<]
TUDelft

Delft University of Technology

A string-based representation and crossover operator for evolutionary design of
dynamical mechanisms

Kuppens, P. Reinier; Wolfslag, Wouter J.

DOI
10.1109/LRA.2018.2800102

Publication date
2018

Document Version
Final published version

Published in
IEEE Robotics and Automation Letters

Citation (APA)

Kuppens, P. R., & Wolfslag, W. J. (2018). A string-based representation and crossover operator for
evolutionary design of dynamical mechanisms. IEEE Robotics and Automation Letters, 3(3), 1600-1607.
https://doi.org/10.1109/LRA.2018.2800102

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/LRA.2018.2800102
https://doi.org/10.1109/LRA.2018.2800102

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1600

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

A String-Based Representation and Crossover
Operator for Evolutionary Design of
Dynamical Mechanisms

P. Reinier Kuppens

Abstract—Robots would perform better when their mechani-
cal structure is specifically designed for their designated task, for
instance by adding spring mechanisms. However, designing such
mechanisms, which match the dynamics of the robot with the task,
is hard and time consuming. To assist designers, a platform that
automatically designs dynamical mechanisms is needed. This let-
ter introduces a novel string-based representation for mechanisms,
including evolutionary operators, that allows an evolutionary al-
gorithm to automatically design dynamical mechanisms for a des-
ignated task. The mechanism representation allows simultaneous
optimization of topology and parameters. Simulation experiments
investigate various algorithms to obtain best optimization per-
formance. We show the efficacy of the representation, operators,
and evolutionary algorithm by designing mechanisms that track
straight lines and ellipses by virtue of both their kinematic and
dynamic properties.

Index Terms—Mechanism design, dynamics, optimization,
optimal control.

I. INTRODUCTION

NGINEERS would benefit from a tool that automatically
E generates concepts for mechanisms in robotics. Evolution-
ary algorithms (EAs) could be the basis of such a tool, as they
can search for optimal points in the space of part assemblies.
In particular we consider spring mechanisms used for their
dynamical properties. By tuning the stiffness of a mechanism,
the natural dynamics can be adapted to the desired operating
frequency, thereby minimizing energy consumption [1]. Multi-
ple uses for springs exist in legged robots, especially running
robots [2] and robot arms [1], [3]. Springs can also be used to
create energy free systems. These systems have constant po-
tential energy over the complete work-envelope and can thus
move quasi-statically without operating energy [4]. Examples
are statically balanced parallel robots [5], gravity compensa-
tion [6] and vibration isolation systems [7]. Finally, rigid body
spring mechanisms are important because of their use as a first
approximation for compliant mechanisms [8], such as a fully

Manuscript received August 25, 2017; accepted January 14, 2018. Date of
publication January 31, 2018; date of current version February 27, 2018. This
letter was recommended for publication by Associate Editor C. Gosselin and
Editor P. Rocco upon evaluation of the reviewers’ comments. This work was
supported by the research program STW, which is (partly) funded by the Nether-
lands Organization for Scientific Research (NWO). (Corresponding author: P.
Reinier Kuppens.)

The authors are with the Faculty of Mechanical, Maritime, and Materials
Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
(e-mail: p.r.kuppens@tudelft.nl; w.j.wolfslag @tudelft.nl).

Digital Object Identifier 10.1109/LRA.2018.2800102

and Wouter J. Wolfslag

compliant force balanced oscillator [9]. Note that most of these
references cite papers discussing the design of a task specific
spring mechanism. Such mechanisms would be more viable if
concepts could be quickly and automatically found.

Searching for spring mechanisms is a mixed integer pro-
gramming problem, because the topology of a mechanism is
described by integers (components are either connected or they
are not) while its behaviour also relies on real valued parame-
ters, such as link length and spring stiffness. Furthermore, it is
a non-standard problem , because the number of components is
generally unequal for different mechanisms. In addition, there
exists no explicit function to describe the solution space, since
the value of a design can only be quantified via simulation.

The complexity and nonlinearity of this problem requires a
method that is both flexible and robust. For this type of prob-
lem, literature shows that EAs are capable of finding good (not
necessarily optimal) solutions. For example, the design of ana-
log electronics [10], antennas [11], finding natural laws [12],
compliant mechanisms [13], kinematics [14], [15] and robotics
[16], [17]. More recently, first steps towards dynamics have been
made in [18].

The exploratory qualities of an EA could be extended with
more problem specific heuristics to get a hybrid EA [19]. For
example, a gradient based optimization to fine-tune the real
valued parameters of each mechanism.

The main challenge in using EAs is the genome (the represen-
tation of the mechanism) and the variational operators (crossover
and mutation) that act upon it. Many approaches to represent-
ing mechanisms have been developed [20]-[24], in order to
make conceptual design more systematic. Early attempts such
as Reuleaux’s symbolic notation [20] and Franke’s condensed
notation [22] require visual inspection. Other methods such as
the Denavit-Hartenberg parameters [21] only describe a single
spatial kinematic chain and are therefore not suited for generat-
ing general spring mechanisms with EAs.

In the 1960s graph theory was first used to investigate the
kinematic structure of mechanisms [23], [25], [26]. Graph the-
ory enables type synthesis and analysis of complex kinematic
chains, because properties such as planarity, isomorphism and
connectivity can be tested on the incidence matrix of a graph.
Furthermore, concepts such as graph duality and graph con-
traction aid mechanism analysis, see [27]. This matrix repre-
sentation enables effective computer implementation, as first
demonstrated in the 1980s [28], [29]. However, it is not directly
suited for use in an EA.

In this letter, we present a representation based on [30]
and [18]. Specifically, we use a simple graph to describe the

2377-3766 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9180-8827
https://orcid.org/0000-0001-8033-5326

KUPPENS AND WOLFSLAG: STRING-BASED REPRESENTATION AND CROSSOVER OPERATOR FOR EVOLUTIONARY DESIGN

Fig. 1. A mechanism with its graph along with a specific schema. The grayed
out components indicate a wildcard.

