorem 4.5.
Moreover, in Section 4.2.5 we analyze the possibilities of strict performance improvement of the
contrastive pessimistic generative classifier. As we will see, in this framework we can expect the
semi-supervised learner to strictly outperform the supervised model under mild assumptions.
Let us start our analysis with a few fundamental results on the exponential family.

4.1. Fundamentals of Exponential Families
Exponential families are recurrent in the statistics literature because of their handy formulation
and for the generalizations they provide. Several well known distributions fall into this family. For
instance, the Bernoulli and the binomial probability mass functions are examples of discrete expo-
nential families, while the Gaussian and the exponential distribution are continuous examples of
this category of densities. A very useful reference for our analysis is [8], which is cited several times
in this section.

4.1.1. Basic Definitions and Properties
The general definition of the exponential family is as follows.

Definition 4.1. A family of densities
{

p(x|θ) : θ ∈ Θ}
with respect to a measure ν on a probability

space (X ,B) is said to be an exponential family if it admits the following decomposition

p(x|θ) = c(x)exp(〈t (x),η(θ)〉−F (θ)) ,

where t : X →RK and c : X → [0,∞)] are measurable, while X does not depend on θ.

Any exponential family can be reduced to the so called canonical form. This means that the follow-
ing simplified decomposition of the density holds:

p(x|η) = c(x)exp(〈t (x),η〉−F (η)) , (4.1)

33



34 4. Maximum Contrastive Pessimistic Likelihood Estimation with Exponential Families

where we have parametrised the family by

η = (η1(θ), . . . ,ηK (θ)) .

We will mainly use the canonical form in the following discussion.
The function t (x) is determined up to a multiplicative constant and is called natural sufficient statis-
tic. On the other hand, F (η) is usually referred to as cumulant function, or log-normalizer, and it is
the logarithm of the normalizing factor. The cumulant function is then of the following form:

F (η) = log
∫
X

c(x)exp(〈t (x),η〉)dν(x) .

It is important to define the subset of admissible parameters, which is called natural parameter
space. This space is the subset of RK where F (η) <∞, or equivalently

N =
{
η ∈RK :

∫
X

c(x)exp(〈t (x),η〉)dν(x) <∞
}

.

Another useful concept is that of minimal exponential family. We say that the family is minimal if
there are no linear constraints among the components of the parameter vector or of the sufficient
statistic. This means that the dimensions of the vectors involved in the scalar product cannot be
reduced. The dimension of the parameter of a minimal family is then called order of the family. By
Theorem 1.9 in [8] it is always possible to reduce an exponential family to a minimal family through
sufficiency, reparametrization, and a proper choice of ν. Then, we can confine our analysis to min-
imal exponential families without loss of generality.
Finally, we discuss some properties of the cumulant function and of the parameter space. These
results will be useful in the discussion of the MCPL and correspond to Theorems 1.13 and 2.2 in [8].

Theorem 4.2. Let
{

p(x|η) : η ∈Ω}
be an exponential family. Then, the following statements hold:

i. N is a convex set and F (η) is a convex function on N ;

ii. If the family is minimal, then F (η) is strictly convex on N and the family is identifiable, i.e.
p(x|η1) = p(x|η2) if and only if η1 = η2 ∈N ;

iii. F (η) is lower-semi-continuous on RK and continuous on the interior of the parameter space;

iv. F (η) is differentiable in the interior of N and the derivatives are obtained by differentiating un-
der the integral sign.

Convexity of the parameter space and of the cumulant function easily follow from Holder’s inequal-
ity, which for instance shows that for any α ∈ [0,1]

exp(F (αη1 + (1−α)η2)) ≤ exp(αF (η1)+ (1−α)F (η2))

and by monotonicity we have convexity of the cumulant function. Similarly we can prove that N is
convex.

4.1.2. Maximum Likelihood Estimates for Exponential Families
In Maximum Likelihood (ML) estimation the density that generates the N available observations is
modeled with a parametric family, which in this section we assume to be an exponential family of
the form (4.1). We are then interested in the structure of the ML estimates in this setting.

Suppose data X = (x1, . . . , xN ) are an independent, identically distributed sample from an exponen-
tial family with parameter η. In general, η is multidimensional, η = (η1, . . . ,ηd ) ∈ Ω ⊆ Rd for some
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d ≥ 1, and the observations can be multidimensional as well.
We then defined the likelihood function by

L(η|X ) =
N∏

i=1
p(xi |η) =

N∏
i=1

c(xi )exp(〈t (xi ),η〉−F (η)) .

We can then define the log-likelihood as

LL(η|X ) = logL(η|X ) =
N∑

i=1

(
logc(xi )+〈t (xi ),η〉−F (η)

)
.

The ML estimate is then the parameter that maximizes the log-likelihood, that is

η̂ML = argmax
η∈Ω

(
−N F (η)+

N∑
i=1

(
logc(xi )+〈t (xi ),η〉)) .

As we discussed in Section 4.1 the cumulant function is convex, strictly if the family is minimal.
Then, the log-likelihood is concave in η and the maximization task can be solved by equating the
gradient of LL(η|X ) to 0. This results in the following equality

∇ηF (η̂ML) = 1

N

N∑
i=1

t (xi ) . (4.2)

Note that ∇ηF (·) :Rd →Rd and this is thus a set of d equations. The ML estimator can then be found
by inverting equations (4.2), which is possible by (strict) convexity of the cumulant function:

η̂ML = (∇ηF
)−1

(
1

N

N∑
i=1

t (xi )

)
, (4.3)

where by
(∇ηF

)−1 we denote the inverse function of the gradient.
A precise result on the invertibility of the cumulant function is Corollary 2.5 in [8].

We conclude this section with a few observations. First, we observe that an exponential family can
be parametrised with the so called mean parametrization, which is defined as µ=∇ηF (η). It is clear
from the results above that the mean parametrization plays an important part in ML estimation for
any exponential family. For some exponential families this parametrization is very similar or equal
to the natural parametrization, but this is not the case for others classes of distributions. It is then
interesting to note that the estimate depends on the sample only through the sufficient statistic. In
addition, the derivatives of the cumulant function are the cumulants of the sufficient statistic. This
means that the first derivative is the mean of t (X ), while the second derivative is the covariance. In
mathematical terms:

∇ηF (η) = E
(
t (X )

)
,

∇2
ηF (η) = Cov

(
t (X )

)
.

In (4.2) the ML estimate for the mean of the sufficient statistic is then the empirical mean computed
on the sample.

4.2. MCPL Estimation for Safe Semi-Supervised Learning
We are now going to take advantage of the properties of exponential families that were introduced
in Section 4.1 to build a semi-supervised generative classifier that safely incorporates an unlabeled
data-set. This means that in this approach we are interested in estimating the joint density of (x, y),
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Notation Meaning

N number of labeled observations
M number of unlabeled observations
K number of classes

Nk number of labeled observations in class k
k(i ) mapping to the true index of the i -th labeled observation

Dl ,Du labeled/unlabeled data-set
D∗

f ul l true full data-set

U matrix of unlabeled feature vectors
∆K K -dimensional probability simplex

tk (·) sufficient statistic of class k
Fk (·) cumulant function of class k
Ωk parameter space of the statistical model for the k-th class

ηk ∈Ωk parameter vector of the statistical model for the k-th class
Pk parametric family for the k-th class conditional distribution

pk (·|ηk ) ∈Pk probability density function for class k
πk ∈∆K prior probability of class k
Ψ vector containing the parameters of all classes
Ψ̂sup supervised estimatesΨ

π̂
sup
k , η̂ sup

k supervised estimates of πk , ηk

Ψ̂semi MCPL semi-supervised estimate ofΨ
π̂ semi

k , η̂ semi
k MCPL semi-supervised estimates of πk , ηk

q· j vector of posterior probabilities for j -th unlabeled observation
Q matrix containing all the vectors of posterior probabilities q· j

Q̂semi adversarial posterior probabilities chosen by the MCPL
L(Ψ,Q|Dl ,U ) semi-supervised log-likelihood

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) contrastive log-likelihood
∇q· j C L(·, ·|Ψ̂sup ,Dl ,U ) gradient of the contrastive likelihood with respect to q· j

L(Ψ|D f ul l ) standard log-likelihood on a full data-set D f ul l

Table 4.1: Table of notation for the MCPL approach.

where x is a measurement and y is the corresponding label. This is done by first learning a paramet-
ric model for the class conditional distributions and estimating the prior probabilities of observing a
data-point from a specific class. The decision boundary is then defined by assigning an observation
to the class that assigns the highest estimated posterior probability to that object, as discussed in
Section 2.1.1. In this section we define a framework that allows the user to model each class condi-
tional distribution with a parametric class that admits the decomposition in the exponential form.
We first introduce the notation, which is recapitulated in Table 4.1, and we discuss the formulation
the method.

4.2.1. Formulation of the Method

Assume there are N labeled observations Dl =
{
(xi , yi )

}N
i=1, in which xi ∈ RD and yi ∈

{
1, . . . ,K

}
for

each i = 1, . . . , N . This defines a K -class classification problem. Suppose M additional unlabeled
feature vectors U = {

ui
}M

j=1 are observed, with u j ∈ RD for every j = 1, . . . , M . Now, let us model
each class conditional distribution with a parametric class that is a minimal exponential family.
This restriction can be done without loss of generality as discussed in Section 4.1. In practice we
want to find for each class k the best estimate within a set Pk = {

pk (x|ηk ) : ηk ∈Ωk
}
, which satisfies

Definition 4.1 and is minimal. This means the structure of the densities is the following

pk (x|ηk ) = ck (x)exp
(〈tk (x),ηk〉−Fk (ηk )

)
,
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where Ωk is the parameter space of class k, i.e. ηk ∈ Ωk . The probability mass function of the
random variable y is defined by πk = P (y = k), where clearly

∑K
k=1πk = 1.

It is now necessary to define the supervised classifier, because as we know it is used as benchmark
in the MCPL approach. To this end we introduce the log-likelihood on the labeled observations

L(Ψ|Dl ) =
N∑

i=1
log p(xi , yi |ηyi ,πyi )

=
K∑

k=1

Nk∑
i=1

log p(xk(i ),k|ηk ,πk )

=
K∑

k=1

Nk∑
i=1

log
(
πk pk (xk(i )|ηk )

)
.

(4.4)

Here Ψ = (
π1, . . . ,πK ,η1, . . . ,ηK

)
contains all the parameters of the model, while the function k(i ) :

N→N is a map to the index of the i -th element in class k, and Nk is the number of labeled observa-
tions from class k. We follow the maximum likelihood approach and select the estimate as

Ψ̂sup = argmax
Ψ∈∆K ×Ω1×...×ΩK

L(Ψ|Dl ) , (4.5)

where ∆K =
{

(π1, . . . ,πK ) :
∑K

i=1πi = 1,πi ≥ 0 ∀i ∈ [K ]
}

is the K -dimensional simplex. As discussed

in Section 4.1.2, the supervised estimates for the parameters of each class k are of the following
form:

η̂
sup
k = (∇Fk

)−1

(
1

Nk

Nk∑
i=1

tk
(
xk(i )

))
,

while it is easy to show that the estimates for the prior probabilities are

π̂
sup
k = Nk

N
.

Note that the estimated prior probabilities sum to 1:
∑K

k=1 π̂
sup
k =∑K

k=1
Nk
N = 1, because

∑K
k=1 Nk = N .

Now, we add the unlabeled data U in order to define the semi-supervised classifier. The labels cor-
responding the the M measurements u j are unknown, but it is still possible to add a term that is the
expectation of the log-likelihood, where the randomness lies in the labels. This term is defined as

Ey1,...,yM

(
M∑

j=1
log p(u j , y j |ηy j ,πy j )

∣∣∣(u1, . . . ,uM )

)
=

M∑
j=1

Ey j |u j

(
log p(u j , y j |ηy j ,πy j )

)
=

M∑
j=1

K∑
k=1

qk j log
(
πk pk (u j |ηk )

)
,

where we used linearity of the expectation, while qk j =P(y j = k|u j ) are the true posterior probabil-
ities. The semi-supervised log-likelihood is then defined as

L(Ψ,Q|Dl ,U ) = L(Ψ|Dl ) +
M∑

j=1

K∑
k=1

qk j log
(
πk pk (u j |ηk )

)
, (4.6)

in which we grouped all the conditional probabilities in Q. Clearly, we do not have access to the
true underlying distribution, so the correct values in Q are unavailable. Note also that q · j ∈ ∆K for
j = 1, . . . , M .
The MCPL approach has three main aspects that drive its formulation. The first characteristic is that
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the method is contrastive, as it explicitly contrasts the semi-supervised estimates with the corre-
sponding supervised ones, i.e. Ψ̂sup . This comparison is in terms of log-likelihood on the complete
data-set and it is done by subtraction. For this purpose, we define the contrastive log-likelihood as

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) = L(Ψ,Q|Dl ,U ) − L(Ψ̂sup ,Q|Dl ,U ) .

The contrastive log-likelihood allows us to control and quantify the improvement over the super-
vised estimates. At this point a pessimistic choice is made in order to prepare our classifier even to
the most adversarial choice of the simplices in Q. This translates into a minimization task over all
possible choices of conditional probabilities:

C PL(Ψ|Ψ̂sup ,Dl ,U ) = min
Q∈∆M

K

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) ,

where by ∆M
K we mean the Cartesian product between M simplices. Note that we can talk about

minimum because the optimization is on a compact space and the contrastive log-likelihood is
continuous in each element of Q.
The final step to complete the formulation of the MCPL approach is to maximize the modified like-
lihood that we have built. This means that the semi-supervised estimates are computed by maxi-
mizing C PL(Ψ|Ψ̂sup ,Dl ,U ) over the set of parameters.

Definition 4.3. Let Dl contain the labeled observations with their corresponding labels and U contain
the unlabeled feature vectors. Let Ψ̂sup be the supervised estimate computed on Dl as in (4.5). The
maximum contrastive pessimistic likelihood estimate is

Ψ̂semi := argsup
Ψ∈∆K ×Ω1×...×ΩK

C PL(Ψ|Ψ̂sup ,Dl ,U ) . (4.7)

It is clear from Definition 4.3 that in order to find the MCPL solution we have to solve the following
minimax problem

sup
Ψ∈∆K ×Ω1×...×ΩK

min
Q∈∆M

K

{
L(Ψ,Q|Dl ,U )−L(Ψ̂sup ,Q|Dl ,U )

}
, (4.8)

where L(Ψ,Q|Dl ,U ) was defined in (4.6). This shows that the semi-supervised estimates are ob-
tained by maximizing the likelihood on the most adversarial soft labels.
In the next section we show that the MCPL solution is under a mild assumption guaranteed not to
result in a performance degradation.

4.2.2. Robustness of the MCPL Solution
In Section 4.2.1 the MCPL estimate is introduced as the solution of the minimax problem (4.8). The
objective function of the optimization is the contrastive log-likelihood, which in the case of expo-
nential families has an attractive form that allows to prove strong theoretical results. In order to have
a better understanding, we first write the semi-supervised log-likelihood in the following meaning-
ful form:

L(Ψ,Q|Dl ,U ) =
K∑

k=1

(
Nk∑
i=1

〈tk (xk(i )),ηk〉+ log ck (xk(i ))

)
−Nk Fk (ηk )+Nk log πk


+

K∑
k=1

M∑
j=1

qk j

(
〈tk (u j ),ηk〉+ log ck (u j )−Fk (ηk )+ log πk

)
.

(4.9)

By subtraction we can then explicitly write the contrastive log-likelihood C L(Ψ,Q|Ψ̂sup ,Dl ,U ) sim-
ilarly. It is worth noting that the measures ck (·) appear in both the semi-supervised log-likelihoods
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in an identical fashion, thus they are not part of the contrastive log-likelihood.
Now, we are most interested in a guarantee that, independently of which are the true labels on the
unlabeled observations, the proposed semi-supervised solution does not lead to a degraded per-
formance. In this sense the semi-supervised learner is said to be safe. The most natural choice of
performance measure in this setting is the log-likelihood on the full data-set. It is then necessary to
introduce the true complete data:

D∗
f ul l = Dl ∪

{
(u j , y∗

j )
}M

j=1
,

in which y∗
j are the true, unknown labels. In the next theorem, we state and prove that the MCPL

estimate is guaranteed to be a safe classifier in terms of the likelihood on D∗
f ul l . In order to obtain

this result it is necessary to first postulate a requirement on the data.

Assumption 4.4. For any Q ∈∆M
K , supΨ∈∆K ×Ω1×...×ΩK

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) is attained.

This assumption is necessary in order to prove the robustness of the MCPL estimates. We will dis-
cuss its meaning and what it actually requires after the proof of the following theorem.

Theorem 4.5. Let each class conditional distribution be modeled by a parametric class of densities{
pk (x|ηk ) : ηk ∈Ωk

}
that is a minimal exponential family. Let D∗

f ul l be the true complete data-set.
Assume the data-set is such that Assumption 4.4 is satisfied. Then, the semi-supervised estimates(
Ψ̂semi ,Q̂semi

)
obtained by the MCPL approach are a saddle point of the minimax problem (4.8).

Moreover, Ψ̂semi is guaranteed not to result in a performance degradation:

L(Ψ̂semi |D∗
f ul l ) ≥ L(Ψ̂sup |D∗

f ul l ) . (4.10)

Proof. The robustness guarantee can be proved with a two step argument. First, we apply Theorem
3.2 to show that the order in which the supremum and the minimum are taken does not influence
the solution. Lemma 3.1 then implies that MCPL solution is a saddle point. The definition of saddle
point finally gives us the needed property.
First, we verify that Theorem 3.2 can be applied to the minimax problem defined in (4.8). We start
by checking that the assumptions on the sets that define the optimization are satisfied:

• the supremum is on ∆K ×Ω1 × . . .×ΩK and each set in the Cartesian product is convex. This
follows from the convexity of the probability simplex and of the natural parameter spaces of
each exponential family (see Theorem 4.2). The Cartesian product of convex spaces is itself
convex;

• the infimum is on ∆M
K , which again is a Cartesian product of convex spaces and thus itself

convex. Moreover, this set closed and bounded, hence it is compact.

Then, the requirements on the objective function C L(Ψ,Q|Ψ̂sup ,Dl ,U ) need to be checked:

• C L( · ,Q|Ψ̂sup ,Dl ,U ) is upper-semi-continuous and strictly concave, as by Theorem 4.2 each
cumulant function is lower-semi-continuous and strictly convex and log(πk ) is concave;

• C L(Ψ, · |Ψ̂sup ,Dl ,U ) is linear and thus continuous and convex.

