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Abstract. Preferences are derived in part from knowledge. Knowledge, however,
may be defeasible. We present an argumentation framework for deriving qual-
itative, multi-attribute preferences and incorporate defeasible reasoning about
knowledge. Intuitively, preferences based on defeasible conclusions are not as
strong as preferences based on certain conclusions, since defeasible conclusions
may turn out not to hold. This introduces risk when such knowledge is used in
practical reasoning. Typically, a risk prone attitude will result in different prefer-
ences than a risk averse attitude. In this paper we introduce qualitative strategies
for deriving risk sensitive preferences.

1 Introduction

In [1], an argumentation framework for reasoning about qualitative preferences is pre-
sented. It introduces a safe and decisive strategy to deal with incomplete information.
However, this framework is not able to deal with defeasible information. In this paper
we focus on defeasible rather than incomplete information. Adding the means to de-
rive defeasible objective information is quite straightforward, by implementing some
kind of defeasible modus ponens. However, deriving preferences from a mixture of cer-
tain and defeasible information is not. For this we have to take into account the notion
of risk, since with defeasible information there is always a chance that it is incorrect.
Multi-attribute utility theory [2], a quantitative approach to preferences, defines two risk
attitudes: risk aversion and risk proneness. In this paper we present qualitative strate-
gies for deriving risk sensitive preferences. They are incorporated into an argumentation
framework that provides the means to reason about preferences as well as underlying
factual information. Argumentation, being a kind of defeasible reasoning, is able to
reason with incomplete, uncertain and contradictory information. Besides, because rea-
soning by means of arguments is a human type of reasoning, argumentation is suitable
for explanation of a system’s reasoning to a human user.

The topic is related to decision making under uncertainty (e.g. [3]). In DMU, the aim
is to find the best decision in case of uncertainty about the current state of the world, and
hence about the outcomes of decisions. Our approach is more general and can be ap-
plied in different contexts; we compare the preference between abstract ‘objects’, which
could be states of the world, but also e.g. products. One of the challenges of reasoning
about preferences is their multi-attribute nature. There are several distinct notions: im-
portance of attributes, degree of satisfaction of attributes, and degree of belief of facts.



In some approaches, these measures are assumed to be commensurate, others (including
this paper) suppose non-commensurability. We focus on the case where it is not com-
pletely certain which attributes the objects have (there are different degrees of belief),
combined with relative importance of attributes. We leave the degree of satisfaction of
attributes for future work. [4] present several multi-attribute preference ordering rules,
but do not take uncertainty into account. [5] present a qualitative model for decision
making with plausibility measures of input situations, but they treat plausible and likely
beliefs equally. [6] present an argument-based approach to multi-attribute preferences
that does take degree of belief into account, but it is a two-step process in which argu-
mentation is used only for epistemic reasoning. In our approach, we combine reasoning
about preferences and knowledge in a single argumentation framework.

In Section 2, we briefly introduce qualititive multi-attribute preferences, and discuss
defeasible reasoning and its relation to risk. Section 3 presents a generic framework that
provides the means to take the risk introduced by defeasible knowledge into account and
introduces qualitative risk-sensitive preferences. Section 4 presents concrete, qualitative
preference strategies that provide different ways for handling the risk introduced by
reasoning based on defeasible knowledge. Section 5 concludes the paper.

2 Background

Qualitative multi-attribute preferences Qualitative multi-attribute preferences over ob-
jects are based on a set of relevant attributes, which are ranked according to their im-
portance. Without loss of generality, we only consider binary (Boolean) attributes (cf.
[7]) and assume that the presence of an attribute is preferred over its absence. The
importance ranking of attributes is defined by a total preorder (a total, reflexive and
transitive relation) >. The relation > yields a stratification of the set of attributes into
importance levels. Each importance level consists of attributes that are deemed equally
important. Together with factual information about which objects have which attributes,
the attribute ranking forms the basis on which various object preference orderings can
be defined. One of the most well-known preference orderings is the lexicographic or-
dering, which we will use here. In [8] it was concluded from experiments that among
several qualitative approaches to order options based on their positive and negative as-
pects, cardinality-based approaches such as the lexicographic ordering best predict the
actual choices made by humans. The lexicographic preference ordering first consid-
ers the highest importance level. If some object has more attributes on that level than
another, the first is preferred. If both objects have the same number of attributes on
this level, the next importance level is considered, and so on. Two objects are equally
preferred if they have the same number of attributes on every importance level. The
argumentation framework of [1] models the lexicographic ordering. In this paper we
extend that framework to incorporate defeasible knowledge.

