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Abstract

Wind turbines are often grouped together in wind farms for financial reasons, but due to
wake development this results in decreased turbine lifetimes and power capture compared to
an equal amount of individually placed turbines. Consequently, this results in an increased
levelized cost of energy (LCOE). Wind farm control aims to minimize wind’s LCOE by
operating wind turbines at their optimal settings. Most state of the art control algorithms
are open-loop and rely on a control-oriented, low fidelity, static flow model. Closed-loop
control relying on a dynamic model has real potential to further decrease the LCOE of wind,
but is often too computationally expensive for practical use.

In such a closed-loop framework, observers are essential because they improve estimations of
the flow field based on a limited set of measurements. These algorithms correct for unmodeled
dynamics (thus allowing the use of a lower fidelity, time-efficient flow model), noisy measure-
ments and a limited number of measurements (spatially and temporally). Estimations of
the current and future flow fields can be fed into control algorithms to calculate the optimal
control policy for a wind farm.

In this thesis, two time-efficient state observers are designed using the control-oriented,
medium fidelity, dynamic flow model WindFarmSimulator (WFSim), developed at the Delft
University of Technology (TU Delft). WFSim is beneficial to current control-oriented mod-
els as it is applicable for different farm layouts and inflow conditions, it is dynamic, and it
includes a higher fidelity flow model based on the Navier-Stokes (NS) equations. As real-time
closed-loop control is the objective, the filter should take no more than 1 s per iteration.1

WFSim predicts the 2D velocity vectors in a horizontal plane at hub height in a wind farm over
time. Fundamentally, it relies on a set of spatially and temporally discretized NS equations,
which are reformulated as a nonlinear, implicit state-space system by projecting away the
continuity equations. The first step in this work is to reformulate WFSim to allow direct
implementation in state of the art filtering algorithms, resulting in a discrete-time, nonlinear,
explicit state-space system. The farm model includes a mixing length turbulence model to
account for wake recovery, and employs the actuator disk model to account for the rotor-flow

1Since WFSim will be simulated with a timestep of 1 s.
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interaction. Boundary conditions are introduced by defining a certain inflow at one side of
the grid, and enforcing zero flux conditions at the remaining three sides.

Based on WFSim, two time-efficient variants of the Kalman filter (KF) are implemented,
namely an Approximate Kalman filter (ApKF) and an Ensemble Kalman filter (EnKF). The
ApKF relies on the traditional KF algorithm, but improves time-efficiency by enforcing a
sparsification of the main model matrices and state error covariance matrix. Simulations show
negligible loss in performance, with gains in computation time by a factor 101 − 102. In the
EnKF, the covariance matrices are replaced by a sample covariance. As the sample covariance
matrices are typically well described with several orders of magnitude less ensemble members,
significant reductions in computational cost can be achieved. In this work, the EnKF has an
even lower computational cost than the ApKF.

These state observers are then tested, including a case without observer (open-loop, i.e.
model validation), using a dataset obtained from the high fidelity farm model Simulator fOr
Wind Farm Applications (SOWFA), developed by the National Renewable Energy Laboratory
(NREL) and TU Delft. Simulations are of a two turbine case in a 1000 by 2000 m domain size,
meshed at two different resolutions: 25x50 grid points and 50x100 grid points, respectively.
WFSim is simulated in open-loop (thus excluding a state observer) under settings that closely
resemble the simulation setup of SOWFA. Good results are shown, with WFSim predicting
an averaged flow in the wind farm. WFSim does neglect finer flow dynamics found in SOWFA
due to its simplified turbulence model, simplified rotor model, and the absence of a vertical
dimension (2D vs. 3D). However, in WFSim the wake width is overestimated, the wake depth
is underestimated, wake recovery is underestimated, turbine hub effects are neglected, and
wake meandering is not modeled. As expected, most estimation errors originate from the
region near and behind the second, downstream turbine. State observers are implemented to
account for these unmodeled dynamics.

In a similar setting, the two time-efficient filtering algorithms are assessed, with 23% and 11%
of the system outputs available as measurements to the system2 respectively for the 25x50
meshing and the 50x100 meshing. These measurements are flow velocities, disturbed by white
noise with standard deviation σ = 0.10 m/s. Noticeably, the observers at the coarser meshing
(25x50) perform very well, accounting for the overestimated wake width, the underestimated
wake recovery, turbine hub effects, and wake meandering. Moreover, the EnKF even accounts
somewhat for the underestimated wake depth. These filters only take 0.8 s and 0.7 s per
iteration for the ApKF and the EnKF, respectively. For the EnKF, quantitatively, reductions
in root mean square (RMS) error are up to 50% and improvements in the variance accounted
for (VAF) are up to 24 percent points in the mean wake centerline.3

In conclusion, the ApKF and EnKF at a 25x50 meshing show very good performance at a
fraction of the computational cost of standard filtering algorithms, accounting for unmodeled
dynamics and noisy measurements. The EnKF is preferred over the ApKF due to its increased
performance at a slightly lower computational cost. Furthermore, due to an iteration time of
≤ 1 s, these algorithms already allow real-time implementation, and are expected to further
improve when ported to machine code (e.g., C). The work presented in this thesis is a first
major step to closed-loop control of wind farms.

2Measurements are spaced at equidistantly throughout the grid, and near the turbines, by Figure 4-1.
3The mean wake centerline is defined as the laterally averaged (from rotor end to rotor end) longitudinal

flow velocity throughout the domain, by Figure 2-12.
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Chapter 1

Introduction

This chapter introduces the topic at hand, its relevance and importance in current society,
and more specifically what this research adds to the current body of literature. Firstly,
the motivation for this work and, more generally, research in wind energy are outlined in
Section 1-1. Secondly, background information on wind farm control and modeling will be
summarized in Section 1-2, which will allow a more thorough understanding of the remainder
of this thesis. Thirdly, in Section 1-3, the respective thesis objectives will be outlined more
formally. Finally, the report structure will be depicted in Section 1-4.

1-1 Motivation

Ever since the industrial revolution in the early 19th century, greenhouse gases and other
human-induced pollution have severely impacted the environment. Global warming and cli-
mate change are perhaps the biggest human-inflicted threats to our species as we know it.
With a seemingly ever-growing global demand for energy, the consequences will only increase
in magnitude with time.1 Consequences of global warming include extreme weather, resulting
in e.g., large droughts [3] and thereby forest fires, risks for human health [4], melting of glaciers
[5] and thereby the rise in sea level, and disturbances of ecological systems and biodiversity [6].
With a major part of The Netherlands being below sea level, the melting of glaciers will have
a devastating impact on the country and its population. Hence, a global shift from climate
change-inducing fossil fuels to green, renewable energy sources is of invaluable importance.

Fortunately, renewable energy alternatives are on the rise, with solutions in the fields of
biomass, hydrogen, nuclear, solar and wind [7]. This report limits itself to the latter: energy
from wind. Wind energy has shown serious potential in providing green energy (e.g., in
Denmark, in which it provides for over 40% of the national energy demand [8]), but a number
of challenges remain.

1The world energy demand is expected to grow by about one-third between 2013 and 2040, according to
the recent annual report on energy of the International Energy Agency (IEA) [2].
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2 Introduction

For wind energy to be feasible, its levelized cost of energy (LCOE) has to be able to compete
with that of other sources.2 In the pursuit of minimizing wind’s LCOE, wind turbines are
typically grouped together in wind farms, saving on turbine and electricity grid deployment
costs, operation and maintenance costs, land- or sea-usage and visual pollution, among oth-
ers. However, placing turbines in each other’s proximity gives rise to the development of,
and interactions with, turbulent flow wakes, often resulting in a plant-wide decreased power
capture3 and increased turbine structural loading compared to an equal number of single
turbines, thereby suppressing potential gains in terms of the LCOE of wind.

Figure 1-1 shows a photo of the Horns Rev offshore wind farm in Denmark operating in
foggy conditions, taken by Christian Steiness in 2008. In this photo, the turbine wakes, their
expansion downstream, and the overlap of wakes with downstream turbines can clearly be
seen.

Figure 1-1: The Horns Rev offshore wind farm near Denmark under foggy weather conditions.
The flow wakes formed by turbines extracting energy from the wind are clearly visible. [10]

Wind farm control aims to counter wake effects such as power capture losses and increased
structural loading by operating turbines at their collectively optimal settings, thereby mini-
mizing the LCOE of wind. Advancements in wind farm control have gone hand in hand with
advancement in wind farm modeling, as state of the art control algorithms typically rely on
a control-oriented, internal model of the flow. Unfortunately, these models are often of low
fidelity, static, and are limited to open-loop applications. Furthermore, high fidelity dynamic
simulation models based on the Navier-Stokes (NS) equations have been developed that allow
relatively inexpensive controller testing and flow analysis, but are much too computationally
costly for control applications. The nonlinear, time-varying, stochastic nature of the flow
has significantly complicated flow modeling. Notably, the time-varying nature of the system
requires fast solvers to make real-time control possible. A trade-off always has to be made
between model fidelity and applicability in control.

2The levelized cost of energy (LCOE) is a quantitative measure to compare different methods of power
generation in terms of financial feasibility. It incorporates the investment needed for realizing a specific energy
generating solution, its operation, and total power output throughout its lifetime.

3According to some numerical studies [9], power capture losses in wind farms are predicted to be up to 50%
for certain topologies and atmospheric conditions.
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1-2 Basic concepts in wind farm modeling and control 3

1-2 Basic concepts in wind farm modeling and control
For a good understanding of the work presented in this thesis, the reader is required to have
at least a basic understanding of wind farm modeling and control. This section contains back-
ground information required for a clear comprehension of the work presented in Chapters 2
to 4, and a basic understanding of other state of the art research in the field. Note that an
even more top-level introduction, the theory of wind and wind turbines, is briefly explained
in Appendix A. Wind farm control and wind farm modeling are touched upon in this chapter.
For a more thorough explanation including recent developments in these fields, please see the
literature study preceding this work [1].

1-2-1 Wind farm control

Wind turbines are often grouped together in wind farms for a number of reasons [11, 12],
including:

• Reduced deployment costs of the turbines and the electricity grid.
• Reduced operation and maintenance costs.
• Reduced land- or sea-usage and visual pollution.
• Increased power capture per unit area at resource-rich locations.

However, complications arise due to the development of wind flow wakes.4 In wind farms,
turbines typically operate in waked flow caused by their respective upstream turbines. As the
flow in these wakes have decreased velocity and increased turbulence, downstream turbines
capture less power and experience increased structural loading compared to when placed indi-
vidually. Numerical studies indicate that power capture losses may be up to 50%, depending
on the farm layout and atmospheric conditions [9]. The lifetime of downstream turbines is
further decreased due to asymmetry in turbine loads [12].

Wind farm control typically aims to minimize power losses and structural loading by col-
lectively controlling turbines in one or multiple wind farms.5 Currently, wind turbines often
follow a greedy-control approach, in which each turbine is operated to maximize their individ-
ual power capture.6 While optimal for individual turbines, this has shown to be suboptimal
in wind farms due to wake interactions. These control algorithms are typically enforced using
the turbine degrees of freedom: generator torque τg, turbine yaw γ, and rotor blade pitch an-
gles β. For an elaborate, recent overview of the current state of the art in wind farm control,
please see the literature survey by Knudsen et al. [14]. In this thesis, a concise overview is
given of the two main control methodologies.

Axial-induction-based control In axial-induction-based control, the idea is to derate up-
stream turbines through blade pitch and generator torque, resulting in the development of
less severe flow wakes. If the increase in power capture for downstream turbines exceeds the
decrease in power capture for the upstream, derated turbines, axial-induction-based control
is worthwhile.

4Please see Appendix A-1 for an introduction to wind flow wakes and their properties.
5Other objectives include e.g., providing stability to the electricity grid, as is the case in Ela et al. [13].
6This is for control region 2. See Appendix A-2 for an explanation of the different regions of control.
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4 Introduction

An important requirement for a successful implementation of axial-induction-based control
is that the control settings adjust timely and accurately to changes in the inflow [14]. The
amount of derating is traditionally calculated using a steady-state engineering model of the
flow, and unnecessary derating due to erroneous predictions of inflow conditions may cause
more losses than gains in axial-induction-based control.

Gebraad’s Ph.D. dissertation [12] contains a literature review on axial-induction-based con-
trol. Based on this source and the survey by Knudsen et al. [14], it can be said that, using
axial-induction-based control, theoretical improvements in power capture up to 4 − 6% can
be expected in idealized scenarios. However, in more practical settings, these works con-
clude that no definite statement can be made about its potential of increasing a farm’s power
capture.

Wake redirection control In wake redirection control, the rotors of upstream turbines are
purposely misaligned with the incoming flow direction in order to deflect the wake down-
stream. This deflection can be done vertically (tilting) or horizontally (yawing). This control
methodology has shown serious potential in high fidelity simulations with power increases of
4 − 7% [14], and is still actively being researched. Fleming et al. [15, 16] suggested that
a downwards deflection would promote wake recovery, but this degree of freedom is unfor-
tunately not available on most modern wind turbines. With yaw being a common degree
of freedom in modern wind turbines, literature has favored horizontal wake deflection. The
concept is demonstrated in Figure 1-2, in which U∞ depicts the freestream (inflow) wind
speed.

Figure 1-2: Wake redirection control as demonstrated in Gebraad’s dissertation [12], with wakes
in gray. Upstream turbines are purposely misaligned to deflect their wakes downstream, resulting
in no or partial overlap with downstream turbines.

Due to rotor misalignment of the first turbine with the inflow, the wake is redirected down-
stream and thereby no longer, or only partially, overlaps with a downstream turbine, resulting
in increased power capture. Partial overlap of a flow wake with downstream turbines does
increase structural loading, but this can be mitigated by e.g., individual pitch control (IPC).
IPC has shown to be able to reduce structural loads significantly, e.g., in high fidelity simula-
tions by Wilson et al. [17], showing blade root flap bending moment reductions in standard
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1-2 Basic concepts in wind farm modeling and control 5

deviation from the mean of 14 − 32%. More information on IPC can be found in work by
Bossanyi (e.g., [18, 19]), and in Knudsen et al. [14].

1-2-2 Wind farm modeling

Advancements in wind farm control have gone hand in hand with advancements in wind farm
modeling, as state of the art control algorithms typically rely on an internal model of the
flow. Common properties of such a model are that it is control-oriented, static, of low to
medium fidelity, and often relies on heuristic data rather than a body of equations derived
from physics.
Next to the development of low fidelity control-oriented models, high fidelity flow models
have allowed wind farm simulations at high accuracy. At a fraction of the cost of field tests,
these models have allowed flow analysis and controller testing (e.g., in work by Fleming et al.
[16, 20]), among others. These models are significantly more computationally expensive than
their control-oriented counterparts, and therefore are not applicable for real-time control.
Many wind farm models exist, varying in accuracy, applicability and computational cost.
Sanderse et al. [21] provides an overview of rotor blade models and wake models with a focus
on computational fluid dynamics (CFD) methods. Next, rather a concise overview is given of
the general framework of a wind farm model.

General model framework

Generally, wind farm models consist of three main components, namely:

• Rotor model – This submodel predicts the turbine-flow interactions. This includes both
forces by the flow on the turbine, and forces by the turbine on the flow. A common
rotor model is the actuator disk model (ADM), inspired by momentum theory [22].

• Turbine model – This submodel predicts the dynamics and structural loading on a
turbine under an incoming flow field. Typically included in a turbine model are ex-
treme load cases, vibrational modes and fatigue loads. A popular high fidelity turbine
submodel is the Fatigue, Aerodynamics, Structures and Turbulence (FAST) model, de-
veloped at the National Renewable Energy Laboratory (NREL) [23].

• Flow model – This submodel predicts the flow properties (e.g., velocity, direction, tur-
bulence) in a wake or in a flow field, either dynamically or as a steady-state solution.
Popular examples of low fidelity flow models are Jensen [24] and Ainslie [25], commonly
used for control purposes. A popular high fidelity simulation model is Simulator fOr
Wind Farm Applications (SOWFA), developed at NREL [26]. A simulation of several
minutes in SOWFA can take multiple days on NREL’s supercomputer “Peregrine”. It is
used for low fidelity model validation, high fidelity controller testing and flow analyses.

An important comment to make is that not all components are required to be present in a
farm model. Rather, different components can be simulated individually to assess one certain
aspect of the wind farm, while others are omitted. For example, for a predefined inflow case,
one may only look at the turbine model to assess structural degradation under cyclic and
extreme loading, without assessing the flow propagation and wake development downstream.
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Overview of wind farm models

In the literature review preceding this thesis [1], a more detailed analysis was performed on
wind farm modeling. An overview was made of different wind farm models, their character-
istics and applications. The result is summarized in Table 1-1.

Table 1-1: Wind farm models overview.

Low fidelity Medium fidelity High fidelity
Model
type

Kinematic
models

Flow field
models Flow field models Flow field models

Funda-
mentals Heuristic RANS 2D (un)steady NS 3D unsteady NS

Models

Jensen,
FLORIS,
Frandsen,

...

Ainslie, ... FLORIDyn, DWM
model, WFSim, ...

SOWFA,
WakeFarm, ...

Flow di-
mension 2D 2D/3D 3D

Dynam-
ic/Static Static Dynamic Dynamic

Rotor
model ADM ADM ADM/ALM

Turbine
model

Static relationships from
actuator disk theory

Static relationships or an aero-elastic
package (e.g., FAST)

Comp.
effort

Order of seconds on a
desktop PC

Order of minutes on
a desktop PC

Order of days on a
cluster of 102 CPUs

Model
accuracy Low – medium Medium – high High – very high

The models are sub-divided under kinematic models and field models. Kinematic models rely
on the momentum equation to describe the waked flow, and thereby disregard the near wake
region and changes in turbulence. Traditionally, these models require to be coupled with a
turbulence model for this purpose. On the other hand, field models predict the entire flow
field based on the Navier-Stokes equations, often also coupled with turbulence models.
In this table, Reynolds Averaging of Navier-Stokes (RANS) models neglect turbulent dynam-
ics in the flow and predict an averaged flow velocity and direction, while full NS models
attempt to include turbulence. Low fidelity models include FLOw Redirection and Induction
in Steady-state (FLORIS) from the Delft University of Technology (TU Delft), and its more
recent dynamic extension FLOw Redirection and Induction Dynamics (FLORIDyn), which is
considered of medium fidelity. Another popular medium fidelity flow model is the Dynamic
Wake Meandering (DWM) model from the Technical University of Denmark (DTU). SOWFA
is a high fidelity simulation model from TU Delft and NREL, and will be discussed more in
detail in Section 2-2. SOWFA includes the actuator line model (ALM) for rotor modeling,
which is a more sophisticated variant of the aforementioned ADM.
What this table shows is that choosing the right model for one’s purpose is not a trivial task.
Trade-offs are to be made on many fronts. Roughly two distinct goals have been and are being
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1-3 Thesis objectives 7

pursued in literature: highest accuracy at practically any computational cost for simulation,
and highest accuracy at a limited computational cost applicable for control.

1-3 Thesis objectives

The work in this thesis is related to the medium fidelity flow model WindFarmSimulator
(WFSim) from the Delft University of Technology, first introduced in a paper by Torres et al.
in 2011 [27], and later improved in a paper by Boersma et al. [28]. This model is a dynamic
2D flow model based on a set of spatially and temporally discretized NS equations. Models
such as WFSim aim to bridge the gap between low fidelity, control-oriented models and high
fidelity simulation models. WFSim is an attempt to combine the ease of application in control
as found in low fidelity models, with high accuracy as found in high fidelity models. Mainly,
WFSim is superior to low fidelity models because it is dynamic, lending itself to closed-loop
control. Furthermore, it is applicable for different farm layouts, wind directions, wind speeds
and atmospheric conditions. The concept of closed-loop control using WFSim as pursued by
the current research group is demonstrated in Figure 1-3.

Optimizer 

Velocities 
Loads 

Yaw & induction 

Gradient method 

SOWFA 

WFSim 

Figure 1-3: Closed-loop control for wind farms. The main focus in this thesis lies on observer
design using the medium fidelity WFSim flow model. Image by J.W. van Wingerden.

In this figure, the flow of information is displayed. Physical measurements in a wind farm
(e.g., velocities, turbine loads) are fed into the observer, which internally relies on the 2D flow
model WFSim. The observer filters the measurements and provides an estimate of measured
and non-measured flow properties (e.g., velocities) at the current time instant. Furthermore,
the observer can be used to predict flow properties ahead in time. Then, this information
is fed into an “optimizer” algorithm, which calculates the optimal control policy to achieve
a certain performance goal (e.g., maximum power capture, minimal turbine loading). This
control policy is then enforced on the wind farm in real-time. Finally, time propagates, new
measurements are obtained, and the cycle repeats itself. Note that in the current scheme, the
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8 Introduction

true wind farm is replaced by data from the high fidelity simulation model SOWFA.7

The benefit of this scheme with respect to open-loop control lies in the nonlinear, time-
varying nature of air flows behind wind turbines. Accurate predictions would require an
increasingly sophisticated flow model, and thereby an increasing number of computational
resources. Additionally, these models will still not capture all dynamics as found in a true
wind farm due to the complex dynamics found in turbine-flow interactions and wind wakes.
An observer has to potential to correct for unmodeled flow dynamics and modeling error,
while relying on a simplified, time-efficient flow model.

Several parties are currently working with WFSim. Boersma and Van Wingerden8 are actively
developing the WFSim model, with support of Vali8 and Doekemeijer7. Recent extensions to
the model include yaw actuation, a mixing length turbulence model and a linearized version
of WFSim [28, 29]. Furthermore, Kühn and Vali9 are in the process of developing control
algorithms for optimal energy extraction using an adjoint-based gradient of a cost function
derived from WFSim [30].

The main objective of the work presented in this thesis is to design a robust state observer
with low computational cost, enabling real-time closed-loop control of wind farms. Observers
as such are important for a number of reasons:

• There is always an error between model and reality which needs to be corrected for. With
the complex dynamics in wind wakes, a state observer is of invaluable importance for
proper flow field reconstruction. A model cannot capture all these dynamics, especially
with limited computational resources, and furthermore often many model parameters
are uncertain.

