
Mitigating sandwich attacks in Kyber DMM
Arif Akif Yüksel , Oğuzhan Ersoy , Zekeriya Erkin

Cyber Security Group
Department of Intelligent Systems

Delft University of Technology

Abstract
Kyber is a Decentralized Finance (DeFi) system
which runs on the Ethereum blockchain. DeFi
aims to remove centralized intermediaries such as
Market Makers. An Automated Market Maker
(AMM), implemented in a smart contract, is a
decentralized version of these. Kyber’s Dynamic
Market Maker (DMM) is a next-generation AMM
which solves two issues: Capital Inefficiency (CI)
and Impermanent Loss (IL). CI is decreased by
an amplification factor which a Liquidity Provider
sets upon creaton of a liquidity pool, whereas IL
is decreased by dynamic fees. A DMM features
two reserves: one real reserve that reflects the true
amounts of the two tokens in the pool and one
virtual reserve that reflects the amounts after the
amplification factor is applied. The vulnerability
to a sandwich attack exists because the virtual
reserve ratio can be unbalanced by an attacker.
This results in slippage for the victim when their
transaction gets executed. Finally, the attacker can
perform a swap using the incorrect ratio. The
research question of this paper is: How can one
mitigate sandwich attacks in Kyber DMM? Kyber’s
current mitigation features slippage protection
to protect users from sandwich attacks. The
slippage protection is implemented by adding two
parameters to the function used when adding
liquidity: one for specifying a lower bound for
the virtual reserve ratio and one for specifying the
upper bound. However, this mitigation is only
present in the router. Therefore, users interacting
with the pool contract directly remain vulnerable.
To show that this is true, we modify Kyber’s
test case for sandwich attacks to encompass the
mint function in the pool contract. The existing
mitigation can be broadened by implementing a
code correction in the mint function like the one
present in the function used when adding liquidity.

1 Introduction
Over the last few years, the popularity of Decentralized
Finance (DeFi) has grown exponentially, with the total

value locked (TVL) in DeFi being over $48 billion as
of June 2021 [1]. With such widespread adoption, a
security vulnerability can have severe implications. Such
vulnerabilities as well as existing countermeasures should be
well documented to help prevent exploitation by bad actors.

The DeFi system of interest for this paper is one known
as Kyber [2]. Five security audits have been published
for Kyber since it was released in 2017. These audits
have brought several security vulnerabilities to light, most
of which were subsequently mitigated by the programming
team at Kyber [3] [4] [5] [6] [7]. Had the Kyber protocol
not been openly auditable, these vulnerabilities would likely
be exploited by malicious users, leading to security breaches
and potential losses of funds. This shows how important it is
for vulnerabilities to be documented.

Kyber’s Dynamic Market Maker (DMM) is a new system
which is in the beta phase as of writing this paper. The DMM
is based on Uniswap’s Automated Market Maker (AMM).
This works answers the following research question: ”How
can one mitigate sandwich attacks in Kyber DMM?”. There is
a work that focuses on sandwich attacks [8] and these papers
discuss sandwich attacks [9] [10] [11]. These papers include
cryptography-based solutions as well as specific settings a
protocol can implement. However, these mitigations go
against two of the premises of DeFi systems: transparency
and decentralization. Mitigations in literature are discussed
more in-depth in Section 4.1.

Sandwich attacks in Kyber’s DMM are slightly different
from the conventional kind, as the issue is related to the
virtual reserves which exist in addition to the real reserves.
The virtual reserves are a consequence of the amplification
factor, which makes the programmable pricing curve feature
possible. There is a mitigation in place for the vulnerability.
Namely, the router features slippage protection. This means
that if the virtual reserve gets unbalanced by an attacker, the
victim’s transaction gets reverted. This prevents loss of funds
for the victim (except for gas fees). However, the overall
vulnerability is not mitigated satisfactorily. Namely, users
who interact with the pool contract are still vulnerable to
sandwich attacks. This is because the mint function in the
pool contract does not feature slippage protection.

The goal of this paper is to show that the vulnerability is
indeed present in the mint function and to suggest applying
the mitigation to the vulnerable part of the system as well.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

It is shown by means of a test that users interacting with
the pool contract directly are vulnerable to sandwich attacks.
This test is a modified version of the existing one that was
made for testing the sandwich attack in the router. For
more details, refer to Sections 4.2 and 4.3. We also suggest
Kyber to feature slippage protection when minting liquidity
too so that the vulnerability to sandwich attacks is mitigated
for users who add liquidity through this method as well.
Along with this suggestion, a compilation of existing ideas
for mitigations against sandwich attacks in literature as well
as Kyber’s current mitigation are presented. This paper also
gives an overview of Kyber, which does not have any papers
to its name as far as has been researched.

The structure of this paper is as follows: first, a background
is given on (De)centralized Finance, on Kyber and on
Automated Market Making. Subsequently, in Section 3,
the methodology of this research is explained, and the
problem is formally described. Next, possible mitigations
are discussed in Section 4. These include mitigations against
sandwich attacks in general, Kyber’s current mitigation and a
suggestion to apply the current mitigation in the pool contract
as well. The ethics and reproducibility of this research can be
found in Section 5. This Section is followed by the discussion
and limitations in Section 6. Finally, conclusions and
recommendations for future work are presented in Section 7.

