
MSc thesis in Mechanical Engineering

A Multi-Objective Optimization Model 
for Offshore Wind Farm Operations & 
Maintenance Fleet Selection

Jesse Bloothoofd
2023





MSc thesis in Mechanical Engineering

A multi-objective optimization model for
offshore wind farm operations &

maintenance fleet selection

Jesse Bloothoofd

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Mechanical Engineering.

To be defended publicly on Wednesday March 29, 2023 at 10:15 AM

Student number: 4559622
MSc Track: Multi-Machine Engineering
Report Number: 2023.MME.8782

Thesis committee: Prof.dr. Rudy R. Negenborn Chair TU Delft
Dr. Xiaoli Jiang Supervisor TU Delft
Dr. Vinit Dighe Company supervisor TNO
Ir. Mark Duinkerken Committee member TU Delft

Date: March 21, 2023



Jesse Bloothoofd: A multi-objective optimization model for offshore wind farm operations & mainte-
nance fleet selection (2023)

The work in this thesis was carried out at the:

Delft University of Technology

An electronic version of this thesis is available at http://repository.tudelft.nl/.

It may only be reproduced literally and as a whole. For commercial purposes only with
written authorization of Delft University of Technology. Requests for consult are only taken
into consideration under the condition that the applicant denies all legal rights on liabilities
concerning the contents of the advice.

http://repository.tudelft.nl/


Preface

The Last Dance

With this thesis and graduation project, I close my final chapter as a student at the TU Delft.
About six-and-a-half years ago I started my journey at the TU Delft with my Bachelor of
Mechanical Engineering. My high school grades did not reflect those of the average TU Delft
student. As a result, the first year was not pretty and I had to work hard to catch up. I
convinced myself that abstract concepts and math were not my strongest points. But now
that I am writing down the last sentences of my thesis, I think I was wrong. They were my
strong points all along, but it just took a bit of effort to figure that out.

Acknowledgements

I would like to thank my supervisor Xiaoli for her dedicated guidance throughout my grad-
uation project. She did not only supervise my graduation project but all three large projects
of the second year. I always felt encouraged to use my creativity, which led to some very
interesting projects. I would like to thank Rudy as well for his efforts and suggestions as
graduation committee chair throughout my graduation project, and Mark for being part of
the graduation committee and sparking my interest in mathematical optimization during his
courses.

Next, I would like to thank the TNO wind energy department for the opportunity to combine
my graduation project with an internship. In particular, I would like to thank my company
supervisor Vinit for his suggestions and feedback during my internship and for his efforts to
review the final draft of my thesis thousands of kilometers away.

At last, I would like to thank everyone in my personal life for their support throughout the
years. Michelle, I would like to thank you for your unconditional support whenever I needed
it. You made life so much easier during these last few months that I am tempted to call it
our graduation instead of just mine. I would like to thank my parents for always giving me
a place to stay in Alkmaar, for the number of times that they drove me to Delft or picked
me up, and for the other countless times when they were there when I needed them. Also
a special thanks to my friends and family from Alkmaar for all the great moments and for
giving me a place to distract my mind from my studies, I cannot express how valuable these
moments were to me to recharge. And last but not least, thanks to all the old roommates for
the support and the laughs.





Abstract

Until recently, tenders in Europe were awarded to wind farm developers based on the highest
auction prices or the lowest subsidized bids. The wind industry has suggested that non-
price-related criteria should be considered for tenders, like plans to reduce greenhouse gas
emissions. As a result of the sustainable tender criteria, greenhouse gas emissions are a
relatively new KPI for offshore wind farm developers.

Studies have shown that the costs and wind farm availability are sensitive to the fleet compo-
sition and were commonly used as criteria in offshore wind fleet optimization models. Off-
shore wind greenhouse gas emissions were shown to be sensitive to the offshore wind fleet
composition as well but thus far not used as criteria for fleet composition decision-making.
This study aims to develop an offshore wind O&M multi-objective fleet optimization model
that includes GHG emissions as the third criterion for the fleet composition. The model is
rendered as a deterministic MIP problem. An epsilon constraint method-inspired approach
is proposed to reformulate the multi-objective into a set of perturbed single-objective models,
which can be solved using a commercial MIP solver.





Contents

1. Introduction 1
1.1. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4. Research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Literature review 5
2.1. Offshore wind O&M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Maintenance strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2. Maintenance planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3. Onsite maintenance operations . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Review of fleet optimization studies in offshore wind . . . . . . . . . . . . . . . 11
2.2.1. Offshore wind fleet optimization studies . . . . . . . . . . . . . . . . . . 11

2.3. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Offshore wind fleet optimization model 15
3.1. Scope of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2. Wind farm availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3. GHG emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Mathematical formulation of the optimization model . . . . . . . . . . . . . . . 17
3.2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2. Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3. Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Optimization technique for solving a multi-objective model 29
4.1. Multi-objective optimization methods . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Epsilon constraint method for two objectives . . . . . . . . . . . . . . . . . . . . 30
4.3. Epsilon constraint method for three objectives . . . . . . . . . . . . . . . . . . . 37
4.4. Improving the selection of C2 and C3 . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5. Parallelization of the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. Case study 45
5.1. Case study methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2. Case studies definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3. Computational setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4. Case study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1. Case study 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2. Case study 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



x Contents

6. Discussion 63
6.1. Key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2. Interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7. Conclusion 67

A. Research paper 69

B. Appendix 85
B.1. Optimization methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1.1. Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.2. Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.1.3. Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.1.4. Stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.1.5. Mixed integer programming . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.1.6. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.1.7. Karush-Kuhn-Tucker conditions . . . . . . . . . . . . . . . . . . . . . . . 94
B.1.8. Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2. Big-M method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.2.1. Proof and limitations of the linearization . . . . . . . . . . . . . . . . . . 100

B.3. Verification of the epsilon constraint method . . . . . . . . . . . . . . . . . . . . 101

C. Appendix 107



List of Figures

2.1. Overview of different maintenance strategies. . . . . . . . . . . . . . . . . . . . 7
2.2. Offshore wind turbine access methods. . . . . . . . . . . . . . . . . . . . . . . . 8

2.2a. Boat landing and transition piece. . . . . . . . . . . . . . . . . . . . . . . 8
2.2b. Hoisting platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Figures of two offshore wind O&M vessels. . . . . . . . . . . . . . . . . . . . . . 9
2.3a. Crew transfer vessel (CTV). . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3b. Service operation vessel (SOV). . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Figures of a helicopter and a jack-up vessel. . . . . . . . . . . . . . . . . . . . . 10
2.4a. Offshore helicopter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4b. Jack-up vessel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1. Epsilon constraint method for two objectives. . . . . . . . . . . . . . . . . . . . . 31
4.2. Feasible objective space and Pareto front. . . . . . . . . . . . . . . . . . . . . . . 32
4.3. Epsilon constraint method for three objectives (part 1). . . . . . . . . . . . . . . 35
4.4. Epsilon constraint method for three objectives (part 2). . . . . . . . . . . . . . . 36
4.5. Parallelization of the epsilon constraint method. . . . . . . . . . . . . . . . . . . 44

5.1. Overview of case study 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2. Overview of case study 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3. Case study 1 Pareto front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4. Plot of the Pareto front of case study 2. . . . . . . . . . . . . . . . . . . . . . . . 56
5.5. Convergence over time for solution 60. . . . . . . . . . . . . . . . . . . . . . . . 59
5.6. Convergence over time for solution 48. . . . . . . . . . . . . . . . . . . . . . . . 59
5.7. Variable that denotes when a vessel is used, unpv, for solution 55. . . . . . . . . 60
5.8. Days on which vessels cannot be used due to weather restrictions. . . . . . . . 60
5.9. Variable that denotes the hours worked, tpmvτ , for task 0 and turbine number

5 of solution number 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.10. Variable that denotes the hours worked, tpmvτ for task 2 and turbine number 5

of solution number 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.11. Variable that denotes when a task is finished, γpmτ for task 2 and turbine

number 5 of solution number 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1. Convex function (left) and a non-convex function (right). . . . . . . . . . . . . . 88
B.2. Convex set (left) and a non-convex set (right). . . . . . . . . . . . . . . . . . . . 88
B.3. Feasible variable space (left) mapped to feasible objective space (right). . . . . 90
B.4. Simplex algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.5. Interior point method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.6. Pareto front genetic algorithm and epsilon constraint method. . . . . . . . . . . 104
B.7. Pareto front genetic algorithm and epsilon constraint method (rotated). . . . . 105

C.1. Failure rate Pareto chart for subassembly and cost category. . . . . . . . . . . . 108
C.2. Pareto front of case study 1 (3D). . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.3. Pareto front of case study 2 (3D). . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.4. Pareto front of case study 2 (3D, numbered). . . . . . . . . . . . . . . . . . . . . 110





List of Tables

2.1. Table with the vessel characteristics of some CTV designs. . . . . . . . . . . . . 9
2.2. Overview on offshore wind fleet optimization studies. . . . . . . . . . . . . . . 11

5.1. Table with maintenance task parameters. . . . . . . . . . . . . . . . . . . . . . . 47
5.2. Table with values for the damage category distribution per year. . . . . . . . . 47
5.3. Table with maintenance vessel parameters. . . . . . . . . . . . . . . . . . . . . . 48
5.4. Table with maintenance vessel parameters on fuel and costs. . . . . . . . . . . . 48
5.5. Table the capacity factor and electricity prices that are used in the case study

for each month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6. Table with the amount of CO2, CH4 and N2O emissions per fuel type. . . . . . 53
5.7. Table of the emission factors of CH4 and N2O. . . . . . . . . . . . . . . . . . . . 53
5.8. Objective functions and fleet compositions of case study 1. . . . . . . . . . . . . 55
5.9. Table with a summary of the small case study results from the optimization

model and the UWiSE O&M Planner . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10. Table with the objective function values of a selection of solutions. . . . . . . . 57
5.11. Table with the fleet compositions of a selection of solutions. . . . . . . . . . . . 57

B.1. Table with genetic algorithm parameters used in the verification. . . . . . . . . 102
B.2. Table with three objective epsilon constraint method parameters used in the

verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103





List of Algorithms

4.1. Epsilon Constraint Method Two Objective . . . . . . . . . . . . . . . . . . . 34

4.2. Bounds Two Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Find Pareto Point Two Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4. Epsilon Constraint Method Three Objective . . . . . . . . . . . . . . . . . . 39

4.5. Bounds Three Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6. Find Pareto Point Three Objective . . . . . . . . . . . . . . . . . . . . . . . . . 40





1. Introduction

One of the recent conclusions at the COP27 climate conference in 2022 was that the 1.5°C
global warming goal is still viable (Moosmann et al., 2022). However, warnings were given
for the lack of efforts to phase out fossil fuels as a source of energy. It will take concrete
and ambitious plans from nations all over the world to reduce their emissions in order to
maintain the 1.5°C global warming goal (Paris Agreement, 2015). Wind energy is a promising
renewable energy source for mitigating global warming (IRENA, 2019). In 2020, the total
installed wind energy capacity in Europe was 220 Giga Watts (GW) (Komusanac et al., 2020),
with offshore wind energy accounting for 25 GW. Offshore wind energy its share of total new
installed wind energy has been steadily increasing (Komusanac et al., 2020). The outlook for
offshore wind is positive in the long term as well, as Europe aims to increase the total offshore
wind capacity to 400 GW by 2050 (Komusanac et al., 2020). Wind farm developers will need
to build large-scale offshore wind farms in order to realize these ambitious plans.

Most offshore wind projects in Europe are awarded to wind farm developers using tenders.
Once a tender is awarded, the wind farm developer is granted a permit for the construction,
operation, and removal of the wind farm. Up till recently, the highest auction prices or the
lowest subsidized bids serve as the criteria for awarding tenders (Wind & water works, 2022).
However, the European wind industry has suggested that non-price-related criteria should be
considered for tenders as well (WindEurope, 2022). These non-price-related criteria include
sustainability and biodiversity-related criteria, such as plans to reduce greenhouse gas (GHG)
emissions. This creates a strong incentive for offshore wind farm developers to propose
environmentally friendly and sustainable strategies for the wind farm.

The vessel fleet composition during the wind farm operations and maintenance (O&M) phase
is one of the strategies. The vessels are used to transport maintenance personnel, spare parts,
and/or can perform heavy lifting. Offshore wind costs and wind farm availability are two
key performance indicators (KPIs) that can be linked to the vessel fleet composition (Martin
et al., 2016; Sperstad et al., 2017). Furthermore, as a result of sustainable tender criteria,
GHG emissions are now an offshore wind KPI that can be linked to vessel fleet composition
(Garcia-Teruel et al., 2022).

1.1. Problem statement

TNO is an independent scientific research institute in the Netherlands. TNO has dedicated
efforts to the current energy transition problem. The wind energy department of TNO has
played a contributing role as a consultant for the Dutch government as well as the wind en-
ergy industry. TNO has developed the UWiSE O&M Planner, an in-house O&M scheduling
tool that can model and predict the costs of offshore wind maintenance activities during the
entire O&M life cycle. The UWiSE O&M Planner can inform offshore wind O&M stakehold-
ers about the costs and wind farm availability of required maintenance activities. One of
the input parameters in the UWiSE O&M Planner is a selected fleet of maintenance vessels.
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However, the maintenance vessel fleet composition is sometimes subject to change if mainte-
nance vessels are temporarily chartered rather than owned by wind farm owners during the
O&M phase. The vision for UWiSE O&M Planner is to incorporate an optimal fleet strategy
to assist stakeholders in determining fleet composition.

The problem of determining the best fleet strategy for the UWiSE O&M Planner is related
to maritime fleet size and mix problems. Several studies on maritime fleet size and mix
problems have been done with the aim to develop decision-support tools for vessel fleet
composition (Stålhane et al., 2020) based on the costs and/or wind farm availability. To the
authors’ best knowledge, there are no studies on offshore wind fleet size and mix problems
that determine the fleet composition based on GHG emissions. This leads to the following
problem statement:

Stakeholders have expressed interest in decision-support tools for offshore wind planning
activities such as fleet composition. The majority of research on these decision-making tools
has focused on lowering costs and increasing wind farm availability. However, research
has demonstrated that GHG emissions in the O&M phase are also largely affected by fleet
composition.

1.2. Research goal

The goal of this study is to add the GHG emissions to the costs and wind farm availability
as criteria for the offshore wind O&M fleet composition in a decision-support tool. This will
be done by developing a multi-objective optimization model for offshore wind O&M fleet
composition that is independent of the UWiSE O&M Planner.

1.3. Research questions

The following main research question has been defined to guide the research, based on the
research goal:

• Research question: How can a multi-objective optimization model be formulated and
solved to find an optimal vessel fleet selection for offshore wind O&M activities, based
on the financial costs, the GHG emissions, and the wind farm availability as a result of
the selected fleet?

A set of sub-questions have been defined in order to help in answering the main research
question in a structured way.

• Sub-question 1: What optimization models exist to find the optimal fleet for offshore
wind farm O&M?

• Sub-question 2: Which (parts of) existing optimization models can be adapted to for-
mulate the fleet optimization model in the current study?

• Sub-question 3: How can GHG emissions be quantified and incorporated into the
multi-objective fleet optimization model?

• Sub-question 4: Which algorithms can be used to find optimal solutions to the devel-
oped multi-objective fleet optimization model?

• Sub-question 5: How can the developed fleet optimization model be verified?
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1.4. Research scope

This research has been performed as a graduation project to obtain an MSc in Mechani-
cal Engineering at the TU Delft. The graduation project was combined with an internship at
TNO. The incentive for TNO to have the fleet optimization model developed from the current
study is to provide an optimal fleet selection for its in-house scheduling tool. The require-
ments were that the optimization model should be independent of the scheduling tool. The
author of the current thesis was granted access to the scheduling tool but had no access to
the source code or documentation on the model characteristics.

The scope of the research is to develop a deterministic vessel fleet optimization problem
with strategic-level decision-making. Stochastic optimization, while useful for offshore wind
O&M, is outside the scope of this study due to time and computational efficiency restric-
tions.

1.5. Thesis outline

The that follow will guide the reader through the research in the current study. The purpose
of chapter 2 is to familiarize the reader with some of the concepts in offshore wind O&M. A
number of offshore wind fleet optimization studies are evaluated with an emphasis on the
identification of the research gaps that the current study attempts to fill. The offshore wind
fleet optimization model that has been developed in the current study will be formulated
in chapter 3. This chapter starts with the evaluation of some of the key aspects of offshore
wind O&M that are important to incorporate into the fleet optimization model. The model
itself will be covered in detail after, in which the formulation of the three objective functions
and the constraints are explained. Some candidate approaches to find the optimal values
to the fleet multi-objective optimization model will be discussed in chapter 4. One of these
candidate approaches is selected and elaborated upon throughout the chapter. Two case
studies for the fleet optimization model are defined in chapter 5 and the results of these case
studies are evaluated. A discussion on the developed fleet optimization model, the approach
that was used to find the optimal fleet in this model, and the results of the case studies can be
found in chapter 6. This chapter ends with some of the limitations, some recommendations
for practical implementations, and suggestions for future research based on the findings in
the current study.





2. Literature review

The first part of this chapter includes an overview of various offshore wind O&M aspects.
This is aimed to provide the reader with an overview of offshore wind O&M in general.
The second part of this chapter includes a state-of-the-art review of offshore wind O&M fleet
optimization studies. This is done to identify research gaps in the existing literature. By the
end of this chapter, the reader should be familiar with some of the fundamental concepts,
various decision-making strategies, the assets that can make up a fleet, and the current state
of fleet optimization studies in offshore wind O&M.

2.1. Offshore wind O&M

An overview of offshore wind O&M has been compiled using various research efforts to
direct the reader to more detailed analyses. The work of Rinaldi et al. (2021) evaluates existing
research on offshore wind turbine O&M, lists some novelties, and provides a summary of the
offshore wind O&M practices. The work of Merizalde et al. (2019) provides an overview and
review of available maintenance models and methods. The work of Ramachandran et al.
(2021) gives an overview of challenges and opportunities during the installation, O&M, and
decommissioning phases of an offshore wind turbine. The work of Ren et al. (2021) contains
a state-of-the-art literature review on offshore wind turbine maintenance, covering strategy
selection, schedule optimization, onsite operations, repairs, assessment criteria, recycling,
and environmental concerns. The work of Kolios and Brennan (2018) contains an overview
of available O&M models/tools that are used (e.g. cost predictions). The work of Kang et al.
(2019) contains a review of condition-based maintenance methods for offshore wind turbine
O&M. The work of Shafiee (2015) contains a review of the maintenance logistics organization
such as strategical issues, tactical issues, and supplementary issues.

The O&M phase of an offshore wind farm can be divided into three different sub-phases
(Ren et al., 2021):

• Maintenance strategy: A strategy is a long-term plan for the wind farm that is chosen in
the interest of optimizing its KPIs. A strategy could include using vibration sensors to
monitor the condition of the main shaft of the generator.

• Maintenance planning: The planning is a medium-short-term plan where maintenance
tasks are scheduled. An example of maintenance planning would be the optimal routing
and scheduling of maintenance vessels.

• Onsite maintenance: The onsite maintenance entails the maintenance activities that will
be carried out. An onsite maintenance procedure could be a minor repair or the total
replacement of the generator its main shaft.



6 2. Literature review

2.1.1. Maintenance strategy

The goal of O&M maintenance strategies of OWTs is to select a long-term plan that enhances
offshore wind O&M criteria. The daily operations of an offshore wind farm require an ef-
ficient maintenance strategy (Ren et al., 2021). Because technicians must travel from a port
to the wind farm, it is impossible to operate the wind farm continuously without any on-
site maintenance delays. A maintenance crew needs to go to the wind farm frequently to
prevent failures. However, due to the large numbers of maintenance personnel and vessels
needed, frequent visits are ineffective and expensive. As a result, the frequency of main-
tenance is a trade-off between risks and resource management. A successful maintenance
strategy aims at maximizing economic gain, increasing component life spans, minimizing the
need for emergency repairs, cutting down on overtime labor costs, and lessening the stress
that unpredictable equipment failures place on workers (Ren et al., 2021).

Maintenance strategies can be subdivided into corrective maintenance and preventive main-
tenance (Rinaldi et al., 2021). Corrective maintenance is performed on components that have
already failed. Preventive maintenance, on the other hand, refers to maintenance tasks that
are designed to keep a component from failing. Both types of maintenance have their own
subcategories, as shown in fig. 2.1.

Corrective maintenance

Corrective maintenance is performed when a failure occurs in a wind turbine. Failures can
occur on critical and non-critical components. If a critical component fails, the wind turbine
cannot be operational until the failure is repaired. If a non-critical component fails, the wind
turbine can still continue operations. The work of Rinaldi et al. (2021) further subdivides cor-
rective maintenance of non-critical components into immediate, deferred, and opportunistic
maintenance categories. If a wind turbine fails, immediate maintenance means that mainte-
nance resources are allocated to the wind turbine failure right away. Deferred maintenance
means that maintenance is postponed due to a lack of resources. Opportunistic maintenance
is the decision to wait until an opportunity arises to make efficient use of resources. The
benefit of the latter could be that maintenance costs are reduced if several breakdowns are
handled in series immediately after each other Rinaldi et al. (2021).

Preventive maintenance

The goal of preventive maintenance is to try to prevent a breakdown from occurring. Preven-
tive maintenance can be subdivided into periodic, predictive/condition-based, or proactive-
based preventive maintenance (Rinaldi et al., 2021). Periodic/cyclic preventive maintenance
is a periodically scheduled preventive maintenance operation. This could be the replacement
of a specific part every 6 months. Predictive/condition-based maintenance is typically based
on the monitoring of components or data. This could be vibration analysis or wear analysis
which in turn could identify that a breakdown is about to happen. Proactive/model-driven
preventive maintenance could be based on a model that predicts or simulates the process of
breakdowns (Rinaldi et al., 2021).
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Figure 2.1.: Overview of different maintenance strategies.
Reprinted from ”Current Status and Future Trends in the Operation and Maintenance of

Offshore Wind Turbines: A Review”, by Rinaldi et al. (2021), Energies, 14, 2484

2.1.2. Maintenance planning

The maintenance planning phase is where the optimal scheduling of maintenance tasks is
carried out. Maintaining wind farm reliability while minimizing maintenance LCOE is a
complex management problem with many uncertainties (Ren et al., 2021). The environment
and climate, management, aging, supply chain, electricity price fluctuations, technology ad-
vancements, risk analysis, interest rates, political tendencies, and the global market are all
time-varying, unpredictable, or partially unpredictable factors. As a result, most maintenance
policies and decision-making algorithms are designed to model and maximize short-term
benefits, such as ensuring that the maintenance fleet and offshore wind turbines function
properly (Ren et al., 2021).

The maintenance planning phase is divided into two parts: maintenance scheduling and
route planning. Maintenance scheduling involves organizing maintenance tasks based on
factors such as resource availability, potential loss of revenue due to turbine failure, and
environmental conditions. On the other hand, route planning involves determining the most
efficient route for a vessel to perform all maintenance tasks. Both can be addressed by using
optimization models such as mixed integer linear models (Ren et al., 2021).

2.1.3. Onsite maintenance operations

The physical activities required to carry out maintenance are referred to as maintenance op-
erations. These operations are performed after the planning phase, and their difficulty and
complexity may vary depending on the type of maintenance required. Generally, mainte-
nance operations can be categorized into two aspects: the actual maintenance procedures
and the logistics involved in transporting spare parts and personnel to and from the offshore
wind turbine site.
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(a) Boat landing and transition piece.
From Flickr, by Wind Denmark, 2008.

Licensed under CC BY-NC 2.0 (edited).

(b) Hoisting platform.
From Flickr, by Wind Denmark, 2008.

Licensed under CC BY-NC 2.0 (edited)

Figure 2.2.: Offshore wind turbine access methods.

Logistics

To transport personnel and spare parts to an offshore wind turbine undergoing maintenance,
three main access methods can be employed (Hu & Yung, 2020). These methods are catego-
rized based on the access points on the offshore wind turbine for maintenance technicians:

• Boat landing: The technicians can enter the offshore wind turbine from the boat landing,
which is at sea level. Technicians usually have to climb a ladder in order to get from
the boat landing to the transition piece platform.

• Transition piece: The technicians can be directly transported to the platform on top of
the transition piece.

• Hoisting platform: Some wind turbines have a dedicated platform on top of the nacelle
where maintenance technicians can be dropped off by helicopter.

Various access vessel types or a helicopter can be used to access an offshore wind turbine
for maintenance. Weather conditions are an important role in determining whether onsite
maintenance operations can proceed safely. For instance, climbing a wind turbine is not
permitted when wind speeds exceed 20 m/s (Ren et al., 2021), prohibiting maintenance tasks
from being executed. The accessibility to the offshore wind turbine during maintenance
operations may vary based on the method of transportation employed. For instance, wave
heights exceeding a certain threshold can render it unsafe for the technicians to dock at the
offshore wind turbine. These wave height thresholds may differ per type of transportation,
as can be seen for a range of different CTVs in table 2.1. Thus, weather forecasts are essential
in making informed decisions about maintenance operations.

The characteristics of generic vessel types and helicopters can be found below:

• Crew Transfer Vessels (CTVs): Small vessels that are specifically designed for offshore
wind turbine access. They are considered cost-effective and are a relatively fast solution
(Hu & Yung, 2020). They can access the boat landing platform and can only stay at the
wind farm for one day. A number of different CTV designs and characteristics can be
found in table 2.1.
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(a) Crew transfer vessel (CTV).
From Flickr, by Mark Kilner, 2018. Licensed

under CC BY-NC-SA 2.0 (edited).

(b) Service operation vessel (SOV).
From Wikimedia Commons, by Saberwyn, 2011.

Licensed under CC BY-SA 3.0 (edited)

Figure 2.3.: Figures of two offshore wind O&M vessels.

Monohull Catamaran Trimaran SWATH SES

Length [m] 12-25 15-27 19-27 20-34 26-28
Top transit speed [knots] 15-25 18-27 18-22 18-23 35-39
Passenger capacity [-] 12 12 12 12/24 12/24
Cargo [tons] 5-10 10-15 1-5 2-10 3-5
Hs limit [m] 1-1.2 1.2-1.5 1.5-1.7 1.7-2 1.8-2.2

Table 2.1.: Table with the vessel characteristics of some CTV designs.
Reprinted with permission from ”Offshore Wind Access Report 2022”, by Dighe et al. (2022).

All rights reserved 2022 by TNO.
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(a) Offshore helicopter.
From Flickr, by Colin Cooke, 2016. Licensed

under CC BY-NC-SA 2.0 (edited).

(b) Jack-up vessel.
From Flickr, by Norbert Möller, 2018. Licensed

under CC BY-NC-SA 2.0 (edited)

Figure 2.4.: Figures of a helicopter and a jack-up vessel.

• Service Accommodation Transfer Vessels (SATVs): Medium-sized vessels designed for wind
farms that are further from shore. They have an increased size over CTVs and they can
stay at the wind farm for up to one week (Hu & Yung, 2020). Similarly to CTVs, they
transfer technicians via the boat landing platform.

• Service Operation Vessels (SOVs): Large vessels that are a step up from SATVs in size.
This allows them to stay at wind farms for up to two weeks at a time. They are typically
equipped with walk-to-work solutions such as motion-compensated gangways that al-
low the technicians to walk directly onto the transition piece platform (Hu & Yung,
2020).

• Helicopters: Helicopters are a fast way of transport towards and from the turbine and
can drop personnel on a dedicated hoisting platform. The amount of weight in spare
parts and tools that they can carry is limited and so is the amount of technicians that
they can take with them. Since they can not always land and hoovering for long periods
of time is not efficient, they generally go back to land, only to come back and pick up
the technicians after they are done with the maintenance operations (Hu & Yung, 2020).

In some cases, motion-compensated cranes on SOVs may not be suitable for lifting heavy
maintenance equipment due to their limited reach or weight capacity (Hu & Yung, 2020).
For instance, lifting wind turbine blades may require heavy lifting capabilities that exceed
the capacity of such cranes. In that case, two types of vessels are capable of performing the
heavy lifting operations required for maintenance activities involving heavier components
such as the gearbox, main shaft, bearing, transformer, and hub (Thomsen, 2014):

• Crane vessels: Generic crane vessels are vessels with one or more heavy cranes attached.
Their floating platforms differ from ship-shaped hulls to semi-submersible designs (Naji
Tahan, 2005).