Convexity and continuity are stronger conditions than quasi-convexity and semi-continuity, thus
all the requirements are met. Therefore, we can apply Sion’s minimax theorem to state that

sup
Ψ∈∆K ×Ω1×...×ΩK

min
Q∈∆M

K

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) = min
Q∈∆M

K

sup
Ψ∈∆K ×Ω1×...×ΩK

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) .
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Assumption 4.4 is now necessary to have the first two conditions in Lemma 3.1. Indeed, the assump-
tion that the supremum is attained for any choice of Q, together with the minimax equality, allows
us to state that there exists a solution

(
Ψ̂semi ,Q̂semi

)
that solves the minimax independently of the

order of the optimization. Then by Lemma 3.1 the solution of the minimax problem is a saddle point
that gives the saddle value:

C L(Ψ̂semi ,Q̂semi |Ψ̂sup ,Dl ,U ) = max
Ψ∈∆K ×Ω1×...×ΩK

min
Q∈∆M

K

C L(Ψ,Q|Ψ̂sup ,Dl ,U ) .

In order to prove (4.10) we use the fact that (Ψ̂semi ,Q̂semi ) is saddle point:

C L(Ψ,Q̂semi |Ψ̂sup ,Dl ,U ) ≤ C L(Ψ̂semi ,Q̂semi |Ψ̂sup ,Dl ,U ) ≤ C L(Ψ̂semi ,Q|Ψ̂sup ,Dl ,U ) (4.11)

for any Ψ ∈ ∆K ×Ω1 × . . .×ΩK and any Q ∈ ∆M
K . The first inequality is trivial as Ψ̂semi is the best

estimate for the labeling Q̂semi . On the other hand, the second inequality can be rearranged to state
that

L(Ψ̂semi ,Q|Dl ,U ) ≥ L(Ψ̂sup ,Q|Dl ,U ) +
(
L(Ψ̂semi ,Q̂semi |Dl ,U )−L(Ψ̂sup ,Q̂semi |Dl ,U )

)
∀Q ∈∆M

K . This implies that

L(Ψ̂semi ,Q|Dl ,U ) ≥ L(Ψ̂sup ,Q|Dl ,U ) ∀Q ∈∆M
K , (4.12)

as the term in the parentheses is non-negative again because Ψ̂semi is the maximizing choice for the
labeling Q̂semi , thus results in a larger log-likelihood.
Finally, the true labels of the unlabeled observations are certainly included in ∆M

K , so we can in
particular conclude that

L(Ψ̂semi |D∗
f ul l ) ≥ L(Ψ̂sup |D∗

f ul l ),

which is the robustness guarantee we needed to conclude the proof.

Observation 4.6. In the proof above we showed that the solution of the minimax task is a saddle
point, as showed in (4.11). By strict concavity of the log-likelihood we can conclude that the follow-
ing inequality is strict

L(Ψ̂semi ,Q̂semi |Dl ,U ) > L(Ψ,Q̂semi |Dl ,U ) ∀Ψ ∈∆K ×Ω1 × . . .×ΩK \ Ψ̂semi .

Observation 4.7. We can define the so called oracle solution as the optimal estimate on the full
data-set, that is Ψ̂opt = argmaxΨL(Ψ|D∗

f ul l ). The log-likelihood on the full data evaluated in Ψ̂opt

then serves as an upper bound to the log-likelihood of the MCPL semi-supervised estimate:

L(Ψ̂opt |D∗
f ul l ) ≥ L(Ψ̂semi |D∗

f ul l ) L(Ψ̂sup |D∗
f ul l ) .

It is clear that a consequence of the strict concavity of the log-likelihood is the following equivalence

L(Ψ̂opt |D∗
f ul l ) ≥ L(Ψ̂semi |D∗

f ul l ) ⇐⇒ Ψ̂opt = Ψ̂semi .

The condition on the right is satisfied if and only if the labeling that solves the minimax turns out to
be the true one. This would represent a fortunate coincidence, thus the oracle solution intuitively
will remain an unreachable benchmark.

The MCPL solution is guaranteed not to produce a performance degradation as long as Assump-
tion 4.4, or equivalently Assumption 4.8, holds. In other words, the information contained in the
unlabeled observations is carefully used to produce a safe semi-supervised learner. However, the
estimates Ψ̂semi can still in principle result in no improvement at all. We will address this issue
extensively in Section 4.2.5.
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4.2.3. A Reformulation of the Assumption
Theorem 4.5 illustrates the desirable robustness of the MCPL approach. As we have seen, Assump-
tion 4.4 plays a crucial role in the proof above and it is crucial to conclude that the MCPL estimates
are a saddle point, which in turn means that Ψ̂semi performs at least as good as Ψ̂sup for any soft
labeling of the unlabeled observations. From a practical point of view Assumption 4.4 makes sure
that the log-likelihood is well behaved and that taking the supremum does not result in infinite val-
ues. Note that a sufficient condition so that the assumption is satisfied is that each parameter space
is compact. If that is the case, we know that a concave function attains a maximum on a compact
set. However, the parameter space of an exponential family is in general not compact. We could
still interpret it as such if the data are reasonable, in the sense that the parameter space could be
restricted to a compact set without excluding any value of interest. Anyway, here we reformulate
Assumption 4.4 in order to express it in a more comprehensible form.

Let us analyze the contrastive log-likelihood in more detail. We can immediately see that the supre-
mum affects only L(Ψ,Q|Dl ,U ), so the term L(Ψ̂sup ,Q|Dl ,U ) can be ignored. We can then concen-
trate on (4.9) only, which is a sum of several terms. The prior probabilities can be isolated and their
estimates are the solutions of the following supremum

sup
(π1,...,πK )∈∆K

K∑
k=1

Nk log(πk )+
M∑

j=1
qk j log(πk )

 .

An explicit solution to this maximization can be found in (4.15), from which it is clear that the supre-
mum is attained if Nk ≥ 1 for any k = 1, . . . ,K . Note that that supervised estimates η̂ sup

k would not
be defined if this was not true. We can then ignore this term in the following.
The remaining part of the semi-supervised log-likelihood can be seen as a sum of K independent
optimization tasks:

K∑
k=1

sup
ηk∈Ωk

〈Nk∑
i=1

tk (xk(i ))+
M∑

j=1
qk j tk (u j ),ηk〉−

(
Nk +

M∑
j=1

qk j

)
Fk (ηk )

 , (4.13)

where the terms that include the carrier measures ck (x) are not included because they have no
influence on the solution of the supremum.
It is then clear that Assumption 4.4 is equivalent to asking that each independent supremum (4.13)
is attained. In other terms, this means that for any k = 1, . . . ,K the parameters of each exponential
family can be estimated by maximizing a modified log-likelihood, which can be defined for any k as

Lk (ηk , qk·|Dl ,U ) =
Nk∑
i=1

log pk (xk(i )|ηk ) +
M∑

j=1
qk j log pk (u j |ηk ) ,

where qk· =
(
qk1, . . . , qkM

) ∈ [0,1]M is a vector containing the posterior probabilities of assigning
each unlabeled observation to class k.
We can then reformulate Assumption 4.4 as follows:

Assumption 4.8. For any value of Q, each supremum in (4.13) is attained, i.e. for any class k and for
any Q ∈∆M

K
∃ η̂k (qk·) ∈Ωk : Lk (η̂k (qk·), qk·|Dl ,U ) = sup

ηk∈Ωk

Lk (ηk , qk·|Dl ,U ) .

We have thus shown the following result.

Proposition 4.9. Assume Nk ≥ 1 for any k = 1, . . . ,K . Then Assumption 4.8 is equivalent to Assump-
tion 4.4.
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This kind of hypotheses are common in standard maximum likelihood estimation, where Lk is the
sum of the logarithms of the density evaluated in each observation. In particular, the ML estimator
is consistent under the assumption that the model is correct and that the supremum is attained. We
can then expect Assumption 4.8 to be satisfied in common real world applications. Nonetheless, the
assumption can be verified in practice for instance by checking that each −Lk (η̂k (qk·), qk·|Dl ,U ) is
coercive for any Q ∈∆M

K . In that case the supremum is guaranteed to be attained.

4.2.4. Solving the Minimax Problem
In the proof of Theorem 4.5 we showed that we can apply Sion’s minimax theorem to show that
the optimization task (4.8) satisfies the minimax equality. We are thus allowed to interchange the
supremum with the minimum without affecting the result. We can take advantage of this result to
define a strategy to solve the minimax problem, while understanding what is the structure of the
MCPL estimates. We then focus on the following formulation of the optimization task:

min
Q∈∆M

K

max
Ψ∈∆K ×Ω1×...×ΩK

(
L(Ψ,Q|Dl ,U )−L(Ψ̂sup ,Q|Dl ,U )

)
,

in which we talk about maximum because we assume the supremum to be attained, i.e. either As-
sumption 4.4 or Assumption 4.8 hold.
The maximization task is affected by the first log-likelihood only, as L(Ψ̂sup ,Q|Dl ,U ) does not de-
pend onΨ. Therefore, we can first focus on solving

max
Ψ∈∆K ×Ω1×...×ΩK

L(Ψ,Q|Dl ,U ) , (4.14)

where L(Ψ,Q|Dl ,U ) was explicitly defined in Equation (4.9). The objective function is strictly con-
cave inΨ for any Q ∈∆M

K and thus we expect to have a unique solution. The estimates for the prior
probabilities are computed by a constrained optimization, the constraint being

∑K
k=1 π̂k = 1. The

resulting estimates are

π̂k (qk·) =
Nk +

∑M
j=1 qk j

N +M
for k = 1, . . . ,K . (4.15)

The constraint is satisfied as
∑K

k=1

∑M
j=1 qk j =

∑M
j=1

(∑K
k=1 qk j

)
= M and again

∑K
k=1 Nk = N . Note

also that it is clear from this expression that the observations are partially assigned to potentially
more than one class by the soft labels.
Now, we can estimate the parameters that define each class conditional distribution simply by
equating the gradient of the semi-supervised log-likelihood to 0. This is possible as the cumulant
function is differentiable in the interior of the parameter space by Theorem 4.2 and leads to the
following equations

∇ηk Fk (η̂k ) = 1

Nk +
∑M

j=1 qk j

 Nk∑
i=1

tk (xk(i ))+
M∑

j=1
qk j tk (u j )

 for k = 1, . . . ,K . (4.16)

For each class, we have then defined a number of equations that is equal to the order of the corre-
sponding exponential family. It is interesting to compare the MCPL estimates with the supervised
ones, which are of the form introduced in Equation (4.2). We can clearly see once again that the
unlabeled feature vectors appear in the weighted sum preceded by their corresponding soft labels.
It is important to note that, as we assumed the exponential families to be minimal, the cumulant
function is strictly convex. As a consequence, its gradient is strictly increasing and we can uniquely
determine the MCPL estimate either by (4.16) or by inverting it:

η̂k
(
qk·

)= (∇Fk
)−1

 1

Nk +
∑M

j=1 qk j

 Nk∑
i=1

tk (xk(i ))+
M∑

j=1
qk j tk (u j )


 (4.17)
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for k = 1, . . . ,K .
The last optimization problem we need to solve is then the minimum over Q, that is the Cartesian
product of M simplices:

min
Q∈∆M

K

(
L(Ψ̂

(
Q

)
,Q|Dl ,U )−L(Ψ̂sup ,Q|Dl ,U )

)
. (4.18)

This is a constrained optimization task that can be solved numerically. Note that the space on which
the optimum is searched is compact and grows with the number of classes and with the number of
unlabeled observations. It is not immediately clear how the objective function and its derivatives
behave, as this depends on the values that the sufficient statistics take on the observations.
As we can see from Equations (4.15), (4.16) the choice of the posterior probabilities determines the
MCPL estimates. If we call Q̂semi the solution of the minimum (4.18), then the MCPL estimates are

π̂ semi
k = π̂k (q̂ semi

k· ) for k = 1, . . . ,K ,

η̂ semi
k = η̂k

(
q̂ semi

k·
)

for k = 1, . . . ,K .
(4.19)

The MCPL solution is then the oracle if the labels that are selected in the minimization (4.18) are
the true ones, while in any other case by Theorem 4.5 we know the MCPL can never result in a
performance degradation.

4.2.5. Conditions for Strict Performance Improvement

In this section we investigate under which assumptions we can expect the MCPL estimates to result
in a strict performance improvement. The following theorem represents a first step in this direction.
We take advantage of Equation (4.16) to show that the MCPL estimates are almost surely different
from the supervised ones if we choose the class conditional distributions from the same family.

Theorem 4.10. Let all the assumptions in Theorem 4.5 hold, where in addition the class conditional
distributions are modeled with the same minimal exponential family, which is assumed to have an
injective sufficient statistic. Fix a labeled data-set Dl on which the supervised solution is computed
as in (4.5). Suppose the observed unlabeled feature vectors U = {

u j
}M

j=1 are a sample from a contin-

uous underlying density p(x). Then, the semi-supervised MCPL solution Ψ̂semi (U ) built using the
unlabeled data-set is almost surely different from the supervised estimate:

Pu1,...,uM∼p(x)

(
Ψ̂semi (U ) = Ψ̂sup

)
= 0.

Proof. First, observe that the assumption that each class conditional distribution is modeled by the
same exponential family means in particular that tk (·) = t (·) for any k. In Section 4.1.2 we discussed
that an exponential family can be parametrised with the so called mean parametrization, which
is defined by µ = ∇F (η) = E

(
t (X )

)
. The contrastive pessimistic estimate of this parameter can be

obtained for each class by (4.16), as µ̂semi
k =∇ηk Fk (η̂semi

k ). Then, we can estimate the average of this
parameter over the classes with a weighted sum, where the weights are the estimates of the prior
probabilities:

µ̂semi (U ) =
K∑

k=1
π̂ semi

k µ̂semi
k .
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This can be rewritten as

µ̂semi (U ) =
K∑

k=1

 Nk +
∑M

j=1 q̂ semi
k j

N +M
·
∑Nk

i=1 t (xk(i ))+
∑M

j=1 q̂ semi
k j t (u j )

Nk +
∑M

j=1 q̂ semi
k j


= 1

N +M

K∑
k=1

 Nk∑
i=1

t (xk(i ))+
M∑

j=1
q̂ semi

k j t (u j )


= 1

N +M

 N∑
i=1

t (xi )+
M∑

j=1
t (u j )

 ,

where in the first equality we used Equations (4.15) and (4.16), while in the last equality we took
advantage of the fact that t (u j ) does not depend on k and then that

∑K
k=1 q̂ semi

k j = 1.
It is now clear that µ̂semi (U ) is independent of the posterior probabilities Q and depends only on the
data. On the other hand, the supervised optimal estimates are such that ∇ηk Fk (η̂sup

k ) = 1
N

∑N
i=1 t (xi ).

Note that there is no randomness in this estimate because we consider the labeled data-set to be
fixed. With computations similar to the ones above we can show that the supervised estimate for
the average mean parameter is

µ̂sup =
K∑

k=1
π̂

sup
k µ̂

sup
k = 1

N

N∑
i=1

t (xi ) .

Now, observe that the sufficient statistic has a continuous distribution since the data are assumed
to be generated by a continuous density. Then by setting µ̂semi (U ) = µ̂sup we obtain the following
condition

M∑
j=1

t (u j ) = M

N

N∑
i=1

t (xi ) , (4.20)

which almost surely does not hold because we assumed the sufficient statistic to be injective and
distribution of the feature vectors u1, . . . ,uM to be continuous.
The final argument is that equality of the MCPL estimates and the supervised estimates, i.e. Ψ̂semi =
Ψ̂sup , implies equality of the estimated average mean parameters. In other words

{U ∈Rd : Ψ̂semi (U ) = Ψ̂sup } ⊆ {U ∈Rd : µ̂semi (U ) = µ̂sup } .

However, we have just seen that µ̂semi (U ) 6= µ̂sup almost surely. This in turn implies that Ψ̂semi (U ) 6=
Ψ̂sup almost surely, which is the thesis.

It is important to observe that it is a common choice to use the same statistical model for all the
classes. This framework for instance includes two very well known classifiers, such as LDA and
QDA, in which the parametric family is that of Gaussian densities. In Chapter 5 we explicitly derive
the MCPL estimates for both learners.
Another important assumption is that the sufficient statistic of the chosen exponential family is
injective. This again is a very mild assumption and is in general verified.
We have thus shown that the MCPL approach almost surely produces a different estimate than the
supervised one under the forementioned choice of the statistical model. In particular, we consider
the randomness to be in the unlabeled observations, while the labeled data-set is considered to be
fixed. We may consider the labeled data-set as random as well, but the result remains unchanged.

We now discuss an important consequence of this property in the following corollary of Theorems
4.5 and 4.10. Theorem 4.10 in particular was the missing piece to prove that the MCPL results almost
surely in a strict improvement in terms of the log-likelihood on the full data-set. To this end we
introduce the complete additional data-set Du = {

(u j , v j )
}M

j=1, in which we included the hidden
labels associated with each feature vector u j . We can now state the result.
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Corollary 4.11. Let the assumptions of Theorem 4.10 be verified. Assume that the labels correspond-
ing to the unlabeled observations are generated from p(y |x). Define the complete data-set as D f ul l =
Dl ∪Du .
Then, the MCPL solution results almost surely in a strict performance improvement:

PDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l ) > L(Ψ̂sup |D f ul l )

)
= 1. (4.21)

Proof. In Theorem 4.5 we showed that the solution of the minimax problem (Ψ̂semi ,Q̂semi ) is a sad-
dle point of the contrastive log-likelihood. In particular, this implies that

C L(Ψ̂semi ,Q̂semi |Ψ̂sup ,Dl ,U ) ≤ C L(Ψ̂semi ,Q|Ψ̂sup ,Dl ,U ) ∀Q ∈∆M
K . (4.22)

Now, we know by Theorem 4.10 that Pu1,...,uM∼p(x)

(
Ψ̂semi (U ) = Ψ̂sup

)
= 0, which means that adding

a random unlabeled sample implies that the MCPL solution is almost surely different than Ψ̂sup .
In addition, the fact that the exponential family is minimal means that the semi-supervised log-
likelihood is strictly concave. Therefore, there exists a unique optimal solution for each set of pos-
terior probabilities, that is equivalent to the following inequality

L(Ψ̂semi (U ),Q̂semi |Dl ,U ) − L(Ψ̂sup ,Q̂semi |Dl ,U ) > 0 a.s.

