Advancing ecohydrology in the 21st century: A convergence of opportunities

1Picker Engineering Program, Smith College, Northampton, MA, USA
2Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
3Department of Geography, Humboldt University of Berlin, Berlin, Germany
4Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA
5Department of Geography and Environmental Studies, Thompson Rivers University, Kamloops, BC, Canada
6Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, USA
7School of Civil Engineering, University College Dublin, Dublin, Ireland
8Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
9School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
10Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Holland
11Office of the Chancellor, University of Michigan-Dearborn, Dearborn, MI, USA
12School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
13Department of Geography and Spatial Sciences, University of Delaware, Newark, DE, USA
14Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, Tsukuba, Japan
15Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
16Nicholas School of the Environment, Duke University, Durham, NC, USA
17Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
18Disaster Research Center, University of Delaware, Newark, DE, USA
19Institute of Geography, Friedrich Schiller University of Jena, Jena, Germany
20Biden School of Public Policy, University of Delaware, Newark, DE, USA
21School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
22Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
23Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Ecohydrology published by John Wiley & Sons Ltd
1 INTRODUCTION

The interdisciplinary science of ecohydrology explores interactions between the structure and function of ecological systems and the movement and quality of fresh water. While aspects of this science have been investigated for over a century (Mackay, 2019), the field has experienced significant growth over the past two decades, highlighted by the establishment of a new field-specific journal in 2008 (Smettem, 2008). The past decade has also seen an explosion in our capability to sense and model the environment with the concomitant beneficial outcome of being able to better manage water resources. These advances in measurement and modelling have created new opportunities to address interesting and important ecohydrological questions, such as

- How do vegetation canopies and their communities interact with precipitation to affect the quantity and quality of water fluxes, along with their spatial and temporal variability?
- How do ecosystem processes in the critical zone—the thin, dynamic, and life-sustaining skin of the terrestrial earth that extends between the vegetation canopy, soil and groundwater (Grant & Dietrich, 2017)—affect the partitioning of soil moisture between the water that makes up transpiration and that which eventually becomes groundwater and streamflow?
- As we scale these processes, how do changes to the landscape affect the quantity, distribution, and quality of streamflow?

These science questions are not only fascinating in their own right but are also directly relevant to fundamental societal challenges laid out in the United Nations Sustainable Development Goals, such as access to clean water and sanitation, provision of food toward zero hunger, and protection of life on land (Brauman, Daily, Duarte, & Mooney, 2007; IPBES, 2019; Zalewski, 2000; Zalewski, 2014). In this paper, these questions—relating to canopy processes, belowground processes, and up-scaled effects—illustrate how recent improvements in measurement and modelling can accelerate scientific discovery. These advances in understanding can lead to decisions and policies that promote a more sustainable world (Figure 1).

2 ADVANCES IN MEASUREMENT AND OBSERVATION

Observation of ecohydrological processes is challenging because of the scale of the systems (spanning submillimeter to global), the
remoteness of key processes (e.g., headwaters and deep aquifers), and the breadth of informative and determinative parameters. Historically, advances have been slow because the commercial market for the required technologies has been small and, in some cases, existing sensing systems have been written into antiquated standard methods. However, in recent years, the technologies of sensing, housing, storing, transmitting, and disseminating data have been transformed in performance and cost, profoundly enhancing the ability to make environmental observations (e.g., Ensign et al., 2019; Tauro et al., 2018). In the section below, recent advances in the measurement of key state variables and information transmission pertinent to the physical environment surrounding vegetation are described. The aim here is not to provide an exhaustive list but rather a sampling of representative technologies gaining prominence and use in the field.

2.1 | Technological advances

2.1.1 | Solid state sensor technology

With the advent of mass technologies such as the smart phone and autonomous vehicles, the market demand for high-performance sensors has experienced tremendous growth. Many of these sensors are well suited for use in environmental applications. For example, the pressure sensors from diving watches are accurate to within 1 mm of pressure-head up to depths of 10 m, cost under US$10 each, and require only minimal energy (micro Amps; e.g., Stewart, Abou-Najm, Rupp, & Selker, 2012). Accelerometers, regularly used in smartphones and game controllers, are inexpensive and ubiquitous. Other examples include sensors for gases (e.g., CO as used by Huwald et al., 2012), turbidity, electrical conductivity, radiation (across the spectrum), temperature, humidity, global positioning system location, flow, fluid velocity, and many others. In each case, the combined accuracy, spatial and temporal resolution, energy efficiency, stability, and cost have all moved in favourable directions (see Sensorwiki.org for a comprehensive treatment of relevant microsensor technology).