• Jack-up vessels: A type of crane vessel that is more suitable for offshore wind turbine
heavy lifting operations than generic crane vessels, as they can be jacked up to operate
at the heights of offshore wind turbines (Thomsen, 2014). Additionally, they provide
a large deck space for multiple components and are relatively stable (Shenton et al.,
2014).
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Model Algorithm Objective(s)

Bolstad et al. (2022) Two-stage SP Heuristics (GRASP) Cost
Stålhane et al. (2020) Two-stage SP L-shaped Cost
Stålhane et al. (2019) Two-stage SP Matheuristic Cost
Szpytko and Salgado (2019) Two-stage SP Unknown EENS
Gutierrez-Alcoba et al. (2019) Two-stage SP Matheuristics Cost

Rinaldi et al. (2019) Sim Heuristic (GA)
Cost, Reliability,
Availability

Diran (2018) DP MIP Cost
Liapodimitris (2017) Sim Heuristics (evolutionary) Cost
Halvorsen-Weare et al. (2017) Two-stage SP Heuristics (GRASP, tabu) Cost
Rinaldi et al. (2017) Sim Heuristics (GA) Cost, Reliability
Stålhane et al. (2016) Two-stage SP MIP Cost
Gundegjerde et al. (2015) Three-stage SP MIP Cost
Dalgic et al. (2015) Sim Sim Cost
Dalgic et al. (2014) Sim Sim Cost
Halvorsen-Weare et al. (2013) DP MIP Cost

Table 2.2.: Overview on offshore wind fleet optimization studies.
(DP = Discrete Programming, EENS = Expected Energy not Supply, GA = Genetic Algorithm, GRASP

= Greedy Randomized Adaptive Search Procedure, MIP = Mixed Integer Programming, Sim =
Simulation, SP = Stochastic Programming)

Maintenance procedures

Wind turbines are intricate structures comprising numerous components and subsystems
that vary among manufacturers. Hence, failure rates and maintenance requirements differ
by turbine type, location, and load history. The study by Carroll et al. (2015) evaluated the
failure rate distribution of generic components in 350 offshore wind turbines across Europe.
The failure rate distribution is available in appendix C, fig. C.1. The study reveals that wind
turbine blades and gearboxes are the most commonly replaced components due to major
failures, necessitating the use of heavy lifting vessels for replacement. Major and minor
repairs are most common in the pitch control/hydraulics of the wind turbine and in the
other component categories.

2.2. Review of fleet optimization studies in offshore wind

A relationship between the costs, wind farm availability, and vessel fleet composition had
been identified in chapter 1. Numerous studies have been aimed at formulating and solving
offshore wind fleet optimization models. A selection of these offshore wind fleet optimization
models will be reviewed in the section below. This should give the reader an overview of
the various modeling approaches and solution methodologies for these types of models. An
overview of these studies in a tabular form can be found in table 2.2.

2.2.1. Offshore wind fleet optimization studies

The studies of Halvorsen-Weare et al. (2013) and Diran (2018) have investigated ways to de-
velop a deterministic fleet optimization model that is solved using Mixed-Integer Program-
ming (MIP). Some of the gaps that were identified in deterministic models were that they did
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not capture the highly uncertain nature of processes in offshore wind O&M. The studies of
Gundegjerde et al. (2015) and Stålhane et al. (2016) introduced multi-stage stochastic model-
ing to offshore wind fleet optimization in order to incorporate the uncertainty of parameters
into decision-making. Both studies have solved the fleet optimization models using MIP. One
conclusion that was drawn was that if the planning aspect of the models would be become
more detailed, the model would quickly become too impractical to solve. A number of differ-
ent multi-stage stochastic programming models were developed and investigated alternative
ways to solve the fleet optimization models. The study of Gutierrez-Alcoba et al. (2019) inves-
tigated ways to include heuristics for maintenance scheduling. The study of Stålhane et al.
(2019) investigated using Dantiz-Wolfe reformulation methods and metaheuristics for fleet
optimization models. The studies Stålhane et al. (2020) and Bolstad et al. (2022) attempt to
solve an offshore wind O&M fleet optimization model using an L-shaped and a heuristic
GRASP method, respectively.

A different approach to the analytical models from the formerly listed studies is by means of
simulation. The studies of Dalgic et al. (2014) and Dalgic et al. (2015) include a simulation-
based approach to evaluate an optimal CTV fleet selection and to evaluate the effects of a
mothership concept for offshore wind O&M, respectively. The studies of Rinaldi et al. (2017)
and Rinaldi et al. (2019), by using genetic algorithms to find sets of optimal solutions based
upon multiple objective functions from a surrogate O&M simulation model.

The trend that the offshore wind industry is looking to move from a preventive strategy
to a condition-based monitoring strategy has been identified and related to offshore wind
optimization studies by Stålhane et al. (2019). The only study that includes a predictive
maintenance strategy approach in the offshore wind fleet optimization literature so far is the
work of Szpytko and Salgado (2019).

It has been found that the optimization models that are used in these fleet optimization
studies vary in model formulation. The two most common approaches for modeling offshore
wind fleet optimization models were simulation-based models and MIP models. A noticeable
amount of the MIP models were multi-stage stochastic optimization models, which are used
to account for uncertain occurrences in offshore wind fleet optimization models. Only two
studies were identified that included multiple objectives. Both of these studies were solved
using genetic algorithms and a simulation-based surrogate model. It was also found that
almost all optimization studies included at least the cost as an objective function and no
offshore wind fleet optimization studies have included the GHG emissions as (part of) the
objective function(s).

A number of gaps in existing literature could be identified. Some of the foremost gaps
mentioned in former studies are the inclusion of condition-based monitoring strategies in
offshore wind O&M fleet optimization models (Stålhane et al., 2019) and the need to find
more efficient methods to solve large instances of fleet optimization models Stålhane et al.
(2020). Another gap that had not been identified before was that no offshore wind fleet
optimization studies included GHG emissions as their objective function. The introduction
chapter in the current study already covered why GHG emissions are recently introduced
as an offshore wind KPI, which is why the lack of coverage in fleet optimization models is
considered a gap. The second identified gap was that there is a limited amount of offshore
wind fleet optimization studies with multiple objectives. None of the multi-objective fleet
optimization studies used exact methods to solve the optimization model and they all relied
on metaheuristics. While many metaheuristics are known to provide decent solutions within
a short amount of time, they are not guaranteed to converge to a true optimal value within
a finite amount of time. Exact methods for multi-objective optimization models on the other
hand do converge within a finite amount of time.
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2.3. Concluding remarks

The first part of this chapter includes a literature review on some of the different aspects of
offshore wind O&M and on fleet optimization models for offshore wind O&M. It was found
that there is a wide range of frameworks to categorize different offshore wind O&M aspects.
The current literature review presents the categorization of different phases within O&M,
distinguishing between maintenance strategy, maintenance planning, and onsite maintenance
operations. There are two types of maintenance strategies, each with its own set of subcat-
egories. The goal of preventive maintenance is to keep failures from happening, whereas
the goal of corrective maintenance is to replace and/or repair failures that have already hap-
pened. A number of different offshore wind O&M assets that are used during maintenance
were evaluated. They are categorized into personnel access vehicles and heavy-lifting ves-
sels.

The second part of this chapter focussed on answering first research sub-question, which was
formulated as:

• Sub-question 1: What optimization models exist to find the optimal fleet for offshore
wind farm O&M?

A number of fleet optimization studies in the offshore wind were reviewed in order to answer
this research sub-question. Simulation-based models and MIP models were commonly used
for fleet optimization studies in offshore wind. Only two studies were found that included
multiple objectives. Both of these studies used metaheuristics as the methodology to solve
the multi-objective model. None of the reviewed studies included GHG emissions as the
objective function.

By answering research sub-question 1, two gaps in fleet optimization studies for offshore
wind were identified. The first gap is that none of the offshore wind fleet optimization studies
include GHG emissions as the objective function. The second gap is that the number of multi-
objective optimization studies in offshore wind O&M is scarce and all solving methodologies
use metaheuristics.





3. Offshore wind fleet optimization model

The current chapter is divided into two sections. The first section will define the scope of the
model. The second section will go over the mathematical formulation of the fleet optimization
model. The model in this study is a modified version of the model in Bolstad et al. (2022)
and Stålhane et al. (2020).

3.1. Scope of the model

The fleet optimization model of the current study is written as a deterministic MIP problem.
The model considers a single wind farm with a fixed number of turbines and a single mainte-
nance base. The main variables of interest in the model are vessel charter decisions based on
the costs, time-based wind farm availability, and GHG emissions. The charter decisions fall
within tactical-level1 decision-making (Shafiee, 2015). A corrective-preventive maintenance
strategy is used in the model.

Additional operational-level elements of offshore wind O&M are included in the model to
ensure that the fleets meet the requirements for operational-level decision-making such as
completing all maintenance tasks. Variables like the number of man-hours spent on main-
tenance tasks, when vessels are used, when maintenance tasks are completed, and whether
maintenance tasks are not completed are used to quantify the objective functions and define
operational-level constraints. Transit is limited to movement between the wind farm and the
maintenance base only and the transit between wind turbines is ignored.

3.1.1. Costs

The costs are commonly used criteria in offshore wind O&M simulations (Sperstad et al.,
2017) and fleet optimization models (see table 2.2). It can be concluded by evaluating the
simulation and optimization models that there are a number of important aspects in offshore
wind O&M cost modeling:

• Vessel costs: The costs can be divided into two categories: vessel acquisition costs and
fleet ownership costs. The vessels can be acquired by purchasing the vessels or charter-
ing the vessels. Costs associated with fleet ownership may include docking and vessel
maintenance.

• Transit costs: When vessels are used, they consume fuel. Transit costs are the expenses
incurred as a result of using the vessels.

• Maintenance costs: The maintenance costs are the costs associated with carrying out the
maintenance tasks. This includes the costs of spare parts, tools, and hiring maintenance
technicians.

1Strategic, tactical, and operational-level are adjectives used to categorize decisions or plans based on their scope,
time horizon, and focus.
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• Downtime costs: A wind turbine can stop producing energy for a variety of reasons. It is
a decrease in revenue if a wind turbine stops producing energy. A shutdown can occur
as a result of the failure of a critical component. The wind turbine can also be shut
down for maintenance on non-critical failures.

The vessel costs in the current study are limited to chartering costs only. Vessels can only
be chartered from the beginning to the end of a month, and chartering the vessel for longer
periods of time may result in a lower monthly cost. Aside from charter costs, the model
includes fixed monthly costs to account for a variety of costs associated with owning a vessel
fleet. The Transit costs are based on the costs of fuel. Because the prices of different types
of marine fuel vary, the option to calculate fuel costs per fuel type has been added. The
maintenance costs are calculated per hour that is worked on the maintenance task. If the
spare part costs per maintenance operation are known, the costs can be divided by the time
required to complete the maintenance task to obtain the spare part costs per hour. It is
assumed that maintenance technicians are hired on a daily basis, and crew costs are added
each time a vessel is used for transportation on a given day. Downtime costs are based on
the number of hours that are being worked on a task for preventive maintenance. Corrective
maintenance tasks are assumed to be the result of a critical failure and thus cause downtime
from the moment the failure occurs until it is repaired.

3.1.2. Wind farm availability

Wind farm availability can be defined in two ways: time-based wind farm availability and
production-based wind farm availability (Wright & Falbe-Hansen, 2017). The production-
based wind farm availability is calculated by dividing the energy produced by the energy
expected. The time-based wind farm availability can be divided into two subcategories:
full-period definition and wind-in-limits definition. The full period definition is calculated
by dividing the number of hours available by the number of hours in a year, whereas the
wind-in-limits definition is calculated by dividing the number of hours the wind turbine is
generating power by the number of hours that the wind is between cut-in and cut-out (Wright
& Falbe-Hansen, 2017).

The current study will use the time-based full-period wind farm availability definition. The
availability is calculated for the entire wind farm by summing up the number of hours avail-
able from all turbines. The number of hours in a year is multiplied by the number of turbines
to balance out the nominator and denominator in the time-based full-period wind farm avail-
ability definition. The number of hours available for each turbine is calculated by subtracting
the number of hours of downtime from the number of hours in a year. This can be expressed
in equation form as:

AvailabilityTime−Based
full−period =

∑ Turbines(HoursPerYear− TurbineDowntime)
(NumberOfTurbines)(HoursPerYear)

(3.1)

3.1.3. GHG emissions

The emissions of GHGs through human activities are linked to global warming. Accord-
ing to the Kyoto Protocol (Kyoto Protocol, 1997), GHGs are carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur
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hexafluoride (SF6). Some gasses have a stronger greenhouse effect than others. GHG emis-
sions are uniformly quantified in terms of CO2 equivalent (CO2e) by multiplying gasses by
a respective multiplication factor.

The quantifications of GHG emissions can be done following a range of scopes (Ranganathan
et al., 2004). Scope 1 emissions only include emissions from direct sources. Scope 2 also
takes into account indirect emissions caused by energy consumption. Scope 3 emissions now
add emissions that are caused by the upstream and downstream flow of used services and
products (Ranganathan et al., 2004).

Only direct emissions (scope 1) will be modeled in this study. The only direct emissions that
fell within scope 1 that could be identified in offshore wind O&M were vessel emissions. The
engines of vessels are assumed to be running during transit and while loitering/idling2. The
amount of fuel used during transit is calculated based on the distance from the maintenance
base to the wind farm, the vessel transit speed, and the vessel fuel usage per unit of time. The
emissions produced while idling/loitering are proportional to the time spent on maintenance.
The emissions are calculated in units of CO2e. Depending on the fuel used, vessels can emit
varying amounts of CO2e per liter of fuel. The GHG gasses used to calculate CO2e per liter
of fuel are the proportions of CO2, CH4, and N2O produced by fuel combustion.

3.2. Mathematical formulation of the optimization model

The fleet optimization model developed and used by Bolstad et al. (2022) and Stålhane et al.
(2020) has been modified to fit the purposes of the current study. There are several reasons
why this model was chosen over the other offshore wind O&M fleet optimization models.
First and foremost, the scope of their model is similar to the scope set for the model in the
current study. Second, the variables used in the models of these two studies are well suited
to formulate a GHG emission and time-based wind farm availability objective function.

3.2.1. Notations

Indices

n Denotes the month number
l Denotes the month number when a vessel contract expires
p Denotes the day number
τ Denotes the turbine number
m Denotes the maintenance task number
v Denotes the vessel type number

2Loitering/idling means that a vessel remains in position for an extended period of time, but still runs an engine
or generator to power auxiliary systems.
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Sets

N Set of all months
V Set of all vessels
L Denotes until which month a vessel is chartered
M Set of all maintenance tasks

MPREV Set of all preventive maintenance tasks

MCORR Set of all corrective maintenance tasks
T Set of all wind turbines
P Set of all days
Pn Set of all days that belong to month n
An The set of all ancestor months

Coefficients and parameters

CTC
nvl

Chartering cost for vessel of type v in month
n with expiration in l

CF
nv

Fixed costs of operating vessel of type v in
month n

Gv Capacity that a vessel of type v uses

MD Vessel capacity of the base

CM
mv

The costs of using vessel v on maintenance
task m per manhour

CDTC
p Downtime costs per day of a turbine on day p

MCREW
v Crew size of a vessel type v

PBD
mτ

Day on which a breakdown of maintenance type
m on turbine τ happens

CV
v

Costs of using a vessel of type v for transit
per hour

TT
v

Amount of time it takes to travel back and forth
to the wind farm with a vessel of type v

CP
m

Penalty costs of failing to complete the maintenance
task m by the end of the planning horizon

CGHG−TRANSIT
v

Amount of GHG emissions by using a vessel of type v
for traveling per trip to the wind turbine and back

CGHG−IDLE
v Amount of GHG emissions due to idling per hour

TM
mτ

Amount of manhours that maintenance task m
requires for turbine τ before it is completed

TMAX Maximum amount of hours that can be
worked on a day
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MK
v

Maximum weather condition that a vessel of
type v can operate in

Upv Weather condition on day p

MBIG Big-M number used for linearization of cost
objective function

Variables

xnvl
Amount of vessels of type v chartered in month
n until month l

wnv
Amount of vessels of type v available due to
long time chartering in month n

unpv
Amount of vessels of type v used for maintenance
in month n on day p

tpmvτ
Amount of manhours that vessels of type v conduct
on maintenance task m on turbine τ on day p

tLIN
pmvτ

Variable of the amount of manhours that vessels of
type v conduct on maintenance task m on turbine
τ on day p and is used for linearization

γpmτ

{
1 if task m on turbine τ is completed on day p
0 if task m on turbine τ is not completed on day p

βmτ

{
1 if task is not completed by the planning horizon end
0 if task is completed by the planning horizon end

3.2.2. Objective functions

Cost objective function

zCost = ∑
n∈N

∑
v∈V

∑
l∈L

CTC
nvl xnvl (3.2a)

+ ∑
n∈N

∑
v∈V

CF
nvwnv (3.2b)

+ ∑
p∈P

∑
τ∈T

∑
m∈M

∑
v∈V

CM
mvtpmvτ (3.2c)

+ ∑
p∈P

∑
τ∈T

∑
m∈MPREV

∑
v∈V

CDTC
p

tpmvτ

24MCREW
v

(3.2d)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

CDTC
p (p− PBD

mτ )γpmτ (3.2e)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

∑
v∈V

CDTC
p

tLIN
pmvτ

24MCREW
v

(3.2f)

+ ∑
τ∈T

∑
m∈MCORR

CDTC
p βmτ(|P| − PBD

mτ ) (3.2g)
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+ ∑
n∈N

∑
p∈Pn

∑
v∈V

CV
v unpvTT

v (3.2h)

+ ∑
m∈M

∑
τ∈T

CP
mβmτ (3.2i)

The term in eq. (3.2a) are the charter costs for chartering a vessel of type v from month n until
month l. The variable xnvl is defined as the number of vessels of type v that are chartered
from month n until month l. In the case that x1,4,2 = 3, this would indicate that 3 units
of vessel type 4 should be chartered from month 1 to month 2, meaning that the vessel is
chartered for 2 months in total. The parameter CTC

nvl denotes the costs of chartering a vessel
of type v from month n until month l. The set N is the set of all months. A set V is defined
as the set that includes all vessel types. The set L is the set that indicates until which months
vessels can be chartered.

The term in eq. (3.2b) consists of the fixed costs of owning a vessel fleet. The variable wnv
denotes the number of vessels of type v in month n. The variable wnv is different from xnvl as
the latter denotes the number of contracts and the length of the contracts that are required,
while the former denotes the actual fleet size in a certain month as a result of the contract
length xnvl . The parameter CF

nv denotes the fixed costs of owning a vessel of type v in month
n.

The term in eq. (3.2c) is the costs due to conducting maintenance per man-hour of work.
The variable tpmvτ is the variable that denotes the number of man-hours a vessel of type v
conducts on maintenance task m. The parameter CM

mv are the costs of conducting maintenance
on task m while using vessel v per man-hour worked on a task.

The term in eq. (3.2d) are the downtime costs due to preventive maintenance. The parameter
MCREW

v represents the number of technicians in the crew. The amount of days that the wind
turbine is offline due to maintenance on the wind turbine is expressed as the number of man-
hours tpmvτ divided by the amount of crew MCREW

v and by 24 hours. The parameter CDTC
p

is a parameter that is equal to the number of costs lost for every 24 hour of wind turbine
downtime on a given day p.

The downtime costs due to corrective maintenance tasks on a critical failure can be found in
eq. (3.2e), eq. (3.2f) and eq. (3.2g). The variable γpmτ is a binary variable that is equal to 1 if
a maintenance operation m on wind turbine τ is completed on the day p and is equal to 0 if
it is not completed on this day. The binary variable βmτ is a binary variable that is equal to
1 if the maintenance task m on wind turbine τ is not completed by the end of the planning
horizon and equal to 0 if it is completed somewhere in the planning horizon. The parameter
PBD

mτ denotes the day on which the critical failure occurs. The parameter |P| stands for the
total amount of days in the planning horizon. In case a maintenance task is completed on the
day p, eq. (3.2e) counts the number of days between the occurrence of the breakdown and the
repair of the breakdown. This term is only added when the maintenance is completed on that
specific day because only then it is multiplied with γpmτ = 1. The number of days between
the critical failure and the repair is then multiplied by the costs of downtime CDTC

p . It could
be that there is still time that is spent on a maintenance task on the day it is completed.
This still causes the wind turbine to be broken down at the first part of the day. This is
accounted for by eq. (3.2f), by summing up the number of hours that are being worked on a
wind turbine on the day that it is completed. Note that tLIN

pmvτ is a linearization of tpmvτγpmτ

using the big-M method, so only the amount of hours that are worked on the day on which
the maintenance tasks are completed are nonzero. In the case that a maintenance task is not
completed, there are still downtime costs. Therefore, the amount of downtime is formulated
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in eq. (3.2g) as a function of the variable βmτ in case the maintenance task is not completed
in the planning horizon.

The costs due to using a maintenance vehicle to travel to the wind farm and back and addi-
tional penalty costs if maintenance operations are not completed by the end of the month can
be found in eq. (3.2h) and eq. (3.2i), respectively. The variable unpv is defined as the number
of vessels of type v that are used for transit to the wind farm and back in month n on the day
p. The parameter CV

v denotes the number of costs of using a maintenance vessel at operating
speeds per hour, while the parameter TT

v denotes the amount of time it takes for a vessel of
type v for transit to the wind farm and back.

GHG emissions objective function

zEmissions = ∑
n∈N

∑
p∈Pn

∑
v∈V

CGHG−TRANSIT
v unpv (3.3a)

+ ∑
p∈P

∑
v∈V

∑
m∈M

∑
τ∈T

CGHG−IDLE
v

tpmvτ

MCREW
v

(3.3b)

The first term in the objective function is the amount of GHG emissions that are emitted by
vessels during transit to the wind farm. The parameter CGHG−TRANSIT

v quantifies the amount
of GHG emissions that a vessel of type v emits in transit.

The second term in the objective function is the amount of GHG emissions that the vessels
emit due to idling. The parameter CGHG−IDLE

v quantifies the amount of GHG emissions that
a vessel of type v emits when powering auxiliary systems while the vessel waits until the
maintenance task is completed.

Wind farm availability objective function

zAvailability = 1− 1
|P| |T|

(
∑

m∈MCORR
∑

τ∈T
βmτ(|P| − PBD

mτ ) (3.4a)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

(p− PBD
mτ )γpmτ (3.4b)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

∑
v∈V

tLIN
pmvτ

24MCREW
v

(3.4c)

+ ∑
p∈P

∑
τ∈T

∑
m∈MPREV

∑
v∈V

tpmvτ

24MCREW
v

)
(3.4d)

The terms in eq. (3.4a), eq. (3.4b) and eq. (3.4c) represent the total downtime due to corrective
maintenance. The second term in eq. (3.4d) is the loss of time-based wind farm availability
due to preventive maintenance operations. The first part in eq. (3.4a) is the total amount
of availability, represented by 1. The time-based availability function will be divided by the
total number of turbines and the total number of days in the planning horizon, |P| and |T|
respectively. This will return the time-based wind farm availability over the entire planning
horizon, rather than the time-based availability of individual turbines.



22 3. Offshore wind fleet optimization model

3.2.3. Constraints

Vessel balance constraints

The first constraint in eq. (3.5) is a constraint that balances the number of new vessel contracts
and expired vessel contracts against the fleet size in each month. It is defined as:

∑
l∈L

xnvl + wa(n)v − ∑
n′∈An

xn′v a(n) = wnv ∀n ∈ N\{1}, v ∈ V, n ≤ l (3.5)

This constraint relates the number of vessels of type v in month n that are available to use for
maintenance activities, wnv, to the sum of newly chartered vessels in month n until month
l, ∑l∈L xnvl , plus the number of available vessels from last month, wa(n)v, minus the number
of vessels of which the contract ended in the previous month, ∑n′∈An xn′v a(n). The set An
is the set of all months that lie behind month n. E.g. the set An=3 = {1, 2} and the set
An=5 = {1, 2, 3, 4}. Besides the set of all ancestor nodes, a(n) denotes the ancestor node
before node n. E.g. if n = 3, then a(3) = 2 and if n = 5, then a(5) = 4. This constraint holds
for all n ∈ N with the exception of n = 1, because no ancestor nodes exist for the first month.
Additionally, the constraint only holds such that n ≤ l because a vessel cannot be chartered
until a month that lies in history.

The second constraint in eq. (3.6) is similar to the first constraint but is specifically modeled
for the first month n = 1. It is defined as:

∑
l∈L

xnvl = wnv ∀n = 1, v ∈ V (3.6)

This constraint sets the number of vessels of type v in month n equal to the number of charter
contracts that start in month n = 1 until month l.

The third constraint in eq. (3.7) sets a limit to the maximum amount of docking space that is
available at the maintenance base. This is defined as:

∑
v∈V

Gvwnv ≤ MD ∀n ∈ N (3.7)

The term on the left-hand side of the equation in this constraint is the number of vessels
of type v that are part of the fleet in month n, multiplied by the size Gv of the vessel. The
right-hand side of the equation is the maximum available space of the maintenance base
MD.

The fourth constraint in eq. (3.8) is defined as:

unpv ≤ wnv ∀n ∈ N, p ∈ P, v ∈ V (3.8)

This constraint makes sure that the number of vessels that are used for maintenance, unpv,
cannot exceed the number of vessels that are available in the fleet, wnv.
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Weather accessibility constraints

The fifth constraint in eq. (3.9) is defined as:

(MK
v −Upv) ∑

m∈M
∑

τ∈T
tpmvτ ≥ 0 ∀p ∈ P, v ∈ V (3.9)

The constraint makes sure that vessels cannot be used for maintenance if the weather con-
ditions exceed the maximum conditions that the vessel can operate in. The parameter (MK

v
is defined as the weather condition in which a vessel of type v can operate. The parameter
Upv denotes the weather condition in month n on day p. Some maintenance vehicles could
have different limiting types of weather conditions, e.g. wave height for vessels and wind
speed for helicopters. For that reason, Upv could also be a different type of weather condition
depending on the vessel type v. The constraint subtracts Upv from MK

v and is multiplied by
the sum of manhours that a spends on a task on a given day. In the case that MK

v −Upv is
smaller than 0, the sum of manhours that a vessel spends working on a task has to be equal to
zero in order to not violate the right-hand side condition. This can only occur if the weather
value Upv is higher than the maximum weather conditions that a vessel can operate in MK

v .
In the case that MK

v −Upv is larger than 0, the sum of manhours that a maintenance vehicle
works on, is not constrained by the weather.

Maintenance constraints

The sixth constraint in eq. (3.10) is defined as:

∑
m∈M

∑
τ∈T

tpmvτ ≤ Ev MCREW
v (TMAX − TT

v )unpv ∀n ∈ N, p ∈ Pn, v ∈ V (3.10)

This constraint makes sure that if the total amount of man-hours tpmvτ that is worked on a
maintenance task m on vessel τ on day p in month n by vessel v is larger than 0, the right
amount of vessels unpv are used for the maintenance operation. Additionally, this constraint
sets an upper limit to the amount of time that can be worked on a maintenance task by unpv

amount of vessels. This is defined as TMAX− TT
v , which is the maximum amount of operating

time minus the time needed to travel to the wind farm and back. An efficiency factor Ev can
be set to account for loss of productivity of the crew.

The seventh constraint in eq. (3.11) ensures that maintenance tasks are uncompleted as long
as there are not enough man-hours worked on a maintenance task. This is formulated as:

∑
p∈P

∑
v∈V

tpmvτ ≥ TM
m (1− βmτ) ∀m ∈ M, τ ∈ T (3.11)

This constraint makes sure that if not enough time is spent on a maintenance operation, the
task will be assigned as uncompleted. The parameter TM

m is the required amount of manhours
needed to complete maintenance task m.

The eighth constraint in eq. (3.12) is defined as:
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∑
p′∈{(p+1),...,|P|}

∑
v∈V

tp′mvτ ≤ TM
m (1− γpmτ) ∀p ∈ P, m ∈ M, τ ∈ T (3.12)

This constraint ensures that once a maintenance task is completed, that no more hours are
put into the maintenance operation on the following days after the task is completed. Ad-
ditionally, it limits the number of hours that are worked on a maintenance task m on the
following days p′ to be no more than the maximum amount of hours that are required for
a maintenance task if it is not completed. In the case that γpmτ = 1, the right-hand side of
the equation becomes equal to 0. If the right-hand side of the equation is equal to zero, that
means that the left-hand side of the equation has to be less or equal to zero. Since negative
worked man-hours tpmvτ are not possible, the only feasible condition that satisfies this con-
straint is that the left-hand side sum is equal to 0 as well. Note that the sum of man-hours
that are being worked on is summed over p′ ∈ {(p + 1), ..., |P|, which represents the set of
remaining days after day p.

The ninth constraint in eq. (3.13) is defined as:

∑
p∈P

γpmτ + βmτ = 1 ∀m ∈ M, τ ∈ T (3.13)

This constraint ensures that a maintenance task is either completed on a particular day or
not completed by the end of the month. This is formulated by summing up the variable
which is defined to be equal to 1 if a maintenance task is completed on a particular day p,
γpmτ and adding the binary variable βmτ that is defined to be equal to 1 if the maintenance
task is not completed by the end of the year. Since all variables in the constraint are binary
variables, only one of the variables on the left-hand side can be equal to 1. Therefore, the
maintenance task can only be completed once or can remain uncompleted at the end of the
planning horizon.