In other terms, the contrastive likelihood for the labeling Q̂semi is almost surely strictly positive.
Then using this and (4.22) we have that

Pu1,...,uM∼p(x)

(
C L(Ψ̂semi (U ),Q|Ψ̂sup ,Dl ,U ) > 0 ∀Q ∈∆M

K

)
= 1.

Noting again that ∆M
K contains all possible hard labels, we can conclude that the improvement is

strict however the labels are chosen. Therefore, we might as well take them to be randomly gener-
ated from p(y |x), thus having a probability with respect to the joint density, which is our thesis.

We have then proved that for continuous data the semi-supervised solution obtained by the MCPL
approach strictly improves the supervised model for any labeling Q if we model all the class con-
ditional distributions with the same exponential family. The improvement is then almost sure with
respect to the joint distribution p(x, y), which generates the unlabeled observations. In other words,
there is zero probability of drawing a sample from p(x, y) which does not imply a strict performance
improvement. Therefore, the unlabeled data are guaranteed to have the desired effect, that is to add
useful information to the model. This is a very strong guarantee which shows that the MCPL ap-
proach succeeds in finding a safe semi-supervised learner in this setting under very mild assump-
tions on the data-set.
A similar result can be proved for the case in which Du is drawn from a discrete distribution. In this
setting we have to settle for a strict improvement in expectation.

Theorem 4.12. Let Assumption 4.8 hold. Suppose the class conditional distributions are modeled
with the same exponential family, which has injective sufficient statistic t (·). Assume we observe a
labeled data-set Dl and its corresponding supervised solution Ψ̂sup . Suppose then to draw M addi-
tional unlabeled feature vectors U . In addition, assume the underlying density that generates U to be
discrete.
Then, the following strict inequality holds:

EDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l )

)
> EDu∼p(x,y)

(
L(Ψ̂sup |D f ul l )

)
. (4.23)
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Proof. Proceeding as in the proof of Theorem 4.10, we define the supervised and semi-supervised
mean parameters µ̂sup and µ̂semi . With the same steps we arrive at Equation (4.20). Now, the distri-
bution of the data is assumed to be discrete, so also the sufficient statistic has a discrete distribution
and so does

∑M
j=1 t (u j ). There may exist a sample U that is observed with strictly positive proba-

bility that satisfies (4.20), so we cannot rule this event out. However, there are in general several
possible values that the sufficient statistic can take with non-zero probability. Moreover, adding M
evaluations of the sufficient statistic implies a number of values that are taken from

∑M
j=1 t (u j ) with

non-zero probability. We can then conclude that, defining the scalar δ as

δ = Pu1,...,uM∼p(x)

 M∑
j=1

t (u j ) = M

N

N∑
i=1

t (xi )

 ,

we have
Pu1,...,uM∼p(x)

(
Ψ̂semi (U ) 6= Ψ̂sup

)
≥ 1−δ .

The inequality sign follows from the fact that (4.20) is only a necessary condition, thus it can be that
Ψ̂semi (U ) 6= Ψ̂sup even if (4.20) holds. In addition, it is clear by the precedent remark that δ< 1.
But we have showed in the proof of Corollary 4.11 that we have strict improvement if the semi-
supervised and the supervised solution are different. This means that

PDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l ) > L(Ψ̂sup |D f ul l )

)
≥ 1−δ .

Now, we know that the complementary event of L(Ψ̂semi (U )|D f ul l ) > L(Ψ̂sup |D f ul l ) is

L(Ψ̂semi (U )|D f ul l ) = L(Ψ̂sup |D f ul l ),

thus in expectation we have

EDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l ) − L(Ψ̂sup |D f ul l )

)
> 0,

which is our thesis.

We have then shown that in the discrete case we can expect a strict improvement in expectation.
This result could be expressed in terms of the probability δ that the sample satisfies (4.20). However,
this probability is unknown. We could also formulate the result as

PDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l ) > L(Ψ̂sup |D f ul l )

)
> 0,

which is meaningful because otherwise we have that L(Ψ̂semi (U )|D f ul l ) = L(Ψ̂sup |D f ul l ).

We have thus proved that if we use the same statistical model for all classes we expect that the MCPL
approach takes advantage of the unlabeled observations successfully. Now, we focus on the case of
different statistical models for the class conditional distributions and we investigate whether we can
draw similar conclusions.
The proof of Corollary 4.11 illustrates that in order to have strict improvement we just need to be
sure that the MCPL and the supervised solutions are different. An immediate result is that given a
data-set of labeled and unlabeled observations we can check whether Ψ̂semi and Ψ̂sup are equal to
determine if we have strict improvement. We state this result in the following proposition.

Proposition 4.13. Let Assumption 4.8 hold. Assume each class conditional distribution is modeled
with a minimal exponential family. Call D f ul l = Dl ∪Du the full data-set and Ψ̂semi the estimates
obtained through the MCPL approach. It then follows that

PDu∼p(x,y)

(
L(Ψ̂semi (U )|D f ul l ) > L(Ψ̂sup |D f ul l )

∣∣∣Ψ̂semi (U ) 6= Ψ̂sup

)
= 1.
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It is interesting to note that the condition Ψ̂semi 6= Ψ̂sup can be checked without any knowledge of
the true labels. Hence, we know if our semi-supervised estimates strictly outperform the supervised
model as soon as the MCPL estimates have been computed.
Clearly, Proposition 4.13 is a weaker result than for instance Corollary 4.11, as in principle Ψ̂semi

might be equal to the supervised solution, thus leading to no improvement at all. However, setting
the estimator µ̂semi equal to µ̂sup in the general case results in the following necessary condition:

1

N

N∑
i=1

tyi (xi ) = 1

M

M∑
j=1

K∑
k=1

q̂ semi
k j tk (u j ) ,

where we assume that the sufficient statistics have the same dimensionality. In this case we cannot
get rid of the probabilities q̂ semi

k j as we did in Corollary 4.11. Note that the posterior probabilities
computed with the MCPL approach depend on the unlabeled data, thus making the characteriza-
tion complicated. It is thus unclear whether this equality holds in general since there is not a closed
form solution for every term q̂ semi

k j . Nevertheless, we can obtain a simple sufficient condition for
strict improvement as

ØQ ∈∆M
K :

1

N

N∑
i=1

tyi (xi ) = 1

M

M∑
j=1

K∑
k=1

qk j tk (u j ) . (4.24)

In this sense, it is possible to obtain strict improvement also if one chooses to use different statistical
models for different classes. It has to be noted that this is a rather strict requirement. However, this
is only a sufficient condition and thus strict improvement can be obtained even if (4.24) does not
hold.

In conclusion, in the case of a common statistical model we proved with Corollary 4.11 that the im-
provement happens almost surely in the continuous case and in expectation in the discrete setting.
Then, we have discussed two conditions for strict improvement in case more than one statistical
model is used. These conditions are (4.24) and the requirement that Ψ̂semi 6= Ψ̂sup . In both cases
we know the improvement is strict and thus the semi-supervised learner is indeed better for any
labeling of the unlabeled data. In other terms, it is possible to build a classifier that uses safely
the available unlabeled data and in some cases is guaranteed to strictly outperform the supervised
model. Such strong results are even more important because they do not require any assumption
on the structure of the data, unlike the large majority of semi-supervised algorithms.

4.2.6. The Constraint Set
In Chapter 3 we introduced the set of all optimal solutions for different values of the labels on the
unlabeled observations. This was called the constraint set. It became clear that this set, which is
here denoted by C , is crucial in determining whether we can expect that the semi-supervised esti-
mate results in a strict performance improvement, or if the contrastive pessimistic approach returns
the supervised model. In the present chapter, we moved from discriminative models to generative
models. The constraint set maintains its relevance also in this framework, as we now show.
In order to understand this, recall that in Section 4.2.4 we derived the structure of the MCPL es-
timates by solving the maximum before the minimum. From this derivation, and in particular
from Equations (4.15), (4.16), we can see that the MCPL approach can be interpreted in terms of
C . First, let us define a labeled data-set as Dl . We can then formally define the constraint set
C ⊂∆K ×Ω1 × . . .×ΩK as follows

C :=
{
Ψ :Ψ= Ψ̂(

Q
)

, Q ∈∆M
K

}
, (4.25)

where the expressions for Ψ̂
(
Q

)
are as in Equations (4.15) and (4.17). These expressions are thus

what we find by solving the maximization task for a fixed Q.
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We can formulate the MCPL approach as

min
Q∈∆M

K

(
L(Ψ̂(Q),Q|Dl ,U )−L(Ψ̂sup ,Q|Dl ,U )

)
, (4.26)

which means that we look for a solution in C that solves the minimum. The result is very similar
to what we showed in Chapter 3. Once again, this formulation is similar to the method introduced
in [26], which is the LDA version of the Implicitly Constrained Least Squares classifier. In [26] the
objective function is the supervised log-likelihood, similarly to the least squares case. Therefore, the
same comments that we made for that case hold in this setting.
Now, the objective function of the minimization (4.26) is non-negative for any Q by strict convexity
of the log-likelihood and since Ψ̂(Q) is the optimal estimate for Q. As a consequence if Ψ̂sup is
in the constraint set, then the objective function is null and thus minimized. This means that the
minimizing choice of Q is the one that retrieves Ψ̂sup . It is clear that the objective function is strictly
positive if Ψ̂sup ∉C .
This intuitive reasoning is used to prove the following corollary, which is a direct consequence of
Theorem 4.10 and Equation (4.25).

Corollary 4.14. Let the class conditional distributions be modeled with the same exponential family
and assume a labeled data-set Dl is available. Denote the supervised solution by Ψ̂sup . Call U the
matrix containing the additional unlabeled feature vectors and suppose Assumption 4.8 is satisfied.
In addition, assume the unlabeled observations to be drawn from a continuous density p(x). Then

Pu1,...,uM∼p(x)

(
Ψ̂sup ∉ C (U )

)
= 1. (4.27)

Proof. By Theorem 4.10 we know that under the same assumptions on the underlying distribution
and on the statistical model the MCPL estimate is almost surely not equal to the supervised one.
Reasoning by contradiction, suppose that Ψ̂sup ∈ C . This means that ∃Q̃ : Ψ̂sup = Ψ̂(Q̃). In other
words Ψ̂sup is the optimal solution for the choice of labels in Q̃, that is

Ψ̂sup = argmax
Ψ∈∆K ×Ω1×...×ΩK

L(Ψ,Q̃|Dl ,U ).

Moreover, the optimum is unique by strict concavity of the semi-supervised log-likelihood. But
this would mean that L(Ψ̂semi ,Q̃|Dl ,U ) < L(Ψ̂sup ,Q̃|Dl ,U ), which contradicts Theorem 4.5 and in
particular Equation (4.12). The supervised solution is then almost surely not contained in the con-
straint set.

We have thus shown that we can interpret the MCPL using the constraint set, similarly to the case of
least squares classification.

4.2.7. Theoretical Analysis of the Adversarial Posterior Probabilities
In Section 4.2.4 we solved first the maximum over the parameters, thus obtaining the structure of
the MCPL estimates for fixed values of the posterior probabilities Q. The final estimates Ψ̂semi are
then selected by the optimization with respect to Q. It is then evident that the adversarial probabili-
ties Q̂semi play a key role in the choice of the MCPL estimates. For this reason, we now focus on this
particular aspect of the proposed method from a theoretical point of view. In particular, we investi-
gate how the adversarial probabilities are chosen, if they are in general hard labels or soft labels and
when we fall in either case. The ultimate goal here is to have a deeper understanding of the method.
Our findings are then tested in Section 4.3, in which we analyze in detail some simple examples in
order to clarify our theoretical analysis.
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We have previously highlighted that, after having solved the maximization, the adversarial posterior
probabilities can be chosen by the following optimization:

Q̂semi = argmin
Q∈∆M

K

C L(Ψ̂(Q), Q |Ψ̂sup ,Dl ,U ) .

Unfortunately, this formula does not clarify what values of Q we might expect. Indeed, the expres-
sion of C L(Ψ̂(Q), Q |Ψ̂sup ,Dl ,U ) is very complicated and no conclusions on convexity nor on the
position of the optimal Q can be drawn for general cases. We thus approach the problem from a
different perspective, that is the following:

Q̂(Ψ) = argmin
Q∈∆M

K

C L(Ψ, Q |Ψ̂sup ,Dl ,U ) .

In this case we know that by definition C L(Ψ, Q |Ψ̂sup ,Dl ,U ) is linear in each posterior probability.
We can thus imagineΨ to be fixed and focus on solving the minimization.
The contrastive likelihood can be thought to be divided in two parts. The first part is the differ-
ence on the labeled data Dl between the log-likelihood defined by Ψ and the one defined by the
Ψ̂sup . In this analysis this term is constant and represents a bias term that does not influence the
minimization. The second part is the following:

M∑
j=1

K∑
k=1

qk j

〈tk (u j ),ηk − η̂ sup
k 〉−

(
Fk (ηk )−Fk (η̂ sup

k )
)
+ log

(
πk

π̂
sup
k

) . (4.28)

Note that the order of the summations is on purpose inverted compared to previous sections. In
this second term we clearly have linearity in each posterior probability. Therefore, the first term is
ignored in what follows and we can consider the objective function of the minimization task to be
(4.28).
We are then interested in the gradient of C L(Ψ,Q|Ψ̂sup ,Dl ,U ) in direction qk j . This is clearly the
slope coefficient:

∂C L(Ψ,Q|Ψ̂sup ,Dl ,U )

∂qk j
= 〈tk (u j ),ηk − η̂ sup

k 〉−
(
Fk (ηk )−Fk (η̂ sup

k )
)
+ log

 πk

π̂
sup
k


= log

(
πk p(u j |ηk )

)− log
(
π̂

sup
k p(u j |η̂ sup

k )
) (4.29)

for any k = 1, . . . ,K and j = 1, . . . , M . The second equality can be obtained by adding and subtracting
ck (u j ). The gradient in direction qk j is then the difference between the log-likelihoods with pa-
rameters Ψk and Ψ̂sup

k evaluated in u j . Moreover, we can observe that at this stage the posterior
probabilities qk j of each observation are chosen independently as they do not directly influence
each other. The consequence is then that the minimization can be separated in M independent
tasks, one for each unlabeled observation. We take advantage of this and we focus on a fixed ob-
servation with index j ∈ {

1, . . . , M
}
. Then, the gradient with respect to the posterior probabilities

q· j = (q1 j , . . . , qK j ) is

∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ) =


∂C L(Ψ,Q|Ψ̂sup ,Dl ,U )

∂q1 j

...
∂C L(Ψ,Q|Ψ̂sup ,Dl ,U )

∂qK j

 ,

which by (4.29) is a constant vector because, as we said previously, we considerΨ to be fixed.
Now, the set on which the minimum is searched in is the probability simplex corresponding to the

j -th unlabeled observation ∆K =
{

qk j :
∑K

k=1 qk j = 1, qk j ≥ 0
}

. We can encode this constraint by



50 4. Maximum Contrastive Pessimistic Likelihood Estimation with Exponential Families

computing the projection of ∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ) on this set. This allows us to understand in
what direction the contrastive likelihood increases in this subspace and thus to identify where we
can expect to find the optimum. The simplex defines a bounded region in the hyper-plane that is
defined by the normal vector n = 1K , which is the K -dimensional vector having each component
equal to one. We can then divide the gradient in the sum of two components that are respectively
orthogonal and parallel to the simplex:

∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ) =
(
∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U )

)
⊥ n

+
(
∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U )

)
∥ v ,

where vector v is such that 〈v, n〉 = 0, with v 6= 0. The component of the gradient that is orthogonal
to the simplex can be calculated by projecting and normalizing:

(
∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U )

)
⊥ =

〈∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ), n〉
||n||2

= 1

K

K∑
k=1

{
〈tk (u j ),ηk − η̂ sup

k 〉−
(
Fk (ηk )−Fk (η̂ sup

k )
)

+ log

(
πk

π̂
sup
k

)}
,

where we used that‖n‖2 =∑K
k=1 1 = K .

It immediately follows that the component of the gradient that is parallel to the simplex can be
obtained subtracting the orthogonal part:(

∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U )
)
∥ v = ∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U )

−
∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ) ·1K

K

 1K .

In other words, the mean value among the K classes is subtracted to each component of the gradi-
ent.
We are then interested in understanding what are the possible scenarios and what type of solutions
we might expect in each case. For instance, we can observe thatΨ can in principle be such that the
gradient results to be orthogonal to the simplex, in which case its parallel component is null and
hence we have that for each k

∂C L(Ψ,Q|Ψ̂sup ,Dl ,U )

∂qk j
=

∑K
k=1

(
〈tk (u j ),ηk − η̂ sup

k 〉−
(
Fk (ηk )−Fk (η̂ sup

k )
)
+ log

(
πk

π̂
sup
k

))
K

. (4.30)

Note that this defines a set of K − 1 linearly independent conditions, while the K -th can always
be retrieved by summing the other K − 1. It follows that the parameters are allowed to vary on a
subspace and there is an infinite number of possible solutions.
In addition, Equation (4.30) implies that the gradient has the same value for each of the K classes.
We can rewrite this as

log(πk pk (u j |ηk )) − log(π̂ sup
k pk (u j |η̂ sup

k )) = C ∀k = 1, . . . ,K , (4.31)

where C is the average value among the classes. Basically, the values of the joint probabilities de-
fined byΨ evaluated at u j are just a shifted version of the supervised ones, where the shift in terms
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of log-likelihoods is C . It is evident that in this case the choice of q· j is irrelevant. Indeed, the effect
on the objective function is the same independently of the choice of q· j because all the terms in the
summation are equal and the weights must sum to one. Therefore, any q· j ∈∆K is the solution of the
minimization task ifΨ satisfies (4.31). Note that this event occurs for instance when Ψ̂semi = Ψ̂sup ,
in which case C = 0 and every component of the gradient is null.