2 Background
Decentralized Finance, despite being novel, has quite an
extensive background. In this Section, the reader can find
a summary on what DeFi is, why it has emerged and how
it compares to Centralized Finance (CeFi) (i.e., the world of
mainstream finance as it is now). Furthermore, information
on Kyber and its transition to Kyber 3.0 can be found in
this section. Finally, a background on Automated Market
Making is given. Here, Kyber DMM is introduced and
its improvements over the standard constant product-based
AMM is explained.

2.1 On (De)centralized Finance
Traditional financial systems are centralized because they
contain intermediaries, for example banks and exchanges.
These intermediaries allow for interaction between market
participants who provide money, such as investors and
lenders, and participants who require money, such as
entrepreneurs and borrowers. Banks and exchanges are
hereby viewed as a central point for interactions. These
central points require trust from all parties involved in a
financial operation. People have faced many financial crises
that have come up over the years with CeFi, like the one in
2008. Even though (government) regulation is enacted in
times of failure, these interventions often do not solve the
failures entirely. The concept of DeFi has sprung up from
this weakness [12].

Bitcoin [13] jumpstarted the cryptocurrency world in 2008,
which DeFi is a part of. Bitcoin - particularly, its scripting
language, called Script [14] - was not programmable enough
for DeFi systems as they are today. In fact, Script is
not a Turing complete language, as it has no loops or

conditionals. Eventually, Ethereum [15] was created along
with the programming language Solidity [16]. Solidity is
similar in syntax to Javascript and has taken inspiration from
C++ and Python. Furthermore, it is specifically designed to
run in the Ethereum Virtual Machine (EVM). As opposed
to Bitcoin’s scripting language, Solidity is Turing complete
and allows for the creation of smart contracts. This in turn
allowed for the creation of a plethora of protocols, which
Kyber is one of.

Smart contracts are autonomous, self-sufficient, and
decentralized programs that handle transactions between two
parties without the need for a centralized intermediary [17].
They are autonomous in the sense that they can operate on
their own after deployment, so the contracts do not need
maintenance. Smart contracts require resources for each
operation. Gas fees are used to allocate these resources from
the EVM [18]. The fees are collected with each interaction
between an agent and the smart contract. This allows for
the execution of operations in a decentralized way and is
what makes a smart contract self-sufficient. Finally, smart
contracts are decentralized programs as they do not have a
single host but are rather distributed across an entire network
of nodes.

Decentralized Finance systems are peer-to-peer,
permissionless financial systems [19]. These systems
aim to remove centralized intermediaries in transactions
and are thus a direct counterpart to CeFi. Transactions
within such systems are processed using smart contracts. A
textbook DeFi system has the following properties [10]:

1. DeFi provides non-custodial financial services, meaning
every user has full control over their finances.

2. DeFi has a permissionless nature, meaning users cannot
be censored or blocked from using the provided services.

3. The states of the protocols in DeFi systems are openly
auditable.

4. New financial services and products can be made within
DeFi systems by building upon existing protocols.

As opposed to CeFi, there are no intermediaries requiring
trust when processing transactions between two parties in
DeFi. Instead, transactions in DeFi systems are done by
smart contracts, which are characterised as trustless. Smart
contracts thereby act as the intermediaries in CeFi, such as
brokers or banks. Because they are distributed across a
network of nodes, trust is also distributed. Furthermore, smart
contracts are easily traceable and verifiable.

There is also the notion of privacy and security. In DeFi,
all (pending) transactions are publicly visible in detail on
the blockchain, but one cannot infer the identity of a person
by their address. However, since a transaction’s details are
visible in their entirety and executing a transaction takes time,
there exists a window for attacks. The sandwich attack is one
such attack and is described in section 3.2.

2.2 On Kyber
Kyber is an on-chain liquidity protocol, which means all
operations are done on the blockchain. It is the most
well-known protocol that uses smart contract-based reserve

Figure 1: An overview of the architectural changes as a result of the transition to Kyber 3.0 [20]

aggregation for pricing coins [21]. This means that prices
are determined by liquidity providers rather than within the
smart contract. However, Kyber does not rank very high in
terms of trading volume. Other exchanges, such as Uniswap,
1inch and Curve Finance, rank much higher than Kyber in
this regard [22].

Kyber is in a transitioning state to Kyber 3.0 as of writing
this paper. They deemed this transition necessary to ”remove
constraints and enable innovation” [20]. While the existing
architecture has a secure foundation and worked well in the
beginning, Kyber could not pick up the trends in DeFi in
a fast manner because of its restrictive architecture. This
is why they are making major architectural changes with
this transition. As shown in Figure 1, they are transitioning
from a protocol with a single endpoint to a hub of protocols
with multiple endpoints. Of these protocols, the DMM
protocol [23] is the one of interest for this paper.

Kyber Network is governed by Kyber Network Crystal
(KNC) holders. Governance is handled through Kyber
Decentralized Autonomous Organization (DAO). On the
KyberDAO, KNC holders can stake their KNC and vote for
changes that are proposed on the platform. The following
is a great example of governance in the KyberDAO: as part
of the transition to Kyber 3.0, Kyber Network proposed to
upgrade their KNC token (now the KNC Legacy token, or
KNCL for short) to the KNC v2 token. Only after enough
users voted in favor of this change by staking their KNC
tokens on the KyberDAO, the change was realized. This
ensures a decentralized way of enacting significant changes
to the protocol.

