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Abstract

This paper introduces a means of performing a ship
egress analysis by applying eigenvalue analysis to the
ship-centric Markov decision process (SC-MDP) frame-
work. This method focuses on how people egress, the
decisions they make under uncertainty, and the interac-
tion between the individuals and the layout of the vessel.
The objective is to understand the implications of uncer-
tain decision making of people on general arrangement
design. One metric is introduced defined as the ratio be-
tween the largest eigenvalue and the second largest. This
decision metric is used to identify and quantify changes
in decisions, as well as to help identify system attributes
driving those changes in decisions. A case study is pre-
sented showing the utility of this method on a ship egress
problem. Sensitivity studies are performed examining the
affect of uncertainty and rewards on individuals’ decision
making behavior.
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Introduction

Understanding evacuation patterns and egress routes is
arguably one of the most important aspects of ship design
affecting safety of those on board (Guarin et al., 2014).
Emergency situations such as fires, flooding, damage due
to collisions, or even ballistic damage, happen on vessels.
Understanding how individuals on the vessel react and
move about to safety zones, muster points, or life boats
during these situations is important to save lives and min-
imize injuries. The IMO has recognized evacuation and
egress analysis as an important aspect that needs to be
regulated for the safety of mariners (IMO, 2007).

Two types of methods have been developed to ap-
proach this problem: those focused on analyzing the
physical layout of the vessel (Andrews et al., 2012; Rig-
terink et al., 2014; van Bruinessen et al., 2011), and
those focused on evacuation patterns of the individuals
on board (Guarin et al., 2014; Qiao et al., 2014; Vanem

and Skjong, 2006). Methods focused on the layout are de-
fined as solution-centric by this paper, meaning they are
focused on the physical layout of the rooms themselves.
Methods focused on evacuation routes, however, are typ-
ically computationally expensive, and can involve multi-
agent simulations (Guarin et al., 2014), or optimization
methods (Qiao et al., 2014).

Both type of analyses require the full vessel layout as
well as the physical distribution of the crew throughout
the vessel in order to run detailed discrete event simula-
tions to study evacuation routes (Rigterink et al., 2014).
Two major problems arise with this. First, during early
stages of design, little information is known about the
details of the vessel layout, and second, a new discrete
event simulation is required for each simulation involv-
ing a different distribution of individuals. This makes the
problem nearly intractable.

The complexity of this problem grows with vessel size
and complexity. The problem is made difficult by various
passenger populations (such as able bodied seamen, chil-
dren, or handicapped individuals), the number of decks
and passageways, and the multitude of ways emergency
situations may start or percolate through the vessel. Also,
paid crew who know the layout well will likely react dif-
ferently compared to passengers on a cruise ship who are
new to the vessel. For example, in 1915, the passenger
vessel, the S.S. Eastland, capsized in the Great Lakes
when the passengers all rushed to one side, causing the
deaths of nearly 850 individuals (Eastland Memorial So-
ciety, 2015). Thus, for a full detailed analysis, advanced
methods are necessary.

While some propose using more advanced, computa-
tionally expensive evacuation models in earlier stages of
design (Vanem and Skjong, 2006), the IMO (2007) has
recognized the importance of using simplified methods
in the concept stage. This has led to the increased promi-
nence of analyses aimed at evacuation routes and egress
patterns in preliminary stages of design (Casarosa, 2011;
Guarin et al., 2014). However, finding the proper bal-
ance between computational expense, analysis time, and
model fidelity remains difficult.

This paper proposes a method that is focused on under-
standing the decision making of individuals on the vessel
as they evacuate. In early stage design this method will
prove to be more tractable than having to fully enumer-



ate all layouts and all crew combinations to understand
egress patterns. This method is focused on understand-
ing the impact that uncertainty and pain (possibly from
the inhalation of smoke) may have on the decisions in-
dividuals make. To do this, eigenvalue analysis applied
to the ship-centric Markov decision process (SC-MDP)
framework is proposed to understand the implications of
evacuation decision making as it pertains to general ar-
rangements design.