Now, we assume that the projection of the gradient onto the simplex is not null in order to analyze
the further possible scenarios. We have observed that the gradient is a constant vector, thus its pro-
jection in the direction that is parallel to the simplex is constant as well. This means that the solution
of the minimization is the last point of the simplex that we find going in the opposite direction of
(∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ))∥ v , that is the direction in which the objective function decreases. The
consequence of this is that the optimal posterior probabilities have to be a point on the boundary of
the simplex, which is either a vertex or an edge. These points have a clear interpretation in terms of
probabilities. A vertex is defined as a point where one of the K posterior probabilities is equal to one,
while all the others are null. On the other hand, an edge is a sub-simplex, that is an L -dimensional
simplex, with 1 < L < K , in which all the mass is divided among L of the K classes. The edges can
then be defined as

∆I
L =

(q1, . . . , qK ) : qi = 0 if i ∈ I ,
K∑

i=1
i∉I

qi = 1, qi ≥ 0 ∀i ∉ I

 ,

where I ⊂ {1, . . . ,K } is a set that contains the indices to which is assigned null posterior probability.
Note that L = K − |I |, where |I | is the number of indices in the set. For any choice of I we define
a corresponding unit norm vector that is orthogonal to the sub-simplex ∆I

L , while being parallel to
∆K and pointing towards the interior of the K -dimensional simplex. We call each of these vectors
v I , where I represents the edge to which the vector is orthogonal. These vectors play an important
role in determining whether the solution is an edge or a vertex. Indeed, if the projected gradient
is parallel to a vector v I and points to the same direction, then the minimization task is solved by
any element of the sub-simplex ∆I

L . In that case the whole edge is on a level curve of the objective
function, thus all the points of the edge are valid solutions. It is then worth investigating when this
event happens. In order to answer to this question, suppose that there exists a set of indices I such
that (4.31) is satisfied for any k ∈ I , that is the gradient has equal values in components identified by
I . We refer to the common value of the components in positions I as C I . Moreover, assume that the
following condition holds

C I < log(πl pl (u j |ηl ))− log(π̂sup
l pl (u j |η̂sup

l )) ∀ l ∉ I .

There are then |I | equal components that are strictly smaller than the other L = K −|I | ones. Clearly,
the objective function is then minimum for any choice of q· j ∈ ∆I

L . We have then showed that the
solution is any element of∆I

L if the components at the positions I are tied as smallest in the gradient.
In this case it makes no difference how the mass is distributed among the indices in I .
The projected gradient can also be neither null nor parallel to any of the vectors v I . It is then clear
that the solution has to be a vertex of the K -dimensional simplex. Note that a vertex can be seen
as a degenerate simplex of dimension one, so this case can in principle be included in the previous
setting. If we fall in this situation, the optimal choice of posterior probabilities is a vector of the
standard basis, i.e. q̂· j = ek for some k. In this case the difference of log-likelihoods is minimized by
a single class and thus all the mass is placed on the corresponding class.

We have thus shown the three scenarios that can happen when solving the minimization task. It is
now helpful to recap which is the solution to the minimization task for different values ofΨ:

• ifΨ is such that (∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ))∥ v ⊥∆K , then the solution is any q· j ∈∆K ;
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• if Ψ is such that (∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ))∥ v ∥ v I for some set of indices I ⊂ {1, . . . ,K }, then
the solution is any q· j ∈∆I

L , where L = K −|I |;
• otherwise, the solution is a vector of the standard basis ek for some k ∈ {1, . . . ,K }.

We have limited our analysis to the posterior probabilities that a specific observation is in each class,
but as we have observed previously each minimum can be solved separately at this stage. As a con-
sequence, this analysis applies independently to each of the M minimization tasks. It is thus clear
that in order to have soft labels associated to a specific unlabeled observation there are orthogonal-
ity conditions that must be satisfied. Conversely, hard labels are picked if these conditions do not
hold. It remains however unclear from this analysis whether all these scenarios can possibly take
place in practice. Intuitively one could expect the adversarial probabilities to follow in some sense
the supervised model. In other terms, we could imagine that the unlabeled observations that are
predominantly assigned to one class by the supervised learner are then tagged with a large adver-
sarial probability by the MCPL approach. On the other hand, the orthogonality conditions we have
inferred seem to be quite strict and thus hardly satisfied. These intuitive arguments are the object
of scrutiny in the next section, where we use a series of illustrative toy problems.

To conclude our discussion, we point out that the findings of this section are insightful also from
a different perspective. Consider the inequality that represents a part of the definition of a saddle
point:

C L(Ψ̂semi ,Q̂semi |Ψ̂sup ,Dl ,U ) ≤ C L(Ψ̂semi ,Q |Ψ̂sup ,Dl ,U ) ∀Q ∈∆M
K .

We proved that this inequality holds for any data-set and any choice of the statistical models in
Theorem 4.5. First of all, the reader can convince himself that our analysis of the minimization
task is perfectly coherent with this property. Indeed, Q̂semi can be interpreted as the minimizer of
C L(Ψ̂semi ,Q |Ψ̂sup ,Dl ,U ) independently of the particular choice of Ψ̂semi . However, if we assume

that for at least one unlabeled observation we have q̂ semi
· j ∈ ∆J

L then it follows from our precedent
analysis that

C L(Ψ̂semi ,Q̂semi |Ψ̂sup ,Dl ,U ) = C L(Ψ̂semi ,Q∗ |Ψ̂sup ,Dl ,U ) ∀Q∗ ∈S ,

where the set S is defined as

S =
{

(q·1, . . . , q·M ) ∈∆M
K : q· j = q̂ semi

· j if q̂ semi
· j ∈ {

0,1
}M , for j = 1, . . . , M

}
In other words, the value of the contrastive likelihood is not affected by moving on that sub-simplex,
so we cannot expect uniqueness of the saddle value. This result is caused by the fact that the con-
trastive likelihood is not strictly convex in Q, thus it is possible that this inconvenience takes place.
On a more qualitative level, in this case there are several values that true posterior probabilities can
take while minimizing the performance improvement of the semi-supervised learner. It is however
worth observing that not all the points (Ψ̂semi ,Q∗) are saddle points, as there is no reason why Ψ̂semi

should be the optimum for any point in the sub-simplex. This claim can be justified from a theoret-
ical standpoint using Lemma 3.1. Indeed, either the first and the second conditions are verified for
the pair (Ψ̂semi ,Q̂semi ), while

Q 6= argmin
Q∈∆M

K

C L(Ψ̂(Q), Q |Ψ̂sup ,Dl ,U ) Q ∈S \Q̂semi

unless the following holds
∃Q̄ ∈S \Q̂semi : Ψ̂semi = Ψ̂(Q̄).

It can be seen from Equations (4.15) and (4.16) that Ψ̂(Q) is in general not constant on S , thus
showing that not all the points in S are saddle points. This however does not exclude that there is
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more than one saddle point. Curiously, this analysis shows that performing first the optimization
with respect to the variable in which the function is not strictly convex leads to the entire set of
points where the saddle value is attained, while the opposite order brings us to the set of saddle
points.

4.3. Empirical Study of the Adversarial Posterior Probabilities
The MCPL approach has been so far studied from a theoretical perspective. In particular, it was
shown to have interesting properties of robustness and strict performance improvement. In the
previous section we discussed a key aspect of the method, that is the choice of the posterior prob-
abilities Q. These values determine the semi-supervised estimates and hence the decision surface
and performance of the method. It is thus worth investigating more in depth this aspect of the pro-
posed approach.
A theoretical analysis in this direction was conducted in Section 4.2.7, where we showed the con-
ditions on Ψ that lead to a hard or soft labeling of the unlabeled data-points. However, it remains
unclear in practice when the method falls in either case. It is possible to obtain some insights by
solving a series of simple problems from an empirical point of view. Here focus in particular on the
choice of the adversarial posterior probabilities, but occasionally we refer to other properties that
were discussed in Section 4.2. In order to have simple computations, the univariate Gaussian dis-
tribution is used throughout this section. We start with the easiest case, then increasingly adding
some parameters, classes or observations.

4.3.1. A Set of Simple Examples
Suppose there are two classes and one labeled observation for each class. We assume the variance
of each class conditional distribution to be unitary so that it does not have to be estimated. This
setting is illustrated graphically in Figure 4.1, where the labeled observations are x1 =−1, x2 = 1 and
the resulting supervised estimates for the means are used to define the class conditional distribu-
tions. We can then add an unlabeled observation u and see how different values of it influence the
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Figure 4.1: Plot of the supervised class conditional distributions in the setting described Section 4.3.1

MCPL estimates. Note that µ̂ sup
1 , µ̂ sup

2 are the empirical means computed with the labeled obser-
vations. Therefore, in this simple setting we have that µ̂ sup

1 = x1 = −1 and µ̂
sup
2 = x2 = 1 and the

estimates for the prior probabilities are π̂ sup
1 = π̂ sup

2 = 1/2. This framework is usually called nearest
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mean classifier (NMC). It is understandable that the NMC gets its name from the fact that a new
observation is assigned to the class that has the nearest mean, as the classes are equiprobable and
the variances are equal.
On the other hand, the MCPL semi-supervised estimates have the following structure

π̂1(q1) = N1 +q1

N +1
, π̂2(q1) = N2 + (1−q1)

N +1
, (4.32)

and

µ̂1(q1) = x1 +q1u

N1 +q1
, µ̂2(q1) = x2 + (1−q1)u

N2 + (1−q1)
, (4.33)

where in this example N1 = N2 = 1 are the number of labeled observations for each class, N =
N1 +N2 = 2, and we used that q2 = 1− q1 to reduce the number of unknowns while including the
constraint. We will focus more specifically on Gaussian Discriminant Analysis in Chapter 5, but for
now it is sufficient to know that these formulas follow from Equations (4.15) and (4.16). In other
terms, solving the maximization results in the optimal estimates Ψ̂(q1), which are a function of q1.
We take this for granted and we focus on the issues described above.
Now, we have discussed in Section 4.2.7 that the gradient of the contrastive likelihood is the quan-
tity that regulates the type of optimal probabilities that solve the minimization for a fixed Ψ. In
particular, we showed that we can expect soft probabilities if and only if ∇q· j C L(Ψ,Q|Ψ̂sup ,Dl ,U ) is
orthogonal to the simplex, while if this is not the case then the result are hard labels. In this case
there are two classes and one unlabeled observation, which means that there is only one linearly
independent equation that determines the orthogonality. This is(

∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)
)

1
=

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
2

,

where Ψ = (µ1,µ2,π1,π2), q· =
(

q1

q2

)
are the posterior probabilities that u is respectively from class

1 or class 2, while by (·)i we denote the i -th component of the vector in brackets. It is easy to show
that for k = 1,2 we have

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
k
= log

 πk

π̂
sup
k

+ 1

2

(
−(u −µk )2 + (u − µ̂ sup

k )2
)

,

by which it follows that the equation that has to be satisfied in order to have orthogonality to the
simplex is

log

(
π1

π2

)
+ 1

2

(
(u −µ2)2 − (u −µ1)2

)
= 1

2

(
(u − µ̂ sup

2 )2 − (u − µ̂ sup
1 )2

)
. (4.34)

If the semi-supervised estimates satisfy this equation, then the difference of log-likelihoods evalu-
ated at u between semi-supervised and supervised estimates is equal for both classes. As a conse-
quence, the contrastive likelihood evaluated in the semi-supervised estimates should understand-
ably in that case be constant in q .
Our experiment works as follows: we fix two labeled observations and we let the unlabeled obser-
vation u vary in a support, that here is [−10,10]. The MCPL estimates are then computed for each
value of u as Ψ̂semi = Ψ̂(q̂ semi

1 ), where

q̂ semi
1 = argmin

q1∈[0,1]
C L(Ψ̂(q1), q1|Ψ̂sup ,Dl ,u) . (4.35)

Then, the orthogonality condition is checked by plugging Ψ̂semi in (4.34). Note that numerical errors
are taken into account, thus we consider the semi-supervised estimates to satisfy the orthogonality
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Figure 4.2: Plots in the setting with 2 labeled observations and 2 classes.

condition if the difference between the terms on the right and left hand sides is less than ε= 10−4.
In Figure 4.2a we show how q̂ semi

1 varies when it is computed with different values of u. It is clear
that q̂ semi

1 is never a point on the boundary boundary of the 2-dimensional simplex. This is in turn
justified by the fact that the semi-supervised estimates are such that the gradient of the contrastive
likelihood is orthogonal to ∆2 for any value of the unlabeled observation. This is a somewhat unex-
pected result as the orthogonality condition in principle seemed to be verified only in degenerate
cases. Moreover, it is clear that q̂ semi

1 is proportional to the difference between the two supervised
estimates of the class conditional distributions. In other terms, u is assigned predominantly to the
class with the highest supervised posterior distribution, thus favoring the supervised classifier and
resulting in the most adversarial setting for our semi-supervised learner. Figure 4.2b illustrates a
peculiar behaviour: the MCPL estimates trained with a specific u are such that the posterior proba-
bility in that point is copied from the supervised model. Note that the posterior densities are com-
puted as

p(y = 1|u,Ψ) = π1p(u|µ1)

π1p(u|µ1)+π2p(u|µ2)
,

where p(u|µi ) is a Gaussian with unitary variance and mean µi . In other terms, the unlabeled ob-
servation that is used to train the semi-supervised model is then classified and assigned exactly the
same posterior probability as in the supervised learner. This means that the supervised and semi-
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Figure 4.3: Plots in the setting with 3 labeled observations and 3 classes.

supervised sigmoid functions, which represent the partial assignments to each class of both models,
intersect in u and are free to differ elsewhere.
The orthogonality of ∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u) to the simplex has an additional consequence. The
contrastive likelihood evaluated in Ψ̂semi , thus seen as a function of q1 only, is constant for any
value of q1. In mathematical terms, this means the following:

C L(Ψ̂semi , q·|Ψ̂sup ,Dl ,u) = const ∀q· ∈∆2 .

This is illustrated in Figure 4.2c, in which one axis represents the different values that are, one at
a time, used to train the semi-supervised classifier, while the other spans the feasible values of q1.
The semi-supervised likelihood obtained with a specific u and evaluated in Ψ̂semi is then greater
than the supervised one by a constant. In addition, this holds independently of the value of the
true q1. The reader can observe that the contrastive likelihood is indeed strictly positive, even if we
there is a unique additional observation. Clearly, in this simple setting we cannot expect a signifi-
cant improvement if the only unlabeled observation is near the labeled feature vectors. It is anyway
interesting to note that the improvement increases as u moves further away from the labeled obser-
vations.

We have shown that in this simple setting the orthogonality condition is verified independently of
the value of the unlabeled observation. This hints that the most adversarial posterior probabilities
(q1,1−q1) can indeed be soft labels and are thus not limited in any way to be on the boundary of the
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simplex. Now, we would like to understand the extent to which these conclusions can be applied. To
this end we iterate the same procedure to slightly different settings in order to have a generalization
of the peculiarities of the method. For instance, we might add a labeled observation from a third
additional class, while leaving unchanged the remaining aspects. Even this modification does not
deviate the orthogonality condition from being satisfied, as one can see from Figure 4.3, where the
plots for classes 1 and 2 are shown. The additional class introduces a second orthogonality condi-
tion, which has to be satisfied in order to have soft labels. The two conditions can now be expressed
as+2

3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
1
− 1

3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
2
− 1

3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
3
= 0,

−1
3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
1
+ 2

3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
2
− 1

3

(
∇q·C L(Ψ, q·|Ψ̂sup ,Dl ,u)

)
3
= 0.

However, the third class introduces two more parameters, so this does not represent a restriction.
The plots for class 3 are omitted as they can be obtained from the first two by taking advantage of
the fact that both the adversarial probabilities and the posterior distributions sum to one. Note that
the semi-supervised posterior probabilities are one more time a copy of the supervised ones. This
happens for all the three classes independently of the value of u. Similarly, we observe the same
phenomenon for the posterior distributions as in the previous simpler setting.

We have studied two settings in which a single additional unlabeled observation is available to train
the semi-supervised classifier. The MCPL approach uses it to build the estimated vector of param-
eters in such a way that the posterior probability assigned to the unlabeled observation is as in
the supervised model. This curious behaviour is observed in either of the cases we analyzed. It is
reasonable to say that this is desirable as in this simple case the safest way to use the additional
observation is to copy the output from the supervised classifier, even more so if at the same time a
strict improvement is obtained. It can also be observed that the adversarial probabilities converge
to a neutral value, that is 0.5 in the first case and 0.3 in the second. This illustrates that when the
supervised joint probability that is assigned to u is similar for all classes, then q̂semi reflects uncer-
tainty. We will examine these aspect in the next section for some more complicated examples.
In addition, the orthogonality condition is always verified and the corresponding adversarial prob-
abilities are not hard labels. These statements hold for any value of the unlabeled observation and
corroborate our analysis of Section 4.2.7, which highlighted the relation between the orthogonality
condition and the soft assignments. Interestingly, the orthogonality condition, which seemed to
hold in degenerate cases only, is always verified in the studied setting. We can expect this behaviour
to change when the data-set is larger, as the conditions become increasingly strict. In the next sec-
tion we add one more unlabeled observation and we will discuss some interesting differences.

4.3.2. Two More Complicated Examples
The examples that we analyzed in the previous section can be made more realistic by consider-
ing the variance of each univariate Gaussian class conditional density as a parameter to estimated,
rather than as a fixed value intrinsic of the parametric family. Clearly, at least two labeled observa-
tions per class are needed in order to define a meaningful estimate for each variance. In this section
we thus add one labeled observation per class, for a total of four. Later, we assume that two un-
labeled feature vectors are available to the semi-supervised learner, hence studying an interesting
combination effect.

We begin our discussion by analyzing the influence of adding the variance as a parameter. This
permits us to study how the model is influenced by the introduction of two parameters in a simple
setting. To this end, we assume that the labeled feature vectors are x11 =−2 and x12 = 1 for class 1,
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x21 =−0.5 and x22 = 3 for class 2. This choice is maintained throughout this section in order to per-
form a meaningful comparison. Different choices of the labeled sample can understandably lead to
some dissimilarities, but the conclusions that are drawn here have general validity.
The supervised estimates based on this labeled data-set are then

µ̂
sup
1 = x11 +x12

2
= −1

2
, π̂

sup
1 = N1

4
= 1

2
,

µ̂
sup
2 = x21 +x22

2
= 5

4
, π̂

sup
2 = N2

4
= 1

2
,

while the supervised estimates of the variances are

σ̂2
sup,1 = 1

N1

(
(x11 − µ̂ sup

1 )2 + (x12 − µ̂ sup
1 )2

)
= 2.25,

σ̂2
sup,2 = 1

N2

(
(x21 − µ̂ sup

2 )2 + (x22 − µ̂ sup
2 )2

)
= 3.0625.