2.3 On the Automated Market Maker
In DeFi, traditional market makers cannot be used as they
are in centralized financial systems. This would result in
centralization, as the market would be made by a group
of individuals whom users would need to trust. The use
of order books can be done in a decentralized manner, but
this way of determining price is too costly and slow on the
blockchain [21]. Therefore, the AMM was introduced [11].
With the use of smart contracts, market making can be
done efficiently with the implementation of AMMs. In the
schematic depicted in Figure 2, the different kinds of actors
as well as their possible user actions are shown. Uniswap’s
AMM was the first of its kind and it is based on a constant
product function:

x× y = k (1)

where x and y are the reserves of the two assets in the pool and
k is the constant which must always be equal to the product
of x and y [24].

In April 2021, Kyber brought out an improvement
over AMM technology and named it the Dynamic Market
Maker. Kyber’s DMM is a project forked from Uniswap’s
repository [25]. The DMM solves two key issues in
standard Automated Market Maker protocols like the one
that is used in Uniswap, which is currently the most
popular Decentralized exchange (DEX). These issues are
Impermanent Loss (IL) and Capital Inefficiency (CI).

IL refers to temporary losses to Liquidity providers (LPs)
due to volatility in the coin for which they provide liquidity. If
the LP withdraws coins while the price is different from the
initial price at which they added liquidity to their pool, the

Figure 2: A schematic of the Automated market maker [11]

losses become permanent. LPs make profit if the fees users
of the liquidity pool pay for their blocks are higher than their
IL. IL is mitigated by the dynamic fees, an improvement over
the fixed fees in standard AMMs. Fees are lowered in times
of low volatility as an incentive for trading, whereas fees are
increased in times of high volatility to increase the profits
gained for the LP. Consequently, the negative effects for LPs
when high price fluctuations occur in tokens are reduced.

CI is caused by slippage, which is the difference between
the price of an asset when the transaction is placed and the
price when the transaction is executed. This is where the
amplification factor comes into play. This feature changes
the constant product formula as mentioned earlier into the
following:

αx× αy = α2k (2)

where α is the amplification factor and the other terms are the
same as described before [26]. This equation is maintained
in the virtual reserve. Thanks to the amplification factor
feature of the DMM, slippage is greatly reduced in a user’s
transactions. This results in significantly improved capital
efficiency compared to a standard AMM. The DMM is in the
beta phase as of this moment, but it has already been launched
on the mainnet. It is currently in use with real money, with
the total value locked in the protocol being over $12M as of
June 2021 [27].

3 Sandwich attacks in Kyber DMM
This section first explains the methodology briefly. Here,
the reader can find the steps taken in tackling the problem.
Next, an introduction of sandwich attacks in general is given.
Finally, an explanation on how the DMM is vulnerable to it
as well as an outline of the attack steps follow.

3.1 Methodology
This work has mainly been a literature study. The literature
study was done through the use of appropriate resources
(i.e., scientific papers, whitepapers, Kyber’s blog posts and
security audits). These resources were found by using

search queries in the proper search engines as taught in the
Information Literacy 2 course. Examples of such search
engines include IEEE Xplore and Google Scholar. Resources
were also found by means of collaboration with other group
members. These resources were mainly related to the main
topic that is DeFi systems.

For the implementation part, the DMM repository was
forked and edited locally in Visual Studio Code. The edited
version is available on GitHub [28]. An existing test for the
sandwich attack was edited in JavaScript to show that the
pool contract is indeed vulnerable to sandwich attacks. In this
phase, the test failed as expected. Afterwards, a suggestion to
implement the code correction in the pool contract in addition
to the router was formalized and presented.

3.2 The Sandwich attack
The sandwich attack is based on two transaction reordering
techniques known as frontrunning and backrunning [8].
Frontrunning a transaction is possible if the attacker pays
more gas fees than the victim, whereas backrunning is
possible when they pay less gas fees than the victim. As
miners are incentivised to order transactions in descending
order of gas fees, this ensures that the techniques succeed.
Sandwich attacks have been plaguing the DeFi space since its
inception and are a relatively common type of attack in major
exchanges such as Uniswap, Bancor and Sushiswap [9].

For an explanation on how a sandwich attack works,
consider the following scenario: take a pool with tokens X
and Y. A user initiates a transaction in which they want to
swap some amount of X for however many of token Y that is
worth in the pool. An attacker sees the pending transaction
in the mempool and initiates the sandwich attack. They
create two transactions and schedule them to execute before
and after the victim’s transaction by the aforementioned
techniques respectively. The first transaction is to swap some
amount of X for Y, whereas the second is to swap some
amount of Y for X. In a traditional sandwich attack, the
first transaction aims to induce extra slippage on the victim’s
transaction. In particular, the victim gets less of token Y
than they expect because of the attacker’s first transaction.
After this transaction gets executed, they let the victim’s

Figure 3: An overview of the sandwich attack [8]

transaction happen. Finally, the second attacker transaction
gets executed. This results in the attacker effectively stealing
the victim’s funds. Thus, the sandwich attack has been
completed. See Figure 3 for an overview of the attack as
described here.

In the fifth published security audit for Kyber [7], a
vulnerability to sandwich attacks was found in the DMM.
This attack is possible because of the programmable pricing
curve feature, which works by amplifying the assets of a pool
by a factor defined by the liquidity provider during creation.
This feature results in the pool having two types of reserves,
one real and one virtual. The problem the DMM is facing is
the possibility for an attacker to unbalance the virtual reserve
ratio between the two assets in a liquidity pool. Currently, the
vulnerability is present for users interacting directly with the
pool contract and not for users who are interacting with the
liquidity pool through the exchange website (so through the
router).