2.1.2 | Computer control of sensing systems

Microcomputer systems such as the Arduino, Feather and Raspberry Pi, costing a few US$ and allowing for programmed logging and communication with very low power, have transformed the heart of environmental sensing systems (e.g., Nadeau et al., 2009). Perhaps even more importantly, these systems use high-level programming languages that are easily learned, and code can be shared and co-developed globally. Combined with version-controlled platforms such as GitHub, these advances provide the underpinnings for a transformative community-based approach for the development and dissemination of sensing systems (see Open-Sensing.org for examples of sensing systems based on these technologies).

2.1.3 | Data storage and transmission

Over the past decade, the challenges of storing and transmitting data have been partially solved. Historically, the most costly aspects of environmental sensing were mandatory scheduled site visits to retrieve data and verify system operation. Global telemetry now enables the remote acquisition of real-time data at much lower cost, allowing for new scales of observation. For example, the Trans African Hydro-Meteorological Observatory (TAHMO.org) now pays about US $0.25 per month per station to send up to one megabyte of data to the worldwide web from most African locations (Selker et al., 2020). Satellite communication complements telephonic systems in providing full global coverage, and, in 2019, we have seen the deployment of the first space-based LoRa telemetry, which is expected to dramatically reduce global data delivery costs from any point on earth (e.g., http://lacuna.space/). Moreover, other advanced systems are
also presently under construction, such as the SpaceX Starlink, which has a constellation of 122 communication satellites in orbit https://www.spacex.com/news/2019/11/11/starlink-mission, as well as Amazon’s Project Kuiper, which seeks to place 3,236 satellites in orbit for global connection to the internet.

2.1.4 Fittings, fixtures, and housings

The maturation of mass-market 3-D printing has allowed economical and custom manufacturing of housings and fixtures; rather than requiring moulds costing on the order of US$100,000, these components can now be printed for US$5/kg. Further, these designs can be shared globally, so that anyone can have complex housings and fixtures created locally and at low cost. This technology can be used both commercially and in user-built contexts, in both cases offering important cost savings and accessibility of necessary elements for field-deployment of sensor systems.

2.2 Transforming environmental sensing

While these technological advances are widely known, we are only now developing the community infrastructure to translate opportunity to reality. The Openly Published Environmental Sensing (OPENs, found at Open-Sensing.org) community is creating a forum for the publication of solutions to diverse ecohydrological sensing problems, while many labs around the world are carrying out closely related work (e.g., Open-storm.org; Enviroidly.org). These platforms facilitate the continued evolution of successful systems, where users across the globe refine and republish improved and alternative systems. Even so, commercial entities will always be the primary means of making sensors broadly accessible, as most people will not have the time, equipment, or expertise to manufacture their own systems for outdoor deployment. Thus, the industry and forums such as OPENs are actively exploring collaborations that nurture the creative output of instrument developers, while maintaining an environment where businesses can maintain viability. At this point, it appears that the “art” of building and supporting environmental sensing systems is so specialized that companies could succeed by focusing on the production and marketing of open-source designs. Interested readers are referred to Turner, Hill, and Caton (2020) for a full discussion of open source resources in ecohydrology.

An important platform for environmental sensors has arisen from the development of unmanned aerial systems with differential global positioning system accurate to 1 cm. These systems now provide for low-cost optical sensing, including photogrammetry, thermal-imaging, light detection and ranging, and hyperspectral imaging (e.g., Selker, Tyler, Higgins, & Wing, 2015). The ability to apply stereo-imagery methods, now often referred to as “structure from motion,” allows millimetre-scale resolution of scenes spanning tens of kilometres (e.g., Carrivick, Smith, & Quincey, 2016). These same unmanned aerial system platforms can carry sensors for gas, radiation, dust, pollen, and many other parameters of great utility to ecohydrologists (e.g., Hill, Pyper, & Church, 2020; Schumacher & Christiansen, 2020; Toth & Jóźków, 2016).

Commercially available “multiparameter sondes” have been transformative in understanding the physical and chemical status of hydrological systems. These systems have typically been based on classical laboratory sensing approaches (e.g., ion-specific electrodes), adding important innovations in power management, calibration, and datalogging so that measurements can be effectively implemented over month-scale deployments. New sensing approaches, such as oxygen-sensitive fluorescent dye, have provided key capacity to measure dissolved oxygen with minimal recalibration required (e.g., Wang & Wolfbeis, 2014), and spectrolysers supply high-frequency stream chemistry data (e.g., Vaughan et al., 2017).