TABLE I
THE INCIDENCE MATRIX OF THE MECHANISM FROM FIG. 1 AND ITS SCHEMA

S1 Hy Hy Hy Hy

G 1 1/00 0 0 1
By 1 1/0 1 0 0
By 0 0/ 1 1 0
B3 0 0/0 0 1 1

kinematics and then arbitrarily assign directions to find the
dynamics of the mechanism. The main contribution is to extend
previous work by ensuring compatibility with variational
operators. The focus is on single degree of freedom (DOF), 2-D
rigid body spring mechanisms that are not actuated. Motion is
caused by gravity and springs, such that a mechanisms inherent
dynamics make it functional.

In Section II we encode dynamical mechanisms for efficient
computer implementation. In Section III we explain how varia-
tional operators can manipulate these encodings to explore the
space of part assemblies. Section IV gives details on the evo-
lutionary algorithms. Section V explains our experiments, with
their results in Section V1. Finally Sections VII and VIII provide
discussion and conclusions.

II. REPRESENTING MECHANISMS

A simple graph G (from now on graph) is an ordered pair
(V(9),E(G)) consisting of a set V(G) of vertices, a set £(G) of
edges and an incidence function ¢g : £ — V x V that associates
with each edge of G an unordered pair of vertices of G and
contains no loops or multiple edges [31].

Vertices are associated with bodies and edges with forces.
Two types of bodies are included: rigid bodies (B) with a finite
mass and a single ground (G) with infinite mass. Two types of
connections between masses are included: spring forces (S) and
hinges (H). An example is given in Fig. 1.

The incidence function of a graph ¢¢ is defined by an N x M
incidence matrix Ig with N being the number of vertices and
M being the number of edges. The (i, j)-th element of Ig is
equal to 1 if the ¢-th vertex is an end of the j-th edge and zero
otherwise [31], e.g., see Table I.

Each edge carries associated parameters that describe prop-
erties such as hinge or spring locations. By carrying these
properties within the edges, the ground can be represented
by a single vertex such that a fixed vertex set V(G) =
{G,B1,Bs,...,By_1} can be used. Therefore, vertex labels
can be omitted. In [18] grounds were labeled individually, mak-
ing a fixed vertex-set impossible.

We indicate unlabeled topology data with an I, edgelabels
with an F, and mass (B), hinge (H) and spring (.5) data are of

1601

o U W =

Vertex number

w -1

L
1 2345 6 7 8 9 10111213141516 17 18 19 20 21 22 23 24 25 26 27 28
Column configuration

Fig. 2.
column.

The pattern generated by (4) up to v = 8. Each square is a 1 in a

the form:

Bu - [maxcaTy(:]y
H. =[x, yn] (D

where a is the number of bodies, b the number of springs and ¢
the number of hinges. All such data is given for the mechanism
from Fig 6(c) in (7). The shape of each body is determined by
the connections that are made to it: it is the convex hull of the
location-data contained in .S, and H..

Sy = [xo,yo0,21,y1, Lo, kl,

A. Schemata as Building Blocks

The suggested encoding can be analysed by means of the
schema theorem developed by Holland et al. [32]. It provides
insight into how EAs manipulate individuals to accumulate wis-
dom within a population [33].

A schema H is a subspace of the original search space. For
instance, consider minimizing the objective function f of a vec-
tor of decision variables x. Suppose the optimal variables are
x* = [6, 3, 4] and that the O-symbol indicates a wildcard, i.e., it
can be any value. Then examples of schemata that contain the so-
lution are H, = [O0,0, 4], H, = [[0,3,0], H3 = [6,,0] and
H, =[O, 3,4], even the whole space H; = [JXJ0)] and the op-
timum itself are schemata. A schema has an order, which equals
the number of non-wildcard positions, and a defining length,
which is the distance between the outermost non-wildcard po-
sitions. The optimal solution x* = H = [6, 3,4] can be con-
structed by intersection of the lower order schemata H;, H»
and Hj.

The schema theorem shows that short low-order schemata
have a higher probability to propagate unharmed into subse-
quent generations than long high-order schemata, given the
same chance on selection. This observation has led to the build-
ing block hypothesis [34]. This hypothesis states that EAs ini-
tially select short low-order schemata and progressively com-
bine them into longer higher-order schemata. Based on the con-
cept of building blocks the following six conditions for EA
success were established [35]: 1) Ensure the EA is processing
building blocks. 2) Ensure the mixing of good building blocks.
3) Ensure diversity of building blocks. 4) Ensure growth of
good building blocks. 5) Decide well among competing build-
ing blocks. 6) Solve problems that can be build form building
blocks, or encode them so they can. They will be used as a
practical guide for the EA design.

A lower order schema can be found in a mechanism by replac-
ing a column of its incidence matrix with wildcards. An example
is shown in Fig. 1 and Table I. In this case the connection be-
tween By and G is removed. At the level of the mechanism
the shape of B; changes and the mechanism is reduced from a
four-link to a three-link mechanism.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

1602

Fig. 3. Crossover on the level of mechanisms. The black parts indicate the
selected tails from the genome.

This method can be used to create schemata for all submecha-
nisms of a given mechanism or, vice versa, to combine schemata
to form the mechanism. This means that our EA is processing
building blocks.

B. Connectivity and Equivalent Topologies

The size of the solution space is reduced by using the prop-
erties of connectivity and isomorphism. Connectivity means all
parts of a mechanism are connected and is directly tested on its
graph. Isomorphism tests whether it is possible to relabel the
parts of one mechanism (while also reordering the connections
in the same way) such that the result is a second mechanism,
which is therefore equivalent to the first.