Suppose a user wants to mint liquidity in a small amplified
pool with reserves X and Y through the pool contract directly.
When the user initiates the transaction, it appears as a pending
transaction in the mempool. A malicious actor can then
place their first transaction to execute before the victim’s
transaction and their second transaction to execute after it
(i.e., initiate a sandwich attack). In their first transaction, the
attacker swaps out all X out of the pool and adds unbalanced
liquidity (as described in [7]) by minting directly through
the pool contract. This results in a situation where the real
reserve ratio stays the same, but the virtual reserve ratio gets
unbalanced. Then, the victim’s transaction gets executed.
Afterwards, the second attacker transaction happens, where
the attacker removes all their liquidity from the pool using the
burn function in the pool contract. Finally, the attacker uses
the unbalanced ratio to execute a swap which results in them
effectively stealing the victim’s funds. As much as 12.69%
of the victim’s funds can be stolen in an optimal situation for
the attacker [7].

4 Possible mitigations
Sandwich attacks are based on frontrunning and backrunning,
i.e., transaction reordering. Therefore, any mitigation against
transaction reordering would logically also mitigate sandwich
attacks. First, existing mitigations in literature are presented
and discussed. Their viability for the situation at hand is
considered. Then follows Kyber’s current mitigation against

the problem in Kyber DMM. Finally, we suggest applying
Kyber’s mitigation in the pool contract in addition to the
router.

4.1 Mitigations in literature
In literature, a number of mitigations against transaction
reordering exist [29] [8]. These mitigations mainly prevent
frontrunning, which renders backrunning useless since it
relies on the slippage the frontrunning transaction causes
for reaping the benefits of the victim’s transaction. An
example of a mitigation against transaction reordering is to
make the transaction confidential [30]. Namely, the fact
that (pending) transactions are transparent on the blockchain
makes it possible for attackers to pinpoint a transaction
that will be profitable. Specifically, they are interested
in the amount transferred. If the attacker doesn’t know
the amount transferred, it becomes impossible for them to
pinpoint transactions that are worth the hassle. However,
this mitigation does not seem realistic for the Kyber DMM
vulnerability as Kyber would need to move to a confidential
blockchain or create their own. Moreover, this goes against
one of the premises in the blockchain concept known as
transparency.

Another mitigation is to sequence the transactions such
that they cannot be tampered with by malicious actors. 0x
Protocol implements this by keeping an order book off-
chain [31]. This results in centralization to some degree
but does help mitigate the issue as transaction reordering
by malicious actors becomes impossible. However, the
order book is kept by a third party whom users will need
to trust when using the protocol. The order book hosts
are known as Relayers, and theoretically they can reorder
transactions maliciously. Finally, this mitigation goes against
the decentralization premise in DeFi.

A mix of sequencing and confidentiality is also possible. A
known example is the commit/reveal technique as depicted in
Figure 4 [32]. With the implementation of this technique, a
transaction’s details only become known once the transaction
is certain to execute in some order. Namely, the transaction
remains hidden during the commitment phase and is made
visible in the reveal phase. This ensures that transaction
reordering cannot happen, as the order has already been
established when it is a pending transaction. This eliminates
the possibility of sandwich attacks as well, as it is based
on transaction reordering. This mitigation calls for major

structural changes in Kyber DMM. In addition, it reduces
transparency, as transactions remain hidden for a period of
time. This goes against the premise of transparency on the
blockchain.

Figure 4: A schematic of the commit/reveal technique [32]

Finally, an improvement over the commit/reveal technique
was brought out and it is called Submarine Send [33]. During
the commit phase, Submarine Send hides the contract address
in addition to the transaction until its place in the order
has been established. It also ensures that the sender had
enough collateral at the time of placing the transaction.
This is precisely the improvement over the classic commit-
reveal technique. This mitigation, similar to the original
commit/reveal, reduces transparency for the same reason:
transactions remain hidden for a certain duration. Therefore,
this mitigation also goes against the transparency premise on
the blockchain.

4.2 Kyber’s current mitigation

The security audit by ChainSecurity targets only the
addLiquidity() function of the router in their report [7]. Kyber
implemented a degree of slippage protection by correcting
their code to allow the liquidity provider to set an upper and
lower bound to the virtual reserve ratio [25]. Particularly, they
added two extra parameters to the function used when adding
liquidity in the contract with file name ”DMMRouter02.sol”
(located in the periphery folder). One parameter specifies
the lower bound, while the other is for the upper bound.
This nullifies the effect of the attacker’s first transaction,
in which they swap all of one token out of the pool and
add unbalanced liquidity. It’s still possible to do this,
but the victim’s transaction will not happen because of the
slippage protection. However, this mitigation has only been
implemented in the router. Therefore, only users interacting
with the pool contract through the DMM exchange website
are protected. This means that users interacting with the
pool contract directly remain unprotected. In their security
audit, ChainSecurity mentions that the pool contract is still
vulnerable to sandwich attacks after Kyber implemented the
mitigation in the router.

4.3 Suggestion to broaden the mitigation
To protect these users as well, a similar code correction can be
implemented in the pool contract. The counterpart to adding
liquidity in the pool contract is the mint function. If the
same slippage protection is applied here, the attacker’s first
transaction will be nullified in the same way as in the router.
This will result in users transferring funds through the pool
contract to also be protected. Only discouraging users from
using this method to execute transactions is not enough, as
this method can be quite crucial in times when the DMM
website is unreachable.