The tenth constraint in eq. (3.14) is defined as:

∑
v∈V

(
tpmvτ

MCREW
v

)
≤ TMAX ∀m ∈ M, τ ∈ T, p ∈ P (3.14)

This constraint ensures that the maximum amount of hours that all vessels can work on
a maintenance task on a given day does not exceed the maximum amount of hours that
can be worked on a day. The reason for adding this constraint is to avoid situations where
several maintenance vehicles can work on the maintenance task simultaneously and complete
it faster, while this might be infeasible. In the constraint, this is expressed on the left-hand
side by summing up the number of hours that each vessel of type v works on a task m from
turbine τ on day p in month m and dividing this value by the crew size MCREW

v . On the
right-hand side, there is the maximum amount of hours that can be worked on maintenance
tasks each day.

The eleventh constraint in eq. (3.15) is defined as:

(p− PBD
mτ ) ∑

v∈V
tpmvτ ≥ 0 ∀p ∈ P, m ∈ MCORR, τ ∈ T (3.15)
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This constraint makes sure that no hours can be worked on a corrective maintenance task
if the breakdown of the turbine did not occur yet. This is expressed by subtracting the
current day p by the parameter that represents the day that the breakdown occurs PBD

mτ and
multiplying this with the number of man-hours that each vessel puts in this task. In the case
that the current day is less or equal to the day that the breakdown occur, p− PBD

mτ ≤ 0, that
means that the sum of man-hours that are worked on that task has to be equal to 0 in order to
satisfy the right-hand side of the constraint. In other words, the maintenance tasks cannot be
worked on. In the case that the current day is larger than the day that the breakdown occurs,
the sum of man-hours can take on any positive value or 0, thus the maintenance tasks can be
worked on.

Together with eq. (3.12), the twelfth constraint in eq. (3.16) ensures that the binary variable
γpmτ should be equal to 1 once a maintenance task is completed on a specific day p. It is
defined as:

∑
v∈V

tpmvτ ≥ γpmτ ∀p ∈ P, m ∈ M, τ ∈ T (3.16)

(3.17)

The constraint in eq. (3.12) on its own is not enough to ensure that γpmτ = 1 only on the day
that the last man-hours are worked on a maintenance task. This is because the constraint in
eq. (3.12) allows any day p that follows once the last hours have been put into a maintenance
task to be set as the day when a maintenance task is completed, even if there are no man-
hours worked on the task on these days. It is desired that only the day on which the last
man-hours are worked on a maintenance task is labeled as the day when the maintenance
task is completed. The constraint in eq. (3.16) now ensures this by summing up the number
of hours that are worked by each vessel on a given maintenance task on the left-hand side
of the constraint. Additionally, γpmτ is put on the right-hand side of the constraint. This
means that at least 1 man-hour should be worked on the maintenance task before it can be
considered completed on this day.

The thirteenth constraint can be used to ensure that some maintenance tasks cannot be started
earlier than another maintenance task has been completed. It is formulated as:

∑
v∈V

∑
p′∈{0,...,p}

tp,m2,v,τ ≤ (1− γp,m1,τ)TM
m2

∀p ∈ P, τ ∈ T (3.18)

The maintenance task m1 denotes the maintenance task number that should be completed
before the maintenance task m2. The variable γp,m1,τ = 1 if the first maintenance task is
completed. If this is the case, the right-hand side of this constraint becomes equal to 0. The
remaining left-hand side of the constraint is the number of man-hours that are worked on
the second maintenance task from day 0 until day p. The left-hand side and right-hand side
together make sure that the number of man-hours that are worked on the second maintenance
task m2 is equal 0 up until m1 is completed.

Big-M Constraints

Both the cost objective function and the time-based wind farm availability objective function
include a formulation for the downtime of the wind turbine. Part of the original formulation
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of these two objective functions is nonlinear. The nonlinear part of the objective functions is
formulated as:

tpmvτ

24MCREW
v

γpmτ (3.19)

The multiplication of tpmvτ with γpmτ causes this nonlinearity, even though one is a binary
variable and the other is a continuous variable. The big-M method is used to linearize this
part of the objective functions, and the proof can be found in appendix B.2. A new variable
will be introduced that will substitute tpmvτ in the objective function which will be labeled
as tLIN

pmvτ . A large number MBIG is introduced such that MBIG >> tpmvτ . The goal is to
define a set of constraints that will make the value of tLIN

pmvτ = 0 in the case that γpmτ = 0, as
this was also the desired effect of the nonlinear formulation. Additionally, it is desired that
tLIN

pmvτ = tpmvτ in the case that γpmτ = 0 as this was also the desired behavior of the nonlinear
formulation. To do this, a constraint will be added that relates tpmvτ to tLIN

pmvττ. This constraint
is formulated as:

tLIN
pmvτ ≥ tpmvτ −MBIG(1− γpmτ) ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (3.20)

In the case that γpmτ = 1, the term MBIG(1− γpmτ) on the right hand side of the equation
will be 0. This means that the constraint changes in tLIN

pmvτ ≥ tpmvτ . In the case that γpmτ = 0,
the second term on the right-hand side of the constraint will not become zero. Since the
assumption was made that MBIG >> tpmvτ , the entire right-hand side of the equation will be
a negative number and the equation changes to tLIN

pmvτ ≈ −MBIG.

Another constraint will be added and is defined as:

tLIN
pmvτ ≤ MBIGγpmτ ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (3.21)

If the binary variable γpmτ = 1, the constraint changes into tCORR
pmvτ ≤ M. If the binary variable

γpmτ = 0, tCORR
pmvτ ≤ 0.

One last constraint will be added that once again relates tCORR
pmvτ to tpmvτ :

0 ≤ tLIN
pmvτ ≤ tpmvτ ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (3.22)

This sets an low bound to tLIN
pmvτ of 0 and a high bound that is equal to tnpmvτ . The proof of

the Big-M method can be found in appendix B.2.
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Integrality constraints

The last constraints set the maximum limits of the variables xnvl and wnv to integer values
only. These constraints are defined as:

xnvl ∈ Z≥0 ∀n ∈ N, v ∈ V, l ∈ L (3.23)
wnv ∈ Z≥0 ∀n ∈ N, v ∈ V (3.24)

The last constraints are defined as:

tpmvτ ∈ R≥0 ∀p ∈ P, v ∈ V, m ∈ M, τ ∈ T (3.25)

unpv ∈ Z≥0 ∀n ∈ Np ∈ P, v ∈ V (3.26)

γpmτ =

{
1 if task is completed on day p
0 if task is not completed on day p ∀p ∈ P, m ∈ M, τ ∈ T (3.27)

βmτ =





1 if the task is not completed by the
end of the planning horizon

0 if the task is completed by the end
of the planning horizon

∀m ∈ M, τ ∈ T (3.28)

These constraints ensure that the amount of manhours that are used to conduct maintenance
on a wind turbine tpmvτ is limited to positive continuous values, that the amount of vessels
that are used for maintenance tasks unpv is limited to positive integer values and that the
variables which denote that a maintenance task is completed γpmτ or when a maintenance
task is not completed βmτ are both binary variables.

3.3. Concluding remarks

This chapter addressed the scope and mathematical formulation of the offshore O&M fleet
optimization model used in the current study. Some of the efforts in this chapter were di-
rected toward answering the second research sub-question, which was phrased as follows:

• Sub-question 2: Which (parts of) existing optimization models can be adapted to for-
mulate the fleet optimization model in the current study?

Two fleet optimization studies (Bolstad et al., 2022; Stålhane et al., 2020) with similar fleet
optimization models were identified as suitable for modification in the current study. These
studies were chosen based on their suitability for quantifying GHG emissions and time-
based wind farm availability. In order to formulate the model in the current study, parts of
the models from these studies were removed, changed, or added from/to the existing fleet
optimization study. The following are some of the key differences and changes between the
two models:

1. The current model is formulated as a deterministic model, while the model of Stålhane
et al. (2020) and Bolstad et al. (2022) is a multi-stage stochastic model

2. The current model does not have a variable maintenance base, while the model of
Stålhane et al. (2020) and Bolstad et al. (2022) does.
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3. The current model does not support multiple wind farms, while the model of Stålhane
et al. (2020) and Bolstad et al. (2022) does.

4. The current model has introduced the set of all wind turbines T for the variable formu-
lation.

5. The current model has two additional objective functions which quantify the GHG
emissions and the time-based wind farm availability.

6. The current model has added constraints to set additional limitations on the maximum
amount of man-hours, ensure that no man-hours can be worked on a task with a critical
failure before it has occurred, ensure that maintenance tasks are completed on the day
that the last man-hour has been worked on the task and ensure that can be used to
ensure that on maintenance task cannot be started before another maintenance task is
completed in eqs. (3.14) to (3.16) and (3.18), respectively.

7. The current model does not use symmetry-breaking constraints, while the model of
Stålhane et al. (2020) does.

8. The current model has a linearized cost objective function formulation that estimates
the downtime due to remaining man-hours that are worked on the maintenance tasks
with a critical failure.

Some of the efforts in this chapter were directed toward answering the third research sub-
question, which was phrased as follows:

• Sub-question 3: How can GHG emissions be quantified and incorporated into the
multi-objective fleet optimization model?

It was discovered that the scope of GHG emissions quantification can be limited to only
direct emissions or can include indirect emissions as well. The current study only quantifies
GHG emissions from direct emissions as units of CO2e. The GHG emissions from vessels
are calculated both while they are in use for transit and while they are idling/loitering. The
fleet optimization model in the current study simplifies transit by ignoring transit between
wind turbines and only considering transit between the maintenance base and the wind farm.
This means that the time spent in transit between wind turbines is excluded from the GHG
calculation.



4. Optimization technique for solving a
multi-objective model

In this chapter, a method for optimizing the developed fleet optimization model will be
chosen. The chapter will begin with an assessment of some methods for optimizing the fleet
optimization model. One of the methods will then be chosen to be used in the current study.
First, the method will be applied to a two-objective optimization model. Following that, the
method will be applied to a three-objective optimization model.

4.1. Multi-objective optimization methods

Models with multiple objective functions are known as multi-objective optimization mod-
els. The methods for solving multi-objective models are classified into two types (Gunantara,
2018). The first method is the scalarization method, which combines multiple objective func-
tions into a single scalar fitness function and yields only one solution. The second method
is the Pareto method, which treats the objective functions as independent vectors and yields
one or more solutions. The Pareto method has one advantage over the scalarization method
in that it shows an overview of the trade-offs between solutions, whereas the scalarization
method does not show trade-offs between solutions. Only Pareto methods are considered
in the current study because the ability to see tradeoffs between solutions provides more
information to work with for decision-making.

In the literature, a wide variety of algorithms and/or techniques for solving multi-objective
optimization models have been studied. Three Pareto methods were chosen as candidates to
solve the fleet optimization model developed in chapter 3:

• Genetic methods: Genetic methods are biological evolution-inspired methods for solv-
ing optimization problems. They typically have one or more fitness functions and find
solutions through mechanisms such as reproduction, mutation, recombination, and se-
lection. There are many different types of genetic algorithms, such as single-objective
and multi-objective genetic algorithms. Multi-objective genetic algorithms can be used
to estimate a set of non-dominated solutions on the Pareto front. Genetic algorithms
are classified as metaheuristics, which means that there is no guarantee that they will
converge in a finite amount of time.

• Weighted sum method: The weighted sum method combines multiple objective functions
into one objective function. Each individual objective function is multiplied by a re-
spective weight. Solving the models for multiple weight perturbations will yield a set
of non-dominated solutions on the Pareto front. The method does not solve the opti-
mization model, but rather modifies the model formulation so that it can be used to
find and estimate a set of non-dominated Pareto solutions.
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• Epsilon constraint method: The epsilon constraint method changes the model formulation
by setting some of the objectives as constraints. The model is then solved several times,
with the objective functions set as constraints being perturbed with each iteration. Sim-
ilarly to the weighted sum method, this method does not solve the optimization model
directly but modifies the model formulation so that it can be used to find and estimate
a set of non-dominated solutions on the Pareto front.

Genetic algorithms are built with inherent mechanisms that allow them to find feasible solu-
tions to optimization models while also approximating a set of non-dominated Pareto optimal
solutions. The benefit of this is that they are a complete package for solving multi-objective
optimization models and approximating a set of non-dominated Pareto solutions. On the
contrary, the epsilon constraint method and the weighted sum method only reformulate the
models such that they can be solved using single objective optimization methods. MIP is an
option for solving the individual perturbed optimization problems as a result of using the
epsilon constraint method and the weighted sum method.

There are also advantages to using the epsilon constraint method or the weighted sum
method in combination with MIP. Unlike genetic algorithms, MIP is an exact method. It
is guaranteed to converge to a globally optimal solution in a finite amount of time. Further-
more, MIP applications often use the MIP gap to quantify the level of convergence during the
solving procedure, whereas genetic algorithms do not have this capability. At last, some of
the underlying techniques in MIP are inherently designed to deal with constraints, whereas
many genetic algorithms struggle with heavily constrained optimization problems.

The performance of the method depends on the choice of the model. Different genetic al-
gorithms were used during earlier stages of the fleet optimization model development. The
fleet optimization model was too heavily constrained for many genetic algorithms to solve
efficiently with a good distribution of solutions, which turned out to be a recurring issue
throughout multiple iterations of the model development. The epsilon constraint method
was then used, and it proved to be more effective at finding feasible solutions to the fleet
optimization model in the current study. Because of its ability to deal with constraints consis-
tently, the epsilon constraint method was chosen as the method for solving the optimization
model in the current study.

4.2. Epsilon constraint method for two objectives

This section elaborates on the implementation of the epsilon constraint method for two ob-
jectives, which serves as an introduction to the epsilon constraint method for three objectives,
which is later used to solve the fleet optimization model in this study. In algorithm 4.1,
a pseudo-code has been described for calculating the Pareto front for two objective func-
tions. Other algorithms that are called by algorithm 4.1 can be found in algorithm 4.2 and
algorithm 4.3. The process of solving the perturbed problems using the epsilon constraint
method for two objectives can be found in fig. 4.2.

Let us define an optimization model with variables x1, x2, ...xn and two objective functions
f1(xn) and f2(xn), with the goal of minimizing the objective functions. The problem of
solving this optimization model can be expressed as follows:

minimize { f1(xn), f2(xn)} (4.1)
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Figure 4.1.: Epsilon constraint method for two objectives.
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Pareto frontier

Figure 4.2.: Feasible objective space and Pareto front.
Visual representation of the Pareto front (bold) and the feasible objective space (light grey).

Let us define a set of equality constraints, hi(xn), and inequality constraints, gj(xn):

hi(xn) = 0 ∀i ∈ I (4.2)
gj(xn) ≤ 0 ∀j ∈ J (4.3)

The objective functions f1(xn) and f2(xn) are subjected these sets of constraints. By combining
them together, the constrained optimization problem can be expressed as follows:

minimize { f1(xn), f2(xn)} (4.4)

hi(xn) = 0 ∀i ∈ I (4.5)
gj(xn) ≤ 0 ∀j ∈ J (4.6)

The actual Pareto front of the model is depicted in fig. 4.2. The light grey area represents the
model’s feasible space, and an arrow points to the Pareto frontier, which is represented by a
bold black line. Remember that the actual Pareto front is unknown at this point and is only
shown to make the steps easier to follow.

Now that the model is defined in eq. (4.4), the maximum value of f1(xn) and the minimum
value of f1(xn) are calculated independently from f2(xn). In other words, the model in
eq. (4.4) is solved as a minimization and maximization problem without f2(xn). This is
depicted in fig. 4.1 at step a), where it can be seen that the solutions to both optimization
problems are located on the far left and far right ends of the feasible space. The pseudo
algorithm that belongs to this step is algorithm 4.2. We now have an upper and lower bound
for all feasible solutions f1(xn).

The next step is to change f1(xn) from an objective function to the left-hand side of an ”≤”
constraint. The right-hand side of this constraint will be a constant C1. The updated problem
can now be expressed as:
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minimize { f1(xn)} (4.7)

hi(xn) = 0 ∀i ∈ I (4.8)
gj(xn) ≤ 0 ∀j ∈ J (4.9)

f1(xn) ≤ C1 (4.10)

The problem in eq. (4.7) is now solved multiple times for perturbed C1 values. Let us start
with setting C1 equal to the lower bound of f1(xn) which was found earlier:

C1 = min( f1) (4.11)

Solving the optimization problem in eq. (4.7) with this value of C1 is depicted in fig. 4.1 at
step b). It can be observed that all but the most left part of the feasible space is removed by
eq. (4.10). The Pareto optimal solution that belongs to the perturbed problem that was solved
is now referred to as p1.

Let us perturb the value of C1 by adding a value ϵ1 to it. The new value for C1 is now defined
as:

C1 = min( f1) + ϵ1 (4.12)

Solving the optimization problem in eq. (4.7) with this perturbed value of C1 is depicted in
fig. 4.1 at step c). When compared to step b), step c) now leaves a larger portion of the original
feasible space feasible. By solving this perturbed problem, the solution will lie in the feasible
space at the lowest possible value for f2(xn) in step c), and it can be seen that this solution
lies on the Pareto front. The Pareto optimal solution that belongs to the perturbed problem
that was solved is now referred to as p2.

This process can be repeated for multiple perturbations of C1. This is depicted in fig. 4.1 in
steps d), e), and f). By looking at fig. 4.1, it becomes clear why the minimum and maximum
values for f1(xn) were calculated. If C1 is set too small, the model could become infeasible.
If the perturbed values for C1 are set too high, there is a risk of missing solutions in the far
left region of the feasible space. If the minimum and maximum values of f1(xn) are known,
they can be used as upper and lower bounds for perturbed C1 values.

Note that once a perturbation of C1 reveals the global minimum of the problem, perturbations
of C1 with larger values do not lead to new solutions on the Pareto front. This can be seen in
fig. 4.1 in step f), where an arrow is used to indicate the location in the feasible regions where
solutions {p7, p8, ..., p11, } are the same. On the one hand, it is desirable that these solutions
are located in the same location in the feasible space and not further to the right. If not, they
would not lie on the Pareto front. On the other hand, each point requires an optimization
model to be solved and since these stacked points lie on the same spot, they do not give any
additional information on the shape of the Pareto front. This makes them of little use and
requires unnecessary computational power.
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Algorithm 4.1: Epsilon Constraint Method Two Objective (NumberO f Shi f ts)
Input: NumberO f Shi f ts← number of times the constraint it shifted between

MinBound, MaxBound
Output: pi ← Pareto points

1 MinBound = Bounds Two Objective ( f1(x), Optimize =′ min′);
2 MaxBound = Bounds Two Objective ( f1(x), Optimize =′ max′);
3 for i← 0 to NumberOfShifts do
4 ϵ = i/NumberO f Shi f ts;
5 pi = Find Pareto Point ( f2(x), f1(x), ϵ, MinBound, MaxBound);

// pi contains the Pareto point locations [ f1(xOptim), min ( f2)]

Algorithm 4.2: Bounds Two Objective ( f1(xn), Optimize)

Input: f1(xn)← objective function
Optimize← variable that states if the model should be optimized or minimized
Output: min ( f1) and max ( f1)

1 if Optimize = ’min’ then
2 RunMIPSolver( f1(xn), minimize);
3 return min ( f1)

4 if Optimize = ’max’ then
5 RunMIPSolver( f1(xn), maximize);
6 return max ( f1)

Algorithm 4.3: Find Pareto Point Two Objective] ( f2(xn), f1(xn), ϵ, MinBound,
MaxBound)

Input: f2(xn)← objective function to be solved
f1(xn)← objective function to be set as constraint
[MinBound, MaxBound]← bounds over which to shift the constraint over
ϵ← constraint shift size coefficient
Output: min ( f2)← the optimal objective values
xOptim

n ← the variables that belong to this optimal value
f1(xOptim

n )← the corresponding value for the first objective function

1 AddConstraint( f1(xn) ≤ MinBound + ϵ(MaxBound−MinBound));
2 RunMIPSolver( f2(xn), minimize);

3 return xOptim
n , min ( f2), f1(xOptim

n )
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Figure 4.3.: Epsilon constraint method for three objectives (part 1).



36 4. Optimization technique for solving a multi-objective model

Figure 4.4.: Epsilon constraint method for three objectives (part 2).
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4.3. Epsilon constraint method for three objectives

After discussing the epsilon constraint method implementation for two objectives in the pre-
vious section, the current section will discuss the epsilon constraint method implementation
for three objectives. A pseudo-code for calculating the Pareto front for three objective func-
tions is described in algorithm 4.4. Other algorithms that are used in algorithm 4.1 can be
found in algorithm 4.5 and algorithm 4.6.

Let us define a minimization optimization problem with three objective functions f1(xn),
f2(xn), and f3(xn) which are subjected to a set of equality constraints, hi(xn), and inequality
constraints, gj(xn):

minimize{ f1(xn), f2(xn), f3(xn)} (4.13)

hi(xn) = 0 ∀i ∈ I (4.14)
gj(xn) ≤ 0 ∀j ∈ J (4.15)

It was observed in fig. 4.1 that the feasible region for a two-objective optimization problem
can be plotted in two-dimensional objective space. Analogous to this, the feasible space for
a three-objective optimization problem can be plotted in three-dimensional objective space.
The feasible space for three objectives is depicted as a three-dimensional space in fig. 4.3. The
Pareto front for three objectives can now be represented as a surface rather than a line, which
is depicted using grid lines in fig. 4.3 at step a). As with the two-objective variant, the actual
Pareto front is unknown beforehand and is only shown to make the steps easier to follow.

The maximum and minimum of the objective function f3(xn) are calculated first as shown in
fig. 4.3 at step b). The pseudo algorithm that corresponds to this process is algorithm 4.5 and
is depicted in fig. 4.3 in b). This is equal to solving the following optimization problems:

minimize{ f3(xn)} (4.16)
maximize{ f3(xn)} (4.17)

hi(xn) = 0 ∀i ∈ I (4.18)
gj(xn) ≤ 0 ∀j ∈ J (4.19)

Similarly, the maximum and minimum of the objective function f2(xn) are calculated. How-
ever, this time an inequality constraint is added with f3(xn) on the left-hand-side of the
equation and the parameter C3 on the right-hand-side of the equation. This is depicted in
fig. 4.3 in c) equal to solving the following optimization problems:

minimize{ f2(xn)} (4.20)
maximize{ f2(xn)} (4.21)

hi(xn) = 0 ∀i ∈ I (4.22)
gj(xn) ≤ 0 ∀j ∈ J (4.23)

f3(xn) ≤ C3 (4.24)
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Remember that setting an objective function as an inequality constraint in a two-objective
space can be visualized as a line parallel to the objective direction in the objective space and
an infeasible surface on either side. In a three-objective space, this line becomes a plane that
is parallel to the objective direction in the objective space instead and the infeasible surface
on either side now becomes an infeasible volume, as can be observed in fig. 4.3 and fig. 4.4.

Let us reflect back on what has been done so far, and compare it to the
steps made for the epsilon constraint method for two objectives.

• A minimization problem was defined with three objectives.

• Four problems were then solved, which were the minimum and max-
imum values for f3(xn) and f2(xn). These values will serve the same
purpose as the minimum and maximum values for f2(xn) in the ep-
silon constraint method for two objectives: to set minimum and max-
imum bounds for the perturbations.

One particular detail that is different from the two-objective method is
that an objective function is already set as constraints while calculating
the minimum and maximum bounds for the perturbations in eq. (4.24).
This is because the minimum and maximum values of f2(xn) can vary for
different perturbations of C3, analogous to how the width of a shape can
vary over its length.

Reflection

The objective functions f2(xn) and f3(xn) are then changed to left-hand-side constraints in
problem eq. (4.13). The parameter C3 is introduced on the right-hand side of f3(xn), and the
parameter C2 is introduced on the left-hand side of f2(xn). These modifications result in the
following new formulation:

minimize{ f1(xn)} (4.25)

hi(xn) = 0 ∀i ∈ I (4.26)
gj(xn) ≤ 0 ∀j ∈ J (4.27)

f3(xn) ≤ C3 (4.28)
f2(xn) ≤ C2 (4.29)

Let us select the lower bounds of the objective functions as the initial values for C3 and C2,
which are min ( f3) and min ( f2), respectively.

C2 = min ( f2) (4.30)
C3 = min ( f3) (4.31)

This is shown in fig. 4.3 at step d), where the constraints remove a large portion of the
feasible space. Solving this problem will yield the solution with the lowest value of f1(xn) in
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the feasible region. This solution is labeled as p1 in fig. 4.3 at step e). The problem is now
solved again by perturbing C2 while leaving C3 unchanged. This will achieved by adding a
perturbation ϵ1 to min ( f2), such that:

C2 = min ( f2) + ϵ1 (4.32)
C3 = min ( f3) (4.33)

The solution p2 is obtained by solving the model with these updated perturbations. The
solution p2 has the lowest f1(xn) value in the feasible region, as shown in fig. 4.3 at step
f). The process of solving the model for various perturbations of C2 while maintaining C3
constant can be repeated several times. This is shown in fig. 4.4 at step g).

The value of C3 will be perturbed after solving the model several times for different perturba-
tions of C2. This will be accomplished by adding a perturbation E1 to C3, as shown in fig. 4.4
at step h). For each perturbation of C3, new minimum and maximum bounds for f2(xn)
must be calculated, implying that eq. (4.20) and eq. (4.21) must be solved again. The updated
upper and lower bounds of C2 are shown in fig. 4.4 at step i). Once these new bounds are de-
termined, the process of solving the model with f1(xn) as the objective function and various
perturbations for C2 repeats. The process of finding new solutions for other perturbations of
C2 is depicted in fig. 4.4 at steps j) and k). After solving the model for sufficient perturbations
of C2 and C3, a set of solutions on the Pareto front is obtained, as shown in fig. 4.4 at step
l).

Algorithm 4.4: Epsilon Constraint Method Three Objective

(NumberO f Shi f tsF2, NumberO f Shi f tsF3)
Input: NumberO f Shi f tsF2← number of times the constraint it shifted between

MinBoundF2, MaxBoundF2
NumberO f Shi f tsF3← number of times the constraint it shifted between
MinBoundF3, MaxBoundF3
Output: Pareto points pi

1 MinBoundF3 = Bounds Three Objective ( f3(x), Optimize =′ min′);
2 MaxBoundF3 = Bounds Three Objective ( f3(x), Optimize =′ max′);
3 for i← 0 to NumberOfShiftsF3 do
4 E = i/NumberO f Shi f tsF3;
5 MinBoundF2 = Bounds Three Objective ( f2(x), Optimize =′ min′);
6 MaxBoundF2 = Bounds Three Objective ( f2(x), Optimize =′ max′);
7 for i← 0 to NumberOfShiftsF3 do
8 ϵ = i/NumberO f Shi f tsF3;
9 Find Pareto Point Three Objective ( f1(xn), f2(xn), f3(xn),

[MinBoundF2, MaxBoundF2], ϵ, [MinBoundF3, MaxBoundF3], E );
// pi contains the Pareto point locations [ f1(xOptim), min ( f2)]

4.4. Improving the selection of C2 and C3

The minimum and maximum bounds for C2 and C3 perturbations in section 4.3 ensure that
the constraints set during each optimization model evaluation iterate over the entire feasible
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Algorithm 4.5: Bounds Three Objective ( f (xn), Optimize)

Input: f (xn)← objective function
Optimize← variable that states if the model should be optimized or minimized
Output: min ( f1) and max ( f1)

1 if f (xn) = f2(x) then
2 if Optimize = ’min’ then
3 AddConstraint( f3(xn) ≤ MinBound + E(MaxBound−MinBound));
4 RunMIPSolver( f2(xn), minimize);
5 return min ( f2)

6 if Optimize = ’max’ then
7 AddConstraint( f3(xn) ≤ MinBoundF3 + E(MaxBoundF3−MinBoundF3));
8 RunMIPSolver( f2(xn), maximize);
9 return max ( f2)

10 if f (xn) = f3(x) then
11 if Optimize = ’min’ then
12 RunMIPSolver( f3(xn), minimize);
13 return min ( f3)

14 if Optimize = ’max’ then
15 RunMIPSolver( f3(xn), maximize);
16 return max ( f3)

Algorithm 4.6: Find Pareto Point Three Objective ( f1(xn), f2(xn), f3(xn),
[MinBoundF2, MaxBoundF2], ϵ, [MinBoundF3, MaxBoundF3], E )

Input: f1(xn)← objective function to be solved
f2(xn)← objective function to be set as constraint
f3(xn)← objective function to be set as constraint
[MinBoundF2, MaxBoundF2]← bounds over which to shift the constraint over
ϵ← constraint shift size coefficient
[MinBoundF3, MaxBoundF3]← bounds over which to shift the constraint over
E ← constraint shift size coefficient
Output: min ( f1)← the optimal objective values
xOptim

n ← the variables that belong to this optimal value
f2(xOptim

n )← the corresponding value for the second objective function
f3(xOptim

n )← the corresponding value for the third objective function

1 AddConstraint( f3(xn) ≤ MinBoundF3 + E(MaxBoundF3−MinBoundF3));
2 AddConstraint( f2(xn) ≤ MinBoundF2 + ϵ(MaxBoundF2−MinBoundF2));
3 RunMIPSolver( f1(xn), minimize);

4 return xOptim
n , min ( f1), f2(xOptim

n ), f3(xOptim
n )
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region of the solution space. However, the disadvantage of this method is that some solutions
may accumulate in the same location in the feasible region. A visualization of the accumu-
lated points for the two objective epsilon constraint methods can be found in fig. 4.1, where
the points p7, p8, ..., p11 all share the same combination of values for f1 and f2. The accumu-
lated solutions require a model to be solved, but they do not provide a new Pareto optimal
solution with unique corresponding objective values.