• Measurements always include some noise, and are desired to be filtered.
• The flow field is only measured at a few instances in the wind farm, while the entire

flow field may be of interest. It is impractical and infeasible to measure the velocity at
each point in the grid. A state observer will predict the flow velocities at the remaining
grid points based on the internal model and available measurements.

Quantifying computational efficiency: the objective is to have a computational time of no
more than a certain percentage of the sampling time of the simulation. In this thesis, since
WFSim will be sampled at 1 Hz, the summed computation time of the observer and control
algorithm should be no more than 1 s in order to allow real-time control of the farm. Thus,
in a limit case, it is desired to have the observer provide state estimations at a maximum
iteration time of 1 s.

Secondary objectives essential to this work include the validation of the WFSim model with
high fidelity simulation data and optimization of WFSim’s numerical implementation.

7Note that the work in this thesis is limited to axial-induction-based control, and conclusions do not
necessarily hold for wake redirection control. Recent versions of WFSim do include the yaw degree of freedom
to allow wake redirection control. While no obstructions are expected when moving from axial-induction-
based control to wake redirection control using the observers presented in this thesis, it has not yet been
assessed through experiments due to limited availability of high fidelity data. Future work may include the
implementation and assessment of wake redirection control using WFSim.

8Delft Center for Systems and Control (DCSC), Delft University of Technology, The Netherlands.
9Wind Energy System (WESys) Research Group, ForWind, University of Oldenburg, Germany.
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1-4 Structure of the report 9

1-4 Structure of the report
With the motivation, fundamental concepts and thesis objective introduced in this chapter,
Chapter 2 goes further into detail on the WFSim model. This chapter also includes model
validation of WFSim using a high fidelity simulation model (SOWFA). Then, in Chapter 3,
two enhanced Kalman filter designs are outlined, each following a fundamentally different
approach to reduce computational effort and improve filtering results. Simulation results for
both state observers are outlined in Chapter 4, after which conclusions are drawn in Chapter 5.
Recommendations and a future outlook for this research will also be touched upon in this
chapter.

The appendices include an introduction to wind and single turbine control in Appendix A,
simulation results for the lateral flow components in Appendix B, and a paper submission
of the work presented in this thesis in Appendix C. The report is concluded with a list of
references, list of acronyms and list of symbols.
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Chapter 2

WFSim and model validation using
SOWFA

This chapter elaborates on the WindFarmSimulator (WFSim) model developed at the Delft
University of Technology (TU Delft) [27, 28]. This model lays the fundamentals for the
state observers, which will be described in Chapter 3. WFSim is the subject of Section 2-1.
Secondly, the higher fidelity farm model SOWFA will be described concisely in Section 2-2.
Thirdly, SOWFA is used for model validation of WFSim in Section 2-3.

2-1 The WFSim flow model
In this section, the WFSim model will be described. First, an overview will be given for the
reader with time restrictions in Section 2-1-1. In the remainder of the section, the model will
be described in detail. Model assumptions are detailed in Section 2-1-2, after which the grid
layout is described in Section 2-1-3. The Navier-Stokes (NS) flow equations will be depicted
in Section 2-1-4, after which the turbulence submodel will be described in Section 2-1-5.
The rotor submodel will be the topic of Section 2-1-6. The final form of the model and the
boundary conditions are obtained in Sections 2-1-7 to 2-1-9. Software implementation and
benefits & challenges in the model’s application will be depicted in Sections 2-1-10 and 2-1-11,
respectively.

2-1-1 A brief overview

In short, WFSim predicts the flow velocity vectors throughout a wind farm in a predefined
meshing using the 2D Navier-Stokes (NS) flow equations in a computational fluid dynamics
(CFD) formulation. It is considered a medium fidelity dynamic flow model. It employs the
actuator disk model (ADM) to calculate the aerodynamic forces exerted on the flow by the
rotor blades. Furthermore, it includes a mixing length wake turbulence model to account for
wake recovery. The velocity vectors are predicted in a horizontal plane at turbine hub height.
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12 WFSim and model validation using SOWFA

The spatially and temporally discretized NS equations are formulated as a state-space system
by projecting away the continuity equations. Following this process, a discrete-time quasi-
linear parameter varying (qLPV) state-space system formulation in implicit form is obtained,
described by

Ew(αk)αk+1 = Aw αk +Bw(αk)βwk
+ Sw(αk),[

uk
vk

]
= Qp αk +Bp.

In this equation, αk ∈ RN represents the system state vector at time k, resulting from the
projection of the 2D velocity vectors [uk; vk] ∈ RM . Note that the entries of αk are not physical
velocities due to the projection. N is proportional to the number of grid points with a typical
value of 103, giving a measure of refinement in flow field estimates. 0 ≤ βwk

≤ 1 ∈ RO is the
system input; a vector with O rows, where O is equal to the number of turbines. βwk

is a
scaled measure of the axial induction factors ak, representing how much energy is extracted
from the wind by each turbine, by βwk

= ak (1− ak)−1. From βw, the longitudinal and lateral
aerodynamic forces that the turbines exert on the flow are calculated. βw can be translated
into physical turbine settings such as generator torque, blade pitch and yaw. Furthermore,
the system matrices are represented by Aw ∈ RN×N , Bp ∈ RM , Bw ∈ RN×O, Ew ∈ RN×N ,
Qp ∈ RM×N and Sw ∈ RN , of which Ew, Bw and Sw depend on αk. These system matrices
are sparse and structured, and can thus be exploited for computational efficiency.

Boundary conditions for both longitudinal and lateral velocity are introduced by defining a
certain inflow at one side of the grid, and enforcing zero flux conditions at the remaining three
sides.

2-1-2 Assumptions

In the remainder of this section, the model is described on a level that is sufficient to obtain
a good understanding of the capabilities and limitations of WFSim. A full derivation of the
model requires a good understanding of CFD methods, and is therefore excluded from this
report. However, an attempt is made to give an elaborate description without going into
detail on computational fluid dynamics.

A number of assumptions are made in the WFSim model. Firstly, the flow is assumed to be
incompressible, and thus with constant density [28]. Secondly, the vertical velocity component
is neglected, and only a 2D set of NS equations at hub height is considered. Momentum theory
is used to predict the turbine-flow interactions, and a simple mixing length wake turbulence
model is implemented to account for wake recovery.

WFSim relies on a spatial and temporal discretization of the simulation domain, thereby
resulting in a large number of cells for which a set of discrete NS equations are to be solved at
each time instant. First, the way in which the domain is discretized spatially is demonstrated,
after which the relevant equations will be derived and discussed.
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2-1 The WFSim flow model 13

2-1-3 Grid layout

Two types of grids are implemented in WFSim: one with linear (equidistant) spacing (in
which all cells are of equal size), and one with exponential spacing (in cells are of different
size). The latter is computationally beneficial, as higher accuracy can be achieved at areas of
interest (i.e., around the turbines and wakes) with similar or lower computational costs than
in an equidistantly spaced grid. However, for simplicity and demonstration purposes, a linear
grid is applied in this section.

For any simulation, two subgrids in WFSim are implemented upon which the pressure terms,
longitudinal velocity components, and lateral velocity components are expressed. The first
subgrid is spaced uniformly covering the entire mesh, with longitudinal coordinates X1 ∈ RNx

and lateral coordinates Y1 ∈ RNy , according to

X1 =
[
0 1 · Lx

Nx−1 2 · Lx
Nx−1 3 · Lx

Nx−1 · · · Lx
]
, (2-1)

Y1 =
[
0 1 · Ly

Ny−1 2 · Ly

Ny−1 3 · Ly

Ny−1 · · · Ly
]
, (2-2)

with Lx and Ly the longitudinal and lateral lengths of the rectangular domain that is to
be discretized, and Nx and Ny the total number of mesh points in longitudinal and lateral
direction, respectively. The second subgrid with X2 ∈ RNx and Y2 ∈ RNy is spaced such that

X2 = X1 + 1
2 ·

Lx
Nx − 1 , (2-3)

Y2 = Y1 + 1
2 ·

Ly
Ny − 1 , (2-4)

resulting in each grid point of the second subgrid being centered within its four surrounding
grid points of the first subgrid. Now, the pressure terms p are gridded on (X1, Y1), the
longitudinal velocities u are gridded on (X2, Y1), and the lateral velocities v are gridded on
(X1, Y2). If this would not be the case, there would be problems in the solution for pressure
terms [31].1 An example of a linear grid is displayed in Figure 2-1, with Lx = 60 m, Ly = 40 m,
Nx = 4, and Ny = 3.2

For each cell, with (I, J) corresponding to (X1, Y1) and (i, j) corresponding to (X2, Y2), u(i, J)
is calculated with dependency on u(i − 1, J), u(i + 1, J), u(i, J − 1), u(i, J + 1), p(I, J),
p(I + 1, J), v(I, j), v(I, j − 1), v(I + 1, j), and v(I + 1, j − 1), which basically comes down
to the 4 neighboring grid points for u and v, and the 2 neighboring grid points of p in
longitudinal direction. Similarly, for v(I, j) the dependency is on v(I − 1, j), v(I + 1, j),
v(I, j − 1), v(I, j + 1), p(I, J), p(I, J + 1), u(i, J), u(i, J + 1), u(i− 1, J), and u(i− 1, J + 1).
Finally, for p(I, J), the dependency is on u(i, J), u(i− 1, J), v(I, j), and v(I, j − 1).

Boundary conditions are introduced on the outer rows and columns of the grid, to ensure the
existence of a solution for the NS equations. First, the NS equations will be described next.
The boundary conditions will be explained in Section 2-1-9.

1If the same grid would be used for pressure terms and velocity, information could be lost resulting in an
erroneous discretization.

2Two examples of an exponential grid can be seen in Figure 4-1. These grids will be used for model
validation and observer testing.
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Figure 2-1: Example of a linear grid layout for the WFSim farm model, with Lx = 60 m,
Ly = 40 m, Nx = 4, Ny = 3. The primary grid is represented in solid black, and the secondary
grid is represented using dashed lines. The wind is flowing from bottom to top.
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2-1-4 Navier-Stokes equations

For each cell in the grid, there are 3 equations to be solved originating from the set of Navier-
Stokes (NS) equations assuming pressure terms to be constant, namely

ρ

(
∂u

∂x
+ ∂v

∂y

)
︸ ︷︷ ︸

Rate of change of total mass in the system

= 0, (2-5)

ρ

 ∂u

∂t︸︷︷︸
variation

+ ∂u2

∂x
+ ∂u · v

∂y︸ ︷︷ ︸
convection

 = − ∂p

∂x︸︷︷︸
pres. grad.

+µ

∂2u

∂x2 + ∂2u

∂y2︸ ︷︷ ︸
diffusion

+ SMu︸︷︷︸
ext. force

+ TMu︸︷︷︸
turbulence

, (2-6)

ρ

 ∂v

∂t︸︷︷︸
variation

+ ∂v2

∂y
+ ∂v · u

∂x︸ ︷︷ ︸
convection

 = − ∂p

∂y︸︷︷︸
pres. grad.

+µ

∂2v

∂x2 + ∂2v

∂y2︸ ︷︷ ︸
diffusion

+ SMv︸︷︷︸
ext. force

+ TMv︸︷︷︸
turbulence

, (2-7)

which entail conservation of mass, conservation of momentum in longitudinal direction, and
conservation of momentum in lateral direction, respectively. In these equations u and v entail
the velocities in longitudinal and lateral direction in m/s, ρ is the flow density in N·s2·m−4,
µ is the flow viscosity in N·s·m−2, SMu and SMv represent turbine forces on the flow in
longitudinal and lateral direction in N·m−3, TMu and TMv are the longitudinal and lateral
turbulence terms in N·m−3, and p is a pressure term in N·m−2. This problem is a nonlinear
partial differential equation (PDE) without analytical solution, thus requiring discretization.
First, the turbulence and rotor model are described in Sections 2-1-5 and 2-1-6, after which
the discretization will be described in Section 2-1-7.

2-1-5 Turbulence model

A simple turbulence submodel is included in WFSim to account for wake recovery: the mixing
length wake turbulence model [32]. Implementation was outlined previously by Gebraad in
2012, and is repeated here [33].
Turbulence is only modeled in longitudinal direction, as in this way it does not alter the
structure of the NS equations, and the same solution methodology can be followed. Thus,
TMv = 0. This means wake recovery is lateral direction is neglected. However, dominant
dynamics and the main interest for control are in longitudinal flow, and thus this assumption
is deemed acceptable for its current purposes.
In the case that turbulence would be modeled also in lateral direction, the turbulence terms
in Equations (2-6) and (2-7) would be described by

TMu = ∂τuu
∂x

+ ∂τuv
∂y

, (2-8)

TMv = ∂τvu
∂x

+ ∂τvv
∂y

, (2-9)
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16 WFSim and model validation using SOWFA

with Reynolds normal stresses τuu and τvv, and Reynolds shear stresses τuv and τvu. The
Reynolds stresses are calculated according to

τuu = −ρu′ 2, (2-10)
τvv = −ρv′ 2, (2-11)
τuv = τvu = −ρu′v′ (2-12)

with u′ and v′ the longitudinal and lateral velocity fluctuations from turbulence. The overbar
denotes the time-averaging operation

φ = 1
∆t

∆t∫
0

φ(t)dt. (2-13)

Following the Boussinesq assumptions in combination with the mixing length model, the
approximations made for the Reynolds stresses are

τuu = τvv ≈ 0, (2-14)

τuv = τvu ≈ ρl2m
∣∣∣∣∂u∂y

∣∣∣∣ ∂u∂y , (2-15)

with l2m the eddy length scale. This variable is considered a tuning parameter, and is typically
approximated by lm ≈ 0.16 · Lw, with Lw the wake half width.

Equation (2-8) is substituted in Equation (2-6) and will follow the same spatial and temporal
discretization procedure as the other terms, to be depicted in Section 2-1-7. The turbulence
term TMv = 0, and is currently neglected from Equation (2-7), thereby neglecting wake recov-
ery in lateral direction. Including the expression for TMv in Equation (2-7) would introduce
extra coupling between u and v in this equation. It is currently still ambiguous how to incor-
porate these additional terms in the current solution methodology. However, the assumption
is deemed acceptable due to the small contribution of lateral flow to the quantities of interest:
the longitudinal velocities in the wake.

This model is a first step to turbulence modeling, and introduces wake recovery in WFSim.
Currently, it is only accurate for slow changes of the flow direction, as transport of turbulence
due to convection and diffusion are not taken into account in the mixing length model.

2-1-6 Rotor model

The rotor model employed by WFSim is the actuator disk model (ADM), which is based
on momentum theory. A more elaborate discussion on this model is presented next, largely
inspired by the book of Bianchi et al. [22]. Note that this work is solely focused on axial-
induction-based control, and thus changes due to turbine yaw are not incorporated into the
following equations.

In the actuator disk model, the turbine rotor plane is approximated by an infinitely thin
homogeneous actuator disk extracting energy uniformly from the wind. It estimates the
captured power by the turbine in a relatively simple way, and provides a theoretical upper
bound for the amount of energy that can be extracted by a wind turbine. Consider Figure 2-2,
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Figure 2-2: Actuator disk model: flow across an infinitely thin disk [22].

which demonstrates the wind flow through the infinitely thin disk according to momentum
theory.

By the conservation of mass and under the assumption of incompressible flows, the flow rates
at each cross-section are equal: U∞A∞ = UDAD = U−∞A−∞, with U∞, UD and U−∞ the
velocities far upstream of, at, and far downstream of the disk, respectively.3 A∞, AD and A−∞
are defined similarly to be the cross-sectional areas at the corresponding locations. Caused
by a difference in pressure before and after the actuator disk, the force on the flow FD at this
location is calculated to be

FD = (U∞ − U−∞) ρADUD, (2-16)

and the flow velocity at (or rather: just downstream of) the disk UD is calculated by

UD = (1− a)U∞. (2-17)

In Equation (2-17), a is the axial induction factor, indicating how much energy is extracted
by the disk. As energy is extracted by the rotor, the wind speed further decreases and
turbulent forces are introduced in the flow. Applying Bernoulli’s equation on the upstream
and downstream flow, the wind velocity downstream is

U−∞ = (1− 2a)U∞. (2-18)

Equation (2-18) provides a theoretical lower limit for the wind velocity downstream of a
turbine. Furthermore, the cross-sectional area of a waked region typically increases with
downstream distance due to conservation of mass and a steady decay in flow speed.4

In WFSim the forces introduced by the turbine on the flow are modeled by a single point
thrust force at each grid point where the turbine is defined. Using Equations (2-16) to (2-18),
FD is expressed as

FD = 2ρADU2
∞a(1− a) (2-19)

3In real wind farms, the location and value of U∞ and U−∞ are not well defined.
4An example of a predicted flow including expanding wake using the ADM in WFSim can be found in

Appendix A, Figure A-1.
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18 WFSim and model validation using SOWFA

with AD in practice being the rotor swept area. The ratio between power in the wind PV and
captured power P , the power coefficient CP , is defined by momentum theory as

CP = P

PV
= 4a (1− a)2 (2-20)

with a the axial induction factor of the relevant turbine. In WFSim, the input to the quasi-
linear parameter varying (qLPV) state-space system obtained after discretization (to be dis-
cussed in Sections 2-1-7 and 2-1-8) will be βwk

, calculated by

βwk
= ak

1− ak
, (2-21)

which can be translated into practical wind turbine settings such as turbine yaw, generator
torque and blade pitch angles.
An important remark is that in reality, energy is extracted through turbines by a torque on
the rotor blades. For more information about these derivations, see the book by Bianchi et
al. [22]. Also note that these equations hold for non-yawed conditions. However, extensions
do exist in literature to account for rotor yaw, e.g., in Gebraad’s Ph.D. thesis [12], and are
also implemented in recent versions of WFSim.

Betz limit Betz limit is the theoretical maximum power capture ratio CPmax , obtained by
taking the derivative of Equation (2-20) with respect to a. The Betz limit states that the
highest axial induction factor achievable is a = 1/3, translating into CPmax = 16/27 ≈ 0.59.
For WFSim, this would translate into an input signal βw = 0.50. In practice, the maximum
power coefficient for horizontal-axis wind turbines typically lies around 0.45 [22].

2-1-7 Spatial and temporal discretization

Using the finite element method, Equations (2-5) to (2-7) are discretized spatially using the
Hybrid differencing scheme, resulting in a discretized form of the NS equations for each
cell [31]. A number of approximations are made, among others a first order Taylor series
expansion (linearization) at each cell for the pressure gradients, ∂p

∂x and ∂p
∂y . The spatial

discretization process is outside of the scope of this report. For the full derivation, the reader
is referred to the corresponding technical report by Boersma [34].
The next step is to discretize the equations temporally. The implicit scheme described in
Versteeg and Malalasekera [31] is followed. This results inAx 0 Bx

0 Ay By
BT
x BT

y 0


uv
p

 =

bx + Sx + u0
by + Sy + v0

bc

 , (2-22)

where the first two rows represent the discretized terms of Equations (2-6) and (2-7), respec-
tively. The third row represents the continuity equation of Equation (2-5). Ax, Ay, u0 and v0
originate from the convection and diffusion terms of the u- and v-momentum equations. Bx
and By are defined by the mesh layout. bx and by are calculated using the grid layout and
the velocity vectors in the grid at the previous time instant, making this system nonlinear.
bc incorporates the boundary conditions, which will be presented later this section. Sx and
Sy include external forces caused by the turbines extracting energy from the flow.
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2-1-8 Projecting away the continuity equation
In the pursuit of obtaining a control-oriented, state-space model, it is now desired to eliminate
the continuity equation given by the third row of Equation (2-22). This is done by defining

Bp =
[
BT
x BT

y

]−1
(−bc) , (2-23)

Qp = null
([
BT
x BT

y

])
, (2-24)

with Bp a solution to the continuity equation, and Qp the nullspace of
[
BT
x BT

y

]
. Now, by

defining [
uk
vk

]
= Qp αk +Bp, (2-25)

we can reformulate the set of equations given in Equation (2-22) into a state-space form, as

Ew(αk)αk+1 = Aw αk +Bw(αk)βwk
+ Sw(αk). (2-26)

In these equations, αk ∈ RN represents the system state vector at time k, resulting from
the projection of the 2D velocity vectors [uk; vk] ∈ RM . Note that the entries of αk are not
physical velocities due to the projection. N is proportional to the number of grid points with
a typical value of 103, giving a measure of refinement in flow field estimates. βwk

∈ RO is
the system input; a vector with O rows, where O is equal to the number of turbines. This
vector is a scaled measure of the axial induction factors ak, representing how much energy
is extracted from the wind by each turbine, by βwk

= ak (1− ak)−1. βwk
can be translated

into physical turbine settings such as generator torque, blade pitch and yaw. Furthermore,
the system matrices are represented by Aw ∈ RN×N , Bp ∈ RM , Bw ∈ RN×O, Ew ∈ RN×N ,
Qp ∈ RM×N and Sw ∈ RN , of which Ew, Bw and Sw depend on the state αk. These system
matrices are sparse and structured, and can thus be exploited for computational efficiency.
An example of sparsity in Ew(αk) and Aw is displayed in Figure 2-3.
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(a) Matrix Ew(αk) ∈ R324×324
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(b) Matrix Aw ∈ R324×324

Figure 2-3: Location of nonzero elements (structure) in the system matrices for the WFSim farm
model in qLPV form. In this figure, approximately 63% of the entries in Ew(αk) and about 76%
of the entries in Aw are zero.

In this figure, locations of nonzero entries are colored black. About 37% of the entries in
Ew(αk) and 24% of the entries in Aw are nonzero. Please note that E−1

w Aw is a full matrix.
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20 WFSim and model validation using SOWFA

2-1-9 Boundary conditions

The NS CFD formulation requires a set of boundary conditions in order for a solution to
exist. These boundary conditions are introduced by enforcing a zero flux boundary condition
for all but the side of inflow in the grid. For longitudinal velocities, this is formulated as

nx∇u (x = Lx, y) = 0,
nx∇u (x, y = 0) = 0,
nx∇u (x, y = Ly) = 0,

where nx is the unit vector in x-direction. For lateral velocities, this is formulated as

ny∇v (x = Lx, y) = 0,
ny∇v (x, y = 0) = 0,
ny∇v (x, y = Ly) = 0,

where ny is the unit vector in y-direction. Furthermore, inflow conditions for the remaining
side of the grid are to be set. For longitudinal and lateral velocities, this is formulated
respectively as

u(x = 0, y) = U∞,

v(x = 0, y) = V∞,

Now, with the predefined freestream flow properties and turbine control settings, one can
simulate the flow field iteratively from a set of initial conditions.