First, a test needs to be written to determine that the current
version of the DMMPool allows for sandwich attacks. The
full test code is present in the following github repository [28]
with file name: ”sandwichAttack2.js”. Executing the test
code will outline details of the balances and reserves. The
specific test case as it is in the repository can be summarised
as follows (changing the numbers will affect the attacker’s
profits):

1. Setup:
(a) set victim balance: 100 token0 and 10000 token1

($20,000)
(b) set attacker balance: 100 token0 and 10000

token1 ($20,000)
(c) set pool reserves: 1 token0 and 100 token1 ($200)
(d) set amplification factor to 5

2. First attacker transaction
(a) swap 1 token0 from pool for 125.12 token1 to

pool
(b) add liquidity: 2.25 token0

3. Victim transaction
(a) add liquidity: 99 token0 and 9,900 token1. Here,

the transaction should be reverted
4. Second attacker transaction

(a) remove own liquidity: 2.25 token0 and 225.12
token1

(b) swap 44.16 token0 for 5,500.24 token1

5. Results
(a) attacker balance: 56.82 token0 and 15,600.24

token1 ($21,282.82)
(b) pool reserves: 143.17 token0 and 4,399.75 token1

($18,717.17)
(c) victim balance: 1.01 token0 and 100.01 token1

($200.01)

The attacker starts with $20,000 and ends up with
$21,282.82.

21, 282.82/20, 000 ≈ 1.0641

(1.0641− 1)× 100% = 6.41%
(3)

Thus, in this example, the attacker makes a profit of
approximately 6.41%. The final swap makes use of the

unbalanced virtual reserve ratio induced in the first attacker
transaction. After the victim adds their liquidity to the pool
and the attacker removes theirs, the virtual reserve ratio
becomes 175.9:27,490.19 (1:156.28). After the final swap,
it becomes 220.07:21,989.94 (it gets restored to the original
1:100 ratio).

With the current code, the transaction does not get reverted
and therefore the test case fails. For the test to pass,
consider the following code correction in the mint function.
The function should have two additional parameters which
specify the lower and upper bound for the virtual reserves’
ratio respectively. The current reserve ratio can be easily
computed by the existing ReserveData struct in the DMM
pool source code, which one can find in [25] with file name
DMMPool.sol. The code with the correction should revert
the victim transaction as specified in the list above if the ratio
exceeds the bounds set by the user. However, just adding the
parameters to the function causes the code to not compile at
all. Therefore, we suggest Kyber to implement this idea in the
mint function and we do not implement the code correction
in this paper.

5 Responsible research
Ethics and reproducibility are an integral part of any research,
and this research is no different. This section discusses
potential negative real-world implications if the warnings are
not followed as well as a reasoning for why this research is
reproducible and responsible.

This research has expressed that performing a sandwich
attack in Kyber DMM is possible and has shown how this
attack can be mitigated. An outline of the attack has also
been given. As such, a bad actor can use what is mentioned
in this paper for personal financial gain, as the mitigation
is not implemented yet as of writing this paper. The steps
for executing the attack mentioned in this paper should only
be used for testing purposes and not for stealing funds from
a liquidity pool. In this paper, it is shown where the pool
contract can be tested against sandwich attacks safely and
without consequences, so readers who want to recreate this
attack should do so on the mentioned platform or in a similar
environment in a way that will not impact real users of the
protocol. Once again, in short: the DMM protocol is an active
system which is used for financial transactions. The attack
and/or findings in this paper can be exploited by malicious
actors. Perhaps the suggestion and test code should be shared
with the developers of the system to improve it. This part of
the research is reproducible, as the platform and methodology
for arriving at the results have been clearly stated. The
implementation of the DMM is open source, so any use of
the code in this research is no infringement on copyright laws
and falls under fair use.

Other than the proposed mitigation, this paper largely
contains results from a literature study where the literature
used consists of scientific papers, whitepapers, security audits
and Kyber’s own blog posts. Therefore, the sources used
are reliable. This part of the research is easily reproducible
thanks to the references in the text itself and the list of
references. It also conforms to ethical standards and is

thereby considered to be responsible research.

6 Discussion and Limitations
All in all, this paper has concluded that there are many
possible mitigations against sandwich attacks. Some of these
have already been implemented, for example: an off-chain
order book for sequencing transactions in 0x Protocol [31].
The mitigations in literature however are not suitable for the
problem at hand, which is sandwich attacks in Kyber DMM.
A more plausible solution is to implement slippage protection
in the minting function in addition to the add liquidity
function in the router, which has been suggested in this
paper. Slippage protection already has been implemented in
the function used when adding liquidity through the router.
The conclusion is that the same slippage protection can be
applied in the pool contract, mitigating the attack similarly
for vulnerable users.

The test case that was explained in section 4.3 fails as
of this moment, which is good. The code correction has
not been implemented yet, so this confirms that the code
as it is now is vulnerable to sandwich attacks if the victim
mints liquidity through the pool contract directly. The code
correction has not been implemented in the mint function.
A capable developer could implement the correction here.
The correction will lead to the community and outsiders
gaining more trust in the security of Kyber’s DMM and it
will also lead to the protection and peace of mind for users
of the protocol. The conclusion was reached by means of a
literature study, considering scenarios in which a sandwich
attack would be possible, discussing the matter with the
Kyber team and experimentation with the source code.