Taking into account connectivity and isomorphism reduces
the search space for our algorithm by orders of magnitude. For
instance, there are 268 - 10 labeled simple graphs and 11 - 103
connected non-isomorphic graphs with 8 vertices [36].

Due to the different types of edges we cannot establish iso-
morphism for the whole graph at once. Four subgraphs of a dif-
ferent type can be identified, i.e., ¢pg(H) = (G, B), ¢pg(H) =
(B, B), ¢g(S) = (G, B), ¢g(S) = (B, B). Only subgraphs of
the same type will be compared. If all subgraphs are isomorphic
to all subgraphs of another mechanism we consider the topology
to be identical. This approach is however slightly conservative,
because isomorphism between all subgraphs of two graphs does
not necessarily mean that their represented mechanism topology
is identical. We analyze isomorphism with the software package
nauty [37].

C. Dynamical Model

To uncover the behavior of a mechanism we simulate its un-
actuated dynamics. Conservative forces (gravity G; and linear
spring forces \S;) cause any motion that occurs. Therefore, tun-
ing the positions and stiffnesses of the springs is important for
tracking a desired trajectory. This contrasts with a kinematic
solution where a predefined input motion is specified. For ex-
ample, the parent mechanisms in Fig. 3 move due to gravity and
the springs. However, the child mechanism is in an equilibrium
and would not move.

The equations for dynamic simulation of the mechanism are
derived by way of virtual power, using Lagrange multipliers to
add the constraints to implement the hinges [38]. This results in
the following set of differential-algebraic equations:

Mij Dy |2] _ fi
Ok M| _Dk~,1)q1"1)iq

Dr.;j
where M;; is a diagonal mass matrix, D;. ; the Jacobian of
the constraint vector Dy, x; = [x1,y1,01,* , Tn,Yn,0,]T the
global coordinates, A; the Lagrange multipliers, f; the force
vector and Dy, ,,,4,%, the convective acceleration terms. This

2

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

method does not require generalized coordinates, which can be
hard to find automatically.

The scleronomic hinge constraints and the spring forces re-
quire the distance between two points p; and ps located on two
bodies:

AP(x1,%2,01,05) = R(01) (p1 — Xc1) + X1
—R(62) (p2 —%xc2) — %2 (3)

where x; = [z1,11]7, X1 = [T, , ¥, |7 and 6 are the current
and initial center of mass position of the first body and its current
angular position. X2; X.o and 5 are defined analogously; and
R(6) is the 2D rotation matrix.

For each hinge two constraints of the form AP = 0 are added
to D;, with p; = p2 = X;,. If a body is connected to a ground
Xy = Xj, and X.o = X, in addition.

The forces are given by f; = G; + 5;, where G; is gravity
and S; are spring forces. Friction is neglected. Spring forces are
computed as minus the partial derivative of the spring energy F
with respect to the coordinates. The energy of a spring equals
AL = |AP — LO| with p; = [z0,y0]|! and ps = [z, ys]"
When a spring is connected to a ground x.o = [x7,y7]" and
xs = [x7,y7]7 hold as well. All constants are stored in M, H
and S from (2).

Equation (2) (solved for ;) is numerically integrated us-
ing the Runge-Kutta 4th order method with a fixed step-
size of h =0.05. All simulations start at initial conditions
z;(0) = [®¢1,Ye1,0, ..., Tea, Yea, 0] and & (0) = 0 and last for
T =5 seconds. To satisfy the constraints (i.e., Dj = 0) the
Newton-Raphson method is used after each time step with a
tolerance of 10~!? m. Numerical integration is stopped when
singularities or extreme displacements (10 m per timestep) are
detected. Two solutions along the optimized trajectory are given
in Fig. 7.

D. Degrees of Freedom

One of the most fundamental properties of a mechanism is
its number of DOFs. This describes the number of independent
coordinates needed to fully describe motion, which plays a large
role in a mechanisms functionality. The number of DOFs of a
mechanism is found as the dimension of the nullspace of the
Jacobian of its constraint vector Dy, ; at the initial configuration.
This means singularities (causing changes in the number of
DOFs) are not accounted for.

III. VARIATIONAL OPERATORS

Variational operators are responsible for creating new mecha-
nisms in the population. Typically binary and unary operators are
used. The binary operator (crossover) combines two genomes
into one new mechanism. The unary operator (mutation) makes
small random changes to one genome.

A. Crossover

A crossover operator, that combines two graphs, is non-trivial
since incidence matrices are generally of a different size due to
a different graph order. Also, this operator should ensure simple
graphs and thus prevent loops and multiple edges. Furthermore,
it should deal with topology and real valued parameters simulta-
neously. Many possible solutions arise from the different ways
of storing the incidence matrix.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

KUPPENS AND WOLFSLAG: STRING-BASED REPRESENTATION AND CROSSOVER OPERATOR FOR EVOLUTIONARY DESIGN

Incidence matrices contain many zeros, suggesting the use of
a sparse matrix notation[39], [40]. However, the list describing
a sparse matrix has length 2|€|, one entry for each non-zero
element. Consequently, invalid edges can be created by splitting
a sparse matrix in an inappropriate location. Another issue is
how to unite the |€| data vectors belonging to each edge with
2|&] list elements.

An edge-list may solve that, because it groups ver-
tex pairs that form edges [31]. For example, the
edge-list of the graph from Fig. 1 is given by
{{v1, v}, {v1, 02}, {va, v3}, {vs, v}, {v1,v4}}, which is writ-
ten as a matrix of dimension 2 x |€|. Even though an edge-list is
easily united with || data vectors, it is not perfect for detecting
loops and multiple edges. For example, when generating random
graphs one must take good care not to generate loops of the form
{v1,v1} and multiple edges of the form {{vy, vy}, {ve,v1}}.