The Ship-Centric Markov Decision Process

The SC-MDP framework is defined as applying Markov
decision processes (MDPs) to ship design and decision
making. MDPs were first applied to ship design by
Niese and Singer (2013) as a means to generate and an-
alyze predictive time domain design data. MDPs are a
mathematical model developed in the 1950’s to solve dy-
namic decision-making problems under uncertainty (Put-
erman, 2005). They are a state-based model that rep-
resent uncertain systems, can differentiate various deci-
sion making scenarios, and can handle temporal system
variations. MDPs have been used across a wide variety
of other disciplines, including: robot navigation (Rus-
sell and Norvig, 2003), financial, economic, or portfo-
lio management (Sheskin, 2011), inventory management,
scheduling of industrial system maintenance and replace-
ment, and even behavioral ecology (Puterman, 2005).

From a ship design perspective, MDPs allow for analy-
sis of the physical product, the sequential life-cycle deci-
sions associated with that product, and the projected life-
cycle expected utility of the products and decisions. From
a decision space perspective, the advantages include an
explicit model of the system uncertainties and environ-
mental risks present throughout the system’s life-cycle,
the ability to analyze dynamic operating profiles and ex-
ternal environments, and the ability to enable active man-
agement and decision making. Previous research using
the SC-MDP framework include analysis of ballast wa-
ter treatment methods (Niese and Singer, 2013, 2014),
designing for the Energy Efficiency Design Index (Niese
et al., 2015), and design for evolving Emission Control
Area regulations (Kana et al., 2015).

Despite these advantages, the current SC-MDP frame-
work has several limitations. First, the size and scope of
the results can be large, and in some cases can become
overwhelming for the decision maker. Second, MDPs
can only be used to identify changes in decision behav-
ior through the use of simulations and extensive sensitiv-
ity studies (Niese et al., 2015; Tan and Hartman, 2011).
The decision maker must manually backtrack through the
model to find where these decisions change. There is also
no way to quantify how much a single change in the de-
cisions has on the process as a whole. This research pro-
poses to address these limitations by introducing eigen-
value analysis techniques to the framework itself.

Eigenvalue Spectral Analysis

Spectral analysis applied to the SC-MDP framework is
introduced as a means to elicit decision making insight by
quantifying the impact of changes in decisions. The ap-
plicability of spectral methods to analyze ship design and
decision making in the SC-MDP framework is vast. It can
be used to help identify the magnitude of the relationships
and inter-dependencies between the various attributes of
the system. It can also be used to help identify those
secondary, tertiary, and and weaker inter-dependencies in
the system that may not be noticeable by other methods.
Similar eigenvalue techniques have been used in autore-
gressive models to study principal oscillation patters, ex-
citation, and damping times (Neumaier and Schneider,
2001). This type of analysis is beneficial to designers by
allowing them to focus their efforts systematically on the
important factors on the design. While no single frame-
work can capture all aspects of design decision making
(Reich, 1995; Seram, 2013), the objective here is to pro-
vide a unique perspective on engineering decision mak-
ing to help improve understanding and design.

Methods

The Markov Decision Process

The classic MDP has four parts:

1. a set of states, S, where an agent can exist

2. a set of actions, A, available to the agent

3. a set of probabilities, T , of transitioning from one
state to another after following a given action

4. a set of rewards, R, received after performing a
given action, a, and transitioning to a new state

The objective is to identify the sequence of actions that
maximizes the cumulative, long term expected utility of
the system. This sequence of actions identifies the set
of decisions the agent should take during each decision
epoch (Puterman, 2005). An example three state, two
action MDP is given in Table 1 and Table 2. Table 1
displays the transition matrices for the various possible
actions, where the probability of transitioning from state
si to state s′j is given. Note the transition probabilities
and rewards may vary between different actions.

Table 1. Sample transition matrices for a 3 state, 2
action MDP. Each action is represented by its own
transition matrix.

