

Delft University of Technology

A computationally cheap trick to determine shadow in a voxel model

Gorte, B. G.H.; Zhou, K.; Van Der Sande, C. J.; Valk, C.

DOI
10.5194/isprs-annals-IV-4-67-2018
Publication date
2018
Document Version
Final published version
Published in
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences

Citation (APA)
Gorte, B. G. H., Zhou, K., Van Der Sande, C. J., & Valk, C. (2018). A computationally cheap trick to
determine shadow in a voxel model. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 4(4), 67-71. https://doi.org/10.5194/isprs-annals-IV-4-67-2018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.5194/isprs-annals-IV-4-67-2018
https://doi.org/10.5194/isprs-annals-IV-4-67-2018

 A COMPUTATIONALLY CHEAP TRICK TO DETERMINE SHADOW
IN A VOXEL MODEL

B.G.H. Gorte a,1, K. Zhou b, C.J. van der Sande c, C. Valk c

a University of New South Wales, Faculty of the Built Environment, Sydney Australia, b.gorte@unsw.edu.au
b Delft University of Technology, Dept. of Geoscience and Remote Sensing, the Netherlands, k.zhou-1@tudelft.nl

 c NEO BV., Amersfoort, the Netherlands ({corne.vandersande, cornelis.valk}@neo.nl

Commission IV, WG IV/10

KEY WORDS: 3D City models, Voxels, Shadow, Quantitative Modelling, Simulation

ABSTRACT:

Representation of scenes on the Earth surface by using voxels is gaining attention because of its suitability for integrating heterogeneous
data sources in simulations and quantitative models. Computation of shadows in such models is needed, for example, to obtain crop
suitability of agricultural fields in the presence of trees and buildings, or to analyze urban heat island causes and effects. We present
an efficient algorithm to compute which of the voxels in a dataset receive direct sunlight, given the solar azimuth and elevation angles.
The algorithm can work with multiple (sparse and dense) voxel storage strategies.

1. INTRODUCTION

The interaction of sunlight with the Earth surface is the driver of
many fundamental Earth processes. When looking at a level of
detail where individual three-dimensional objects, such as
buildings and trees, play a role, the interaction is heavily
influenced by the question whether the surface at a particular
position, and at a given moment in time, is either ‘in the sun’ or
‘in the shadow’, i.e. whether it receives direct sunlight (coming
in a straight line from the sun) or only indirect light (coming for
elsewhere in the blue sky, or from reflecting surfaces in the
surrounding). Clearly, the answer depends on the presence of
other objects on the path between the sun at that moment in time
and the position of the surface under consideration. In the

1 Corresponding author

absence of cloud cover, such objects blocking the sunlight, would
be buildings, hills, trees etc., which are part of the scene.

Modelling these effects is of interest when studying, for example,
urban microclimate, field-based crop suitability and yield
prediction, or solar panel placement. It assumes that a sufficiently
detailed 3D model of the area under consideration is available.
Because the sun is at any given possible position only once (or
twice) per year, the model needs to be run many times to get
reliable estimates of sun and shadow durations over a long
period, like a growing season. Therefore, computational
efficiency is quite important.

Fig. 1 Voxel model with shadows of the Roundhouse at UNSW Kensington campus, Sydney.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-67-2018 | © Authors 2018. CC BY 4.0 License.

67

1.1 Voxels

The study in this paper was conducted within a larger effort to
determine the usefulness of representing 3-dimensional geo-
spatial information in large 3D grids, in which the raster elements
are called voxels. The expectation is that this, in comparison to
vector models, will lead to a more unifying approach on
integrating many kinds of geo-information into computational
simulation models, allowing to better exploit the spatial and
temporal relationships between different objects, processes,
themes, layers, etc, stored in a 3D GIS.

Here, we are considering a 3D model of an outdoor scene in
sunny weather. Sunlight enters the scene as parallel rays from a
direction that is defined by a pair of angles denoting sun azimuth
and elevation. The goal of the paper is to compute which parts in
the scene receive direct sunlight - the other parts being in the
shadow. Fig. 1 shows an example.

The model describes a scene on the Earth surface, such as a part
of a city. It is filled with different materials, forming objects, such
as the terrain, buildings, bridges, trees etc. Air is present in the
scene as well, and it is the only 'material' that is transparent to
sunlight. Sunlight is blocked (i.e. either absorbed or reflected) by
all other materials. Therefore, the objects cast shadows, which
will prevent certain parts of surfaces of other objects from
receiving direct sunlight - the effect on object surfaces of indirect
light coming from the sky or being reflected by other objects is
not the subject of this paper.

