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PREFACE 
This report concludes my work for the Masters Degree in Computer Science: Data Science and Technology. In 
this thesis, the focus is to find a new way for people to query experience items, like movies or books, based on 
the users’ perception of them. The basic example query is “I want a movie like the Green Mile, because it’s 
touching and emotional”. In this query, the user is not concerned if the similar item is a novel adaptation or it 
is with a great cast, just that it is touching and emotional. With the concepts presented in this thesis, a system 
can provide results to that query, such as: “a similar movie is On the Waterfront, because other users also 
perceived it as touching and emotional”. The main challenge with this type of information is that it is subjective. 
The research, development, experiments and writing took place in the WIS & ST Masters lab in the EEMCS 
faculty. 
 
I would like to thank the people that made this possible, starting with my family, my friends, mainly the CS 
Crew and my girlfriend, that motivated me throughout the process. I’m especially grateful for the learning 
experience and guidance from my direct supervisor, Christoph, in particular for the writing. I would also like to 
thank the committee members, Geert-Jan and Robbert for their time, interest in this process, and their valuable 
feedback. Finally, this thesis, as well as my whole study program in TU Delft would have never happened 
without the National Center of Science and Technology of Mexico and San Luis Potosi (CONACYT & 
COPOCYT) that provided me with the scholarship and financial support. 
 

Manuel Valle Torre 
Delft, January 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       

 
 

 
 
 
 
  
  



       

 
 

ABSTRACT 
In this thesis, we focus on database query processing for so-called experience items, i.e., items commonly 
encountered in E-Commerce systems such as books, games or movies which are better described by their 
perceived subjective consumption experience, or Perceptual Features, than by factual meta-data normally used 
in SQL-style queries. To realize this, the perceived consumption experiences are extracted from social media 
feedback, like reviews or ratings, using methods such as Aspect-based Review Extraction or Document 
Embedding. These are then encoded either explicitly or implicitly as database tuples. We group similar tuples 
together for every item and determine the representative tuple for each of the groups, which are used in the 
Query-by-Example paradigm to allow users to explore and query the item space in an interactive and intuitive 
fashion.  
 
 In contrast to previous approaches with similar goals, like the article on ‘Exploiting Perceptual Similarity: 
Privacy-Preserving Cooperative Query Personalization by Lofi and Nieke’, we now introduce the notion of 
Shared Perspectives: paying respect to the subjectivity of user experiences. We do not try to encode only a 
single summarized experience for each item, but find and store dominant opinions shared by large parts of the 
user base instead. This allows us to represent controversial or split opinions much more accurately than previous 
systems, so the user can select which opinion is more relevant for them to find a similar item. We introduce the 
relevant conceptual foundations for Shared Perspectives, and give an overview of the design space for 
implementation. Furthermore, we showcase a prototype system, and evaluate it with respect to query 
performance as compared to previous approaches not featuring Shared Perspectives. We also investigate their 
semantic quality in a limited user study. As a result of these evaluations, we identify and resolve the new 
challenge of relevance of Perspectives, since not each commonly shared opinion is equally important or 
beneficial for query processing. 
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1. INTRODUCTION
In current web information systems, users face the chal-

lenge of finding information in large collections. Some of
these systems are specialized in e-commerce, and they host
many types of products or services. One particular case is
that of experience items. These items have the key charac-
teristic that some, or most, of their value is experienced by
users, such as movies, videogames, hotels or restaurants. For
example, the experience of a movie with an engaging story-
line or a moving performance may be more important for an
interested user than its director or distribution company. In
consequence, experiences should play an important part in
the process of exploring and searching for new items. How-
ever, their available information consists mostly of objective
and hard-set factual features. These factual features are in-
trinsic to the item and their schema can be easily modelled
for a system: movies have a title, release year, director, cast,
etc. With a simple query, a user can find the item they are
looking for, using any of these features or their combination.
If a user wants to find The Green Mile they can just search
for the title and most systems will return the appropriate
information.

In contrast, the features that are perceived by the users in
their experience with the item are rarely available for query.
For example, a given user likes The Green Mile because it
is “emotional and touching” (and not necessarily because it
is an “iconic prison movie” or a “good book adaption”). As
a query, the user wishes to find other similar movies with
respect to their perspective of interest: being emotional and
touching. Such a query is not supported by most systems
today, because these perceptual features are not commonly
available. Furthermore, even if they were available, current
systems only discover movies which are similar in their over-
all perception, and not personalized to the interested user.
In the following paragraphs we describe how we propose to
address this unavailability of perceptual features, and the
lack of personalization for the users’ interest.

The availability of perceptual features is limited because
they are subjective: they depend on every user’s experience
and not on the item itself. A movie may be perceived as
entertaining and witty for some people, while others per-
ceive it as forced and pretentious. Given this subjectivity,
modelling the schema of perceptual features for every item
and assigning values manually is not feasible. The produc-
ing company or the administrator of the e-commerce system
cannot decide this up-front. Fortunately, perceptual fea-
tures and their values can be obtained indirectly from user
feedback, where users share the experience they had with

an item. Some of these feedback sources include ratings [1],
reviews [2] [3] [4], and crowdsourcing [1]. In addition, there
are methods that can determine and extract these percep-
tual features and their values from text documents, such
as reviews [5] [6]. These methods take advantage of differ-
ent Natural Language Processing (NLP) tools: from sim-
ple tokenization and stemming [2], to complex onthologies
and lexical databases such as WordNet and SentiWordNet
[7] [8] [9], and even machine learning approaches like La-
tent Dirichlet Allocation [10] [3] or document embeddings
[4]. The extracted features may allow human interpreta-
tion, like quality of acting or scenery, or they may be latent
or implicit features with no possible interpretation. In this
research we use reviews, since they are detailed descriptions
of the user’s experience and they are commonly available in
most e-commerce systems. We assume that the performance
of the aforementioned methods is acceptable to obtain per-
ceptual features and their values from reviews, and use them
in a system.

This leads to the next challenge: how to handle all the re-
views since there can be hundreds or thousands of them per
experience item. While every review conveys the experience
of a single user, there is usually a few major perspectives
that users share for a given item. This does not mean that
all reviews can be perfectly classified into clearly defined
categories, but that some groups have common ground on
their perception. These groups, that we call Shared Per-
spectives (SPs), can be used to represent the experience of
most users with the item. For example, from 400 reviews for
The Green Mile, there may be 180 that say something along
the lines of “beautiful and touching movie, full of emotion”.
Some details can differ, but the general perspective is the
same. Another 110 agree that it has “great acting and a
good story that follows the book quite well”, and 80 more
say that it is a “good movie with famous actors, it is long
but worth it”. The rest may be isolated or unique opinions
saying that it is an “unrealistic fairy tale in prison”, or “such
a bad movie, Tom Hanks is so lame”, that do not belong to
major groups. Therefore, by grouping reviews with similar
perceptual feature values, a system can find the Shared Per-
spectives of the item. For this grouping to be possible, a
given system requires that feature values are extracted from
the reviews, because processing natural language is not a
trivial task.

Once obtained, Shared Perspectives pose the challenge of
querying them, since they are conformed by the perceptual
features, which are widely varied, subjective, and can even
be implicit. Users would need to know the schema of every
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system and the values of every item to generate useful or
even valid queries. One system may have a feature in their
schema called ‘funniness’ while the other one calls it ‘com-
edy level’; for one system the ‘action pace’ goes from 1 to
10 and in others from 0 to 100. Since some methods even
extract implicit features [11] [12], those features and their
values simply do not have human interpretation. In addi-
tion, for queries on experience items, people usually do not
know exactly what they are looking for, and therefore are
not clear on the values required for its query. Such querying
problems can be addressed with the use of Query by Exam-
ple (QBE), where a user provides an example item and the
system returns several similar items. In brief, QBE finds
items with similar representations to the example item, the
representation being a set of values such as a vector or a tu-
ple with the features of the item. The notion of using QBE
to avoid the need for structured queries or SQL has been ap-
plied before, for example to find similar movies by obtaining
the values of perceptual features from ratings [1] or reviews
[4]. In these studies, authors obtain a set of implicit per-
ceptual feature values for every item, and use this as their
representation in the QBE process. By using QBE, the user
supplies an item to find others with roughly the same per-
ceptual features: “something like this, but not this”. This
starts an iterative process where users can provide one of
the resulting items as the new example, until a satisfactory
item is found. Such systems do not require that the user
has any specific knowledge about the schema, the values, or
even the precise target.

These approaches using QBE commonly represent each
item of the collection in a high-dimensional perceptual fea-
ture space, for example for features build on reviews [1], or
for features build on ratings [4]. However, these approaches
have been shown to have a major flaw [4]: by incorporating
multiple subjective, potentially conflicting, or even irrele-
vant user feedback documents into a single representation,
a significant part of the semantics can be lost. For exam-
ple, the Green Mile might either be seen as an emotional
and touching movie, or as a prison movie, or as a good
book adaption, the aforementioned perspectives. Depend-
ing on the current user’s own viewpoint, a different perspec-
tive might be more relevant. Furthermore, some perspec-
tives commonly present in reviews might be irrelevant for
the item, for example describing packaging and shipping.
Previous approaches would consider a movie similar to an-
other because its representation was constructed by reviews
that say it is also shipped late or arrived damaged.

To address this weakness, this work proposes to use Shared
Perspectives for Query by Example to help users in the pro-
cess of querying experience items. With the Shared Per-
spectives, the user provides an example item and the system
returns several items that were perceived in a similar way.
The system can indicate the Shared Perspectives of the ex-
ample item, so the user can identify why the resulting items
are similar. This way, the user is involved in the process of
similarity, they are informed of why the resulting items are
similar to the example. Instead of ”these are nine similar
items to your example because I say so” the system returns
”these are three similar items to your example because peo-
ple also think it is emotional and touching, these three are
similar because of good acting in a great book adaptation,
and these three because it has famous actors and it is long
but worth it”. This allows transparency in the process of

selecting the new example item to continue the query.
The evaluation of the proposed ideas is not simple, mainly

because of the subjectivity surrounding experience items:
the users’ perception, how it translates in their feedback,
and how others interpret it. Therefore, we simulate user be-
havior in QBE to compare the performance of Shared Per-
spectives against the aforementioned single representation.
We also conduct a user study to analyze and model the se-
mantic quality of Shared Perspectives when used to say that
movie A is similar to movie B.

1.1 Contributions
The contributions of this work are presented as answers

to the following questions:
RQ - How can we improve the process of search-

ing experience items, based on their perceptual fea-
tures? We propose to use Shared Perspectives in Query by
Example to find items that were perceived in a similar way
by other users. The Shared Perspectives provide the percep-
tual information to understand most users’ experience with
a given item. The use of Query by Example simplifies the
search process for the user. This is the main contribution
of this work, however, other questions have to be answered
before this can be feasible.