We underline how the supervised variances are here different, hence the supervised class condi-
tional distributions have different shapes. Now, the structure of the semi-supervised estimates that
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Figure 4.4: Comparison fixed / variable variance for the setting with 4 labeled and 1 unlabeled observations.

is obtained by solving the maximization task is similar to Equations (4.32), (4.33). In particular, in
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this setting the priors have an identical structure as in (4.32) but where N1 = N2 = 2, while the esti-
mates for the means have the following structure:

µ̂1(q1) = x11 +x12 +q1u

N1 +q1
, µ̂2(q1) = x21 +x22 + (1−q1)u

N2 + (1−q1)
. (4.36)

On the other hand, the MCPL estimates of the variances are

σ̂1(q1) = (x11 − µ̂1(q1))2 + (x12 − µ̂1(q1))2 +q1(u − µ̂1(q1))2

N1 +q1
,

σ̂2(q1) = (x21 − µ̂2(q1))2 + (x22 − µ̂2(q1))2 + (1−q1)(u − µ̂2(q1))2

N2 + (1−q1)
.

(4.37)

These estimates are used when the variance is a parameter of the problem, while when it is fixed we
impose that the variances are as in the supervised model. This once again allows us to perform a
sensible comparison.
The minimax optimization is then solvable following the procedure discussed in the previous sec-
tion. This means first plugging in the contrastive likelihood the estimates for the priors, the means
and variances as in (4.36), (4.37), then minimizing the obtained objective function with respect to
q1. The minimization then has an identical formulation as in (4.35), hence resulting in the most ad-
versarial value of q1 ∈ [0,1]. The results are shown and compared in Figure 4.4. It is clear that either
for fixed or variable variance we have roughly that

q̂ semi
1

 > 1
2 if π̂

sup
1 p(u|µ̂ sup

1 , σ̂2
sup,1) > π̂

sup
2 p(u|µ̂ sup

2 , σ̂2
sup,2) ,

≤ 1
2 if π̂

sup
1 p(u|µ̂ sup

1 , σ̂2
sup,1) ≤ π̂

sup
2 p(u|µ̂ sup

2 , σ̂2
sup,2) .

Note that the two lines in Figure 4.4a meet exactly when their value is approximately 0.5 and thus as-
sign u predominantly to the same class in any case. However, when the variance is considered to be
a parameter we observe that q̂ semi

1 goes to zero for π̂ sup
1 p(u|µ̂ sup

1 , σ̂2
sup,1) ¿ π̂

sup
2 p(u|µ̂ sup

2 , σ̂2
sup,2).

On the contrary, the limit is non-zero if the variance is fixed. Nonetheless, this different behaviour
does not affect the orthogonality of the gradient of the contrastive likelihood to the simplex, which
indeed holds for any u. The orthogonality condition is once again as in Equation (4.30) and the
same criterion to check its validity is used.
It is also interesting to observe that, in the case of fixed variances, the adversarial probabilities have
a different limit to the left and to the right, contrarily to the setting illustrated in Figure 4.2a. This is
a consequence of the dissimilarity between the supervised estimates of the variances. Indeed, the
class to which is associated the higher variance has heavier tails and thus prevails from some point
on.
As a final note we underline the method achieves a larger improvement when considering the vari-
ance as a parameter to be estimated. This can be explained by observing that adding the variance
to the parameter vector increases the flexibility of the classifier. In addition, it is evident that in both
settings the contrastive likelihood evaluated at Ψ̂semi is constant in q1 for a fixed u. This once again
follows from the orthogonality condition, as claimed in Section 4.2.7.

It is then interesting to check how these considerations generalize to a more complicated setting
with two unlabeled observations. In order to do so, the labeled observations are left unchanged and
are thus equal to the previous analysis. The two unlabeled observations are now referred to as u1

and u2, while we indicate the posterior probabilities as q1 = p(y = 1|u1) and q2 = p(y = 1|u2). The
reader can once again trust that in this setting the MCPL estimates after the maximization task have
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Figure 4.5: Plots of the posterior probabilities in u1 for different values of u2for the case of 4 labeled and 2
unlabeled observations, with fixed (left) and variable (right) variances.

the following structure

µ̂1(q1, q2) = x11 +x12 +q1u1 +q2u2

N1 +q1 +q2
, π̂1(q1, q2) = N1 +q1 +q2

N +M
,

µ̂2(q1, q2) = x21 +x22 + (1−q1)u1 + (1−q2)u2

N1 + (1−q1)+ (1−q2)
, π̂1(q1, q2) = N2 + (1−q1)+ (1−q2)

N +M
.

and the semi-supervised variances are similar to Equation (4.37), but including also the second
unlabeled feature vector as in the previous formulas.
The same experiment as in earlier examples is now performed. First, it has to be noted that there
are now two separate orthogonality conditions, one for each unlabeled data point:

log(π1 p(ul |µ1,σ2
1))−log(π̂ sup

1 p(ul |µ̂ sup
1 , σ̂2

sup,1)) = log(π2 p(ul |µ2,σ2
2))−log(π̂ sup

2 p(ul |µ̂ sup
2 , σ̂2

sup,2))

for l = 1,2. This is certainly expected to make it more difficult to have both conditions simultane-
ously satisfied, but it is possible that only one of the two is verified. It should be clear that when the
variances are fixed we assume σ2

1 = σ̂2
sup,1 and σ2

2 = σ̂2
sup,2.

Figure 4.5 shows how the semi-supervised estimates of the posterior probabilities p(y = 1|u1) vary
in u1 for different values of the second unlabeled observation. It can be observed that the posterior
overlaps the supervised line when u2 takes values that are near the labeled observations, but can
change significantly when u2 is more extreme. In any case it is clear that when it is possible the
MCPL estimates are again chosen so that the supervised and semi-supervised posteriors are close
in the unlabeled observation.
Considering the variance as a parameter that needs to be estimated reveals to be a major factor on
the profile of the adversarial probabilities. This can be seen in Figure 4.6, where the surface and the
level curves of q̂ semi

1 in both settings are shown. The reader can convince himself that the plots for
q̂ semi

2 are identical to Figure 4.6, as the order of the observations is not relevant. In the case of a
variable variance, q̂ semi

1 follows approximately the behaviour that was observed in the setting of a
single unlabeled observation, see Figure 4.4a. However, it is clear that the value of u2 influences the
shape of q̂ semi

1 . In particular, for extreme values of u2 there are some clear differences, but the trend
remains similar. The behaviour is on the contrary closer to the precedent setting when u2 is nearer
to the labeled points. This line of reasoning does not apply to the fixed variance setting, thus making
the interpretation in that case more difficult. It is in any case clear that for reasonable values of the
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Figure 4.6: Comparison fixed / variable variance for the setting with 4 labeled and 2 unlabeled observations.

unlabeled points the most adversarial probabilities are chosen similarly to what was previously dis-
cussed. This can be observed for instance by focusing on the interval [−6,6] on the y-axis in Figure
4.6d. The value of u2 has in any case a relevant influence, but it is nonetheless evident that q̂ semi

1
follows the supervised posterior probability assigned to class 1.
Once again, the orthogonality conditions are satisfied when the adversarial probabilities are on
the boundary of their respective simplex. We can then state that, for a variable variance and non-
extreme unlabeled observations, at least one of the two orthogonality conditions is satisfied if the
observations are reasonably close to the supervised feature vectors. This observation holds also in
the fixed variance setting, even if it is harder to fully understand the reasons that lead to the profile
in Figure 4.6b. However, either the two adversarial probabilities are soft if the variance is variable
and the observations are in approximately in the range of the labeled ones.

We have thus seen how adding an unlabeled observation complicates the analysis. Nevertheless,
we can claim that also in this setting the adversarial probabilities follow the behaviour of the super-
vised posteriors, at least in a more realistic case. This means that we can expect to have soft labels
for reasonable values of the unlabeled data and that in general it is possible to expect this situation.
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4.3.3. Final Comments
We have analyzed a series of illustrative examples with a focus on the adversarial probabilities. This
study has served not only to confirm some properties that were found theoretically, but also new
findings were made. In particular, it was confirmed that soft labels are to be expected if the semi-
supervised estimate satisfy some orthogonality conditions. Moreover, the contrastive likelihood is
in that case constant in the corresponding simplex when evaluated in Ψ̂semi . The examples of this
section make it clear that it can indeed happen that the adversarial probabilities are not hard labels.
This seems to hold in general settings if the unlabeled sample is not too far from the labeled one.
Furthermore, we have seen that the semi-supervised learner tries to copy the supervised output
in the unlabeled points. Our analysis hints that this is the case for reasonable values of the unla-
beled data-set, while it may not be possible to do so for more extreme observations. Finally, it was
discovered that the adversarial probabilities follow in some sense the supervised class conditional
distributions. This is a sensible finding as it is clear that this choice favors the supervised solution.
An effect of this choice is that the MCPL estimates can hardly result in a significant performance
improvement if the unlabeled features are close to the labeled ones. Indeed, the MCPL approach
(partially) assigns those observations to a specific class in order to make the supervised classifier a
good predictor on the entire data-set. This result suggests that the MCPL approach is in this case
very conservative. On the other hand, considerable improvements seem possible if some of the un-
labeled features are far from the labeled sample. This is illustrated by Figures 4.2c, 4.4c and 4.4d.
This behaviour seems to find its motivation in the fact that the supervised model does not fit well
extreme data points, rather than in a less conservative approach of the proposed method. Nonethe-
less, we could expect the MCPL estimates to be conservative because of the very strong guarantees
that they provide on the unlabeled data.

In conclusion, this section has highlighted some interesting aspects of the MCPL approach. The
theoretical analysis of Section 4.2.7 is corroborated by our findings and it seems now to be clear that
the adversarial probabilities are in no way limited to be points on the boundary of the simplex.

4.4. Conclusion
We have described the adaptation of the principles of contrast and pessimism to the case of a gen-
erative probabilistic model. The resulting classifier, which we called MCPL, satisfies several inter-
esting guarantees on performance improvement. In this sense, it became clear that we could obtain
considerably more powerful results for this generative classifier than for margin based losses or the
least squares classifier. This motivates us to continue developing this theory in the remaining bits
of this thesis. In the next chapter we focus on the use of Gaussian densities in the MCPL approach.



5
MCPL for Gaussian Discriminant Analysis

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) are two very pop-
ular generative classifiers that are based on an original work by Sir Ronald Fisher. These methods
have been widely studied in the past decades and have found applications in several areas such as
classification and feature selection. In this chapter we build the semi-supervised counterpart of the
LDA and QDA classifiers by applying the framework developed in Chapter 4. This means that once
again we assume to have N labeled and M unlabeled observations and we want to safely incorpo-
rate them in LDA and QDA using the MCPL approach.
In both classifiers the class conditional distributions are modeled as (multivariate) Gaussian densi-
ties. The difference between the two lies in the fact that in LDA the covariance matrix is assumed to
be common to all classes, while in QDA there is no such constraint. This results in different type of
decision surface, which is linear for LDA and quadratic for QDA. Section 5.1.2 is dedicated to a brief
explanation of this property in a supervised setting.
We start with a description of the Gaussian family and its decomposition to the exponential form.
This formulation is then used to define the semi-supervised counterparts in Sections 5.2.1 and 5.2.2.
In Section 5.2.2 we discuss an extension of the MCPL approach to the case of a subset of shared
parameters with same statistical models. This subsumes LDA and is thus a more general setting.
Results on strict improvement hold almost surely for this scenario and trivially for the MCPL semi-
supervised version of QDA.

5.1. Preliminaries

5.1.1. The Gaussian Distribution as an Exponential Family
We have anticipated that in LDA and QDA we model each class conditional distribution with a Gaus-
sian density, which is defined as:

g (x|µ,Σ) = 1

(2π)d/2 |Σ|1/2
exp

(
−1

2

(
x −µ)T

Σ−1 (
x −µ))

.

In this formula, d is the dimension of the observed feature vectors, while µ and Σ indicate the mean
and the covariance matrix respectively. We can then define the family of Gaussian densities as

P =
{

g (·|µ,Σ) : µ ∈Rd , Σ ∈Rd×d , Σi j =Σ j i , Σi i > 0 ∀i , j
}

. (5.1)

Now, we are interested in the decomposition of a minimal Gaussian family in its canonical form,
which was defined in Section 4.1. To this end we take advantage of the following observations

µTΣ−1x = xTΣ−1µ ,

xTΣ−1x = tr
(
xTΣ−1x

)
= tr

(
Σ−1xxT

)
,

63
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where the first equation is obtained by simply noting that the term on the left hand side is a scalar
and hence it is equal to its transpose, while the second equation is obtained by observing that a
scalar is equal to its trace and the trace operator is invariant under cyclic permutations. In both
equations the symmetry of the covariance matrix, and hence of its inverse, is crucial.
Taking advantage of the two previous equations we can now write the sufficient statistic and the
cumulant function as

t (x) =
(

t1(x)
t2(x)

)
,

F (µ,Σ) = 1

2

(
µTΣ−1µ− log |Σ−1|

)
,

where the two sub-vectors that define the sufficient statistic are

t1(x) = x ,

t2(x) =
{

xi x j

1+δi j
: i ≤ j , i , j ∈ [M ]

}
,

in which δi j is the Kronecker delta. On the other hand, the canonical parameters are defined by

η =
(
η1

η2

)
,

where

η1 =
((
Σ−1µ

)
1

, . . . ,
(
Σ−1µ

)
d

)
,

η2 =
{(

−Σ−1
)

i j
: i ≤ j , i , j ∈ [M ]

}
.

The second part of the vector of canonical parameters contains the components of the negative,
inverse covariance matrix that lie on and above its diagonal. These are sufficient as the covariance
matrix, and hence its inverse, is symmetric. Note that the constant term is absorbed in the carrier
measure, i.e. c(x) = (2π)−d/2.
Now, in Section 4.1.2 we have discussed that the mean parametrization, in which the parameter is
the gradient of the cumulant generating function, is important in the computation of the maximum
likelihood estimates. We are then interested in the expression of the mean parameter for Gaussian
distributions. First observe that we can complete the parameter η2 by including all the elements
of −Σ−1, so that the expressions we are interested in are easier to obtain and interpret. This does
not affect our analysis as we are basically duplicating the conditions on the upper triangular part of
−Σ−1 to the lower part. It is clear that in order to use this notation the second part of the sufficient
statistic has to be modified accordingly to t2(x) = xxT . The gradient of the cumulant generating
function can then be divided in two parts as follows

∇F (η) =
(
µ, µµT +Σ

)
, (5.2)

where the first part is the derivative with respect to η1 and the second part with respect to η2. This
division will be handy in the following sections.
We conclude this section by observing that the MCPL estimates of the prior probabilities (π1, . . . ,πK )
do not depend on the statistical model and are thus computed as in Equation (4.15). In the following
sections we can then focus only on the MCPL estimates of the mean vectors and of the covariance
matrices.
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5.1.2. Supervised LDA and QDA
This section serves as a small introduction to get acquainted to Gaussian Discriminant Analysis.
The two classifiers are defined and the shape of the decision boundary is derived following [47].

LDA and QDA are generative classifiers based on the Bayes classification rule, that in a two-class
case is the following:

ŷ =
y1, if p(y1|x) > p(y2|x) ,

y2, if p(y1|x) < p(y2|x) .

We have discussed in Chapter 2 that the Bayes rule can be used to state that the decision is equiva-
lently based on

p(y1)p(x|y1) > p(y2)p(x|y2) .

In the current framework the class conditional distributions are modelled with Gaussian distribu-
tions and thus it is easier to deal with the logarithm of these quantities. We can then define the
discriminant functions as

gi (x) = log(p(yi )p(x|yi )) = log p(yi ) + log p(x|yi )

= log p(yi )− 1

2
(x −µi )TΣ−1

i (x −µi )+ ci .

It is then clear that the decision boundary is in general quadratic in x because of the term xTΣ−1
i x.

However, the quadratic term is null if the covariance matrix is shared by all classes. Now, the former
is the case of QDA, while the latter is that of LDA.
The parameters of the class of densities can be estimated in several ways. The most common choice
is the maximum likelihood method, which is chosen in the MCPL approach.

5.2. Semi-Supervised LDA and QDA
We are now ready to define the semi-supervised counterpart of the LDA and QDA classifiers. We
begin with the QDA setting, which is a straightforward application of the results in Chapter 4, and
later the focus is on LDA.

5.2.1. Contrastive Pessimistic Quadratic Discriminant Analysis
In QDA the class conditional distributions are modeled with K independent Gaussian densities.
There is then only one parametric family that models each class conditional distribution, or in other
terms

pk (x|ηk ) ∈ P ∀k = 1, . . . ,K , (5.3)

where P is the set of Gaussian distributions defined in (5.1). Using the notation of Section 4.2 we
then have

ΨQD A = (
π1, . . . ,πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK

)
.

This means that there are K
(
d +d(d +1)/2

)
parameters for the Gaussian densities and K additional

prior probabilities. We have already observed that the prior probabilities have the same structure as
in (4.15), so here we can focus on the remaining parameters.
Now, we observe that this setting is precisely part of the more general framework we have introduced
in Section 4.2, so we can apply the conditions we have already derived in order to compute the
structure of the MCPL estimates for the means and the covariances. In particular, Equation (4.16) is
exactly what we need. Taking advantage of (5.2) we find that the MCPL estimates of the means have
the following structure:

µ̂semi
k (Q) = 1

Nk +
∑M

j=1 qk j

 Nk∑
i=1

xk(i ) +
M∑

j=1
qk j u j

 for k = 1, . . . ,K . (5.4)



66 5. MCPL for Gaussian Discriminant Analysis

The second part of ∇F (η) implies that the MCPL estimates of the covariance matrices satisfy the
relation

Σ̂semi
k (Q) = 1

Nk +
∑M

j=1 qk j

 Nk∑
i=1

xk(i )xT
k(i ) +

M∑
j=1

qk j u j uT
j

− µ̂semi
k (Q)

(
µ̂semi

k (Q)
)T

,

which using the distributive property of the matrix product on the last term of the right hand side
can be rearranged as

Σ̂semi
k (Q) = 1

Nk +
∑M

j=1 qk j

(
Nk∑
i=1

(
xk(i ) − µ̂semi

k

)(
xk(i ) − µ̂semi

k

)T

+
M∑

j=1
qk j

(
u j − µ̂semi

k

)(
u j − µ̂semi

k

)T
) (5.5)

for any k. Note that in the last equation we omitted the dependency of µ̂semi
k from Q to lighten the

notation.
The estimates (5.4) and (5.5) still depend on the probabilities Q, which are then selected solving the
minimization task (4.18). However, the minimum is attained by compactness of the space of the
posterior probabilities, so the final estimates are simply obtained by plugging the optimal Q in the
expressions for the MCPL estimates of the means and of the covariance matrices.
It is also interesting to note that we need to have a set of observations such that the covariance
matrix has full rank, which makes it a meaningful estimate. This happens in general when Nk > d if
the observations in the data-set are non redundant. The same condition is required to estimate the
covariance matrices in the supervised setting, thus this is not really a new requirement on the data.
It has to be noted that the need for large data-sets is a common criticism to both the LDA and QDA
classifiers.