The scene has the extent of a rectangular block, subdivided into
little cubes called voxels. The cubes are indexed by three-
dimensional integer coordinates (x,y,z) ranging from (0,0,0) to
(Nx-1,Ny-1,Nz-1) and therefore the extent of the scene, measured
in voxels, equals Nx × Ny × Nz. We will assume the axes are
parallel to a relevant (perhaps local) terrestrial (X,Y,Z) coordinate
system. The increment in X, Y or Z corresponding to an integer
step in x, y or z is the resolution of the model - we could think of
non-cubic voxels (with shapes likes bricks or pizza boxes), but it
would not add much to the argument. The same holds for having
a rotation between the two coordinate systems - except that it
would require the azimuth (and/or elevation) angle to be rotated
as well. Furthermore, we consider only shadows that are cast by
objects inside the block. There is no shadow from objects
surrounding the block. Finally, we will assume that the terrain
surface is inside the block, and that all objects are lower than the
top of the block. Therefore, the top layer(s) of the block consist/s
of air, and the lowest ones of terrain.

Voxels are considered homogeneous. Their content is denoted as
a scalar value, representing a single material or material class.
We will assume the voxel size (the resolution) to be such that an
urban scene is represented at a scale that reflects building details
like balconies, chimneys etc., but perhaps not smaller details like
ornaments or door handles - a typical voxel size would be in the
range between 0.1 and 1.0 m. If the indoor environment is to be
considered for shadow determination as well, we must allow the
sunlight to enter through windows. These will have to be
modelled as holes in the walls of the building. Furthermore, if the
sunlight is supposed to be only partially blocked by tree crowns,
these will have to be represented as mixtures of 'air' and 'leaf'
voxels.

Also, the question about objects being in the sun or shadow will
be answered per entire voxel. This will mainly concern voxels
being illuminated from above – or not. Depending on the
incidence angle, however, two more faces except the top face of

a voxel are candidates for being sunlit. This will be addressed
below.

The result of shadow modelling in computational models
addresses, for example, the amount of sunlight that is captured by
objects of interest over time. This will boil down to counting
sunlit voxels per object (and per epoch). This in contrast to many
existing methods, including those in game engines, which mainly
aim at producing fancier visualisations, and have been known for
a long time [Crow, 1977]. Such models can also be used to
radiometrically correct satellite imagery prior to automatic
change detection [van der Sande et. al. 2008], in order to prevent
shadow differences being recorded as detected changes.

The straightforward method to obtain the result described above
would be to have a ray of light entering a voxel at the top of the
block at the desired angle, and trace it down through the ‘air’
voxels layer by layer until it hits an other-material (object) voxel.
This is then marked as ‘sunlit’ and the ray stops. By repeating
this process, starting from every voxel in the top layer of the
block, one will end up with a collection of sunlit-marked voxels;
the remaining ones are ‘shadow’. To make it possible that each
bottom voxel in the block could eventually be reached by a ray
originating from the top, it will be necessary to extend the block
sideways with ‘air’ voxels, depending on the azimuth and
elevation angles, before starting to trace rays.

This method is computationally expensive, because it has to
traverse almost the entire voxel space sequentially, all the time
performing computations to get from one voxel to the next, while
intersecting the oblique ray with (perhaps several) voxels at each
layer. We present a simple method to get the same result very
little computational effort.

2. VOXEL SHADOW ALGORITHM

We regard the block of voxels describing a scene as a stack of Nz
horizontal layers, numbered from 0 to Nz - 1, each having a size
of Nx × Ny voxels.

Fig. 2. Input model for voxel shadowing

2.1 The Basic Idea

The idea behind the algorithm is to shift each layer of the voxel
model (Fig. 1) horizontally in the opposite direction of the sun
azimuth angle, by an amount that depends on the sun elevation
angle and the height of the layer. As a result (Fig. 3), points that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-67-2018 | © Authors 2018. CC BY 4.0 License.

68

are geometrically located on the same sunbeam (if this beam were
not blocked by the first non-air point it hits), will be exactly above
one-another after the shifting took place.

Fig. 3. Voxel model with shifted layers, according to sun angles.