Laser technology has also affected instrumentation in hydrological sciences. Advances in laser spectroscopy have revolutionized the ability to quantify the stable isotopes of water (\(^{2}H\) and \(^{18}O\)), dramatically lowering the per sample cost and enabling continuous in-field observations. These isotopes can be used to identify hydrological sources, track ecohydrological processes, and elucidate how different vegetation communities affect water partitioning between “green” and “blue” water fluxes (Dubbert & Werner, 2019; Tetzlaff et al., 2015). Laser disdrometers measure the fall velocity and diameter distribution of drop sizes of precipitation. Distributed temperature systems measure temperature along a fibre-optic cable with high spatial and temporal resolution. In all of these cases, the instrumentation is fundamentally complex and high cost, so the avenue for adoption has relied on manufacturers developing complete solutions. Collaboration between manufacturers and clients has been close, and many of the most important advancements have been driven by the needs of the user community. For example, CTEMPs.org has worked closely with distributed temperature sensing producers to develop distributed temperature sensing systems suited to environmental applications, to reduce power consumption, and to improve temporal and spatial resolution (e.g., Selker et al., 2006).

2.3 Measurements and modelling

As ecohydrological knowledge and understanding expand, process-based representations increase in complexity as additional interactions and parameters are incorporated, for example, topography, hydrologic connectivity, soil texture, tree height, and canopy density (Band, Tague, Groffman, & Belt, 2001; Maxwell & Condon, 2016; Pringle, 2003). Utility of measurements to constrain model structures and parameter sets, which are associated with different subdomains of models (ecological, surface, subsurface, etc.), has been an increasing focus in model calibration. Multicriteria calibration increases the confidence that the dominant ecohydrological processes are being appropriately represented (Kelleher, McGlynn, & Wagener, 2017). Including measured data of different components of the ecohydrological system (water balance, energy balance, and carbon uptake) in the calibration process has been shown (Kuppel, Tetzlaff, Maneta, & Soulsby, 2018).
to result in “the right answers for the right reasons” (Kirchner, 2006). Diverse data sources—made possible by advances in measurement—can help to reduce information redundancy and provide insight to the processes represented in a model (Clark, Kavetski, & Fenicia, 2011; Fatichi et al., 2016). As a corollary, model failure in adequately representing observed processes provides an opportunity to learn and improve conceptualizations (Birkel, Soulsby, & Tetzlaff, 2014).

To date, deductive reasoning has been the preferred strategy in ecohydrology, where process-based models are developed based on theory, and data are used to constrain parameters for a particular context. Consistent physics in the models provides a rationale for application to unobserved conditions, for example, prediction of the future or exploration of hypotheticals. Now, with the volume and complexity of big data being collected and shared, new methods are emerging to more fully realize the potential of these data. The core capacity of data-driven machine learning techniques is to quantify patterns in data that were not otherwise apparent, which can deepen conceptual understanding and feed into new theories.

Machine learning includes the automated identification of connections between measurements and outcomes, wherein signals in training data sets are identified and can be aggregated to obtain predictive models based purely on sets of observations. For example, Shortridge, Guikema, and Zaitchik (2016) claim that machine learning predictive models based purely on sets of observations. For example, Shortridge, Guikema, and Zaitchik (2016) claim that machine learning methods such as “random forest” provide significantly better predictions of streamflow compared with physical models. A significant challenge in using machine learning in ecohydrology, or any application, lies in the complexity of approaches. Many algorithms are available, and each varies in complexity, computation time, data needs, optimization, and effectiveness in pattern identification (Lange & Sippel, 2020). However, there is limited guidance on how to use these complex tools (Blair et al., 2019; Lange & Sippel, 2020; Olden, Kennard, & Pusey, 2012), and interdisciplinary training and collaboration between computer scientists and earth scientists are required to obtain a reliable and robust result (Ben-Hamadou & Wolanski, 2011). Machine learning tools have been made more accessible by automated software, for example, the Walkato Environment for Knowledge Analysis, Weka (Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown, 2017), an open-source user-friendly platform that identifies the most suitable algorithm and the hyperparameter settings based on the input dataset.