2-1-10 Software implementation

It is insightful to outline the framework and modules in a practical implementation of the
model. The pseudo-code is shown in Algorithm 1.
The simulation options in WFSim include:

1. The timestep (h) and total number of steps (NN).
2. The domain layout (domain size, number of grid points in long. and lat direction,

meshing method (logarithmic or linear), number of turbines, turbine properties).
3. The control inputs, i.e., the turbine control settings.
4. The flow’s dynamic viscosity and air density, µ and ρ, respectively.
5. Freestream velocities in longitudinal and lateral direction, U∞ and V∞, respectively.
6. The initial pressure and velocity throughout the grid, p0, u0, v0.
7. The choice of whether to solve the problem using the projection matrices (Equation (2-

26)) or without (Equation (2-22)).
8. The choice of whether the simulation is dynamic or steady-state.
9. The choice of whether the simulation starts from a steady-state solution or from a

uniform (unwaked) flow field.
10. The choice of whether a turbulence model is included, and the value of lm.

Typically, the pressure terms are initiated as p0 = 0. The same assumption is made in the
Dynamic Wake Meandering (DWM) model from the Technical University of Denmark (DTU)
[35], maintaining good simulation results.
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Algorithm 1: Pseudo-code WindFarmSimulator (WFSim)
inputs : Simulation settings (domain size, meshing, turbine properties, control signal for each

turbine, freestream flow properties, atmospheric density, dynamic viscosity)
1 Wp← Meshing ; // Determine domain and meshing

2 if Steady state simulation then
3 dt←∞; NN ← 1 ; // Steady state simulation
4 end
5 u0 ← ones(Nx,Ny) · U∞ ; // Initialize uniform flow field (u)
6 v0 ← ones(Nx,Ny) · V∞ ; // Initialize uniform flow field (v)
7 p0 ← ones(Nx,Ny) · p0 ; // Initialize uniform flow field (p)

8 [Bx, By, bc]← ComputeTempDiscr ; // Compute Bx, By and bc of eq. (2-22)

9 if Use projection matrices then
10 [Qp, Bp]← ComputeSolutionSpace ; // Calculate Qp and Bp of eq. (2-25)

11 α0 ← Q−1
p

([
u0
v0

]
−Bp

)
; // Calculate the initial state by eq. (2-25)

12 end
13 for k ← 1 to NN do
14 while Solution has not converged do
15 if Start at a steady-state solution then
16 if k = 1 then
17 dt←∞ ;
18 else
19 dt← h ;
20 end
21 end

/* Setup the equality problem of Equation (2-22) */
22 ComputeSpatDiscr ; // Calculate spatial discr. terms for eq. (2-22) (1/4)
23 ComputeDynamics ; // Calculate dynamical terms for eq. (2-22) (2/4)
24 ComputeActuator ; // Calculate turbine-flow interaction for eq. (2-22) (3/4)
25 ComputeBCs ; // Calculate boundary conditions for eq. (2-22) (4/4)

/* Compute the solution of Equation (2-22) */
26 if Use projection matrices then
27 [Ew, Aw, Bw, Sw]← ComputeSysMats ; // Calculate system matrices of eq. (2-26)
28 αk ← E−1

w

(
Aw · αk−1 +Bw · βwk−1 + Sw

)
; // Update state by eq. (2-26)

29

[
uk

vk

]
= Qp · αk +Bp ; // Translate state into velocities by eq. (2-25)

30 else

31

uk

vk

pk

←
Ax 0 Bx

0 Ay By

BT
x BT

y 0

−1 bx + Sx + u0
by + Sy + v0

bc

 ; // Update state by eq. (2-22)

32 end
33 [uk, vk, pk]← UpdateBCs ; // Update boundary conditions according to section 2-1-9
34 end
35 if Use control then
36 [βwk

, γk]← ComputeInputs ; // Compute turbine control settings
37 end
38 end
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22 WFSim and model validation using SOWFA

2-1-11 Benefits and challenges in application

Because of the state-space formulation of the flow model, WFSim can be applied for dynamic
control in a closed-loop setting using a state observer. Furthermore, the model is flexible
for various wind farm layouts, and has a higher fidelity than the typical heuristic static flow
model such as Jensen and FLORIS.

However, due to its increased fidelity it is computationally significantly more heavy. A typical
size of state αk is of the order 103. Designing observers and predictive control algorithms that
satisfy the time restrictions for real-time operation are serious challenges, and are currently
active topics of research. The idea is to exploit the sparse structure of the system matrices,
matrix transformations, parallelization of computations, and apply state of the art algorithms
from literature aimed at large order systems.
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2-2 The SOWFA flow model

The high fidelity simulation model used for validation is Simulator fOr Wind Farm Applica-
tions (SOWFA) from the National Renewable Energy Laboratory (NREL). This wind farm
model provides highly accurate flow data at a fraction of the cost of field tests. Churchfield et
al. [36] give an overview of previous research, and discuss the simulation methodology more
thoroughly. Rather, in this document a short introduction to the model is given.

SOWFA predicts the velocity vectors in a three dimensional grid using a large-eddy simulation
(LES) method. It relies on the 3D incompressible NS equations for a steady or unsteady flow
field, accounting for bouyancy (based on Boussinesq approximation [15]) and Coriolis effects
[37]. LES methods resolve larger scale dynamics directly, but employ a subgrid-scale model
for small eddy dynamics to reduce computational cost.

For rotor modeling it employs the actuator line model (ALM), which is a more sophisticated
version of the ADM. In the ALM, the rotor blades are discretized spatially along their radial
lines, where lift and drag forces are determined based on the incoming flow angle, flow velocity,
and blade (airfoil) geometry [15].

For turbine modeling the Fatigue, Aerodynamics, Structures and Turbulence (FAST) model [23]
from NREL is implemented. This model calculates, among others: the power production of
the turbine, the blade forces on the flow, the structural loading on the turbine, and the
dynamics (position, speed, acceleration) of a number of different turbine components [12].

SOWFA has been used on multiple occasions for lower fidelity model validation, steady-state
controller testing, and to study the aerodynamics in wind farms (e.g., in [12, 15, 16, 20, 38]).
While SOWFA is assumed to be very close to the truth in many simulations, its validation
is still an ongoing process. Currently, field tests have shown accurate simulation results for
the first 5 rows of turbines [20]. As only a two turbine case is used for simulations in this
work, results are deemed reliable. For a full description of the flow equations, please see the
article by Churchfield et al. [36], which also gives a more in-depth description of LES solvers
in general.

2-3 Model validation of WFSim with SOWFA

It is worthwhile to consider the accuracy of WFSim when compared to higher fidelity models
and field tests, as this will give a notion of the model’s reliability, and furthermore of the
degree of correction that is necessary for closed-loop control. With the limited availability of
field test data, no experimental data is employed for validation at this point.

In the paper by Boersma et al. [28], the flow model WFSim (excluding the mixing length
turbulence model) is validated according to actuator disk theory, which predicts the flow
behavior in streamwise direction in the presence of a turbine extracting energy from the
wind. Two important equations in this validation process are Equations (2-17) and (2-18).
Good results were shown. However, actuator disk theory is an unrealistic, very simplified
representation of reality, and often insufficient for higher fidelity modeling. For this reason,
WFSim is further validated using high fidelity simulation data in this work.
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24 WFSim and model validation using SOWFA

2-3-1 Simulation setup

A number of SOWFA simulation datasets are readily available in the online repository.5
WFSim will be simulated under settings that represent those of the SOWFA simulation as
accurately as possible. This set of optimal settings, the “mapping”, is to be found first.

A 2-turbine case SOWFA simulation that excludes a precursor simulation6 is used for model
validation of WFSim, expecting improved validation results compared to datasets that include
a precursor. Also this dataset is available on NREL’s repository.7 This dataset includes
both horizontal slices at hub height and vertical slices intersecting with both turbines. The
simulated domain is of size 3000 by 3000 by 1000 meters, and contains two identical NREL
5-MW wind turbines at (1226.3, 1342.0) m and (1773.7, 1658.0) m, respectively. A number of
properties of the NREL 5-MW wind turbine are listed in Table 2-1.

Table 2-1: Properties of the NREL 5-MW baseline wind turbine. [39]

Power rating 5 MW
Rotor configuration Upwind, 3 blades
Control configuration Variable speed, collective pitch
Drivetrain properties High speed, multiple-stage gearbox

Rotor diameter (D), hub height 126 m, 90 m
Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm
Rotor, nacelle, tower mass 1.1 · 105 kg, 2.4 · 105 kg, 3.5 · 105 kg

The incoming wind flow is aligned orthogonal to both rotor planes. The CFD solver and
turbine properties are displayed in Figure 2-4, and the mesh layout is displayed in Figure 2-5.

Figure 2-4: SOWFA simulation setup: CFD solver settings and turbine properties. [12]

5Datasets can be downloaded from NREL’s repository at http://wind.nrel.gov/public/ssc/.
6Traditionally, high fidelity SOWFA simulations are initialized from a turbulent flow field, created by

performing a so-called “precursor simulation”. In this precursor, turbulent forces in the flow develop in the
absence of turbines, eventually resulting in a turbulent, quasi-steady flow field. This developed flow field is
then used as an initial field for the actual simulation, in which the turbine structures are introduced. WFSim
supports no such feature yet, and furthermore only includes a very minimalistic turbulence model. Rather,
in WFSim, simulations are initialized from a fully homogeneous flow field. Hence, using a dataset for model
validation that includes a precursor would complicate this process.

7URL: http://wind.nrel.gov/public/ssc/sampleForPODexcitationPRBSpositiveNoPrecursor/.
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631.996m = 5D

631.996m = 5D1417m

Figure 2-5: SOWFA simulation setup: a two turbine case with three different mesh resolutions:
from coarse to fine near the turbines. The domain size is 3000 by 3000 by 1000 m, with two
identical turbines at (1226.3, 1342.0) m and (1773.7, 1658.0) m, each with rotor diameter D =
126.3992 m. For the simulation without precursor, datasets are available containing horizontal
slices at hub height, and vertical slices intersecting both turbines (cross-section A− A′). Figure
taken and modified from Gebraad [12].
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In this simulation, the first turbine periodically excites the downstream flow by adjusting the
collective pitch angle according to a pseudo-random binary sequence (PRBS) signal, as shown
in Figure 2-6. The yaw angle and generator torque of the first turbine do not change. The
second turbine is operating at constant pitch angle β = 0◦, yaw γ = 0◦, and generator torque.
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Figure 2-6: Collective pitch angle for turbine 1 in the SOWFA simulation dataset. Turbine 1
follows a PRBS signal between 0◦ and 4◦, while turbine 2 is kept at a constant pitch angle of 0◦.

Furthermore, SOWFA is simulated at 50 Hz, but the data is resampled at 1 Hz. WFSim will
be simulated at 1 Hz.

2-3-2 Mapping SOWFA to WFSim

For validation, WFSim should be simulated under similar conditions as the high fidelity
SOWFA model. To allow this, the high fidelity dataset is to be analyzed and manipulated
first.

Domain size and meshing

As can be seen in Figure 2-5, the domain is of large size (3000 by 3000 m), with the area
of interest only being a small portion of this. While a simulation with identical meshing is
possible in WFSim, it would result in an unnecessarily high computational cost. Furthermore,
the inflow in SOWFA is under a 30◦ angle from the horizontal axis, as seen in the figure.
Preferred is a horizontal or vertical inflow.

For these reasons, the domain is first rotated clockwise by 30◦, then translated such that
turbine 1 is at (500, 400) m and turbine 2 at (500, 1031.9960) m, and finally the domain
is cropped to 1000 by 2000 m. The distance between the two turbines remains unaltered
at 5 rotor diameters D, and the mesh extends to about 8D behind the second turbine to
simulate the relevant wake dynamics. Furthermore, the domain is remeshed using linear
interpolation onto the meshes produced in WFSim, once at 50 by 100 points (N = 4.6 · 103),
and once at 25 by 50 points (N = 1.0 ·103) according to the ’exponential meshing’ algorithm.
The different sampling qualities for the raw data, for SOWFA remeshed at 50 by 100 mesh
points, and SOWFA remeshed at 25 by 50 mesh points, are compared in Figure 2-7. The
loss in information is clearly distinguishable between the coarser and finer mesh to be used
in WFSim. Finally, the new simulation settings are summarized in Figure 2-8.
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Figure 2-7: Comparison of meshing resolution obtained by linearly interpolating the raw dataset
(high fidelity data from SOWFA) onto the 25x50 and 50x100 meshes used in WFSim.
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Figure 2-8: Validation simulation setup: a two turbine case. The domain is a horizontal plane
at hub height with size 1000 by 2000 m, containing two identical turbines at (400, 500) m and
(1031.9960, 500) m, with rotor diameter D = 126.3992 m. Figure taken and modified from
Gebraad [12].

Turbine operating settings

A second nontrivial task is mapping the turbine operating settings in SOWFA to that of
WFSim. Notably, SOWFA uses the ALM for rotor modeling, relying on physical quantities
such as the yaw angle, generator torque and individual blade pitch angles. On the other hand,
WFSim uses a simplified ADM in which only an axial induction factor a and yaw angle γ
for each turbine is defined. Therefore, a mapping has to be established between the physical
inputs in SOWFA and the theoretical axial induction factors in WFSim.
Conceptually, the idea is that turbine 1 switches between different axial induction factors,
synchronous to the switches in pitch angle displayed in Figure 2-6. As turbine 2 is operating
at constant control settings, it should operate at a constant axial induction factor.
A number of approaches can be followed to obtain axial induction factors from the high
fidelity dataset, most importantly:

• Using the CP−CT curve, and then relating CT to a. See section 3 of [40] for an example.
• Calculating the mean streamwise velocities (wake centerlines) through the turbines from

SOWFA data, and then tuning the axial induction factor for the ADM in WFSim to
obtain minimal root mean square (RMS) error. Namely, actuator disk theory predicts
the velocity in longitudinal direction to be inverted hysteresis functions centered at the
turbine rotors, by

U(∆x) = U∞ · 2a
[1

2 + 1
π

arctan
(2.0 · αt ·∆x

D

)]
, (2-27)

with αt ≈ 1 a tuning parameter, and ∆x the longitudinal displacement from the rotor
disk [28, 41].

• Translating turbine dynamics and structural loading to an equivalent axial induction
factor by applying actuator disk theory, blade element theory, or basic Newtonian me-
chanics.

The option followed in this work is the latter: the tower fore-aft bending moment Mz is
translated back into an axial force on the rotor blade according to Mz = FT · hz, with hz the
turbine hub height. Its implementation is very straight-forward, robust, and does not require
airfoil-specific CP − CT curves. From actuator disk theory [28], the axial force at the rotor
plane FT is

FT = 1
2ρU

2
∞

(1
4πD

2
)
CT . (2-28)
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Substituting CT = 4a(1 − a) from actuator disk theory, and Equation (2-17) to replace
dependency on the freestream velocity U∞ with dependency on the velocity at the rotor disk
UD, yields

FT = 2ρ a

(1− a)U
2
D

(1
4πD

2
)

= 2ρβwU2
D

(1
4πD

2
)
. (2-29)

From this equation, βw can directly be obtained if UD is known.

Two velocities near the hub UD are reported in SOWFA: one from the turbine submodel
FAST and one from the regular flow model computed at each grid coordinate. However,
neither give a reliable estimation of the mean wind speed at hub height. The values from
FAST are unreliable, because no turbine hub is modeled, and a ’funnel effect’ is induced [41].
Furthermore, SOWFA’s flow data is also unreliable due to local blade effects that disturb the
flow, resulting in large flow fluctuations at similar locations on the rotor. For this reason, a
lateral velocity average from rotor end to rotor end is taken to calculate an estimate for UD.
The area laterally spans the same distance as one rotor diameter 1D.

Now, the input vectors βw can actually be determined. The fore-aft bending moment data is
low-pass filtered (LPF), after which Equation (2-29) is reformulated, resulting in

βw = a

1− a = FT

(
2ρU2

D

(1
4πD

2
))−1

= Mz

hz

(
2ρU2

D

(1
4πD

2
))−1

, (2-30)

From which the estimates are obtained as presented in Figure 2-9. βw switches between 0.153
and 0.278 for the first turbine, while turbine 2 is operated at a constant βw of 0.302. The
switching in the first turbine is synchronous to the changes in the collective pitch angle, as
previously shown in Figure 2-6, and also suggested by the raw and LPF filtered data.
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Figure 2-9: Estimated input signal βwk
for the SOWFA dataset. For turbine 1, βw switches

between 0.153 and 0.278, synchronous to the blade pitch angle signal (Figure 2-6). For turbine
2, βw is 0.302.

While the estimate for the first turbine looks accurate, there is much more fluctuation in βw
for the second turbine. However, it is still opted to choose a constant βw, following physical
intuition. For clarity, the βw signal to be implemented in WFSim will be ‘Manual’, obtained
by manually fitting the unfiltered and filtered signals with a signal switching between a high
and low setting. As manual tuning and fitting will introduce some error in the input signal,
this will set a more realistic simulation scenario – the mapping from physical control settings
to a theoretical value is ambiguous, especially when applied to real wind farms.
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Inflow, turbulence and atmospheric properties

As no precursor simulation is present, the inflow is nearly uniform in the high fidelity dataset.
The longitudinal inflow component has a mean value of 8.0 m/s and a standard deviation
increasing from 0.02 m/s to about 0.14 m/s at the end of the simulation. The lateral com-
ponent has a mean value of 0.02 m/s, and standard deviation fluctuating between 0.01 and
0.04 m/s. In response, WFSim will be simulated with a fully uniform inflow with longitudinal
components U∞ = 8.0 m/s and lateral components V∞ = 0.0 m/s.

WFSim includes a very simple turbulence model only for the streamwise flow. On the other
hand, SOWFA includes turbulence modeling in all 3 dimensions at high resolution. In the
pursuit of matching the two models, the eddy length scale lm is tuned according to the SOWFA
wake model. This results in lm = 0.60 m, which improves modeling results compared to the
absence of a turbulence submodel. Typically, the value of lm is proportional to the amount
of mixing in the flow, and thereby wake recovery.

Concerning the atmospheric properties, SOWFA does not directly output a dynamic viscosity
or a flow density, as they are calculated dynamically according to thermodynamic laws. The
flow density at an arbitrary instant of the SOWFA dataset is taken and inserted in WFSim,
assuming incompressibility of the flow: ρ = 1.2231 kg m−3. The dynamic viscosity is assumed
0.18 · 10−5 Pa s, a standard value for air at room temperature.

2-3-3 Validation results

WFSim is now simulated under the settings matching SOWFA as defined in Section 2-3-2.
WFSim outputs the velocities in longitudinal and lateral direction at their corresponding mesh
coordinates for each time instant. The data is analyzed next. Please note that quantitative
and qualitative measures of validity will be introduced more formally, along with observer
results, in Section 4-2. Results presented in this section are both for the 50x100 meshing and
for the 25x50 meshing.

Flow fields Firstly, contour plots that display the complete flow field for both SOWFA and
WFSim at various time instants are displayed in Figure 2-10. Contour plots of the flow in
lateral direction can be found in Appendix B, as these are of secondary importance. A number
of things can be noted from Figure 2-10. Firstly, it can clearly be seen how SOWFA contains
much stochasticity in its flow due to higher fidelity turbulence modeling and the vertical
dimension (3D vs. 2D). WFSim does not capture all the dynamics that SOWFA does.

Secondly, the wake location and structure differs. The wake is much wider in WFSim than
in SOWFA, possibly due to the absence of turbulence modeling in lateral direction. Also,
behind the rotor, two wakes form in SOWFA due to the presence of the turbine hub, which is
not modeled in WFSim.8 Furthermore, WFSim models a symmetric wake as the model does
not account for wake meandering, wake skewing or wake deflection due to rotor rotation.

Thirdly, the velocity in the wake has a lower minimum compared to WFSim in a number of
time instances. These results suggest that βw is underestimated for certain cases, and may
need to be corrected for.

8Note that research is currently ongoing to improve this based on work by Annoni and Seiler [42].
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Fourthly, due to the simplified turbulence model, changes in WFSim are mainly due to changes
in the control settings βw, which give rise to small changes in the wake. Therefore, after the
wake has fully been developed, it is difficult to notice any real changes in the field for WFSim.

Fifthly, looking at the estimation error plots, it is seen that most error is found around the
second turbine and its wake downstream. This is also as expected from Figure 2-9, in which
it was shown that there was a significant variation on the estimated axial induction factor for
turbine 2. This flow is very turbulent and the dynamics are complicated, for which WFSim
is not sophisticated enough to capture.

Furthermore, the resemblance in flow build-up can be seen in front of turbine 1 for both
SOWFA and WFSim.

Maximum and mean error Secondly, from the flow fields, the maximum and mean error
between WFSim and SOWFA for both lateral and longitudinal wind speeds can be calculated,
as displayed in Figure 2-11. However, this figure is relatively deceiving, because maximum
errors remain large due to the near wake region behind the turbines containing complex flow
dynamics, while the remainder of the flow may be estimated correctly. Errors originate from
the inferior rotor submodel included in WFSim that neglects the near wake region, leaving
large estimation errors just downstream of the turbines. The average estimation error remains
around 0.39 m/s after the first 200 seconds for both the 50x100 and 25x50 WFSim simulations.

Wake centerlines Thirdly, the mean wake centerline at various time instants is calculated
and displayed in Figure 2-13. This mean velocity is defined as the laterally-averaged stream-
wise flow velocity throughout the simulation domain, intersecting with the two turbines, ac-
cording to Figure 2-12. From Figure 2-13, a number of things should be noted. Firstly, the flow
is generally well predicted by WFSim in front of, and around the first turbine (x = 400 m).
This is further consolidated by Figure 2-9, in which a signal with relatively low noise was
shown for βw at the first turbine. The main reason for this is the (nearly) uniform inflow,
showing much agreement with actuator disk theory. On the other hand, the wake centerline
is predicted less well for the second turbine (x = 1032 m). The flow upstream of turbine
2 contains much more turbulence and is far from uniform due to energy extraction by the
first turbine, inducing larger errors when compared to the simplified ADM implemented in
WFSim. This is consolidated by Figure 2-9, in which the signal used to determine βw for
turbine 2 contains much more noise.