To reduce computational expenses, each Pareto point should ideally have objective function
values that differ from other solutions. Simultaneously, the range over which the Pareto
points are calculated should ideally still cover the entire Pareto front. One way to satisfy
these requirements is to set the point in the objective space where all Pareto points stack
in fig. 4.1 as the maximum bound because every solution beyond this point is not a Pareto
optimal solution. It can be seen in fig. 4.1 for two objectives that this point can be found by
finding by removing f1(xn) from the model and finding min ( f2(xn)) because it lies at the
minimum value of f2(xn). The variables that belong to the solution of min ( f2(xn)) can then
be used to find the corresponding objective function value for f1. This value of f1 is then set
as the new maximum bound for f1(xn), as this is the location in fig. 4.1 where all the Pareto
optimal solutions accumulate. By employing this new upper bound, all perturbations of C1
are now on the Pareto front.

The point that we are looking for by minimizing the model for f2(xn) is known as one of the
anchor points. The Nadir point, which is defined as the combination of the worst possible
values for each objective in the set of all non-dominated Pareto optimal solutions, is a more
generalized feature of the model we are looking for (Mesquita-Cunha et al., 2022). For models
with more than two objective functions, the Nadir point can be found using the anchor points.
For models with more than two objective functions, anchor points can no longer be used to
find the exact Nadir point and can only be used as an estimate (Deb & Miettinen, 2009;
Isermann & Steuer, 1988). Algorithms have been developed to determine the exact Nadir
point (Jorge, 2009), but combining this with the epsilon constraint method can significantly
complicate the algorithm (Nikas et al., 2022). The current study will not incorporate an exact
method to find the Nadir point and instead use a similar approach to payoff tables made
up of anchor points from Mavrotas and Florios (2013). This keeps the implementation of
the epsilon constraint method relatively simple, but it can lead to underestimation of upper
bounds.

The following changes are made to find the bounds for C2 and C3 in section 4.3. First,
the upper and lower bounds for f3(xn) are determined. The method for determining the
lower bound remains unchanged, and it is determined by solving the model and minimizing
f3(xn) independently of the other objective functions. The problem that has to be solved is
formulated as:

minimize{ f3(xn)} (4.34)

hi(xn) = 0 ∀i ∈ I (4.35)
gj(xn) ≤ 0 ∀j ∈ J (4.36)

Finding the upper bound is now slightly different, as the model is solved twice now. The first
time it is solved for f1(xn), independently of the other objective functions, and the second
time it is solved for f2(xn), independently of the other objective functions. The highest value
of f3 from both solutions is then set as the upper bound for f3(xn). This is formulated as
solving the problems:
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minimize{ f1(xn)} (4.37)
minimize{ f2(xn)} (4.38)

hi(xn) = 0 ∀i ∈ I (4.39)
gj(xn) ≤ 0 ∀j ∈ J (4.40)

A similar process follows for the bounds of C2. The upper and lower bounds for C2 must be
found for every perturbation of C3, just as in algorithm 4.4. Finding the lower bound of C2 is
obtained by solving the model for f2(xn).

minimize{ f2(xn)} (4.41)

hi(xn) = 0 ∀i ∈ I (4.42)
gj(xn) ≤ 0 ∀j ∈ J (4.43)

f3(xn) ≤ C3 (4.44)

Since an equality constraint for f3(xn) is added to the model while finding the bounds for
C2, the value of f3(xn) is fixed. To find the upper bound of C2, only the minimum of f1(xn)
now has to be found and the value of f3 that belongs to this solution is extracted.

minimize{ f1(xn)} (4.45)

hi(xn) = 0 ∀i ∈ I (4.46)
gj(xn) ≤ 0 ∀j ∈ J (4.47)

f3(xn) ≤ C3 (4.48)

The current method that is used to improve the selection of C2 and C3 is similar to the
payoff table method as both approaches use anchor points to estimate the upper bounds.
The current method calculates the bounds for C2 for each perturbation of C3. The advantage
is that it ensures that the combinations of C2 and C3 are within the feasible space, thus
not leading to infeasible models. The disadvantage of this is that it requires two additional
problems to be solved to find the upper and lower bounds of C2 for each perturbation of C3.
Although the epsilon constraint method in the current model is solved with an exact solving
method by using MIP, this is not sufficient to guarantee that all solutions are non-dominated
(Mavrotas, 2009).

4.5. Parallelization of the problems

A part of the epsilon constraint method can be solved in parallel after finding the bounds of
C3. This can be done by making blocks of problems that have to be solved. The first part of
each block consists of determining the bounds of C2 that belong to a respective perturbation of
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C3, after which the perturbations of C2 are determined. The second part of each block consists
of solving the combinations of C2 and C3 that will estimate the Pareto optimal solutions.

A process flow diagram of the epsilon constraint method for three objective functions can
be found in fig. 4.5. The perturbations of C2 and C3 are indicated with indices j and i,
respectively. Since new perturbations of C2 are determined for every perturbation of C3, it
has both indices i and j. A verification of the epsilon constraint method against a genetic
algorithm can be found in appendix B.3.

4.6. Concluding remarks

The purpose of this chapter was to provide an answer to the fourth research question, which
was defined as:

• Sub-question 4: Which algorithms can be used to find optimal solutions to the devel-
oped multi-objective fleet optimization model?

In order to answer this research question, a number of multi-objective algorithms and refor-
mulation methods were evaluated and considered as candidates to solve the fleet optimiza-
tion model in the current study. The three candidates were genetic algorithms, the weighted
sum method, and the epsilon constraint method. Several attempts were made to solve early
adaptations of the fleet optimization model using various genetic algorithms, but they were
unsuccessful. This was likely a result of the heavy constraint characteristic of the fleet op-
timization model, which genetic algorithms are known to have issues with. This was most
likely due to the heavily constrained characteristic of the fleet optimization model, which
genetic algorithms are known to struggle with.

The epsilon constraint method was deemed superior to the weighted sum method because
the former can capture convex hulls in the Pareto front while the latter cannot. It was found
that the epsilon constraint method could be used in combination with MIP. Unlike genetic
algorithms, MIP is an exact method. Early adaptions of the fleet optimization model were
more successfully solved using MIP in combination with the epsilon constraint method than
genetic algorithms. This led to the consideration that the epsilon constraint method in combi-
nation with MIP is the most suitable approach for the fleet optimization model in the current
study.

Despite the fact that it is chosen as the most optimal approach, the epsilon constraint method
implementation in the current study has some known limitations:

• Despite the fact that it is used in combination with an exact MIP solver, this does not
guarantee that the epsilon constraint method is found exactly. This is because it is not
guaranteed that all solutions are non-dominated Pareto solutions.

• Since the bounds over which the perturbations are selected are calculated using an
approach that is analogous to approximating the Nadir point, it is not guaranteed that
the epsilon constraint method iterates over the full range of the Pareto front.
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Figure 4.5.: Parallelization of the epsilon constraint method.



5. Case study

Two case studies will be defined and implemented in this chapter for the previously defined
optimization offshore wind O&M fleet optimization model in chapter 3. The first case study
compares objective function values to an offshore wind O&M cost estimation tool and is lim-
ited to preventive maintenance. The second case study now includes corrective maintenance
tasks, and the results of this case study will be thoroughly evaluated. The case studies will
be solved using the fleet optimization model and epsilon constraint method with three ob-
jectives from chapter 4. At the end of this chapter, the case study results are presented and
evaluated.

5.1. Case study methodology

Case study 1

Fleet optimization
model

Variable fleetInitial fleet

𝑪𝒐𝒔𝒕 𝑪𝒐𝒔𝒕 𝑭𝒍𝒆𝒆𝒕

TNO O&M Planner 
Tool

Initial fleetOptimal fleet

𝑪𝒐𝒔𝒕

Farm: Princess amalia
Maintenance: Preventive, leading edge inspection
Initial fleet: 2x monohull, 1x catamaran, 1x trimaran

𝑪𝒐𝒔𝒕

Figure 5.1.: Overview of case study 1.

An overview of case study 1 is shown in fig. 5.1. Case study 1 compares the estimated
costs of the fleet optimization model to an offshore wind O&M cost modeling tool. The cost
estimation tool that will be used for the comparison is the UWiSE O&M Planner. An initial
unoptimized fleet is defined for case study 1, which is inserted in the UWiSE O&M Planner.
By constraining the fleet composition variables with constraints, this initial unoptimized fleet
is also used as the fleet in the optimization model. The constraints are then removed from
the fleet optimization model, allowing the fleet composition to be variable again. The fleet
optimization model is then solved and proposes a number of optimal fleets. One of these
fleets is then selected and used as the fleet composition in the UWiSE O&M Planner. The
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results of all these runs will be examined, allowing for comparisons between the optimization
model results and the UWiSE O&M Planner.

Case study 2

Fleet optimization model

𝑪𝒐𝒔𝒕

Farm: Princess amalia
Maintenance: Preventive, leading edge inspection

Preventive, leading edge repair
Corrective, manual turbine reset

𝑮𝑯𝑮 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔

Variable Fleet

Figure 5.2.: Overview of case study 2.

An overview of case study 2 can be found in fig. 5.2. The purpose of case study 2 is to demon-
strate the fleet optimization model with a larger variety of maintenance types compared to
case study 1.

5.2. Case studies definition

Both case studies are based on the currently operational Princess Amalia Wind Farm in the
Netherlands and located offshore 23 kilometers from IJmuiden. The wind farm has been
commissioned in 2008 and consists of 60 Vestas V80 wind turbines with a maximum rated
power of 2 MW each, giving it a total capacity of 120 MW.

Case study 1 will only include a visual inspection of the wind turbine blades, which is
modeled as a preventive maintenance task required for all wind turbines in the Princess
Amalia wind farm. In addition to the visual inspection, case study 2 will require a leading
edge protection maintenance task and a corrective maintenance task due to a critical failure.
The maintenance vessels available for charter in both case studies are a variety of different
types of CTVs distinguished by their hull design.

The sections that follow will go into greater detail about the case studies.

Time horizon

Case study 1 has a one-year time horizon, while Case Study 2 has a six-month time horizon.
Each year is made up of 12 months, with each month consisting of 30 days. In reality, each
month can have more or fewer days than 30. This means that if a vessel is chartered in the
sixth month, it will be from the 30th of May to the 29th of June rather than from the 1st of
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Maintenance type Hours required
[h]

Costs per task
[e]

Maintenance task 1 Critical failure
(Corrective)

6 500

Maintenance task 2 Visual inspection
(Preventive)

6 250

Maintenance task 3 Coating reapplication
(Preventive)

8 500

Table 5.1.: Table with maintenance task parameters.

Inspection results per year

2012 2014 2015 2016 2017

Category 1 2% 0% 33% 0% 8%
Category 2 27% 26% 15% 63% 77%
Category 3 67% 68% 46% 37% 14%
Category 4 5% 6% 6% 0% 1%
Category 5 0% 0% 0% 0% 0%

Table 5.2.: Table with values for the damage category distribution per year.

June to the 30th of June. If a vessel is chartered in the sixth month in the model, the month
is still referred to as June. The historical data used in this model will be implemented so that
the final day of the 1-year planning horizon falls on December 26th.

The maximum amount of hours that maintenance engineers can work on a maintenance task
is assumed to be 10 hours. The shift starts at 08:00 and ends at 18:00.

Maintenance tasks

The leading edges of the wind turbines are protected with a coating. This coating can de-
teriorate over time, exposing and damaging the laminate of the wind turbine blades. The
first maintenance task is to visually inspect the leading edges of the wind turbine blades for
damage to the coating. This maintenance task is included in both case studies 1 and 2. If
the visual inspection revealed that the coating on the blade had sustained significant dam-
age, a follow-up maintenance task has to be executed to reapply the coating. This follow-up
maintenance task is only included in case study 2. The final maintenance task is a corrective
maintenance task for a critical failure that has rendered the wind turbine non-functional. This
maintenance task is only included in case study 2 as well.

The level of damage on wind turbine blades is classified by categorizing the damage into
five levels. The first category indicates that there is no significant damage to the leading
edge protection of the blade. The second category indicates that the leading edge has minor
damage, but no action is required at this time. The third category indicates that the leading
edge protection has been almost completely compromised. The fourth category indicates
that parts of the laminate are now exposed. The fifth and final category indicates that the
laminate has been penetrated. An overview of the inspection results per year can be found
in table 5.2.
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Type Crew
[teams]

Weather limits Speed
[m/s]

Docking space

CTV 1 Monohull 1 Hmax
s = 1.1[m] 8 1 [Dock space]

CTV 2 Catamaran 1 Hmax
s = 1.35[m] 14 1 [Dock space]

CTV 3 Trimaran 1 Hmax
s = 1.6[m] 16 1 [Dock space]

Table 5.3.: Table with maintenance vessel parameters.

Fuel Costs

Type Consumption
[l/h]

Charter
[e/day]

Fuel
[e/l]

Fixed
[e/month]

CTV 1 MFO 180 3500 1.64 2000
CTV 2 MFO 130 4500 1.64 2000
CTV 3 MFO 150 5000 1.64 2000

Table 5.4.: Table with maintenance vessel parameters on fuel and costs.

Up to category 3, technicians who access the turbine via rope can apply a new layer of
protective coating to the wind turbine blade. Categories 4 and 5 require the removal of the
turbine blade from the wind turbine using heavy lifting equipment. Only damages up to
category 3 are considered in this case study. Technicians will use ropes to gain access to the
blades for both visual inspections (case studies 1 and 2) and coating reapplication (case study
2). The critical failure corrective maintenance task (case study 2) is assumed to be repairable
without the use of heavy lifting vessels. The wind turbine will have to be shut down for both
the visual inspection and the application of the protective coating, so it will not be producing
power in the meantime. The maintenance task of applying a protective coating to the wind
turbine blade can only be performed after the visual inspection of the wind turbine has been
completed. All turbines must have been inspected at least once over the course of a year. It
is assumed that a single crew can complete the visual inspection in about 6 hours and apply
the protective coating in about 8 hours. A single inspection on a wind turbine will cost e250
per task.

The number of turbines with category 3 damage will be determined using data from 2017
(see table 5.2). As a result, the total number of turbines that require the protective coating is
rounded to 9 turbines. The coating is assumed to be required for turbine numbers 0-8, and
maintenance personnel can only begin working on it after the visual inspection of the turbine
has been completed. Each protective coating will take 8 hours to apply and will cost e500
per task.

It is assumed that one critical failure occurs at one of the 60 turbines each month on average.
This will be modeled as a corrective maintenance task that leaves the wind turbine non-
operational after the critical failure occurs. Once the critical failure is repaired, the turbine
will be operational again. The costs of a critical failure are assumed to be e500 per task, with
the required hours to repair the turbine being 6.

Maintenance vessels

In case studies 1 and 2, there are three different maintenance vessels to choose from for the
fleet composition, and all vessel assumptions are the same for both case studies. The three
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options consist of CTVs with different types of hull designs. There are three types of CTV
hulls: monohull, catamaran, and trimaran. The different designs of the vessel hulls give
them unique characteristics, such as transit speed. The number of vessels is chosen as a unit
of docking space in the maintenance base capacity constraint because the vessels are assumed
to be roughly the same size. The units that are used to determine the capacity of a vessel are
typically expressed as the number of maintenance technicians it can transport. However, it
is assumed in both case studies that each vessel can only carry one maintenance team at a
time with each team consisting of three technicians. The costs of the vessels are assumed to
be charter costs, fuel costs, and fixed costs associated with upkeep costs. During rough sea
states, the CTVs have limited access to the wind farm. This is assumed to be the significant
wave height Hs for the CTVs.

The vessel specifications can be found in table 5.3 and table 5.4. Some of the CTV specifica-
tions, such as the operational speed and the Hs limit, are based on the typical characteristics
of these types of hull designs (Hu & Yung, 2020). The costs of chartering the maintenance
vessels were estimated based on values from literature (Dewan & Asgarpour, 2016). The fuel
type for the CTVs is assumed to be MFO (Gray, 2021). The fuel prices are calculated using
Dutch fuel prices in 2022. The relatively better fuel economy of catamaran and trimaran hull
designs was one of the reasons for their introduction (Hu & Yung, 2020). The fuel economy
of the catamaran is based on the specifications of the CWind Endurance SWATH CTV, while
the monohull and trimaran hull designs fuel economies are estimated. The terms in the
charter contract likely determine which types of vessel upkeep costs are or are not covered
by the charter company. Since no data on the fixed costs were available, the fixed costs are
estimated.

The costs of the maintenance vessel charter prices are assigned to the parameter CTC
nvl in the

model. The fixed costs of the vessels are assigned to CF
nv parameter in the model. The costs

of fuel consumption are assigned to the CV
v parameter in the model.

Maintenance crew

It is assumed in both case studies that one maintenance crew consists of three technicians.
It is assumed that each vessel can only carry one team of maintenance technicians on board
the maintenance vessel, regardless of the actual maximum capacity of the maintenance vessel.
There is a maximum of four maintenance crews that can be hired on a given day. Because each
vessel can only carry one maintenance team, the maximum number of maintenance vessels
is four. On any given day, there is no minimum number of crews that must be hired.

A crew is not considered to be employed by the wind farm operator but rather is hired from
another company on a per-day basis. This means that the costs of a maintenance crew are
fixed for each day they are used, regardless of how many hours they work on maintenance
tasks. The costs of the crew are added to the parameter Cv for this reason, as this parameter
is multiplied by the variable unpv which determines how many maintenance vessels are used
for maintenance activities on a given day. The day rate of a technician is assumed to be
1000e/day.

Environmental conditions

The significant wave height Hs for vessels represents is used as the sea state condition that
can limit the accessibility of maintenance vessels to the wind farm. The Hs values are based
on the hourly historical significant wave height data from the Princess Amalia wind farm in
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Month

J F M A M J J A S O N D

Capacity factor 0.5 0.49 0.4 0.29 0.3 0.28 0.28 0.29 0.28 0.38 0.45 0.5
Electricity price
[e/MWh] 67 67 67 67 68 69 72 73 75 77 81 80

Table 5.5.: Table the capacity factor and electricity prices that are used in the case study for
each month.

2016. To be compatible with the model, the hourly historical significant wave height data
must be converted to daily historical significant wave height data. This is accomplished by
calculating the daily average significant wave height.

Charter costs

Longer-term vessel contracts are typically less expensive than shorter-term contracts (Dalgic
et al., 2013). As a result, a discount factor is used to account for this. The monthly cost
of chartering a vessel is added to the parameter CTC

nvl . The following equation was used to
include lower prices for longer periods of time:

CTC
nvl = (CharterCostsPerDay[e/day])(MonthSize[day])(l− n+ 1)(DiscountFactor)l−n (5.1)

To convert the charter costs of a single day to a single month, the charter costs per day are
multiplied by the month size. The multiplication with (l − n + 1) is necessary to calculate
the costs for multiple months without a discount. The final multiplication with the discount
factor is then performed to reduce the charter costs per month as the charter length increases.
The discount factor used in both case studies was set at 0.95.

Downtime costs

The downtime costs are assigned to the parameter CDTC
p . This parameter is defined as the

cost of downtime per day when the wind turbine is not operational. The downtime cost
parameter CDTC

p in the current case studies is calculated as follows:

CDTC
p = 24(RatedTurbinePower)(ElectricityPricePerMWh)(CapacityFactor) (5.2)

The 24 in the equation is required to convert the units to the amount of power generated per
day. This is then multiplied by the rated power of the wind turbine and the current electricity
prices per MWh. The wind turbine capacity factor is assumed to be different for each month
and is based on the historical capacity factor of the Belgian North Sea because other data was
unavailable. The electricity prices are based on 2016 electricity prices in the Netherlands. The
capacity factor and electricity price values for each month can be found in table 5.5.
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Maintenance vessel transit time, transit costs, and loitering costs

The transit time of the maintenance vessels is defined in the parameter TT
v . The total amount

of time a vessel spends in transit on a given day is defined as the transit time. The transit
time of the maintenance vessels is assumed to be constant and unaffected by environmental
factors such as wave height or wind speed. It is assumed that vessels will remain at the wind
turbine while maintenance is performed by the technicians. The average distance from the
IJmuiden port to the wind turbines is 23.8[km], which is used to calculate the distance to the
wind farm. The parameter TT

v is calculated as follows:

TT
v =

2(DistanceToWindFarm[m])

VesselSpeed[m/s]
(5.3)

The amount of transit costs are added to the parameter CT
v . The transit costs for all vessel

types are calculated in a similar manner and are defined as follows:

CT
v = (FuelPerHour[l/h])(FuelCost[e/l]) (5.4)

It is also assumed that the vessels will consume fuel while loitering. Estimates of the amount
of fuel consumed during loitering are made in section 5.2. The total costs of loitering are
calculated as a function of the amount of time spent working on a maintenance task. It is
therefore added to the parameter CM

mv because this parameter is multiplied by the number of
man-hours spent on a maintenance task tpmvτ . It is calculated as follows:

CM
mv = (FuelPerHourIdling[l/h])(FuelCost[e/l])/MCREW

v (5.5)

The value is divided by MCREW
v to obtain the number of hours that are being worked on a

task rather than the number of man-hours of work.

Emissions

In the current study, the emissions quantification for the fleet optimization model was limited
to direct emissions only. The vessels used for maintenance are assumed to be the only sources
of direct emissions. These vessels use fuel while traveling between the maintenance base and
the wind farm. Furthermore, it is assumed that vessels use generators to power auxiliary
systems on board the vessel while the crew performs maintenance tasks at the wind turbine.
These emissions are referred to as loitering emissions. Since the fleet optimization model in
the current study only considers transit between the wind farm and the maintenance base,
emissions from moving from one wind turbine to another are not modeled.

The parameters used to quantify GHG emissions from loitering and transit are CGHG−IDLE
v

and CGHG−TRANSIT
v , respectively. The parameter that quantifies the number of emissions

during transit is defined as follows:

CGHG−TRANSIT
v =

DistanceTraveled[m]

vesselSpeed[m/s]
(FuelPerHour[l/h])(FuelEmissions[kgCO2e/l])

3600[s/h]
(5.6)
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The first fraction in eq. (5.6) calculates the time spent in transit by dividing the distance
between the wind turbine farm and the maintenance base by the assumed operational speed
of the maintenance vessel. The second fraction multiplies the amount of fuel consumed per
hour by the number of emissions associated with the fuel type used. The second fraction is
divided by 3600[s/h] to convert the units of time to seconds.

For the case studies, emissions from idling will be calculated as a result of the fuel con-
sumed by marine generators. For all CTV types, it is assumed that the Cummins Onan 13.5
kVa/230V generator is used. During idling, the assumption is made that both generators run
at maximum power. At maximum power, each generator consumes approximately 17 liters
of fuel per hour, for a total of 34 liters per hour for two generators. It is assumed that the fuel
used in the generators is the same type as the fuel used in the engines used for the propulsion
of the ship. The amount of emissions caused by maintenance vessel idling is calculated as
follows:

CGHG−IDLE
v = (FuelPerHour[l/h])(FuelEmissions[kgCO2e/l]) (5.7)

The number of fuel emissions associated with a specific fuel type is calculated in units of
kgCO2e per liter of fuel burned. The unit CO2e converts the GHG contributions of other
gases to the amount of CO2 required to achieve the same GHG effects. The Kyoto Protocol
(Kyoto Protocol, 1997) has identified six greenhouse gases (GHGs):

1. Carbon dioxide

2. Methane

3. Nitrogen dioxide

4. Hydrofluorocarbons

5. Perfluorocarbons

6. Sulphur hexafluoride

Carbon dioxide, methane, and nitrogen dioxide are the only GHGs associated with fuel com-
bustion. When a fuel is burned, it emits a different concentration of carbon dioxide, methane,
and nitrogen dioxide. The emissions in CO2e can be calculated by multiplying methane and
nitrogen dioxide levels by an emission factor.

For the case studies, it is assumed that the fuel used by CTVs is Marine Fuel Oil (MFO). The
amount of carbon dioxide, methane, and nitrogen dioxide emitted by burning a liter of MFO
can be found in eq. (5.8c). Carbon dioxide, methane, and nitrogen dioxide emission factors
can be found in table 5.6.

The amount of GHG emissions due to burning a liter of fuel is calculated as:

FuelEmissions[kgCO2e/l] = CO2PerLFuel[kgCO2e/l] (5.8a)
+ (CH4PerLFuel[kgCH4/l])(CH4Factor[kgCO2e/kgCH4])

(5.8b)

+ (N2OPerLFuel[kgN2O/l])(N2OFactor[kgCO2e/kgN2O])
(5.8c)
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CO2PerLFuel
[kgCO2e/l]

CH4PerLFuel
[kgCH4/l]

N2OPerLFuel
[kgN2O/l]

MFO 11.27 0.45E-3 0.09E-3

Table 5.6.: Table with the amount of CO2, CH4 and N2O emissions per fuel type.

CH4Factor
[kgCO2e/kgCH4]

N2OFactor
[kgCO2e/kgN2O]

25 298

Table 5.7.: Table of the emission factors of CH4 and N2O.

Completing maintenance tasks

For the purposes of this case study, it is assumed that all maintenance tasks will be com-
pleted by the end of the planning horizon. One technique to achieve this is by imposing an
arbitrarily high penalty for failing to complete maintenance tasks. However, if the penalties
are not set high enough, this could still result in solutions with uncompleted maintenance
tasks. A constraint can be added to ensure that the model only provides solutions where all
maintenance tasks are completed by the end of the planning horizon by enforcing βmτ = 0.
This constraint is formulated as:

βmτ = 0 ∀m ∈ M, τ ∈ T (5.9)

5.3. Computational setup

The models are solved using the commercial optimization solver Gurobi v.10.0.1 using an
academic license. A computing cluster with two Intel Xeon Gold 6326 16 cores 32 threads
CPUs running at 2.90GHz and 130762 MB of RAM is used to solve the case studies.

The Pareto fronts of the case studies will be approximated using the methodology described
in section 4.3 and section 4.4. The respective objective functions to f1, f2 and f3 from sec-
tion 4.3 and section 4.4 are zCosts, zAvailability and zEmissions. Similarly, the respective perturba-
tions are changed from C1, C2 and C3 to CCosts, CAvailability and CEmissions. Both case studies
will have 8 perturbations of the zAvailability constraint and 8 perturbations of the zEmissions

constraint, meaning that the model will be solved 8 ∗ 8 = 64 times.

Some termination criteria have been established in order to avoid lengthy solution times. The
first termination criterion is when a solution with a MIP gap less than 2% is found. The
second stopping criterion is after running the model for longer than 10800 seconds. The
value of 10800 seconds was determined by experimenting and determining which time limits
would result in either good convergence of the MIP gap or a MIP gap less than 2%.
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5.4. Case study results

The case study findings are split into two sections. The first section discusses the findings of
case study 1, while the second discusses the findings of case study 2.

5.4.1. Case study 1 results

The Pareto front

The Pareto front of case study 1 is depicted in fig. 5.3 by plotting the solutions to the model
perturbations. The x-axis of the plot represents the objective function for the GHG emissions,
while the y-axis represents the objective function for the costs. The color of the plotted points
represents the availability objective function. A plot of the same Pareto front in three spatial
dimensions can be found in fig. C.2.

Figure 5.3.: Case study 1 Pareto front.

It can be seen that the Pareto front in fig. 5.3 shows four distinct solutions with unique objec-
tive function values. The first thing to notice is that the values for the time-based wind farm
availability objective function are identical across all solutions. This is consistent with the
observation that all maintenance tasks in case study 1 are preventive maintenance. Preven-
tive maintenance is modeled so that wind turbines are only shut down when maintenance
tasks are completed. Because each solution in the Pareto front plot must complete the same
number of preventive maintenance tasks and each task requires the same number of hours to
be worked on, the solutions have the same time-based wind farm availability estimates.