To explicitly exclude loops and multiple edges, we write the
topology as a string of length |£|. By properly defining a map-
pingZ : £(G) — N, we make sure that loops and multiple edges
of the form {{v1, v2 }, {v2, v1 } } cannot occur. Duplicate edges,
such as {{vy,v2}, {v1,ve }} are prevented by sampling without
replacement. The mapping is given by

1
Z({vy,ve}) = 5(1}2 —2)(ve —1)+v st vy >ve (@)

where {v1,v2} is a pair of vertices that form an edge. The
pattern this mapping creates is given in Fig. 2. It is created by
noting that in a simple graph any column in /g can have a finite
number of configurations. This number is given by the binomial
coefficient, e.g., six configuration for each column in Table I.
Replacing each unique column in Table I with a number from the
discretesetZg = {1,2,3,4,5,6} given by (4) gives us the string.
The pattern has the property that all possible configurations for
a certain number of vertices are assigned before moving on to
a higher number of vertices. Therefore, by using this pattern
for translating the incidence matrix to a string of numbers, it is
possible to combine mechanisms of different vertex-order.

Crossover is done with a slightly modified one point crossover
[32], because it is simple and no obvious advantages exist over
more complicated methods like n-point or uniform crossover
[19]. The modification addresses that the length of both parents
is in general not equal Ly # Lo. We pick two random integers
r1 € [1,L; — 1] and ro € [1, Ly — 1]. Next, we split parent 1 at
point r; and parent 2 at point 7 and merge the tails to create
a child. For example, the topology of the parents from Fig. 3 is
given by p; =[1 13 6 4] and po = [2 1 3 2] respectively. For
ry =3 and ry = 1 we get:

6 4 2
d, dh:| + |:ds

where dj, = [E), Ba,, Ba,, H.]' for hinges and d, =
[Es, Ba,, Ba,,Sy]T for springs. Data contained in d;, and d
is associated with its respective edge and simply transported to
the child mechanism. (7) gives an example of all data to build
a genome for the mechanism from Fig. 6(c). To prevent mul-
tiple edges, duplicate incidence numbers with the same label
are removed after crossover, along with their respective data
vectors d;, or dy. In our implementation, the mass data of each
body is stored in the hinges and springs that are connected to
them. This means that the mass data can be stored in multiple
columns, which potentially causes conflicts after crossover. To

1 1 3
ds dh, dh

132] [6 4
d, d, d, | |dd,

1 3 2
dh dh, ds

1603

resolve such conflicts, we take the average of all these instances
for each mass after crossover.

B. Mutation

Mutation is done in two ways. The first is to randomly change
a value in the representation. In this case we have to account for
the meaning of each value, which can represent:

1. an incidence number, in which case we change the inci-

dence number by one, in random direction.

2. an edge label, in which case we change it randomly.

3. areal valued datum about the hinges, springs or masses,

in which case we change it by adding a value drawn from
a normal distribution.

The second type of mutation causes changes on a more macro-
scopic scale: it acts upon complete parts, instead of single values.
To emphasize mechanisms of a low complexity, we only delete
parts. Again there are three options: to delete a mass, a hinge or
a spring.

IV. EVOLUTIONARY ALGORITHM

This section discusses the details of the implemented EA. The
goal of the EA is to provide an environment in which to test the
proposed genome and operators.

A. Diversity

The power of EAs comes from two sources: exploration and
exploitation [41]. They need to be well balanced, which can
be done by maintaining diversity. Diversity measures the vari-
ety within a population and can be directly used in preventing
premature convergence in local optima [42], [43].

Diversity D will be measured by the anti-log of the Shannon
entropy, because it includes both the richness and evenness of
species in a population. It is given by D = ef/ where H =
- Zle p; Inp;, with p; the proportion of the population that
belongs to species ¢ and where S is the total number of species
[44], [45]. A species is considered to be a unique topology as
described in Section II-B, similar to genetic programming where
diversity typically refers to structural differences [43].

Quantifying diversity allows us to monitor it. Maintaining
diversity, without compromising convergence speed (i.e., low-
ering selection pressure), requires spatially distributing the pop-
ulation, specialized selection operators which need a similarity
metric between individuals, or re-injecting the population with
new genetic material [42]. Since no readily available similar-
ity metric for mechanisms exists, we will maintain diversity by
spatially distributing the population and by re-injecting genetic
material.

The population will be spatially distributed with the island
and the diffusion model. The island model splits the population
into subgroups called islands. Gene flow between islands only
takes place after an epoch, i.e., when the local populations stop
improving for 10 generations. A circular topology of N islands
is used, in line with results from [46].

The diffusion model lowers gene flow trough the popula-
tion on each island by placing all individuals in its own cell
on a toroidal grid. Crossover only occurs between neighboring
individuals. This local flow has the same evolutionary power
as global operators [47]. In addition, they also enable parallel
computation [48], [49].

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

1604

B. Selection

Parents, survivors, migrants and neighourhoods are selected
with the linear ranking scheme with maximum selection pres-
sure (s = 2) from [19]. The expected value is converted into
sampling from the populations by the roulette wheel algorithm.

During neighbourhood selection an individual is selected by
ranking the population in order of ascending fitness. A neigh-
bourhood is then the locality of the selected individual. Next
two parents are locally selected from the neighbourhood the
same way. During survivor selection, one individual that will
be deleted is locally selected by ranking the neighbourhood
in descending order of fitness. During migrant selection one
individual is selected on each island in the same way as neigh-
bourhoods are selected. An individual p; on island 1 will take
the place of p5 onisland 2, u» will take the place of pi3 on island
3 and so on.

C. Initialization

To ensure a maximally diverse initial population all members
are non-isomorphic as defined in Section II-B. Members will
have different graph orders, which raises the question how many
samples of each graph order should be taken. According to the
true distribution of non-isomorphic connected simple graphs,
mostly samples of high order graphs [36]. However, low order
graphs can be useful building blocks by reason of the building
block hypothesis.