Currently, the number of applications in ecohydrology using this approach is limited, though new efforts are emerging. For example, boosted regression tree analysis identified the biotic and abiotic factors that affect variability in stemflow (Tanaka et al., 2017). In another example, factorial analyses on rainfall partitioning revealed new insights into processes that had hitherto been incompletely understood (Nanko, Hudson, & Levia, et al. 2016; Tanaka et al., 2015). As video (gigabytes per camera per day), hyperspectral images (terabytes per camera per day), fibre-optic sensors (gigabytes per sensor per day), satellites (terabytes), and swarms of microsensing systems (gigabytes) provide massive and diverse data related to ecological and hydrological processes, the use of automated quantification of linkages between predictors and environmental responses will take a central place in the study and prediction of ecohydrological systems. These emerging techniques may challenge the historical preference for process-based modelling, and, if effort is dedicated to the opportunity, will result in new insights and greater understanding of these intrinsically complex systems.

2.4 Measurement challenges

Measurement and modelling developments are not without their challenges, and we can only address the gap between opportunity and current practice by considering impediments to adoption. While technological advances have led to the development of novel and inexpensive sensors, increasing the number and accessibility of measurements is still challenged by issues of standardization, data curation, and resource allocation.

We are accustomed to plugging devices into our computers and having them work. This reflects the remarkable collaboration between peripheral makers and operating-system developers, and the substantial investment in making consumer electronics robust and reliable. The limited size of the environmental sensing market and the diversity of needs reduces the incentive for commercial interests to develop plug-and-play solutions. Further, as a community, we have not developed common standards for communication between sensors and data-communication systems. For example, the I2C protocol that many new sensors employ is limited to just one meter of cable between the sensor and the data system—a requirement that is often not met in environmental applications.

Data management, while no longer costly by way of raw storage, is challenging due to the need to properly describe, curate, and archive the information. Data unification efforts are underway at organizations such as the Consortium of Universities for the Advancement of Hydrologic Science, Inc., the National Ecological Observatory Network, the Long Term Ecological Research Network, FLUXNET, and the National Center for Atmospheric Research, among many others (see Richter et al., 2018). Nonetheless, the human effort required to maintain data integrity is large, and significant effort must be committed to data management. Although the biological community has developed inspiring infrastructure for sharing of DNA sequences, the complex and diverse nature of measurements in ecohydrology presents an additional challenge to the problem of accurate and accessible archiving of important data.

Even with new and low-cost sensors, resources are finite. Interesting challenges persist around issues of precision, resolution and coverage of spatial and temporal data, and how these issues relate to our scientific goals and questions. Should investments in measurements be targeted to testing specific hypotheses or to long-term monitoring to provide a baseline from which new hypotheses can be generated? What is the appropriate mix of cheaper sensors with low precision that can be deployed with wide spatial coverage versus more expensive and precise measurements? How can new technologies enhance and build upon existing measurement techniques? These
are not issues of technology alone but will also be informed by (and
inform) our scientific understanding and policy decisions (Figure 1).

Taken as a whole, advances in sensors, microcomputing, 3-D
printing, unmanned aircraft, global telemetry, modelling, and data
interpretation are slowly transforming our ability to understand eco-
hydromological systems (cf. Levia et al., 2020). Improving the pace of
translation of novel sensors to useful tools requires the adoption of
clear and rigorous standards for meta-data and sensor interfaces.
Global collaboration on these systems will be fundamental to success,
with community efforts—such as Consortium of Universities for the
Advancement of Hydrologic Science, Inc.’s Water Data Services—
representing fundamental contributions to support these advance-
ments. If these challenges are overcome, the synergies created by the
convergence of opportunity among high-frequency environmental
sensing, open source resources (both hardware and software), and
machine learning have the potential and capability to help inform poli-
cies to mitigate the world’s water problems (Figure 1). Such a conver-
gence will change the way ecohydrologists perceive, tackle, and solve
water-resource issues. No longer limited by small data sets, new
insights into ecohydrological processes can be uncovered and lead to
better environmental stewardship, thereby enabling ecohydrologists,
water resource planners, and policy analysts to translate science into
solutions (Figure 1).

3 | ADVANCING UNDERSTANDING AND
REPRESENTATION OF ECOHYDROLOGICAL
PROCESSES

3.1 | Canopy processes

Given the importance of interception loss as a component of total
evapotranspiration from many of the globe’s forests (see Carlyle-
Moses & Gash, 2011), furthering our understanding of precipitation
partitioning processes should result in a greater understanding of pre-
cipitation recycling. Precipitation recycling can generate and intensify
the redistribution of water at scales far greater than the watershed
scale (e.g., Nobre, 2014; van der Ent, Savenije, Schaefl, & Steele-
Dunne, 2010) and is important for understanding water availability
downwind (Ellison et al., 2017; Keys et al., 2012). Innovations in
model predictions and measurement technologies discussed here will
allow a more holistic approach to forest-water interactions connecting
local, regional, and global scales and have important policy and man-
agement implications (Brubaker, Entekhabi, & Eagleson, 1993; Koster
et al., 1986).