7 Conclusions and Future Work
This work has answered the research question: How can one
mitigate sandwich attacks in Kyber DMM? Since sandwich
attacks are based on transaction reordering, a mitigation
against this would mitigate sandwich attacks as well. Possible
mitigations known in literature are confidentiality, transaction
sequencing and the (enhanced) commit/reveal technique.
Kyber’s case is slightly more special, as the vulnerability
arises in the virtual reserve which exists because of the
amplification factor. Kyber’s current mitigation only exists
in the router, so the vulnerability still exists if users mint
liquidity via the pool contract directly. This paper has
compiled existing mitigations against the sandwich attack,
showed by means of modifying an existing test case that the
users interacting with the pool contract directly are indeed
vulnerable to sandwich attacks, and featured a suggestion
to broaden the existing mitigation to encompass the mint
function in the pool contract as well. The function used when
adding liquidity in the router accepts two parameters, one to
specify the lower bound for the virtual reserve ratio and one
to specify the upper bound. Specifically, the suggestion is to
implement a similar code correction in the mint function of
the pool contract. This mitigation renders the first attacker
transaction useless, as the victim’s transaction gets cancelled
in the event of exceeding the lower or upper bounds as
specified by the victim. In this scenario, the attacker becomes

the victim as they pay gas fees and essentially get nothing in
return.

Only users who add liquidity through the pool contract
directly are vulnerable to a sandwich attack. This way
of adding liquidity is discouraged by Kyber and the only
situation where such an act makes sense is when the interface
is down. Thus, there is a low chance for this attack to occur.
This vulnerability would therefore not be considered as a
severe one. However, the fact that this may come in handy for
users who want to trade when the website is down remains
true. Users might simply prefer to add liquidity through
minting as well. Therefore, the code should also be corrected
in the pool contract itself so that these users are protected
when adding liquidity.

This work has only suggested to broaden an existing
mitigation and has not featured a solution to the issue. The
suggestion has not been implemented in this research, so
a suggestion for future work would be to implement this
correction in the pool contract. Another suggestion would
be to explore a solution that Kyber can implement for their
DMM. Furthermore, future work can be done on problems
related to the DMM which are present in the latest security
audit but have not been resolved yet [7]. Even though it
has launched on the mainnet, the DMM protocol is a fairly
new system and is still in the beta phase as of writing.
Thus, another suggestion would be to further research what
undiscovered problems are present in this system.

References
[1] (). “DeFi pulse — the DeFi leaderboard — stats, charts

and guides,” DeFi Pulse, [Online]. Available: https://
defipulse.com (visited on 06/23/2021).

[2] L. Luu and Y. Velner. (Aug. 27, 2017). “Kyber network
whitepaper - whitepaper.io,” [Online]. Available: https:
/ / whitepaper . io / document / 43 / kyber - network -
whitepaper (visited on 04/23/2021).

[3] “Expert security audit of Kyber Network
v2,” ChainSecurity, Jun. 29, 2018. [On-
line]. Available: https : / / github . com /
KyberNetwork / smart - contracts / blob /
e4d3ae21e063bfd65c4621197687334527eb54dc /
audits / kyberV2Audit / ChainSecurity KyberNetwork
Public.pdf (visited on 04/25/2021).

[4] “Kyber.Network smart contracts audit report,”
BlockchainLabs, 2018. [Online]. Available: https :
/ / github. com/KyberNetwork / smart - contracts / blob /
e4d3ae21e063bfd65c4621197687334527eb54dc /
audits / kyberV1Audit2 / KyberNetwork %
20BlockchainLabs%20Audit%20Report .pdf (visited
on 04/25/2021).

[5] “Kyber Network Smart Contracts Security analysis,”
SmartDec, Dec. 2, 2019. [Online]. Available: https :
/ / github. com/KyberNetwork / smart - contracts / blob /
e4d3ae21e063bfd65c4621197687334527eb54dc /
audits / APRAudit / SmartDecAudit . pdf (visited on
04/25/2021).

[6] “Security audit of KyberNetwork’s Smart Contracts,”
ChainSecurity, Jan. 9, 2019. [Online]. Available: https:
/ / github. com/KyberNetwork / smart - contracts / blob /
e4d3ae21e063bfd65c4621197687334527eb54dc /
audits / kyberV3Audit / ChainSecurity Kyberv3 . pdf
(visited on 04/25/2021).

[7] “Code Assessment of the Dynamic Market Maker
Smart Contracts,” ChainSecurity, Apr. 23, 2021. [On-
line]. Available: https://chainsecurity.com/wp-content/
uploads / 2021 / 04 / ChainSecurity KyberNetwork
DMM Dynamic-Market-Making Final.pdf (visited on
05/04/2021).

[8] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais,
“High-Frequency Trading on Decentralized On-Chain
Exchanges,” arXiv:2009.14021 [cs], Sep. 29, 2020.
[Online]. Available: http://arxiv.org/abs/2009.14021
(visited on 05/16/2021).

[9] K. Qin, L. Zhou, and A. Gervais, “Quantifying
Blockchain Extractable Value: How dark is the
forest?” arXiv:2101.05511 [cs], Jan. 21, 2021. [On-
line]. Available: http://arxiv.org/abs/2101.05511 (vis-
ited on 05/09/2021).

[10] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-
Mundt, D. Harz, and W. J. Knottenbelt, “SoK:
Decentralized Finance (DeFi),” arXiv:2101.08778 [cs,
econ, q-fin], Apr. 30, 2021. [Online]. Available: http:
//arxiv.org/abs/2101.08778 (visited on 05/09/2021).

[11] J. Xu, N. Vavryk, K. Paruch, and S. Cousaert, “SoK:
Decentralized Exchanges (DEX) with Automated
Market Maker (AMM) protocols,” arXiv:2103.12732
[cs, q-fin], Apr. 19, 2021. [Online]. Available: http :
//arxiv.org/abs/2103.12732 (visited on 05/06/2021).