Each solution in fig. 5.3 has a time-based availability of 0.9993056. A manual calculation
can be used to verify this value by looking at the definition of the time-based wind farm
availability function. Each wind turbine requires one preventive maintenance inspection,
which takes 6 hours or 1/4 days to complete. This maintenance will result in the same
amount of downtime for the wind turbine. Case study 1 has a planning horizon of 360
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Fleet composition

Monohull Catamaran Trimaran

1 - 1 [Jun, Jul] -
2 1 [Apr] 1 [Sep] -
3 1 [Apr] 1 [Feb] -
7 1 [Jun, Jul] - -

Table 5.8.: Objective functions and fleet compositions of case study 1.

Optimization model UWiSE O&M Planner

Solution 1 Solution 7 Solution 1 Solution 7

Vessel type 0 - 1 [June, July] - 1 [June, July]
Vessel type 1 1 [June, July] - 1 [June, July] -
Vessel type 2 - - - -

Total costs e469.0k e435.3k e476.7k e408.3k
Time-based availability 99.93% 99.93% 99.76% 99.77%
GHG emissions 50.7 t CO2e 73.5t CO2e - -

Table 5.9.: Table with a summary of the small case study results from the optimization model
and the UWiSE O&M Planner

days, so the time-based availability of the entire wind farm can be calculated as 1− 1
360

1
4

1
60 ∗

60 = 0.9993056. When different vessel types are modeled to have different crew sizes on
each vessel, the time-based wind farm availability for preventive maintenance tasks can be
different.

The fleet composition of each unique solution in the Pareto front in fig. 5.3 varies. The fleet
compositions are shown in table 5.8. Solution number 1 charters a vessel of type 1 (catamaran)
beginning in June and ending at the end of July. It is the most expensive solution, but it also
produces the least emissions. Solutions 2 and 3 have similar compositions, but the months in
which the vessels are chartered differ. The more expensive solution charters a vessel of type
0 in April and a vessel of type 1 in September, whereas the less expensive solution charters
a vessel of type 0 in April and a vessel of type 1 in June. Finally, solution 7 is the solution
with the lowest costs and highest emissions is located on the far right. In June and July, this
solution charters a vessel of type 0.

Two of the fleets from the Pareto front in fig. 5.3 are selected as the optimal fleets. Case
study 1 is now run using the UWiSE O&M Planner, together with both optimal fleets. For
demonstration purposes, the fleets of solution numbers 1 and 7 have been selected. The
results of case study 1 with these fleets for the UWiSE O&M Planner can be found alongside
the optimization model in table 5.9. The cost estimation of both models with the initial
fleet are e712.0k and e712.2k, respectively. The costs of the optimized fleet are e435.3k and
e412.1k, respectively.
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5.4.2. Case study 2 results

The Pareto front

The Pareto front of case study 2 is plotted in fig. 5.4. Similarly to the Pareto front plots of
case study 1, this was achieved by creating a scatter plot of the objective functions from the
case study 2 solutions. There are two plots with the same Pareto front in fig. 5.4. The left
and right plots differ in that the right plot highlights some of the solutions by indicating the
solution number with an arrow, whereas the left plot is left blank. The x-axis of both plots
represents the GHG emission objective function and the y-axis represents the cost objective
function. The color of the plotted points represents the availability objective function. The
plots in fig. C.4 and fig. C.3 contain plots of the Pareto front from case study 2 in three spatial
directions rather than two with a color plot. When compared to the results of case study
1, it is evident that the amount of unique solutions is greater for case study 2. It can also be
seen that the solutions now have distinct time-based wind farm availability objective function
values, as the plotted points have different color shades.

Figure 5.4.: Plot of the Pareto front of case study 2.

The fleet compositions that belong to the set of numbered solutions in fig. 5.4 can be found in
table 5.11. The objective function values that belong to the numbered solutions can be found
in table 5.10.

The results of the fleet compositions in table 5.10 show that not all solutions have at least
one vessel available each month, despite the fact that critical failure corrective maintenance
tasks occur once a month. Some solutions have the same vessel in their fleet every month
(e.g., solution 58), whereas others have mixed fleet compositions across multiple months (e.g.
solution 63). In any given month, none of the solutions have a fleet that consists of more than
one vessel.

Convergence to optimality can be visualized by plotting the incumbent (best integer solu-
tion), best bound (lower bound to the model), and MIP gap over time. A plot like this can
be found in fig. 5.5 for solution number 60. An arrow marks the points where the fleet com-
position variables wnv are updated during the solving procedure. This plot shows that the
solution has converged to a MIP gap less than the stopping criterion of 2% at just over 200
seconds. Another convergence plot can be found in fig. 5.6 for solution number 48, but this
time without highlighting the points in time during the solving procedure where the fleet
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Objectives

f Cost

[k e]
f Emissions

[t CO2e]
f Availability

1 732 67.2 0.981
39 731 97.3 0.990
42 756 73.5 0.991
45 741 88.9 0.991
48 879 66.9 0.995
52 796 83.5 0.994
55 778 97.3 0.994
58 986 70.0 0.998
63 960 79.0 0.998

Table 5.10.: Table with the objective function values of a selection of solutions.

Fleet composition

Monohull Catamaran Trimaran

1 - 1 [Jun] 1 [Apr]
39 1 [Mar, May, Jun] 1 [Apr] -
42 1 [Apr] 1 [Feb, Jun] -
45 1 [Apr, Jun] 1 [Feb] -
48 - 1 [Feb, Mar] 1 [May, Jun]
52 1 [Jan, May, Jun] 1 [Mar] -
55 1 [Jan, Mar, May, Jun] - -
58 - - 1 [Jan, Feb, Mar, Apr, May, Jun]
63 1 [Mar, Apr, May, Jun] - 1 [Jan, Feb]

Table 5.11.: Table with the fleet compositions of a selection of solutions.



58 5. Case study

composition variables wnv are updated. It is clear that the solution did not reach a MIP gap
of less than 2% before the 10800 seconds stopping criteria was met. The difference between
the incumbent and best bound ceased to improve after 2000 seconds. A similar phenomenon
occurred with solution 24, where the MIP gap ceased to grow. All other solutions reached a
MIP gap of less than 2% before the time limit of 10800 seconds was reached.

Variables

The fleet composition variables were already evaluated in section 5.4.1 and section 5.4.2. The
variable unpv denotes how many vessels of type v are used on the day p in month n. Because
many of the variables in the fleet optimization model are defined in terms of the day p, a
calendar-type plot can be created to provide an overview of these variables. Each month is
defined to be 30 days long, so unpv is plotted in 6 blocks of 30 days. For each vessel type, an
additional row of calendar days can be plotted. For solution number 55, the calendar plot for
the variable unpv can be found in fig. 5.7.

One of the constraints in the fleet optimization model restricts vessel accessibility in certain
weather conditions. The wave height was set to be the limiting factor for the weather con-
ditions in both case studies 1 and 2. If the maximum wave height at which a v vessel can
operate, MK

v , is less than the average wave height on a given day, Upv, the vessel cannot be
used on that day. The days when certain vessels are unable to operate due to weather restric-
tions can be plotted using a calendar-type plot by marking the days where MK

v is less than
Upv as 0. If MK

v is greater than Upv, the value on the given day in the calendar plot is 1. This
vessel accessibility plot can be found in fig. 5.8.

When comparing fig. 5.7 to fig. 5.8, it is evident that vessels are only used on days when
there are no weather restrictions on the given vessel type. It can also be seen in the fig. 5.8
that certain vessel types may be utilized on more days than others. This is to be expected
given that the hull designs of some vessel types were defined to have lower wave height
limitations than other hull designs for both case studies 1 and 2. The trimaran hull design
had the highest maximum operable significant wave heights of any hull design, followed by
the catamaran and mono-hull, respectively. This is evident in fig. 5.8, where the catamaran
can be used on more days than the mono-hull, and the trimaran can be used on more days
than both the mono-hull and the catamaran.

A similar plot to the one made for unpv can be made for the number of man-hours spent
on a maintenance task, tpmvτ . The number of variables of tpmvτ is significantly larger than
the number of variables unpv because the former is defined for every maintenance task m and
wind turbine τ as well. For that reason, a subset of all variables tpmvτ are plotted. A calendar-
type plot for turbine 5 maintenance task 0 (corrective, critical failure) can be found in fig. 5.9.
A calendar-type plot for turbine 5 maintenance task 0 (preventive, coating reapplication) can
be found in fig. 5.10. Both plots make use of variables from solution 55.

Finally, the variables γpmτ , which indicate when a maintenance task is completed, can be
plotted. Recall that this is a binary variable and its value is equal to 1 if the maintenance task
is completed and equal to 0 if a maintenance task is not completed. The variable γpmτ can be
plotted in a calendar-type plot similar manner as had been done for unpv and tpmvτ . A plot
can be found in fig. 5.11 for solution number 55, maintenance task 2, and turbine 5.
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Figure 5.5.: Convergence over time for solution 60.

Figure 5.6.: Convergence over time for solution 48.
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Figure 5.7.: Variable that denotes when a vessel is used, unpv, for solution 55.

Figure 5.8.: Days on which vessels cannot be used due to weather restrictions.
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Figure 5.9.: Variable that denotes the hours worked, tpmvτ , for task 0 and turbine number 5 of
solution number 55.

Figure 5.10.: Variable that denotes the hours worked, tpmvτ for task 2 and turbine number 5
of solution number 55.

Figure 5.11.: Variable that denotes when a task is finished, γpmτ for task 2 and turbine number
5 of solution number 55.
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5.5. Concluding remarks

The purpose of this chapter was to answer to the fifth and final research sub-question, which
was formulated as follows:

• Sub-question 5: How can the developed fleet optimization model be verified?

Two case studies had been developed to answer this sub-question. Maintenance activities at
the Princess Amalia wind farm near IJmuiden are the focus of both case studies. The first
case study has been implemented in both the fleet optimization model and the UWiSE O&M
Planner, which is an offshore wind O&M cost estimation tool. The goal of Case study 1 is
to compare the cost estimates of the UWiSE O&M Planner to those of the fleet optimization
model. Case study 2 includes a broader range of maintenance task types. The goal of this
case study is to evaluate all of the maintenance task types defined in the fleet optimization
model. The results and variables of case study 2 are examined in greater depth to determine
whether the model works as intended. A calendar-based framework had been developed that
can help with the verification of constraints by visualizing the variables.

For case study 1, the results showed that the UWiSE O&M Planner and the optimization
model had similar cost estimations. However, the findings suggested that there are inherent
differences between the two models. The second case study investigated various methods for
plotting the variables, which can be used to confirm that the model works as intended.



6. Discussion

The current chapter discusses the developed fleet optimization model, the approach used to
solve the multi-objective model, and the results of the case studies. The chapter will start
off with some of the key findings of the current study. The results are then interpreted
in the section that follows. The limitations of the current study are assessed based on the
key findings and interpretation of the results. Finally, several recommendations for practical
applications and future research on the model are given.

6.1. Key findings

Two case studies have been developed and incorporated into the offshore wind fleet optimiza-
tion model in the current study. The purpose of case study 1 was to compare the costs of the
fleet optimization model and an offshore wind O&M cost modeling tool. Case study 2 was
developed to assess a wider range of maintenance types supported by the fleet optimization
model.

The Pareto front from Case Study 1 revealed a limited number of unique solutions. Using
the epsilon constraint method, only four solutions with a unique combination of costs, GHG
emissions, and wind farm availability objective functions were found. All of the solutions
from case study 1 had the same availability values. The fleet compositions of the solutions all
consisted of fleet sizes of no more than one vessel per month. The uniqueness of the solutions
was most characterized by the vessel types in the solutions and the months in which they
were chartered. Case study 1 cost estimations revealed similar results between the UWiSE
O&M Planner and the optimization model, but hinted that both models are fundamentally
different.

The solutions from case study 2 contained a greater number and a greater variety of unique
fleet compositions than those of case study 1. All solutions used fleet sizes that were never
larger than one vessel in a given month. Despite the fact that corrective maintenance for a
critical failure was modeled to occur once a month, some solutions did not charter a vessel in
that month. These corrective maintenance tasks were then postponed until the fleet consisted
of at least one vessel in a month. This resulted in lower availability compared to solutions
that chartered vessels over long periods of time, but also a lower cost because fewer vessels
were chartered. In almost all solutions, preventive maintenance tasks were completed over
several days rather than all at once. Except for two solutions, all reached a lower MIP gap
than 2% before reaching the 10800 run time stopping criteria.

6.2. Interpretation of the results

The smaller number of maintenance tasks included in case study 1 could explain the lower
variety of solutions compared to case study 2. If the number of maintenance tasks is greater,
more vessels are required to transport enough maintenance technicians to the wind farm to
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complete all maintenance tasks. If more vessels are required, more fleet compositions are
possible, and the number of Pareto optimal fleet compositions may increase as a result.

The lack of corrective maintenance tasks with critical failures in case study 1 could explain
why there is no variation in the time-based wind farm availability objective function of the
solutions. For case studies that only include preventive maintenance tasks, the only contribu-
tion to wind turbine downtime is when the turbine is shut down for maintenance. Because
all maintenance tasks are completed in the same amount of time by all vessel types, the fleet
composition has no effect on the wind farm availability objective function. If the wind farm
availability objective function was quantified as production based rather than time-based, the
influence of the varying wind farm capacity factor in each month could potentially lead to
more diverse wind farm availability objective function values. The low amount of unique
solutions in case study 1 may also be related to the uniform wind farm availability objective
function values, as the diversity in wind farm availability values in case study 2 was paired
with a significantly greater number of unique solutions.

The cost estimations for case study 1 between the fleet optimization model and the UWiSE
O&M Planner were relatively similar. The optimization model estimated a higher cost for
solution number 1, whereas the UWiSE O&M Planner estimated a higher cost for solution
number 7. This could imply that the close estimates are coincidental and that the intrinsic
cost quantification of the two models varies more for different solutions or case studies. The
wind farm availability functions are relatively different between the fleet optimization model
and the UWiSE O&M Planner, which could be due to a difference in wind farm availability
quantification.

Both case studies 1 and 2 had fleet sizes of no more than one vessel in any given month.
One possible explanation for this in case study 1 is that if vessels are chartered for multiple
months in a row, a discount is given. As a result, chartering a vessel for two months in a row is
more cost-efficient than chartering two vessels in a single month. A similar explanation could
clarify the phenomenon in case study 2 as well. Furthermore, case study 2 has an incentive
to charter at least one vessel every month in order to repair a turbine breakdown as soon as
it occurs to maintain high wind farm availability. The majority of the preventive maintenance
tasks in fig. 5.7 are scheduled in months 4 and 5, when the wind turbine downtime costs
are lower than in previous months due to lower electricity prices and wind farm capacity
factor. This indicates that the optimization model takes advantage of scheduling preventive
maintenance tasks these months. If vessels are chartered in earlier months, they are only
utilized for corrective maintenance tasks. This means that there is plenty of room left to
utilize the remaining vessels, and it is not necessary to have a fleet size larger than one vessel
at any given time.

The number of hours worked on the preventive maintenance task in fig. 5.10 shows that the
amount of work on that task is spread out over several days. This is inefficient compared to
completing the tasks on the same day. One possible explanation is that the model does not
account for the lost time, additional costs, and additional GHG emissions caused by transit
between wind turbines. Spreading out work on preventive maintenance tasks does not have
a negative impact on the objective function values if these factors are ignored.

Before the time limit was reached, most solutions for case study 2 and all solutions for case
study 1 converged to a MIP gap of less than 2%. In case study 2, an interesting phenomenon
occurred when the two solutions did not converge in time. During the solving procedure, the
MIP gap appears to stop improving at a point in time. Similar phenomena occurred during
earlier adaptations of the fleet optimization model during the design phase of the model.
One possible cause could be a weak MIP model formulation (Klotz & Newman, 2013), but
this would not explain why it occurs in only a subset of the perturbed models of case study
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2. Another possible cause is thought to be the unusually high number of variables in a
constraint by setting the objective functions as a constraint, as opposed to regular constraints,
which could be difficult for the MIP solver to deal with. Both potential causes are speculative,
and the precise cause of this phenomenon is unknown.

6.3. Limitations

The simplification of the routing is one of the limitations of the model. The effects of this
simplification were apparent during the evaluation of the solutions of case study 2, where
the preventive maintenance tasks were spread out over several days. This is considered
inefficient because the maintenance vessel and technicians must be transported multiple times
throughout the wind farm. The model does not penalize this because it does not model
transit in between the wind turbines. As a result, the amount of available time to work on
maintenance tasks is overestimated, while the cost and GHG emission objective functions are
underestimated.

Another limitation is the deterministic nature of the model. Many offshore wind O&M fleet
optimization models in table 2.2 included multi-stage stochastic optimization models to ac-
count for uncertainty in fleet optimization decision-making. Many arguments can be made
for the importance of incorporating uncertainty in O&M fleet optimization models, as many
aspects of offshore wind O&M are inherently uncertain. Weather, unexpected breakdowns,
and electricity prices are examples of uncertainty in offshore wind O&M.

Despite its shortcomings, the model was successful in incorporating a GHG emission objec-
tive function into an offshore wind fleet optimization model. Given the inherent uncertainty
in offshore wind O&M, the use of multi-stage stochastic fleet optimization models, as found
in many other fleet optimization studies, is a reasonable modeling choice. However, these
multi-stage optimization models can be computationally intensive. This study solves a multi-
objective model using the epsilon constraint method in combination with MIP, which offers
the flexibility to choose from various fleet compositions based on multiple KPIs. Unfortu-
nately, this flexibility comes with a high computational cost as the model has to be solved
multiple times. The combination of a multi-stage model and the multi-objective optimiza-
tion method that was developed in the current study could risk becoming an optimization
approach that is too computationally expensive to solve efficiently.

6.4. Recommendations

Because the model does not account for uncertainty, it is recommended to take a conservative
approach when selecting parameters and configuring the fleet optimization model. One
practical example would be to see if the historical weather data includes unusually good
weather in a month where bad weather is expected. It is also recommended that the vessel
types used as fleet composition candidates are limited to those that move to and from the
wind farm once per day, such as CTVs. Although the model is not necessarily limited to
specific vessel types, it is expected that other vessel types, such as SOVs, will not be accurately
modeled because they can stay offshore for several days.

Future research could look into the possibility of incorporating stochastics into the fleet op-
timization model. Multi-stage optimization models are a common approach for modeling
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uncertainty in offshore wind fleet optimization studies, but they make the models compu-
tationally expensive to solve. Therefore, future research could explore efficient methods for
combining multi-stage and multi-objective models. Additionally, alternative approaches for
incorporating uncertainty, such as robust optimization, could be investigated to compare their
effectiveness. To enhance the accuracy of the fleet optimization model, it would be valuable
to investigate the benefits of a higher fidelity transit model as well as scope 2 or scope 3 GHG
quantification methods.



7. Conclusion

The current study is aimed at developing a multi-objective optimization model that chooses
an offshore wind O&M fleet based on costs, wind farm availability, and GHG emissions. To
the authors best knowledge, this study is the first to include GHG emissions in an offshore
wind O&M fleet optimization study.

The central research question of the current study was formulated as follows:

• How can a multi-objective optimization model be formulated to find an optimal vessel
fleet selection for offshore wind O&M activities, based on the financial costs, the GHG
emissions, and the time-based wind farm availability as a result of the selected fleet?

The cost objective function takes into account vessel charter costs, vessel usage costs, main-
tenance operation costs, and profit loss due to wind farm downtime. The GHG emission
objective function quantifies direct emissions as a result of vessel transit and powering the
vessel auxiliary systems during maintenance tasks. The time-based wind farm availability
is based on the amount of downtime of a wind turbine, where corrective maintenance tasks
cause downtime from the moment that a breakdown occurs and preventive maintenance
tasks only cause downtime while maintenance is executed. The epsilon constraint method is
used as a reformulation method for the fleet optimization model. The multi-objective opti-
mization model is converted into a single objective model that is solved multiple times. The
other two objective functions are set as constraints that are perturbed each time the model is
solved. The Pareto front of the model is estimated by solving these perturbed single-objective
models with a commercial MIP solver. The Pareto front can be used to compare trade-offs
between solutions.

It is suggested that stochastics be included in the fleet optimization model for future research.
Furthermore, there is plenty of room to improve the quantification of transit so that transit
between wind turbines is accounted for. One approach that looks promising for this is the
pattern-based approach from the studies of (Gutierrez-Alcoba et al., 2019) and (Stålhane et
al., 2019). Incorporating scope 2 and scope 3 emissions to account for indirect emissions
could be a novel approach to quantifying GHG emissions for offshore wind fleet composition
decisions for future studies.
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ABSTRACT Until recently, tenders in Europe were awarded to wind farm developers based on the highest auction prices
or the lowest subsidized bids. The wind industry has suggested that non-price-related criteria should be considered for
tenders, like plans to reduce greenhouse gas emissions. As a result of the sustainable tender criteria, greenhouse gas
emissions are a relatively new KPI for offshore wind farm developers.

Studies have shown that the costs and wind farm availability are sensitive to the fleet composition and were commonly
used as criteria in offshore wind fleet optimization models. Offshore wind greenhouse gas emissions were shown to be
sensitive to the offshore wind fleet composition as well but thus far not used as criteria for fleet composition decision-
making. This study aims to develop an offshore wind O&M multi-objective fleet optimization model that includes
GHG emissions as the third criterion for the fleet composition. The model is rendered as a deterministic MIP problem.
An epsilon constraint method-inspired approach is proposed to reformulate the multi-objective into a set of perturbed
single-objective models, which can be solved using a commercial MIP solver.

I. INTRODUCTION

One of the recent conclusions at the COP27 climate confer-
ence in 2022 was that the 1.5°C global warming goal is still
viable1. However, warnings were given for the lack of efforts
to phase out fossil fuels as a source of energy. It will take con-
crete and ambitious plans from nations all over the world to
reduce their emissions in order to maintain the 1.5°C global
warming goal2. Wind energy is a promising renewable en-
ergy source for mitigating global warming3. In 2020, the total
installed wind energy capacity in Europe was 220 Giga Watts
(GW)4, with offshore wind energy accounting for 25 GW. Off-
shore wind energy its share of total new installed wind energy
has been steadily increasing4. The outlook for offshore wind
is positive in the long term as well, as Europe aims to increase
the total offshore wind capacity to 400 GW by 20504. Wind
farm developers will need to build large-scale offshore wind
farms in order to realize these ambitious plans. Most offshore
wind projects in Europe are awarded to wind farm developers
using tenders. Once a tender is awarded, the wind farm devel-
oper is granted a permit for the construction, operation, and
removal of the wind farm. Up till recently, the highest auc-
tion prices or the lowest subsidized bids serve as the criteria
for awarding tenders5. However, the European wind industry
has suggested that non-price-related criteria should be con-
sidered for tenders as well6. These non-price-related criteria
include sustainability and biodiversity-related criteria, such as
plans to reduce greenhouse gas (GHG) emissions. This cre-
ates a strong incentive for offshore wind farm developers to
propose environmentally friendly and sustainable strategies
for the wind farm. The vessel fleet composition during the
wind farm operations and maintenance (O&M) phase is one
of the strategies. The vessels are used to transport mainte-
nance personnel, spare parts, and/or can perform heavy lift-
ing. Offshore wind costs and wind farm availability are two
key performance indicators (KPIs) that can be linked to the
vessel fleet composition7,8. Furthermore, as a result of sus-
tainable tender criteria, GHG emissions are now an offshore
wind KPI that can be linked to vessel fleet composition9.

There is an extensive amount of literature on fleet opti-

mization models in offshore wind. The studies of Halvorsen-
Weare et al. 10 and Diran 11 have investigated ways to develop
a deterministic fleet optimization model that is solved using
Mixed-Integer Programming (MIP). Some of the gaps that
were identified in deterministic models were that they did not
capture the highly uncertain nature of processes in offshore
wind O&M. The studies of Gundegjerde et al. 12 and Stål-
hane et al. 13 introduced multi-stage stochastic modeling to
offshore wind fleet optimization in order to incorporate the
uncertainty of parameters into decision-making. Both stud-
ies have solved the fleet optimization models using MIP. One
conclusion that was drawn was that if the planning aspect of
the models would be become more detailed, the model would
quickly become too impractical to solve. A number of differ-
ent multi-stage stochastic programming models were devel-
oped and investigated alternative ways to solve the fleet opti-
mization models. The study of Gutierrez-Alcoba et al. 14 in-
vestigated ways to include heuristics for maintenance schedul-
ing. The study of Stålhane et al. 15 investigated using Dantiz-
Wolfe reformulation methods and metaheuristics for fleet op-
timization models. The studies Stålhane et al. 16 and Bolstad
et al. 17 attempt to solve an offshore wind O&M fleet opti-
mization model using an L-shaped and a heuristic GRASP
method, respectively. A different approach to the analytical
models from the formerly listed studies is by means of simula-
tion. The studies of Dalgic et al. 18 and Dalgic et al. 19 include
a simulation-based approach to evaluate an optimal CTV fleet
selection and to evaluate the effects of a mothership concept
for offshore wind O&M, respectively. The studies of Rinaldi,
Thies, and Johanning 20 and Rinaldi et al. 21 , by using genetic
algorithms to find sets of optimal solutions based upon mul-
tiple objective functions from a surrogate O&M simulation
model.

Stakeholders have expressed interest in decision-support
tools for offshore wind planning activities such as fleet com-
position. The majority of research on these decision-making
tools has focused on lowering costs and increasing wind farm
availability. However, research has demonstrated that GHG
emissions in the O&M phase are also largely affected by fleet
composition. To the best of the authors’ knowledge, cur-
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rent offshore wind studies have yet to incorporate greenhouse
gas (GHG) emissions into O&M fleet composition decision-
making, despite suggestions from the industry to award off-
shore wind farm tenders to wind farm developers based on
non-monetary criteria, such as environmental impact. This
highlights a need for further research into the integration of
GHG emissions as a key consideration in the fleet composi-
tion decision-making process for offshore wind energy, in or-
der to maximize the industry its contribution to sustainability
and climate change mitigation.

The goal of this study is to add the GHG emissions to
the costs and wind farm availability as criteria for a multi-
objective optimization model for offshore wind O&M fleet
composition decision-making. The model in the current study
is based on the offshore wind fleet optimization model of Bol-
stad et al. 17 and Stålhane et al. 16 . The structure of the cur-
rent study begins with the fleet optimization model develop-
ment. After that, a method is introduced that reformulates the
fleet optimization model into multiple single-objective mod-
els. The developed fleet optimization model and the reformu-
lation method will be applied to two case studies.

II. METHODS

A. Fleet optimization model

The model accounts for the presence of a single wind farm,
which comprises a specific number of turbines, and a single
maintenance base. A time horizon in the model specifies the
duration over which the fleet optimization is evaluated, which
is expressed in terms of months and days. Additionally, the
model defines the maximum number of work hours per day
in which maintenance can be executed. The time lost due to
transit is deducted from the amount of time available for main-
tenance tasks on any given day. A maximum fleet size can be
set to take into account the maximum number of maintenance
vehicles imposed by maintenance base size restrictions.

The strategy in this model is a combination of corrective
and preventive maintenance operations. The model differenti-
ates maintenance tasks based on the number of tasks, the cost
of the operation, and the number of hours of work required be-
fore completion. Corrective maintenance tasks are assumed to
be performed as a result of a critical failure, and the wind tur-
bine is rendered inoperable until repaired. Preventive mainte-
nance tasks can be completed at any time during the planning
horizon and only cause downtime when technicians are work-
ing on the wind turbine. The wind farm availability is calcu-
lated as a function of downtime and is time-based. It can be
modeled that one maintenance task cannot begin until another
maintenance task is completed. All maintenance technicians
on a vessel are assumed to be able to work on a maintenance
task at the same time. Work on maintenance tasks is measured
in manhours, so a vessel with three maintenance technicians
can complete three manhours of work in one hour. The model
keeps track of whether or not maintenance tasks are completed
by evaluating if sufficient man-hours are assigned to the task.

It is assumed that a vessel can be chartered only from the

start to the end of a month. Long charter contracts can be set
to be less expensive per month than short charter contracts.
Aside from chartering costs, vessels may have fixed costs as-
sociated with them for owning the vessel for a set period of
time. The model will account for only transit between the
maintenance base and the wind farm. Weather conditions may
prevent vessels from being used on a given day if the con-
ditions are worse than the maximum rated conditions that a
vessel can operate in. The simplified transit assumptions rep-
resent CTVs because they travel to and from the wind farm
once per day. Other maintenance vehicles, such as helicopters
or SOVs, travel to and from the wind farm multiple times a
day or can stay offshore for extended periods of time and are
thus not accurately quantified in the model.

Only direct emissions from vessels are used to calculate
GHG emissions. The amount of fuel used by a vessel depends
on how much time it spends in transit and how much fuel it
uses while idling/loitering. To account for differences in fuel
costs and emissions, different fuel types can be used for dif-
ferent vessel types. The vessel speed and the distance between
the maintenance base and the wind farm determine the amount
of transit time and the amount of time spent idling/loitering
depends on the number of hours that are being worked on a
maintenance task.