Canopy interception loss has long been understood to comprise
evaporation from canopy storage both during and after a rain event
(see Horton, 1919). Although one of the simplest concepts in
ecohydrology, the controls on canopy-water storage and the mecha-
nisms that result in the evaporation of intercepted rainfall are still not
fully understood. Additionally, underlying assumptions known to be
invalid in many cases continue to populate the interception literature
and remain embedded in many canopy rainfall-partitioning models
utilized today. For instance, the wetting of a canopy during small
events of insufficient depth to saturate the canopy, or during the early
stages of larger events, is represented as a “water-box”—in which no
drainage occurs from the canopy until it reaches complete
saturation—in Rutter-Gash type interception models (see Junior
et al., 2019; Su, Zhao, Xu, & Xie, 2016; Valente, Gash, Nobrega,
David, & Pereira, 2020). However, interception theory has long recog-
nized that canopy storage fills in an exponential manner with drainage
occurring throughout the wetting phase of the rain event (see

Additionally, understanding the physical processes and atmos-
pheric conditions leading to the evaporation of intercepted rainfall
remains a formidable challenge (Carlyle-Moses & Gash, 2011; van Dijk
et al., 2015). Rutter (1967) suggested that the energy required to sus-
tain the evaporation of intercepted rainfall came from the air itself,
that there is a downwards sensible heat flux and/or a decrease in the
ambient air temperature within the canopy volume (van Dijk
et al., 2015). Stewart (1977) argued that this downward sensible heat
flux from above wetted canopies must involve large-scale advection
from surrounding dry land areas. In contrast, Shuttleworth and
Calder (1979) suggest that the lower atmosphere may already store
sufficient sensible heat or that sensible heat being released by precipi-
tation processes may maintain high evaporation rates from wetted
canopies (van Dijk et al., 2015). Additionally, van Dijk et al. (2015) sug-
gest that the use of conventional Penman-Monteith theory results in
less interception loss than what should be expected based on experi-
mental evidence from field studies (e.g., Cisneros Vaca, van der Tol, &
Ghimire, 2018). This underestimation of canopy interception loss, and
associated fluxes, has ramifications for climate and hydrological
modelling. For example, van Dijk et al. (2015) suggest that rainfall gen-
eration downwind predicted by weather and climate models may be
erroneous if water vapour and energy fluxes associated with intercep-
tion loss are not considered by land-surface models. Similarly,
Savenije (2004) states that underestimating interception loss may
result in hydrological model errors, particularly when automated cali-
bration leads to other parameter values being adjusted to compensate
for errors in interception.

In order to more fully understand wetting and evaporative pro-
cesses associated with canopy interception loss, precisely calibrated
high-temporal resolution measurements of canopy partitioning of
rainfall into interception loss and canopy drainage in the form of
throughfall and stemflow are required (e.g., Iida et al., 2017; Iida, Shi-
mizu, Shinohara, Takeuchi, & Kumagai, 2020). Sensor technologies, as
discussed above, offer great promise in propelling our understanding
of interception loss and understory precipitation dynamics. For exam-
ple, laser disdrometers, such as those developed by Nanko, Hotta, and
Suzuki (2006), allow for distinctions to be made between different
throughfall types (free-throughfall, canopy-drip, and canopy-splash)
and their relative quantitative importance (e.g., Levia
et al., 2019;Levia, Hudson, Llorens, & Nanko, 2017; Nanko, Hudson, &
Levia, 2016). By comparing the temporal characteristics of throughfall
type and depth relative to rainfall, disdrometer technology can pro-
vide important insight into the wetting of the canopy during a rain
event. Additionally, disdrometers may also provide insight into the role of larger raindrops on the interception loss process under differing forest and meteorological conditions. For example, the greater kinetic energy associated with larger raindrop diameters has been suggested by some (e.g., Calder, 1996) to delay canopy saturation and reduce maximum canopy storage, and by others (e.g., Dunkerley, 2009; Murakami, 2006) to increase evaporation because larger drops are subjected to greater splash. Disdrometers, along with other emerging sensor technology such as electromagnetic rain gauges (Bong-Joo et al., 2019) and piezoelectric rain gauges (Haselow, Meissner, Rupp, & Miegel, 2019), provide information on drop size and associated kinetic energy, as well as more precise measurement of event initiation, cessation, and intrastorm breaks.