The QDA semi-supervised estimates computed with the MCPL approach come with the guarantees
we proved in Section 4.2. In particular the statistical model is common to all the classes, so we can
conclude that Pu1,...,uM∼p(x)(Ψ̂semi (U ) 6= Ψ̂sup ) = 1 and most importantly that

PDu∼p(x,y)

(
LQD A(Ψ̂semi (U )|D f ul l ) > LQD A(Ψ̂sup |D f ul l )

)
= 1,

where D f ul l =Dl ∪Du , Du = {
(u j , v j )

}M
j=1 and p(x, y) is the underlying joint density.

In conclusion, a straightforward application of the framework we have introduced in Section 4.2 can
be used to build a semi-supervised version of QDA that almost surely improves over its supervised
counterpart.

5.2.2. Contrastive Pessimistic Linear Discriminant Analysis
We have previously discussed that in LDA the parameters that need to be estimated are the mean
vector of each class, the shared covariance matrix, and the prior probabilities. These parameters
can be united similarly to Section 5.2.1 as follows

ΨLD A = (
π1, . . . ,πK ,µ1, . . . ,µK ,Σ

)
.

This implies that K (d +1)+d(d +1)/2 parameters have to be estimated in order to learn the LDA
classifier.
Contrary to the case of QDA, the MCPL approach cannot be applied to LDA as it was described
in Section 4.2. The reason is that the additional constraint on the covariance matrices cannot be
incorporated in the parametric family itself. This has either to be added as an explicit constraint or
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be incorporated in the objective function. The latter choice is examined in this section in a more
general setting where part of the parameter is shared between the classes. Later, this is applied to
the LDA setting.

Assume every class conditional distribution is modeled with the same exponential family. Suppose
there is a part of the parameter vector that is chosen to be equal for each class. In other terms the
classes have a shared parameter that has to be estimated in a suitable way. For instance in LDA the
constraint is on the covariance matrix, while the mean vectors are class specific. It is then necessary
to split the canonical parameter vector of each class as

ηk =
(
ηk

1
η2

)
∈ Ω ,

where η2 does not depend on the class as it is indeed the shared parameter, andΩ is the parameter
space. Similarly, we can split the sufficient statistic vector in two parts, which we denote t1(·) and
t2(·). We call the dimension of each ηk

1 and η2 respectively d1 and d2. Then, the maximization task
that needs to be solved is the following formula:

max
(η1

1,...,ηK
1 ,η2)

K∑
k=1

{
〈

Nk∑
i=1

t1(xk(i ))+
M∑

j=1
qk j t1(u j ) , ηk

1〉+〈
Nk∑
i=1

t2(xk(i ))+
M∑

j=1
qk j t2(u j ) , η2〉

−
(

Nk +
M∑

j=1
qk j

)
F (ηk )

}
,

(5.6)

where we have divided the scalar product in two parts to explicitly separate ηk
1 and η2. Note that the

likelihood evaluated in Ψ̂sup is not taken into account because it does not affect the result of this
first step. The only term where both parts are present is the cumulant generating function, which
has to be differentiated carefully. We denote the two parts of its gradient as ∇η1 F (·) and ∇η2 F (·),
which are defined as (

∇η j F (·)
)

i
= ∂F (·)
∂(η j )i

for j = 1,2; i = 1, . . . ,d j .

First, we differentiate with respect to ηk
1 and equate the result to zero. We thus obtain for each k the

first set of d1 equations:

∇η1 F (η̂k ) = 1

Nk +
∑M

j=1 qk j

 Nk∑
i=1

t1(xk(i ))+
M∑

j=1
qk j t1(u j )

 , (5.7)

Observe that this condition is equivalent to what was derived in Equation (4.16). This is reasonable
as the first part of the parameter varies from class to class, which was exactly the setting in Section
4.2. On the other hand, we expect a different behaviour for the shared parameter. Indeed, equating
the derivative with respect to η2 to zero we obtain the remaining d2 equations

K∑
k=1

∇η2 F (η̂k )

Nk +
M∑

j=1
qk j

 =
K∑

k=1

 Nk∑
i=1

t2(xk(i ))+
M∑

j=1
qk j t2(u j )

 . (5.8)

As expected, setting the second derivative to zero results in a different condition, where every class
is present. Note that (5.7) gives us K d1 equations, while (5.8) are the last d2.

We have then extended the MCPL approach to the case of same statistical models for the class con-
ditional distributions where a part of the parameter vector is shared between the classes. Any com-
bination of constrained parameters can in principle be studied and no restrictions are made. Now,
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the robustness of these estimates has yet to be confirmed. In Section 4.2 we proved some results
in this direction, but here the structure of the problem was modified and as a consequence the ap-
plication of the same results must be discussed. Fortunately, the same arguments that were used
in Section 4.2 can be applied in this context. Indeed, the objective function in (5.6) has indeed the
properties that are needed to prove the non-degradation guarantee of the estimates. This is because
the contrastive likelihood is again a sum of functions that are strictly concave in the parameters and
linear, thus convex, in the adversarial probabilities. As a consequence, Sion’s minimax theorem can
be applied as long as we assume the supremum to be attained for any value of Q. Then, the following
holds under Assumption 4.4:

L(Ψ̂semi |D f ul l ) ≥ L(Ψ̂sup |D f ul l )

for any choice of the labels on the unlabeled data in D f ul l . Now, it remains to determine whether
we can expect the improvement to be strict. This is addressed in the next theorem.

Theorem 5.1. Consider the setting described in this section where each class conditional distribu-
tion is modeled with the same exponential family and a part of the parameters is shared between
the classes. Moreover, suppose that Assumption 4.4 holds and that the data Du are sampled from
a continuous distribution. Then the MCPL estimates have p(x, y)-almost surely a strictly improved
performance.

Proof. Using the same arguments as in the proof of Theorem 4.10, we can define the estimated
mean parameter as

µ̂semi (U ) =
K∑

k=1
π̂ semi

k µ̂semi
k ,

where the dependency on the unlabeled sample is made explicit. Now, we can limit our attention
the the d1 components that correspond to the non-shared parameters:

(
µ̂semi (U )

)
1 = 1

N +M

 N∑
i=1

t1(xi )+
M∑

j=1
t1(u j )

 .

Equality follows from similar computations to the proof of Theorem 4.10. We can then state that
(µ̂semi (U ))1 = (µ̂sup )1 if the semi-supervised and supervised estimates are equal. However, this hap-
pens if and only if

1

N +M

 N∑
i=1

t1(xi )+
M∑

j=1
t1(u j )

 = 1

N

(
N∑

i=1
t1(xi )

)
,

which because of the continuity of the random sample is a zero probability event with respect to the
underlying marginal density px . The consequence is then that px -almost surely the supervised and
the semi-supervised estimates are not equal.
It is now sufficient to observe that the contrastive likelihood is strictly concave in the parameters
and by the same arguments of Corollary 4.11 we have the thesis.

We have then proved that also in this setting the MCPL estimates almost surely improve over the
supervised model. Now, we can finally focus specifically on the LDA framework. In particular, the
application of Equation (5.7) to the case of Gaussian distributions results in MCPL estimates of the
mean vectors that are equal to Equation (5.4). The parameters that are free to be different are thus
estimated equivalently to the unconstrained setting, which is QDA. The estimate of the covariance
matrix can be computed by manipulating the left hand side of (5.8):

K∑
k=1

(
Σ̂+ µ̂k µ̂

T
k

)Nk +
M∑

j=1
qk j

 = (N +M) Σ̂+
K∑

k=1

Nk +
M∑

j=1
qk j

 µ̂k µ̂
T
k ,
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thus obtaining by the same computations as in Section 5.2.1 the following estimate

Σ̂semi (Q) = 1

N +M

K∑
k=1

(
Nk∑
i=1

(
xk(i ) − µ̂semi

k

)(
xk(i ) − µ̂semi

k

)T

+
M∑

j=1
qk j

(
u j − µ̂semi

k

)(
u j − µ̂semi

k

)T
)

.

(5.9)

Note that at this stage µ̂k = µ̂k (Q), but we dropped the explicit dependence on Q not to burden the
notation.
The estimates for the means and the covariance matrix that we derived are the same that were found
in [33]. This highlights that the more general formulation we introduced is indeed applicable to this
setting.

We can then apply Theorem 5.1 to the LDA setting, hence obtaining the following guarantee

PDu∼px y

(
LLD A(Ψ̂semi |D f ul l ) > LLD A(Ψ̂sup |D f ul l )

)
= 1.

In conclusion, the MCPL approach is capable of building a safe semi-supervised version of the LDA.
This shows that the theoretical results discussed in [33] indeed hold in this and in more general
settings where a subset of the parameters is shared between the classes.





6
Maximum Contrastive Pessimistic

Likelihood Approach for Missing Data
Problems

In previous chapters the contrastive pessimistic approach was introduced and studied for the prob-
lem of classification. This method is motivated by the improvement guarantees that were proved
for instance in Theorem 3.8 and in Corollary 4.11. In particular, we showed that the MCPL approach
is guaranteed to make safe use of incomplete observations, which in semi-supervised learning cor-
respond to feature vectors with a hidden class label. We could then wonder whether the MCPL
algorithm can be used in a more general missing data setting [30]. In this chapter we address this
question in the situation in which a parametric family is used to model the distribution of a random
vector. The goal is then to find the optimal estimates for the parameters of the family, i.e. to select
a density in the parametric class. It is not uncommon that for some of the available observations
there is a subset of the components that is hidden. In this situation it is useful to have an estimator
that is guaranteed to be a better alternative than what is obtained by simply discarding the incom-
plete observations. It is then necessary to select a baseline approach to establish in which sense the
parameters we look for are optimal. Here we decide to measure the goodness of fit of an estimator
with the log-likelihood on the full data set, by which we mean the data-set composed of both the
observed and the hidden components. Therefore, we study the setting known as maximum likeli-
hood (ML) estimation and the benchmark for the proposed estimator is the ML solution computed
on the fully observed vectors only. This may in some cases be a naive choice, but serves to build our
estimator.
Maximum likelihood estimators for the Gaussian density have been studied in a missing data frame-
work first by T.W. Anderson in [2] in the case where the missingness takes place in a single block of
components. In Section 6.1 we show how the estimates of the MCPL approach and those in [2] are
related. A more complex situation is that of a monotone sample, which is a hierarchically nested
block-structure of missing components. Closed form ML estimates for the Gaussian density were
derived for a general monotone sample in this setting in [20], or considerably more clearly in [18].
In Section 6.2 the MCPL approach in this setting is studied.

6.1. A First Structure of the Missingness

Suppose N complete observations
{
(xi , yi )

}N
i=1 and M incomplete observations

{
x j

}M
j=N+1 are avail-

able, where xi ∈ RD−d and y j ∈ Rd for any i = 1, . . . , N +M and j = 1, . . . , N . We refer to the data-set

71
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as D = {
(xi , yi )

}N
i=1 ∪

{
x j

}M
j=N+1. This is equivalent to formulating the pattern as in [2]:

x1, . . . , xN , xN+1 . . . , xN+M

y1, . . . , yN .
(6.1)

In other terms, there are N +M observations for the first D −d components of the random vector,
while the last d are observed in only N samples. The missingness is thus block-shaped.
We can now model the observations as realizations of a D-dimensional Gaussian distribution:

p(x, y) ∼ N (µ,Σ) .

where the mean and the covariance can be decomposed as

Σ =
(
Σx Σx,y

Σy,x Σy

)
, µ =

(
µx

µy

)
. (6.2)

Normality of the joint distribution implies that also the marginal distribution p(x) and the condi-
tional distribution p(y |x) are Gaussian:

p(x) ∼N (µx ,Σx ) ,

p(y |x) ∼N (µy |x ,Σy |x ) ,

where we introduced the following notation

µy |x = E(y |x) = µy + Σy,xΣ
−1
x (x −µx ) ,

Σy |x = Cov(y |x) = Σy − Σy,xΣ
−1
x Σx,y .

(6.3)

In this framework we are interested in the guarantees that the MCPL approach can provide. Specif-
ically, we would like to investigate if it is possible to find a classifier that better fits the data in the
case of a finite sample. It will become clear from our analysis that this is indeed possible.

6.1.1. Maximum Likelihood Approach
A Maximum Likelihood (ML) approach to this incomplete data problem was proposed in [2]. Here
we briefly discuss its formulation in order to introduce a few notions of interest.

First, the log-likelihood on (6.1) can be defined as

L(µ,Σ|D) =
N∑

i=1
log g (xi , yi |µ,Σ) +

N+M∑
j=N+1

log g (x j |µx ,Σx ) , (6.4)

where by g (xi , yi |µ,Σ) and g (x j |µx ,Σx ) we denote the Gaussian density with mean and covariance
of µ,Σ and µx ,Σx respectively.
Then, g (x, y |µ,Σ) can be expressed as a product of the marginal and the conditional distributions,
thus we rewrite (6.4) as

L(µ,Σ|D) =
N+M∑

i=1
log g (xi |µx ,Σx ) +

N∑
i=1

log g (yi |µy |xi ,Σy |xi ) . (6.5)

It is interesting to observe that the conditional covariance does not depend on the specific value of
the observed x, i.e. Σy |xi =Σy |x . The ML estimates are then defined by maximizing (6.5) with respect
to the parameters of the Gaussian density:

(µ̂, Σ̂) = argmax
µ,Σ

L(µ,Σ|D) . (6.6)
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Now, the values of µx and Σx that solve the maximization defined in (6.6) are obtained by maximiz-
ing the first sum in (6.5), leading to the following estimates

µ̂x = 1

N +M

N+M∑
i=1

xi ,

Σ̂x = 1

N +M

N+M∑
i=1

(xi − µ̂x )(xi − µ̂x )T .

(6.7)

Note that these are the standard ML estimates that would have been obtained if we observed only
the first D −d components of the random vector. On the other hand, the remaining parameters are
estimated by maximizing the second sum in (6.5), which leads to

µ̂y = µC
y + B̂ (µ̂x −µC

x ) ,

Σ̂y,x = Σ̂T
x,y = B̂ Σ̂x ,

Σ̂y = ΣC
y − B̂ ΣC

x B̂ T + B̂ Σ̂x B̂ T ,

(6.8)

where
B̂ = ΣC

y,x

(
ΣC

x

)−1 .

Here we denoted by µC , ΣC the ML estimates obtained by maximizing the likelihood on the first N
observations, that are the complete ones:

µC
x = 1

N

N∑
i=1

xi , µC
y = 1

N

N∑
i=1

yi ,

ΣC
x = 1

N

N∑
i=1

(xi −µC
x )(xi −µC

x )T , ΣC
y = 1

N

N∑
i=1

(yi −µC
y )(yi −µC

y )T ,

ΣC
x,y =

1

N

N∑
i=1

(xi −µC
x )(yi −µC

y )T .

(6.9)

We have thus derived the ML solutions to this particular missing data problem according to [2] and
we can now concentrate on the MCPL method.

6.1.2. The MCPL Approach in the One Block Missing Data Setting
The MCPL approach was conceived for the task of semi-supervised learning, which can indeed be
seen as a very specific missing data setting. We show how to extend this approach to a parameter
estimation framework with a data-set with structure as in (6.1). We base our analysis on the same
principles we have become familiar with, that are contrast and pessimism. In particular, we first de-
fine a particular complete log-likelihood that includes the incomplete observations. On the defined
likelihood we contrast our estimates with the ML estimates computed by maximizing the likelihood
on the complete observations only. These estimates were defined in (6.9). Afterwards, we assume
the hidden components to be generated from the most adversarial distribution, i.e. the distribution
that minimizes the improvement of our estimates on the complete-case estimates in terms of the
previously defined likelihood. The final step is to maximize the objective function with respect to
the parameters, which in this case are the mean and the covariance of the Gaussian density.

Let us first introduce some necessary notation. We call the unobserved parts that complete the
corresponding incomplete observations as u j for j = N +1, . . . , N +M . Hence, the complete j -th
observation is denoted as (x j ,u j ). Then, we indicate the conditional probabilities of observing u j

given x j by p j (u j ) = p(u j |x j ) for any j . Now we can define the complete log-likelihood as

L
(
µ,Σ, pN+1, . . . , pN+M |D)= N∑

i=1
log g (xi , yi |µ,Σ) +

N+M∑
j=N+1

∫
Rd

p j (u j ) log g (x j ,u j |µ,Σ)du j . (6.10)
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Since u j appears as an integrating variable in this expression, we might as well ease the notation
and write u instead. The idea is now to compare the pair

(
µ,Σ

)
with the ML estimates defined in

(6.9), which we denoted by
(
µC ,ΣC

)
. To this end, we define the contrastive likelihood as

C L
(
µ,Σ, pN+1, . . . , pN+M |µC ,ΣC ,D

) =
N∑

i=1
log g (xi , yi |µ,Σ) −

N∑
i=1

log g (xi , yi |µC ,ΣC )

+
N+M∑

j=N+1

∫
Rd

p j (u) log g (x j ,u j |µ,Σ)du −
N+M∑

j=N+1

∫
Rd

p j (u) log g (x j ,u j |µC ,ΣC )du .

(6.11)

The conditional probabilities p j (u) are chosen to be the most adversarial, which in mathematical
terms translates to the following minimization task

C PL
(
µ,Σ |µC ,ΣC ,D

)= inf
p j∈P

C L
(
µ,Σ, pN+1, . . . , pN+M |µC ,ΣC ,D

)
, (6.12)

where P is the set that contains any probability distribution function, i.e. the set of non-negative
functions that sum to 1 on their domain. We are then ready to define the MCPL estimates.