Action 1
s′1 s′2 s′3

s1 0 0.7 0.3
s2 0.2 0.8 0
s3 1 0 0

Action 2
s′1 s′2 s′3

s1 0 0 1
s2 0 1 0
s3 0.1 0.1 0.8

Table 2 is the associated reward matrix, which outlines
the reward obtained after taking a given action, ai, and



landing in a new state, s′j . Essentially, MDPs can be
thought of as a series of action dependent Markov chains
with rewards (Sheskin, 2011), where each action can be
represented by its own transition matrix.

Table 2. Sample reward matrix for a 3 state, 2 action
MDP. The entries indicate the reward received for
taking action, ai, and landing in state, s′j .

a1 a2
s′1 5 -1
s′2 1 3
s′3 0 6

The expected utility of the MDP can be obtained via
Equation 1, known as the Bellman equation, where U is
the expected utility, γ is the discount factor, and the other
variables are defined previously. The set of decisions, π,
is found by Equation 2 (Russell and Norvig, 2003).

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′) (1)

π(s) = argmax
a

∑
s′

T (s, a, s′)U(s′) (2)

The common output for displaying the decisions is
with a decision matrix which provides the preferred ac-
tion for each state for each decision epoch. An epoch is
defined as an instance when the agent must make a de-
cision. Epochs can represent any such decision making
period, such as a time step, or physical movement by an
individual. The decision matrix for the sample system
above is given in Table 3. To read the decision matrix, the
decision maker identifies the preferred action in the table
that corresponds to the system state and epoch. For in-
stance, Action 2 is preferred if the system were in State 2
during Epoch 2. Note the decisions may change through
time, as is the case between Epoch 4 and Epoch 5 for
State 1.

Table 3. The decision matrix for the system above. For
example, Action 2 is best for State 2 and Epoch 2.

State 1 State 2 State 3
Epoch 1 Action 1 Action 2 Action 2
Epoch 2 Action 1 Action 2 Action 2
Epoch 3 Action 1 Action 2 Action 2
Epoch 4 Action 1 Action 2 Action 2
Epoch 5 Action 2 Action 2 Action 2

The decision matrix can be a beneficial way of dis-
playing information. First, it provides a road-map for
the decision maker by displaying the optimal decision for
each state throughout the process lifecycle. Second, it
can be used to simulate different decision scenarios to
discern differences in seemingly similar situations (Niese
and Singer, 2013).

In order to overcome the limitations outlined in the
Introduction, this research proposes eigenvalue spectral
analysis. To perform this, a different formulation of the
output is necessary; one that involves using the decision
matrix to develop a series of transition matrices to rep-
resent the dynamics of the system. Eigenvalue spectral
analysis is then performed in these transition matrices.

The representative transition matrix

Instead of displaying the decisions using the decision ma-
trix, this methodology uses a series of transition matrices,
M, to represent each decision epoch. Using this method
has several advantages. First, it preserves state transition
probabilities, as opposed to simply stating the optimal ac-
tion. Second, and more importantly, formation of a se-
ries of transition matrices enables the ability to perform
eigenvalue spectral analysis.

These transition matrices are developed from the deci-
sion matrix (Sheskin, 2011). This is done by selecting the
state transitions for each state from its respective optimal
action and placing it in its respective row in the repre-
sentative transition matrix. For example, if Action 1 is
optimal for State 1 according to the decision matrix, then
the first row for the representative transition matrix, M, is
identical to the first row of the Action 1 transition matrix.
Likewise for State 2, if Action 2 is optimal, then the sec-
ond row of M will be identical to the second row of the
Action 2 transition matrix. This logic is followed for all
states. This new representative transition matrix is square
stochastic. This matrix is able to represent the various
optimal actions for all states. It is essentially an amalga-
mation of the set of action transition matrices displaying
only the optimal action for each state. The result is a dif-
ferent representative transition matrix for each decision
epoch.