Accelerometers that are mounted to a tree trunk can be used to determine canopy interception storage due to increases in the mass of the tree (van Emmerik et al., 2017) and may provide high-temporal resolution information about canopy-wetting dynamics. Other low-cost sensors that can be used to further our understanding of rainfall partitioning processes by the canopy include the Arduino-based stemflow sensor developed by Turner, Hill, Carlyle-Moses, and Rahman (2019). Leaf-wetness sensors determine the instantaneous time of stemflow initiation, while ultrasonic rangefinders measure the distance to the liquid surface within the reservoir. Average stemflow volume can be determined with a 10-s temporal resolution, and a series of these units measuring both throughfall and stemflow can be utilized to provide high temporal resolution understory rainfall measurements. These, in turn, provide greater understanding of the interactions between the canopy and lower portions of the critical zone (Carlyle-Moses et al., 2018).

3.2 Critical zone processes

Vegetation partitions soil-water into "green" water fluxes that sustain biomass and "blue" water fluxes that supply groundwater recharge and streamflow (Evaristo, Jasechko, & McDonnell, 2015). Both a changing climate and changing landscapes can affect this partitioning. These interactions between water and vegetation occur in a dynamic feedback system within the critical zone where vegetation is influenced by the zone's structure and function, and, in turn, the critical zone is altered by the vegetation.

This dynamism—in vegetation growth, root structure, and plant physiology—is now being considered explicitly in ecohydrological models (e.g., RHESSys (Tague & Band, 2004), EC-H2O (Kuppel et al., 2018; Maneta & Silverman, 2013; Simeone et al., 2019), TRIBSVEGGIE (Ivanov, Bras, & Vivoni, 2008), Cathy (Niu et al., 2014), Tethys-Chloris (Fatici, Ivanov, & Caporali, 2012), and FLETCH2 (Mirfenderesgii et al., 2016)). These models explicitly integrate energy fluxes, water fluxes, and storage, as well as vegetation dynamics to capture feedback between ecosystem productivity, hydrology, and local climate. Still, a major remaining challenge is variation in temporal scales used to develop and calibrate models [i.e., short-to-midterm hydrological (e.g., streamflow and soil moisture) and ecological dynamics (e.g., seasonal phenology)] and their intended use—predicting long-term vegetation dynamics that affect water use. Fortunately, some work is beginning to ameliorate this challenge (Paschalis, Fatichi, Katul, & Ivanov, 2015).

Further advances in modelling ecohydrological processes in the critical zone will require robust data sets that can identify when models serendipitously yield plausible results, but for irrational or unjustifiable reasons. Stable isotopes and other conservative tracers can help resolve this dilemma. Isotopes and tracers can identify hydrological sources of water, elucidate how different vegetation communities affect water partitioning between "green" and "blue" water fluxes (Dubbert & Werner, 2019; Tetzlaff et al., 2015), and estimate the travel-time distributions, all of which can further constrain model representations (e.g., Botter, Bertuzzo, & Rinaldo, 2011; Calabrese & Porporato, 2015; Guswa, Rhodes, & Newell, 2007; Smith, Tetzlaff, Laudon, Maneta, & Soulsby, 2019). These data have also improved the representation of the celerity of hydrological fluxes, as well as the velocity of water particles and the mixing relationships within soils (Benettin, Kirchner, Rinaldo, & Botter, 2015; Birkel, Tetzlaff, Dunn, & Soulsby, 2011; McDonnell & Beven, 2014).

When integrated with explicit representation of vegetation dynamics, these tracer-aided modelling concepts can help resolve the influence of vegetation on ecohydrological partitioning (Douinot et al., 2019; Penna et al., 2018; Sprenger et al., 2018) and provide deeper insight into some of the most crucial phenomena of the ecohydrological system, such as from where in the subsurface plants extract their water (Playda, Dubbert, Siegwolf, Cuntz, & Werner, 2017; Volkmann, Kühnhammer, Herbstritt, Gessler, & Weiler, 2016), over what spatial footprints (Geris, Tetzlaff, McDonnell, & Soulsby, 2017) and over what timescales (Brinkmann et al., 2018).