To compromise, we sample graph order v according an expo-
nential distribution with scaling parameter A = 0.5. By tuning
X more emphasis can be given to low or high order graphs. Next
the number of edges e is uniformly chosen such that the mech-
anism can be connected and has at least one DOF. The graph
is build by generating e uniformly random incidence numbers
between 1 and Z(v,v — 1).

D. Fitness Function

Two design cases will be presented: 1) a one DOF mechanism
that draws a straight line and 2) a one DOF mechanism that
draws an ellipse. In both cases a feature based fitness function is
used. The fitness function F' is a bilinear form of the differences
in desired (f;) and measured (f,,,) features, similar to [50]:

F=lfa— fulla = /(s = fu)TAUGs — fu))

In each case fitness is calculated for each center of mass and
all hinges and spring-ends that do not connect to a ground (e.g.,
six trajectories in Fig. 1). The fitness of the mechanism is the
minimum of these fitness values.

For the straight line mechanism four features are included in
the feature vector. The first feature, f,, 1, measures the absolute
total curvature of a trajectory. The local curvature x; is computed
for each point 7 on the polygonal curve with the algorithm from
[51]. The second feature f;, - is the trajectory length to prevent
very small straight lines. (6) shows the first two features with
|p| is the number of points, = and y, are the differences in the
2 and y directions between consecutive points. The errors are
normalized by bounding and dividing the differences by 100.

Ip| [p|-1

f’”vl = Z ‘Ki|7 fm,? = Z 1‘22 + y? 6)
i=1 i=1

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

TABLE II
PARAMETER SETTINGS FOR ALL ALGORITHMS

Parameter Value Parameter Value
Max no. bodies 7 No. migrants 1
Neighbourhood size 3x3 Crossover rate 1
Population size 7x7 Parameter mutation rate ~ 0.05
No. gen. per epoch >10 Part mutation rate 0.03

No. children per gen. 10

The third feature f,,, 3 is the number of DOFs of the mechanism
squared. For this feature we square the difference. Lastly, f,, 4,
represents the complexity as the sum of all masses, hinges and
springs of the mechanism. The differences for the DOFs and
complexity features are normalized by the maximum value given
the number of vertices in the largest allowed graph. The matrix
A s chosen to be A = diag(80, 70,25, 25). The desired feature
vector is f; = [0,10,1,0]T.

For the ellipse mechanism, we use features describing the
ellipticity, the length and the area of the closed polyon curve.
Also, the L2 norm of the vertex-wise difference in position
and curvature are computed to describe local variations be-
tween the desired and measured trajectories. These features are
described in more detail in [50]. In addition we include the
DOFs and complexity of the mechanisms as in the straight
line case. A normalized ellipse with a major axis twice the
minor axis is used as desired trajectory. We take matrix A =
diag(10,10, 10, 20, 20, 5, 5).

V. EXPERIMENT DESCRIPTION

To investigate the performance of the EA, it is decomposed
into five sub-algorithms. By comparing their output we are able
to pick the best combination of methods.

Each algorithm is run with both 2 and 12 populations (islands)
in parallel on an Intel i5-3320M and two Intel Xeon X5650 CPUs
respectively with both 20 and 60 migrations. The results are the
fitness values of the best mechanism. All algorithms are run 30
times to obtain a fair sample of the optimization performance.
The samples are compared using three-way independent mea-
sures ANOVA.

The following algorithms are compared: a) Multistart algo-
rithm; a simple EA with 2 and 12 non-interacting panmictic
populations. b) Island model. c) Island with diffusion model.
d) Island with diffusion model plus re-injection at a threshold
of 80 effective species. e) Island with diffusion model plus re-
injection at a threshold of 20 effective species.

Reasonable algorithm parameters have been determined by
preliminary tests and values stated in literature, see Table II.

VI. RESULTS

The optimization results are summarized in Fig. 4. Nine out
of 20 cases significantly deviated from normality, according to
the Shapiro-Wilk test (p < .05). Furthermore, the assumption
of homogeneity of variance for ANOVA was violated (Lev-
ene’s test: F'(19,580) = 25.493,p < .001). Transforming the
data did not rectify these problems, so the reported F-tests could
be inaccurate.

The results show that the main effect of algorithm choice
significantly affected the best fitness score (F'(4, 580) = 9.649,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

KUPPENS AND WOLFSLAG: STRING-BASED REPRESENTATION AND CROSSOVER OPERATOR FOR EVOLUTIONARY DESIGN

2 Islands 12 Islands
25 F25
% 20+ F20
)
£ 15 ﬁ - 15
= 104 % % = ? 10
5 B T T T T T T T T T T 3 5
a b c d e a b ¢ d e
25 L25 [150
» 20 ° - 20 - 40
£ 15+ % é 15 - 30
= 10+ ® % 10 é 20
=
51 <o s TTls 10
0 B T T T T T T T T T T 3 0 2 0
a b ¢ e a b ¢ d e Ellipse
Algorithms
Fig. 4. Boxplots for all runs. The upper two plots show results for case I with

20 migrations for 2 and 12 islands. The bottom left two show results for case I
with 60 migrations for 2 and 12 islands. The bottom right shows results for case
II with 60 migrations and 12 islands. Small circles indicate moderate outliers
and the stars indicate extreme outliers.

TABLE III
RUN TIME OVER 30 RUNS IN MINUTES

20 Migrations 60 Migrations
2 Islands 12 Islands 2 Islands 12 Islands
Alg. a 9 16 21 40
Alg. b 16 14 20 25
Alg. ¢ 7 13 18 25
Alg. d 17 29 48 75
Alg. e 13 24 39 72
Evals >4000 >24000 >12000 >72000

p < .001, 77]2 = .062). Post-hoc analysis using Tukey HSD re-
vealed that algorithm ¢ performed significantly better than the
algorithms a, d and e (for all p < .01). Algorithm b performed
significantly better than the algorithms d and e (both p < .05).
No significant difference was found between the algorithms a,
d and e (for all comparisons p > 0.05).