It is possible to assign penalty costs if maintenance tasks
are not completed by the end of the planning horizon. If all
maintenance tasks must be completed, the model can force all
solutions to finish the maintenance tasks. The model also in-
cludes the costs of maintenance technicians and incorporates
historical electricity prices and wind turbine capacity factors
to estimate the lost electricity produced during downtime.

1. Indices

n Denotes the month number
l Denotes the month number when a vessel contract expires
p Denotes the day number
τ Denotes the turbine number
m Denotes the maintenance task number
v Denotes the vessel type number

2. Sets

N Set of all months
V Set of all vessels
L Denotes until which month a vessel is chartered
M Denotes the number of maintenance activities

MPREV Set of all preventive maintenance tasks
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MCORR Set of all corrective maintenance tasks
T Set of all wind turbines
P Set of all days
Pn Set of all days that belong to month n
An The set of all ancestor months

3. Coefficients and parameters

CTC
nvl

Chartering cost for vessel of type v in month
n with expiration in l

CF
nv

Fixed costs of operating vessel of type v in
month n

Gv Capacity that a vessel of type v uses

MD Vessel capacity of the base

CM
mv

The costs of using vessel v on maintenance
task m per manhour

CDTC
p Downtime costs per day of a turbine on day p

MCREW
v Crew size of a vessel type v

PBD
mτ

Day on which a breakdown of maintenance type
m on turbine τ happens

CV
v

Costs of using a vessel of type v for transit
per hour

T T
v

Amount of time it takes to travel back and forth
to the wind farm with a vessel of type v

CP
m

Penalty costs of failing to complete the maintenance
task m by the end of the planning horizon

CGHG−T RANSIT
v

Amount of GHG emissions by using a vessel of type v
for transit per trip to the wind turbine and back

CGHG−IDLE
v Amount of GHG emissions due to idling per hour

T M
mτ

Amount of manhours that maintenance task m
requires for turbine τ before it is completed

T MAX Maximum amount of hours that can be
worked on a day

MK
v

Maximum weather condition that a vessel of
type v can operate in

Upv Weather condition on day p

MBIG Big-M number used for linearization of cost
objective function

4. Variables

xnvl
Amount of vessels of type v chartered in month
n until month l

wnv
Amount of vessels of type v available due to
long time chartering in month n

unpv
Amount of vessels of type v used for maintenance
in month n on day p

tpmvτ
Amount of manhours that vessels of type v conduct
on maintenance task m on turbine τ on day p

tLIN
pmvτ

Variable of the amount of manhours that vessels of
type v conduct on maintenance task m on turbine
τ on day p and is used for linearization

γpmτ

{
1 if task m on turbine τ is completed on day p
0 if task m on turbine τ is not completed on day p

βmτ

{
1 if task is not completed by the planning horizon end
0 if task is completed by the planning horizon end

5. Objective functions

zCost = ∑
n∈N

∑
v∈V

∑
l∈L

CTC
nvl xnvl (1a)

+ ∑
n∈N

∑
v∈V

CF
nvwnv (1b)

+ ∑
p∈P

∑
τ∈T

∑
m∈M

∑
v∈V

CM
mvtpmvτ (1c)

+ ∑
p∈P

∑
τ∈T

∑
m∈MPREV

∑
v∈V

CDTC
p

tpmvτ

24MCREW
v

(1d)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

CDTC
p (p−PBD

mτ )γpmτ (1e)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

∑
v∈V

CDTC
p

tLIN
pmvτ

24MCREW
v

(1f)

+ ∑
τ∈T

∑
m∈MCORR

CDTC
p βmτ(|P|−PBD

mτ ) (1g)

+ ∑
n∈N

∑
p∈Pn

∑
v∈V

CV
v unpvT T

v (1h)

+ ∑
m∈M

∑
τ∈T

CP
mβmτ (1i)

zEmissions = ∑
n∈N

∑
p∈Pn

∑
v∈V

CGHG−T RANSIT
v unpv (2a)

+ ∑
p∈P

∑
v∈V

∑
m∈M

∑
τ∈T

CGHG−IDLE
v

tpmvτ

MCREW
v

(2b)

zAvailability =1− 1
|P| |T |

(
∑

m∈MCORR
∑
τ∈T

βmτ(|P|−PBD
mτ ) (3a)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

(p−PBD
mτ )γpmτ (3b)

+ ∑
p∈P

∑
τ∈T

∑
m∈MCORR

∑
v∈V

tLIN
pmvτ

24MCREW
v

(3c)

+ ∑
p∈P

∑
τ∈T

∑
m∈MPREV

∑
v∈V

tpmvτ

24MCREW
v

)
(3d)
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6. Constraints

Vessel balance constraints

∑
l∈L

xnvl +wa(n)v− ∑
n′∈An

xn′v a(n) = wnv ∀n ∈ N\{1},v ∈V,n≤ l (4)

∑
l∈L

xnvl = wnv ∀n = 1,v ∈V (5)

∑
v∈V

Gvwnv ≤MD ∀n ∈ N (6)

unpv ≤ wnv ∀n ∈ N, p ∈ Pn,v ∈V (7)

Weather accessability constraints

(MK
v −Upv) ∑

m∈M
∑
τ∈T

tpmvτ ≥ 0 ∀p ∈ P,v ∈V (8)

Maintenance constraints

∑
m∈M

∑
τ∈T

tpmvτ ≤ EvMCREW
v (T MAX −T T

v )unpv ∀n ∈ N, p ∈ Pn,v ∈V (9)

∑
p∈P

∑
v∈V

tpmvτ ≥ T M
mτ(1−βmτ) ∀m ∈M,τ ∈ T (10)

∑
p′∈{(p+1),...,|P|}

∑
v∈V

tp′mvτ ≤ T M
mτ(1− γpmτ) ∀p ∈ P,m ∈M,τ ∈ T (11)

∑
p∈P

γpmτ +βmτ = 1 ∀m ∈M,τ ∈ T (12)

∑
v∈V

(
tpmvτ

MCREW
v

)
≤ T MAX ∀m ∈M,τ ∈ T, p ∈ P (13)

(p−PBD
mτ ) ∑

v∈V
tpmvτ ≥ 0 ∀p ∈ P,m ∈MCORR,τ ∈ T (14)

∑
v∈V

tpmvτ ≥ γpmτ ∀p ∈ P,m ∈M,τ ∈ T (15)

∑
v∈V

∑
p′∈{0,...,p}

tp,m2,v,τ ≤ (1− γp,m1,τ)T
M

m2
∀p ∈ P,τ ∈ T (16)

Big M constraints

tLIN
pmvτ ≥ tpmvτ −MBIG(1− γpmτ) ∀v ∈V, p ∈ P,m ∈MCORR,τ ∈ T (17)

tLIN
pmvτ ≤MBIGγpmτ ∀v ∈V, p ∈ P,m ∈MCORR,τ ∈ T (18)

0≤ tLIN
pmvτ ≤ tpmvτ ∀v ∈V, p ∈ P,m ∈MCORR,τ ∈ T (19)

Integrality constraints
tpmvτ ∈ R≥0 ∀p ∈ P,v ∈V,m ∈M,τ ∈ T (20)
xnvl ∈ Z≥0 ∀n ∈ N,v ∈V, l ∈ L (21)
wnv ∈ Z≥0 ∀n ∈ N,v ∈V (22)

tLIN
pmvτ ∈ R≥0 ∀p ∈ P,v ∈V,m ∈M,τ ∈ T (23)

unpv ∈ Z≥0 ∀n ∈ N, p ∈ Pn,v ∈V (24)

γpmτ =

{
1
0 ∀p ∈ P,m ∈M,τ ∈ T (25)
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βmτ =

{
1
0 ∀m ∈M,τ ∈ T (26)

The first term of the cost objective function zCost in eq. (1a)
are the charter costs for chartering a vessel of type v from
month n until month l. The variable xnvl is defined as the
number of vessels of type v that are chartered from month n
until month l. In the case that x1,4,2 = 3, this would indicate
that 3 units of vessel type 4 should be chartered from month 1
to month 2, meaning that the vessel is chartered for 2 months
in total. The parameter CTC

nvl denotes the costs of chartering a
vessel of type v from month n until month l. The set N is the
set of all months. A set V is defined as the set that includes
all vessel types. The set L is the set that indicates until which
months vessels can be chartered.

The second term consists of the fixed costs of owning a
vessel fleet. The variable wnv denotes the number of vessels
of type v in month n. The variable wnv is different from xnvl as
the latter denotes the number of contracts and the length of the
contracts that are required, while the former denotes the actual
fleet size in a certain month as a result of the contract length
xnvl . The parameter CF

nv denotes the fixed costs of owning a
vessel of type v in month n.

The term in eq. (1c) are the costs due to conducting mainte-
nance per manhour of work. The variable tpmvτ is the variable
that denotes the number of manhours a vessel of type v con-
ducts on maintenance task m. The parameter CM

mv are the costs
of conducting maintenance on task m while using vessel v per
manhour worked on a task.

The term in eq. (1d) is the downtime costs due to preventive
maintenance. The parameter MCREW

v represents the amount
of crew that is onboard a vessel. The amount of days that the
wind turbine is offline due to maintenance on the wind turbine
is expressed as the number of manhours tpmvτ divided by the
amount of crew MCREW

v and by 24 hours. The parameter CDTC
p

is a parameter that is equal to the number of costs lost for every
24 hour of wind turbine downtime on a given day p.

The downtime costs due to corrective maintenance can be
found in eq. (1e), eq. (1f) and eq. (1g). The variable γpmτ is
a binary variable that is equal to 1 if a maintenance operation
m on wind turbine τ is completed on day p and is equal to
0 if this is not the case. The binary variable βmτ is a binary
variable that is equal to 1 if the maintenance task m on wind
turbine τ is not completed by the end of the planning horizon
and equal to 0 if it is completed somewhere in the planning
horizon. The parameter PBD

mτ denotes the day on which the
breakdown happens. The parameter |P| stands for the total
amount of days in the planning horizon. In case a maintenance
task is completed on the day p, eq. (1e) counts the number of
days between the occurrence of the breakdown and the repair
of the breakdown. This term is only added when the main-
tenance is completed on that specific day because only then
it is multiplied with γpmτ = 1. The number of days between
the breakdown and the repair is then multiplied by the costs
of downtime CDTC

p . It could be that there is still time that is
spent on a maintenance task on the day it is completed and still

causes the wind turbine to be broken down in the first part of
the day. This is accounted for by eq. (1f), by summing up the
number of hours that are being worked on a wind turbine on
the day that it is completed. Note that tLIN

pmvτ is a linearization
of tpmvτ γpmτ using the big-M method, so only the amount of
hours that are worked on the day on which the maintenance
tasks are completed are nonzero. In the case that a mainte-
nance task is not completed, there are still downtime costs.
However, γpmτ = 0 for all days and eq. (1e) will not capture
these costs as γpmτ is never equal to 1. Therefore, the amount
of downtime is formulated in eq. (1g) as a function of the vari-
able βmτ in case the maintenance task is not completed in the
planning horizon.

The costs due to using a maintenance vehicle to travel to
the wind farm and back and additional penalty costs if main-
tenance operations are not completed by the end of the month
can be found in eq. (1h) and eq. (1i), respectively. The vari-
able unpv is defined as the number of vessels of type v that are
used to travel to the wind farm and back in month n on the day
p. The parameter CV

v denotes the number of costs of using a
maintenance vehicle at operating speeds per hour, while the
parameter T T

v denotes the amount of time it takes for a vessel
of type v to travel to the wind farm and back.

The terms in eq. (3a), eq. (3b) and eq. (3c) represent the to-
tal downtime due to corrective maintenance. The second term
in eq. (3d) is the loss of wind farm availability due to preven-
tive maintenance operations. The first part in eq. (3a) is the
total amount of availability, represented by 1. The availabil-
ity function will be divided by the total number of turbines
and the total number of days in the planning horizon, |P| and
|T | respectively. This will return the wind farm availability
over the entire planning horizon, rather than the availability of
individual turbines.

Constraint eq. (4) relates the number of vessels of type v in
month n that are available to use for maintenance activities,
wnv, to the sum of newly chartered vessels in month n until
month l, ∑l∈L xnvl , plus the number of available vessels from
last month, wa(n)v, minus the number of vessels of which the
contract ended in the previous month, ∑n′∈An xn′v a(n). The set
An is the set of all months that lie behind month n. E.g. the
set An=3 = {1,2} and the set An=5 = {1,2,3,4}. Additionally,
a(n) denotes the ancestor node before node n. E.g. if n = 3,
then a(3)= 2 and if n= 5, then a(5)= 4. This constraint holds
for all n ∈ N with the exception of n = 1, because no ancestor
nodes exist for the first month. Additionally, this constraint
only holds such that n≤ l because a vessel cannot be chartered
until a month that lies in the past.

Constraint eq. (5) serves the same purpose as constraint
eq. (5), but is specifically for the first month. It relates the
number of vessels of type v in month n to the number of char-
ter contracts that start in month n = 1 until month l.

In eq. (6), the term on the left-hand side of the equation rep-
resents the number of vessels of type v that are part of the fleet
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in month n, multiplied by the size Gv of the vessel. The right-
hand side of the equation is the maximum available space of
the maintenance base MD.

Constraint eq. (7) ensures that the number of vessels that
are used for maintenance, unpv, cannot exceed the number of
vessels that are available in the fleet, wnv.

Constraint eq. (8) makes sure that vessels cannot be used
for maintenance if the weather conditions exceed the maxi-
mum conditions that the vessel can operate in. The parameter
MK

v is defined as the weather condition in which a vessel of
type v can operate. The parameter Upv denotes the weather
condition in month n on day p. Some maintenance vehicles
could have different limiting types of weather conditions, e.g.
wave height for vessels and wind speed for helicopters. For
that reason, Upv could also be a different type of weather con-
dition depending on the vessel type v. The constraint subtracts
Upv from MK

v and is multiplied by the sum of manhours that
a spends on a task on a given day. In the case that MK

v −Upv
is smaller than 0, the sum of manhours that a vessel spends
working on a task has to be equal to zero in order to not vi-
olate the right-hand side condition. This can only occur if
the weather value Upv is higher than the maximum weather
conditions that a vessel can operate in MK

v . In the case that
MK

v −Upv is larger than 0, the sum of manhours that a main-
tenance vehicle works on, is not constrained by the weather.

Constraint eq. (9) ensures that if the total amount of man-
hours that is worked on a maintenance task m on vessel τ on
day p in month n by vessel v, tpmvτ , is larger than 0, the right
amount of vessels unpv are used for the maintenance operation.
Additionally, this constraint sets an upper limit to the amount
of time that can be worked on a maintenance task by unpv

amount of vessels. This is defined as T MAX−T T
v , which is the

maximum amount of operating time minus the time needed to
travel to the wind farm and back. An efficiency factor Ev can
be set to account for the loss of productivity of the crew, e.g.
due to breaks.

Constraint eq. (10) makes sure that if not enough time is
spent on a maintenance operation, the task will be assigned
as uncompleted. The parameter T M

m is the required amount of
manhours needed to complete maintenance task m.

Constraint eq. (11) ensures that once a maintenance task is
completed, no more hours are put into the maintenance oper-
ation on the following days after the completed maintenance
task. Additionally, it limits the number of hours that are put in
the task on the following days if the task is not completed to no
more than the maximum amount of hours that are required for
a maintenance task. In the case that γpmτ = 1, the right-hand
side of the equation becomes equal to 0. If the right-hand side
of the equation is equal to zero, that means that the left-hand
side of the equation has to be less or equal to zero. Since neg-
ative worked manhours tpmvτ do not represent anything real-
istic, this means that the only feasible condition that satisfies
this constraint is that the left-hand side sum is equal to 0 as
well. Note that the sum of manhours that are being worked on
is summed over p′ ∈ {(p+1), ..., |P|, which represents the set
of remaining days after day p.

Constraint eq. (12) makes sure that a maintenance task is
either completed on a particular day or that a maintenance task

is not completed by the end of the month. This is ensured by
summing up the variable which is defined to be equal to 1 if
a maintenance task is completed on a particular day p, γpmτ
and adding the binary variable βmτ that is defined to be equal
to 1 if the maintenance task is not completed by the end of
the year. As all variables are binary variables, this constraint
makes sure that only one of the variables on the left-hand side
can be equal to 1. Therefore, the maintenance task can only
be completed once or can remain uncompleted at the end of
the planning horizon.

Constraint eq. (13) ensures that the maximum amount of
hours that all vessels can work on a maintenance task on a
given day does not exceed the maximum amount of hours that
can be worked on a day. The reason for adding this constraint
is to avoid situations where several maintenance vehicles can
work on the maintenance task simultaneously and complete it
faster, while this might be infeasible. In the constraint, this is
expressed on the left-hand side by summing up the number of
hours that each vessel of type v works on a task m from tur-
bine τ on the day p in month m and dividing this value by the
crew size MCREW

v . On the right-hand side, there is the max-
imum amount of hours that can be worked on maintenance
tasks each day.

Constraint eq. (14) makes sure that no hours can be worked
on a corrective maintenance task if the breakdown of the tur-
bine did not occur yet. This is expressed by subtracting the
current day p by the parameter that represents the day that the
breakdown occurs PBD

mτ and multiplying this with the number
of manhours that each vessel puts in this task. In the case that
the current day is less or equal to the day that the breakdown
occur, p−PBD

mτ ≤ 0, that means that the sum of manhours that
is worked on that task has to be equal to 0 in order to sat-
isfy the right-hand side of the constraint. In other words, the
maintenance tasks cannot be worked on. In the case that the
current day is larger than the day that the breakdown occurs,
the sum of manhours can take on any positive value or 0, thus
the maintenance tasks can be worked on.

Constraint eq. (15) says that γpmτ can only be equal to 1 if at
least one manhour has been worked on the task on that day and
ensures that γpmτ = 1 once a maintenance task is completed.

The constraint in eq. (16) ensures that a task m2 cannot be
started before a task m1 is completed. The variable γp,m1,τ = 1
if the first maintenance task is completed. If this is the case,
the right-hand side of this constraint becomes equal to 0. The
remaining left-hand side of the constraint is the number of
man-hours that are worked on the second maintenance task
from day 0 until day p. The left-hand side and right-hand
side together make sure that the number of man-hours that is
worked on the second maintenance task m2 is equal 0 up until
m1 is completed.

Constraint eq. (17), eq. (18), and eq. (19) are constraints
that are used for the big-M method. They ensure that tpmvτ =
tLIN
pmvτ only if γpmτ = 1. The variable tLIN

pmvτ is used in the cost
and availability objective functions in eq. (1f) and eq. (3c).
Constraint eqs. (20) to (26) are integrality constraints.
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B. Epsilon constraint method

Models with multiple objective functions are known as
multi-objective optimization models. The methods for solv-
ing multi-objective models are classified into two types22.
The first method is the scalarization method, which combines
multiple objective functions into a single scalar fitness func-
tion and yields only one solution. The second method is the
Pareto method, which treats the objective functions as inde-
pendent vectors and yields one or more solutions. The Pareto
method has one advantage over the scalarization method in
that it shows an overview of the trade-offs between solutions,
whereas the scalarization method does not show trade-offs be-
tween solutions.

The epsilon constraint method is a Pareto method that
changes the model formulation by setting some of the objec-
tives as constraints. The model is then solved several times,
with the objective functions set as constraints being perturbed
with each iteration. This method does not solve the optimiza-
tion model directly but modifies the model formulation so that
it can be used to find and estimate a set of non-dominated so-
lutions on the Pareto front.

Let us define an arbitrary multi-objective optimization
model in which the three objective functions f1(xn), f2(xn)
and f3(xn) should be minimized. The objective functions are
subjected to equality constraints hi(xn) and inequality con-
straints g j(xn), such that:

minimize{ f1(xn), f2(xn), f3(xn)} (27)

hi(xn) = 0 ∀i ∈ I (28)
g j(xn)≤ 0 ∀ j ∈ J (29)

This problem will now be reformulated by setting only one of
the objective functions as an objective function, which will be
f1(xn) in the current example. The objective functions f2(xn)
and f3(xn) are placed on the left-hand side of less-than-equal
constraints. The right-hand side of these constraints will con-
tain C2 and C3, which are parameters that will be perturbated,
such that:

minimize{ f1(xn)} (30)

hi(xn) = 0 ∀i ∈ I (31)
g j(xn)≤ 0 ∀ j ∈ J (32)
f3(xn)≤C3 (33)
f2(xn)≤C2 (34)

There are two important concepts to the epsilon constraint
method. The first concept is that a MIP solver can be used
to solve the model. By doing so, the solver will try to find
the lowest possible value for f1(xn) in the feasible space (as-
suming the model should be minimized). The second concept
is that parts of the feasible space of the original optimization
model can become infeasible once f3(xn) and f2(xn) are set as
constraints. Solving the reformulated single-objective model

for different perturbations can be used to approximate solu-
tions that lie on the Pareto front if the perturbations of C3 and
C2 are chosen correctly.

The epsilon constraint method is visualized in fig. 5 and
fig. 6. Setting objective functions as constraints can be rep-
resented by planes that cut off sections of the feasible region,
as shown in fig. 5. The location of each of these planes is de-
termined by the values for C3 and C2. Changing these values
causes the red planes to move along their respective objective
function axes.

Finding a good selection of values for C3 and C2 is one
of the challenges of the epsilon constraint method. The con-
straint can cut off the entire feasible region if the values for
C3 and C2 are set too low. If the values for C3 and C2 are set
too high, the constraints may not effectively cut off the fea-
sible space, resulting in an inaccurate estimate of the Pareto
front shape. The method for defining a set of perturbations for
C3 and C2 is to find upper and lower bounds for the perturbed
values. A simple approach is to define the lower bound as the
minimum value of the feasible space of the respective objec-
tive function, and the upper bound as the maximum value of
the feasible space of the respective objective function. The
first objective function to do this for could be either f3(xn)
or f2(xn), but f3(xn) has been selected for demonstration pur-
poses. The lower bound is found by solving:

minimize{ f3(xn)} (35)

hi(xn) = 0 ∀i ∈ I (36)
g j(xn)≤ 0 ∀ j ∈ J (37)

Similarly, the upper bound can be found by solving:

maximize{ f3(xn)} (38)

hi(xn) = 0 ∀i ∈ I (39)
g j(xn)≤ 0 ∀ j ∈ J (40)

The lower and upper bound values for f3(xn) will be referred
to as min( f3) and max( f3), respectively. They are represented
as the white planes in fig. 5 b). Now that a upper and lower
bound for C3 are found, perturbations of C3 that lie between
min( f3) and max( f3) can be made. For now it is assumed that
the values of are C3 are evenly spaced, such that:

C3 = min( f3)+En n ∈ {0,1, ...,N} (41)

and

En = n/N(max( f3)−min( f3)) n ∈ {0,1, ...,N} (42)

So far, the upper and lower bounds for f3(xn) are defined,
but not for f2(xn). Before the bounds on f2(xn) are defined,
one must realize that the lower and upper bounds of f2(xn)
of subsets of the feasible solution space are equal or less to
that of the feasible solution space. This means that for cer-
tain subsets of the feasible region, i.e. when a portion of the
feasible solution space is cut off by imposing a constraint of
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f3(xn), the upper and lower bounds of f2(xn) in this subset
may differ from the upper and lower bounds of f2(xn) in the
full feasible space. As a result, using the full feasible space
upper and lower bounds for perturbations of C2 can lead to
models without a feasible solution.

To avoid C2 values that cause the model to have no feasi-
ble solutions, the upper and lower bounds for f2(xn) must be
calculated for each perturbed C3 value. For every perturbed
C3 value, two additional optimization models will be solved
to find corresponding upper and lower bounds for f2(xn) that
belongs to the perturbed value of C3. This will be achieved by
adding the f3(xn) constraint with the corresponding value for
C3 when finding the upper and lower bounds for f2(xn). This
can be observed in fig. 5 c), where the f3(xn) constraint is vis-
ible (red plane) when calculating the upper and lower bounds
for f2(xn) that belong to this constraint (transparent planes).

Finding the upper and lower bounds of f2(xn) for a given
C3 can be mathematically formulated as solving:

minimize{ f2(xn)} (43)
maximize{ f2(xn)} (44)

hi(xn) = 0 ∀i ∈ I (45)
g j(xn)≤ 0 ∀ j ∈ J (46)
f3(xn)≤min( f3)+En n ∈ {0,1, ...,N} (47)

The upper and lower bounds of f2(xn) are referred to as
min( f2) and max( f2). The perturbed values of C2 range over
min( f2) and max( f2). If they are evenly spread, it can be
defined as:

C2 = min( f2)+Em m ∈ {0,1, ...,M} (48)

and

Em = m/M(max( f2)−min( f2)) m ∈ {0,1, ...,M} (49)

Now that the values for C2 and C3 are defined, the opti-
mization model in eq. (30) can be solved multiple times for
each combination of C2 and C3 to find Pareto optimal points.
The number of optimization models that are solved is depen-
dent on the number of perturbations of C2 and C3 in between
their respective upper and lower bounds. A higher amount of
points results in a higher number of points on the Pareto front,
but also requires more optimization models to be solved.

1. Improving the selection of C2 and C3

The values that were set for the bounds of C2 and C3 en-
sure that the constraints for the objective functions iterate over
the fullll feasible region of the solution space. However, the
disadvantage of this method is that some solutions may ac-
cumulate in the same location in the feasible space. The ac-
cumulated solutions require a model to be solved, but they
do not provide a new Pareto optimal solution with unique
corresponding objective values. To avoid wasting computa-
tional resources, each Pareto point should ideally have objec-
tive function values that differ from other solutions. Simulta-
neously, the range over which the Pareto points are calculated

should ideally still cover the entire Pareto front. This can be
achieved by using the Nadir point to determine the maximum
bound. The Nadir point is defined as the combination of the
worst possible values for each objective in the set of all non-
dominated Pareto optimal solutions. For models with more
than two objective functions, the Nadir point can be found
using the anchor points. For models with more than two ob-
jective functions, anchor points can no longer be used to find
the exact Nadir point and can only be used as an estimate23,24.
Algorithms have been developed to determine the exact Nadir
point25, but combining this with the epsilon constraint method
can significantly complicate the algorithm26. The current
study will not incorporate an exact method to find the Nadir
point and instead use a similar approach to payoff tables made
up of anchor points from Mavrotas and Florios 27 . This keeps
the implementation of the epsilon constraint method relatively
simple, but it can lead to underestimation of upper bounds.

The following changes are made to find the bounds for C2
and C3. First, the upper and lower bounds for C3 are deter-
mined. The method for determining the lower bound remains
the same, and it is determined by solving the model and min-
imizing f3(xn) independently of the other objective functions.
The problem that has to be solved is formulated as:

minimize{ f3(xn)} (50)

hi(xn) = 0 ∀i ∈ I (51)
g j(xn)≤ 0 ∀ j ∈ J (52)

Finding the upper bound is now slightly different, as the
model is solved twice now. The first time it is solved for
f1(xn), independently of the other objective functions, and
the second time it is solved for f2(xn), independently of the
other objective functions. The highest value of f3 from both
solutions is then set as the upper bound for f3(xn). This is
formulated as solving the problems:

minimize{ f1(xn)} (53)
minimize{ f2(xn)} (54)

hi(xn) = 0 ∀i ∈ I (55)
g j(xn)≤ 0 ∀ j ∈ J (56)

A similar process follows for the bounds of C2. The upper
and lower bounds for C2 must be found for every perturbation
of C3. Finding the lower bound of C2 is obtained by solving
the model for f2(xn).

minimize{ f2(xn)} (57)

hi(xn) = 0 ∀i ∈ I (58)
g j(xn)≤ 0 ∀ j ∈ J (59)
f3(xn)≤C3 (60)
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Since an equality constraint for f3(xn) is added to the model
while finding the bounds for C2, the value of f3(xn) is fixed.
To find the upper bound of C2, only the minimum of f1(xn)
now has to be found and the value of f3 that belongs to this
solution is extracted.

minimize{ f1(xn)} (61)

hi(xn) = 0 ∀i ∈ I (62)
g j(xn)≤ 0 ∀ j ∈ J (63)
f3(xn)≤C3 (64)

The current method that is used to improve the selection
of C2 and C3 is similar to the payoff table method as both
approaches use anchor points to estimate the upper bounds.
However, the current method calculates the bounds for C2 for
each perturbation of C3. The advantage is that it ensures that
the combinations of C2 and C3 are within the feasible space,
thus not leading to infeasible models. The disadvantage of
this is that it requires two additional problems to be solved to
find the upper and lower bounds of C2 for each perturbation
of C3. Although the epsilon constraint method in the current
model is solved with an exact solving method by using MIP,
this condition is not sufficient to guarantee that all solutions
are non-dominated28.