An example of the formation of the representative tran-
sition matrix is given in Tables 4 through 6. The action
transition matrices from the sample system above are pre-
sented again. The shading denotes the specific transi-
tion probabilities that are transferred to the representative
transition matrix according to the decision matrix. The
decision matrix for the first decision epoch is presented
in Table 5, and the resulting representative transition ma-
trix is developed in Table 6. Eigenvalue analysis is then
performed on this transition matrix given in Table 6.

Table 4. Sample transition matrices for 3 state, 2 ac-
tion MDP. The colors denote the specific transition
probabilities that are transferred to the representa-
tive transition matrix, M, according to the decision
matrix.

Action 1
s′1 s′2 s′3

s1 0 0.7 0.3
s2 0.2 0.8 0
s3 1 0 0

Action 2
s′1 s′2 s′3

s1 0 0 1
s2 0 1 0
s3 0.1 0.1 0.8



Table 5. Sample one epoch decision matrix. The pre-
ferred actions have been selected via Equation 2.

State 1 State 2 State 3
Epoch 1 Action 1 Action 2 Action 2

Table 6. Representative transition matrix, M, devel-
oped from the action transition matrices (Table 4) and
the decision matrix (Table 5).

s′1 s′2 s′3
s1 0 0.7 0.3 (from Action 1)
s2 0 1 0 (from Action 2)
s3 0.1 0.1 0.8 (from Action 2)

Eigenvalue spectral analysis

Once the transition matrices are formed for each decision
epoch, eigenvalue spectral analysis can be performed.
The eigenvalues, λi, and eigenvectors, wi, are defined
according to Equation 3. The set of eigenvalues define
the spectrum of the Markov process (Cressie and Wikle,
2011). For this research, Equation 3 was solved numeri-
cally using a built-in MATLAB function.

wiM = λiwi (3)

The eigenvalues are key to understanding the under-
lying dynamics of the system (Salzman, 2007). They
represent the analytic solution to the linear system, and
can be used to examine the system attributes driving the
behavior through time. Identification of oscillatory pat-
terns, system stability, and bifurcation regions (Cressie
and Wikle, 2011) in the decision pathways is possible
with eigenvalue analysis. Applying eigenvalue spectral
analysis on transition matrices developed from a Markov
decision process to analyze design decision making be-
havior is unique to this research. Presented below is one
derived metric, designed to identify and quantify changes
in decision making behavior.

The decision metric

The decision metric is defined in Equation 4. λ1 is the
largest eigenvalue, and |λ2| is the magnitude of the sec-
ond largest. For Markov matrices, such as M, λ1, is al-
ways one. This equation has previously been used as a
damping ratio metric for linear models to study the tran-
sient behavior of a system (Caswell, 2001).

ρ =
λ1
|λ2|

(4)

For this paper, the decision metric will be used in
two unique ways. First, it will identify and quantify
changes in decisions. Changes in this metric are coinci-
dent with changes in the transition matrix, and thus rep-
resent changes in the decisions. When the decision of an

individual state changes, that state’s row in the represen-
tative transition matrix changes as well. The row consist-
ing of the transition probabilities from the action transi-
tion matrix from the previous set of decisions is replaced
by the row of the transition probabilities of the new action
transition matrix associated with the new decisions. This
process is shown in Figure 1.

Figure 1. Visualization of how a change in decisions
affects the representative transition matrix, M.

Since eigenvalue analysis is performed on these tran-
sition matrices, any changes will result in changes in the
eigenvalue spectrum. When λ2 is affected, it is concluded
that a major change in the system has occurred because
the primary spectral mode has changed. When the deci-
sion metric is unaffected by changes in decisions, there
is no significant change to the system. This is similar to
only affecting the minor spectral modes of the system.

The second new application for the decision metric is
that it can help identify the significant state/action combi-
nations that affect the process as a whole. By associating
the changes in the sets of decisions with the changes in
the decision metric, the decision maker can identify im-
portant state/action combinations. A case study is pre-
sented showing the utility of this method and metric on a
ship egress problem.