RQ1 - How can we obtain the perceptual features
of experience items? The perception of an experience
item by a user can be extracted from a review. The extrac-
tion is required to obtain values that a system can process,
since human language is unstructured and messy. From
the broad field of Natural Language Processing, there are
many technologies that can be combined in different ways
to achieve the extraction results closest to human under-
standing. For this thesis we study the current situation in
this field and adapt existing methods for the prototype im-
plementation.

RQ2 - How can we represent the experience of
many users effectively, given that they are subjec-
tive? Assuming that perceptual features can be extracted
from feedback documents with acceptable precision, there
are still a lot of values to analyze. However, not all docu-
ments available convey a unique perception of the experience
with the item: there is some agreement between them. In
consequence, we propose to group together similar percep-
tions into Shared Perspectives. As a result, an item can be
represented by how major groups of users experienced them.

RQ3 - How can we store the extracted feature val-
ues for future use? We can use a Relational Database
(RDB) with some conceptual delimitations to store percep-
tual feature values. The discussion of storage of the obtained
values for future use is rarely addressed in feature extraction
research. However, for Shared Perspectives it is necessary
to store them. One reason is that in many systems there
will be new feedback documents added continuously, and the
Shared Perspectives have to be recalculated. Another reason
is simply for implementation, some clustering algorithms re-
quire a specific format to calculate distance between tuples,
and it may differ from the output format of the extraction
methods. By storing the tuples, the format can be adapted
when reading from the database. In consequence, we de-
scribe and implement the concepts of Perceptual Features,
Perceptual Feature Families, and Perceptual Tuples as part
of a RDB.
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1.2 Outline
In Section 2 we describe the related efforts on exploiting

user feedback for perceptual similarity of items, followed by
the formalization of concepts behind Shared Perspectives
and Query by Example in Section 3. The implementation
is subsequently addressed in Section 4, where we describe
the steps required for SPs for QBE: data collection, feature
extraction, storage, grouping and querying. The relevant re-
lated work is presented for every step of the process, along
with the concepts defined and the implementation details
of this particular prototype. Afterwards, we use the pro-
totype to evaluate these concepts using real-life web data,
with both simulated user behavior for performance and an
exploratory user study for semantic quality of the Shared
Perspectives. During the synthetic evaluation, where we
compare performance of SPs to single representation in Sec-
tion 5, we show that not all Shared Perspectives are useful to
relate one item to others. Therefore, a metric of usefulness
is created with the assistance of real users in the exploratory
study in Section 6, and then its performance is evaluated us-
ing the synthetic experiment again. In summary, it is shown
that using a few Shared Perspectives to search for items has
better performance than one representation per item. Fi-
nally we conclude the text in Section 7, along with a brief
discussion on future work.

2. RELATED WORK
In this section we present studies that focus on improving

the way users find experience items in information systems,
by their perceptual features. There are several approaches
for this, each one of them with more variety of methods and
tools applied. The approaches can be divided in two groups,
from the side of the user’s attitude: actively searching, as a
query; or passively waiting for items, as recommendation.

In this research, the attention is on the active search of
experience items using perceptual features. An interesting
approach for this search focuses on working with the ex-
periences in Perceptual Spaces, a vector space where users
and items are positioned together [13]. This research takes
advantage of ratings, for their high availability and low han-
dling complexity: if a user gives a high rating to an item, it
is assumed that they liked it. The process starts by forming
triples (movie, user, score), which are processed in a modi-
fied version of Euclidean Embedding factor model to mini-
mize the cost function. Afterwards, a d-dimensional space is
mapped with users and items, where items are located close
to the users that rated them highly. The users are then re-
moved from the space, leaving only similar items close to
each other, with no telling what the similarities are. This
is because the unknown d dimensions in space are latent
features, they are not directly observed but rather inferred
through the model. To better understand the resulting di-
mensions, in following research, authors make use of crowd-
sourcing to classify the genre of the movies. If a group of
similar movies is classified as funny, and they share a high
value in one dimension, that dimension could be labeled as
‘funniness’. To search for items in Perceptual Spaces, au-
thors propose to use Query by Example, allowing easy-to-
use and personalized queries [1].

Along the same line, another study uses reviews to obtain
a single vector representation for a movie, then the repre-
sentations are used to find similar movies [4]. Focused on
the challenge of putting user-generated feedback to practi-

cal use, the study works with experience items and reviews,
the goal is to obtain the latent features of every movie from
the reviews. An important advantage over the work with
Perceptual Spaces, is that it does not matter who wrote
the reviews or how many, so there is no need to keep ex-
tensive user profiles. The authors compare three different
extraction methods: TF-IDF, Latent Semantic Aanalysis
with TF-IDF, and a document embedding model, to create
latent vector representations of 3,284 movies, each one with
an average of 8.58 reviews. For all methods, one vector is
obtained using all the reviews of a movie as a single doc-
ument, regardless of their perception: a crucial difference
with Shared Perspectives. The reviews could state oppos-
ing experiences, or information about the movie format or
vendor, and they were all forced into a single representa-
tion for the item. Since there is no conventional baseline
to evaluate this type of work, the three methods are com-
pared to the outcomes of the study on Perceptual Spaces
[1]. The document embedding model was tested with 600,
300 and 100 dimensions. The embedding model with 100
dimension had highest correlation with Perceptual Spaces,
out of all methods evaluated, and was therefore considered
the best approach. An interesting result is the similarity of
unrelated movies, caused by the presence of bad reviews in
the corpus of each item. These ‘bad’ reviews include com-
ments about delivery or provider service, or the format of
the movie (VHS, DVD, Blu-ray), and they do not contribute
to a meaningful representation of the vector. This is an im-
portant problem considering that there is only one vector
per movie, so these reviews will affect the performance of
the system. In summary, the study is a first approach to
the actual application of neural document embeddings to
be used as a similarity measure between experience items.

It is important to also review the situation in which the
users are not actively searching, but instead items are recom-
mended to them. This is because, in essence, Recommender
Systems (RS) also address the challenge of finding expe-
rience items by their perception, especially when they are
unknown to the user. The development of RS comes from
the observation that individuals often rely on suggestions
in their daily decisions (e.g. a friend recommends a book,
or a critic praises a movie). With this notion in mind, the
basic RS take advantage of collaborative-filtering to suggest
items that other people with similar behavior have liked.
There are many improvements to this basic idea, for ex-
ample: boosting new or unpopular items, or taking into
account user feedback when an item is suggested correctly
[14]. There are more user-centric RS approaches, such as de-
mographic [15], where the user gets recommendations based
on their profile, nationality, age, location, etc. Another one
is community based, where recommendations depend on the
network of the user, or their friends’ interests [16]. Finally,
the closest to the approach of this thesis is content-based,
where the recommended items have similar characteristics
to the ones that the user liked [17]. The downside of RS
is that they need to build a profile for the interested user:
what they like or not, and even their demographics or social
network, when relevant. The strength of RS is that they are
in line with the common behavior of the user, however, it is
difficult to adapt them to varying situations. For instance,
if a user likes to watch action and horror movies but right
now he is taking care of a younger sibling, recommendation
results may not be very useful.
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There is interest and efforts to obtain Perceptual Fea-
tures from user feedback and use them in the search
process for Experience Items. There are Recommender
Systems that suggest experience items to users based on
their characteristics, what they like, what their friends
like, their demographics, etc. Some use ratings, others
reviews, and some even behavior, but they all generate
one Perceptual Tuple per item from the user feedback
available, and use it to find similar items.

3. CONCEPTS AND DESIGN SPACE
In this section we explain the motivation behind Shared

Perspectives (SPs) and their key concepts, which are used
in the rest of the text. The main inspiration for SPs is that
when people talk about experience items, their perceptual
features are usually the center of the conversation. Com-
ments like “this movie is so scary”, or “that book is super
engaging”, are the usual way to communicate such experi-
ences. Yet, this is not common in e-commerce platforms,
where only factual features are used. Using factual features
in SQL or ‘normal’ queries works perfectly when the user
knows exactly the item they are looking for.

On the other hand, Recommender Systems are there for
users that prefer the system to suggest something they may
be interested in. The goal of SPs is to cover the middle
ground and enable users to search for experience items, sup-
ported by the Query by Example process, in an exploratory
fashion. This allows for custom search in all kinds of situa-
tions, with no system knowledge and no need for user profile
or information.

3.1 Shared Perspectives
In this section, we introduce the idea of Shared Perspec-

tives and then describe each concept individually. In Web
Information Systems, particularly in e-commerce platforms,
users interact with information about experience items. These
items have factual features, as well as Perceptual Fea-
tures, which are rarely available in current information sys-
tems. Perceptual Features are subjective to each user’s ex-
perience, and therefore not commonly modelled for every
item. Fortunately, when a person uses an item, they can
provide feedback, such as a rating or review, of their expe-
rience. There are methods available today that are able to
encode the experience in that feedback into a set of percep-
tual feature values: a Perceptual Tuple. If every feedback
document, like a review, can be encoded into a Perceptual
Tuple, there can be hundreds or even thousands of tuples
for every item. For most items, we suggest that not all tu-
ples are individually unique, but there are a few major per-
spectives that most of them share: Shared Perspectives.
This is, the distance between the tuples can be measured,
and therefore they can be clustered into several groups. In
addition, every group contains a tuple that has the least dis-
tance to the rest of the tuples in that group so it represents
it, the Shared Perspective Tuple. Every item has a few
Shared Perspectives and their respective Shared Perspective
Tuples, which represent the experiences of most users with
the item. This idea also helps to ignore isolated experiences,
resulting in the more supported views only. These concepts
can be formalized in the following way:

• Factual Feature (F): Single objective attribute of an
item, with only one possible value. They are mostly
do not depend on each other or other items. This is the
traditional, or regular attribute widely used in current
systems, for example title, release year, director, etc.

• Perceptual Feature (PF): Single perceptual attribute
of an item. It shares most characteristics of a fac-
tual feature F , with the exception that it belongs to
a Perceptual Feature Family. This means that a PF
represents only part of its Family, therefore it should
be paired with the other members to form a percep-
tion, and not used for QBE by itself. The domain of
each PF is determined by the extraction method, such
as ‘acting’ for movies, or ‘implicit feature 1’.

• Perceptual Feature Family (PFF): Ordered set of PF s
that are semantically related, PFF = {PF 1...PF k}.
A PFF is the possible output of an extraction method,
if a given method generates a vector with k features,
there will be k PF s in that Family. There can be
several PFF s for a given system, and they are inde-
pendent of each other.

• Perceptual Tuple: (PT) A set of values that belong to
an item, for a PFF . This represents the individual
perception from an individual feedback document. A
PFT is the actual set of feature values extracted from
a method. For instance, for a method with a PFF of
acting, storyline, and directing, the PFT of a review
could be (2, 3, 0). Since Families are independent, an
item may or may not have PFT s for different Families
from the same document.

• Perceptual Family Relation (PFR): Normalized table
that stores all the PT for a single Family. There will
be as many PFRs as extraction methods used for a
given system.