Furthermore, SOWFA predicts more wake recovery than WFSim does. This is expected to be
due to the lack of accurate turbulence models in WFSim, thereby neglecting effects that would
otherwise promote wake recovery. As mentioned in Section 2-1-5, convection and diffusion
are not included in the current turbulence model.

Also, the corresponding root mean square (RMS) error, variance accounted for (VAF) values,
and QOF values are displayed in Table 2-2, confirming the aforementioned statements quan-
titatively.9 Additionally, in all 6 time instants, the higher resolution model (WFSim 50x100
vs. WFSim 25x50) has a smaller average RMS, a higher VAF, and a higher QOF for time
t > 1 s, as seen in Table 2-2.

9The definitions of the RMS error, VAF and QOF will be introduced more formally in Section 4-2.
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Table 2-2: RMS error, VAF, and QOF between the true mean wake centerline obtained from
SOWFA data and the estimated mean wake centerline obtained from WFSim.

(a) WFSim 50x100.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 5.78 · 10−2 16.8 100
200 4.60 · 10−1 85.0 99.4
500 7.11 · 10−1 73.5 98.5
1000 5.76 · 10−1 82.1 99.0
1500 6.69 · 10−1 77.5 98.6
1999 3.72 · 10−1 92.0 99.6

(b) WFSim 25x50.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 4.61 · 10−2 17.2 100
200 4.91 · 10−1 85.3 99.4
500 8.36 · 10−1 64.6 98.1
1000 6.42 · 10−1 77.9 98.8
1500 7.85 · 10−1 68.8 98.3
1999 4.99 · 10−1 88.6 99.3

Wake centerline dynamics Finally, the mean wake centerlines over the entire simulation
time can be summarized in a single figure by plotting the spatial coordinate against the
temporal coordinate, as presented in Figure 2-14. These images show the dynamics of the
mean wake centerline, its evolution and its resemblance with SOWFA directly. Each vertical
segment corresponds to the mean wake centerline at one specific time instant. The irregularly
dashed black line at x = 400 m indicates the control setting of the first turbine, as denoted in
Figure 2-9. At the locations of the black lines βw = 0278, and for the gaps βw = 0.153. The
regularly dotted line indicates the second turbine, operating at a constant setting βw = 0.302.
This figure clearly shows the effect of the change in pitch angle of turbine 1 on the flow
wakes and the turbine’s energy extraction. From this figure, it becomes very clear that
WFSim, although predicting the overall flow dynamics well, misses a lot of stochasticity and
flow characteristics seen in SOWFA – WFSim “blends out” the flow. Also, wake recovery is
underestimated in WFSim.

Notably, the wake is deeper when the turbine is operating at zero blade pitch angle (βw =
0.278), and this effect is seen both in WFSim and in SOWFA. This figure furthermore
confirms the claim that the wake is deeper in SOWFA, and βw appears to be underestimated
in some situations. Additionally, the flow propagates and the wakes develop in approximately
the same time, as can be seen in the first 200 seconds (most left part) of the figures.

Conclusion In conclusion, WFSim provides accurate predictions of the flow for a uniform
inflow case in a single turbine simulation. Adding a second turbine will induce more compli-
cated flow dynamics due to wake development and flow-turbine interactions. WFSim is not
sophisticated enough to model all these interactions accurately, and only predicts an aver-
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aged, smoothened flow. This averaged flow does give very satisfactory results, when looking
at Figure 2-13. However, it is desired to capture more dynamics.

Due to the simplified turbulence and rotor model, the modeled flow lacks specifically in the
near wake region and in wake recovery, as seen in Figures 2-10, 2-13 and 2-14. For example,
turbine effects such as the presence of the hub are not modeled. Furthermore, the wake width
is overestimated, possibly due to the absence of a turbulence model in lateral direction.

An observer would potentially improve the resemblance of this model with SOWFA and, if
successful, too with field test data. Noticeably, the near wake effects, the wake width and the
wake recovery are critical points for further model improvement and observer performance
assessment.

Master of Science Thesis B.M. Doekemeijer



34 WFSim and model validation using SOWFA

SOWFA

 

x
 (

m
),

 t
 =

 1
 s

500

1000

1500

2000

0

2

4

6

8

10

WFSim 50x100

 

 

0

2

4

6

8

10

Estimation error

 

 

 

 

x
 (

m
),

 t
 =

 2
0

0
 s

500

1000

1500

2000

0

2

4

6

8

10

 

 

 

0

2

4

6

8

10

 

 

 

 

y (m)

0 500 1000

x
 (

m
),

 t
 =

 5
0

0
 s

500

1000

1500

2000
 

y (m)

0 500 1000

 

 

y (m)

0 500 1000

 

0

0.5

1

1.5

2

(a) Longitudinal flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure 2-10: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is
shown on the left using SOWFA data resampled at a 50x100 and 25x50 meshing, respectively.
WFSim is simulated under a 50x100 and a 25x50 meshing.
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(b) Longitudinal flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure 2-10: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is
shown on the left using SOWFA data resampled at a 50x100 and 25x50 meshing, respectively.
WFSim is simulated under a 50x100 and a 25x50 meshing.
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(c) Longitudinal flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure 2-10: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is
shown on the left using SOWFA data resampled at a 50x100 and 25x50 meshing, respectively.
WFSim is simulated under a 50x100 and a 25x50 meshing.
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(d) Longitudinal flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure 2-10: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is
shown on the left using SOWFA data resampled at a 50x100 and 25x50 meshing, respectively.
WFSim is simulated under a 50x100 and a 25x50 meshing.
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Figure 2-11: Error between SOWFA and WFSim over time (m/s) for both the 50x100 meshing
and the 25x50 meshing. The errors in this figure are calculated from both lateral and longitudinal
velocities, spanning the entire flow field.

2000m

1
0
0
0
m

WFSim mesh

1
2
6
.4

m
 =

 1
D

Figure 2-12: Extracted area used to determine a mean longitudinal wake centerline velocity
profile. Figure taken and modified from Gebraad [12].
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Figure 2-13: Mean wake centerlines (m/s) of the SOWFA data, WFSim at a 50x100 meshing,
and WFSim at a 25x50 meshing at time instants t = 1, 200, 500, 1000, 1500, 1999 s, in absence
of an observer. The dotted vertical lines represent the locations of turbine 1 (x = 400 m) and
turbine 2 (x = 1032 m).
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Figure 2-14: Mean wake centerline wind speed (m/s) for the raw SOWFA data, and the resulting
WFSim simulations at the two meshes. Vertical segments represent the mean wake centerline at
a certain time instant. The irregularly black dashed line shows the switching signal of the pitch
angle. For the gaps βw = 0.153 and for the black lines βw = 0.278. Similarly, the regularly
dotted line shows the location of turbine 2.
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Chapter 3

Observer design

The reconstruction of states in a dynamic system is an invaluable part of many modern tech-
nological systems. For example, state estimation and prediction is the main focus in weather
models, and plays a crucial role in robotics and automotive applications. An introduction to
state reconstruction is found in the book by Verhaegen [43]. As mentioned in Section 2-1-11,
the crux in observer design for WindFarmSimulator (WFSim) lies with the model size and
its nonlinearity.

In this chapter, two time-efficient Kalman filter (KF) designs will be depicted. In Section 3-1,
the model of Chapter 2 is manipulated to allow easier observer implementation. The general
approach to time-efficient state observers is outlined in Section 3-2, after which the actual
filters are presented. The traditional KF, the Approximate Kalman filter (ApKF), and the
Ensemble Kalman filter (EnKF) are presented in Sections 3-3 to 3-5, respectively. Finally,
additional options in the observer’s numerical implementation are outlined in Section 3-6.

3-1 Model structure manipulation
The model described in Chapter 2 comes down to a nonlinear state-space system of the form

Ew(αk)αk+1 =Aw αk +Bw(αk)βwk
+ Sw(αk),[

uk
vk

]
=Qp αk +Bp.

(3-1)

The terms Sw(αk) and Bp obstruct direct implementation of this model in standard filter-
ing algorithms. To solve this, the system state vector is extended with a constant, known
entry of 1. Furthermore, while a number of Kalman filters for implicit, time-varying state-
space models exist (e.g., [44, 45]), these algorithms often lead to numerical instability, are too
computationally heavy for real-time control with WFSim, and are therefore not further con-
sidered in this report. Hence, the implicit system also has to be transformed into an explicit
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state-space system, resulting in
α̃k+1︷ ︸︸ ︷[
αk+1

1

]
=

F̃ (αk)︷ ︸︸ ︷[
Ew(αk)−1Aw Ew(αk)−1Sw(αk)

0 1

] [
αk
1

]
+

B̃(αk)︷ ︸︸ ︷[
Ew(αk)−1Bw(αk)

0

]
βwk

,[
uk
vk

]
=
[
Qp Bp

]
︸ ︷︷ ︸

C̃

[
αk
1

]
.

(3-2)

F̃ (αk) in Equation (3-2) is calculated using MATLAB’s internal tool for solving linear equal-
ities, mldivide. Using mldivide, calculating F̃ (αk) at each time instant is still too computa-
tionally costly for practical implementations due to high dimensionality (N is typically of the
order 103). Fortunately, the Reverse Cuthill-McKee (RCM) algorithm further reduces com-
putation time by reorganizing the system rows and columns, typically resulting in a reduction
in computational effort of 90% or more in WFSim.

The Reverse Cuthill-McKee algorithm The Cuthill-Mckee algorithm was first published in
a 1969 conference on computing machinery [46], aimed to rearrange sparse matrices into a
banded diagonal structure. George and Liu in 1981 improved this algorithm by reversing the
index numbers, resulting in the Reverse Cuthill-McKee (RCM) algorithm [47].
Recall that the original matrix structure of Ew(αk) and Aw have a diagonal-line structure
as shown in Figure 2-3. The RCM algorithm reformats these matrices into a sparse banded
structure with low bandwidth, as shown in Figure 3-1.
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(a) Matrix Ew(αk) ∈ R324×324
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(b) Matrix Aw ∈ R324×324

Figure 3-1: Location of nonzero elements (structure) in the system matrices for the WFSim farm
model in qLPV form under the Reverse Cuthill-McKee (RCM) transformation.

As the RCM algorithm solely rearranges the matrices, no accuracy is lost through this trans-
formation. Furthermore, since the structure of the system matrices does not change through-
out time, the correct rearrangement only has to be calculated once, and then applied in each
iteration. On a 2012 ultrabook PC, calculating F̃ (αk) in one specific case takes 130 seconds
without the RCM algorithm, and only 4 seconds with the RCM algorithm.1

1This is for a system with N = 4559 states, corresponding to a 50x100 meshing. While this value depends on
the PC specifications and simulation settings, it gives an impression of the increase in computational efficiency.
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3-2 Methodology
For the system of Equation (3-2), standard state observers such as the Kalman filter can
readily be implemented. Unfortunately, with increasing system size, the computational cost
for these algorithms scale exponentially. For example, in a typically large system with N =
5 · 103 states (i.e. comparable to WFSim 50x100), a regular Kalman filter typically takes
about 8 · 102 − 1 · 103 seconds per iteration on a modern ultrabook PC, being several orders
of magnitude too slow for real-time applications. To reduce computational costs, one may
either scale down the system size, adapt the filtering algorithm, or a combination of both.
For both methods, a corresponding filtering algorithm is implemented using WFSim to allow
a side-by-side comparison.

System size reduction Scaling down a system based on a set of Navier-Stokes (NS) equations
is demonstrated in an article by Poussot-Vassal and Sipp [48]. In this paper, the authors are
dealing with a high order implicit state-space system in which the system matrices depend
on an external parameter: the Reynolds number. The system has the form

Ê(Re) ˙̂x(t) = Â(Re)x̂(t) + B̂(Re)û(t),
ŷ(t) = Ĉ(Re)x̂(t),

with Ê, Â, B̂, and Ĉ system matrices dependent on the Reynolds number Re. x̂(t), ŷ(t)
and û(t) are the state vector, system output, and system input at time t, respectively. The
system is reduced according to three steps. Firstly, the original NS equations are discretized
spatially and parametrically for a number of Reynolds numbers. Secondly, for each Reynolds
number a very large linear time-invariant (LTI) system (7 · 105 states) is obtained, which is
reduced in size to 18 states by using the Iterative Tangential Interpolation Algorithm (IRKA).
Thirdly, the linearized low-order models at different Reynolds numbers are interpolated and
transformed into a low-complexity linear fractional representation.
The problem with system reduction following Poussot-Vassal and Sipp’s method is that the
system matrices of WFSim do not depend on an external parameter such as the Reynolds
number, but rather depend on the internal states. Linearization of WFSim is ambiguous, and
would defeat the purpose of having such a sophisticated medium fidelity model as WFSim,
as many linear flow models are readily available. The power in this model lies in its format
(state-space model), while maintaining high accuracy through nonlinearity and a relatively
large number of states. This allows WFSim to be applicable to different wind directions
and wind speeds, and allows the inclusion of both axial-induction-based control as wake
redirection based control. Linearizing the model with respect to each parameter would yield
a huge lookup-table, rendering this solution infeasible.
An alternative to linearization would be to simplify the model by neglecting certain matrix
entries in F̃ , B̃ or C̃. In this work, the ApKF to be presented in Section 3-4 relies on a
simplification of the system matrices in combination with a traditional KF. Rather than
reducing the system size, the system matrices are sparsified in the algorithm to reduce the
number of floating point operations per iteration.

Time-efficient state observers To reduce computational cost in filtering updates, one may
opt for time-efficient algorithms while leaving the flow model intact. Since WFSim is nonlin-

Master of Science Thesis B.M. Doekemeijer



44 Observer design

ear, a KF is not necessarily an optimal filter as it would be for an LTI system. Furthermore,
Kalman filtering for large order systems is a common problem often tackled by specific KF
variants such as the EnKF, performing much better in computational cost and often too
in accuracy for nonlinear dynamics compared to the traditional KF [49]. In this work, the
EnKF to be presented in Section 3-5 relies on a time-efficient variant of the traditional KF
that leaves the system matrices untouched.

3-3 Traditional Kalman filtering
Before the time-efficient filter variants are discussed, first the traditional Kalman filter (KF)
is elaborated on. The KF is an observer that is designed to find the statistically optimal
filtered state estimate ˆ̃αk|k and predicted estimate ˆ̃αk+1|k recursively for a system with white
measurement and process noise. Statistically optimal is typically defined as unbiased, E [ek] =
0 where ek is the state estimation error, and with minimum expected state estimation error
variance, Pk = E

[
eke

T
k

]
. In both equations, E denotes expectation, as in probability theory

[43]. The update algorithm for a system of the form of Equation (3-2) is shown in Figure 3-2.

1. Filtered state estimate

(a) Pk|k = Pk|k−1 − Pk|k−1C̃
T
(
Rk + C̃Pk|k−1C̃

T
)−1

C̃Pk|k−1,

(b) L′k = Pk|k−1C̃
T
(
Rk + C̃Pk|k−1C̃

T
)−1

,

(c) ˆ̃αk|k = α̃k|k−1 + L′k

([
uk
vk

]
measured

− C̃ ˆ̃αk|k−1

)
,

2. Predicted state estimate

(a) Pk+1|k = F̃kPk|k−1F̃
T
k +Qk −

(
Sk + F̃kPk|k−1C̃

T
) (
Rk + C̃Pk|k−1C̃

T
)−1

...

×
(
Sk + F̃kPk|k−1C̃

T
)T

,
(b) Lk = (Sk + F̃kPk|k−1C̃

T )(Rk + C̃Pk|k−1C̃
T )−1,

(c) ˆ̃αk+1|k = F̃k ˆ̃αk|k−1 + B̃kβwk
+ Lk

([
uk
vk

]
measured

− C̃ ˆ̃αk|k−1

)
,

Figure 3-2: Filtering algorithm for the KF. New measurements are fed into the system at time
k, upon which the KF provides an optimal estimate for α̃k.

with Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T

]
the expected state estimation error covariance

matrix at time k with information up until time k− 1. F̃k and B̃k are a compact notation of
the system matrices F̃ (αk) and B̃(αk). Lk is the Kalman observer gain at time k. Covariances
Rk, Qk and Sk are defined as

E

[[
ṽi
w̃i

] [
ṽTj w̃Tj

]]
=
[
Rk STk
Sk Qk

]
∆i−j , (3-3)
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with ṽk and w̃k the measurement and process noise at time k, respectively, and ∆i−j the unit
pulse being nonzero only for i = j [43]. While these covariance matrices should correspond
to the true noise in a physical system (e.g., in measurement equipment), it is often regarded
as a tuning parameter due to limited availability of information about the true system. For
an LTI system, the KF converges to a steady-state optimal gain L?,

lim
k→∞

Lk = L? =
(
SLTI +AsP

?CTs

) (
CsP

?CTs +RLTI
)−1

, (3-4)

with P ? a solution to the discrete algebraic Riccati equation

P ? = AsP
?ATs +QLTI − (SLTI +AsP

?CTs )(CsP ?CTs +RLTI)−1(SLTI +AsP
?CTs )T . (3-5)

In the situation that (As, Cs) is observable2 and (As, Q1/2
LTI) is reachable3, As−L?Cs is asymp-

totically stable. The steady-state Kalman filter is typically implemented, as the improvements
with the time-varying filter typically do not weigh up against the additional implementation
and computational efforts.

The standard KF takes in the order of 103 seconds per iteration for a system with N = 4559
states (i.e., comparable to WFSim 50x100) on an ultrabook PC, which is much too high
for real-time implementations. This value depends on the PC specifications and simulation
settings, but it gives an impression of the computational inefficiency of this algorithm.

For more information on the standard KF, please see the book by Verhaegen [43].

3-4 Approximate Kalman filtering
To save on computational cost in the traditional KF outlined in Section 3-3, the algorithm
described in Figure 3-2 is analyzed and the most resourceful operations are adapted, namely
the update of the covariance matrix Pk+1|k:

Pk+1|k = F̃kPk|k−1F̃
T
k +Qk −

(
Sk + F̃kPk|k−1C̃

T
k

) (
Rk + C̃kPk|k−1C̃

T
k

)−1
...

×
(
Sk + F̃kPk|k−1C̃

T
k

)T
The most heavy operation is the multiplication of the three square matrices F̃kPk|k−1F̃

T
k ,

requiring 2N3 floating point operations.4 In the case of 4559 states, this results in 1.90 · 1011

operations, yielding a high computational time (102 − 103 seconds). Hence, both matrices
present in this equation, Pk|k−1 and F̃k, are modified.

1. The state covariance matrices Pk are sparsified by neglecting all off-diagonal elements.
This is justified by noting that the off-diagonal elements typically are of order 101−102

2A system is observable if the system outputs can be mapped back to the system state vector uniquely over
a finite time interval.

3A system is reachable if it can be controlled to any desired final state based on a certain sequence of control
inputs, in any finite time.

4In WFSim, the calculation of E−1A is a computationally intensive computation too, but besides applying
the RCM algorithm it is ambiguous how to further reduce computational cost in this operation.
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smaller than the diagonal elements. The implicit assumption underlying this sparsifica-
tion is that the state vector αk entries are uncorrelated. Based on physical intuition, it
is hard to tell the validity of this assumption, since the entries of αk do not have a direct
physical interpretation due to the projection of Equation (2-25). This simplification re-
duces the computational cost from 2N3 to approximately N3 for large N , decreasing
the amount of operations by almost 50% for certain simulation cases.

2. Furthermore, the system matrix F̃ (αk) is sparsified by neglecting all entries [i, j] that
meet the condition

|F̃ (α0)[i, j] · α0(j)| < (|F̃ (α0)[i, :] · α0|) · z, (3-6)

with z typically around 0.05 − 0.10, and i and j denoting the row and column of the
matrix, respectively. For z = 0, the original F̃ matrix is retrieved. The parameter z is
tuned as a trade-off between computational efficiency and model accuracy. This spar-
sification typically renders over 95% of the system entries sparse for large N , severely
cutting down on computational cost. Sparsification of F̃ (αk) is demonstrated in Fig-
ure 3-3.
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(a) Before sparsification.
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(b) After sparsification with z = 0.05, as used in the
ApKF. Only 1.3% nonzero elements remain.

Figure 3-3: Location of nonzero elements (matrix structure) of F̃ (αk) ∈ R324×324.

In simulation, the location of nonzero elements is stored in memory, and all other
elements are set to zero at each time instant. Hence, this costly computation is only to
be performed once prior to simulation.
The sparsification is justified by choosing α0 to correspond to a fully developed flow.
Then, as also previously seen in Figure 2-10, the flow field does not change enough to
significantly modify the location of dominant entries in F̃ (αk). Note that currently only
axial-induction-based control is assessed in simulation, and this sparsification may be
invalid for wake redirection based control. Furthermore, it is assumed that the wind
speed and inflow direction are constant. Changes in wind direction are expected to
change the degree of interdependency between states, thereby changing the location of
dominant matrix entries in F̃ (αk).

Furthermore Sk is neglected to reduce the number of tuning parameters, implying there is no
cross-correlation between measurement and process noise.
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3-4 Approximate Kalman filtering 47

These simplifications, while significantly speeding up the filtering algorithm by decreasing the
computational effort from 2N3 to O(N)− O(N2), do not noticeably impact the accuracy of
the filter, as demonstrated in Figure 3-4.
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Figure 3-4: Mean wake centerlines: a comparison of the ApKF (z = 0.05) with the full KF at
25x50 meshing. While being equally accurate, the ApKF is a factor 101 faster at this meshing
resolution (25x50), and a factor 102 at a 50x100 meshing, as will be depicted in Chapter 4 (along
with simulation settings).