Case Study: Ship Egress Analysis and General

Arrangements Design

This case study is designed as one application of how this
technique can be applied in the ship design context. The
case involves studying personnel movement inside a ship.
The assumption is that a fire has broken out in one of the
rooms, and that individuals need to find the exit. Their
movement is probabilistic to simulate the confusion of an
individual’s location due to smoke that may be percolat-



ing throughout the ship or uncertainty with blocked pas-
sageways. A utility function is used to simulate the pain
experienced while in the ship looking for the exit. The
rooms have not been designated for a specific use for this
analysis, as it is the attempt of this study to understand
their interaction prior to designating their use. That is,
these rooms have not yet been classed as galley, engine
room, etc.

To set up the problem, individuals are located some-
where in the eleven state environment shown in Table 7,
where the entries show the labeling convention of the ac-
cessible rooms. The solid black state (state (2,2)) repre-
sents an inaccessible area, such as a column or unusable
elevator shaft. The top right room (state (3,4)) represents
the exit, while the room adjacent below (state (2,4)) is the
room with the fire. The objective is to minimize the pain
from smoke inhalation while heading towards the exit.

Table 7. Diagram of the eleven room arrangement.
Entries show the labeling convention of the states.

(3,1) (3,2) (3,3) (3,4)
(2,1) (2,3) (2,4)
(1,1) (1,2) (1,3) (1,4)

The SC-MDP framework is used to determine the best
sequence of decisions and the expected utility. The states
are defined as the individual rooms in the ship. The indi-
viduals may move one step at each decision epoch; either
up, down, left, or right. There is uncertainty in the indi-
vidual’s movement, and the probability of moving in the
desired direction is only 0.8. There is a 0.1 probability of
moving in either direction laterally. The transition proba-
bility in this case is defined as p = 0.8. If the decision is
made to step directly into a wall, the individual remains
in the same location. A reward is received for landing
in a given room (Table 8). The fire is modeled with a
r = −1 reward, while the exit has a r = +1 reward. The
r = −0.04 rewards are varied in the following analyses,
while the r = +1 and r = −1 rewards remain fixed.

Table 8. The rewards received for landing in a given
state. The following analyses vary the−0.04 rewards,
while the +1 and−1 rewards remain fixed.

-0.04 -0.04 -0.04 +1
-0.04 -0.04 -1
-0.04 -0.04 -0.04 -0.04

For this study, the transition probabilities and rewards
do not change with time. The MDP is run for 30 decision
epochs, allowing individuals to take up to 30 steps. The
expected utility and best decision paths are given in Table
9. The decision paths display the best action a person
should take while in each state. These results are unique
only to the given rewards and uncertainty, as changes in
either will affect both the expected utility and decisions
(Russell and Norvig, 2003).

Table 9. Expected utility and decision paths for p =
0.8 and r = −0.04.

Expected utility
0.81 0.87 0.92 +1
0.76 0.66 -1
0.71 0.66 0.61 0.39

Decision Paths
→ → → +1
↑ ↑ -1
↑ ← ← ←

Eigenvalue spectral methods are used to gain a deeper
understanding into these variations in the policy, and the
driving system characteristics that may be causing them.
The decision metric as defined previously is examined to
elicit this information.

Results

The representative transition matrix was formed after the
MDP was run for 30 decision epochs. This process
is shown in Figure 2. The eigenvalues were generated
from this representative transition matrix, and the deci-
sion metric was calculated. As such, these results rep-
resent one single time step. The objective is to obtain
the relationship between the decision metric and the sys-
tem for a single time step before examining its behavior
through time.

Figure 2. Building the representative transition ma-
trix, M, for p = 0.8 and r = −0.04. Shading
represents specific actions. Note the action “down" is
never optimal for any of the states.

A sweep of the uncertainty and rewards was performed
to examine the behavior of the decision metric across
a broad environment. The uncertainty was varied from
complete uncertainty of p = 0 to complete certainty of
p = 1, while the rewards were varied between −2.0 <
r < 0.5 (Figure 3).