[12] D. A. Zetzsche, D. W. Arner, and R. P. Buckley,
“Decentralized Finance,” Journal of Financial
Regulation, vol. 6, no. 2, pp. 172–203, Sep. 20, 2020,
ISSN: 2053-4841. DOI: 10.1093/jfr/fjaa010. [Online].
Available: https://doi.org/10.1093/jfr/fjaa010 (visited
on 04/25/2021).

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic
cash system — bitcoin paper,” Aug. 21, 2008. [On-
line]. Available: https : / / www . bitcoinpaper . info /
bitcoinpaper-html/ (visited on 06/02/2021).

[14] (). “Script - Bitcoin Wiki,” [Online]. Available: https:
//en.bitcoin.it/wiki/Script (visited on 06/02/2021).

[15] (Feb. 9, 2021). “Ethereum whitepaper,” ethereum.org,
[Online]. Available: https: / /ethereum.org (visited on
05/29/2021).

[16] (). “Solidity — Solidity 0.8.4 documentation,” [On-
line]. Available: https://docs.soliditylang.org/en/v0.8.
4/ (visited on 06/02/2021).

[17] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y.
Wang, “An Overview of Smart Contract: Architecture,
Applications, and Future Trends,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), ISSN: 1931-
0587, Jun. 2018, pp. 108–113. DOI: 10 . 1109 / IVS .
2018.8500488. (visited on 04/25/2021).

https://defipulse.com
https://defipulse.com
https://whitepaper.io/document/43/kyber-network-whitepaper
https://whitepaper.io/document/43/kyber-network-whitepaper
https://whitepaper.io/document/43/kyber-network-whitepaper
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV2Audit/ChainSecurity_KyberNetwork_Public.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV2Audit/ChainSecurity_KyberNetwork_Public.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV2Audit/ChainSecurity_KyberNetwork_Public.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV2Audit/ChainSecurity_KyberNetwork_Public.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV2Audit/ChainSecurity_KyberNetwork_Public.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV1Audit2/KyberNetwork%20BlockchainLabs%20Audit%20Report.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV1Audit2/KyberNetwork%20BlockchainLabs%20Audit%20Report.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV1Audit2/KyberNetwork%20BlockchainLabs%20Audit%20Report.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV1Audit2/KyberNetwork%20BlockchainLabs%20Audit%20Report.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV1Audit2/KyberNetwork%20BlockchainLabs%20Audit%20Report.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/APRAudit/SmartDecAudit.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/APRAudit/SmartDecAudit.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/APRAudit/SmartDecAudit.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/APRAudit/SmartDecAudit.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV3Audit/ChainSecurity_Kyberv3.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV3Audit/ChainSecurity_Kyberv3.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV3Audit/ChainSecurity_Kyberv3.pdf
https://github.com/KyberNetwork/smart-contracts/blob/e4d3ae21e063bfd65c4621197687334527eb54dc/audits/kyberV3Audit/ChainSecurity_Kyberv3.pdf
https://chainsecurity.com/wp-content/uploads/2021/04/ChainSecurity_KyberNetwork_DMM_Dynamic-Market-Making_Final.pdf
https://chainsecurity.com/wp-content/uploads/2021/04/ChainSecurity_KyberNetwork_DMM_Dynamic-Market-Making_Final.pdf
https://chainsecurity.com/wp-content/uploads/2021/04/ChainSecurity_KyberNetwork_DMM_Dynamic-Market-Making_Final.pdf
http://arxiv.org/abs/2009.14021
http://arxiv.org/abs/2101.05511
http://arxiv.org/abs/2101.08778
http://arxiv.org/abs/2101.08778
http://arxiv.org/abs/2103.12732
http://arxiv.org/abs/2103.12732
https://doi.org/10.1093/jfr/fjaa010
https://doi.org/10.1093/jfr/fjaa010
https://www.bitcoinpaper.info/bitcoinpaper-html/
https://www.bitcoinpaper.info/bitcoinpaper-html/
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://ethereum.org
https://docs.soliditylang.org/en/v0.8.4/
https://docs.soliditylang.org/en/v0.8.4/
https://doi.org/10.1109/IVS.2018.8500488
https://doi.org/10.1109/IVS.2018.8500488

[18] A. Goodpasture. (May 11, 2021). “What is the
ethereum gas fee and how much does it cost?” Market
Realist, [Online]. Available: https : / / marketrealist .
com / p / ethereum - gas - fee - explained/ (visited on
06/25/2021).

[19] D. Perez, S. M. Werner, J. Xu, and B.
Livshits, “Liquidations: DeFi on a Knife-edge,”
arXiv:2009.13235 [q-fin], Apr. 5, 2021. [Online].
Available: http://arxiv.org/abs/2009.13235 (visited on
04/19/2021).

[20] Kyber. (Jun. 8, 2021). “Kyber 3.0: Architecture
revamp, dynamic MM, and KNC migration proposal,”
Medium, [Online]. Available: https : / / blog . kyber .
network /kyber- 3 - 0 - architecture - revamp- dynamic-
mm-and-knc-migration-proposal-acae41046513 (vis-
ited on 04/29/2021).

[21] F. Schär. (). “Decentralized finance: On blockchain-
and smart contract-based financial markets,” [Online].
Available: https://research.stlouisfed.org/publications/
review / 2021 / 02 / 05 / decentralized - finance - on -
blockchain - and - smart - contract - based - financial -
markets (visited on 04/21/2021).

[22] (). “Top DEX exchanges by trading volume -
CoinGecko,” CoinGecko, [Online]. Available: https :
//www.coingecko.com/en/dex (visited on 06/23/2021).