3.3 Effects of landscape change on amount, distribution, and quality of streamflow

Coupling aboveground and belowground processes across varied temporal and spatial scales is crucial to understanding streamflow amount, distribution, and quality. Observational studies indicate that an increase in forest cover (whether natural or plantation) leads to a decrease in overall water yield due to an increase in transpiration (e.g., Andréassian, 2004; Bosch & Hewlett, 1982; Brown, Western, McMahon, & Zhang, 2013; Brown, Zhang, McMahon, Western, & Vertessy, 2005; Bruijnzoon, 2004; Filoso, Bezerra, Weiss, & Palmer, 2017; Jackson, Jobbágy, & Nosetto, 2009). Increases in transpiration, coupled with increased infiltration, have also been shown to reduce peak flows but with variability in the magnitude of the response (e.g., Calder & Aylward, 2006; Dadson et al., 2017; Filoso et al., 2017). Effects of increased forest cover on baseflows and low flows are more uncertain—with even the directionality of the effect being unclear—due to interactions of increased flow regulation and transpiration (e.g., Dennedy-Frank & Gorelick, 2019; Devito, Creed, & Fraser, 2005; Filoso et al., 2017; Guswa, Hamel, & Dennedy-
Frank, 2017; Homa, Brown, McFarigal, Compton, & Jackson, 2013; Jensco & McGlynn, 2011; Laaha, Skoien, Nobilis, & Böschl, 2013; Smakhtin, 2001). In all cases, predictions of the effects of landscape change on streamflow remain stubbornly imprecise. With respect to water quality, the story is similar. Scientific consensus is that forest cover reduces soil erosion, sediment load, nutrients, and pathogens relative to other land uses. Our ability to quantify precisely the effects of landcover change on water quality characteristics, however, remains limited (Jasper et al., 2013).

Direct application of new and improved ecohydrological methods relates to the emergence of ecosystem services as a framework for decision-making and design (Brauman et al., 2007; Guswa et al., 2014; Millennium Ecosystem Assessment, 2005; National Research Council, 2004; Pascual et al., 2017; USEPA Science Advisory Board, 2009). The Nature Conservancy has developed Water Funds with corporate and governmental partners throughout Latin America. Projects in Brazil, Colombia, Ecuador, Mexico, Panama, and Peru are designed to collect millions of dollars in fees from water users and to use those funds for watershed protection and improvement (Bremer et al., 2016; Goldman, Benitez, Calvache, & Ramos, 2010). Through its National Forest Conversation Program and Sloping Land Conservation Program, China has spent over US$50B dollars to incentivize land conversion to reduce erosion and flooding (Liu, Li, Ouyang, Tam, & Chen, 2008; Ouyang et al., 2016). As of 2018, payments for watershed services totalled over US$24B annually across more than 380 different programs in over 60 countries (Salzman, Bennett, Carroll, Goldstein, & Jenkins, 2018). Nature-based designs are also being developed to address wastewater treatment (Dotro et al., 2017; Jasper et al., 2013; Vymazal, 2010) and flood-damage mitigation (Opperman, 2014). For example, the Yolo bypass in California connects the Sacramento River to floodplains that store excess flood flows, provide habitat for fish and migratory birds, and offer recreational opportunities (Sommer et al., 2001). This manipulation of the landscape that results from new policies can be coupled with advances in measurement and modelling to improve ecohydrological understanding of the effects of landscape change on the amount, distribution, and quality of streamflow (Figure 1). A related problem concerns streamflow controls on the ecology of hosts and parasites of water-related diseases (Rinaldo, Gatto, & Rodríguez-Iturbe, 2018).

In urban environments, ecohydrologists and other scientists are increasingly called upon to assess the benefits and costs of trees and other green infrastructure for stormwater management, heat-stress mitigation, nutrient control, and many other benefits (e.g., Berland et al., 2017; Dadavd & Nieuwenhuysen, 2019; Ellison et al., 2017; Keeler et al., 2019; Kuehni, Bou-Zeid, Webb, & Shokri, 2016; Ramamurthy & Bou-Zeid, 2014; Ramamurthy & Bou-Zeid, 2017; Rugel, Carpio, Henderson, & Brauer, 2019; Zöllch, Maderspacher, Wamsler, & Pauleit, 2016). Similarly, there is growing interest in understanding the potential for agricultural patterns and practices to provide cobenefits, such as for nutrient management, carbon storage, and groundwater recharge (e.g., Chaplin-Kramer et al., 2015; Dahlke, Brown, Orloff, Putnam, & O’Geen, 2018; Smith, Tetzlaff, Gelbrecht, Kleine, & Soulsby, 2020).