This figure shows the true (SOWFA) and predicted mean wake centerlines at times t =
500, 1000, 1500, 2000 s at the 25x50 meshing. Simulation settings and results will be the topic
of Chapter 4. The main purpose of here is to demonstrate the similarity in state estimation
performance between the ApKF and the KF, while yielding a reduction in iteration time of
a factor 101 − 102. Benefits of the ApKF scale up with model size, as will be demonstrated
in Chapter 4.
Finally, note that in both the regular KF and this ApKF, the last covariance matrix entry is
0. This is because the qLPV system was extended by a constant known entry 1. Thus, the
covariance matrices have the form

P ′0 =
[
P0 0
0 0

]
, (3-7) P ′k =

[
Pk 0
0 0

]
, (3-8) Q′k =

[
Qk 0
0 0

]
. (3-9)
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3-5 Ensemble Kalman filtering
The second time-efficient filter implemented is the Ensemble Kalman filter (EnKF), belong-
ing to the group of particle filtering methods [50]. The EnKF is a suboptimal variant of the
KF that replaces the covariance matrix with a sample covariance in order to reduce compu-
tational cost and improve performance in nonlinear systems. The EnKF has been used in
atmospheric applications (e.g., [51, 52, 53, 54]) and more rarely in other applications such as
traffic estimation (e.g., [55]) and target tracking (e.g., [56]). A more exhaustive list of known
applications in literature is described in a paper by Evensen [49].

An introduction to Ensemble Kalman filtering is given in an article by Houtekamer [54].
Furthermore, this paper demonstrates an implementation at the Canadian Meteorological
Centre using only a small number of ensembles of order O(102) for a system with several
orders of magnitude more states. The main motivations for using an EnKF implementation
are:

1. It deals well with high order systems of 103−106 states and similarly a large number of
observations. Typically, the EnKF is applied in weather forecasting where such models
are used. Note that, even for these large systems, an ensemble size of several orders of
magnitude smaller typically still yields good performance [50, 54].

2. It is well suited for nonlinear systems. The EnKF algorithm propagates the ensemble
members and covariance matrices using the full nonlinear model, thereby properly deal-
ing with saturation of errors [54]. Unlike the (Extended) KF, no linearized equations of
the respective model are required.

3. The algorithm is easy to parallelize due to identical operations performed for each
ensemble member at each iteration.

4. It is computationally efficient due to the ensemble size typically being of several orders
of magnitude smaller than the number of model states.

The algorithm used in this work is largely based on an article by Evensen [49]. This paper
introduces the reader both to the theoretical and practical aspects of the EnKF. The algo-
rithm described in this paper has been given the benefit of implementation due to including
an exhaustive instruction for numerical implementation, aimed at computational efficiency
and numerical stability.

First, the filtering algorithm will be described in Section 3-5-1. Secondly, the initial ensemble
distribution will be depicted in Section 3-5-2. Finally, a few remarks shall be made on the
numerical implementation in Section 3-5-3.

3-5-1 Filtering algorithm

The EnKF is a sequential data assimilation method, just like the traditional KF. First, we
introduce a forecasted state vector ψfj,k as an estimate to α̃k with information up until time
k − 1, and filtered state vector ψaj,k as an estimate to α̃k with information up until time k.
1 ≤ j ≤ ne is an integer value used for numbering. Secondly, we introduce the forecasted
ensemble Afek

∈ RN×ne , the filtered ensemble Aaek
∈ RN×ne and their means Afek ∈ RN×ne
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and Aaek
∈ RN×ne as

Afek
=
[
ψf1,k ψf2,k · · · ψfne,k

]
, (3-10)

Aaek
=
[
ψa1,k ψa2,k · · · ψane,k

]
, (3-11)

Afek = Afek
· 1ne , (3-12)

Aaek
= Aaek

· 1ne , (3-13)

with ne the number of ensemble members, and 1ne ∈ Rne×ne the matrix with each element
equal to n−1

e . Thus, each column in an ensemble Aek
is an estimate to α̃k. All columns in

a mean ensemble Aek
are identical and represent one averaged estimated state vector for α̃k,

obtained by taking the mean of all the columns in Aek
. This average of all ne hypothesized

state vectors is defined as the optimal estimate out of the ensemble for time k, namely ψaopt,k
for the filtered optimal state estimate or ψfopt,k for the predicted optimal state estimate.

Furthermore, the respective covariance matrices for model forecast, analysis and measure-
ments at time k are denoted by P fk , P ak and Rk, respectively (i.e., Pk|k−1 = P fk and P ak = Pk|k).
Representing this using a finite sample covariance, this turns into P fek

≈ P fk , P aek
≈ P ak and

Rek
≈ Rk.5 The sample covariance matrices are calculated from the ensemble Aek

according
to

P fek
=

(Afek
−Afek)(Afek

−Afek)T

ne − 1 , (3-14)

P aek
=

(Aaek
−Aaek

)(Aaek
−Aaek

)T

ne − 1 , (3-15)

Rek
=
γek

γTek

ne − 1 , (3-16)

in which γek
is the matrix with (artificial) measurement disturbances at time k, as will be

defined later this paragraph. The state sample covariance matrix in the limit ne → ∞ will
come down to the full covariance matrix P ak used in the traditional KF.

When measurements at time k are fed into the observer, the analysis algorithm to determine
the optimal filtered estimate for α̃k is shown in Figure 3-5.

3-5-2 Initializing the ensemble

Ideally, the initial ensemble Aae0 should represent the initial state covariance matrix P0 by
Equation (3-15). The ensemble is initialized as a set of hypothesized state vectors, typically
of about 102 ensemble members. Assuming no knowledge of the initial flow field, in WFSim
the members are distributed equidistantly as different uniform flow fields, each with a different
freestream longitudinal and lateral velocity. The fields are generated according to the number
of ensemble members and a predefined range of velocities.

5In sample covariance matrices, covariance matrices are approximated using a finite set of data. In the
limit of an infinite amount of data, the sample covariance is equal to the true covariance.
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1. The set of measurements at time k is collected into a vector dk, duplicated ne times and
summed with artificial noise εm to form d1,k . . . dne,k. These vectors are collected in a
single matrix Dek

, resulting in

dj,k = dk + εmj,k, (3-17)

γek
=
[
εm1,k εm2,k · · · εmne,k

]
, (3-18)

Dek
=
[
d1,k d2,k · · · dne,k

]
, (3-19)

with εmj,k a vector of Gaussian measurement noise with standard deviation σεm . The goal
is to have this artificial noise identical to the real noise present in the measurements.
Then, the sample covariance matrix of the measurements is defined as Re = εmεmT . In
the limit ne →∞, then Re → Rk.

2. Each ensemble member (thus: each column of Aaek−1) is updated forward in time to Afek

according to a slightly modified version of Equation (3-2), namely

ψfjk ≈ F̃ (ψaopt,k−1)ψaj,k−1 + B̃(ψaopt,k−1)βwk−1 + εpj[
uk
vk

]f
= C̃ψfj,k,

(3-20)

with εp process noise, and ψaopt,k the optimal state estimate defined as the mean of
all ensemble members Aak−1. The process noise covariance matrix is defined as Qe =
εp(εp)T , in which εp is supposed to represent the true process noise in the system.
This process is highly parallelizable. All forecasted state vectors are collected in Afek

according to Equation (3-10).
Note that there is a modification from Evensen’s original algorithm in Equation (3-20). Namely, F̃ and
B̃ only have to be calculated once per time instant in Equation (3-20), rather than ne times in Evensen’s
algorithm. Also, note that cross-covariance Sk is neglected in this filter.

3. Each ensemble member is updated according to the analysis equation

Aaek
= Afek

+ P fek
C̃T

(
C̃P fek

C̃T +Rek

)−1 (
Dek
− C̃Afek

)
, (3-21)

containing all updated ensemble members at time instant k using measurements up
until time k: ψaj,k for j = 1 . . . ne. Note that the inversion in Equation (3-21) has
potential singularities, which is the main motivation for using the pseudo-inverse as will
be explained in Section 3-5-3.

4. The system is now propagated one time instant further, new measurements are obtained,
and the process is repeated starting with step 1 of the algorithm.

Figure 3-5: Filtering algorithm for the EnKF. New measurements are fed into the system at
time k, upon which the EnKF updates all ensemble members and provides an optimal estimate
for α̃k.
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3-5-3 Numerical implementation

Evensen [49] describes a detailed numerical implementation for the EnKF aimed at numerical
stability and computational efficiency. Specifically, it optimizes the order of matrix operations
to minimize the number of floating point operations, and thereby reduce computational cost.
First, Equation (3-21) is modified by defining

A′ek
= Afek

−Afek , (3-22)
D′ek

= Dek
− C̃Afek

, (3-23)

yielding the modified analysis update

Aaek
= Afek

+A′ek
A′Tek

C̃T
(
C̃A′ek

A′Tek
C̃T + γek

γTek

)−1
D′ek

. (3-24)

The inverse is calculated using a singular value decomposition (SVD). In the case that
measurement perturbations γek

are chosen such that C̃A′ek
γTek
≡ 0, the following holds6

C̃A′ek
A′Tek

C̃T + γek
γTek

= (C̃A′ek
+ γek

)(C̃A′ek
+ γek

)T . (3-25)

Defining a SVD as C̃A′ek
+ γek

= USVDΣV T
SVD, the following is obtained

C̃A′ek
A′Tek

C̃T + γek
γTek

= USVDΣV T
SVDVSVDΣTUTSVD = USVDΣΣTUTSVD = USVDΛUTSVD. (3-26)

From this SVD the least dominant eigenvalues (< 0.1%) are neglected to speed up computa-
tions. The numerical update algorithm is outlined in Figure 3-6.

1. The entire ensemble is updated forward in time according to

Afek
= F̃ (ψfopt,k)A

a
ek

+
[
B̃(ψfopt,k)βwk

+ εp1 B̃(ψfopt,k)βwk
+ εp2 · · · B̃(ψfopt,k)βwk

+ εpne

]
2. The SVD of C̃A′ek

+ γe is calculated, yielding USVD and Σ. Then, Λ = ΣΣT .
3. Λ is made sparse by neglecting all eigenvalues with small contribution (< 0.1%).
4. Computational efficiency is achieved by arranging the order of operations:

i. Calculate X1 = Λ−1UTSVD.
ii. Calculate X2 = X1(Dek

− C̃Afek
).

iii. Calculate X3 = USVDX2.
iv. In the case of a large number of observations: Aaek

= Afek
+A′ek

(
(C̃A′ek

)TX3
)
.

In the case of a small number of observations: Aaek
= Afek

+
(
A′ek

(C̃A′ek
)T
)
X3.

Figure 3-6: Suggested numerical implementation of the EnKF.

6This implies that the ensemble perturbations are uncorrelated.
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3-6 Implementation in WFSim
The three filters described in this chapter, respectively the KF, ApKF and EnKF, are each
implemented using the WFSim farm model.7

The observers rely on the amount and location of wind speed measurements for their analysis
updates. Naturally, more measurements results in better observer performance. Currently,
measurements around the turbines and at equidistant locations throughout the grid are in-
corporated. Work is currently ongoing to optimize the location of measurements based on
a linearized version of the WFSim model. As this work progresses, better performance is
expected with an equal amount of measurements.
Furthermore, for debugging purposes, a number of quantitative and qualitative measures are
implemented. While this does slow down iteration time, it is very insightful for observer
development and tuning. This includes:

• A figure of the initial mesh and measurement locations.
• A figure containing contour plots of the flow at every ∗ iterations.
• A figure of the wake centerline at every ∗ iterations.
• The root mean square (RMS) error, variance accounted for (VAF) and quality of fit

(QOF) between the estimated and true wake centerline in m/s.
• The iteration time for the forecast and analysis updates.
• Maximum and average estimation error in m/s.
• Different levels of written output, for serious debugging to regular usage.

Also, for observer testing, noise can be introduced to the system in a number of ways:

• Noise in the measurements.
• Noise in the initial flow field.
• Noise in the freestream velocity.
• Noise in the input vector βw.
• Noise in the initial state vector α0.

Additionally, a number of other options are included:

• A predefined random seed can be loaded to have consistent noise, allowing a one-to-one
comparison in performance between different simulations.

• An observer delay can be introduced. Thus, the observer will be initialized after a
defined number of time steps.

• Figures, simulation settings, observer settings, and estimated flow fields can be saved
optionally to external files for future revision.

The framework is modular, using much of the existing function files of the original WFSim
source code. Updates require manual labor, but are relatively straight-forward and should
take no longer than a couple of hours (depending on the number of changes in WFSim).
New observers can easily be implemented. While no detailed manual exists, the code is
self-explanatory and many comments are included to help those unfamiliar with the model.

7To get more information and possibly (parts of) the source code, please contact the author at B.M.
Doekemeijer@student.tudelft.nl, or the related research group from the Delft University of Technology at
S.Boersma@tudelft.nl and J.W.vanWingerden@tudelft.nl.
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Chapter 4

Simulation results and discussion

In this chapter, the simulation results using the WindFarmSimulator (WFSim) wind farm
model (previously discussed in Chapter 2) with respectively the Ensemble Kalman filter
(EnKF) and the Approximate Kalman filter (ApKF) (previously discussed in Chapter 3)
will be displayed and discussed. This chapter clearly shows the contribution of this work to
current literature: a first step to higher fidelity dynamic closed-loop control of wind farms.

The simulation scenario is depicted in Section 4-1. Measures used to quantify performance of
the observers are outlined in Section 4-2. The way in which the observers are tuned is discussed
in Section 4-3. The results for the ApKF and the EnKF are displayed in Sections 4-4 and 4-5,
respectively. Finally, an overview and discussion of all results is given in Section 4-6.

4-1 Simulation scenario
The goal is to test the observer designs of Chapter 3 for WFSim under realistic conditions
with high fidelity data obtained from Simulator fOr Wind Farm Applications (SOWFA). This
implies a limited number of observations, noise on the measurements, uncertain input signal
βw, unknown boundary conditions, and limited computational resources. More precisely, the
following settings were chosen:

• The simulation setup described in Section 2-3 is also used for observer testing, including
atmospheric and freestream flow conditions.

• 11% (for the 50x100 meshing) or 23% (for the 25x50 meshing) of the measurements are
available to the observer for state reconstruction. The exponential mesh including the
measurement locations are displayed in Figure 4-1. Note that this is not very realistic,
and in real wind farms much less observations will be available for state reconstruction.
Here, the goal is to push the limits of the observer.1

1Note that, in absolute sense, 11% of the measurements in the 50x100 grid is a larger number than 23% in
a 25x50 grid.
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• Gaussian noise with standard deviation σ = 0.10 m/s is added to the measurements.
This is comparable to the resolution of current commercial lidar systems [57].

• The input signal βw is chosen to be according to Figure 2-9. Recall from Chapter 2 that
this estimate, especially for the second turbine, already contains much noise, and thus
no additional noise is introduced.

• The observers will be initialized from a homogeneous flow field. For the EnKF, this
means ne homogeneous flow fields, a different one for each ensemble member.

• The observer will be initialized from the first time instant: no artificial delay will be
introduced between the to be estimated system dynamics and the observer.

• No other noise is introduced. Model error is already very much present due to SOWFA
including the third (vertical) dimension and significantly more sophisticated turbulence
and rotor modeling.

4-2 Performance measures
To judge the performance of an observer and for tuning purposes, a number of quantitative
measures are taken into account. Specifically, for our application, these measures include:

1. The fit between the mean wake centerlines of SOWFA and WFSim.2 Three different
measures are employed for this, namely:

• The root mean square (RMS) error. For two lines, estimated data y ∈ RZ and
true data z ∈ RZ , this is calculated according to

RMS(y, z) =
√

1
Z
· [(y1 − z1)2 + (y2 − z2)2 + · · ·+ (yZ − zZ)2], (4-1)

providing a quantity of the average error between the two datasets.
• The variance accounted for (VAF) [43]. This gives a measure of similarity between

the dynamics in two datasets. VAF is calculated according to

VAF(y, z) =
(

1− variance(z − y)
variance(z)

)
· 100%. (4-2)

• The quality of fit (QOF) [43]. This measure both includes the similarity in dy-
namics of two datasets and their absolute difference. Thus, the QOF is a single
measure to get a total picture of the observer’s performance.

QOF(y, z) = max
([

0, 1− ||z − y||
2
2

||z||22

])
· 100%. (4-3)

Ideally, one would like to minimize the RMS error and maximize the VAF and QOF.
2. The average computational effort (duration) for one iteration.
3. The maximum and average estimation error throughout the entire flow field.

All measures are considered throughout the simulation time.
2Recall that the mean wake centerline is defined as the laterally averaged flow velocity throughout the

simulation domain in longitudinal direction, according to Figure 2-12.
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(a) Location of longitudinal velocity measurements for the 50x100 meshing. 11% of the system outputs
(long. and lat. velocities) are used as measurements fed into the observer.

Figure 4-1: Grid layout, turbine locations, boundary conditions and measurement locations fed
into the EnKF and ApKF algorithms, used for state reconstruction. Measurements are spaced
equidistantly throughout the grid, and near the turbines. The measurements are disturbed with
Gaussian noise σ = 0.10 m/s.
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(b) Location of longitudinal velocity measurements for the 25x50 meshing. 23% of the system outputs
(long. and lat. velocities) are used as measurements fed into the observer.

Figure 4-1: Grid layout, turbine locations, boundary conditions and measurement locations fed
into the EnKF and ApKF algorithms, used for state reconstruction. Measurements are spaced
equidistantly throughout the grid, and near the turbines. The measurements are disturbed with
Gaussian noise σ = 0.10 m/s.
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4-3 Observer tuning
For observer tuning, the internal model (WFSim) as discussed in Chapter 2 was left intact to
limit the degrees of freedom. Also, this flow model already shows good performance for this
specific simulation case in absence of an observer, further validating this decision. Now, the
observers were tuned to more explicitly track the dynamics of SOWFA displayed in Figure 2-
14. Please note that this may not be the way in which the observers will be operated in a
true wind farm. However, the objective in this thesis is to push the limits of the filtering
algorithms, and assess their capacity in tracking both short- and long-term fluctuations in
the flow.
In quantitative terms, this means increasing the VAF, increasing the QOF and decreasing the
RMS error with SOWFA data. To achieve this, the process noise covariance matrix is steadily
increased and/or the measurement noise covariance matrix decreased, to be more responsive
to measurement data. However, this may lead to an increase in RMS error. A trade-off is to
be made.
Note that computational effort is hard to influence for a regular Kalman filter. However,
for the EnKF, the number of ensemble members ne has a direct influence on the calculation
time. Therefore, ne was kept to a minimum while meeting the performance goals. Paired
with the decision on ne goes the decision on the initial ensemble distribution – more ensemble
members allows a wider initial ensemble distribution without loss of quality. Furthermore,
for the ApKF, the z value, determining the number of nonzero matrix entries maintained,
can be changed to increase or reduce the number of floating point operations executed per
iteration.

4-4 Approximate Kalman filtering
Tuning the ApKF according to Section 4-3, the optimal observer settings were found and
listed in Table 4-1. The covariance matrices are P0, Rk and Qk, respectively for the initial
state estimation error, measurement noise and process noise. Cross-covariance between mea-
surement and process noise Sk is neglected and kept 0 for all k, as previously explained in
Section 3-4. P0, Rk and Qk are all diagonal matrices with entries equal to that given in
Table 4-1, besides the last diagonal entry. This entry is zero, as the extended system vector is[
αTk 1

]T
, with 1 being an artificial state known with 100% certainty, as previously outlined

in Section 3-1.

Table 4-1: Optimal observer settings for the ApKF.

Mesh resolution z P0 (m/s) Rk (m/s) Qk (m/s)
50x100 0.05 10.0 1.0 0.050
25x50 0.05 10.0 1.0 0.050

An iteration takes 8.5 seconds for the 50x100 mesh on average, and only 0.8 seconds for the
25x50 mesh.3 Notably, this means currently only the 25x50 meshing meets the time restriction

3Note that iteration time decreases with a decreased number of observations, and therefore better observa-
tion localization should both improve performance and computational efficiency.
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of ≤ 1 s depicted in the observer requirements of Section 1-3.

The results are presented next, in the same order as in Section 2-3.

Flow fields Snapshots of the flow field at various time instants are displayed in Figure 4-2.
The first phenomenon to note is the longitudinal streaky lines in the estimated flow fields
for the 50x100 meshing. These erroneous flow lines may result from a poorly estimated
velocity at grid points upstream, which then further propagates downstream. A number of
reasons are looked at that could possibly explain this effect. Firstly, it was suggested that
sparsifications made in the ApKF were perhaps no longer valid at higher resolution meshings.
However, this was shown not to be the source of error, as simulations with the traditional
KF yield similar problematic results. Furthermore, small modifications to WFSim initially
implemented for computational efficiency were reversed, yet this phenomenon of erroneous
vertical lines pertained at the 50x100 meshing. Furthermore, for an increasing number of
measurements, these erroneous vertical lines become less present, suggesting that there may
be a problem with the underlying model WFSim rather than with the filtering algorithms.
As WFSim is still in development stage, this would not be unusual.4

Looking at the figures for the 25x50 meshing, more satisfactory results are obtained. The
observer accounts for the overestimated wake width, and furthermore also captures some wake
meandering. Secondly, the effect of the turbine hub and thereby the formation of two separate
wake structures (rather than one large structure) is accounted for by the observer. The main
point of critique is the wake depth: the SOWFA data shows a lower minimum flow velocity
in the wakes. This may indicate model error due to WFSim incorporating a simplified rotor
model, or the way in which the estimated input signal βw was obtained. Currently, the ApKF
cannot sufficiently correct for this model error.

From this figure, the main source of error is found to be near and downstream of the second
turbine, similarly to as in Section 2-3. This is in support of what can be concluded from
Figure 2-9. In this figure, it was shown that there is significant variation on the estimated
system input signal βw for turbine 2. This flow is very turbulent and the dynamics are
complicated, for which WFSim is not sophisticated enough to capture. Even with observer,
the estimations in this waked region are suboptimal.

Results for the lateral velocity components can be found in Appendix B.

Maximum and mean error The maximum and mean error over time are displayed in Fig-
ure 4-3. The average mean error over time entire simulation time is 0.41 m/s and 0.34 m/s,
respectively for the 25x50 meshing and the 50x100 meshing. This is very similar to the values
found for the simulation without observer (Figure 2-11). On the other hand, the average
maximum errors are 6.7 m/s and 3.5 m/s for the 50x100 and the 25x50 meshing, respec-
tively. This further suggests problematic performance for the ApKF at the 50x100 meshing,
as was also noted in Figure 4-2. To further assess this statement, the mean wake centerline
is analyzed.