The main effect of the number of migrations significantly
affects the best fitness (F'(1,580) = 203.521,p < .001,72 =
.26). Furthermore, the main effect of the number of paral-
lel populations affects the best fitness score significantly as
well (F(1,580) = 379.509,p < .001,77127 =.396). The effect

size (77[2)) shows that the number of parallel populations and
the number of migrations both have a large effect, whereas the
effect of algorithm choice is small to medium.

No interaction effects among independent variables (algo-
rithm choice, number of migrations and the number of popula-
tions) were found. Thus, it is likely that each variable can be
adjusted without affecting the effect of another.

These findings suggest that algorithms b and ¢ outperformed
the other methods in terms of optimization performance. How-
ever, since only algorithm ¢ was significantly better than algo-
rithm a we pick algorithm c as the best.

Table III shows the run time for the experiments, which are
considered reasonable. The run-time of algorithms d and e is
significantly higher (=3 times), because complex mechanisms
are repeatedly added to the population.

Two straight line solutions can be distinguished: single pen-
dula and Roberts mechanisms. Pendula approach a straight
line as they get longer and have very low complexity. Roberts

1605

60 8

'S
o

Fitness

20

0 200 400 600 800
Generation

Fig. 5. Mean fitness of algorithm c. The black lines indicate individual runs
and the red line indicates the mean.

2 A A
\ e U
(b) (© \

Fig. 6. Evolved straight line mechanisms.
6
ES
Sa
3
33
2
Time [s] :rmu» \;\
(2) (b)
Fig. 7. The x- (solid line) and y- (dotted line) coordinates of resulting trajec-

tory versus time.(a) Mechanism from Fig. 6(a). (b) Mechanism from Fig. 6(c).

mechanism is more accurate at smaller size, but has more parts.
Three things are noted about the evolved Roberts mechanisms.
First, they were never symmetric. Second, they often had redun-
dant parts attached, meaning topology was different from case
to case. Lastly, most Roberts mechanisms were produced by
algorithms d and e, indicating those algorithms might be useful
when the goal is to create a more diverse set of mechanisms.
Examples are shown in Fig. 6

Fig. 5 shows the mean fitness of the population versus the
time (in generations) of algorithm c. The black lines indicate
individual runs and red the mean of all 30 runs. Diversity versus
time looks very similar, albeit with a quicker convergence, sug-
gesting parameters were further optimized after the topology
was found.

Algorithm ¢ with 12 islands and 60 migrations performs best
on the straight line problem. That is, it produced the best fit-
ness values with the least spread. The results from algorithm ¢
suggest that the EA is able to successfully perform a search for
mechanism topology and perform a parameter optimization at
the same time. This is readily observed in the convergence in
Fig. 5.

The best algorithm found for the straight line mechanism
is also used for tracking an elliptic trajectory. The algorithm
was successful in 29 out of 30 runs. The fitness values are
summarized in Fig. 4. Two of the 29 mechanisms are shown in

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

1606

Fig. 8. (a) and (b) Evolved and (c) redesigned ellipse mechanisms.

Fig. 8(a) and 8(b). Both mechanism rely on the same topology,
but due to their different parameters their operating principle
is different. Finally, Fig 8(c) shows a human edited version
of the 2nd mechanism, showing that the automatically evolved
mechanisms can be used as an inspiration to design elegant and
functional concepts.

I=[1 52 6 6 2]
E=[1 12 1 2 1]
029 049 0.71
B= 1070 031 043
1046 040 0.61
o_[ro4 394 105 092 105 227
=388 0.83 408 144 113 451
226 058 0.03 0.80
B =344 047 002 2.84] 0

VII. DISCUSSION

We have demonstrated evolutionary design of planar straight
line mechanisms and mechanisms that draw an ellipse, an im-
provement over previous work [18]. To obtain these results, a
novel representation for mechanisms was developed with em-
phasis on compatibility with EAs. In particular, we unified the
representation of [18] with the schema theorem [32]. Compati-
bility with variational operators was achieved by writing topol-
ogy as a string. This inherently avoids loops and multiple edges,
preventing parts to be connected to themselves or multiple times
to each other.

The underlying graph theory allows for extensive post pro-
cessing. It allows for example analysis of kinematic chains by
graph contraction, isomorphic topologies, planarity and connec-
tivity. This means that after evolution the mechanisms can be
further analyzed and developed by a design engineer. However,
by representing the graph via an incidence string the description
becomes more abstract. Therefore, analysis cannot directly be
applied on the incidence string that we introduced. Our rep-
resentation is not intended to be used directly by human en-
gineers. Instead, it makes it easier for EAs to manipulate and
accumulate data in a population enabling evolutionary design
of mechanisms.

The evolved mechanisms move by virtue of their kinematic
and dynamic properties. However, the fitness functions do not
include any criteria involving speed or forces. Such criteria
could be interesting for spring mechanisms for fast moving
robots, or to optimize the natural frequency of oscillations.
Implementation should be possible by using the computed

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

Lagrange multipliers or displacement solutions such as shown
in Fig. 7. However, dynamic criteria can be difficult to state or
compute robustly. To that end, future research should study how
to tightly couple more sophisticated simulation engines to our
proposed algorithm.

No mechanisms that exactly track the desired trajectory (e.g.,
the linkage from [52]) were found. We believe that such mech-
anisms might be deceptive optima. That is, optima for which no
continuous transformation along the gradient of fitness improve-
ment towards a global optimum exist [53]. Deceptive problems
are more likely to be solved by searching for novelty [54] rather
than an explicit objective. To use novelty search, future research
should aim to find an appropriate metric for the similarity be-
tween mechanisms.