Definition 6.1. Let
(
µC ,ΣC

)
be the ML estimates based on the N complete observations

{
(xi , yi )

}N
i=1.

Then the MCPL estimates
(
µ̂C P , Σ̂C P

)
are defined as(

µ̂C P , Σ̂C P
)

:= argsup
µ,Σ

C PL
(
µ,Σ |µC ,ΣC ,D

)
. (6.13)

Once again, the MCPL estimates are computed by solving a minimax problem, that in this setting is
the following:

sup
µ,Σ

inf
p j∈P

C L
(
µ,Σ, pN+1, . . . , pN+M |µC ,ΣC ,D

)
.

This formulation is evidently similar to the previously treated cases, but there is a crucial difference.
In earlier chapters, the pessimism was expressed by a labeling, which was a real number in [0,1]
encoding the partial membership of an unlabeled observation to one of the classes. In this setting
on the other hand the missing components are continuously distributed and thus the pessimism
is represented by an adversarial distribution. The minimization with respect to these distributions,
which we denoted by p j (·), entails a considerable problem to the applicability of Sion’s minimax
theorem, i.e. Theorem 3.2. Indeed, the space of all probability densities is clearly not compact and
this was one of the required properties. Therefore, we cannot take advantage of the same arguments
we previously relied on. Fortunately, it is possible to show the results we are interested in without
using minimax theorems. Indeed, we can plug the ML estimates (6.7), (6.8) in the contrastive likeli-
hood and show that they solve the minimax problem. In the next theorem we state this result.

Theorem 6.2. Suppose a data-set D = {
(xi , yi )

}N
i=1 ∪

{
x j

}M
j=N+1 with structure as in (6.1) is observed.

Then, the estimates
(
µ̂, Σ̂

)
defined in (6.7), (6.8) are such that(

µ̂, Σ̂
) = argsup

µ,Σ
C PL

(
µ,Σ |µC ,ΣC ,D

)
.

Proof. First, note that we can follow Anderson’s reasoning and decomposing the Gaussian density
as follows

g (x, y |µ,Σ) = g (x|µx ,Σx ) · g (y |µy +Σy,xΣ
−1
x (x −µx ),Σy −Σy,xΣ

−1
x Σx,y )

= g (x|µx ,Σx ) · g (y |µy |x j ,Σy |x ) .
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Similarly, we can define µC
y |x j

and ΣC
y |x as

µC
y |x j

= µC
y + ΣC

y,x

(
ΣC

x

)−1 (
x j −µC

x

)
,

ΣC
y |x = ΣC

y − ΣC
y,x

(
ΣC

x

)−1
ΣC

x,y .

Then, we can take advantage of this and rewrite (6.11) as

C L
(
µ,Σ, pN+1, . . . ,pN+M |µC ,ΣC ,D

) =
N∑

i=1
log g (xi , yi |µ,Σ) +

N+M∑
j=N+1

log g (x j |µx ,Σx )

+
N+M∑

j=N+1

∫
Rd

p j (u) log g (u|µy |x j ,Σy |x )du −
N∑

i=1
log g (xi , yi |µC ,ΣC )

−
N+M∑

j=N+1
log g (x j |µC

x ,ΣC
x ) −

N+M∑
j=N+1

∫
Rd

p j (u) log g (u|µC
y |x j

,ΣC
y |x )du .

(6.14)

It is then clear that the infimum affects only the difference of the two integrals. Moreover, we can
further simplify the infimum by noting that the following holds

inf
{p j∈P , j=N+1,...,N+M }

N+M∑
j=N+1

∫
Rd

p j (u)
(
log g (u|µy |x j ,Σy |x )− log g (u|µC

y |x j
,ΣC

y |x )
)

du

=
N+M∑

j=N+1
inf

p j∈P

∫
Rd

p j (u)
(
log g (u|µy |x j ,Σy |x )− log g (u|µC

y |x j
,ΣC

y |x )
)

du .

and thus each minimization can be solved independently. As a consequence, the minimax problem
can be written as

max
µ,Σ

{
L(µ,Σ|D) − L(µC ,ΣC |D) +

N+M∑
j=N+1

inf
p j∈P

∫
Rd

p j (u)
(

log g (u|µy |x j ,Σy |x )− log g (u|µC
y |x j

,ΣC
y |x )

)
du

}
,

where L(µ,Σ|D) was defined in (6.4), or equivalently in (6.5). Since each p j (u) = p(u|x j ) is a proba-
bility density function, we know that p j (u) ≥ 0 for any u in the domain and for any j = N +1, . . . , N +
M . On the other hand, neither g (u|µy |x j ,Σy |x ) nor g

(
u|µC

y |x j
,ΣC

y |x
)

can dominate the other on all

the domain. This is a straightforward consequence of the fact that densities have to sum to 1. This
observation, together with the monotonicity of the logarithm, implies that there must exist a region
where

log g (u|µy |x j ,Σy |x )− log g (u|µC
y |x j

,ΣC
y |x ) ≤ 0,

in which equality holds if and only if the conditional distributions share the same parameters. It is
then clear that it is always possible to choose a distribution p j (·) that positions enough mass on this
region in such a way that

inf
p j∈P

∫
Rd

p j (u)
(
log g (u|µy |x j ,Σy |x )− log g

(
u|µC

y |x j
,ΣC

y |x
))

du ≤ 0 j = N +1, . . . , N +M ,

where again equality holds iff µy |x j =µC
y |x j

for j = N +1, . . . , N +M and Σy |x =ΣC
y |x .

Intuitively, the minimax problem is solved for a value of the estimates of the mean and covariance
such that the infimum is null and the remaining terms in (6.14) are maximized. Choosing the pa-
rameters as (6.7) and (6.8) maximizes by definition the difference L(µ,Σ)−L(µC ,ΣC ), as L(µC ,ΣC )
does not depend on the parameters. On the other hand, it can be seen that the conditional param-

eters are equal to the complete-case values by plugging
(
µ̂, Σ̂

)
in the expressions for µy |x j and Σy |x .

The infimum is equal to 0 and thus maximized.
This therefore concludes the proof.
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We have thus showed that (
µ̂C P , Σ̂C P

) = (
µ̂, Σ̂

)
.

Nonetheless, the formulation of the MCPL approach can be used to prove that the obtained solution
fits the data strictly better than the complete-case estimates. The measure of performance we use
here is the log-likelihood on the full data-set, which we define as follows

L
(
µ,Σ |D f ul l

) =
N∑

i=1
log g (xi , yi |µ,Σ) +

N+M∑
i=N+1

log g (xi , y∗
i |µ,Σ) .

Here we denoted the full data-set as D f ul l =
{
(xi , yi )

}N
i=1 ∪

{
(xi , y∗

i )
}N+M

i=N+1, where y∗
i are the true

unobserved components. We can now state and prove the result in the next theorem.

Theorem 6.3. The MCPL estimates, or alternatively the ML estimates derived in [2], are guaranteed
to strictly improve on the complete case estimates in the following sense:

L
(
µ̂C P , Σ̂C P |D f ul l

) > L
(
µC ,ΣC |D f ul l

)
. (6.15)

Proof. Define the adversarial probabilities that place mass 1 on the true value of the unobserved
components, i.e.

p∗
j (u) = δy∗

j
(u) for j = N +1, . . . , N +M ,

where by δy∗
j
(·) we indicate Dirac’s delta with center in y∗

j . Now, in the proof of Theorem 6.2 we
showed that the conditional distributions for p(y |x) are modeled with the same Gaussian density
and are thus equal. Therefore, their difference is null independently of the chosen distributions
p j (·). As a consequence, the following equality holds:

L
(
µ̂C P , Σ̂C P |D f ul l

) − L
(
µC ,ΣC |D f ul l

) = N∑
i=1

log g (xi , yi |µ̂C P , Σ̂C P ) +
N+M∑

j=N+1
log g (x j |µ̂x

C P , Σ̂x
C P )

−
N∑

i=1
log g (xi , yi |µC ,ΣC ) −

N+M∑
j=N+1

log g (x j |µC
x ,ΣC

x ) .

We know by Theorem 6.2 that the MCPL estimates are equivalent to the ML estimates and thus max-
imize the log-likelihood on the incomplete data-set D. Moreover, the log-likelihood of a Gaussian
density is strictly concave, hence the maximizer is unique. This implies that

L
(
µ̂C P , Σ̂C P |D f ul l

) − L
(
µC ,ΣC |D f ul l

) > 0,

which is our thesis.

This result holds for any choice of the distributions p j (·) and thus for any value of the hidden com-
ponents. Moreover, in [18] the author shows that µ̂ is an unbiased estimator of the mean vector.

We have thus shown that it is possible to adapt the MCPL approach to this setting, and the result
is a choice of parameters that fits the data strictly better than what we would obtain by discarding
the incomplete samples. This meaningful result can also be interpreted as a property of the ML es-
timate discussed in [2]. In other terms, we have shown that the ML estimates are robust even to the
most adversarial conditional distribution that may generate the hidden components.
In the next section we try to extend this result to a general monotone sample.
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6.2. The MCPL Approach for Monotone Missing Data
We have thus studied and characterized the behaviour of the MCPL approach in the simplest case
of a monotone sample, that is when a block of data is missing. It is then natural to investigate more
complex settings. In order to do this, we continue using the family of Gaussian densities to model
the joint probability distribution of the random vector. This restriction simplifies the analysis, which
still becomes rather complicated in this setting.

Suppose now a monotone sample is available and denote it as

D = {
xi

}N
i=1 ∪

{
x

dk(i )

i

}N+M

i=N+1
. (6.16)

This means that there are N complete observations denoted by
{

xi
}N

i=1 for xi ∈ RD , and M incom-

plete observations with a specific structure. Their pattern is described by the notation x
dk(i )

i , which
indicates that the first dk(i ) components of xi are observed, while the others are hidden. If a K -step
pattern is assumed, then we can express the incomplete part of the sample as{

x d1
i

}N+M1

i=N+1
∪

{
x d2

i

}N+M1+M2

i=N+M1+1
∪ . . . ∪

{
x dK

i

}N+M

i=N+M−MK +1
, (6.17)

in which we have that D > d1 > . . . > dK are the corresponding dimensions. In other words the dk(i )

is used to identify that the observation xi is in the k(i )-th step of the sample, where k(·) is a properly
defined mapping.
The overall pattern is then similar to (6.1), where the first N observations are complete and suc-
cessively the samples lose the last (D −di ) components, which are hidden. Once again, we want to
explicitly compare our estimate with the complete-case estimate that is trained by ML on

{
xi

}N
i=1.

The hidden components are then assumed to be generated by distributions
{

p j
}N+M

j=N+1 and therefore
the contrastive likelihood for the monotone sample is

C L
(
µ,Σ,

{
p j

}N+M
j=N+1 |µC ,ΣC ,D

)
= L

(
µ,Σ|{xi

}N
i=1

) − L
(
µC ,ΣC |{xi

}N
i=1

)
+

N+M∑
j=N+1

∫
p j

(
u

dk( j )

j

)(
log g

(
x

dk( j )

j ,u
dk( j )

j |µ,Σ
) − log g

(
x

dk( j )

j ,u
dk( j )

j |µC ,ΣC ))
du

dk( j )

j .
(6.18)

Note that the densities p j (·) have dimension dk( j ) for j = N +1, . . . , N +M .
Now, we should be sufficiently familiar with the method to foresee the next definition.

Definition 6.4. Suppose we have a K -step monotone sample D with a pattern as in (6.16). Let the
underlying probability distribution be modeled by the family of Gaussian densities. Then, the MCPL
estimates are (

µ̂C P , Σ̂C P
)

:= argsup
(µ,Σ)∈Θ

inf
pN+1,...,pN+M

C L
(
µ,Σ,

{
p j

}N+M
j=N+1 |µC ,ΣC ,D

)
. (6.19)

We would intuitively expect a similar behaviour as in Section 6.1, meaning that the maximum like-
lihood estimates obtained in [18, 20] are the solution of the minimax (6.19). However, the line of
reasoning we used in Section 6.1 cannot be applied to this more general framework. We illustrate
this in Appendix B for the case of two nested blocks of missing data. The issue is that the difference
of the integrals in the contrastive likelihood is not set to 0 by the ML estimate, so it is difficult to draw
any conclusion on whether the proposed estimates are actually a solution of the minimax problem.
We can fortunately still prove an interesting result, which is a corollary of Theorems 6.2, 6.3.

Corollary 6.5. Let
(
µ̂1B , Σ̂1B

)
be the solution to the minimax problem (6.13) based on the following

data-set:

D1B = {
xi

}N
i=1 ∪

{
x dK

i

}N+M

i=N+1
.
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Then, the log-likelihood of
(
µ̂1B , Σ̂1B

)
on the complete data-set D f ul l = {

xi
}N

i=1 ∪
{

x
dk( j )

j ,u j

}N+M

j=N+1
is strictly larger than that of the complete-case estimates:

L
(
µ̂1B , Σ̂1B |D f ul l

) > L
(
µC ,ΣC |D f ul l

)
.

The theorem can be easily proved by noting that we can as earlier isolate the likelihood on the N
complete observations and on the first dK components, which are always observed. The remaining
conditional distributions are equal to the complete case estimates as previously shown in Theorem
6.2, hence the difference in the integral is null for each observation. The contrastive likelihood is
then equal to the difference of the log-likelihoods on D1B , which is strictly positive and thus gives
the thesis.

As previously indicated, this trick does not work for the ML solution that is computed by maximizing
the likelihood on the whole observed data-set D. It then becomes very complicated to characterize
the solution because of the particularly intricate and tangled computations that arise in the analysis.
Nevertheless, the fact that the contrastive likelihood at

(
µ̂1B , Σ̂1B

)
has a positive value means that the

solution of the minimax problem (6.19) must have the same property. So it must hold that

L
(
µ̂C P , Σ̂C P |D f ul l

) ≥ L
(
µ̂1B , Σ̂1B |D f ul l

)
, (6.20)

because otherwise we would find a better option in
(
µ̂1B , Σ̂1B

)
. Clearly by Corollary 6.5 this implies

that
L
(
µ̂C P , Σ̂C P |D f ul l

) > L
(
µC ,ΣC |D f ul l

)
. (6.21)

We conclude this chapter with the following conjecture

Conjecture 6.6. Assume a K -step monotone sample (6.16) is observed and call
(
µ̂C P , Σ̂C P

)
the solu-

tion of the minimax (6.19). Then,
(
µ̂C P , Σ̂C P

)
strictly improves over

(
µ̂1B , Σ̂1B

)
, which means

L
(
µ̂C P , Σ̂C P |D f ul l

) > L
(
µ̂1B , Σ̂1B |D f ul l

)
.

We then conjecture that the additional observed components are expected to contain information
that can be used by the algorithm to build a better estimator than

(
µ̂1B , Σ̂1B

)
. This is left formally

unproven, but the previous theorem indeed shows that strict improvement over the complete-case
estimate is certainly attained.



7
Conclusions

In Chapters 3, 4, 5 and 6 we investigated the possibilities of performing robust statistical inference
with incomplete data. In other terms, we looked for estimators that are never worse than their
supervised counterparts, i.e. the estimators computed by discarding the incomplete samples. In
particular, we dedicated a large part of our work to semi-supervised learning, that is a classifica-
tion task in which the missingness is limited to the class labels. A briefer but denser chapter was
reserved to a more general missing data setting, in which the interest was in estimating a distri-
bution function with a set of incomplete samples. In both settings, we built our estimators using
contrast and pessimism. These principles allowed us to formally prove that it is indeed possible to
build safe semi-supervised classifiers and parameter estimates. We analyzed both non-degradation
properties and conditions for strict performance improvement in a finite sample setting. It has be-
come clear that the contrastive pessimistic estimates can either tie or outperform the benchmark
in all the frameworks we treated. This is stated in several results, such as Theorems 3.6, 3.8, 6.3 and
Corollary 4.11.
This chapter is meant to address and discuss some interesting aspects and questions that arise from
our precedent analysis of the contrastive pessimistic approach.

7.1. On the Contrastive Pessimism Approach for Semi-Supervised Classi-
fication

In Chapter 2 we discussed the importance of building a semi-supervised algorithm that cannot per-
form worse than its supervised counterpart. From a practical perspective this is necessary because
the estimation of the accuracy of a classifier requires a large number of labeled objects, which are
usually not available in real world applications. Therefore, it is very important to define an algorithm
that has this guarantee a priori. In addition, most SSL algorithms base their theoretical properties
on certain assumptions on the data, which are generally impossible to verify. Our extensions of the
contrastive pessimistic approach address most of these issues very clearly. First, we have proved
that it is possible to build a semi-supervised learner that is always at least as accurate as the super-
vised model without posing any assumption on the data-set. This robustness property is valid in
terms of a specific performance measure, as discussed in Section 7.2, and in a finite sample setting,
that is most common in applications. We have also characterized in which cases the improvement
is strict and we discovered that for generative probabilistic models this happens almost surely un-
der mild assumptions on the model. Then, we have shown how to build such a classifier using the
contrastive pessimistic approach, of which we carefully studied the main features.
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7.1.1. A Comparison with Other Attempts to Safe SSL
In Section 2.3.3 we discussed the SV4Ms [31], a semi-supervised version of the support vector ma-
chines with a robustness guarantee. Our approach differs from SV4Ms in several aspects. The cru-
cial difference lies in the assumption that is made in the construction of the SV4Ms: the ground
truth labeling of the unlabeled observations is among K low density separators that are identifiable
from the data-set. This is a rather strong assumption on the data and most importantly it cannot
be verified. This violates one of the founding principles of our analysis, that is not assuming any
particular structure of the data-set. In this sense, the robustness guarantees we proved are much
more meaningful, as they hold on any data-set and do not depend on any assumption.
Then, the SV4Ms are shown to choose one of the K low density separators such that the fraction
of misclassified samples among the unlabeled objects is smaller than that of the supervised SVM.
This is different from our approach in two ways. First, our results are in terms of a chosen perfor-
mance measure that is not the misclassification error. Then, the non degradation property of the
contrastive pessimistic approach holds on the full data-set and not only on the unlabeled observa-
tions. While a result on the misclassification rate is desirable, the fact that it holds on the unlabeled
data-set only does not entail that the classifier is never worse than the supervised SVM on the full
data-set. This follows from observing that the supervised SVM classifier is optimal on the labeled
data-set and thus generally outperforms the semi-supervised learner on those samples. The prop-
erty of the contrastive pessimistic approach is then a stronger one. In addition, no conditions on
strict improvement are shown for SV4Ms, while we proved several results in this direction through-
out this work. We have then highlighted several points that are in favor of the contrastive pessimistic
approach, while the only negative one is that SV4Ms is robust in terms of misclassification error.