III. RESULTS

A. Case study definition

Two case studies are evaluated in the current research. Both
case studies are based on the Princess Amalia Wind Farm,
which is a wind farm that is currently operational. This wind
farm is located offshore of IJmuiden in the Netherlands and
was commissioned in 2008. It consists of 60 Vestas V80 wind
turbines, each with a maximum rated power of 2 MW, for a
total capacity of 120 MW. In both case studies, only one main-
tenance base is considered, which is assumed to be located in
the port of IJmuiden. Case study 1 has a one-year time hori-
zon, while Case Study 2 has a six-month time horizon. Each
year consists of 12 months and each month in a year is as-
sumed to consist of 30 days. Each year is assumed to have 12
months, with each month having 30 days.

Case study 1 has only a visual inspection of the wind
turbine blades, which is modeled as a preventive mainte-
nance task that must be performed on all wind turbines in
the Princess Amalia wind farm. Case study 2 adds two more
maintenance types on top of the visual inspection. The first is
leading edge protection maintenance for some turbines, and
the second is a critical failure corrective maintenance task.
Critical failures are assumed to occur once a month at a single
turbine in the wind farm. Maintenance engineers can work on
a maintenance task for a maximum of 10 hours. The parame-
ters used for maintenance tasks are listed in table II.

The choice can be made between three different mainte-
nance vehicles for both case studies 1 and 2. The three op-

tions are CTVs with various hull designs: mono-hull, cata-
maran, and trimaran. The various designs of the vessel hulls
give them unique characteristics, such as transit speed. In any
given month, the maximum fleet size cannot exceed four ves-
sels. It is assumed that each vessel can only transport one
maintenance team of three technicians at a time. The vessel
costs are assumed to be charter costs, fuel costs, and fixed
costs related to upkeep costs. The significant wave height Hs
is assumed to be a limiting factor for vessel access to the wind
farm. Each vessel has a maximum wave height Hs that it can
operate at. On any given day, the wave height Hs is determined
using historical data. The parameters used for the vessels can
be found in table V and table VI.

The vessels used for maintenance are assumed to be the
only sources of direct emissions. These vessels consume
fuel while in transit between the maintenance base and the
wind farm. Additionally, vessels burn fuel using generators to
power auxiliary systems on board the vessel while the crew
is conducting maintenance tasks at the wind turbine. Because
the fleet optimization model in the current study only mod-
els transit between the wind farm and the maintenance base,
the emissions from transit between wind turbines are not in-
cluded. Some of the parameters on the emissions can be found
in table III and table IV.

FIG. 1. Plot of the Pareto front of case study 1.

B. Computational setup

The model perturbations are solved using an academic li-
cense of the commercial MIP solver Gurobi v.10.0.1. Python
is used to model the epsilon constraint method, and Gurobi
is used with a Python API. A computing cluster with two
Intel Xeon Gold 6326 16 cores 32 threads CPUs running at
2.90GHz and 130762 MB of RAM is used.

Some termination criteria have been established in order to
avoid lengthy solution times. The first termination criterion is
when a solution with a MIP gap less than 2% is found. The
second stopping criterion is after running the model for longer
than 10800 seconds. The value of 10800 seconds was deter-



A multi-objective optimization model for offshore wind farm operations & maintenance fleet selection 10

Optimization model UWiSE O&M Planner

Solution 1 Solution 7 Solution 1 Solution 7

Vessel type 0 - 1 [June, July] - 1 [June, July]
Vessel type 1 1 [June, July] - 1 [June, July] -
Vessel type 2 - - - -

Total costs e469.0k e435.3k e476.7k e408.3k
Time-based availability 99.93% 99.93% 99.76% 99.77%
GHG emissions 50.7 t CO2e 73.5t CO2e - -

TABLE I. Table with a summary of the small case study results from the optimization model and the UWiSE O&M Planner

Maintenance type Hours required
[h]

Costs per task
[e]

Task 1 Critical failure
(Corrective)

6 500

Task 2 Visual inspection
(Preventive)

6 250

Task 3 Coating reapplication
(Preventive)

8 500

TABLE II. Table with maintenance task parameters.

CO2PerLFuel
[kgCO2e/l]

CH4PerLFuel
[kgCH4/l]

N2OPerLFuel
[kgN2O/l]

MFO 11.27 0.45E-3 0.09E-3

TABLE III. Table with the amount of CO2, CH4 and N2O emissions
per fuel type.

CH4Factor
[kgCO2e/kgCH4]

N2OFactor
[kgCO2e/kgN2O]

25 298

TABLE IV. Table of the emission factors of CH4 and N2O.

mined by experimenting and determining which time limits
would result in either good convergence of the MIP gap or a
MIP gap less than 2%.

C. Case study results

The Pareto front of case study 1 is depicted in fig. 1 by plot-
ting the solutions to the model perturbations. The x-axis of
the plot represents the objective function for the GHG emis-
sions, while the y-axis represents the objective function for
the costs. The color of the plotted points represents the avail-
ability objective function. It can be seen that the Pareto front
in fig. 1 shows four distinct solutions with unique objective
function values. The first thing to notice is that the values
for the time-based wind farm availability objective function
are identical across all solutions. This is consistent with the
observation that all maintenance tasks in case study 1 are pre-
ventive maintenance. Preventive maintenance is modeled so
that wind turbines are only shut down when maintenance tasks
are completed. Because each solution in the Pareto front plot
must complete the same number of preventive maintenance

Type Crew
[teams]

Weather limits Speed
[m/s]

Docking space

CTV 1 Monohull 1 Hmax
s = 1.1[m] 8 1 [Dock space]

CTV 2 Catamaran 1 Hmax
s = 1.35[m] 14 1 [Dock space]

CTV 3 Trimaran 1 Hmax
s = 1.6[m] 16 1 [Dock space]

TABLE V. Table with maintenance vehicle parameters.

Fuel Costs

Type Consumption
[l/h]

Charter
[e/day]

Fuel
[e/l]

Fixed
[e/month]

CTV 1 MFO 180 3500 1.64 2000
CTV 2 MFO 130 4500 1.64 2000
CTV 3 MFO 150 5000 1.64 2000

TABLE VI. Table with maintenance vehicle parameters on fuel and
costs.

Fleet composition

Monohull Catamaran Trimaran

1 - 1 [Jun, Jul] -
2 1 [Apr] 1 [Sep] -
3 1 [Apr] 1 [Feb] -
7 1 [Jun, Jul] - -

TABLE VII. Table with the objective function values and fleet com-
positions of a selection of solutions of case study 1.

tasks and each task requires the same number of hours to be
worked on, the solutions have the same time-based wind farm
availability estimates. The fleet composition of each unique
solution in the Pareto front in fig. 1 varies. The fleet compo-
sitions are shown in table VII. Solution number 1 charters a
vessel of type 1 (catamaran) beginning in June and ending at
the end of July. Solutions 2 and 3 have similar compositions,
but the months in which the vessels are chartered differ. Solu-
tion 2 charters a vessel of type 0 in April and a vessel of type
1 in September, whereas solution 3 charters a vessel of type
0 in April and a vessel of type 1 in June. Finally, solution 7
charters a vessel of type 0 in June and July.

The Pareto front of case study 2 is plotted in fig. 2. Simi-
larly to the Pareto front plots of case study 1, this was achieved
by creating a scatter plot of the objective functions from the
case study 2 solutions. There are two plots with the same
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Objectives Fleet composition

fCost f Emissions f Availability Mono-hull Catamaran Trimaran

1 732 67.2 0.981 - 1 [Jun] 1 [Apr]
39 731 97.3 0.990 1 [Mar, May, Jun] 1 [Apr] -
42 756 73.5 0.991 1 [Apr] 1 [Feb, Jun] -
45 741 88.9 0.991 1 [Apr, Jun] 1 [Feb] -
48 879 66.9 0.995 - 1 [Feb, Mar] 1 [May, Jun]
52 796 83.5 0.994 1 [Jan, May, Jun] 1 [Mar] -
55 778 97.3 0.994 1 [Jan, Mar, May, Jun] - -
58 986 70.0 0.998 - - 1 [Jan, Feb, Mar, Apr, May, Jun]
63 960 79.0 0.998 1 [Mar, Apr, May, Jun] - 1 [Jan, Feb]

TABLE VIII. Table with the objective function values and fleet compositions of a selection of solutions.

FIG. 2. Plot of the Pareto front of case study 2.

Pareto front in fig. 2. The left and right plots differ in that
the right plot highlights some of the solutions by indicating
the solution number with an arrow, whereas the left plot is left
blank. The x-axis of both plots represents the GHG emission
objective function and the y-axis represents the cost objective
function. The color of the plotted points represents the avail-
ability objective function. When compared to the results of
case study 1, it is evident that the amount of unique solutions
is greater for case study 2. It can also be seen that the so-
lutions now have distinct time-based wind farm availability
objective function values, as the plotted points have different
color shades. The fleet compositions that belong to the set
of numbered solutions in fig. 2 can be found in ??. The ob-
jective function values that belong to the numbered solutions
can be found in table VIII. The results of the fleet compo-
sitions in table VIII show that not all solutions have at least
one vessel available each month, despite the fact that criti-
cal failure corrective maintenance tasks occur once a month.
Some solutions have the same vessel in their fleet every month
(e.g., solution 58), whereas others have mixed fleet composi-
tions across multiple months (e.g. solution 63). In any given
month, none of the solutions have a fleet that consists of more
than one vessel.

Convergence to optimality can be visualized by plotting the
incumbent (best integer solution), best bound (lower bound to
the model), and MIP gap over time. A plot like this can be
found in fig. 3 for solution number 60. An arrow marks the
points where the fleet composition variables wnv are updated
during the solving procedure. This plot shows that the solution
has converged to a MIP gap less than the stopping criterion of
2% at just over 200 seconds. Another convergence plot can be
found in fig. 4 for solution number 48, but this time without
highlighting the points in time during the solving procedure
where the fleet composition variables wnv are updated. It is
clear that the solution did not reach a MIP gap of less than
2% before the 10800 seconds stopping criteria was met. The
difference between the incumbent and best bound ceased to
improve after 2000 seconds. A similar phenomenon occurred
with solution 24, where the MIP gap ceased to grow. All other
solutions reached a MIP gap of less than 2% before the time
limit of 10800 seconds was reached.
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FIG. 3. Plot of the incumbent, the best bound and the MIP gap con-
vergence over time for solution 60.

FIG. 4. Plot of the incumbent, the best bound and the MIP gap con-
vergence over time for solution 48

IV. DISCUSSION

Case study 2 yielded a greater number of unique solutions
than case study 1. Because the maintenance types in case
study 1 were limited to preventive maintenance, all solutions
resulted in the same amount of wind turbine downtime. As
a result, all solutions had a constant wind farm availability
function value. Case study 2 included corrective maintenance,
which resulted in solutions with a wider range of wind farm
availability values.

When the cost estimates for Case Study 1 were compared
in table I, the fleet optimization model and the UWiSE O&M
Planner showed good similarities in the cost estimation re-
sults. The UWiSE O&M Planner estimated a higher cost for
one of the solutions, whereas the optimization model esti-
mated a higher cost for another. This hints at inherent dif-
ferences between the two models. It is possible that these dif-
ferences become more pronounced in other case studies, and a

broader range of case studies should be evaluated to see under
what conditions the differences become more pronounced.

Before the time limit was reached, most solutions for Case
Study 2 and all solutions for Case Study 1 converged to a
MIP gap of less than 2%. An interesting phenomenon was
observed in two solutions of case study 2 that did not con-
verge in time. The MIP gap appeared to stop improving at
a certain point during the solving procedure, as shown in
fig. 4. Stuck MIP bounds have been linked to weak MIP model
formulation29, but this does not explain why it occurred in
such a small number of perturbed models. The cause of this
phenomenon is unknown, and identifying it could improve the
consistency of the results.

The effects of the simplifications of routing in the model
became evident during the evaluation of the variables. On a
single day, multiple preventive maintenance tasks were par-
tially completed. As a result, the maintenance tasks were car-
ried out in parallel rather than serially. This would be ineffi-
cient planning because the vessels would spend a significant
amount of time in transit between turbines. The model is un-
able to quantify transit time between wind turbines, resulting
in an underestimation of associated fuel consumption and time
loss.

The current study has successfully integrated GHG emis-
sions as an objective function in an offshore wind fleet opti-
mization model. The use of multi-stage stochastic fleet op-
timization models, as found in many other fleet optimization
studies, is a reasonable modeling choice given the inherent un-
certainty in offshore wind O&M. However, these multi-stage
optimization models can be computationally expensive. This
study solves a multi-objective model using the epsilon con-
straint method in conjunction with MIP, which gives insights
into the trade-offs between solutions. This comes with a high
computational cost, as multiple perturbations of the model
have to be solved.

Since the model does not include uncertainty, it is recom-
mended to take a conservative approach when selecting pa-
rameters and setting up the fleet optimization model. For
instance, it is suggested to check if the historical weather
data includes unusually good weather in a month where rough
weather conditions are expected. At last, it is recommended
to limit the vessel types to those that move to the wind farm
and back to shore once a day, such as CTVs. Although the
model is not necessarily limited to specific vessel types, it is
expected that the fleet optimization model does not accurately
model other vessel types such as SOVs, as they can stay off-
shore for multiple days.

V. CONCLUSION

This research includes the development of the first offshore
wind O&M fleet optimization model with GHG emissions as
an objective function based on the model of Stålhane et al. 16

and Bolstad et al. 17 . The optimization model that is proposed
in this study is formulated as a deterministic MIP model that
includes the costs, GHG emissions, and time-based wind farm
availability as objective functions. The model supports fleet
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decisions on the amount of, charter length, and type of vessels.
The cost objective function consists of vessel utilization costs,
vessel charter costs, fuel costs, downtime costs, and mainte-
nance costs. The GHG emissions include direct emissions of
vessels in transit and idling/loitering. The wind farm availabil-
ity is based on the amount of downtime of the wind turbines.

Future research should evaluate the possibilities of includ-
ing stochastics in the model. This could help with incorpo-
rating uncertainty into the fleet composition decision-making.
Another suggestion for future research is to include the quan-
tification of transit between turbines in the model. This should
increase the fidelity of the cost and the GHG emission quan-
tification as a result of transit.
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U. Smolka, M. Muskulus, and J. J. Melero, “Key performance indica-
tors for wind farm operation and maintenance,” Energy Procedia 137, 559–
570 (2017), 14th Deep Sea Offshore Wind R&D Conference, EERA Deep-
Wind’2017.

40A. Gray, “Setting a benchmark for decarbonising o&m vessels of offshore
wind farms,” ORE Catapult (2021).

FIG. 5. Visual representation of the development of a three dimensional
Pareto front using the epsilon constraint method with three objectives

FIG. 6. Visual representation of the development of a three dimensional
Pareto front using the epsilon constraint method with three objectives
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B. Appendix

B.1. Optimization methodologies

Some types of problems that are encountered in engineering, finance, logistics and many
other disciplines, require a best selection out of a group of options. These problems are
known as optimization problems. Optimization is interested in finding optimal values to a
problem, like minimizing the amount of costs or maximizing profits. Minimization of costs is
a common objective to minimize in optimization problems, but numerous different objectives
in optimization can be used in disciplines such as engineering, where optimization problems
can be used to find optimal designs and shapes.

The amount of different variants and sub-variants of optimization problems and solution
methodologies is large. Some frameworks have been presented in literature, but the taxon-
omy of optimization is not commonly agreed upon. There are approaches for the taxonomy
of optimization, as optimization problems typically consist of two major parts. The first one
is by categorizing the different types of optimization problems. The second one is by cat-
egorizing the different types of optimization methods. Some optimization methods might
perform better for some types of problems, while others might not work at all for a given
problem. For this reason, it is important that the type of problem is identified and evaluated
beforehand, so a fitting method can be selected to solve the optimization model.

For the taxonomy on optimization methodologies, the following literature includes different
frameworks and approaches. The work of Affenzeller et al. (2008) includes a taxonomy on
different types of optimization techniques, such as calculus, random and enumerative based
optimization techniques. The work of Janga Reddy and Kumar (2020) includes a state-of-the-
art review on a variety of heuristic methods with applications on water resource engineering
and also provides a taxonomy on optimization methods.

To authors best knowledge, the taxonomy on different optimization problems is covered to a
lesser extend compared to optimization methodologies. A dichotomy on some of the more
general characteristics of optimization problems has been addressed in the work of Nocedal
and Wright (2006). A more detailed taxonomy on different types of optimization problems
has been shared in the work of NEOS Guide (n.d.).

The following sections will address some optimization problems and some optimization
methodologies. Since the optimization problem in the fleet optimization problem in the
current report is solved using the Gurobi commercial software, a selection of optimization
problems and optimization methodologies is made that are deemed relevant as background
information to Gurobi. Some additional topics that are related to the work in the current
report are also introduced. The full list of relevant optimization problems and methodologies
is presented below and will be addressed in more detail in the sections that follow:

• Mathematical optimization: The first section will be on mathematical optimization prob-
lems, which introduces a way of formulating optimization models that is used in many
different optimization problem sub-variants. The formulation will also be used for the
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formulation of the fleet optimization problem that is solved using Gurobi in the current
report.

• Convex optimization: Convex optimization problems are a subset of mathematical op-
timization problems, which come with numerous characteristics that are convenient
for solving optimization problems. One of these is that convex optimization problems
guarantee that a local optimal value is a global optimal value. Linear optimization
problems are a subset of convex optimization problems. Being able to guarantee global
optimal results is a commonly sought after trait in optimization, thus making convex
optimization problems an important subcategory of optimization problems.

• Multi-objective optimization: Some problems have multiple objectives, which can some-
times be conflicting. Changing one variable can increase one objective function, while
it decreases another objective function. Pareto dominated results play a important role
into finding optimal (sets of) solutions for multi-objective optimization problems. The
problem that is defined in the current report is a multi-objective optimization problem.

• Stochastic optimization: Many optimization models are deterministic by nature, meaning
that they do uncertainty is not incorporated in the model. However, there are meth-
ods to account for uncertainty by defining the deterministic equivalent of a stochastic
problem. For some optimization problems, it might be an unrealistic assumption that
the model is deterministic if some parts of the model are prone to uncertainty. Many
fleet optimization models from existing literature use stochastic models and thus an
introduction to modelling uncertainty in optimization problems will be given.

• Mixed integer programming: For some optimization problems, the variables cannot be
represented by a continuous variable. This is a common restriction when variables
represent products or items. If variables in an optimization problem have both contin-
uous variables and variables that are limited to integer values only, it is known as a
mixed integer programming problem. Unfortunately, mixed integer problems cannot
be solved identically to its continuous variant. Gurobi is a commercial program that is
used to solve mixed integer programming problems in the current report and the fleet
optimization problem that is proposed in the current report is a mixed integer problem.

• Duality: The principle of duality is a key principle in many theories and algorithms
regarding optimization. The idea behind duality is that a optimization problem which
requires an objective function to be minimized (primal problem), can be reformulated
as another problem that requires to be maximized (dual problem). A solution to the
primal problem is an upper bound to the solution of the dual problem and a solution
to the dual problem is a lower bound to the primal problem. If a problem has strong
duality, the optimal solution of the dual problem is equal to the optimal solution of
the primal problem. Convex optimization problems have strong duality and this is
exploited for many types of algorithms.

• Karush-Kuhn-Tucker conditions: Under certain conditions, the Karush-Kuhn-Tucker con-
ditions proof that a solution of an optimization problem is optimal. Among these
conditions falls convexity, although with some additional conditions for the constraints.
A category of optimization methods known as interior point methods, are used to solve
the Karush-Kuhn-Tucket conditions. An interior point based algorithm can also be used
by Gurobi to solve optimization problems.

• Optimization algorithms: Different kinds of optimization algorithms can be used as a
method to solve optimization problems. Some algorithms include the simplex algo-
rithm and interior point methods, which are both incorporated by Gurobi. Another
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branch of algorithms includes genetic algorithms, which are used to verify and validate
a Pareto front method method that is introduced in the current report.

B.1.1. Mathematical optimization

Mathematical optimization is a broad category of optimization problems of which its purpose
is to find the optimal values for a given function, which is typically referred to as the objective
function. These optimal values lie on a minimum or a maximum of the objective function,
depending on whether or not the problem is a minimization or a maximization problem.
Typically, minimization is used as standard notation so the objective function f (x) which
should be minimized minimized can be generically defined as:

minimize f (x1, x2, ..., xn) ∀n ∈ N (B.1)

The variables that define the objective function are all xn for some number of variables N.
Optimization problems can also have constraints that they are subjected to. Constraints de-
scribe relationships between variables which it must satisfy. The constraints can either be an
inequality constraints gi(x), or an equality constraint hj(x), such that:

hi(x1, x2, ..., xn) = 0 ∀n ∈ N, i ∈ I (B.2)

gj(x1, x2, ..., xn) ≤ 0 ∀n ∈ N, j ∈ J (B.3)

Optimization problems do not necessarily have to be subjected to constraints, although many
practical optimization problems have at least some sort of constraints.

B.1.2. Convex optimization

Convex optimization is a field of optimization problems that studies optimization problems
of convex functions and convex sets. Convex optimization problems have characteristics that
make the problem solving more convenient than generic mathematical optimization prob-
lems. One of these characteristics is that convex optimization problems are guaranteed to be
strong-dual problems as well. This means that both the primal and the dual problem and
the Karush-Kuhn-Tucker can be used to solve the problem, which will be elaborated on in
appendix B.1.7.

A function is considered a convex function if the line that is spanned between any two ar-
bitrary picked points above the function, lies above the function. In other words, any line
between two arbitrary picked points above the function do not cross the graph of the func-
tion. This is visualized in fig. B.1. Convex sets follow a similar definition, where any line
between two arbitrary picked points in this set does not fall outside of the set in Euclidean
space. This is visualized in fig. B.2. Optimization problems are convex optimization problems
if the following conditions hold true:

• Objective function f (x) is a convex function

• Equality constraints h(x) = 0 are linear functions

• Inequality constraints g(x) ≤ are convex functions
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Figure B.1.: Convex function (left) and a non-convex function (right).

Figure B.2.: Convex set (left) and a non-convex set (right).

Note that the condition for optimization problems to qualify as convex optimization problems
requires the equality constraints to be linear functions, rather than convex functions. The
reason for this is that the equality constraint h(x) = 0 can be rewritten into two inequality
constraints h(x) ≤ 0 and −h(x) ≤ 0. The only conditions that makes sure that the function
h(x) is convex and that both h(x) ≤ 0 and −h(x) ≤ 0, are linear functions.

B.1.3. Multi-objective optimization

Multi-objective optimization is a class of optimization problems in which multiple objective
functions are optimized simultaneously. The objective functions can be defined as follows:

minimize { f1(x1, x2, ...xn), f2(x1, x2, ...xn), ..., fm(x1, x2, ...xn)} ∀n ∈ N, m ∈ M (B.4)

where fm are the objective functions of the problem and M represents the total number of
objective functions. The objective functions can be subjected to a set of constraints:

hi(x1, x2, ..., xn) = 0 ∀n ∈ N, i ∈ I (B.5)
gj(x1, x2, ..., xn) ≤ 0 ∀n ∈ N, j ∈ J (B.6)

where hi(xn) are the equality constraints and gj(xn) are the inequality constraints of opti-
mization problem.

Gunantara (2018) defines two methods on how multi-objective optimization problems can be
solved. The first method is based on scalarization of the objective function. The other method
is the Pareto method, in which the objective functions are treated as independent vectors.
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Scalarization approach

The scalarization method adds all objective functions into one objective function and adding
weights to them:

fscalar(x1, x2, ..., xn) =
M

∑
m=1

wm fm(x1, x2, ..., xn) (B.7)

The weights of the scalars can be determined individually if some objectives should be prior-
itized over others. Alternatively, if equal weights are desired, the individual weights can be
found by:

wm =
1
M

(B.8)

Other weight methods exist to make the prioritization of objectives easier and more system-
atic. This can be done by assigning ranks to objectives. The most important objective is given
the lowest index number and the least important objective is given the highest index number.
All the other objectives are given an index number in between, based on their priority. The
rank order centroid method (Roszkowska, 2013) can then be used to define weights based on
the given rank of the objective functions and is defined as:

wm =
1
M

M

∑
k=m

1
k

(B.9)

Another method that assigns higher weights or lower weights wm based on their rank is the
rank-sum method (Roszkowska, 2013), which is defines as:

wm =
2(M + 1−m)

M(M + 1)
(B.10)

One of the issues with the scalarization method is that the objectives can have different di-
mensions, e.g. costs is expressed in currency units, while the emisions could be expressed
in kilograms of CO2. Adding them up as scalar values would not be meaningful due to
their differnet dimensions. Normalization of the objective functions can help overcome this
issue. This is done by calculating each individual objective function fm(x1, x2, ..., xn) first.
Then, each individual objective and its respective weight from eq. (B.7) can be divided by this
optimal value for the individual solution:

fscalar(x1, x2, ..., xn) =
M

∑
m=1

wm
fm(x1, x2, ..., xn)

f Optimal
m (x1, x2, ..., xn)

(B.11)

One of the advantages of using the scalarization method is that it can be solved using tradi-
tional single-objective optimization algorithms, as all objectives have been reformulated as a
single objective. One of the downsides is that it does not give much information on sensitiv-
ities of the compromises once weights are slightly shifted. In other words, it could be that
a slight sacrifice for objective function f1(x1, x2, ..., xn) drastically increases objective function
f2(x1, x2, ..., xn), but this is hidden due to the attributed weights.

Pareto approach

One of the mentioned downsides of the scalarization method was that choices based on
the relative sensitivity between the objective functions could not be made. An alternative
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approach to avoid this issue is to treat each objective function as a set of independent vectors.
All objective function vectors f⃗m(x1, x2, ..., xn) now form a solution space of rank M together
since the objectives are treated as independent vectors. If all decision variables xn are also
treated as independent vectors, they form the decision space of rank N together. They relate
to one another in the sense that every single feasible point in the decision space will map to
a point in the solution space, as is depicted in fig. B.3.

Pareto frontier

Figure B.3.: Feasible variable space (left) mapped to feasible objective space (right).

Pareto optimal solutions are defined as solutions that cannot increase one objective without
reducing another objective. The set of all Pareto optimal solutions is the Pareto front, as can
be seen in fig. B.3. The Pareto front in this figure can be represented by a line segment.
Solutions that do not lie on the Pareto front are not considered optimal solutions. This is
because for any solution that does not lie on the Pareto front, there is a solution that lies on
the Pareto front that can increase both objective functions. In other words, a better solution
can be found without any sacrifices.

The Pareto front can be evaluated manually for low dimension problems in order to find an
optimal solution. Any solution can be considered optimal on the Pareto front, depending
on how much one objective function is preferred over the other. Although the decision to
go with a single Pareto optimal solution over the other solutions is not inherently done by
calculating the Pareto front, it can still be useful to help with this decision making since it
shows the sensitivity between choices.

However, Pareto fronts become less intuitive for larger amount of objective functions, as
plotting them will require more than two dimensions. Alternative decision making methods
exist to pick optimal solutions. This discipline is known as multi-criteria decision making and
many approaches exist in order to pick one solution. One of these approaches is by finding
the Utopia point and then selecting the Pareto optimal solution with the smallest Euclidean
distance to the Utopia point (Gunantara, 2018). The Utopia point is a point with the values
of the objective functions f⃗m(x1, x2, ..., xn) if they were to be solved independently as single
objective functions. Another method is by the weighed sum method, which is analogous to
the scalarization approach and scores all objectives by summing them up and giving them a
corresponding weight.

One of the advantages of using the Pareto method for multi-objective optimization problems
is that the Pareto front provides more information than the scalarization approach. One of
the disadvantages is that not all algorithms are suited to independently optimize multiple
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objective functions simultaneously and its typically more computational expensive than the
scalarized approach.

B.1.4. Stochastic optimization

The basic form of an mathematical optimization problem, as introduced in appendix B.1.1,
uses a deterministic formulation of the objective function and the constraints. In practical
problems, some parameters cannot be treated with certainty. Some examples are the fluctua-
tion of prices in the future or uncertainty of the weather forecast.

A selection of stochastic optimization problems will be introduced in this report, based on
the work of C. Li and Grossmann (2021). However, this small selection only scratches the
surface of the stochastic optimization topology as introduced by Powell (2019). The inclusion
of all approaches is beyond the scope of this research, thus only stochastic programming,
chance-constrained programming and robust optimization are addressed.

Stochastic programming (multi-stage programming)

Stochastic programming is a sub-community of stochastic optimization methodologies ac-
cording to a categorization of stochastic optimization by Powell (2019). Two-stage and multi-
stage programming belong to the stochastic programming sub-community. Multi-stage pro-
gramming is a generalized version of two-stage programming, but it has greater complexity
over the two-stage variant (Powell, 2019). The two-stage variant will be addressed in this
report and its mathematical formulation will be follow from the work of Powell (2019).