4Currently, research is still ongoing to further localize the source of error. The next step is to perform
simulations at different resolution meshes, as this erroneous phenomenon is not present in simulation results
of the ApKF at the 25x50 meshing.
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Wake centerlines The mean wake centerlines using the ApKF at various time instants are
displayed in Figure 4-4. As the 25x50 meshing and 50x100 meshing have identical tuning
parameters (Table 4-1), the results are expected to be very similar. However, note from
this figure that the ApKF at 50x100 does performance worse both in terms of tracking the
dynamics and the absolute fit, as expected from the previous discussions in this section. This
statement is consolidated and quantified by calculating the RMS error, VAF and QOF at
each time instant, as displayed in Table 4-2.

Table 4-2: RMS error, VAF, and QOF between the true mean wake centerline obtained from
SOWFA data and estimated mean wake centerline obtained from the ApKF.

(a) The ApKF at 50x100 meshing.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 5.80 · 10−2 16.6 100
200 6.26 · 10−1 82.4 98.8
500 7.48 · 10−1 77.9 98.3
1000 9.21 · 10−1 71.8 97.3
1500 7.43 · 10−1 81.3 98.3
1999 8.40 · 10−1 81.0 97.9

(b) The ApKF at 25x50 meshing.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 4.61 · 10−2 17.0 100
200 4.19 · 10−1 88.8 99.5
500 5.90 · 10−1 82.6 99.1
1000 4.33 · 10−1 88.1 99.5
1500 4.48 · 10−1 88.8 99.4
1999 4.14 · 10−1 93.0 99.5

Comparing this table to Table 2-2, it can be seen that the ApKF improves measures in
terms of the RMS error, the VAF and the QOF for the 25x50 meshing. On the other hand,
the 50x100 meshing is worse at almost all time instants. Additional simulations have been
performed at 50x100 using 21% of the measurements available instead of 11%, yet yielding
no significant improvement in estimation accuracy. There are a number of explanations for
this. Firstly, as mentioned before, the underlying model WFSim may be problematic at higher
resolution meshes. Secondly, it is suggested that the stochasticity and model mismatch further
stand out when the mesh is refined, while WFSim does not increase noticeably in fidelity.
This could lead the observer astray. Alternatively, numerical errors may exist in the current
implementation of both the KF and ApKF, which could explain the erroneous streaky vertical
lines seen in Figure 4-2.

Wake centerline dynamics Finally, the mean wake centerlines over the entire simulation
time can be summarized in a single figure by plotting the spatial coordinate against the
temporal coordinate, displayed in Figure 4-5. This figure includes the raw SOWFA data, the
ApKF at 50x100 meshing and the ApKF at 25x50 meshing. Each vertical segment corresponds
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to the mean wake centerline at one specific time instant. The irregularly dashed black line
at x = 400 m indicates the control setting of the first turbine, as denoted in Figure 2-9. At
the locations of the black lines βw = 0278, and for the gaps βw = 0.153. The regularly dotted
line indicates the second turbine, operating at a constant setting βw = 0.302. The observer
attempts to correct for the underestimated wake depth in WFSim, and does so only slightly.
This can be seen from the dynamics carved out slightly downstream of the second turbine,
around x = 1032 m. Furthermore, wake recovery is corrected for by the observer, compared
to the case without observer (Figure 2-10).

Comparing the 25x50 meshing with the 50x100 meshing, much similarity is noticed in which
wake dynamics are tracked. The observer accounts for increased wake recovery and the wake
dynamics are further “carved out” (corrected for) when compared to the case without observer
(Figure 2-14).

Conclusion Reviewing Figures 4-2 to 4-5, a number of things can be noted. Firstly, the
ApKF at a 25x50 meshing outperforms the ApKF at a 50x100 meshing in terms of computa-
tional cost, RMS error, VAF and QOF. The 25x50 meshing is noticeably better, accounting
for an overestimated wake width, hub effects in the wake structure, wake recovery, and wake
meandering effects. On the other hand, the ApKF at the 50x100 meshing is not noticeably
beneficial compared to an open-loop setting; simulation in absence of an observer. A number
of reasons have been suggested for this problematic performance at higher resolution meshes,
of which most importantly errors in WFSim and in the numerical implementation of observers.
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(a) Longitudinal flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure 4-2: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and
25x50 meshing.
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(b) Longitudinal flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure 4-2: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and
25x50 meshing.
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(c) Longitudinal flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure 4-2: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and
25x50 meshing.
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(d) Longitudinal flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure 4-2: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and
25x50 meshing.
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Figure 4-3: Error between SOWFA and the ApKF over time (m/s) for both the 50x100 meshing
and the 25x50 meshing. The errors in this figure are calculated from both lateral and longitudinal
velocities, spanning the entire flow field.
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Figure 4-4: Mean wake centerlines (m/s) at various time instants t =
1, 200, 500, 1000, 1500, 1999 s comparing SOWFA data, the ApKF at 50x100 meshing,
and the ApKF at 25x50 meshing. The dotted vertical lines represent the locations of turbine 1
(x = 400 m) and turbine 2 (x = 1032 m).
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Figure 4-5: Mean wake centerline wind speed (m/s) for the raw SOWFA data, and the resulting
ApKF simulations at the two meshes for the entire simulation time. Vertical segments represent
the mean wake centerline at a certain time instant. The irregularly black dashed line shows the
switching signal of the pitch angle. For the gaps βw = 0.153 and for the black lines βw = 0.278.
Similarly, the regularly dotted line shows the location of turbine 2.
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4-5 Ensemble Kalman filtering
Tuning the EnKF according to Section 4-3, the optimal observer settings were found to be
according to Table 4-3. The covariance matrices areWe, Re and Qe, respectively for the initial
distribution of states (representative of the true initial state covariance P0), measurement
noise and process noise. They are all diagonal matrices with entries equal to that given in
Table 4-3.

Table 4-3: Optimal observer settings for the EnKF.

Mesh resolution ne We (m/s) Re (m/s) Qe (m/s)
50x100 500 10.0 0.30 1.00
25x50 200 5.0 0.10 1.00

An iteration takes 8.0 seconds for the 50x100 mesh on average, and only 0.7 seconds for the
25x50 mesh, both marginally faster than the ApKF.5 Again, only the 25x50 meshing meets
the ≤ 1.0 s time restriction as depicted in the observer performance goals in Section 1-3.

The results are presented next, in the same order as in Sections 2-3 and 4-4.

Flow fields Snapshots of the flow field at various time instants are displayed in Figure 4-6,
for both the 50x100 meshing and the 25x50 meshing. It can clearly be noted that the EnKF
algorithm relies on introducing artificial noise to the measurements and process: the flow fields
are significantly less homogeneous than for the validation case (Figure 2-10) or for the ApKF
(Figure 4-2). This introduces estimation errors also in the freestream flow, which initially did
not even require any correction by the observer. However, the strength in this approach lies
in its ability to deal with nonlinear dynamics. As such, the width in wake has been adjusted
according to the SOWFA measurement data, and there is increased wake recovery at the end
(upper part) of the simulation domain. Similar to as found in the ApKF, wake meandering
and turbine hub effects are corrected for by the EnKF. Moreover, the EnKF does a better job
at correcting for the rotor modeling problems, and is able to further accounts for the deeper
wake effects found in SOWFA. To further consolidate this statement, the estimated mean
wake centerlines have to be looked at.

Additionally, the 25x50 meshing appears to outperform the 50x100 meshing, as was also noted
in the ApKF case. Quantitative measures will be looked at in the next paragraph to further
consolidate this statement. Furthermore, as seen in all previous simulation results, the region
near and behind turbine 2 remains the most troublesome in terms of providing reliable flow
estimations.

Results for the lateral velocity components can be found in Appendix B.

Maximum and mean error The maximum and mean estimation error over time is displayed
in Figure 4-7. The average error for the 50x100 grid is approximately 0.58 m/s, while for
the 25x50 grid this is 0.44 m/s. Interestingly, both values are higher than in the absence of
an observer (Figure 2-11) and than for the ApKF (Figure 4-3). The main reason for this is

5Note that iteration time decreases with a decreased number of observations, and therefore better observa-
tion localization should both improve performance and computational efficiency.
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expected to be the stochasticity that is fundamental to the EnKF algorithm, as previously
noted in Figure 4-6. By artificially disturbing the process and measurements in each ensemble
member, more noise is introduced. However, this should allow for a better state reconstruction
in nonlinear systems on average. Secondly, the fact that the higher resolution mesh has a
larger average error indicates problematic performance as also seen in the ApKF.

Wake centerlines More insightful are the mean wake centerlines at various time instants, as
displayed in Figure 4-8. This truly shows how the observer attempts to correct and track the
dynamics present in the high fidelity dataset, in contrast to a more transient response in the
absence of an observer (Figure 2-13). Notably, the velocity at turbine locations (x = 400 m
and x = 1032 m) are very well predicted due to an increased number of measurements near
these positions (as displayed in Figure 4-1). As suggested by Figure 4-6, the observer accounts
for the underestimated wake depth of WFSim, which is less the case for the ApKF.

Also, wake recovery is significantly improved using the observer. The resulting RMS error,
VAF values and QOF values for both simulations are listed in Table 4-4.

Table 4-4: RMS error, VAF, and QOF between the true mean wake centerline obtained from
SOWFA data and estimated mean wake centerline obtained from the EnKF.

(a) The EnKF at 50x100 meshing.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 5.80 · 10−2 16.6 100
200 4.73 · 10−1 88.7 99.4
500 5.44 · 10−1 87.9 99.1
1000 6.03 · 10−1 88.0 98.9
1500 5.93 · 10−1 88.4 98.9
1999 4.88 · 10−1 94.6 99.3

(b) The EnKF at 25x50 meshing.

Time (s) RMS (m/s) VAF (%) QOF (%)
1 4.61 · 10−2 17.2 100
200 3.74 · 10−1 88.1 99.6
500 4.38 · 10−1 88.5 99.5
1000 3.67 · 10−1 90.7 99.6
1500 4.15 · 10−1 89.2 99.5
1999 3.15 · 10−1 93.5 99.7

Comparing these results to Table 2-2, it can be seen that the observer at the 25x50 meshing
improves flow estimates through a lower RMS error, a higher VAF and a higher QOF at
all time instants. The 50x100 meshing has a better VAF at all time instants, but shows
worse results in terms of RMS error and QOF. The 25x50 meshing outperforms the 50x100
meshing in computational time, RMS error, VAF and QOF. A similar relative performance
was seen in the ApKF. Also, when comparing these results to Table 4-2, it is seen that
the EnKF outperforms the ApKF at both resolutions in terms of RMS error and VAF and
computational cost, while performing similarly in QOF.
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Wake centerline dynamics Finally, the mean wake centerlines over the entire simulation
time can be summarized in a single figure by plotting the spatial coordinate against the
temporal coordinate, displayed in Figure 4-9. This figure includes the raw SOWFA data, the
EnKF at 50x100 meshing and the EnKF at 25x50 meshing. Each vertical segment corresponds
to the mean wake centerline at one specific time instant. The irregularly dashed black line
at x = 400 m indicates the control setting of the first turbine, as denoted in Figure 2-9. At
the locations of the black lines βw = 0278, and for the gaps βw = 0.153. The regularly dotted
line at x = 1032 m indicates the second turbine, operating at a constant setting βw = 0.302.
This figure more clearly shows how the EnKF is able to correct for the underestimated wake
effects near and behind turbine 2. Furthermore, this figure shows the increased wake recovery
accounted for. When compared to Figure 4-5 and Figure 2-14, the EnKF appears to best
carve out the unmodeled dynamics in the flow.

Conclusion Reviewing Figures 4-6 to 4-9, it can be concluded that the EnKF at a 25x50
meshing does very well at correcting for unmodeled dynamics in reconstructing flow fields.
Phenomena corrected for include an overestimated wake width, underestimated wake depth,
turbine hub effects, wake meandering and wake recovery. Furthermore, this observer performs
iterations in about 0.7 seconds, making it applicable for real-time control. Quantitatively, this
filter reduces the RMS error and increases the VAF significantly for the estimated mean wake
centerline.

The EnKF at a 50x100 meshing performs worse than its 25x50 meshing counterpart. Similar
results were noted in the ApKF, further suggesting that the problem may lie in the underlying
flow model WFSim, and not in the filtering algorithms. WithWFSim still in development, this
would not be unusual. Furthermore, it may be that the increase in measured dynamics due to
an increased spatial resolution lead the observer astray. More fundamental numerical issues in
the observer implementation could also cause these erroneous results, but it is unlikely since
both the ApKF and EnKF show problematic results while relying on fundamentally different
algorithms. Due to time restrictions, the current results suffice for demonstration purposes,
and as a proof of concept.

Furthermore, the mean estimation error for the ApKF is smaller than that of the EnKF
according to Figure 4-3. However, it typically has a higher RMS error and lower VAF in
terms of wake centerline tracking, according to Table 4-2. This may indicate that the ApKF
focuses more on tracking the overall dynamics, while the EnKF performs better in terms of
the area of interest – the turbine wakes.

For current use, the EnKF at 25x50 meshing is strongly recommended over the 50x100 mesh-
ing, for both computational benefits and for better state reconstruction performance. As the
domain size becomes larger, more sophisticated turbulence models are implemented, or less
turbulent measurement data is used, the 50x100 meshing may become more interesting for
implementation purposes. That is, assuming the source of error in WFSim can be located
and resolved.
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(a) Longitudinal flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure 4-6: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and
25x50 meshing.
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(b) Longitudinal flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure 4-6: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and
25x50 meshing.
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(c) Longitudinal flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure 4-6: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and
25x50 meshing.
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(d) Longitudinal flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure 4-6: Snapshots of the longitudinal flow velocity (m/s) throughout the grid for various
time instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left
using SOWFA data resampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and
25x50 meshing.
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Figure 4-7: Error between SOWFA and the EnKF over time (m/s) for both the 50x100 meshing
and the 25x50 meshing. The errors in this figure are calculated from both lateral and longitudinal
velocities, spanning the entire flow field.
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Figure 4-8: Mean wake centerlines (m/s) at various time instants t =
1, 200, 500, 1000, 1500, 1999 s comparing SOWFA data, the EnKF at 50x100 meshing,
and the EnKF at 25x50 meshing. The dotted vertical lines represent the locations of turbine 1
(x = 400 m) and turbine 2 (x = 1032 m).
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Figure 4-9: Mean wake centerline wind speed (m/s) for the raw SOWFA data, and the resulting
EnKF simulations at the two meshes for the entire simulation time. Vertical segments represent
the mean wake centerline at a certain time instant. The irregularly black dashed line shows the
switching signal of the pitch angle. For the gaps βw = 0.153 and for the black lines βw = 0.278.
Similarly, the regularly dotted line shows the location of turbine 2.
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4-6 Overview and comparison
The RMS error, VAF and QOF for the mean wake centerlines in the open-loop, validation
case (WFSim), the ApKF, and the EnKF are repeated in Table 4-5 for both the 50x100
meshing and the 25x50 meshing, respectively. This table gives a clear overview and allows
for easy comparison between the observers.6

Table 4-5: Overview of the RMS errors, VAFs and QOFs between the true mean wake centerline
obtained from SOWFA data, for the simulation without observer, and for the simulations with
the EnKF and with the ApKF.

(a) High resolution meshing: 50x100.

RMS (m/s) VAF (%) QOF (%)
Time (s) WFSim EnKF ApKF WFSim EnKF ApKF WFSim EnKF ApKF

1 0.058 0.058 0.058 16.8 16.6 16.6 100 100 100
200 0.460 0.473 0.626 85.0 88.7 82.4 99.4 98.8 99.4
500 0.711 0.544 0.748 73.5 87.9 77.9 98.5 98.3 99.1
1000 0.576 0.603 0.921 82.1 88.0 71.8 99.0 97.3 98.9
1500 0.669 0.593 0.743 77.5 88.4 81.3 98.6 98.3 98.9
1999 0.372 0.488 0.840 92.0 94.6 81.0 99.6 97.9 99.3

(b) Lower resolution meshing: 25x50.

RMS (m/s) VAF (%) QOF (%)
Time (s) WFSim EnKF ApKF WFSim EnKF ApKF WFSim EnKF ApKF

1 0.046 0.046 0.046 17.2 17.2 17.0 100 100 100
200 0.491 0.374 0.419 85.3 88.1 88.8 99.4 99.5 99.6
500 0.836 0.438 0.590 64.6 88.5 82.6 98.1 99.1 99.5
1000 0.642 0.367 0.433 77.9 90.7 88.1 98.8 99.5 99.6
1500 0.785 0.415 0.448 68.8 89.2 88.8 98.3 99.4 99.5
1999 0.499 0.315 0.414 88.6 93.5 93.0 99.3 99.5 99.7

In both terms of RMS error and VAF, the EnKF outperforms the ApKF at both resolutions.
This is as expected, with EnKF typically being more suitable for nonlinear systems. However,
as the EnKF algorithm relies on stochasticity, the mean and maximum estimation error of the
total flow field is higher than for the ApKF. Both the EnKF and the ApKF visibly account
for wake recovery, wake meandering, an overestimated wake width, and turbine hub effects.
Furthermore, the EnKF noticeably accounts for an underestimated wake depth, which the
ApKF does not. Only the 25x50 meshings meets the time restriction of ≤ 1.0 s and thus
allows real-time control, as depicted in the observer design goals in Section 1-3.
Interesting to note is that, irrespective of the decrease in computation time, the 25x50 ob-
servers are recommended over the 50x100 observers due to significantly better performance
in state reconstruction. Moreover, the 50x100 observers are currently problematic in terms
of performance, and are not ready for any kind of implementation in their current form. Be-
cause this was noted for both the ApKF and the EnKF, the source of error is suggested to
be the underlying WFSim flow model. Secondly, more fundamental numerical issues in the
observer implementations could also cause similar results, but is unlikely as similar problems
are shown in two fundamentally different observer algorithms.

6In the following analysis, the QOF measure will be neglected, as it shows near ideal performance in every
simulation, making it hard to compare performance with.
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What is very important to conclude from this chapter is the importance of the meshing resolu-
tion. In the current implementation, tuning the observer should be secondary to choosing the
right meshing size. Perhaps when the fidelity of WFSim increases (e.g., through adding the
vertical dimension or/and sophisticated turbulence submodels) and errors are resolved, the
higher resolution meshing may improve results and become of use. For now, lower resolution
meshes are strongly recommended for implementation.

Finally, the computational cost per iteration for the absence of a filter and the Kalman filters
are displayed in Table 4-6. The enhanced filters are very similar is computational cost, taking
about 7 to 8 times as much computational resources compared to the simulation without
observer. The regular KF takes far too much computational resources to be of any use, and
scales up more-than-linearly when increasing the number of states. On the other hand, the
time-efficient KF variants scale up approximately linearly with the number of states. In total,
the preference goes to the EnKF, being about 5%−10% faster than the ApKF while providing
better performance in terms of RMS error and VAF for the mean wake centerline.

Table 4-6: Average computational cost per iteration in seconds.

WFSim KF EnKF ApKF
50x100 1.2 1125 8.0 8.5
25x50 0.1 12.8 0.7 0.8

With WFSim sampled at 1 Hz, both the EnKF and the ApKF at a 25x50 meshing allow
real-time implementation, with a computational time less than the actual simulation time.
While these observers are expected to be significantly faster in a machine code (e.g., C or
Fortran) implementation and excluding the developer/debugging options, the current code
shows a good proof of concept.

Due to time restrictions, the current results suffice for demonstration purposes, and as a
proof of concept. The 25x50 filters perform very well and allow direct implementation, with a
preference for the EnKF. The EnKF is known to better deal with nonlinearity, as confirmed
by the presented results. Furthermore, it is highly parallelizable, and therefore should be
more efficient as the system is scaled up.

Future improvements of WFSim, implementations of the observers in machine code, and
developments in the field of ensemble Kalman filtering (or more generally, particle filtering)
should further improve the results presented in this chapter.
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Chapter 5

Conclusions, recommendations and
future outlook

In this work, two time-efficient variants of the Kalman filter (KF) were depicted and as-
sessed using a high fidelity dataset. Internally, these filtering algorithms rely on the medium
fidelity WindFarmSimulator (WFSim) model developed at the Delft University of Technol-
ogy (TU Delft). The high fidelity dataset used for model validation and observer assessment
was obtained from Simulator fOr Wind Farm Applications (SOWFA), a highly sophisticated
simulation model from the National Renewable Energy Laboratory (NREL) and TU Delft.
Simulations were of a two turbine case in a 1000 by 2000 m domain, meshed at two different
resolutions: 25x50 and 50x100 grid points, respectively.

First, WFSim was validated with SOWFA data, thus simulations were run in absence of a
filter. Good results were shown, with WFSim predicting a mean, smoothened flow. However,
WFSim does not capture all model dynamics due to its simplified turbulence model, due
to the absence of the vertical dimension (2D instead of 3D), and its simplified rotor model.
Namely, hub effects are neglected and wake recovery is underestimated. Also, the wake width
is overestimated, possibly due to the absence of lateral turbulence in WFSim. Furthermore,
wake meandering, wake skewing and wake deflection are not modeled. The most troublesome
region of flow estimation is near and behind the second, downstream turbine. An observer
would potentially correct for these unmodeled dynamics.

Secondly, the time-efficient KF variants were assessed, namely an Approximate Kalman fil-
ter (ApKF) and an Ensemble Kalman filter (EnKF). The ApKF relies on the traditional
KF algorithm, but improves time-efficiency by enforcing a sparsification of the main model
matrices and state error covariance matrix. In the EnKF, the system matrices remain intact,
yet the update algorithm is simplified by replacing the covariance matrices with a sample
covariance. The EnKF is often found to better deal with nonlinear dynamics (not requiring
a linearized model) and high order systems with many states (103 − 106) and measurements.
In simulations with 23% and 11% of measurements fed into the observers, respectively for the
25x50 and 50x100 meshing, good results were shown.
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The observers relying on the WFSim model at a 25x50 meshing showed best performance.
Many unmodeled dynamics are accounted for: the overestimated wake width, underestimated
wake depth, wake recovery, wake meandering and turbine hub effects. Quantitatively, for the
mean wake centerline1 the RMS error decreased by up to 50% and VAF increased by up to
24 percent points, at certain time instants in simulation. Furthermore, the algorithms take
0.7−0.8 s to iterate for WFSim with a timestep of 1 s, thereby allowing real-time closed-loop
control.