In this research only springs, hinges, and rigid bodies were
used as building blocks. The representation can be extended to
include more parts, such as torsion springs, prismatic joints, lin-
ear and rotational motors and so on. For example, torsion springs
can be added by using their potential energy Ey = 1/2kA6?, a
prismatic joint can be added by constraining a rotational joint on
a line instead of a plane, i.e., D,, = [sin(«) — cos(a)]AP =0,
where « is the angle of the line, and motor functions can be
added by including rheonomic constraints. As the underlying
graph that encodes topology remains the same, this theoretically
only requires more edge labels to denote different constraints
and forces. The main challenge for future research is to find
good solutions in the enlarged search space.

Similarly, we believe any system that can be encoded by a
graph can potentially be designed by EA. For example, elec-
tric circuits that have been evolved in previous research [10]
or neural networks that are parametrized graphs. Since the ab-
straction of their network structure is essentially the same, such
systems could ultimately be unified into a single representation.
Evolution of simple multi-physics systems has already been
demonstrated [17]. An important, but challenging, next step is
to evolve dynamic mechanisms with motors, in combination
with evolving the motor controllers.

VIII. CONCLUSION

In this letter we presented a string based representation for
dynamical mechanisms and variational operators that act upon
it. The representation and operators were designed while care-
fully considering the schema theorem and the building block
hypothesis such that both topology and parameters could be
optimized simultaneously and efficiently. The performance of
various algorithms was tested. For the test case of a straight line
mechanism, a combination of the island and diffusion model
worked best. Finally, we have demonstrated, for the first time,
evolutionary design of simple single DOF mechanisms that track
an approximate straight line and an approximate ellipse by virtue
of their kinematic and dynamic properties.

REFERENCES

[1] A. Jafari, N. G. Tsagarakis, and D. G. Caldwell, “Exploiting natural dy-
namics for energy minimization using an actuator with adjustable stiffness
(awas),” in Proc. 2011 IEEE Int. Conf. Robot. Autom., 2011, pp. 4632—
4637.

[2] R. Alexander, “Three uses for springs in legged locomotion,” Int. J. Robot.
Res., vol. 9, no. 2, pp. 53-61, 1990.

[3] M. Plooij and M. Wisse, “A novel spring mechanism to reduce energy
consumption of robotic arms,” in Proc. 2012 IEEE/RSJ Int. Conf. Intell.
Robot. Syst., 2012, pp. 2901-2908.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

KUPPENS AND WOLFSLAG: STRING-BASED REPRESENTATION AND CROSSOVER OPERATOR FOR EVOLUTIONARY DESIGN

[4] J. L. Herder, Energy-Free Systems. Theory, Conception and Design of

[5]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Statically Balanced Spring Mechanisms, Ph.D. dissertation, Delft Univ.
Tech. The Netherlands, Nov. 2001.

C. M. Gosselin and J. Wang, “Static balancing of spatial six-degree-of-
freedom parallel mechanisms with revolute actuators,” J. Field Robot.,
vol. 17, no. 3, pp. 159-170, 2000.

R. Barents, M. Schenk, W. D. van Dorsser, B. M. Wisse, and J. L. Herder,
“Spring-to-spring balancing as energy-free adjustment method in gravity
equilibrators,” J. Mech. Des., vol. 133, no. 6, 2011, Art. no. 061010.

T. D. Le and K. K. Ahn, “A vibration isolation system in low frequency
excitation region using negative stiffness structure for vehicle seat,” J.
Sound Vib., vol. 330, no. 26, pp. 6311-6335, 2011.

L. L. Howell, Compliant Mechanisms. Hoboken, NJ, USA: Wiley, 2001.
S. L. Weeke, N. Tolou, G. Semon, and J. L. Herder, “A fully compliant
force balanced oscillator,” in Proc. ASME 2016 Int. Des. Eng. Tech. Conf.
Comput. Inf., 2016, Paper no. VOSAT07A008.

J. R. Koza, M. A. Keane, and M. J. Streeter, “Evolving inventions,” Sci.
Amer., vol. 288, no. 2, pp. 52-59, 2003.

G. Hornby, J. Lohn, and D. Linden, “Computer-automated evolution of an
x-band antenna for NASA’s space technology 5 mission,” Evol. Comput.,
vol. 19, no. 1, pp. 1-23,2011.

M. Schmidt and H. Lipson, “Distilling free-form natural laws from exper-
imental data,” Sci., vol. 324, no. 5923, pp. 81-85, 2009.

R. Parsons and S. Canfield, “Developing genetic programming techniques
for the design of compliant mechanisms,” Struct. Multidisciplinary Optim.,
vol. 24, no. 1, pp. 78-86, 2002.

H. Lipson, “Evolutionary synthesis of kinematic mechanisms,” J. Artif.
Intell. Eng. Des., Anal. Manuf., vol. 22, no. 3, pp. 195-205, 2008.

0. Chocron and P. Bidaud, “Evolutionary algorithms in kinematic design
of robotic systems,” in Proc. 1997 IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
1997, vol. 2, pp. 1111-1117.

C. Leger, “Automated synthesis and optimization of robot configura-
tions,” Ph.D. dissertation, Pittsburgh, PA, USA: Carnegie Mellon Uni-
versity, Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
1999.

J. B. Pollack and H. Lipson, “The golem project: Evolving hardware
bodies and brains,” in Proc. 2nd NASA/DoD Workshop Evol. Hardware.
IEEE, Jul. 2000, pp. 37-42.

I. C. Staal, “Evolutionary mechanisms,” TU Delft, Delft Univ. Tech.,
BioMech. Eng., 2014.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
New York, NY, USA: Springer, 2003.

F. Reuleaux and E. S. Ferguson, Kinematics of Machinery: Outlines of a
Theory of Machines. North Chelmsford, MA, USA: Courier Corporation,
2012.