Two other algorithms we discussed are the implicitly constrained least squares classifier [27] and the
weighted likelihood based approach [22]. These methods build two learners that are asymptotically
robust. In our work, we focused on proving this property in a finite sample setting, which does not
assume an infinite number of samples and we believe is more meaningful.

7.2. On the Choice of the Performance Measure
In every setting we have studied, the robustness guarantees are expressed in terms of a specific
quantity that represents the performance of the learner. The measure is chosen to be the most nat-
ural one in the particular setting of interest. The parameters of a supervised generative probabilistic
classifier for instance can be learned by maximizing the likelihood on the labeled data-set. It is thus
natural to express the possible improvement obtained with the addition of the unlabeled samples
by the likelihood on the full data-set, which contains also the hidden class labels. An increased like-
lihood thus expresses an improved accuracy of the classifier. In other terms, the semi-supervised
model is closer in terms of likelihood to the oracle solution, which is the optimal estimate trained
on the fully labeled data-set. The same comments hold for least squares classification, but where
the performance measure is the square loss. It has to be noted once again that the main interest
in Pattern Recognition is a low misclassification error. The results we proved are then a surrogate
of what we are really interested in. In our view an increased accuracy in the terms we discussed
is a strong hint to a lower classification error. This is not straightforward and there is not a formal
characterization of the relation between the two quantities. For a more detailed discussion on this
we point to [35, 36]. Furthermore, there is empirical evidence [28, 33] to support the fact that the
contrastive pessimistic approach successfully builds a more accurate classifier also in terms of the
classification error.
There are significant indications that the guarantees we proved are meaningful also in terms of mis-
classification error, but the fact that this is not formally explained may still be considered as a weak
feature of the proposed method. In a way, it would be interesting to adapt and modify the method
in order to have this property. It is however unclear how this can be done and whether it is at all
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possible. The only algorithm we are aware of with such a guarantee is [31], which as discussed has a
rather strong condition on the data. A meaningful further research would then be an investigation
on whether an equivalent result to that of [31] can be obtained with weaker or no assumptions.

7.2.1. Induction vs. Transduction
We have discussed the difference between inductive and transductive learning in Chapter 2. Basi-
cally, in a semi-supervised framework the former is concerned with finding a general classification
rule that can be applied on unseen data, while the latter focuses on predicting the labels of some of
the unlabeled observations that are available for training. It is then interesting to observe that the
contrastive pessimistic approach defines an inductive decision rule which is guaranteed to never be
worse than the supervised model on the training set. As a consequence, this holds in particular on
the unlabeled data-set and hence the contrastive pessimistic approach is always at least as good as
the supervised learner in a transductive sense.
An inductive semi-supervised classifier may be considered really safe when we know that on unseen
data there is never a performance degradation compared the supervised model. It then follows that
the results obtained for the contrastive pessimistic approach hint to this behaviour on unseen data,
but do not formally imply it. We have to observe that to the best of our knowledge there are no semi-
supervised classifiers with guarantees on unseen data in a finite sample setting. We could imagine
that this may not be possible in some cases, but it is very difficult to draw any conclusion in this
direction. Anyway, we would expect that the contrastive pessimistic classifier may hardly show a
deteriorated performance on unseen data if it is trained on a large set of unlabeled observations.

7.3. On Parametric Inference with a Monotone Sample
The principles of contrast and pessimism were applied to a missing data setting in Chapter 6. We
proved that the maximum likelihood estimates described in [2] are closely related to our approach.
Indeed, in the case of a missing block of data they solve the minimax problem that defines the con-
trastive pessimistic approach. This result can be seen as an interesting property on the estimates
found in [2]. In other terms, we showed that these estimates fit better the data and have a larger
log-likelihood on the complete data-set than the ML estimates obtained by using the complete ob-
servations only. Once again, this result does not necessarily mean that our estimate is in absolute
terms better than the complete case one, but it still represents an interesting property on the ro-
bustness of an estimate.

7.4. Future Research
We believe this work has addressed and answered a large part of the research questions that we
formulated in Chapter 1. Nevertheless, our findings open some further questions that we believe
would be worth investigating.

In the semi-supervised learning case, kernel methods represent a possible future direction. We
would expect that, under some regularity conditions on the kernel, the contrastive pessimistic ap-
proach can be applied to build a robust non-linear classifier. This would in a way conclude the
analysis that was started in [29, 33] and that we extended in this work.
We have argued that, for obvious reasons, the contrastive pessimistic approach is rather conser-
vative. It would then be interesting to modify its formulation in order to relax this aspect. For
instance, we have shown that the contrastive pessimistic semi-supervised version of a generative
model based on exponential families outperforms its supervised counterpart with probability 1. We
can then wonder if we can relax the requirements of the method while maintaining this guaran-
tee. This would clearly enable greater improvements, while maintaining the key properties of the
method.
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The last indications for future research concern the missing data setting described in Chapter 6 and
Appendix B. This setting in a way still has to be fully understood. For instance, a complete charac-
terization of the contrastive pessimistic solution for the case of a monotone sample still has to be
determined. This could be done either theoretically or empirically. From an empirical perspective
this would mean testing whether the approximate solution turns out to be of a known form. On
the other hand, a theoretical analysis seems to be rather difficult at the moment. Finally, the ideal
destination of this research is the extension to any structure of the randomness.



A
Topological Spaces, Semicontinuous

Functions and Quasi-convexity

The main result on minimax theory we discuss, which is Theorem 3.2, requires a few technical no-
tions. In this appendix we give a brief introduction to some of the necessary definitions, which are
based on [24]. We begin with the definition of topology.

Definition A.1. Given a set X , by a topology is meant a system τ of subsets G ⊂ X , called open sets,
with the following two properties:

i) the set X itself and the empty set ; are in τ;

ii) Arbitrary unions ∪αGα and finite intersections ∩n
k=1Gk of open sets belong to τ.

A topological space T is then a pair (X ,τ), where X is a set and τ a topology defined in X . Note that
every metric space is a topological space as well.
The definition of topological space T allows us to introduce the concept of neighborhood of a point
x ∈ T as any open set G ⊂ T containing x. With this notion we can define the following class of
functions.

Definition A.2. A function f defined on a topological space T is said to be lower semicontinuous at a
point x0 if, given any ε> 0, there exists a neighborhood of x0 in which f (x) > f (x0)−ε. Similarly, f is
said to be upper semicontinuous at a point x0 ∈ T if, given any ε> 0, there exists a neighborhood of x0

in which f (x) < f (x0)+ε.

A function is then said lower (upper) semicontinuous if it is lower (upper) semicontinuous at each
point of its domain. Note that semicontinuity is a weaker requirement than continuity, so a contin-
uous function is automatically semicontinuous.
We can now define a topological linear space T as a space that satisfies the definitions of linear
space, topological space, as well as satisfying continuity with respect to the topology of the opera-
tions of addition of elements of T and multiplication of elements of T by scalars. For what concerns
our needs, it is not necessary to investigate the meaning of the last requirement any further. It is
sufficient to know that every normed linear space is a topological linear space. Indeed, we will deal
with vector spaces, on which it is enough to define the topology generated by the set of spheres cen-
tered in zero. This is indeed the Euclidean topology.
The second class of functions we introduce is the following.

Definition A.3. A function f on X , where X is a convex subset of a linear space as for instance Rn , is
said to be quasi-convex in X if the level sets

{
x ∈X : f (x) ≤λ}

are convex for any λ ∈R.
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Equivalently, we can define quasi-concave functions. A convex (concave) function is also quasi-
convex (concave), as convexity (concavity) of the level sets follows by definition.



B
Additional Material on the MCPL in the

Two Blocks Missing Data Setting

In Section 6.2 we discussed the application of the MCPL approach to a monotone sample, that is a
data-set with a hierarchical structure of missing components as in (6.16). In the analysis we stated
that the key argument used for the proof of Theorem 6.2 is not valid even in a particular monotone
sample as the case of two blocks of missing data. Here we formally illustrate in which sense this is
the case.

Assume the observations have the following structure

x1, . . . , xN , xN+1, . . . , xN+M , xN+M+1, . . . , xN+M+L

y1, . . . , yN , yN+1, . . . , yN+M

z1, . . . , zN

(B.1)

where xi ∈ Rdx , yi ∈ Rdy and zi ∈ Rdz , with D = dx +dy +dz . We call this data-set D, which is com-
posed N complete observations, M incomplete samples of (x j , y j ) and L of the form xl .
The random vector (x, y, z) is modeled as a multivariate D-dimensional Gaussian density:

p(x, y, z) ∼ N (µ,Σ) ,

for which the mean vector and the covariance matrix are to be estimated. This choice implies nor-
mality of the marginal density p(x) and of the conditional p(y |x) as described in (6.3), but also of
other conditionals:

p(y, z|x) ∼ N (µy z|x ,Σy z|x ) ,

p(z|x, y) ∼ N (µz|x y ,Σz|x y ) ,
(B.2)

where
µy z|x = µy z +Σy z,xΣ

−1
x (x −µx ) , Σy z|x = Σy z,y z −Σy z,xΣ

−1
x Σx,y z ,

µz|x y = µz +Σz,x yΣ
−1
x y,x y

(
x
y

)
−µx y

 , Σz|x y = Σz −Σz,x yΣ
−1
x y,x yΣx y,z .

(B.3)

in which we used the same notation as in (6.2), but adapted to the current setting.

B.1. Maximum Likelihood Estimates in the Two Blocks Setting
The ML estimates for µ and Σ can be found either by working out the recursive close form solution
in [18], or by applying the reasoning in [2]. Both options clearly lead to the same result. Here we
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briefly extend the reasoning in [2] and we start by formulating the log-likelihood as

L(µ,Σ|D) =
N∑

i=1
log g (xi , yi , zi |µ,Σ) +

N+M∑
j=N+1

log g (x j , y j |µx y ,Σx y,x y )

+
N+M+L∑

l=N+M+1
log g (xl |µx ,Σx ).

(B.4)

Then, we can rewrite (B.4) using (B.2) and (6.3) as

L(µ,Σ|D) =
N+M+L∑

i=1
log g (xi |µx ,Σx ) +

N+M∑
j=1

log g (y j |µy |x j ,Σy |x ) +
N∑

k=1
log g (zk |µz|xk yk ,Σz|x y ). (B.5)

The idea is now to compute the MLE for the mean and covariance of random vector x from the first
summation, then to compute the values of the conditional parameters that maximize the second
and third summation in the log-likelihood. Now, this is made precise by the introduction of auxiliary
parameters, but here we report the results only and we point to [2] for the precise argument.
By maximizing the first summation in (B.5), the following estimates are obtained

µ̂x = 1

N +M +L

N+M+L∑
i=1

xi ,

Σ̂x = 1

N +M +L

N+M+L∑
i=1

(xi − µ̂x )(xi − µ̂x )T .

(B.6)

Maximizing the second summation in (B.5) we obtain

µ̂y =µCN M
y + B̂y (µ̂x −µCN M

x ),

Σ̂y,x = Σ̂T
x,y = B̂y Σ̂x ,

Σ̂y =ΣCN M
y − B̂yΣ

CN M
x B̂ T

y + B̂y Σ̂x B̂ T
y ,

(B.7)

where B̂y = ΣCN+M
y,x (ΣCN+M

x )−1 and we used the superscript CN M to denote the sample mean and co-
variance computed on the first N +M observations.
Finally, maximizing the third summation in (B.5) we find the following estimates

µ̂z =µCN
z + B̂z (µ̂x y −µCN

x y ),

Σ̂z,x y = Σ̂T
x y,z = B̂z Σ̂x y,x y ,

Σ̂z =ΣCN
z − B̂zΣ

CN
x y,x y B̂ T

z + B̂z Σ̂x y,x y B̂ T
z ,

(B.8)

where B̂z = ΣCN
z,x y (ΣCN

x y,x y )−1 and again the superscript CN denotes the empirical mean and covari-
ance on the first N observations, as shown in (6.9).

B.2. MCPL Approach in the Two Blocks Setting
The same reasoning discussed in Sections 6.1.2 and 6.2 is now used to define the MCPL approach in
this setting.
First, we introduce densities p j (u) = p(u|x j , y j ) and ql (u, v) = p(u, v |xl ) for j = N +1, . . . , N +M and
l = N +M +1, . . . , N +M +L. Then, the complete likelihood is defined as

L
(
µ,Σ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |D

) = N∑
i=1

log g (xi , yi , zi |µ,Σ) +
N+M∑

j=N+1

∫
Rdz

p j (v) log g (x j , y j , v |µ,Σ)d v

+
N+M+L∑

l=N+M+1

∫
Rdy +dz

ql (u, v) log g (x j ,u, v |µ,Σ)dud v .
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The relations reported in (B.2) allow us to rewrite the previous equation as

L
(
µ,Σ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |D

) = L(µ,Σ|D) +
N+M∑

j=N+1

∫
Rdz

p j (v) log g (v |µz|x j y j ,Σz|x y )d v

+
N+M+L∑

l=N+M+1

∫
Rdy +dz

ql (u, v) log g (u, v |µy z|xl ,Σy z|x )dud v .

This follows by expressing the joint densities in the logarithms as product of a marginal and a con-
ditional distribution and pulling out of the integrals the known terms. We can then define the con-
trastive likelihood as

C L
(
µ,Σ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |µCN ,ΣCN ,D

) = L
(
µ,Σ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |D

)
− L

(
µCN ,ΣCN ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |D

)
.

Finally, the MCPL estimate is computed as

argsup
µ,Σ

inf
p j∈P
ql∈Q

C L
(
µ,Σ,

{
p j

}N+M
j=N+1,

{
ql

}N+M+L
l=N+M+1 |µCN ,ΣCN ,D

)
,

where P and Q are the sets containing any probability distribution function on Rdz and Rdy+dz

respectively.

B.2.1. Plugging the ML Solution in the CPL
Motivated by the one block case we try to plug the ML estimates obtained in section B.1 into the
contrastive pessimistic likelihood so to check whether this is a solution of the minimax problem.
It follows that ideally we would like to find parameters that maximize the standard log-likelihood
L(µ,Σ|D), while setting the minimization tasks to 0 independently of the choice of the adversarial
distributions. We show that this does not happen with the ML estimates.

Proposition B.1. The ML estimates defined in Section B.1 are such that∫
Rdz

p j (v) log g (v |µ̂z|x j y j , Σ̂z|x y )d v =
∫
Rdz

p j (v) log g (v |µCN
z|x j y j

,ΣCN
z|x y )d v .

for any j = N +1, . . . , N +M.

Proof. We have already argued that the equality of the integrals is attained if and only if the two
conditional Gaussian densities are equal, i.e. have the same parameters. Hence, we show that this
holds. Substituting the ML estimates derived in Section B.1, the conditional means take the form:

µ̂z|x j y j = µ
CN
z +ΣCN

z,x y
(
Σ

CN
x y,x y

)−1(
µ̂x y −µCN

x y
) + ΣCN

z,x y
(
Σ

CN
x y,x y

)−1
Σ̂x y,x y

(
Σ̂x y,x y

)−1

(
x j

y j

)
− µ̂x y


= µ

CN
z +ΣCN

z,x y
(
Σ

CN
x y,x y

)−1

(
x j

y j

)
−µCN

x y

 = µ
CN
z|x j y j

.

Analogously, the conditional covariance is

Σ̂z|x y = Σ
CN
z −ΣCN

z,x y
(
Σ

CN
x y,x y

)−1(
Σ

CN
x y,x y + Σ̂x y,x y

)(
Σ

CN
x y,x y

)−1
Σ

CN
z,x y

− ΣCN
z,x y

(
Σ

CN
x y,x y

)−1
Σ̂x y,x y

(
Σ

CN
x y,x y

)−1
Σ̂x y,x y

(
Σ

CN
x y,x y

)−1
Σ

CN
x y,z

= Σ
CN
z −ΣCN

z,x y
(
Σ

CN
x y,x y

)−1
Σ

CN
x y,x y = Σ

CN
z|x y ,

which concludes the proof.
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We have therefore shown that choosing the estimates as in section B.1 the first infimum attains its
maximum value, that is 0. If this was the case also for the second set of integrals, then the we would
have found the MCPL solution. However, this is not the case. In order to show this, let us focus on
the integrals in two variables:∫

Rdy +dz
ql (u, v)

{
log g (u, v |µ̂y z|xl , Σ̂y z|x ) − log g (u, v |µCN

y z|xl
,ΣCN

y z|x )
}

dud v.

In this case the computations are much more complicated.

Proposition B.2. The ML estimates defined in Section B.1 are such that∫
Rdy +dz

ql (u, v) log g (u, v |µ̂y z|xl , Σ̂y z|x )dud v 6=
∫
Rdy +dz

ql (u, v) log g (u, v |µCN
y z|xl

,ΣCN
y z|x )

}
dud v ,

for any l = N +M +1, . . . , N +M +L.

Proof. It is sufficient to prove that the mean vectors are not equal, i.e.

µ̂y z|xl 6= µ
CN
y z|xl

.

for all l = N +M +1, . . . , N +M +L. We then consider

µ̂y z|x = µ̂y z + Σ̂y z,x Σ̂
−1
x (xl − µ̂x ) .

It is complicated to obtain a manageable expression for the last dz components of µ̂y z|x , hence we
focus on the first dy only:

µ̂y |x = µ̂y + Σ̂y,x Σ̂
−1
x (xl − µ̂x ) , (B.9)

where we used the block formulation of Σ̂y z,x . This can be rewritten as

µ̂y |x = µ
CN+M
y +ΣCN+M

y,x
(
Σ

CN+M
x

)−1(xl −µCN+M
x ) ,

which is obtained by substituting the ML estimates in (B.9). Since the complete-case estimates
satisfy

µ̂
CN
y |x = µ

CN
y +ΣCN

y,x
(
Σ

CN
x

)−1(xl −µCN
x ) ,

we see that the conditional means are not equal.

This shows that the second infimum is not set to 0 by the ML estimates. Note that this does not mean
that the ML solution solves the MCPL minimax problem, but it makes it much more complicated to
prove.
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