• Shared Perspective (SP): Each one of the groups of
similar PT s for an item. Depending on the format of
the extraction method, a clustering algorithm that can
work with the PT s obtained is applied. Parameters
and implementation details will vary for every system,
as long as similar PT s can be divided into groups.

• Shared Perspective Tuple (SPT): The representative
tuple of a SP . The representative is a tuple with the
most similar values to the rest of the PT s in the same
SP , such as a centroid, medoid, or average. The SPT s
of an item will its representation in the Query by Ex-
ample process.

• Shared Perspective Relation (SPR): Constructed from
the SPT s of one PFF . For example, it would contain
all the SPT s obtained by using one extraction method
with its respective clustering algorithm on the reviews
of movies.

In most cases, users’ experiences with an item are not
completely unique, but there are major perspectives
that groups of users share. By extracting Perceptual
Features from user feedback, and encoding each user’s
experience into a Perceptual Tuple, we can group simi-
lar tuples together into Shared Perspectives. From every
SP, there is a central Shared Perspective Tuple to rep-
resent the item, effectively reducing hundreds of tuples
for an item into a few.
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Figure 1: QBE Example Process

3.2 Query by Example for Shared Perspec-
tives

In this section we describe the need for Query by Exam-
ple, and how the concepts of Shared Perspectives and their
Tuples are used in the process. If a user wanted to execute
a SQL query on SPs, they would need to know exactly the
perceptual features available for query, as well as the values
they are looking for. Given that extraction methods can re-
sult in any number of perceptual tuples, some of them with
implicit features, such SQL queries are not feasible. A simi-
lar situation exists in multimedia databases, where items are
also represented with tuples of implicit features. Instead of
a query on such features, the user can provide an item that
resembles what they are looking for, in a QBE: they can
give the system an image of a tree on a hill to get a visually
similar one back [18]. The system uses the implicit features
of the item, regardless of the user’s knowledge about them,
to find other items with similar features [19].

We propose to use this approach for experience items,
where the user can provide a movie with a nice story that
follows the book, and get similar movies based on that per-
ception. The use of QBE not only avoids the problem of un-
feasible queries on implicit features, but also the challenge of
having implicit target, where users don’t know what they’re
looking for. If they knew what they were looking for, a SQL
query would suffice. In addition, QBE can be an iterative
process, where the user can select an item from the results
as the new example, until an item is found with the desired
perceptual features. Conceptually, the process of Query by
Example with Shared Perspectives is described below and
shown in Figure 1:

• User U is thinking of a certain Experience Item: i0
that fits their current situation or mood, and they want
something that can provide a similar experience.
• The user provides i0 as the example of the QBE. This

item has n Shared Perspectives, therefore SPT 0: {SPT 00,
SPT 01, ..., SPT 0n}. The system contains the SPT s of
each of the k experience items: i0, i1, ..., ik in its col-
lection C.
• For each SPT in SPT 0, the system will calculate the

similarity with the rest of the SPTs : SPT 1, SPT 2, ...,
SPT k available in the table SPR.

• The system will then select m most similar SPT s for
each one of SPT 0.
• It will show the user a display d0 with the m items that

have the most similar SPT for each SPT in SPT 0.
Therefore d0 will have a size n x m.
• If any of those items is satisfactory for U , then the

process ends.
• If not, the user can select the item they like the most

from d0 and provide this as the new example of QBE.
• This process is iterative, it can be executed until an

item is found. The SPT s of items shown in d0 are
discarded when computing d1, then the ones in d0 and
d1 for d2, etc.

For example, Tom wants to watch a movie like The Green
Mile. He watched it last week and he experienced it as
a movie with nice acting and a story that follows the book
quite well. He provides The Green Mile to the system as the
example, and gets a display d0 of six items back, see Figure
1. From those six items, there are two (m) for each one of
the three (n) Shared Perspectives of The Green Mile: a)
nice emotional movie, b) movies with good acting and story
close to the book, and c) movies that are long but worth
it. Tom is not completely convinced by the results, but one
of them called Patriot Games, that is similar to The Green
Mile because of b), seems interesting. Tom provides Patriot
Games as the new example, and receives a new display d1

with six new movies. One of them is The Hunt for Red Oc-
tober, and Tom decides to watch it. The implementation of
a similar system is carried out in the following section, and
evaluated afterwards.

Since the Shared Perspectives are encoded as Percep-
tual Tuples from user feedback, SQL queries are mostly
unfeasible. They can be avoided with the Query by Ex-
ample paradigm, that calculates the similarity between
the Shared Perspective Tuples of the example item and
the items available in the collection, and returns the
most similar items. QBE is an iterative process, it dis-
cards the need for SQL queries and accommodates for
simple use and situations when the user is not clear on
their target.

5



Figure 2: System Design

4. IMPLEMENTATION AND PROTOTYPE
Once the theoretical background is established, we need

to carry out the ideas proposed to ground the concepts pro-
posed to attest that they are feasible, which we address in
this section. Simplified, if we can encode reviews into tuples
and we apply a clustering algorithm on the tuples for every
item, we get Shared Perspectives. The Shared Perspective
Tuples, center of those SPs, can be the representation of the
item in a Query by Example process, so the system is able to
find the items with most similar user perception. In Figure
2, we show the general design of this simplified process. Ev-
ery step of the process is described in this section, together
with the related work, and the implementation details.

4.1 Source Data
As it has been established, perceptual features have to be

obtained from feedback of actual users. In this section we
revise user feedback as information source. The source docu-
ments for perceptual features have to contain an explanation
or evaluation of the experience with a given item. Ideally,
this evaluation is direct, explicit and for one item only. Such
feedback documents can be found in social network posts, in
dedicated blogs, or as reviews in item collections like online
stores or specialized websites. From these different sources,
reviews in online stores tend to be direct, explicit, and there
are many available for a single item. Online stores try to
get reviews mostly from users that actually acquired or ex-
perienced the item. By using the reviews, we add a source
of information to the data available for items, perceptual
information.

In this work, we assume that reviews are:

• Accepted source of information for research and busi-
ness applications [5]

• Inherently written to contain an opinion about the
item [5]

• Important for interested users, used to construct an
opinion about the item [20]

In most of today’s online platforms, reviews are shown
to the interested user, with some ordering and filtering ca-
pabilities, but it is ultimately the user’s task to read and
interpret enough of them to have an idea about the item
before having to experience it themselves.

4.1.1 Related Work
Research towards the use of reviews for all types of ex-

perience items has been around for years, and is still evolv-
ing. Reviews are key in online shopping decisions, since they
have significant influence on people when choosing experi-
ence items. The extraction, summarization, selection and
display of knowledge extracted from reviews is an impor-
tant challenge in today’s state of information systems [5].
Opinion mining from reviews is considered a significant step
in research and industry. The current paradigms of sim-
ply showing them to users is not enough, and many studies
address this need [9] [21]. Most studies claim that their
process and results can be reproduced across domains, and
some even implement it and compare performance in more
than one domain [22]. The use of reviews is not only for the
extraction and summarizing, but also for querying process
[4].

4.1.2 Implementation
For this thesis we use an existing dataset of Film reviews

from Amazon, we adhere to movies because they share com-
mon features between them. In addition, the interaction
with online movie catalogs is easy to relate to, resulting
in simple and engaging examples. The dataset was origi-
nally created and organized for research on Recommender
Systems [23]. Unfortunately, Amazon Film includes series,
movies, documentaries and other types of video material,
which are not classified. In an attempt to single out movies,
we discard items with titles that include words like ’season’,
’collection’, ’series’, and ’pack’. We only select movies that
have at least 100 reviews, and if they have more than 300,
the rest are left out to keep a similar number of reviews
across movies. Reviews with less than 25 words usually do
not convey feature information and are therefore discarded.
This is mainly because Amazon requires a minimum of 20
words per review, so users tend to fill this out with repetitive
statements. This results in a dataset consisting of ∼375K
Amazon movie reviews, for 2041 movies.

A good way to obtain users’ experience with an item
is from their feedback, such as reviews. Reviews are
commonly used in research as a source of information of
user’s perception, or Perceptual Tuple. We use Amazon
movie reviews for this implementation.
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4.2 Perceptual Feature Extraction
The increase in data generation that came with Web 2.0

caused a rise in efforts to understand it and use it in for
research and business [24], which is the topic of this section.
Efforts to work with this user-generated content have ap-
peared in all academic areas, from Psychology to Computer
Science. For Computer Science, one of the main areas is
NLP, together with many relevant branches such as Infor-
mation Extraction, Web Systems, and Databases [6]. The
relevant content source for this work is in e-commerce sys-
tems, where a person shares their experience with a product
or service using Ratings and Reviews. We assume that re-
views convey enough information to extract the values of
Perceptual Features. The intention is to translate the per-
ception in the unstructured text review into a value that the
system can work with. We roughly separate the extraction
methods by explicit and implicit features, the first are eas-
ily identified and intuitive for humans, while the second are
underlying and very difficult or impossible to label. Fur-
thermore, the explicit features are defined before extracting
their values, while the implicit features are labeled after the
process, when possible.

4.2.1 Related Work
We first address extraction methods with explicit features,

where there are many algorithms and tools used, but their
general structure is similar. Almost all explicit feature ex-
traction processes need a set of features and related words
to look for, this can be created manually or automatically
[25]. For manually created sets, developers of the extraction
method decide which features are important for the item,
possibly using the help of experts or crowdsourcing to sup-
port their decisions [9]. For example, in the movie domain
the feature set can include Dialogues, Editing, Cinematog-
raphy, Music, and Acting. For videogames it can be Sto-
ryline, Game Mechanics, Physics, Video Quality or Music.
The other way is to automatically generate a set of rele-
vant features by their relative presence in the data corpus
in question, and the relatedness with the topic [26]. This
is very useful in domains where every type of product has
specific features, for example in electronics: screen quality
is relevant for a laptop but not so much for a router. After
generating the set of relevant features, most methods follow
roughly the same steps: extraction continues by isolating
sentences that contain these features (or any related key-
word) in the document. The next step is to identify any
modifiers that affect the feature, for example: “The acting
(feature) of this movie is amazing (modifier)”. The system
then rates the sentiment and degree that the modifier in-
flicts on the feature. This process of explicit feature extrac-
tion usually generates a summary of features for every item,
with their positive or negative values, for example: acting
9/10 and storyline 3/10.

The main technologies used in the process are the follow-
ing: Part of Speech Tagging to find the nouns and modifiers
in a sentence, and Association Mining to find itemsets [7] [2]
[6]. The nouns are usually the relevant features, while the
itemsets are groups of keywords related to them. In addi-
tion, Adjective Identification is used to identify the modifiers
or words that affect the features. This can be challenging,
for example: “with this acting, why would anyone watch
this movie?” has no direct modifiers, however it is highly
negative. To assing actual values to the feature, researchers

use Orientation Identification [2]. An alternative approach
to determine a sentiment score is done with the assistance
of lexical databases, like SentiWordNet [8] [7]. Once again,
this task is far from trivial, especially for the complexity of
natural language, for example: “The cast is amazing, the
story sounds beautiful and the photography promises to be
engaging, however it fails to deliver” [27]. Every sentence
has a direct modifier positively affecting the feature, but in
the end they are all cancelled, which may be easy to notice
for the reader, but not for an algorithm [5].