Interesting to note is that the observers at the 25x50 meshing outperforms those at the 50x100
meshing, even when relying on less measurements. The main reason for this is expected to be
problems in the underlying WFSim model at higher resolution meshes. Notably, from Chap-
ter 4 it can be concluded that choosing the right mesh resolution is of invaluable importance
for good observer results, in the current implementation.

In conclusion, these observers significantly improve flow fields estimations by relying internally
on the WFSim model. A 25x50 meshing appears optimal over the 50x100 meshing, in terms of
both accuracy and computational cost. Furthermore, the EnKF appears preferable over the
ApKF due to its ability to deal with model nonlinearity and parallelizability, showing slightly
better filtering results at a lower computational cost. These filtering algorithms can be used
in real-time closed-loop control, as their iteration time is less than the model timestep. The
work presented in this thesis is a first big step to closed-loop control of wind farms.

Recommendations

If this work is continued, a number of recommendations are made (in order of importance).

Firstly, if this work is continued, it is strongly suggested to further look at the discrepancy
in results between the 50x100 meshing and the 25x50 meshing. It seems counter-intuitive
that the higher resolution meshing performs worse in all ways when compared to the lower
resolution meshing, both for the ApKF as for the EnKF. The numerical implementation of
WFSim, the implementation of the observers, and any simplifications (e.g., in the SVD) made
in the algorithms should be reconsidered. Furthermore, different settings in WFSim are to
be explored, in close collaboration with Boersma (who is currently developing the code).

Secondly, the number of observations currently fed into the observer algorithms is not realistic
(Figure 4-1). The work presented in this thesis attempted to push the limits of the filtering
algorithms. The number and location of measurements are to be optimized and limited to
realistic values, after which more simulations are to be performed to assess performance.

Thirdly, the way in which the turbine operating settings are mapped from SOWFA to WFSim
is not realistic (Section 2-3-2). Namely, an averaged streamwise flow velocity at each turbine
rotor UD is needed at each time instant, which is typically not available in real wind farms.
Suggested is to avoid this mapping entirely, and implement such a mapping in the WFSim
model itself. This would allow one to assign physical turbine operating settings in WFSim,
rather than a theoretical axial induction factor.

Fourthly, this work is limited to axial-induction-based control: the flow is excited using
rotor blade pitch, while maintaining a constant turbine yaw angle. However, yaw control

1Defined as the laterally averaged longitudinal flow velocity throughout the domain, by Figure 2-12.
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appears promising in high fidelity simulations. Therefore, it is important to assess observer
performance for yaw excitation, and furthermore the implications for observer design (e.g.,
“is the model sparsification in the ApKF valid for different yaw angles?”). However, this does
require more SOWFA simulations to be performed.

Fifthly, for the filtering algorithms specific, each a recommendation can be made. For the
EnKF, the initial distribution should further be considered. Currently, the initial ensemble
of particles are distributed equidistantly throughout the state space. However, this may not
be the optimal initial distribution. Secondly, for the ApKF, it may be of interest to consider
how the model changes under the sparsification, e.g., by looking at changes in its poles and
zeros. It is also of unvaluable importance to consider the validity of the model sparsification
under different inflow conditions, as true wind farms usually do not operate under a constant
inflow direction. Furthermore, for both filters, the covariance matrices should be tuned in a
more sophisticated manner. Instead of applying a diagonal matrix, it would make sense to
put higher covariance at grid points in the flow wakes, but low covariance at grid points in
the freestream. For example, this would stop the EnKF from introducing unnecessary noise
to the freestream flow in flow field estimates, thereby improving results.

Sixthly, with recent work on WFSim providing linearized models of wind farms, it may be of
interest to assess the performance using a fully linearized flow model. This will significantly
reduce computational cost, as the system matrices and model manipulation only have to be
calculated once in simulation. Note that it is important to assess these linearized observers
under different inflow conditions (direction and speed).

Seventhly, for control algorithms such as predictive control, an n-step-ahead prediction is
necessary of the flow field. A small extension should be made to the filtering algorithms
to provide this n-step-ahead prediction of the system states, and their accuracy should be
assessed through simulation.

Finally, in case simulations would like to be run in real-time, the algorithms are to be rewritten
in machine code (e.g., C). It is expected that this will also significantly reduce the computa-
tional cost paired with the algorithms, or alternatively allow better results in equal iteration
time.

Future work

Currently, there is a chance Doekemeijer will continue (parts of) this work as a researcher at
TU Delft, but this has not yet been set in stone. Furthermore, work is currently still ongoing
related to the development of WFSim, which will reflect back into the filtering algorithms.
Namely, Boersma is working on improving the rotor submodel to include hub effects. Fur-
thermore, problems seem to persist in the linearized version of WFSim, which may obstruct
model observability analyses and the implementation of linearized filters.

Boersma may also continue (parts of) this work, as these observers are essential in the pursuit
of real-time closed-loop control of wind farms.
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Appendix A

Supplementary background theory:
wind and wind turbine control

This appendix contains a basic introduction to wind and single turbine control. If the reader
is unfamiliar with the topic at hand, this is a suggested appendix to read prior to Chapters 2
to 4.

A-1 Flow around a turbine
Wind turbines convert kinetic energy of wind flows into electric energy. The instantaneous
power available in a wind flow PV is defined as

PV = 1
2ρAU

3
∞, (A-1)

with A the cross-sectional area of the respective flow, ρ the flow density and U∞ the freestream
flow velocity [58]. Note that a wind turbine cannot extract all the energy from an incoming
wind flow, as the flow is required to have a certain velocity behind the turbine rotor, as
explained by momentum theory [11]. Momentum theory is the topic of Section 2-1-6.

Wind turbines interact with freestream flow to capture energy. The resulting flow down-
stream, the “flow wake”, has a number of properties [12, 59]:

• Decreased flow velocity, as energy is extracted by the turbine.
• Increased turbulence, due to interactions with the turbine structure.
• A wake structure expanding with downstream distance from the turbine. According to

the law of conservation of mass and assuming incompressibility of the flow, a decrease
in flow velocity results in a proportional increase in the cross-sectional area of the wake.

• A skewed and deflected wake structure due to the (direction of) rotation of the turbine
rotor, inducing asymmetric forces on the flow. This causes the orientation of the wake
structure to change slightly [12].
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• Wake meandering. The entire wake structure will show spatial and temporal oscillations,
rather than maintaining one fixed position and shape. This stochastic phenomenon is
a nontraditional form of turbulence, implying that certain locations in the downstream
flow are irregularly affected by a wake [59].

As the wake propagates further downstream, the flow recovers to the freestream conditions
by convection and diffusion, promoted by turbulent forces [12]. An idealized wake in single
turbine operation is demonstrated in Figure A-1, obtained using the WindFarmSimulator
(WFSim) flow model. This wind farm model is described in detail in Chapter 2. Note that
this figure does not display wake skewing, wake deflection, or wake meandering effects, due
to the model’s simplicity.
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Figure A-1: Horizontal slice at hub height of a fully developed flow including wake in a single
turbine simulation, obtained using WFSim. The turbine is positioned at (400, 250) m with a rotor
radius of 45 m. The wind is flowing from left to right in the figure, with inflow U∞ = 8 m/s.

Besides turbine-induced flow fluctuations, the flow velocity and direction are heavily depen-
dent on a number of external factors, such as geographical location, climate characteristics,
altitude, surface roughness and solar conditions [60]. This further complicates flow modeling
and reconstruction [11]. More information on wind and wind-turbine interactions can be
found in books by Tong [58] and Bianchi et al. [22].

A-2 Single turbine control
Traditionally, wind turbines are controlled to maximize power capture while mitigating struc-
tural loading to acceptable levels. The applied control algorithm depends on a turbine’s op-
erating conditions. On the most basic level, three regions of operation can be distinguished,
as demonstrated in Figure A-2.1

1In modern wind turbines, additional regions of operation are included for control. Common additional
regions are “region 1.5” and “region 2.5”, which account for problematic transitions between different control
regimes. In Figure A-2, transitions between control regimes give rise to discontinuous jumps in the control
signal, resulting in excessive mechanical loading [11, 12]. Furthermore, in reality, there is a fourth control
region for extremely high wind speeds, at which the turbine is shut down to manage structural loading.
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Figure A-2: A very basic power production curve for single turbine operation. In region 1, it is
not worthwhile to operate the turbine. In region 2, the turbine is operated to capture as much
power as possible. In region 3, the turbine is controlled to mitigate structural loads and maintain
the turbine’s power output at a rated value Prated. [12]

Region 1 In this figure, the first region depicts the (absence of a) control algorithm for very
low wind speeds (U < Ucut-in), as turbine control is deemed not worthwhile. The turbine is
not operated, and no power is generated.

Region 2 For medium to high wind speeds (Ucut-in ≤ U < Urated), the turbine is operated
to capture as much power P from the wind as possible, according to

Popt = 1
2ρAU

3CP,opt, (A-2)

with CP the dimensionless power coefficient, defined as the ratio between the power captured
by a turbine and the power available in the wind, by CP = P

PV
. CP depends on the blade

geometry, the pitch angles β and the tip-speed-ratio (TSR) λ.2 The TSR is a function of the
rotational speed of the rotor ω, by

λ = ωR

U
, (A-3)

with R the turbine rotor radius. A traditional CP curve is shown in Figure A-3.

The optimal power coefficient CP,opt corresponds to the TSR λopt and collective pitch angle
βopt at which maximum power is captured. β is directly controlled using the blade pitch
actuators. On the other hand, λ is controlled indirectly through the rotor speed ω, if possible.3
λopt is achieved by adjusting the generator torque τg, as

τg,opt = ρAR3CP,optn

2λ3
opt

, (A-4)

2For old turbines it may not be possible to pitch the blades, which renders CP as a function of λ only.
3Modern, variable-speed wind turbines allow the turbine to run at different angular velocities, in contrast

to fixed-speed wind turbines.
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P,opt opt opt

Figure A-3: Traditional dimensionless power coefficient curve CP (λ, β). [22]

with n the gearbox ratio [12]. Furthermore, if the turbine is able to yaw, it can be aligned
with the incoming wind flow to maximize the effective wind speed U , so that power capture
can be maximized since P ∝ U3. As yaw actuation is relatively slow and to reduce actuator
usage, a threshold is typically implemented.

Region 3 Finally, for very high wind speeds (U ≥ Urated), maximizing power capture is
detrimental for the turbine structure and power electronics. Hence, the loads are mitigated
and the turbine is controlled to capture a rated power Prated. Turbine derating is typically
done by pitching the rotor blades away from βopt, or yawing the turbine away from the
upstream flow [11, 12], while maintaining constant generator torque τg.
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Appendix B

Supplementary results: lateral flow
velocity plots

This appendix contains the contour plots for the flow field estimates of WFSim, WFSim+ApKF,
and WFSim+EnKF, respectively. These are omitted from the main text as they are less of
interest for the current purposes. Namely, for control the mean wake centerline will be looked
at mainly. However, fundamentally there is no significant difference between the longitudinal
and lateral velocity components, and their results are expected to be conceptually similar.

B-1 WFSim

The lateral velocity plots of the validation case in Section 2-3 are displayed in Figure B-
1. In these figures, it is seen that SOWFA captures more dynamics than WFSim does,
as previously seen in the longitudinal velocity plots (Figure 2-10) too. For example, the
simplified turbulence and turbine submodels neglect the strongly nonlinear near wake flow
region. Furthermore, the main source of error is in the wake of turbine 2, as also expected
from the discussion in Section 2-3-3.

B-2 Approximate Kalman filtering

The lateral velocity plots of the ApKF observer assessment in Section 4-4 are displayed in
Figure B-2. Interesting to note is that the streaky estimation error phenomenon found in
the 50x100 meshing is not present in the lateral flow estimation results. Secondly, the 25x50
meshing again seems to outperform the 50x100 meshing, as also seen in the longitudinal flow
plots. Furthermore, most error originates at and downstream of the second turbine.
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B-3 Ensemble Kalman filtering
The lateral velocity plots of the EnKF observer assessment in Section 4-4 are displayed in
Figure B-3. The flow estimates are much less uniform, similar to as seen in the longitudinal
velocity plots. This is because the EnKF algorithm relies on adding artificial noise to the
measurements and the model for state reconstruction. Furthermore, most estimations errors
in the flow are found in the wake of turbine 2. However, the errors appear to be smaller
than for the ApKF or for the case without observer, respectively Figures B-1 and B-2. This
statement is consolidated by the results seen previously in Section 4-5.
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(a) Lateral flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure B-1: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is shown
on the left using SOWFA data sampled at a 50x100 meshing. WFSim is simulated under a 50x100
and a 25x50 meshing.

Master of Science Thesis B.M. Doekemeijer



92 Supplementary results: lateral flow velocity plots

SOWFA

 

x
 (

m
),

 t
 =

 1
 s

500

1000

1500

2000
WFSim 25x50

 

 

Estimation error

 

 

 

 

x
 (

m
),

 t
 =

 2
0

0
 s

500

1000

1500

2000
 

 

 

 

 

 

 

y (m)

200 600 1000

x
 (

m
),

 t
 =

 5
0

0
 s

500

1000

1500

2000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

y (m)

200 600 1000

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

y (m)

200 600 1000

 

0

0.5

1

1.5

2

(b) Lateral flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure B-1: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is shown
on the left using SOWFA data sampled at a 50x100 meshing. WFSim is simulated under a 50x100
and a 25x50 meshing.
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(c) Lateral flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure B-1: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is shown
on the left using SOWFA data sampled at a 50x100 meshing. WFSim is simulated under a 50x100
and a 25x50 meshing.

Master of Science Thesis B.M. Doekemeijer



94 Supplementary results: lateral flow velocity plots

SOWFA

 

x
 (

m
),

 t
 =

 1
0

0
0

 s

500

1000

1500

2000
WFSim 25x50

 

 

Estimation error

 

 

 

 

x
 (

m
),

 t
 =

 1
5

0
0

 s

500

1000

1500

2000
 

 

 

 

 

 

 

y (m)

200 600 1000

x
 (

m
),

 t
 =

 1
9

9
9

 s

500

1000

1500

2000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

y (m)

200 600 1000

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 

y (m)

200 600 1000

 

0

0.5

1

1.5

2

(d) Lateral flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure B-1: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the WFSim validation case. The raw data is shown
on the left using SOWFA data sampled at a 50x100 meshing. WFSim is simulated under a 50x100
and a 25x50 meshing.
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(a) Lateral flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure B-2: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and 25x50
meshing.
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(b) Lateral flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure B-2: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and 25x50
meshing.
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(c) Lateral flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure B-2: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and 25x50
meshing.
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(d) Lateral flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure B-2: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the ApKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The ApKF is simulated under a 50x100 and 25x50
meshing.
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(a) Lateral flow velocity for 50x100 meshing at t = 1, 200, 500 s.

Figure B-3: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and 25x50
meshing.
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(b) Lateral flow velocity for 25x50 meshing at t = 1, 200, 500 s.

Figure B-3: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and 25x50
meshing.
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(c) Lateral flow velocity for 50x100 meshing at t = 1000, 1500, 1999 s.

Figure B-3: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and 25x50
meshing.
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(d) Lateral flow velocity for 25x50 meshing at t = 1000, 1500, 1999 s.

Figure B-3: Snapshots of the lateral flow velocity (m/s) throughout the grid for various time
instants t = 1, 200, 500, 1000, 1500, 1999 s for the EnKF. The raw data is shown on the left using
SOWFA data sampled at a 50x100 meshing. The EnKF is simulated under a 50x100 and 25x50
meshing.
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Enhanced Kalman Filtering for a 2D CFD NS Wind
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Abstract. Wind turbines are often grouped together for financial reasons, but due to wake
development this usually results in decreased turbine lifetimes and power capture, and thereby
an increased levelized cost of energy (LCOE). Wind farm control aims to minimize this cost by
operating turbines at their optimal control settings. Most state-of-the-art control algorithms
are open-loop and rely on a low fidelity, static flow model. Closed-loop control relying on a
dynamic model and state observer has real potential to further decrease wind’s LCOE, but
is often too computationally expensive for practical use. In this paper two time-efficient
Kalman filter (KF) variants are outlined incorporating the medium fidelity, dynamic flow
model “WindFarmSimulator” (WFSim). This model relies on a discretized set of Navier-Stokes
equations in 2D to predict the flow in wind farms at hub height at low computational cost.
The filters implemented are an Ensemble KF and an Approximate KF. Simulations in which a
high fidelity simulation model represents the true wind farm show that these filters are typically
101 − 102 times faster than a regular KF with comparable or better performance, correcting for
wake dynamics that are not modeled in WFSim (noticeably, wake meandering and turbine hub
effects). This is a first big step towards real-time closed-loop control in wind farms.

1. Introduction
The recent 2015 UN Climate Change Conference in Paris once again stressed the importance
of renewable energy sources, among which is wind. To make implementations of wind energy
feasible, its levelized cost of energy (LCOE)1 has to be able to compete with that of other
sources. For this reason, wind turbines are often placed together in wind farms. However,
grouping turbines together gives rise to the development of, and interactions with, wind wakes,
often resulting in a plant-wide decreased power capture2 and increased turbine structural loading
compared to an equal number of single turbines. Wind farm control aims to counter this and
minimize the LCOE of wind. Notable findings in this relatively new area of research include
farm layout optimization [1, 2], wake redirection control [2, 3] and active power control [4, 5].

Advancements in wind farm control have gone hand in hand with advancements in modeling,
as state-of-the-art control algorithms typically rely on a low fidelity, control-oriented, static flow
model. Unfortunately, this is often limited to open-loop control. Furthermore, high fidelity,
dynamic models based on the Navier-Stokes (NS) equations have allowed relatively inexpensive
flow analyses and observer testing at high accuracy, but are computationally too expensive for

1 The LCOE is a measure to compare different methods of energy generation in terms of financial feasibility.
2 Power capture losses in wind plants may be up to 50%, according to some numerical studies [1].
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real-time control applications. Medium fidelity, dynamic flow models aim to bridge this gap,
and in some cases allow closed-loop control, further reducing the LCOE of wind. However, the
need for a state observer and the increase in computational cost remain challenges.

The goal of this work is to design a time-efficient state observer using the medium fidelity,
dynamic flow model “WindFarmSimulator” (WFSim), in the pursuit of real-time closed-loop
control. Observers will provide estimations of the flow field correcting for unmodeled dynamics
(thus: allowing the use of a lower fidelity, time-efficient model), measurement noise and limited
availability (temporally and spatially) of measurements. The concept is visualized in figure 1.

Wind farm

Controller Observer (WFSim)

Control inputs:
- blade pitch
- turbine yaw
- gen. torque

Measure-
ments of
the flow-
field

Figure 1: Closed-loop control for wind farms.

In this paper, first the WFSim model will be outlined in section 2. Secondly, two enhanced
KF designs will be outlined in section 3. Thirdly, the simulation setup and simulation results
will be described in sections 4 and 5, respectively. Finally, conclusions are drawn in section 6.

2. WindFarmSimulator
This section first introduces WFSim, after which modifications are described to allow direct
implementation in state-of-the-art filtering algorithms. For a more detailed explanation of these
equations, please see Doekemeijer’s dissertation [6].

2.1. The flow model
WFSim is a medium fidelity, dynamic flow model from the Delft University of Technology
[7, 8]. It predicts the flow velocity vectors in a wind farm at hub height in predefined meshings
using the spatially and temporally discretized 2D NS equations following a computational fluid
dynamics (CFD) solution [9]. WFSim employs the actuator disk model (ADM) [10] to calculate
the aerodynamic forces on the flow by the rotor blades, approximating the turbine rotor by an
infinitely thin disk uniformly extracting energy from the flow. Furthermore, it includes a mixing
length wake turbulence model [11] to account for wake recovery, valid for slow changes in the
flow direction. What makes WFSim unique is its reformulation into an implicit, nonlinear state
space system by projecting away the continuity equations, resulting in the flow model

E(αk)αk+1 =A αk +B(αk)βk + S(αk),[
uk
vk

]
=Qpαk +Bp

(1)

with αk ∈ RN the system state vector at time k, and
[
uk; vk

]
∈ RM the collocated 2D velocity

vectors in the grid. N is proportional to the number of grid points in the mesh (i.e. refinement
of flow fields). The system input is βk ∈ RO, with O equal to the number of turbines. βk is a
scaled measure of the axial induction factors, and can be translated into physical turbine settings
such as generator torque, blade pitch and yaw. A ∈ RN×N , Bp ∈ RM , B ∈ RN×O, E ∈ RN×N ,
Qp ∈ RM×N and S ∈ RN are system matrices, of which E, B and S depend on state αk.

2.2. Model manipulation
While literature on state observers for implicit systems such as equation (1) exists (e.g., [12, 13]),
for WFSim these algorithms are too computationally heavy for real-time control and often lead to
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numerical instability. Hence, a different approach is followed. First, equation (1) is reformulated
in a more common form by extending the state vector with a constant entry allowing elimination
of the offset terms S(αk) and Bp, and performing matrix inversion of E, resulting in

[
αk+1

1

]
=

F (αk)︷ ︸︸ ︷[
E(αk)

−1A E(αk)
−1S(αk)

0 1

] [
αk
1

]
+

[
E(αk)

−1B(αk)
0

]
βk,

[
uk
vk

]
=
[
Qp Bp

] [αk
1

]
.

(2)

In its current form, the calculation of E−1A at each time instant is too computationally
heavy for control applications due to high dimensionality (typically, N = 102− 103). Therefore,
computational cost is reduced by applying the Reverse Cuthill-McKee (RCM) algorithm on
equation (2), typically resulting in a computational effort reduction of 90% or more [14, 15].
The RCM algorithm rearranges the rows and columns of a matrix to transform a sparse matrix
into a sparse banded matrix, as demonstrated in figure 2.
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Figure 2: System matrices E and A under the RCM algorithm, in which respectively 63% and
76% of the entries are zero. This typically reduces computational cost of E−1A by over 90%.

The system in equation (2) allows direct implementation of state-of-the-art estimators. Note
that high dimensionality is still present, and thus emphasis is put on time-efficient algorithms.