In the next step of the process, the shifted voxel block is
examined from top to bottom, one vertical column at a time, and
the highest non-air voxel in each column is marked as ‘sunlit’.
All voxels that are located lower in the column remain unmarked,
meaning ‘shadow’ (fig. 4).

Fig. 4. Upper voxels in shifted model of Fig. 3

Finally, the sunlit voxels are shifted back to their original
positions, layer by layer, by the amount that belongs to that layer
(Fig. 5). They become the sunlit voxels in the original voxel
space; the remaining voxels are in the shadow (Fig. 6).

2.2 Implementations in different voxel storage structures

We distinguish two storage structures for matrices, which we will
name dense and sparse - both can be applied to represent voxel
spaces in RAM or on disk. Very generally speaking, dense
matrices are quicker during processing, but sparse ones require
less memory. However, the ‘sparser’ a dataset really is, the faster
its processing will tend to be, and, depending on the operation,
there may exist a break-even point where ‘sparse’ gets quicker
than ‘dense’.

Generally, computer memory is linear; data are stored in words
(of e.g. 64 bits) at addressable locations, where the range of
addresses is a consecutive linear list.

Fig. 5. Top voxels from Fig. 4 shifted back to their original
positions.

Fig. 6. The voxels of Fig. 5 are ‘sun’, the remaining voxels of
the input model (Fig. 2) are ‘shadow’

A dense matrix occupies a consecutive piece of memory, in
which only the values of the elements (the voxels) of the matrix
are stored. The size of the block, which equals Nx × Ny × Nz.,
together with the data type of the voxel values (byte, floating
point, etc.) determines the required amount of memory. In our
method it matters in which order the voxels are stored. A block
can be thought of as either a vertical stack of (horizontal) layers,
or as a horizontal ‘field’ of (vertical) columns. In the first case,
each layer occupies a consecutive piece of memory. In the second
case, the vertical columns are stored as consecutive pieces. The
choice is made during the declaration (or the creation) of the
matrix in your programming language of choice – in a vast
majority of languages, a formulation like M[Nx][Ny][Nz.] will
yield a set of columns, whereas M[Nz,][Nx,][Ny.] gives a layer-by-
layer representation. Generalized (or multi-dimensional)
transpose is the name of the operation that changes between the
two. In any case, the address of each voxel (w.r.t. the beginning
of the block) can be easily computed based on its index.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-67-2018 | © Authors 2018. CC BY 4.0 License.

69

The advantage of the proposed layer shift algorithm, as compared
to the ‘straightforward’ approach, is firstly that the amount of
shift is constant within each layer, and needs to be computed only
once. But more importantly, performing those shifts means to
move relatively large chunks of data around in memory, and this
can be done quite quickly, as far as these are stored compactly,
i.e. as layers. If this is not the case, it may be advantageous to
perform a generalized transpose first. In the shifted dataset, a
search for the highest non-air voxel is performed, which is again
a very simple operation (which may benefit from a pillar-wise
storage, however).

The sparse matrix representation, on the other hand, attempts to
take advantage of the fact that usually a majority of the voxels in
a scene will share a single value or belong to a single class. In
outdoor, above-ground, scenes this value or class will be the one
denoting ‘air’. In a sparse matrix, those voxels are not stored and
do not occupy any space. At the downside, the positions of
(other) voxels in the data structure cannot be easily computed on
the basis of their position in the 3D space. Instead, the indices of
the (non-air) voxels are stored explicitly. Therefore, the indices
require space as well, which comes in addition to the space for
the (non-air) values. Retrieving a voxel implies performing a
search for the wanted index. Moreover, finding out that a voxel
at a certain position is ‘air’ means to discover that it is not present
in the data, which in a first approximation might involve
checking the entire dataset. Fortunately, techniques exist, such as
hashing and spatial indexing, to greatly speed up those searches,
but on the other hand hash tables and indices require memory
space as well.

The ‘straightforward’ shadow algorithm is expensive with sparse
matrices, since tracing rays diagonally through the space requires
continuous searching for the next (perhaps non-existing) voxel.
Layer shifting, on the other hand, is extremely efficient. It has to
be done for the non-air voxels only, coordinate by coordinate,
where (x,y) have to be changed by an amount only depending on
z – this amount can be taken from a lookup table. Next, the shifted
non-air voxels have to be re-grouped based on their new (x,y)
indices, and the one with the highest z has to be identified in each
group. Now the efficiency depends heavily on the applied
hashing (or indexing) technique, but again there are only non-air
voxels involved. The top ones obtain a modified value (‘sun’) and
are shifted back to their original positions, replacing the original
values.