In this work we use one explicit feature extraction method
called: Aspect-based Review Extraction (AbRE) [9]. This
method has the goal of obtaining relevant features for a type
of item of any domain, as well as the user’s feeling towards
each one of them. To determine these features, the first
step is to use TF-IDF to find keywords that are frequent in
the selected item reviews (movies, in this case), but not so
frequent in other ’general’ corpus such as news. This is an
example of automatic generation of a feature set. The most
relevant features for the item are compared to the actual
item, using WordNet, to obtain their similarity score. For
example, the word ‘life’ and cting’ are relevant in the movie
corpus, but according to WordNet, ’acting’ is significantly
closer to ‘movie’ than ‘life’ By using both TF-IDF and the
similarity scores, the top 5 words are selected as the most
important features for a given domain.

With the feature set defined, the sets of related words
to each feature are created by their distance in WordNet,
these are all words with a similarity score over 0.75 for each
feature. For example the set of acting includes actor, per-
formance, acting, cast, and role. Every word in the review
is scanned and if there is a match with a word from an item
set, the system looks for adjectives and adverbs in the same
sentence. SentiWordNet is used on the adjectives and ad-
verbs affecting the identified word, to assign a value from
0 (negative) to 1 (positive) to the modifier word. Finally,
the scores of all modifiers for a word are averaged and nor-
malized from 1 to 5. Implemented in movie reviews, AbRE
determines the sentiment score of five defined film features:
acting, directing, scenery, character and storyline [9].

The basic process of AbRE is the following:

1. Find top 5 features for the current dataset

2. Identify words related to the features using WordNet

3. Isolate sentences with features or related keywords

4. Identify modifiers (adjectives or adverbs) affecting the
keywords

5. Assign sentiment value from 0 to 1 using SentiWordNet

6. Average and normalize into 1-5 scale

Now we turn to implicit feature extraction methods. They
have more varied structure, but are generally based on math-
ematical and statistical modelling, often aided by machine
learning. The main difference with explicit feature extrac-
tion methods is that both the selection of the features and
their values are performed at the same time, resulting in a
set of unnamed features. Most methods process all docu-
ments at the same time, instead of one by one like explicit
methods. Sometimes the resulting features can be labeled,
typically by experts or using crowdsourcing. However, in
other cases the individual features simply have no human in-
terpretation, and the values have to be processed together.
Two known methods are Latent Semantic Analysis (LSA)
and Latent Dirichlet Allocation (LDA). LSA assumes that
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documents that contain similar words have similar topics.
For LSA, a matrix is constructed containing a word count
per paragraph, and Singular Value Decomposition (SVD) is
applied to reduce the number of rows while preserving the
structure of the columns. Words are compared by the co-
sine distance of the angle of their resulting vectors [12]. For
documents, the vectors of all the words are aggregated re-
sulting in a single representation, which is used to compare
with other documents. LDA is a generative probabilistic
model of a corpus where documents are represented as a
mixture of topics. Every word in a document attributes
to the probability that the document belongs to one of the
topics. This allows the selection of the most dominant topic
of each document by the words it contains [10]. LDA was
proven useful to obtain subtopics of restaurant reviews on
Yelp!, with 50 topics modelled. The four most relevant top-
ics are: service, take out, decor and value. The authors use
sentiment analysis to rate each subtopic in a review, and
use them to predict the actual rating [3]. Both for LDA
and LSA, the resulting topics can usually be labeled. In
some cases, resulting topics contain words that are hard to
classify in a single container, they have to be broad. In a
comparative study with LDA and LSA, authors used movie
plots to create a recommendation system. By using LSA,
they represented each movie plot with 500 topics instead of
220000 keywords, while for LDA, they used 50 topics. In
short, LSA required double the computational cost, but had
significantly better performance than LDA [28].

The method that we apply in this work uses neural net-
works for document embeddings, mapping them to a vector
of real numbers [4]. Document embeddings are based on ma-
chine learning and statistical analysis, like LDA and LSA.
The most known implementation is Doc2vec, developed by
Gensim, which populates a dense vector of fixed size as a
representation of a variable length document. Doc2vec is
used for this work since it can be applied for reviews of any
length, returning a vector of the same size. This consis-
tency is vital for the Pearceptual Feature Family structure
in a RDB. It is based word2vec, an unsupervised framework
trained to predict the next word in an n-gram, but with
the addition of a paragraph token that contains the topic of
the text. There are two types of document embedding: Dis-
tributed Memory Paragraph Vector (dmpv) and Distributed
Bag-of-Words (dbow), both show considerable performance
for sentiment analysis in movie reviews as well as topic de-
tection from Google Snippets [11]. For this thesis we only
focus on dbow since both the authors of the implementa-
tion 1 and an empirical study show that it has appropriate
performance [29]. In addition, its implementation is more
straightforward2. Doc2vec is still under research, but it has
been used to represent documents with better results than
other approaches like Bag of Words or the aggregated vec-
tors of all the words in the document. One key advantage
is negative sampling of high frequency words, and the com-
parison between document and corpus item frequencies [29].
The features and values extracted by this method are im-
plicit, it is simply not possible to identify any meaning from
the values themselves.

1Authors of Gensim on dbow vs dmpv:
https://github.com/piskvorky/gensim/blob/
develop/docs/notebooks/Doc2vec-IMDB.ipynb
2we also tested dmpv,the resulting vectors were very to
dbow but training was significantly slower

4.2.2 Implementation
The methods selected for implementation are Aspect-based

Review Extraction and Document Embeddings, representa-
tives of explicit and implicit feature extraction, respectively.
We will describe implementation details and an example for
each one of them below.

Aspect-based Review Extraction: This method was
already applied for the Amazon movie review dataset [9], so
it was only necessary to process the values.

Example: The Green Mile review
Ok, so it did not deserve best picture. It was still ex-

cellent. It has great performances in it. Particularly the
guy who never was very famous Michael Jeter or what-
ever his name is. I love the visuals. I cried at the end.
Michael Clarke Duncan is great.

• Perceptual Feature Family: acting, directing, scenery,
character and storyline.

• Perceptual Feature Tuple: 3.43, None, 3.12, 3.43, None.

Document Embeddings: A key aspect when using this
approach is that there are many implementation choices to
be made, from the corpus selected to the tuning of hyper-
parameters. For topic similarity purposes, in some imple-
mentations it is recommended to add other available corpus
(such as news or Wikipedia), or to use pre-trained models
created by the authors [11]. However, in this work only the
Amazon movie reviews were used to train the model, so the
‘topic’ of the document is the perception of the user. For
parameters selection, the decision was to follow the recom-
mended values by the implementation authors, as described
before:

• Vectors are kept at 100 dimensions
• The training window is kept at 10 since it showed good

performance with documents of similar size (reviews)
• Frequent word subsampling seems to decrease sentiment-

prediction accuracy, so it is left out
• dm=0 and dbow words=1 selects the ‘dbow’ mode
• A min count=2 saves model memory significantly, dis-

carding words that only appear in a single document,
and are no more expressive than the unique-to-each
vectors themselves
• The learning rate is alpha = 0.025 and is kept fixed

Example: The Green Mile review
Ok, so it did not deserve best picture. It was still excellent.

It has great performances in it. Particularly the guy who
never was very famous Michael Jeter or whatever his name
is. I love the visuals. I cried at the end. Michael Clarke
Duncan is great.

• Perceptual Feature Family: d0, d1, ... d98, d99

• Perceptual Feature Tuple: (-0.640138, 0.422624, ..., -
0.0350407, 0.192102 )

It is necessary to encode the reviews into Perceptual Tu-
ples, so a machine can process them to find Shared Per-
spectives. There are many methods to encode unstruc-
tured text for processing, we implement two: AbRE
with 5 explicit features, using POS tagging, WordNet
and SentiWordNet. The other one is Doc2vec, it uses
neural networks and results in tuples with 100 implicit
features.
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4.3 Storage: Relational Databases
In this section we describe the concepts related to stor-

age of extracted values as tuples, their structure and basic
constraints. This part of the process is rarely discussed in
extraction studies like those addressed in Section 4.2. Such
studies do not have the need to store the obtained values
for future use. For Shared Perspectives and Query by Ex-
ample, obtaining the tuple of a document is only the first
step. By storing these tuples, the SPs can be recalculated
when new reviews are introduced to a system, so it is key to
keep them in an organized database. In addition, it helps
with the general calculations, the application of clustering
algorithms, and would be practical for an actual commercial
system.

4.3.1 Related Work
In this section we describe the general theory of Rela-

tional Databases, with a movie database example. In short,
RDBs store information in relations (tables) where every
tuple (record or row) contains values (within a domain) for
every attribute (column). There are special cases where an
attribute of a tuple can have multiple values. Usually, mul-
tivalued attributes are managed in one of two ways: In the
first, the values are simply stored in a single field, so they
must be processed for querying, this is rarely done and it
is usually advised against. In the second option, the multi-
ple values are normalized, captured in a separate table and
linked to the entity. This is done via surrogate keys that
refer many values to their respective single item, or cross-
reference tables for many-to-many relationships [30]. Mul-
tiple values are independent in the same attribute as well
as across different attributes [31]. The basic requirement is
that the original relation can always be recovered by per-
forming a join [31].

Before proposing how to store perceptions in a RDB, we
review the basic concepts of the Relational Database Model.
To describe the theory of these relations, we will refer to the
Relation Scheme and Instance model. Starting from the
Primitive Relation Scheme, the triple PRS = (Ω,∆, dom),
where Ω is a finite set of attributes {A1, ..., Ak}, ∆ is a fi-
nite set of domains {δ1, ..., δk} where each domain is the
set of possible values for the respective attribute, dom :
Ω → ∆ is a function that associates each domain to each
attribute. These three concepts together are part of the Re-
lation Scheme or RS = (PRS,M, SC), where M represents
the meaning and SC is the set of constraints or conditions
of the relation. Together, SC and M help bind the rela-
tion to the real world it represents. A tuple is a function
t : Ω →

⋃
δ∈∆

δ where the value for each attribute belongs to

the established domain t(A) ∈ dom(A) [32].
The RS is only an empty frame. To create a Relation In-

stance, we need to assign values for each tuple, from the es-
tablished domain for every attribute, in line with the mean-
ing and constraints. For example, in a movie database, this
is an instance of a Relation Scheme for movies, shown in
Table 1: movies = (PRS,M, SC) = (Ω,∆, dom,M, SC) 3.