Two major trends are apparent. First, there is a signif-
icant drop around where the reward transitions from neg-
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Figure 3. Decision metric, ρ, for a range of rewards
and uncertainties. Note the drop in ρ near r = 0,
and the rapidly increasing ρ for 0.5 < p.

ative to positive. As the rewards move close to and into
the positive region, the set of decisions changes drasti-
cally, and may even become non-unique for areas where
the rewards are fully positive. Second, as p increases, the
decision metric grows rapidly for p > 0.5. For the re-
gion p < 0.5 where the uncertainty is so great that the
individuals take a misstep more than 50% of the time, the
decision metric is roughly consistent across all rewards.
Figure 3 shows only the high level trends. A more de-
tailed analysis of the underlying shape and behavior fol-
lows.

To examine the underlying shape of Figure 3, a closer
examination of the data was performed with the uncer-
tainty fixed at p = 0.8, while the rewards were varied
from −2.0 < r < 0.5. The results are shown in Figure 4.
Five step changes are apparent, located at points b, e, f , h,
and i, which are associated with r = −1.65, r = −0.45,
r = −0.09, r = −0.03, and r = −0.02 respectively,
with the major drop occurring at r = −0.03.
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Figure 4. Decision metric, ρ, over a range of rewards
for p = 0.8. Points indicate transition regions in the
decision paths. Note the step function behavior and
the drop at r = −0.03 (between h and i).

The step changes in Figure 4 occur when there are
changes in the decisions. However, not all transitions
in the decisions are identified as changes in the decision
metric. There are ten different decision paths for an un-
certainty of p = 0.8. These are given in Table 10, and are
arranged moving from left to right in the decision metric
plot. The change in the decisions is identified by a double
arrow in the state that was affected. Those changes in the

decisions that occurred simultaneously with changes in
the decision metric are denoted with both double arrows
as well as highlighted in gray.

Table 10. Variations in the decision paths for p = 0.8.
Moving from lowest rewards to highest, the state that
changed actions is identified by a double arrow. States
that changed actions with a change in the decision
metric have a double arrow and a gray background.

r ≤ −1.65
(a-b)

→ → → +1
↑ → -1
→ → → ↑

−1.65 < r ≤ −1.57
(b-c)

→ → → +1
↑ ⇑ -1
→ → → ↑

−1.57 < r ≤ −0.73
(c-d)

→ → → +1
↑ ↑ -1
→ → ⇑ ↑

−0.73 < r ≤ −0.45
(d-e)

→ → → +1
↑ ↑ -1
⇑ → ↑ ↑

−0.45 < r ≤ −0.09
(e-f)

→ → → +1
↑ ↑ -1
↑ → ↑ ⇐

−0.09 < r ≤ −0.05
(f-g)

→ → → +1
↑ ↑ -1
↑ ⇐ ↑ ←

−0.05 < r ≤ −0.03
(g-h)

→ → → +1
↑ ↑ -1
↑ ← ⇐ ←

−0.03 < r ≤ −0.02
(h-i)

→ → → +1
↑ ⇐ -1
↑ ← ← ←

−0.02 < r ≤ 0.00
(i-j)

→ → → +1
↑ ← -1
↑ ← ← ⇓

0.00 < r
(j-k)

↔ l ↔ l ⇐ +1
↔ l ← -1
↔ l ↔ l ↔ l ↓

Starting from the most negative rewards, the first
change in decisions occurs at r = −1.65 (point b), where
state (2,3) changes from action “right” to “up”. At the
same time the decision metric increases through a small
step change. Due to the highly negative rewards in the en-
vironment for r ≤ −1.65 the best decision is to take the
shortest path to the -1 state. This is a situation where it is
less painful to be in the room with the fire than outside of
it. However, when the penalty is changed to −1.65 < r,
the best path is no longer to step directly at the -1 state
from the (2,3) state. This change in the decisions is con-
sidered a major change to the system because of the effect
it has on the decision metric.