4 | CONCLUSIONS

Low-cost sensors, data-management tools, and analytical approaches provide opportunities to acquire, create, and interpret ecohydrological knowledge in new ways. We now have the ability to observe previously unobservable phenomena, to design new experiments, and to test new hypotheses. And, while controlled experiments with clear hypotheses will always remain the gold standard in science, the ability to observe the effects of landscape changes that are happening outside the realm of conventional scientific research can also enhance current understanding. Tools from data science enable us to sift through imperfect observations and discern signals—for example, what happens to low flows when forest is converted to agricultural use? If we implement best-management practices, how is water quality improved? Suddenly, routine and regular landscape manipulations become opportunities for advancing our knowledge. This new mode for science requires that we are willing to fund and support expanded measurement and observation and the analysis of hydrological impacts of landscape modifications that are outside scientists’ control (Figure 1).

New hypotheses and ideas about the effects of landscape change on the amount, distribution, and quality of streamflow, or root–water uptake that grow out of these empirical observations can be evaluated and tested with process-based models. Integrating multiple sources of data and observations from across multiple watersheds will improve model reliability (e.g., Clark et al., 2011; Faticchi et al., 2016; Kirchner, 2006). Coming full circle, such models can then be used to direct future experiments, monitoring, and observation to those landscape interventions that would result in the greatest increases to our scientific understanding. Additionally, advances in modelling can enable a hierarchy of models with clear trade-offs between complexity, data requirements, and precision of response. Simple or screening models could be used to evaluate future scenarios and questions of interest for communities and identify whether or not landscape interventions are likely to have an effect. More detailed models could then be used to interrogate those scenarios as needed to inform land-management decisions.

Convergence of climate and landscape changes with advances in measurements and modelling creates an important opportunity for the advancement of ecohydrological knowledge and understanding. Innovative technological developments facilitate the measurement of
new environmental characteristics, and inexpensive ubiquitous sensors enable observation at resolutions and scales previously unavailable. Bringing these advances to bear on ecohydrological questions related to canopy processes, belowground processes, and the scaling-up of those processes will bring new insight to the interactions between ecological and hydrological systems, which, in turn, will help us address water-resource challenges in the 21st century.

ACKNOWLEDGEMENTS

This paper stems from discussions at the Ettersburg Ecohydrology Workshop, which was held in Ettersburg, Germany, in October 2018. Funding for the Ettersburg Ecohydrology Workshop was graciously provided by the UNIDEL Foundation, Inc. and the University of Delaware. The authors kindly recognize the administrative support of Sandy Raymond before, during, and after the workshop. Her attention to detail and high degree of professionalism helped make the workshop a success. B. Michalzik is recognized for finding the Schloss Ettersburg (the venue of the workshop) and serving as the local point of contact for the workshop. Finally, the authors thank the staff of the Schloss Ettersburg, especially Frau S. Wagner, for a memorable workshop experience. The authors kindly thank David Aldred for drafting Figure 1b. The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID

Andrew J. Guswa https://orcid.org/0000-0002-4651-6606
Doerthe Tetzlaff https://orcid.org/0000-0002-7183-8674
John S. Selker https://orcid.org/0000-0001-9751-6094
Darryl E. Carlyle-Moses https://orcid.org/0000-0002-8358-4317
Elizabeth W. Boyer https://orcid.org/0000-0003-4369-4201
Michael Bruen https://orcid.org/0000-0002-5614-9432
Carles Cayuela https://orcid.org/0000-0002-4987-3158
Irena F. Creed https://orcid.org/0000-0002-8179-1472
Nick van de Giesen https://orcid.org/0000-0002-7200-3353
Domenico Grasso https://orcid.org/0000-0002-6644-0848
David M. Hannah https://orcid.org/0000-0003-1714-1240
Janice E. Hudson https://orcid.org/0000-0002-4927-4892
Sean A. Hudson https://orcid.org/0000-0002-4703-115X
Shin’ichi Iida https://orcid.org/0000-0001-7912-2219
Robert B. Jackson https://orcid.org/0000-0001-8846-7147
Gabriel G. Katul https://orcid.org/0000-0001-9768-3693
Tomonori Kumagai https://orcid.org/0000-0001-8331-271X
Pilar Llorens https://orcid.org/0000-0003-4591-5303
Beate Michalzik https://orcid.org/0000-0001-7858-1771
Kazuki Nanko https://orcid.org/0000-0002-1157-9287
Diane E. Pataki https://orcid.org/0000-0001-7209-514X
Catherine A. Peters https://orcid.org/0000-0003-2418-795X
Andrea Rinaldo https://orcid.org/0000-0002-2546-9548
Maciej Zalewski https://orcid.org/0000-0002-4483-6200
Delphis F. Levia https://orcid.org/0000-0002-7443-6523

REFERENCES