• The relation contains only items of the type movie,
from the catalog of Amazon

3the RS can also be represented as a 5-tuple

• The set of attributes Ω = {id, title, year} exist for ev-
ery movie in this relation, and only have one value for
every tuple

• The domain set ∆ = {set of 10-digit Amazon Standard
Identification Numbers (ASIN), set of actual titles, set
of 4-digit positive numbers}. These have to be defined,
it can be through enumeration or syntactical rules

• The function dom associates each set of names with
their respective attribute, restricted to allowed values
for the attribute

• M is the meaning of the relation, these are real movies
that were released with an official title, on a certain
year

• The set of conditions SC includes that the year has
to be the official worldwide premier, not prize or film
festival showings

• A tuple has to satisfy all requirements to belong to a
relation, its values belong to the domain of each at-
tribute and the tuple fulfills the condition set. For ex-
ample, a tuple is a function that associates 0780628799
with id, The Green Mile with title, 1999 with year

Table 1: Movies Relation
movies
id title year
0780628799 The Green Mile 1999
0780625129 American History X 1998
076780192X Close Encounters of the Third Kind 1977

Furthermore, a Database is usually composed by several
Relations. Ffor example a movie database may include ac-
tor, director, and publisher tables. A Primitive Database
Scheme is a finite set of Relation Schemes, each one of
them with their corresponding 5-tuple: PDS = {RSi =
(Ωi,∆i, domi,M i, SC i)|i ∈ I}. Different relations have dif-
ferent meanings and constraint sets, in the same way, a
Database Scheme DS = (PDS,DM,SDC) is formed by
the Primitive Database Scheme, plus the overall Database
Meaning and the Set of Database Constraints. The Database
Meaning and Constraints may not be entirely covered by all
the Meanings and Constraints of the Relations it contains,
and it has to be defined. For this work, the proposed the-
ory extension is only on relation level, therefore it is not
necessary to go into further detail on database level.

4.3.2 Implementation
In this section we propose the storage concepts for the fea-

ture values extracted from the source documents or reviews.
We apply the concepts of Shared Perspectives described in
Section 3.1 to RDB theory, which helps to consolidate them
in the implementation.

• Perceptual Feature: A single feature extracted from
a single method. In the case of AbRE, it is each of
the 5 features. The domain includes the range of real
numbers from 1 to 5 and ’None’, if the feature is not
mentioned in the review. For the document embed-
dings, it is each of the 100 dimensions that represent
an implicit feature for the system. The domain is real
numbers, usually between -2 and 2.
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• Perceptual Feature Family: Groups of features extracted
by the same algorithm, framework or method, in this
case there are two: the 5 features extracted with AbRE,
and the 100 dimensions of Doc2vec.

• Perceptual Tuple: The actual set of values extracted
from a review of an item for one family. For instance,
for a given review of the Green Mile, with a certain
id, the respective values for acting, directing, scenery,
character and storyline are: 3.43, None, 3.12, 3.43,
None.

• Perceptual Family Relation: It is each of the relations
that store the perceptions from all the available re-
views for all items, joined via surrogate keys.

For the actual database, we used Microsoft SQL Server
2017, because it can easily work with Python, and it al-
lows for Custom Table Types, which we considered useful
at the beginning of the research. The idea was to actu-
ally restrict the structure of the Perceptual Family Tables
from database side, however, this is not possible since every
extraction method results in a different scheme. MS SQL
was very useful for the prototype implementation, but any
Relational Database Management System would equally ap-
propriate.

Storage of Perceptual Tuples is required in the case
of new reviews, meaning new tuples, and therefore re-
clustering. It helps to ground the concepts of Perceptual
Features, Families, and Tuples. In this prototype we use
MS SQL. By using RDB there is a clear structure that
the system can access in the Query by Example process.

4.4 Clustering: Constructing Shared Perspec-
tives

The concepts of Shared Perspectives can be implemented
once the Perceptual Tuples are extracted, and this is re-
viewed in this section. The general notion of SPs consists
of grouping together similar perceptions, therefore similar
PTs, for every item. As described before, this step of the
process requires that distance can be measured between Per-
ceptual Tuples. With this distance, a clustering algorithm
is applied to the PTs of an item to find the groups and their
representatives. In this section we only discuss the algo-
rithms applied, but there are many available for different
implementation requirements.

4.4.1 Related Work
The clustering of documents by topic is an active line of

research. This clustering has many applications, for example
search optimization by document clusters, or better ways to
present query results [33]. In many algorithms, documents
are treated as unordered sets of words, in others the order
of the words matter. There are challenges of data sparsity
and high dimensionality [34], however, the clustering of text
documents is an accepted practice and useful for Shared
Perspectives.

To group the tuples obtained by Aspect-based Review Ex-
traction, the approach is to use Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
with a custom distance metric [9]. HDBSCAN is an inte-
grated framework for density-based cluster analysis, outlier
detection, and data visualization. In short, the algorithm
calculates the core distance of each point, and the mutual

reachability between points. Points are mutually reachable
if they are in each others’ core distance. The potential clus-
ters can form a dendogram, where the clusters are decided
via a ‘minimum cluster size’ parameter [35].

For document embeddings, we use spherical k-medoids
clustering, which uses cosine similarity as the distance met-
ric. K-medoids is a robust partitioning method to divide
a dataset into groups, where the center or medoid of each
group is an actual data point. The medoid is the most cen-
trally located object of the cluster, with minimum sum of
distances to other points [36]. By using cosine instead of Eu-
clidean distance, the algorithm measures the angle between
two vectors in space, in this case the tuples [33]. Tuples
with a similarity of 1 have the same orientation, perpendic-
ular vectors have a similarity of 0. This metric is appropriate
for document tuples with this level of dimensionality, espe-
cially centered around 0, with equally scaled values. This
is also recommended as an appropriate similarity metric by
the authors of the embedding implementation used [34] [11].

4.4.2 Implementation
The implementation choices for this section depend on the

values of the tuples extracted, and they are described below:
HDBSCAN for Aspect-based Review Extraction:

The custom distance metric used is the average difference
between existing values of two tuples. This distance is calcu-
lated as follows: Dis(reviewa, reviewb) = avg(|reviewa(i)−
reviewb(i)|) for values (reviewa(i), reviewb(i) 6= None, i ∈
(1, 5)). The custom metric is used primarily to overcome
missing values, since most reviews do not refer to all fea-
tures. These decisions are based on the approach applied by
the author of this extraction method [9].

Spherical k-medoids for Doc2vec: The main reason
to select k-medoids instead of k-means is that the center of
the cluster actually belongs to a tuple, therefore to a review,
which should be representative of the rest of reviews in the
group. This results in a useful interpretation of the implicit
features of Doc2vec, we can actually read the center of every
Shared Perspective. For this implementation the same num-
ber of clusters is set for all movies, since the final application
is a QBE system, and different amounts of representations
could affect functionality. This is to avoid that movies with
many clusters, and therefore many representations, appear
too often in the process. Aside of the final application, the
‘elbow method’ was applied to select the best number of
clusters. Movies show either tendency to an optimal k of 2
or 3, or there is no clear elbow. To adapt to movies where
the elbow is difficult to assign, we fix k to 3 clusters for all.

4.4.3 Storage of Shared Perspectives
After defining the concepts and implementation of Shared

Perspectives, the next step is to address their storage. Sim-
ilar to the Perceptual Features proposed, this is simply part
of the concepts used in this work. For the theoretical aspect:

• Shared Perspective Tuple: The representative of a Shared
Perspective. For example the medoids of the Shared
Perspectives for The Green Mile, extracted with Doc2vec
and clustered via k-medoids.
• Shared Perspective Relation: Constructed from the

Shared Perspective Tuples of one Feature Family. For
example, the relation that contains all the SPTs ob-
tained by using Doc2vec and k-medoids on the Ama-
zon movie reviews.
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4.4.4 Cluster Analysis: Why we Prefer Doc2vec
For this implementation, the most relevant difference of

the clusters that result from AbRE and Doc2vec is in their
hypothetical application. We consider that AbRE would
be better as additional filtering in a traditional search pro-
cess. For example, writing a query with genre or an actor
like in current information systems, and then adding a level
to features that the user considers important for the query.
An example query could be: ’comedy Adam Sandler’ with
acting greater than 4 and storyline greater than 3. In gen-
eral, the resulting clusters of AbRE with HDBSCAN have
agreement on some of the 5 features extracted, but anything
else like emotional level, action pace, or if it is appropriate
for kids, is not taken into account. For example, a review
like: “The actors deliver a great performance, it is very re-
alistic but way too violent for kids” would be in the same
cluster as “I love the acting in this movie, but it is not
very accurate historically”. Those two perspectives agree
on good acting, but they have a completely different focus,
and that is missed by the extraction method. On the other
hand, Doc2vec provides more detailed representations, and
the clusters have a higher level of semantic similarity, closer
to what would be interpreted by users. Although Doc2vec
has the drawback of implicit features, with the text of the
respective Shared Perspective Tuple (the medoid), we have
some information about the clusters. Therefore, we con-
sider the use of Doc2vec better suited for QBE. With this in
mind, we continue the implementation only using Doc2vec
and k-medoids.

4.4.5 Recalculating Shared Perspectives
The Recalculation of Shared Perspectives was not imple-

mented since we worked with a static dataset, however it is
important to consider the process of updating and recalcu-
lating Shared Perspectives. The idea of SPs is to represent
the item in the most complete way, covering all the major
perspectives that people can have about them. Maybe a
movie gets a prize, the author of a book explains a key fea-
ture in their material, or a videogame gets an update fixing
some important bugs. Big changes or not, new feedback will
continuously roll in, and updating SPs has to be carefully
executed.

There can be several ways to update SPs, depending on
the implementation needs and the rate that new reviews are
added. The naive way is a periodic update: simply wait
for a week or month storing all new tuples, apply again the
clustering algorithm to all tuples of the item, and update
the SPs and SPTs. Another way could be by calculating
the distance between every new tuple and the existing SP
representatives, if it is below a threshold, the new tuple
can be added to the SP of the closest one. Those tuples
that are below threshold distance can be stored until they
reach a predefined value, then all SPs are recalculated for
the item. The silhouette score (consistency) of every cluster
can also be restricted by a threshold, and if a cluster of a
movie surpasses this value, only the Shared Perspectives of
a single item are recalculated.

4.4.6 Alternatives to Shared Perspectives
In the beginning of this research, the only idea was to im-

prove, or at least create a new option for the current way
of searching for experience items. We considered that the
answer was in user feedback, particularly reviews, and that

we should be able to use the different perspectives portrayed
in them. Before Shared Perspectives, two options were re-
viewed with this purpose, but were eventually discarded.

Probabilistic Databases (PDB): PDBs were developed
with messy or fuzzy data as the main focus, engaging RDBs
to work with several levels of uncertainty [37]. Their main
applications were described by the authors in sensor data
or automatic data extraction. For example, if a fact is ex-
tracted from a website, there in uncertainty that the ex-
traction was correct, plus uncertainty of the website itself
being correct [38]. Another example is in scanning hand-
writing: the first character of a student number had 40%
probability of being a 5 or 60% of being 6. Given that most
students numbers start with 5, then the probability was in-
creased, etc. This research area was reviewed as an option
that would produce the perspective with higher probability
of being correct, it still forces all the perceptions into a sin-
gle representation. Since we try to respect the subjectivity
of perception, we stopped the work on PDBs.