3. REFINEMENTS

3.1 Thin structures with low sun positions

The results of the above-described algorithm are correct,
provided the sun elevation angle is larger than 45 degrees. At a
smaller angle, it occurs that a layer a height z needs to be shifted
more than one voxel further than the layer a height z-1. Structures
of only one voxel thickness, in such a case, may start to show
‘air’ between subsequent layers – hopefully Fig. 7 illustrates the
effect sufficiently clearly.

Fig. 7. Thin wall and low sun give a broken shadow.

The cause is shown in Fig. 8: Differences in shifts between
subsequent layers are more than the wall thickness.

Fig. 8. Broken thin wall after shift

The solution is to perform the shifting bottom up, keep track of
the shifts between layers, and fill the holes as the (might) occur
(Fig. 9).

Fig. 9. Corrected shifted thin wall

After that, the entire space under the shifted wall will be ‘filled’
with uninterrupted shadow, and remain so after shifting back
(Fig. 10).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-67-2018 | © Authors 2018. CC BY 4.0 License.

70

Fig 10. Corrected shadow (compared to Fig. 7) of thin wall at

low sun position

3.2 Side views of sunlit walls

The proposed algorithm is only concerned with how sun is
shining on objects from above. It gives correct results, for
example, at the terrain and at the roofs of buildings. In addition,
all other voxels in the shadow, which are part of a wall, for
example, will never show up as ‘sunlit’. Walls that are sunlit,
however, may get strangely striped (Fig 11).

Fig. 11. Striped sunlit walls

Fig. 12. Shifted block showing the cause of striped walls

The cause of this gets immediately clear when inspecting the
shifted block (Fig 12). Indeed there are sunlit (top) voxels along
the walls. As a solution, one might choose to allow only voxels
that have ‘air’ above them n the original models as candidates for
being ‘sunlit’. They can be selected with the same algorithms as
the sunlit voxels in the shifted model. The selection can be made
before or after shifting, and the result is shown in Fig. 12. The
result visually more appealing, but not necessarily more useful
from a modelling point of view, where one might quantize the
interaction between sunlight and objects by counting sunlit
voxels – then the result in Fig. 11 is actually not bad.

Fig. 13. Shadow model where only top voxels are sunlit

4. EVALUATION AND CONCLUSION

We have shown the feasibility of computing shadowed vs. sunlit
voxels using a little algorithm that directly runs in the voxel
domain. Its main attraction is simplicity. Apart from delivering a
useful result, for which several applications have been identified,
it shows the potential of voxel-based modelling of Earth
processes.

REFERENCES

References

Crow, F.C., 1977. Shadow algorithms for computer graphics.
Computer Graphics, 11(3), 242-8, (Proc. SIGGRAPH ‘77).

Van der Sande, C, Zanoni, M and Gorte, B, 2008, Improving 2D
change detection by using available 3D data, IAPRS Vol. 37 b.7,
Beijing 2008.

Blinn, James (1988), "Me and my (fake) shadow", IEEE Com-
puter Graphics and Applications, January 1988.

Maren, Gert van and Jinwu Ma (2012) , 3D Analyst – Feature
& Volumetric Analysis, ESRI International User Conference,
San Diego, July 2012.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-4-67-2018 | © Authors 2018. CC BY 4.0 License.

71

	1. INtroduction
	1.1 Voxels

	2. VOXEL SHADOW ALGORITHM
	2.1 The Basic Idea
	2.2 Implementations in different voxel storage structures

	3. Refinements
	3.1 Thin structures with low sun positions

	The results of the above-described algorithm are correct, provided the sun elevation angle is larger than 45 degrees. At a smaller angle, it occurs that a layer a height z needs to be shifted more than one voxel further than the layer a height z-1. St...
	3.2 Side views of sunlit walls

	Fig. 11. Striped sunlit walls
	Fig. 12. Shifted block showing the cause of striped walls
	The cause of this gets immediately clear when inspecting the shifted block (Fig 12). Indeed there are sunlit (top) voxels along the walls. As a solution, one might choose to allow only voxels that have ‘air’ above them n the original models as candida...
	4. Evaluation and CONCLUSION
	REferences