J. Denavit, “A kinematic notation for lower-pair mechanisms based on
matrices.” J. Trans. Appl. Mech., vol. 22, pp. 215-221, 1955.

R. Franke, Vom Aufbau der Getriebe. Berlin, Germany: VDI-Verlag, 1958.
L. Dobrjanskyj and F. Freudenstein, “Some applications of graph theory
to the structural analysis of mechanisms,” J. Manuf. Sci. Eng., vol. 89,
no. 1, pp. 153-158, 1967.

Y.-M. Moon and S. Kota, “Automated synthesis of mechanisms using
dual-vector algebra,” Mech. Mach. Theory, vol. 37, no. 2, pp. 143-166,
2002.

F. Crossley, “The permutations of kinematic chains of eight members or
less from the graph-theoretic viewpoint,” Develop. Theor. Appl. Mech.,
vol. 2, pp. 467-486, 1965.

F. Freudenstein and L. Dobrjanskyj, “On a theory for the type synthesis
of mechanisms,” in Proc. Appl. Mech. Springer, 1966, pp. 420—428.
H.-S. Yan and Y.-T. Chiu, “On the number synthesis of kine-
matic chains,” Mech. Mach. Theory, vol. 89, pp. 128-144,
2015.

T. Mruthyunjaya and M. Raghavan, “Computer-aided analysis of the struc-
ture of kinematic chains,” Mech. Mach. Theory, vol. 19, no. 3, pp. 357-368,
1984.

[29]

[30]
[31]

(32]

(33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]
[50]

[51]

[52]

(53]

[54]

1607

D. Olson, T. Thompson, D. Riley, and A. Erdman, “An algorithm for
automatic sketching of planar kinematic chains,” ASME J. Mech. Transm.
Autom. Des., vol. 107, no. 1, pp. 106-111, 1985.

A. Van der Schaft and B. Maschke, “Port-hamiltonian systems on graphs,”
SIAM J. Control Optim., vol. 51, no. 2, pp. 906-937, 2013.

J. A. Bondy and U. Murty, “Graph theory, volume 244 of graduate texts
in mathematics,” London, U.K.: Springer, 2008.

J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Ann Arbor, MI, USA: Michigan Press, 1975.

D. E. Goldberg and K. Sastry, “A practical schema theorem for genetic
algorithm design and tuning,” in Proc. GECCO, 2001, pp. 328-335.

D. E. Golberg, “Genetic algorithms in search, optimization, and machine
learning,” Boston, MA, USA: Addion Wesley, 1989.

D. E. Goldberg, K. Deb, and J. H. Clark, “Genetic algorithms, noise, and
the sizing of populations,” Complex Syst., vol. 6, pp. 333-362, 1991.

F. Harary and E. M. Palmer, Graphical Enumeration. Amsterdam, The
Netherlands: Elsevier, 2014.

B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” J. Sym-
bolic Comput., vol. 60, pp. 94-112, 2014.

R. Q. Vander Linde and A. L. Schwab, “Lecture notes multibody dynamics
B, wb1413, course 1997/1998,” Lab. for Eng. Mech., Delft Univ. Technol.,
2002.

J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1,
pp- 333-356, 1992.

T. A. Davis and Y. Hu, “The university of florida sparse matrix collection,”
ACM Trans. Math. Softw., vol. 38, no. 1, 2011, Art. no. 1.

A. E. Eiben and C. Schippers, “On evolutionary exploration and exploita-
tion,” Fundam. Inform., vol. 35, no. 1-4, pp. 35-50, 1998.

R. K. Ursem, “Diversity-guided evolutionary algorithms,” in Proc. 7th Int.
Conf. Parallel Probl. Solving Nature, Springer, 2002, pp. 462-471.

E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic program-
ming: An analysis of measures and correlation with fitness,” Trans. Evol.
Comput., vol. 8, no. 1, pp. 47-62, 2004.

R. K. Peet, “The measurement of species diversity,” Annu. Rev. Ecol. Syst.,
vol. 5.1, pp. 285-307, 1974.

J. P. Rosca, “Entropy-driven adaptive representation,” in Proc. Workshop
Genetic Program.: From Theory to Real-World Appl., vol. 9. Citeseer,
1995, pp. 23-32.

R. A. Lopes, R. C. Pedrosa Silva, A. R. Freitas, F. Campelo, and F. G.
Guimardes, “A study on the configuration of migratory flows in island
model differential evolution,” in Proc. 2014 Annu. Conf. Genetic Evol.
Comput., ACM, 2014, pp. 1015-1022.

C. C. Pettey, “Diffusion (cellular) models,” in The Handbook of Evolu-
tionary Computation. IOP Publishing Ltd and Oxford University Press,
1997, Chapter 6.4.

D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic
algorithm: On separability, population size and convergence,” J. Comput.
Inf. Technol., vol. 7, pp. 33-48, 1999.

E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
Trans. Evol. Comput., vol. 6, no. 5, pp. 443-462, 2002.

S. Coros et al., “Computational design of mechanical characters,” J. ACM
Trans. Graph., vol. 32, no. 4, 2013, Art. no. 83.

D.-J. Kroon, “2d line curvature and normals.” [Online]. Available:
https://nl.mathworks.com/matlabcentral/fileexchange/32696-2d-line-
curvature-and-normals?s_tid=prof_contriblnk

M. Gallet, C. Koutschan, Z. Li, G. Regensburger, J. Schicho, and N. Vil-
lamizar, “Planar linkages following a prescribed motion,” Math. Comput.,
vol. 86, no. 303, pp. 473-506, 2017.

D. E. Goldberg, “Genetic algorithms and walsh functions-part ii: Decep-
tion and its analysis,” Complex Syst., vol. 3, pp. 153-171, 1989.

J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evol. Comput., vol. 19, no. 2, pp. 189-223,
2011.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 18,2021 at 07:39:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