Subspace Clustering (SSC): Given the nature of the
feature based extraction method used in this work, we re-
viewed the option to use SSC for the construction of the
Shared Perspectives. SSC is a type of projected cluster-
ing that takes into account only the dimensions relevant
to the cluster, to reduce noise or deal with sparsity [39].
There are several methods and types, such as grid or den-
sity focused. Methods are usually classified as one of two
types: the first is top-down, which discovers clusters in full-
space and prunes the irrelevant dimensions. The other one
is bottom-up, where clusters are found in lower dimensions
and more dimensions are added if they are deemed relevant
enough [40]. Unfortunately, SSC cannot work properly with
the missing or (None) values like the tuples obtained via
AbRE. Most algorithms would either create one cluster, or
classify everything as noise. On the other hand, when work-
ing with the tuples generated by Doc2vec, it is indeed the
combination of the whole tuple that carries meaning. In
addition, dimensions cannot be interpreted by humans, so
there is really no need to restrict the dimensions. It was
tried regardless, and the nature of the tuple representations
prohibited the process to finish, or caused the system to run
out of memory.

The idea of Shared Perspectives is that there are similar
perceptions of a given item and they can be grouped.
For a prototype implementation, we can group percep-
tual tuples using clustering algorithms. We use HDB-
SCAN and spherical k-medoids for the tuples obtained
from AbRE and Doc2vec, respectively. Doc2vec and k-
medoids show more interesting clusters, so we continue
the prototype with these only. In a real implementa-
tion, there would be new reviews added constantly, so
the recalculation of SPs would have to be considered.

4.5 Query by Example
In this section we describe the implementation of the con-

cepts of Query by Example shown in Section 3.2. In sum-
mary, to avoid the need of difficult, unintuitive, or downright
impossible queries required for Perceptual Features, we pro-
pose to use the QBE paradigm. Originated from multimedia
databases, QBE lets the users discover unknown items based
on roughly similar features to the example provided.
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Figure 3: Prototype Example

4.5.1 Related Work
As mentioned in Section 3.2, QBE is usually applied in

databases that store some type of multimedia, mainly be-
cause it is difficult for users to construct queries, since im-
plicit features are not understandable and may require schema
knowledge for every particular system [18]. From images, to
music and video, the use of QBE expands the usual queries,
which mostly contain metadata such as titles, years, author,
artists, and (sometimes) content descriptions. Implemen-
tations of QBE are such as the aforementioned example in
image search, where the user supplies an image and the sys-
tem will return ’visually’ similar pictures [19]. Another im-
plementation is in music information retrieval, where users
can record or even hum part of a song, to retrieve informa-
tion of the actual song, or the most similar available [41].
Along the lines of music, but based in Collaborative Filter-
ing, one study tries to find similar artists to the one provided
as example [42]. Finally, the previous research on Percep-
tual Spaces [1], and Latent Vectors [4], also use QBE to find
items that were perceived in a similar way by people.

4.5.2 Implementation
All the analysis and processing in this work was performed

in Python, therefore the implementation of the application

was also built with it, and connected to MSSQL, using PyQt
tools for the creation of the graphical interface.

A typical process of a user finding a movie using QBE on
SP, consists of the following steps:

1. User selects a movie with desired characteristics, in
order to find a similar one

2. The user is presented with a display of 9 movies, 3 for
each of the 3 perspectives of the selected movie, like in
Figure 3

3. If the desired movie is in the display, then the process
ends. If it is not in the display, the user selects the
next best option

4. The user can repeat steps 2-3 until they are satisfied
with the result

Query by Example is used in multimedia databases be-
cause the implicit features of their items result in dif-
ficult queries for users: instead of complicated and un-
intuitive queries, users can give an item and get some
similar items back. The Perceptual Features extracted
from text often result in implicit features, similar to
multimedia, therefore QBE can be used in an equiva-
lent way. The QBE process can be iterative: the user
can provide an example item, then select one from the
result as a new example until the target is reached.
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Figure 4: Cluster Example of Review Embedding
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Figure 5: Cosine Distances for 1 and 3 Perspectives

4.6 Integrating Example
Putting together the extraction and Shared Perspectives

implementation for this example, the result would look like
Figure 4. In this example, the Perceptual Tuples of the
reviews of The Green Mile (red slim markers) and Patriot
Games (blue thick markers) are shown. The diamonds are
the respective medoids of the cluster if we set k = 1 for
k-medoids, most information systems use a single represen-
tation for every item. The crosses are the medoids if we
set k = 3, representing the different perspectives of the
item. Items are traditionally represented with one tuple
(diamonds), while multiple Shared Perspectives is the pro-
posed way (crosses). As we can see, the crosses on the top
right are respectively closer to each other than the pair of
diamonds. By drawing a line from the origin point in (0, 0)
to each respective marker, we can observe the angles that
are used to compute cosine similarity, like shown in Figure 5.
The cosine similarity between the diamonds is 0.9986, and
0.99999988 between the crosses. For the Green Mile and Pa-

triot Games the tuples of those crosses were extracted from
“As always a super good movie. We watch this one every
few years. Acting is superb by all in this picture with a re-
ally good story. The book is really good too and the movie
follows it quite well.” and “Very good movie version of Tom
Clancy’s book. I still think Harrison Ford is the best Jack
Ryan. Really good plot and good acting. I highly recommend
this one.”, respectively. This shows that for two movies,
that may not be recognized as related by traditional sys-
tem, there is a relationship of “recommendable movies from
a book, with a good story and good acting”. Note: Sin-
gular Value Decomposition was applied to reduce from 100
dimensions to 2, this is only for illustration purposes, and
explains the high cosine similarities.

In summary, the prototype consists of the following:

1. Amazon reviews for 2041 movies

2. Extraction methods. Explicit: Aspect-based Re-
view Extraction (AbRE) Implicit: Document Em-
beddings (Doc2vec)

3. Store as tuples in RDB in SQL Server

4. Group Shared Perspectives using HDBSCAN for
AbRE and Spherical k-medoids for Doc2vec.
Store Shared Perspective Tuples in RDB.

5. Iterative QBE implementation in Python using
the SPTs from Doc2vec and k-medoids.

5. EVALUATION: USER SIMULATION
Given that we have a functional prototype, in this sec-

tion we propose and execute a simulation of the process of
searching for a movie using Query by Example. This is an
evaluation comparing the performance of using SPs against
the status-quo of a single representative tuple per item, by
measuring the iterations from starting to target item.

The main goal of this work is to improve the process of
searching experience items, based on the perception of the
item. Since QBE is a user-focused process, we assume that
the the process is completed when the user finds an item. As
a result, the selected performance metric is the number of
iterations or steps required from the first example provided,
i0, until the target is in the resulting display, d. We choose
this measure because the selection of a new example is the
only action that the interested user will perform during the
query process.

Evaluating the performance of QBE when using the pro-
posed Shared Perspectives is a challenge for several reasons:

• The reviews as a source of information are inherently
subjective, so the interested user may not agree with
the perspectives that represent a selected movie in the
application
• The extraction process selected for the prototype is

not close enough to a full human understanding This
means that sometimes the perceptions grouped together
may have similarities not relevant to the process
• User behaviour may differ from a system evaluation,

users can decide to keep exploring options or change
the initial type of movie they had in mind throughout
the process
• The target movie is implicit: “I’ll know it when I see

it”, as discussed in Section 3.2, therefore it is not pos-
sible to assert if the user actually reached the goal.
There may even be multiple items satisfactory for the
user
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One option for evaluation, where some of the individual
differences could be mitigated, would be to conduct a large
user study. However, this would not eliminate the prob-
lems of implicit targets or unpredictable user behavior. This
would be better for a satisfaction evaluation, comparing the
proposed approach to current systems and asking users for
their opinion. Since it does not allow to evaluate the num-
ber of iterations from start to target, this study is not pur-
sued. Instead, we propose to simulate the query process of
a user, with a set of predefined pairs of start and target
movies. The simulation selects the new example movie from
a display, consequently moving to the next display, until it
reached the predefined target movie. The number of steps
from start to target is tracked, as it is the evaluation mea-
sure. This will allow to compare the performance of a single
representative tuple against multiple representative tuples
per item. By simulating user behavior, there is no influ-
ence from the users’ perception on the movies, and there
is no subjectivity of interpretation of reviews. In addition,
the target movie in a pair is known from the beginning and
maintained throughout the process, and the selection of the
next movie is based on the actual distance between repre-
sentations.

In the experiment we compare the use of Three Shared
Perspectives per item, as described in the prototype, against
a Single Representation (SR). For this single representation,
we use the same Perceptual Tuples computed using Doc2vec
with the Amazon reviews as for Shared Perspective. In the
clustering step, we set k = 1 and apply k-medoids to every
item, effectively forcing a single cluster, and a single repre-
sentative tuple.

The experiment simulates the Query by Example process
shown in Section 3.2, and the displays of movies are gen-
erated the same way as in the prototype system [1] [43].
The graphic interface is not used, since it is irrelevant for
the simulation. After the display is generated, the simula-
tion selects the next ’example’ movie, i1, by the similarity
of its own SPT s to the SPT s of the target. The goal is
to calculate and compare how many steps are needed from
a starting movie to a target movie, to prove that by using
multiple item representations, the simulation (and therefore
a user) would find their goal item in less iterations.

A difference to consider between the predefined pairs and
real user behavior is that when a user selects a starting
movie, the target should be roughly similar, while for the
experiment it is completely random. We expect that SPs
should outperform SR, also when the pairs are unrelated,
since it can ‘get out’ of one type of movies to get to the tar-
get movie. For seemingly unrelated movie pairs, for instance
from The Green Mile to Tinkerbell, there may be a perspec-
tive that relates them. For example, The Green Mile has the
“good story that follows the book” perspective, which leads
to a display that includes Matilda, which has the perspective
“beautiful family movie with a message”, and the next dis-
play contains Tinkerbell. In contrast, for the case of the SR,
it takes several iterations to get out of the “must-watch emo-
tional drama” movies to reach kids movies. In conclusion,
for random pairs as well as in reality, the average number of
steps should be smaller when using multiple representations.

We want to evaluate the process of searching for Expe-
rience Items, so we use the number of iterations from
start to target items, because selecting a new example
item is the only user input. However, this process is full
of uncertainties and unpredictable behavior, making its
evaluation difficult. As a result, we propose a simulation
with predefined start and target items. We compare
performance of using Three Shared Perspectives against
a Single Representation per item. We calculate this by
using k=3 and k=1 in the k-medoids algorithm, respec-
tively.

5.1 Simulation Set-up
The basic steps for both simulating user behavior with

Single Representation and Shared Perspectives are:

1. The starting movie is now called selected movie, the
current example

2. System generates display d with 9 most similar movies
based on selected movie

3. If target movie is in display, finish. If not, select the
best option as new example movie from display

4. Discard movies in display for the rest of the process

5. Repeat 2-4 until target movie is in display

The two simulations have a few differences, as described
below:

Single Representation Simulation

• Step 2: The display is created with the 9 movies that
have the Representative Tuples (RT) with highest co-
sine similarity to the RT of the selected movie.