[23] Kyber. (Jun. 8, 2021). “Kyber DMM beta is live!”
Medium, [Online]. Available: https : / / blog . kyber .
network/kyber-dmm-beta-is-live-b6bdd18d0dde (vis-
ited on 04/29/2021).

[24] H. Adams. (). “Uniswap whitepaper,” HackMD, [On-
line]. Available: https://hackmd.io/@HaydenAdams/
HJ9jLsfTz (visited on 05/21/2021).

[25] Kyber, dynamic-amm/smart-contracts, Apr. 28, 2021.
[Online]. Available: https : / / github . com / dynamic -
amm/smart-contracts (visited on 05/26/2021).

[26] A. Nguyen, L. Luu, and M. Ng, Dynamic Automated
Market Making, Feb. 2021. [Online]. Available: https:
/ / files . kyber. network / DMM - Feb21 . pdf (visited on
05/06/2021).

[27] Kyber. (). “DMM Exchange,” [Online]. Available:
https : / / dmm . exchange / # / about (visited on
06/23/2021).

[28] A. A. Yüksel, Kyber DMM smart contracts, Jun. 15,
2021. [Online]. Available: https: / /github.com/Kiwi-
42/smart-contracts (visited on 06/15/2021).

[29] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao,
I. Bentov, L. Breidenbach, and A. Juels, “Flash
Boys 2.0: Frontrunning, Transaction Reordering, and
Consensus Instability in Decentralized Exchanges,”
arXiv:1904.05234 [cs], Apr. 10, 2019. arXiv: 1904 .
05234. [Online]. Available: http://arxiv.org/abs/1904.
05234 (visited on 04/28/2021).

[30] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille,
and G. Maxwell, “Bulletproofs: Short Proofs for
Confidential Transactions and More,” in 2018 IEEE
Symposium on Security and Privacy (SP), ISSN: 2375-

1207, May 2018, pp. 315–334. DOI: 10.1109/SP.2018.
00020. (visited on 06/05/2021).

[31] W. Warren and A. Bandeali. (Feb. 21, 2017). “0x:
An open protocol for decentralized exchange on the
ethereum blockchain,” The Whitepaper Database, [On-
line]. Available: https : / / www. allcryptowhitepapers .
com/0x-whitepaper/ (visited on 06/05/2021).

[32] S. Eskandari, S. Moosavi, and J. Clark, “SoK:
Transparent Dishonesty: front-running attacks on
Blockchain,” arXiv:1902.05164 [cs], Apr. 9, 2019.
[Online]. Available: http://arxiv.org/abs/1902.05164
(visited on 05/06/2021).

[33] L. Breidenback, P. Daian, A. Juels, and F. Tramèr.
(Aug. 28, 2017). “To Sink Frontrunners, Send in the
Submarines,” Hacking Distributed, [Online]. Avail-
able: https : / / hackingdistributed . com / 2017 / 08 / 28 /
submarine-sends/ (visited on 06/05/2021).

https://marketrealist.com/p/ethereum-gas-fee-explained/
https://marketrealist.com/p/ethereum-gas-fee-explained/
http://arxiv.org/abs/2009.13235
https://blog.kyber.network/kyber-3-0-architecture-revamp-dynamic-mm-and-knc-migration-proposal-acae41046513
https://blog.kyber.network/kyber-3-0-architecture-revamp-dynamic-mm-and-knc-migration-proposal-acae41046513
https://blog.kyber.network/kyber-3-0-architecture-revamp-dynamic-mm-and-knc-migration-proposal-acae41046513
https://research.stlouisfed.org/publications/review/2021/02/05/decentralized-finance-on-blockchain-and-smart-contract-based-financial-markets
https://research.stlouisfed.org/publications/review/2021/02/05/decentralized-finance-on-blockchain-and-smart-contract-based-financial-markets
https://research.stlouisfed.org/publications/review/2021/02/05/decentralized-finance-on-blockchain-and-smart-contract-based-financial-markets
https://research.stlouisfed.org/publications/review/2021/02/05/decentralized-finance-on-blockchain-and-smart-contract-based-financial-markets
https://www.coingecko.com/en/dex
https://www.coingecko.com/en/dex
https://blog.kyber.network/kyber-dmm-beta-is-live-b6bdd18d0dde
https://blog.kyber.network/kyber-dmm-beta-is-live-b6bdd18d0dde
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://github.com/dynamic-amm/smart-contracts
https://github.com/dynamic-amm/smart-contracts
https://files.kyber.network/DMM-Feb21.pdf
https://files.kyber.network/DMM-Feb21.pdf
https://dmm.exchange/#/about
https://github.com/Kiwi-42/smart-contracts
https://github.com/Kiwi-42/smart-contracts
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234
http://arxiv.org/abs/1904.05234
http://arxiv.org/abs/1904.05234
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://www.allcryptowhitepapers.com/0x-whitepaper/
https://www.allcryptowhitepapers.com/0x-whitepaper/
http://arxiv.org/abs/1902.05164
https://hackingdistributed.com/2017/08/28/submarine-sends/
https://hackingdistributed.com/2017/08/28/submarine-sends/

	Introduction
	Background
	On (De)centralized Finance
	On Kyber
	On the Automated Market Maker

	Sandwich attacks in Kyber DMM
	Methodology
	The Sandwich attack

	Possible mitigations
	Mitigations in literature
	Kyber's current mitigation
	Suggestion to broaden the mitigation

	Responsible research
	Discussion and Limitations
	Conclusions and Future Work