3. Observer design
Two observers are implemented, both derived from the traditional Kalman filter (KF). However,
they are fundamentally different in their way of reducing computational cost. The first filter,
the Approximate KF (ApKF), simplifies the system model while retaining the original update
equations. The second filter, the Ensemble KF (EnKF), instead relies on the original system
model, yet approximates the KF update algorithm. Both algorithms are shortly described next.

3.1. Approximate Kalman filter
The ApKF relies on the original KF update algorithm, while enforcing sparsification of two main
matrices in pursuit of reducing computational cost. Firstly, all off-diagonal elements in the state
covariance matrix Pk are neglected, implicitly assuming the system states are uncorrelated.
From numerical results it is noted that the diagonal elements are typically a factor 101 − 102

larger than the off-diagonal elements, validating this assumption. Secondly, F (αk) in equation
(2) is made sparse by neglecting all matrix entries [i, j] that meet the condition

|F (α0)[i, j] · α0(j)| < mean (|F (α0)[i, :] · α0|) · z, (3)
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with z typically 0.05 − 0.10, and i and j the row and column of the matrix, respectively. For
z = 0, the original F matrix is retrieved. This algorithm enforces a sparsification by neglecting
matrix entries that only have a small contribution to the system update, thereby leaving the
resulting update approximately intact. This sparsification typically renders over 95% of the
entries sparse, as demonstrated in figure 3 for system matrix F (αk) ∈ R324×324 with z = 0.05.

0 50 100 150 200 250 300

0

50

100

150

200

250

300

(a) F ∈ R324×324

50 100 150 200 250 300

50

100

150

200

250

300

(b) Fsparsified ∈ R324×324

Figure 3: System matrix F under sparsification according to equation (3), with z = 0.05. This
typically reduces computational cost of the filter by over 95%.

Furthermore, for z < 0.10, typically no loss in accuracy is noted in simulation. An example
comparing the ApKF with the KF is displayed in figure 4. These simplifications reduce
computation time by a factor 101 − 102 at negligible loss in state reconstruction accuracy.
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Figure 4: Simulation results showing the mean wake centerline for the ApKF (z = 0.05) and the
KF. See Section 5 for definitions and an explanation of the simulation setup.

3.2. Ensemble Kalman filter
The second observer is an EnKF. It is a suboptimal variant of the KF in which the covariance
matrices are approximated by a sample covariance. Each ensemble member is a hypothesized
state vector. The EnKF is typically applied to nonlinear models of high order (103− 106 states)
for its computational efficiency and ability to deal with nonlinear dynamics. More information
concerning the EnKF can be found in a paper by Evensen [16]. The algorithm from the same
paper is implemented for its emphasis on computational performance.3

3 Note that there is an important difference between Evensen’s algorithm and the algorithm used in WFSim. In
Evensen’s algorithm, at each time step, the system matrices have to be recalculated for each ensemble member
due to the dependency of the system matrices on the states. With a typical ensemble size of 102 members, this is
very time consuming. Therefore, here, at each time instant the mean of all ensemble members is used to determine
one set of system matrices, which are then used to update all ensemble members forward in time.
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4. Simulation setup
The observers discussed in section 3 will be tested using the high fidelity simulation model
SOWFA in section 5, First, in section 4.1 SOWFA will be discussed, after which the simulation
domain is depicted in section 4.2. Finally, system inputs and atmospheric properties are mapped
from the SOWFA simulation to WFSim, presented in section 4.3.

4.1. SOWFA
Simulator fOr Wind Farm Applications (SOWFA) is a simulation model of the National
Renewable Energy Laboratory (NREL) that provides highly accurate flow data at a fraction
of the cost of field tests. SOWFA predicts the 3D velocity vectors in a CFD formulation using
a large-eddy simulation (LES) method. It relies on the 3D incompressible NS equations for
a steady or unsteady flow field, accounting for bouyancy (based on Boussinesq approximation
[17]) and Coriolis effects [18]. LES methods resolve larger scale dynamics directly, but employ
a subgrid-scale model for small eddy dynamics to reduce computational cost.

For rotor modeling SOWFA employs a more sophisticated version of the ADM: the actuator
line model (ALM). Unlike the ADM, the ALM includes individual rotor blade effects [17].

The FAST model [19] is implemented for turbine modeling. This model calculates, among
others: the power production of the turbine, the blade forces on the flow, the structural loading
on the turbine, and the dynamics of several turbine components [3].

SOWFA has been used on multiple occasions for model validation, controller testing, and
flow analysis in wind farms (e.g., in [2, 3, 17, 20, 21]). Its validation is still an ongoing process.
Currently, field tests have shown accurate simulation results for the first 5 rows of turbines [21].
For a full description of the flow equations, please see the article by Churchfield et al. [22].

4.2. Domain and meshing
The SOWFA dataset used for model validation and controller testing initializes simulation from
a fully uniform flow field, in which no turbulence has yet developed. A two turbine4 case with
5D spacing is simulated in a 3000×3000×1000 m domain, with an increasingly refined meshing
near the turbines and wakes. A horizontal 2000× 1000 m plane at hub height is extracted from
the SOWFA data as the area of interest, as displayed in figure 5.

2000m

1
0
0
0
m

WFSim mesh

400m 968m631.996m = 5D

Figure 5: Simulation domain used for observer testing. [3]

In WFSim, an exponential 25x50 grid meshing is used with finer spacing near turbines and
coarser spacing near the boundaries, resulting in a total number of N = 1034 states.

4.3. Mapping SOWFA to WFSim
With the simulation domain mapped in section 4.2, now the system inputs and atmospheric
settings are mapped from SOWFA to WFSim. Notably, SOWFA relies on physical turbine
settings such as yaw, blade pitch angles and generator torque to determine the force turbines

4 The NREL 5-MW turbine is used. Properties can be found in its corresponding technical report [23].
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exert on the flow. WFSim on the other hand relies on the yaw angle and theoretical axial
induction factor derived from momentum theory. A mapping between the two is required.

In SOWFA, the upstream turbine excites the flow by following a PRBS signal on the collective
pitch angle, switching between 0◦ and 4◦. The generator torque and yaw angle are kept constant.
Turbine 2 is operated at one operating point throughout the entire simulation. The axial
inductions factors are mapped accordingly. Using the tower fore-aft bending moment obtained
from FAST in combination with momentum theory, the mapping is found to be as in figure 6.5
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Figure 6: Estimated system input signal βk in equation (2).

Note that the fore-aft tower bending moment data is low-pass filtered (LPF) to remove tower
vibration effects in the estimate of βk. From this figure, it is noted that the estimate for turbine
1 is significantly better than for turbine 2, expected to be due to wake formation. Momentum
theory assumes a uniform inflow in front of the turbines. For turbine 1, this is more or less
the case as the simulations are initialized from a fully uniform flow field. For turbine 2, this
assumption does not hold due to wake formation by the upstream turbine. This is expected to
reflect in simulation results, with poorer estimations in the wake of turbine 2.

Finally, several atmospheric properties are mapped, as displayed in table 1.

Table 1: Atmospheric and model parameters for WFSim.

Parameter [units] Symbol Mapping (WFSim) True value (SOWFA)

Air density [kg·m3] ρ 1.2231 N.A. (Time-varying)
Viscosity [Pa·s] µ 0.18 · 10−5 N.A.
Free-stream flow speed (long.) [m/s] U∞ 8.00 8.00± 0.14
Free-stream flow speed (lat.) [m/s] V∞ 0.00 0.02± 0.04
Mixing length for turbulence model [m] lm 0.60 N.A.

Using the simulation settings as outlined in this section, the WFSim farm model can be
validated with SOWFA, and the ApKF and the EnKF can be tested and compared.

5. Results
Simulations are performed at a 25x50 grid meshing with N = 1034 system states. Equidistantly
spaced measurements and measurements around the turbines are fed into the observer, resulting
in 23% of the system outputs available to the ApKF and EnKF. These measurements are

5 For details, see Doekemeijer’s dissertation [6].
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disturbed by adding Gaussian noise with standard deviation σ = 0.10 m/s, comparable to
current lidar standards [24].6

The observers were tuned according to the root mean square (RMS) error, the variance
accounted for (VAF), and the quality of fit (QOF) for the mean wake centerline. The mean
wake centerline is defined as the longitudinal wind speeds throughout the domain averaged in
lateral direction from rotor end to rotor end. The performance measures are defined as

RMS(u, uest) =

√
mean

(
(u− uest)2

)
, (4)

VAF(u, uest) =

(
1− variance(u− uest)

variance(u)

)
· 100%, (5)

QOF(u, uest) = max

([
0, 1− ||u− uest||

2
2

||u||22

])
· 100%, (6)

in which we want to minimize the RMS error, and maximize the VAF and QOF. Tuning the
observers resulted in the settings as shown in table 2, with ne the number of ensembles in the
EnKF, P0 the initial state covariance matrix, R the measurement noise covariance matrix and
Q the process noise covariance matrix.

Table 2: Optimal observer settings for WFSim at 25x50 meshing.

Filter z (-) ne (-) P0 (m/s) R (m/s) Q (m/s)

ApkF 0.05 N.A. 10.0 1.0 0.050
EnKF N.A. 200 5.0 0.10 1.00

Simulating WFSim without observer, and with the ApKF and EnKF respectively, yields
estimates of the flow field at every time instant. The mean wake centerlines for the entire
simulation time can be summarized in a single figure, as displayed in figure 7. In this figure, the
black line indicates the changes in blade pitch angle of turbine 1, causing flow excitation. Gaps
indicate a pitch angle of 4◦, and the black lines indicate an angle of 0◦.

Figure 7 shows that WFSim predicts an averaged flow, as expected since WFSim does not
include sophisticated turbulence or rotor models. The observers attempt to further carve out
dynamics seen in SOWFA, and improve wake recovery modeling. Quantitative results (RMS
error, VAF and QOF) are displayed in table 3, showing that the observers significantly improve
estimations with respect to the validation case. Furthermore, the EnKF slightly outperforms
the ApKF, expected to be because the EnKF deals better with nonlinear dynamics in general.

Secondly, the full flow fields are looked at. For time t = 200, 750 and 1500 s, the flow fields
are presented in figure 8. From these figures, it is further consolidated that WFSim predicts an
averaged flow, and neglects smaller scale dynamics, showing satisfactory results in general. The
observers correct for a number of factors that WFSim estimates poorly. First of all, it is seen
that the wake width is adjusted for: WFSim overestimates the wake width, expected to be due to
the very simplified turbulence model. Secondly, in SOWFA, there is no wake formation behind
the turbine hub, and thus two wakes form in parallel instead. Due to the simplified actuator
disk model in WFSim, a single wake is modeled. The observers correct for this. Thirdly, wake
meandering is somewhat accounted for. Fourthly, wake recovery is improved by the observers.

6 Note that this is not a very realistic number or location of measurements. Reducing the number of measurements
decreases performance, but still is beneficial when compared to the case in absence of an observer. For
demonstration purposes, more measurements are fed into the observer in these simulations.
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Figure 7: Mean wake centerline velocity in longitudinal direction over the simulation time. The
black line indicates the blade pitch angle setting of turbine 1. For the gaps, the blade pitch
angle is 4◦, and for the black lines it is 0◦.

Table 3: RMS, VAF and QOF for the mean wake centerline for WFSim, EnKF and ApKF.

RMS (m/s) VAF (%) QOF (%)
Time (s) WFSim EnKF ApKF WFSim EnKF ApKF WFSim EnKF ApKF

1 0.046 0.046 0.046 17.2 17.2 17.0 100 100 100
200 0.491 0.374 0.419 85.3 88.1 88.8 99.4 99.5 99.6
500 0.836 0.438 0.590 64.6 88.5 82.6 98.1 99.1 99.5
1000 0.642 0.367 0.433 77.9 90.7 88.1 98.8 99.5 99.6
1500 0.785 0.415 0.448 68.8 89.2 88.8 98.3 99.4 99.5
1999 0.499 0.315 0.414 88.6 93.5 93.0 99.3 99.5 99.7

Finally, comparing the EnKF to the ApKF, it is directly seen that the EnKF relies more on
stochasticity, but therefore also deals better with model nonlinearity. Noticeably, the EnKF
deals well with the underestimated wake depth, while the ApKF does so less well.

Moreover, the computational cost of observer updates are displayed in table 4, for our
simulations with N = 1034 and for a larger scale simulation N = 4560. This table clearly shows
the increase in efficiency in the enhanced filtering algorithms with respect to the traditional KF.
Furthermore, when comparing results for N = 1034 and N = 4560, it is noted that gains in
computational efficiency scale up more than linearly with system size.

Table 4: Average computational cost per iteration in seconds.

System size WFSim KF EnKF ApKF

N = 1034 1.0 · 10−1 1.3 · 101 7.0 · 10−1 8.0 · 10−1

N = 4560 1.2 · 100 1.1 · 103 8.0 · 100 8.5 · 100
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Figure 8: Estimated flow field in x-direction for t = 200, 750, 1500 s.

6. Conclusions and on-going work
Concluding from figures 7 and 8 and tables 3 and 4, two state observer designs have been
proposed with comparable or better performance than a full KF at a fraction of the computation
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cost. These computational benefits grow more than linearly with system size. In our simulations
with N = 1034 states, the observers account for an overestimated wake width, underestimated
wake depth, underestimated wake recovery, turbine hub effects and wake meandering. This is a
first major step to time-efficient higher fidelity closed-loop control of wind farms.

Improvements in model validation and filtering results can be realized by improving the
WFSim model (e.g., including turbine hub effects, including a mapping from physical turbine
settings to axial induction factors, improving the turbulence model, optimizing the number
and location of measurements fed into the observers). Also, more refined tuning of observers
(noteably, the covariance matrices and underlying filter assumptions) and domain meshing
should further improve state filtering results. Finally, as the focus in this work is limited to
axial-induction-based control, wake redirection control is to be explored in future research.
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List of Acronyms
ADM Actuator disk model

ALM Actuator line model

ApKF Approximate Kalman filter

CFD Computational fluid dynamics

CPU Central processing unit

CU University of Colorado Boulder

DCSC Delft Center for Systems and Control

DOE Department of Energy

DTU Technical University of Denmark

DWM Dynamic Wake Meandering

ECEE Electrical, Computer and Energy Engineering

EnKF Ensemble Kalman filter

FAST Fatigue, Aerodynamics, Structures and Turbulence

FLORIS FLOw Redirection and Induction in Steady-state

FLORIDyn FLOw Redirection and Induction Dynamics

IEA International Energy Agency

IPC Individual pitch control

IRKA Iterative Tangential Interpolation Algorithm

KF Kalman filter
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LCOE Levelized cost of energy

LES Large-eddy simulation

lidar Light detection and ranging

LPF Low-pass filter

LTI Linear time-invariant

NREL National Renewable Energy Laboratory

NS Navier-Stokes

PDE Partial differential equation

PRBS Pseudo-random binary sequence

qLPV Quasi-linear parameter varying

QOF Quality of fit

RANS Reynolds Averaging of Navier-Stokes

RCM Reverse Cuthill-McKee

RMS Root mean square

SOWFA Simulator fOr Wind Farm Applications

SVD Singular value decomposition

TORQUE Science of Making Torque from Wind

TSR Tip-speed-ratio

TU Delft Delft University of Technology

VAF Variance accounted for

WESys Wind Energy System

WFSim WindFarmSimulator

List of Symbols

α System state vector for WindFarmSimulator -
αt Tuning parameter in the wake centerline curve -
α̃ Extended system state vector of WindFarmSimulator -
ˆ̃α Filtered/predicted state estimate -
β Rotor blade pitch angle ◦

βw System input vector for WindFarmSimulator -
γ Turbine yaw angle ◦
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γe Measurement noise ensemble m/s
∆i−j Unit pulse nonzero only for i = j -
εm Measurement noise m/s
εp Process noise -
λ Tip-speed-ratio -
Λ Eigenvalues matrix obtained by squaring the SVD diagonal values matrix Σ -
µ Dynamic viscosity N · s · m−2

ρ Flow (atmospheric) density N · s2 · m−4

σ Standard deviation -
Σ Matrix of SVD containing the diagonal values -
τg Generator torque N · m
τuu Longitudinal Reynolds normal stress Pa
τuv Reynolds shear stress Pa
τvu Reynolds shear stress Pa
τvv Lateral Reynolds normal stress Pa
ψ Model forecast or model analysis as used in the EnKF -
ω Rotor rotational speed rad · s−1

a Axial induction factor -
A Cross-sectional area of a flow m2

A∞ Cross-sectional area of a freestream flow m2

A−∞ Cross-sectional area of a flow far downstream m2

AD Cross-sectional area of the infinitely thin disk (or: rotor swept area) m2

As System matrix for an LTI system -
Ae System state vector ensemble -
Aw System matrix for WindFarmSimulator -

Ax
Matrix in discretized NS equality of WFSim originating from convection and
difussion terms of the u− and v−momentum equations -

Ay
Matrix in discretized NS equality of WFSim originating from convection and
difussion terms of the u− and v−momentum equations -

A′e Deviation in state ensemble from the mean -
Ae State ensemble mean -
Â System matrix dependent on the Reynolds number -

bx
Vector in discretized NS equality of WFSim originating from the mesh layout
and velocity vectors at a previous time instant -

by
Vector in discretized NS equality of WFSim originating from the mesh layout
and velocity vectors at a previous time instant -

bc
Vector in discretized NS equality of WFSim originating from the boundary
conditions -

Bp
System matrix for WindFarmSimulator used for projecting away the continuity
equation, obtained as a solution to the continuity equation -

Bs System matrix for an LTI system -
Bw State-dependent system matrix for WindFarmSimulator -
Bx Matrix in discretized NS equality of WFSim originating from the mesh layout -
By Matrix in discretized NS equality of WFSim originating from the mesh layout -
B̃ Manipulated system matrix of WindFarmSimulator -
B̂ System matrix dependent on the Reynolds number -
CP Non-dimensional power coefficient -
Cs System matrix for an LTI system -
CT Non-dimensional trust coefficient -
C̃ Manipulated system matrix of WindFarmSimulator -
Ĉ System matrix dependent on the Reynolds number -
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d Measurement vector m/s
dt Timestep used in WFSim s
D Rotor diameter m
De Measurement ensemble m/s
Ds System matrix for an LTI system -
D′e Deviation in measurement ensemble from the mean -
ek State estimation error -
E Expected value operator (from probability theory) -
Ew State-dependent system matrix for WindFarmSimulator -
Ê System matrix dependent on the Reynolds number -
F̃ Manipulated system matrix of WindFarmSimulator -
FD Axial force exerted on the flow by the infinitely thin disk N
FT Axial force exerted on the flow by a turbine at hub height N
h Timestep as defined by user s
hz Turbine hub height m
H Approximated system output matrix in the EnKF -
i Indexing integer -
I Indexing integer -
j Indexing integer -
J Indexing integer -
k Discrete time index -
lm Eddy length scale m
Lk Gain matrix for predicted state estimate update in KF -
Lw Wake half width m
Lx Longitudinal mesh length (or: rectangular domain length) m
Ly Lateral mesh length (or: rectangular domain width) m
L′k Gain matrix for filtered state estimate update in KF -
L? Steady state optimal gain matrix for the regular KF -
M Size of system output vector -
Mz Tower fore-aft bending moment N · m
n Gearbox ratio -
ne Number of ensemble members -
nx Unit vector in x-direction -
ny Unit vector in y-direction -
N Size of system state vector -
NN Total number of steps in a simulation -
Nx Number of longitudinal mesh points -
Ny Number of lateral mesh points -
O Size of system input vector -
p0 Initial pressure in the flow field Pa
p Pressure in a flow field N · m−2

p Vector containing all pressure terms in a specified mesh Pa
P Power captured by a wind turbine W
Pe Sample state estimation error covariance matrix -
Pk State estimation error covariance matrix at time k -
Prated Rated power captured by a wind turbine W -
PV Power available in a freestream wind flow W
P ? Solution to the discrete algebraic Riccati equation -
Qk Process noise covariance matrix at time k -

Qp
System matrix for WindFarmSimulator used for projecting away the continuity
equation -

R Rotor radius m
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Re Sample measurement noise covariance matrix -
Rk Measurement noise covariance matrix at time k m/s
Re Reynolds number -

Sx
Longitudinal forcing terms in discretized NS equality of WFSim originating
from turbine extracting energy from the flow -

Sy
Lateral forcing terms in discretized NS equality of WFSim originating from
turbine extracting energy from the flow -

Sk Cross-covariance matrix for measurement and process noise -
SMu

Longitudinal external force term in NS equations N · m−3

SMv
Lateral external force term in NS equations N · m−3

Sw State-dependent system matrix for WindFarmSimulator -
t Time s
TMu

Longitudinal turbulence term N · m−3

TMv
Lateral turbulence term N · m−3

u Longitudinal flow speed m/s

u0
Vector in discretized NS equality of WFSim originating from convection and
difussion terms of the u− and v−momentum equations -

uk Input vector for an LTI system -
u′ Longitudinal velocity fluctuation from turbulence m/s
u Vector containing all longitudinal velocities in a specified mesh m/s
û System input vector of the Reynolds dependent system -
U Wind flow velocity m/s
U∞ Freestream longitudinal wind speed (far upstream) m/s
U−∞ Longitudinal wind speed far downstream of a flow m/s
Ucut-in Cut-in wind speed; wind speed at which control becomes worthwhile m/s
UD Flow speed at the infinitely thin disk (or: rotor) m/s
Urated Rated wind speed; wind speed after which power generation is limited m/s
USVD Left-side matrix in the SVD -
v Lateral flow speed m/s

v0
Vector in discretized NS equality of WFSim originating from convection and
difussion terms of the u− and v−momentum equations -

v′ Lateral velocity fluctuation from turbulence m/s
v Vector containing all lateral velocities in a specified mesh m/s
V∞ Freestream lateral wind speed m/s
VSVD Right-side matrix in the SVD -
x Longitudinal displacement m
xk System state vector of an LTI system -
x̂ System state vector of the Reynolds dependent system -
X1 Longitudinal coordinates for primary WFSim meshing m
X2 Longitudinal coordinates for secondary WFSim meshing m
y Lateral displacement m
yk System output vector for an LTI system -
ŷ System output vector of the Reynolds dependent system -
Y1 Lateral coordinates for primary WFSim meshing m
Y2 Lateral coordinates for secondary WFSim meshing m
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