• Step 3: The most similar movie from the display to the
target is the one with the RT with the highest cosine
similarity to the one of the target movie.

Three Shared Perspectives Simulation

• Step 2: The display is created with three sets of three
movies. Each set stands for each one of the three SPs
of the selected movie. For example, for Shared Per-
spective A, the three movies that have a SPT with
highest cosine similarity.

• Step 3: The most similar movie from the display to
the target is the movie with any one SPT with the
highest cosine similarity to any of the three SPTs of
the target. This means for a display of nine movies,
with three SPTs each, and three SPTs of target, 81
values are calculated and the best one is chosen.

We compare the number of iterations of the proposed
Shared Perspectives against a Single Representation of
the item. Single Representation, or one tuple per item,
is how current systems manage the perceptual tuples.
The simulation basically performs the same process as
the prototype, without the graphical interface. It ex-
ecutes the Query by Example, then selects the most
similar item to the target from the display as the new
example.
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5.2 Results
The average steps it takes from start to target movie for

25, 50 and 100 different pairs of movies is shown in Table
2. There is an improvement in the performance with Shared
Perspectives, as it takes 30% less steps to the target, as
with a Single Representation. The frequency distribution of
steps for the experiment with 100 pairs is shown in Figure
6. This graph shows that by using SPs, around 80% of
pairs reach the target movie in less than 50 steps, compared
to 65% with SR. In addition, SR has a high percentage of
simulations that take over a hundred steps, this may be for
those movies pairs that seem unrelated, like the Green Mile
and Tinkerbell. On the other hand, it shows that one pair
processed with SPs required 201 steps, while the maximum
for SR is 152, affecting the average; this particular case is
reviewed later.

Table 2: Average steps with 25, 50 and 100 pairs
Single Representation Shared Perspectives

25 37.12 24.28
50 33.28 21.84
100 40.58 32.54

The resulting average number of steps is high compared
to other research that uses a similar simulation for evalua-
tion [1] [4], where the results were between 10 and 17 steps.
This is mainly because, for this thesis, the display is con-
structed in a naive way, considering only the selected movie.
In the similar research, informative strategies in the gener-
ation of the display proved to significantly improve results.
These strategies aim to maximize the information gain in
every step. The display generation in related research uses
Bayesian probability, therefore informative strategies mean
showing movies that would greatly affect the probability to-
wards a certain type of movie (the target movie). We could
also also achieve better results by not just considering the
selected movie but also the target movie’s representation
when creating the display. However, as discussed in the re-
lated work, this can produce confusing results, for example
showing Finding Nemo in the display of The Terminator
because it is more informative for the system [1].

As a qualitative analysis of the results, we can review an
example of the iterations followed by the simulation using
Shared Perspectives, from start to target. The process from
The Back-up Plan, a romantic comedy, to In Time, a sci-fi
action thriller, takes only two iterations. The movie that is
selected from the first display is Life as We Know It, be-
cause it is “definitely a cute movie, somewhat predictable”,
and the movie selected from the second display is Definitely
Maybe, for being a “cute and enjoyable chick-flick, even if
you’re not a girl”. In the third display, created for Definitely
Maybe, the target movie In Time appears for being a movie
with “nice story and surprisingly good acting, a refreshing
change for the genre”.

Another example is the procees from The Verdict, a lawyer
drama, to Fantasia, an animated Disney movie with classical
music, which takes ten iterations. It goes through movies
like Zulu, for its “acting and power”, to Real Steel, for being
“a much deeper film than expected”, to The Starfighter, for
being “awesome sci-fi for the whole family”, finally leading
to a display with “movies from my time that my kids simply
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Figure 6: Histogram of Steps with 100 pairs

love”. The simulation also showed unexpected bad exam-
ples, from the classic horror thriller, House on Haunted Hill,
to the musical drama, Rent, the simulation takes 96 steps.
After the 4th display, it goes from Jumanji to Toy Story 2
because the users “have seen it so many times”, leading the
simulation into many similar steps. It eventually reaches
other theater plays, that users have also seen many times,
eventually leading to the target movie. The special case with
201 steps shown in Figure 6, it the movie pair Transamerica
to Intolerable Cruelty. All three perspectives of the tar-
get movie somewhat state that it “seemed good, but failed
to deliver”, and they lack any specific features. The sim-
ulation algorithm selects many perspectives that mention
either George Clooney or Catherine Zeta Jones, as they are
the only outstanding keywords. For this analysis, it seems
that the users’ perception movie is so bland that the simu-
lation struggles to reach it.

In previous work using reviews as data source, it was also
discovered that some of them are not very useful to relate
movies, for example, they found that two movies were re-
lated because of grainy video [4]. These reviews seem to
appear across all types of movies and do not represent a
useful relationship for effectively using QBE. A very com-
mon one, includes people writing about video quality: they
“bought the movie on Blu-ray”, or “the improvement from
VHS to DVD is great”. Another perspective that appears
frequently is the vendor or physical format: “the DVD was
scratched”, “the delivery was a week late”, etc. We conduct
a user study to examine the difference between useful and
useless perspectives. For example for a movie, the text of
one Shared Perspective, and the most similar movies:

• Useful: Hercules → Animated classic from childhood
→ Aladdin, Lion King, Beauty and the Beast

• Not useful: Hercules→ Had it in VHS, bought Blu-ray
→ Terminator, American Pie, Hook

The simulation could select the next example movie because
of a not useful perspective, which may send the process into
a repetitive direction. Therefore we think that the perfor-
mance can be affected for a simulation that follows the most
similar element without an understanding of what is a ‘good’
similarity. We ask participants to rate the Usefulness of a
Perspective, in other words its Semantic Quality and use it
to improve the process.
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Using three Shared Perspectives requires, on average,
30% fewer steps than the Single Representation to reach
the target item. Qualitative analysis shows that some
Perspectives are more useful than others to relate movie
A to B, so we explore this Semantic Quality in a user
study.

6. EVALUATION: SEMANTIC QUALITY OF
SHARED PERSPECTIVES

By observing the process of the simulations using Shared
Perspectives, we found that some SPs are not very useful to
relate movies to each other, so they have low semantic qual-
ity. In this section we analyze the impact of this semantic
quality by asking users to rate a few SPs. We model these
ratings so we can predict them for the rest of the SPs. This
is important since the main use of SPs is to find movies that
are perceived similarly.

Authors of previous work discuss that low quality per-
spectives can be solved with previous data cleaning, or by
using topic modelling techniques to separate this type of
data [4]. In this case, we inform the user about the Seman-
tic Quality of the SPs, so they can decide if they want to
select movies related with a given SP or not. To accomplish
this, we first have to discover if there is a difference between
good and bad similarity relationships. If there is a notice-
able difference between them, the system could be able to
model and label this, and show the users a quality rating,
for a more useful application. In summary, we need to take
the following steps:

1. Ask people to rate usefulness of some perspectives

2. Find a relationship to model usefulness score as a func-
tion of available data

3. Predict the scores for the rest of the perspectives

In the user study, a SP is useful if the movies that the
prototype selected based on this SP ‘make sense’ for the
participant. In other words, a SP has high Semantic Qual-
ity if the participants would use that SP to recommend a
movie to a friend. Predicting the Usefulness Score for the
rest of the SPs is necessary because there are 2041 movies,
so 6123 SPs to rate, which is not feasible for a study of this
scale.

Some reviews are not directly related to the experience
with the movies, but other elements like the format
or the retailer. These form Shared Perspectives that
are less useful to find movies with similar experience.
Therefore we try to quantify and use this as a ’Useful-
ness Score’. For this, we need to ask users to rate some
SPs, model these ratings using available data, and use
the model to predict scores for all unrated perspectives.

6.1 User Study
The purpose of this study is to get some ratings of the

quality of Shared Perspectives and use them to predict the
Quality of the rest of the SPs. To obtain ratings of useful-
ness, we asked seven participants to rate if a SP is useful
or not to relate a selected movie to the set of three similar
movies. The participants include people from 18 to 55 years
old, from different countries and education levels. The setup
of the experiment is the following:

• The study was a self contained application that stores
the ratings provided
• A digital version of the application was sent to the

participants
• The interface showed one selected movie, with a dis-

play of nine similar movies, one set of three for each
of the three SPs. The experiment looks similar to the
prototype, and an example of the interface is provided
in Appendix A.
• Instructions for the participants were:

– Rate if you agree that the perspective text that
relates the movies in the set to the selected movie
is useful (Totally Agree, Somewhat Agree, Don’t
Agree)

– This is, if at least two of the three movies in the
set are related to the example, taking in account
the text of the perspective

– Example of useful relationship: Disney classic from
childhood

– Example of not useful relationship: It looks better
in blu-ray than VHS

The results obtained are between five and seven ratings,
for seven starting movies, therefore we examine 21 perspec-
tives. The values can be encoded as a Likert Scale: Totally
Agree = 2, Somewhat Agree = 1, Don’t Agree = 0. To
determine the usefulness score for every perspective, we av-
erage the numerical values obtained. While this may not
be appropriate for hypothesis testing with statistical signif-
icance, averaging a Likert Scale is sufficient for exploration.
It is helpful in this case, to have a general sense of the ’use-
fulness score’ of every perspective. For example My Dog
Skip related to P.S. I Love You, The Good Life of Timo-
thy Green and Bee Movie because “My wife and I loved
this movie. A heart warming story” has a score of 1.5. In
contrast The Good, The Bad and The Ugly related to The
Towering Inferno, Shane and The Uninvited because “The
digital restoration looks really great”, received an average
of 0.5.

As a small scale user study, there are many threats to
validity, so it is important to underline that this is just an
exploratory experiment. The main deficiencies of this study
are:

• Not enough response to be an appropriate statistical
sample
• Only movies with reviews under 500 characters were

selected, because participants reported that long re-
views made the process too cumbersome
• The extraction methods are not perfect, and the inter-

pretation of reviews is different across participants
• The experiments were not supervised, participants per-

formed it remotely

This study is enough to provide with information for analysis
on the quality of the Perspectives as a relationship between
movies. These results can be used for an optimization of the
simulation, as well as a useful addition to what would be a
user-oriented application.