This is in contrast to the change that occurs at r =
−1.57 (point c). Here, state (1,3) changes from “right” to
“up”; however, there is no change in the decision metric.



This change is considered minor because the individuals
are still two steps away from the -1 state. The new deci-
sion recognizes the +1 state is preferable, but due to the
high painful incremental rewards, may only be slightly
more preferable than stepping into the -1 state. A simi-
lar trend is apparent at r = −0.73 (point d), where state
(1,1) changes from “right” to “up” with no change in the
decision metric. This change in decisions is minor as the
individuals are still 5 steps away from the safe exit state
no matter the decision path.

For the other transitions this relationship is consistent,
both qualitatively and quantitatively. When the decisions
change for a given state, the change is considered signif-
icant if there is an associated change in the decision met-
ric. These changes typically affect states adjacent to the
room with the fire (r = −1 state). State (1,2), while not
directly adjacent to the -1 state does have a significant
change because the best decision is now to go the long
way around state (2,2) as opposed to taking the shorter
route. On the other hand, states that are farther away, in
general, have less of an effect on the system as changes
in their decisions do not change the decision metric.

Of particular note is the significant drop in the decision
metric that occurs when state (2,3) changes from “up” to
“left”, located at r = −0.03 (point h). Two changes oc-
cur here. First, by deciding to go “left”, individuals will
never take an uncertain misstep into the room with the
fire (r = −1 state) from the (2,3) state. Second, this de-
cision effectively blocks the passage between state (1,3)
and (3,3). They must now travel clockwise around the
inaccessible area (state (2,2)). This result is consistent
for all 0.6 < p ≤ 1. The significant drop in the deci-
sion metric identified in Figure 3 always occurs when the
decision for state (2,3) changes from “up” to “left”. This
drop happens at various rewards for various uncertainties.
For p = 0.6 this change happens at r = −0.07, while it
occurs at r = −0.003 for p = 0.9. Accordingly, as more
uncertainty is added into the system, this change in the
decision metric occurs further from 0. For p ≤ 0.5 there
is no change in the decision metric when the decisions
changes for this state.

Discussion

The method presented is significant for understanding
decision making regarding egress routes and general ar-
rangements design. This paper focused exclusively on
the egress problem, defined as how people egress, un-
derstanding the decisions they make under uncertainty,
and the interaction between the individuals themselves
and the layout of the vessel. This is juxtaposed to tra-
ditional analyses that focus on the solution, namely the
physical layout of the vessel and the distribution of the
crew throughout the ship.

The decision metric highlights important transition re-
gions in the decisions, and which state/action combina-
tions are significant. Without the use of the spectral meth-
ods, the designer would have to examine all nine transi-
tion regions in the decisions; however, the decision met-

ric reduces that number to five areas, with one of signif-
icant importance. The room next to the fire (state (2,3))
showed to be an important area, especially when the de-
cision transitions from “up” to “left”. Designers need to
be careful when allocating this space as a particular room
so not as to block this egress route, or they need to en-
sure that proper smoke ventilation is installed so as not
to affect the pain of the individuals, thus impacting their
decision making. By highlighting the importance of this
room, and the relative insignificance of other rooms (such
as state (1,1)), this metric has been able to show which ar-
eas of the vessel deserve greater focus and which rewards
are likely to cause changes in decision making behavior
for those on board.

Conclusion

A method for enabling decision making insight has been
presented involving applying eigenvalue spectral analy-
sis to the SC-MDP framework. A decision metric for
Markov decision processes was introduced, defined as the
ratio between the largest eigenvalue and the magnitude of
the second largest eigenvalue. This metric was applied in
two new ways: first to identify and quantify changes in
the sets of decisions, and second, to identify the specific
system attributes causing the major changes in decisions.
Use of eigenvalue spectral methods will be beneficial for
ship design and decision making by eliciting new insight
into the design and decision space that may not be pos-
sible using traditional methods. Future work will include
using these results to help guide the design of the vessel.
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