The key principle of two-stage models is splitting up a problem into two separate problems.
During the first problem, a set of decisions x0 have to be made. After that, some uncertainty
is revealed and another set of decisions have to be made in the second problem. This revealed
uncertainty is discretized into a number of possible realizations ω (also known as scenarios),
where ω ∈ Ω and each of these scenarios has a chance p(ω) of occurring. The minimization
of the objective function can then be defined as:

min
x0

(c0x0 + ∑
ω∈Ω

p(ω) min
x1(ω)∈X1(ω)

c1(ω)x1(ω)) (B.12)

where the first part is the first stage variables x0 multiplied with the coefficients c0 of the
first stage problem. The second part sums all second stage variables x1 multiplied with the
coefficients c1 from the second stage scenarios, multiplied with their respective chance of
occurring. The first problem will have a set of constraints in the form:

A0x0 ≤ b0 (B.13)

where A0 and b0 are coefficients and parameters, respectively. The second problem has a set
of constraints in the form:

A1x1 ≤ b1 (B.14)

Typically, problems in the first stage denote something like a type of inventory decision such
that x0 represents the amount of inventory. In the second stage, the inventory can then be
distributed. In this form, additional constraints for the second stage could look something
like:

B1x1 ≤ x0 (B.15)
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such that the amount of distributed inventory x1 cannot exceed the value of the initial in-
ventory x0. Two-stage models are matured in the field of mathematics (Powell, 2019), which
therefore grants access to a wide range of existing literature such as papers and books. This
makes them one of the more well known stochastic modelling methodologies. However, the
computational complexity of the problem scales with the amount of scenarios Ω, thus making
problems with large sets of scenarios computationally heavy.

Robust optimization

Robust optimization is a stochastic optimization sub-community that optimizes the problem
for the worst case scenario (Powell, 2019). Let there be an objective function f (x, w) where x
is a decision variable such that x ∈ X and w is a uncertain parameter that can take on any
value from a set such that w ∈W. A robust optimization problem can then be formulated as:

min
x∈X

max
w∈W

f (x, w) (B.16)

such that a value is chosen for w ∈ W which is the worst case for the objective function.
Analogous to an objective function, a constraint with uncertain coefficients a ∈ A on the left
hand side and uncertain parameters b ∈ B at the right hand side can be defined as:

min
a∈A

ax ≤ max
b∈B

b (B.17)

where the values for a and b are now chosen such that the constraints tighten the feasible
space the most. Robust optimization can be a good method if the probability that this can
occur is not a contributor to the decision making. After all, it makes ensures that feasibility
holds due to its conservative characteristic. However, robust optimization might be too re-
strictive if the worst case scenario has a low probability of occurring and if some amount of
risk is tolerable.

Chance-constrained programming

Chance constrained programming is another stochastic optimization approach. It includes
constraints that ensure feasibility holds under a certain probability (Küçükyavuz & Jiang,
2021). The definition of a generic chance constrained programming problem will be based on
the definition given by P. Li et al. (2008). A objective function f (x, w) is defined with variable
x and uncertainty variable w. An output variable y(w) and a probability α are defined. A
constraint that limits the range of the output variable y can be defined as:

ymin ≤ y(w) ≤ ymax (B.18)

The probability that the constraint is violated can than be defined as Pr (ymin ≤ y(w) ≤ ymax).
If the probability of the constraint violation should be restricted, this can then be defined as:

Pr (ymin ≤ y(w) ≤ ymax) ≥ α (B.19)

Other variants of chance constraint notation are provided by (Küçükyavuz & Jiang, 2021).
One of the advantages of using chance constraints programming over robust optimization is
that chance constraints can tolerate constraint violations of values that are very unlikely to
occur.
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B.1.5. Mixed integer programming

Mixed integer programming (MIP) is a category of optimization problems that includes a
combination of continuous with integer and/or binary variables. Many practical optimization
problems require integer or binary decision variables in order to be realistic, e.g. if a decision
variable determines the amount of vehicles in a routing problem, then it would be physically
infeasible to have an answer that is a fraction. Similarly, if a decision variable determines
whether a vehicle is used by assigning the value 1 to it, or if it is not used by assigning
the value 0 to it, this variable should only give answers within the feasible binary decision
space.

We can mathematically define continuous variable x such that x ∈ R, where R is the set of
all real values. Similarly, we can define integer variable z such that z ∈ Z, where Z is the set
of all integer values and define binary variable b such that b ∈ {0, 1}.

B.1.6. Duality

Some of the methodologies that are used to find optimal values for optimization problems,
rely on the principle of duality. The idea behind duality is that a problem can be divided into
a primal problem and a dual problem. Given that the problem has strong duality, the optimal
solution to the dual problem is equal to the optimal solution of the primal problem. In some
cases, solving the dual problem is easier than solving the primal problem and therefore is a
convenient way to solve problems. The derivations for duality below are based on the the
work of Freund (2014), Luptácik (2010) and Boyd and Vandenberghe (2009).

First, we assume we have an objective function

f (x) (B.20)

where and a set of inequality constraints

gi(x) ≤ 0 ∀i ∈ m (B.21)

Every ”≥” constraint can be rewritten as a ”≤” constraint by multiplying both sides of the
constraint with −1. Each ”=” constraint can be redefined as a combination of a ”≤” and
a ”≥” by setting the upper and lower bound of these constraints such that they will be a
equality constraint.

To construct the dual of the problem, the Lagrangian L(x, u) has to be defined:

L(x, u) = f (x) +
m

∑
i=1

uigi(x) (B.22)

One way to interpret the Lagrangian of the optimization problem, is that it takes the original
objective function f (x) and adds the constraint violations gi(x) to the objective function as a
penalty with a weight ui. Now the dual function L∗(u) can be defined as follows:

min
x

f (x) +
m

∑
i=1

uigi(x) (B.23)

The dual problem can now be defined as the maximum of the dual function L∗(u) when
u ≥ 0. Since all ui can be interpreted as coefficients that determine the slope of gi(x), ui
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should be chosen such that it penalizes the penalty function (i.e. the constraint violation) the
most.

max
u

min
x

f (x) +
m

∑
i=1

uigi(x) (B.24)

In any case, a problem has at least weak duality characteristics which means that the solution
to the dual problem is always equal or greater than the solution to the primal problem.
This means that the dual problem bounds the problem at the very least. Strong duality on
the other hand guarantees that the optimal solution to the dual problem is also the optimal
solution to the primal problem. Convex optimization problems have strong duality. Linear
optimization is also part of convex optimization and convex optimization can be seen as a
more generalized category of strong duality optimization problems.

B.1.7. Karush-Kuhn-Tucker conditions

In this section, the Karush-Kuhn-Tucker (KKT) conditions will be introduced. If the KKT
conditions are satisfied, this will guarantee that a solution x is optimal. The proof of the
Karush-Kuhn-Tucker will not be included in this section and more emphasis will be given
on a intuitive interpretation of these conditions. The derivations can be found in the work of
Luptácik (2010) and Boyd and Vandenberghe (2009).

First, lets reintroduce the Lagrangian form of the optimization problem.

L(x, u) = f (x) +
m

∑
i=1

uigi(x) (B.25)

For x to be a optimal value for the optimization problem, we have the following condition
that should hold true.

∇ f (x) + u∇g(x) = 0 (B.26)
g(x) ≤ 0 (B.27)

u ≥ 0 (B.28)
ug(x) = 0 (B.29)

Where ∇ is the gradient operator. To understand eq. (B.26) should hold, it must be under-
stood that following the gradient of a function will increase the values of the function and
following the opposite direction of the gradient of a function will decrease the values of the
function. Recall that we are interested in finding the minimum of the optimization problem,
so it is desirable to move in the negative direction of the gradient of the objective function
f (x) and in the negative direction of the gradient of the constraints g(x) to improve the so-
lution. In fact, they can actually both be improved if at a given solution x, it is possible to
move to another solution of which its direction is at least partially in the direction where
−∇ f (x) and −∇g(x) overlap. If a value for x is found that does not cause ∇ f (x) and ∇g(x)
to overlap anymore, there can be no more further improvements to the solution and x is op-
timal. The condition to prevent overlap is eq. (B.26), as ∇ f (x) and ∇g(x) are now inversely
proportional to each other. Additionally, eq. (B.27) makes sure that x is a feasible solution.
Then, eq. (B.28) limits u to positive values only. At last, eq. (B.29) is necessary to make sure
that the optimal value of the objective function is not altered by nonzero values of ug(x).

These four conditions are the KKT conditions and can prove that a given value for x is
optimal. The usefulness of the KKT conditions lies in the fact that they allow the optimization
problem to be solved as a set of equality and non-equality equations, rather than by solving
it as a optimization problem.
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B.1.8. Optimization algorithms

Optimization algorithms are algorithms that can be used to solve optimization problems.
The algorithms that can be used depend on the type of optimization problem. For instance,
there are numerous algorithms that can be used for convex optimization problems, but they
are not guaranteed to work for non-convex optimization problems as well. Additionally,
combinations of algorithms are sometimes used to increase performance or to work around
some of the shortcomings. The many types and sub-variants of algorithms therefore make a
full taxonomy on all algorithms difficult. Among the many traits that algorithms can have,
some of the common ones are listed below:

• Global/local minimum: Some algorithms are designed such that they try to find global
solutions, while others can get stuck in a local optimum.

• Single objective or multi-objective: Not all algorithms are suitable for multi-objective op-
timization problems without modifications, e.g. for the Pareto approach with multi-
objective optimization problems.

• Finitely terminating/iterative/heuristic algorithms: Some optimization problems are guar-
anteed to find the optimal solution in a finite amount of time. Other optimization
problems iteratively converge towards this solution but are not guaranteed to find the
exact optimum. Heuristics are a good approach to get solutions that lie close enough to
the optimal value for some application and typically require less computational power,
but not all are guaranteed to come close the the actual optimal solution.

Simplex method

The simplex method is an algorithm that can solve linear optimization problems. A brief
introduction on the simplex method will be given in this section. The explanation that follows
in this section is based on the book of Nocedal and Wright (2006), which could be consulted
for a more detailed description. One of the recognizable characteristics of the simplex method
is that the algorithm follows the vertices of the feasible space of the optimization problem.
The feasible space is a space of possible solutions that is bounded by the constraints and that
does not violate these constraints.

A simplified visual representation of the simplex method can be found in fig. B.4. The axis
are variables x1 and x2 and the objective function is dependent on x1 and x2. The feasible
space is shown as the grey surface and the outlines of the feasible space are formed by its
surrounding constraints.

The concept of the simplex algorithm is to first find a feasible solution to begin with in
the feasible space. After this feasible solution has been found, the algorithm moves to a
neighbour vertex. In the case that there are multiple vertices to choose from, the vertex that
improves the objective function the most will be chosen. The process of moving to the next
vertex will continue until no more improvements can be made, which is when optimality has
been reached.

The conceptual explanation that was given in combination with fig. B.4 makes the method
look simple. However, the traveling over the vertices of the feasible space is a bit more
complex under the hood. It is out of scope of the current report to provide a full description
of the algorithm, as this is already covered in great detail in the work of Nocedal and Wright
(2006) and other literature. Manual calculation of these points is usually done using a so
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called ”simplex tableau”. However, like many types of algorithms, this is tedious work and
is better suited to solve using computers.

To this day, the simplex method is still actively used as a linear optimization method. It is
intuitively easy to understand due to the sensible visual feedback after each iteration. The
simplex method scales exponentially with the problem size, but win practice the simplex
method performs very well and only very specific problems perform poorly (Nocedal &
Wright, 2006). An alternative to the simplex method that has variants that scale in polynomial
time is the interior point method, which will be discussed in the next section

Figure B.4.: Simplex algorithm.

Interior point method

Interior point methods are a category of optimization methods that can be used to solve con-
vex optimization problems. The explanation in this section on the interior point method will
only scratch the surface behind the theory. The explanation is based on the book of Boyd and
Vandenberghe (2009) and this book should be consulted for a more in depth explanation.

Unlike the simplex method, the interior point methods moves inside of the feasible space.
This is visually simplified in fig. B.5.

Although the visual representation of the interior point method looks rather simple, its rela-
tionship to the steps in the algorithm are a lot less intuitive than with the simplex method.
The interior point method solves a modified version of the KKT conditions. Recall in ap-
pendix B.1.7 where the KKT conditions were briefly introduced, that if a solution satisfies the
KKT conditions, the solution is optimal. The modified version that is solved using the inte-
rior point method is easier to solve, as introducing a perturbation t to eq. (B.28) will simplify
the KKT conditions to a unconstrained optimization problem. Unconstrained optimization
problems can be solved using techniques like Newthon’s method to get to a solution. If the
perturbation t is selected very small, it will be very close to the actual solution because it
approaches the initial condition without a perturbation in eq. (B.28). However, selecting t too
close to zero in the beginning usually results in Newtons method to converge very slowly.

To overcome the slow converging issue, several iterations of Newthon’s method are then
conducted that slowly converge towards t = 0. First, the solution is solved for a given t,
which results in a solution x that is not yet optimal. Then a new problem will be solved
with t′ = 0.9t and the initial position will be the x from the previous step. Note that the
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multiplication with 0.9 is arbitrary here and different values could provide better or worse
results and finding good values is one of the challenges of the interior point method. The
process will continue with t′′ = 0.9t′ and so on until a perturbation value is found that is
close enough to zero. This process of iteratively making t smaller lets the problem converge
a lot faster than selecting a too small perturbation t at the beginning.

Variations and different approaches exist for the interior point method and the book of No-
cedal and Wright (2006) provides a brief overview on the history of the interior point methods
and some of their variants. It is also stated in this book that although some interior point
methods scale polynomial with the problem size, that this did not necessarily made them
faster in practice for quite some problems compared to the simplex method that scales expo-
nentially with the problem size.

Figure B.5.: Interior point method.

Genetic algorithms

Genetic algorithms are a category of heuristic methods that can be used to solve a wide
range of optimization problems. As their name already suggests, some aspects are analogous
to evolutionary processes in nature.

A genetic algorithm has a cost function that it will evaluate. This cost function can be ex-
pressed as the objective functions if they are used to solve optimization problems. Genetic
algorithms also have a population and each individual in the population includes a solution
to the problem. The individuals can be considered as a fit solution if the objective function is
relatively good compared to the rest of the population. The population will iterate through
generations and some of the population of the previous generation will survive, while an-
other part of the previous generation its population will die off. The part of the population
which will survive are a selection of the fittest individuals. Some of the fittest individuals
will then mate and produce new solutions to replace the individuals that died. Parts of the
individuals that mate will be combined to produce a new solution. This process continues
until a termination criterion is met. Besides mating, some individuals might also be subjected
to random mutations.

Genetic algorithms are not inherently designed to deal with constraints, unlike the simplex
algorithm and interior point methods. One method that allows genetic algorithms to deal
with constraints is to let individuals die off if they violate constraints. However, if the fea-
sible region of the optimization problem is heavily constrained, then it could be that the
population has difficulty to move through the feasible space or to find initial feasible solu-
tions that are spread out. Another method is to include the constraint violation as part of
the objective function. This makes all solutions feasible, but infeasible solutions get a penalty.
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The magnitude of the penalty is important to select, as setting the penalty too low could
benefit solutions that violate the constraints if the penalty is lower than the improvement of
the cost function by violating the constraints.

Genetic algorithms are well suited for solving multi-objective optimization problems. The
reason for this is that plotting individuals will estimate the Pareto front, once the solution is
sufficiently converged. Other methods like the Simplex algorithm and interior point methods
only produce a single solution.

The parameters of a genetic algorithm make a large impact on its performance. A large
population could provide a more spread out initial population, but can require more com-
putational power to compute new generations. The optimal values for the parameters of a
genetic algorithm are often problem dependent.

One of the downsides of genetic algorithms over the simplex and interior point methods is
that it is not guaranteed to converge or find an optimal value. In practice, it can often be a
good approximation and for some problems be a lot more computational efficient.

Methods for mixed integer programming

In the previous sections, we have given a brief introduction to the simplex method, the interior
point method and genetic algorithms. Both the simplex method and the interior point method
can deal with continuous variables effectively. However, some problems have variables that
are limited to integer values only. One example of this is the optimal number of maintenance
vessels, which can only be an integer value. After all, 1.3 vessels would not make sense
from a physical perspective. One simple approach to deal with this would be to round the
solution, but unfortunately, it has been shown that rounding the value does not guarantee
that the rounded value is optimal. That means that rounding 1.3 vessels to 1 vessel does not
make 1 vessel the optimal solution and other approaches should be used.

There are dedicated (commercial) programs and applications, which are specialized in solv-
ing mixed integer programming problems. Although most of these programs and applica-
tions operate somewhat in a similar fashion compared to one another, there is a large amount
of different techniques and operations that can be used to find the MIP equivalent of the
problem. Not all techniques will be handled in this section, but some of the fundamental
concepts of mixed integer programming will be addressed. The explanations and meth-
ods that are discussed in this section will be based on the commercial MIP software Gurobi
(Gurobi Optimization LLC, 2022).

Branching First, we consider a linear MIP. This MIP will first be solved without its inte-
grality constraints, meaning that the solution will be solved as if the integer variables are
continuous variables. Because the problem is now solved using continuous variables instead
of integer variables, the problem is a convex optimization problem and can be solved using
the simplex method and/or interior point method that were introduced in earlier sections.
Solving the problem without the integrality constraints is also called a relaxation of the prob-
lem. Lets assume that the relaxation solution of the MIP is found and returns a variable
x = 8.4, which should be an integer variable in the MIP. The problem will now be split up in
two separate problems; one problem with a constraint such that x ≤ 8 and one problem with
a constraint x ≥ 9. For the sake of clarity, we can call the first problem that was solved and
resulted in x = 8.4 problem P0, while the sub problems with the constraints are labeled as P1
and P2. The same process of solving the relaxed problem can be repeated for P1 and P2. This
process is called branching. The problem P0 is also commonly known as the root node of the
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problem and the problems P1 and P2 are also called nodes of the search tree. Nodes that are
not yet branched are called leaf nodes. Generally, a problem is solved once there are no more
leaf nodes on the search tree.

Incumbents and best bounds There are a couple of things that can occur when branching
leave nodes. First of all, a solution can be returned that does not violate any of the integrality
constraints, i.e. it is a feasible solution to the MIP. This means that no matter what, the
optimal solution to the MIP can not be higher than the optimal solution of the feasible MIP
solution (assuming it is a minimization problem, it is an upper bound). If a lower feasible
solution is found during the branching of the search tree, this will be the new upper bound.
This upper bound is also known as an incumbent node. It should be noted that there is also
a lower bound the the MIP, which is the minimal value of all leaf nodes. We know this is
a lower bound because leaf nodes include a relaxed solution to the optimization problem
and an integer solution can at best be equal to the relaxed solution. So no matter what, the
MIP solution of a leaf node can never be better than the relaxed solution to the problem and
therefore the lowest value of all leaf nodes is an lower bound to the MIP. This lower bound
to the MIP is also known as the best bound. Iterating through the search tree will eventually
lead to improvements of the incumbent and improvements of the best bound. The difference
between the incumbent and the best bound is also known as the gap. As the gap becomes
smaller by improving the incumbent and best bound, it will become smaller. Once the gap is
equal to 0, optimality has been proven.

Fathoming nodes If solving a leaf node leads to a solution that does not violate any of the
integrality constraints, the node is considered fathomed. This means that there are no more
better solutions that can be found by branching the leaf node. Another thing that can lead to
a node being fathomed is when a leaf node returns an infeasible solution. Since the leaf node
solves a relaxation of the optimization problem, there can be no feasible integer solution if
there is also no feasible continuous solution, thus the node can be considered fathomed. The
last condition that can lead to a leaf node being fathomed is when a feasible solution is found
to the relaxed problem, but it has a worse objective value than the incumbent. This means
that the lowest possible integer solution that could come out of this node would be no better
than the best integer solution and it can therefore be fathomed.

Solve time enhancing techniques Some MIP solvers can be significantly faster compared to
others for the same problem, even though they share the same basic principles on how they
operate. The reason for this difference in performance is due to som underlying techniques
are used to find the optimal solution faster. Although there are many different types of
techniques being used, the most common ones are:

• Presolve: The purpose of presolving the optimization problem is to make the problem
size smaller and to tighten the formulation of the MIP. An example of presolving is
when a set of constraint can tighten the feasible space of variables such that a variable
is only viable for one single value. Instead of obtaining this through branching, this
value can already be assigned to the variable before the branch and bound procedure.

• Cutting planes: Cutting planes is a set of different techniques that can improve the per-
formance of the MIP solver. The principle of cutting planes is removing undesired
fractional solutions, as these do not satisfy the integer variable integrality constraints.
While presolving techniques have similar goals, one key difference between presolve
and cutting planes is that presolve tries to simply the problem before the branch and
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bound procedure starts, while cutting plane techniques are done during the branch and
bound procedure. The reason for doing the cutting plane techniques during the branch
and bound technique is that there are a lot of opportunities to apply a cutting plane
technique and doing this for every opportunity will make the problem size enormous.
The advantage of doing cutting plane techniques during the branch and bound proce-
dure, is that cutting planes will only be applied in scenarios where it is known it will
actually help the problem.

• Heuristics: The principle of heuristics is to find good incumbent solutions. In the case
that MIP’s are too difficult to proof optimality within a reasonable time, the next best
thing to have is usually a good feasible solution. Another reason for wanting to find
good incumbents is that it helps to make the search tree smaller, as incumbents can
fathom some parts of the search tree. It can sometimes be helpful to put more effort
into some nodes of the search tree to see if a good feasible solution can be extracted.
One method of doing so is by rounding some of the integer variables that do not have
an integer value in the relaxation of the problem, but are very close to an integer value,
hoping to find a good feasible solution without having to conduct multiple branch and
bound steps to acquire the same solution.

• Parallelism: There is a trend where increasingly more cores are available in computing
chips. However, not all computational problems can take advantage of that. For mixed
integer programming, there are numerous techniques that are used to take advantage
of multiple cores. Finding root nodes is hard to do in parallel in general, but searching
through the search tree can be done more efficiently in parallel. Additional methods
that are used by Gurobi to take advantage of multiple cores, is by solving the problem
using different algorithms or settings simultaneously and stopping once one of them
finds a solution.

B.2. Big-M method

B.2.1. Proof and limitations of the linearization

To see how these constraints collectively make the problem linear, the value γpmτ = 1 will be
once again substituted in all the new defined constraints. Substituting this value in eq. (3.20),
eq. (3.21) and eq. (3.22) will respectively change the constraints into:

tLIN
pmvτ ≥ tpmvτ ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.30)

tLIN
pmvτ ≤ MBIG ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.31)

0 ≤ tLIN
pmvτ ≤ tpmvτ ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.32)

It can be observed that eq. (B.30) and eq. (B.32) are causing tpmvτ = tLIN
pmvτ and thus tLIN

pmvτ will
take on the same value as tpmvτ .

If γpmτ = 0 is substituted in the constraints then eq. (3.20), eq. (3.21) and eq. (3.22) will
respectively change the constraints into:
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tLIN
pmvτ ≥ tpmvτ −MBIG ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.33)

tLIN
pmvτ ≤ 0 ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.34)

0 ≤ tLIN
pmvτ ≤ tpmvτ ∀v ∈ V, p ∈ P, m ∈ MCORR, τ ∈ T (B.35)

Now it can also be observed that eq. (B.34) and eq. (B.35) cause tLIN
pmvτ = 0, which is also

the desired outcome in the nonlinear formulation. This will not make tLIN
pmvτ = tpmvτ so they

have different values. This is also intended, as only the nonlinear part should have tpmvτ

substituted with tLIN
pmvτ .

Adding these constraints to the original problem, substituting tpmvτ with tLIN
pmvτ in the nonlin-

ear formulation of the objective function and removing γpmτ in the nonlinear formulation of
the objective function will make the problem linear. The catch of using this method is that
additional constraints and additional variables are required, thus making the problem larger
than the original nonlinear problem. On top of this, the value of MBIG should be selected
such that MBIG >> tpmvτ , otherwise the constraints do not work as intended. Simultane-
ously, selecting extreme large values of M could result in numerical issues if the problem is
solved using computational methods.

B.3. Verification of the epsilon constraint method

Although the epsilon constraint method is a well known method in multi-objective optimiza-
tion literature, the author of the current report is unaware of an identical methodology that
is used to determine the bounds of both f2(xn) and f3(xn) in current literature. Addition-
ally, the implementation of this methodology can be prone to errors. For these reasons, a
verification of both the methodology and the implementation will be conducted to check and
evaluate its performance.

The verification will be done by defining a test problem first. The Pareto front of this test
problem will be approximated using the three dimensional epsilon constraint method and it
will also be approximated using a genetic algorithm. The results of both Pareto fronts will
then be plotted against each other to see if they form the same Pareto front. The reason
why a test problem is used to verify the results of the epsilon constraint method, rather
than the developed problem offshore wind fleet optimization problem, is that the author of
the current paper has attempted to implement the fleet optimization in a genetic algorithm
before. Preliminary testing with the fleet optimization problem using genetic algorithms
indicated that the unmodified genetic algorithms were not successful at finding solutions to
the optimization problem, which was likely due to the fact that the fleet optimization problem
is highly constrained. The results for the fleet optimization problem of the genetic algorithm
are therefore expected to be poor in comparison to simpler and less constrained problems.
A less constrained test case will make the genetic algorithm more likely to converge, thus
making it better to verify with.

The verification methodology will go as follows:

1. The test problem will be implemented using a genetic algorithm

2. The test problem will be implemented using a MIP solver and the proposed three di-
mensional epsilon constraint method
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Genetic algorithm settings and parameters

Genetic algorithm NSGA 3 (Blank & Deb, 2020)
Population size 300
Offspring number 150
Reference directions Das-Dennis method (Das & Dennis, 1998)
Number of reference direction partitions 30
Stopping criteria 3 minute run time

Table B.1.: Table with genetic algorithm parameters used in the verification.

3. The Pareto points of both solutions will be plotted in the solution space and compared
against each other.

4. A matching Pareto front indicates that the three dimensional epsilon constraint method
works as intended.

Verification test problem

I = {0, 1, 2, 3}
J = {0, 1, 2}

minimize{ f1(zi,j), f2(zi,j), f3(zi,j)}

f1 = 3z0,0 − 5z1,0 + z2,0 + 2z3,0 − 0.5z0,1 + z1,1 + 5z2,1 − 8z3,1 + z0,2 + z1,2 − z2,2 − z3,2

f2 = 4z1,0 + 0.1z2,0 + 5z3,0 − 3z1,1 − z2,1 − z3,1 + z0,2 − z3,2

f3 = −z0,0 − 2z1,0 − z2,0 − 4z3,0 + 0.5z0,1 − 3z1,1 − 5z2,1 + 8z3,1 − z0,2 − 8z1,2 + z2,2 + z3,2

∑
i∈I

∑
j∈J

zi,j ≤ 5

Genetic algorithm

Genetic algorithms inherently have the trait that they approach the Pareto front for many
problems. This is because each generation that is calculated using the genetic algorithm
contains many solutions. Given that these solutions have converged towards Pareto optimal
solutions sufficiently, they will approximate the Pareto front. The genetic algorithm type and
parameter settings for this test case can be found in table B.1.

Epsilon constraint method

The epsilon constraint method for three objectives requires some parameters to be set. As
was discussed section 4.2, selecting the step size between each ϵ and the range over which the
epsilons are iterated are some of the changeable parameters. The epsilon constraint method
that is used in the current report, iterates between the minimum and maximum values of
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Three objective epsilon constraint

Number of f3 constraint shifts 15
Number of f2 constraint shifts 15
(En+1 − En) step size in f3 Constant, 1/15
(ϵm+1 − ϵm) step size in f2 Constant, 1/15
Number of Pareto points calculated pi (15+1)(15+1)=256
Stopping criteria MIP GAP = 0%

Table B.2.: Table with three objective epsilon constraint method parameters used in the veri-
fication.

f3 and f2. The settings of the three objective epsilon constraint method can be found in
table B.2.

Results

The results of the Pareto front that is found by the genetic algorithm and the Pareto front that
is found by the epsilon constraint method are shown in fig. B.6 and fig. B.7. Both plots are
the same results, but the plots have a different angle and orientation such that the depth of
the Pareto front can be better visualized.

As can be observed, the front of both the genetic algorithm and the Pareto front match and
form the same plane. It is assumed that the test problem is sufficient simple enough that the
genetic algorithm converges towards the actual Pareto front. Since both the methods match,
this result helps to verify the proposed epsilon constraint method.
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Figure B.6.: Pareto front genetic algorithm and epsilon constraint method.
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Figure B.7.: Pareto front genetic algorithm and epsilon constraint method (rotated).
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Figure C.1.: Failure rate Pareto chart for subassembly and cost category.
Reprinted from ”Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines”, by Carroll et al. (2015), Wind

Energy, 19(6), 1107-1119
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Figure C.2.: Pareto front of case study 1 (3D).

Figure C.3.: Pareto front of case study 2 (3D).
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Figure C.4.: Pareto front of case study 2 (3D, numbered).
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