In the study we ask users to rate on a scale from 0 to
2, if they agree that a perspective is useful. We average
the ratings to obtain a single Usefulness Score for every
SP. It is a small scale study but it is appropriate and
useful for exploration purposes.
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6.2 Predicting Usefulness Scores
We compare the scores obtained with the available data of

the SPs, to model them as a function and use it to predict
the scores of the rest of SPs. The modelling depends in
the extraction method used, the distance metrics and the
clustering algorithm. The values that we have for a given
SP consist of its tuple, SPT 00, and the rest of available
SPTs in the relation, with their respective cosine similarity.
For every SPT, 6120 cosine similarities are calculated, and
ordered from high to low. For example, for SPT 00 of The
Good, the Bad and the Ugly the most similar SPT has a
cosine similarity of 0.624, the next one 0.622, until SPT
6120 with a similarity of -0.01.
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Figure 7: Distribution of Cosine Similarity Values
for The Good, the Bad and the Ugly

Using the average cosine similarity, median, or other ag-
gregates may not be adequate because they are dependent
on how unique the SPT is. Therefore we decided to focus on
distribution metrics. The idea is that for useful SPTs, the
behavior of its distribution may be different from the behav-
ior of not useful ones. Figure 7 shows the cosine similarity
values, in descending order, for each of the Perspectives of
The Good, the Bad and the Ugly. The respective Usefulness
Scores for each Shared Perspective is 1.4, 0.6 and 0.8. The
figure shows that large difference in distribution behavior is
more evident with a smaller number of perspectives, on the
left side of the figure. We observed a similar trend in dis-
tribution graphs of many other movies. To compare these
differences in distribution, we use the Pearson Median Skew-
ness (PMS), also called Second Skewness Coefficient. PMS is
unaffected by scale, and we can use it to compare all SPT s.
It is defined as (3 ∗ (mean −median))/standarddeviation.
Preliminary analysis showed that the Perspectives with high
Usefulness Score have a small difference between the mean
and the median, while the opposite is true for Perspectives
with bad scores.

We calculate the PMS and compare it to the Usefulness
Score provided by the user study for each Perspective. To
find the best result, we calculated the correlation of the Use-
fulness Score with the PMS for many different sets of Per-
spectives, ranging from 5 to 5000. By computing the PMS of
the cosine similarities of the 105 most similar Perspectives,

the correlation with the Usefulness Scores is -0.72, meaning
that higher PMS leads to lower Semantic Quality. Figure
8 shows the PMS of the first 105 cosine similarities in x vs
the Usefulness Score in y, where every point is one Shared
Perspective from the User Study.
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Figure 8: Usefulness Score vs. Pearson Median
Skewness of Top 105 Most Similar Perspectives

We used linear regression to fit a line to the data points
in Figure 8 with an R-squared of 0.52. This value for R-
squared is acceptable for exploration of user behavior, es-
pecially with such a simple model. Using second or third
degree polynomial regression did not improve the perfor-
mance considerably, therefore we decide to keep the model
as simple as possible with a linear function. By modelling
this function, we can use it to predict the scores of all Shared
Perspectives and optimize the similarity calculations of the
simulation.

To predict the scores of all unrated Shared Perspectives,
we need to find a relationship between the Usefulness
Scores obtained from the study and the data available.
This data consists mostly of the values of the cosine sim-
ilarities between the selected perspective and the rest.
We found the Pearson Median Skewness of the 105 most
similar perspectives has the highest (negative) correla-
tion. We model this as a function to obtain the scores
of all perspectives.

6.3 Results
To evaluate the impact of the predicted Usefulness Scores

in the QBE process, we run the same simulation as in Sec-
tion 5, but with the Usefulness Score added to the cosine
similarities when selecting the new example movie from the
display. This will give an advantage to useful perspectives
over their less useful counterparts. For this implementation,
the optimization yields the best results when the calculated
Usefulness Score is divided by 15 and added to the cosine
similarity in the selection step.

As shown in Table 3, an improvement is observed when
using the Usefulness Score optimization in the simulation.
More importantly, it showed reduction of the number of
steps for pairs with extreme values, for example from 82
to 41 steps. It should be noted that in rare cases the opti-
mization caused an increase of steps, however, this was only
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Table 3: Average steps with 25, 50 and 100 pairs
One SP Three SP Three SP + Usefulness

25 37.12 24.28 22.96
50 33.28 21.84 18.7
100 40.58 32.54 31.56

in low numbers of steps, like from four to seven. The main
intention of evaluating the impact of the Usefulness Score for
the simulation was to reduce the numbers of steps for ex-
treme cases. While the average result is not extraordinary,
this could really benefit the actual user by showing them the
predicted Usefulness Scores, which is the main intention of
the usefulness scores overall. As mentioned before, if the in-
tention was only to obtain better results for the simulation,
the generation of the display would be the first section to im-
prove. By focusing on the Usefulness Score of Perspectives
instead, users have more information for better decisions.
The prediction of the scores can be improved, starting with
a bigger dataset (large scale user study) and a more complex
model.

We use the calculated Usefulness Scores to optimize
the simulation when selecting the new example item.
This is mainly as an improvement for the user, how-
ever, we also execute an evaluation with the same sim-
ulation described in Section 5. While there is a slight
improvement in average steps from start to target item,
the important result is in the reduction of number of
steps for movie pairs with extreme values. This opti-
mization only works in this particular implementation,
but it helps to show that we can improve performance
by focusing on the Shared Perspectives instead of the
original data, as proposed in previous research [4].

6.4 Exploration and Analysis
The evaluation of the extraction methods used, in partic-

ular Doc2vec, was not in the focus of this work, but it can
be used for further exploration of the results obtained. For
this, we asked participants if each one of the three reviews
that were selected as similar by the prototype is similar to
the respective Perspective. By checking a box for each re-
view, participants agree that it is similar to their respective
Perspective text, by not checking it, they consider that the
text is not similar. This can be seen in Appendix A. The
boxes were unchecked by default, and the study was not su-
pervised, so there is a risk that participants forgot to answer.
Participants rated 26 reviews, on average 0.4 of the reviews
were perceived as similar. For 13 reviews the results were
consistent across all participants: eight were considered as
not related and five as related. Comparing to the Perspec-
tives reviewed for the study, in nine out of 21, at least two
of the three reviews in a set have an average rating over 0.5,
and in seven of those, the respective ’Usefulness Score’ is
over 1. With a large scale user study, this could be used in
future work to improve the model created to automatically
rate the usefulness of perspectives.

As an interesting addition, we asked participants to label
these automatically selected perspectives with a few words,
as a mini-crowdsourcing experiment. In the user study in-
terface, we provided an empty text box for each of the three
SPs of the selected movie. The results emphasize how differ-

ent participants interpreted the perspectives. For instance,
for The Green Mile, the perspective about a “movie with
great acting and engaging story, that follows the book quite
well”, three participants wrote labels mentioning acting, two
wrote about the story and only one mentioned the book. On
the other hand, there is agreement in some cases, for Jungle
Book, all participants agree that the second perspective is
“Disney classics”, or the first perspective for The Good, the
Bad and the Ugly is a “great western with very good ac-
tors”. With a higher participation, this could definitely be
used to discover a few keywords to describe the Perspectives
instead of the medoid. It would be an improvement partic-
ularly when perspectives describe the story or the cast: a
person can easily interpret that the perspective is describing
the plot in a positive way and just state ’good plot’, while
a system would struggle to reach this conclusion.

In user study, we asked participants if the selected re-
views were actually similar to the SP of the selected
movie. This confirmed the uncertainty we tried to
avoid with the simulation, where participants not al-
ways agree if SPs are related or not We also asked if they
could label those selected reviews by their shared char-
acteristics. It shoed that they focus on completely dif-
ferent characteristics for the same sets of related movies.

7. CONCLUSION
In this work we introduced a novel way of extracting per-

ceptions from user feedback and grouping them into mul-
tiple representations for an experience item, called Shared
Perspectives, that can be applied to a QBE process. Using
reviews adds perceptual features to the current metadata for
those items, which includes technical, bibliographic, organi-
zational, and content-based information. Clustering similar
perceptions covers the opinions of majority groups, while re-
specting some subjectivity. To ground the concepts of SPs,
a prototype of QBE with Shared Perspectives was imple-
mented. We used movie reviews, with AbRE and Doc2vec
as explicit and implicit feature extraction methods. With a
clustering algorithm, such as HDBSCAN or k-medoids, simi-
lar perceptions are grouped. We present a basic extension of
the Relational Model to store values for Perceptual Features,
Tuples and Shared Perspectives. In a synthetic experiment,
the use of Shared Perspectives showed improved results in
query performance against Single Representation per item.
To automatically rate the usefulness of a perspective (how
useful it is to relate movie A to B), we modelled a basic
heuristic with semantic information obtained from a small
user study. The modelled heuristic is for this particular im-
plementation and can be improved, mainly with more user
ratings and more values. The user study also provided some
interesting insights on the subjectivity of reviews. There
are other implementation choices to be made in addition to
the concepts presented, for instance: how to manage new
Perceptual Tuples, recalculate Shared Perspectives, using
improved extraction methods, the use of centroids instead
of medoids, the use of both regular metadata with SPTs to
calculate displays, whether or not showing Usefulness Score
or applying this Score to order the elements in the display.
However, the core concepts remain: obtaining a Perceptual
Tuple per feedback document, grouping similar ones into
Shared Perspectives, and using the Shared Perspective Tu-
ples to represent the items in QBE.
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7.1 Future Work and Discussion
Together with the research, the idea was to create a use-

ful application that can used by people. This involves many
possibilities for improvement of the idea and implementa-
tion. Some of the most pressing points are:

• Optimization of Extraction Methods: Tune parame-
ters, use larger corpus, evaluate encoding and similar-
ity

• Implementation and Scaling: How to add new reviews
to clusters, and therefore how to recalculate Shared
Perspectives

• Evaluation: User Satisfaction compared to the cur-
rent information systems, apply reinforcement of use-
ful perspectives, use click data as feedback for good
and bad perspectives

The implementation will be continued and improved as a
personal project, hopefully resulting in a functional, stand-
alone application that can be used for movie enthusiasts.
The intention is to also create a code repository in the form
of a tutorial, available for people interested in NLP, Percep-
tual Feature-based search, recommendation, and databases.
This is in part for own interest and in part for the response
obtained in the user study. After completing the required
instructions, participants continued to interact with the pro-
totype. There was positive feedback and comments about
the general idea, the resulting movies, and their perspec-
tives.

The prototype and all examples were with movies, but
this general process should perform appropriately in differ-
ent domains as long as there are reviews, and the items are
properly categorized. The process was implemented using
reviews for the ‘Videogames’ category of Amazon, with sim-
ilar qualitative results to movies. For example perspectives
of “bought it for my son and he loves playing it”, or “the
story is great as long as you have played the previous one”.
In contrast, when applied to the ‘Pets’ category, the behav-
ior was more erratic because the category is too general,
there is food, toys, medicine, clothing, etc. Without proper
sub-categories, it is difficult to find related products.

For other applications, an important consideration is that
Shared Perspectives can be used by the system owners in-
stead of the users, for example in Business or Political Intel-
ligence applications [44] [45]. This can lead to better feed-
back for the creators of content (i.e. movie or video game
production companies) so they know how their items are
perceived by major groups. In addition, it can be used by
the online platform itself (i.e. Amazon), to differentiate their
customers for better service. For platform owners and what
we considered not useful, such as delivery and packaging,
may be of actual interest [5].
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APPENDIX
A. EXAMPLE OF USER STUDY
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Figure 9: User Study Example Display
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