Defeasible knowledge Defeasible knowledge is not known for a fact, but derived from
defeasible rules. Defeasible rules describe what is ‘normally’ the case. Using this kind
of rules can add some information to an incomplete knowledge base. This can be ben-
eficial in situations where a user does not have certain information, and does not have



the time or resources to verify information. However, defeasibly inferred information
is not quite the same as certain information. If we compare two objects based on one
desired attribute, and we know for a fact that the first one has this attribute, but we can
only defeasibly infer that the second one has it, then we would prefer the first object.
This is due to the chance that defeasible information is incorrect. When comparing a
single attribute, it is easy to see that a certainly true attribute is preferred over a defea-
sibly true attribute. It becomes more difficult when we compare multiple attributes. Are
three defeasibly true attributes better or worse than two certainly true attributes and one
certainly false attribute? This question is related to the notion of risk. The main question
of this paper is how we can deal with risk in a qualitative setting. We first look at the
way risk is defined in classical quantitative utility theory, and then discuss the risk of
reasoning with defeasible knowledge.

Risk In classical utility theory [2], the notions of risk aversion and risk proneness are
defined in terms of lotteries. In a lottery, there are several possible outcomes or conse-
quences. Each consequence has a certain probability of occurring. A lottery is called
nondegenerate if no single consequence has a probability of 1 of occurring. Risk aver-
sion and risk proneness are defined as follows ([2], p. 149, 150): ‘A decision maker is
risk averse if he prefers the expected consequence of any nondegenerate lottery to that
lottery. A decision maker is risk prone if he prefers any nondegenerate lottery to the ex-
pected consequence of that lottery.” In other words, risk aversion means that when faced
with a choice between two alternatives that have the same expected outcome, but in one
case this outcome is certain, and in the other case there are multiple possible outcomes,
we would prefer the certain alternative. A risk-prone person would prefer the uncertain
alternative as there is a chance to obtain a better outcome than the expected outcome.

Defeasible reasoning and risk When there is only certain information, each attribute is
either true or false for a given object. No uncertainty is involved. But when defeasible
rules are added, uncertain information is introduced. We introduce four abstract ‘cer-
tainty levels’ (degrees of belief): v'! denotes that it is known for a fact that an object
has an attribute, v'? that it can be defeasibly inferred that an object has an attribute, X?
that it can be defeasibly inferred that an object does not have an attribute, and X! that
it is known for a fact that an object does not have an attribute. Of course there are two
other options. First, it can be the case that nothing can be derived about the truth of an
attribute for a certain object. This situation is treated in [1] and the current framework
can be extended in a similar way as presented there. Second, it can happen that it can
both be (defeasibly) derived that an object has an attribute and that it does not, so we
have contradictory information. In this case, there will be two rebutting arguments and
two preferred extensions (see Section 3).

Essentially, a certainty level represents a probability (p) of an attribute being true. In
the case of v'!, this probability is 1; certainly true information is always true. Similarly,
the probability is O for X!. For v'? and X?, no exact probability can be given. However,
since defeasible information is supposed to be ‘normally’ true, we may assume that the
probability lies between 0.5 and 1 for v'? and between 0 and 0.5 for X?. We simplify
and assume the same probability holds for all attributes, even though in realistic settings
the certainty of defeasible knowledge will differ per attribute.



Now suppose, for the sake of argument, that we know that p(v/'?) = 0.75, i.e. if
it can be defeasibly derived that an attribute is true, there is a 75% chance that it is
actually true. Suppose we have an object with four such defeasibly true attributes. Then
we can expect to have three true attributes and one false one. This is the same if we
would have another object with three certainly true attributes and one certainly false
one. The only difference is the certainty: we are only certain of this outcome in the
latter case, in the former case we might also end up with four or only two true attributes
(or even only one or none). Which of the two objects a person prefers depends on his
risk attitude. A risk averse person would prefer the certain case, a risk prone person
would prefer the object with four defeasibly true attributes. In general, a risk attitude
determines how many defeasibly true attributes are equally preferred as a number of
certainly true attributes. The higher this number, the more risk averse a person is. The
same holds for the relation between the number of defeasibly false attributes and the
number of defeasibly true attributes. In Section 4 we will introduce different strategies
with different relative valuations of certainty levels. But first we introduce a generic
argumentation framework for risk sensitive preferences.

3 A generic framework for risk sensitive preferences

In the lexicographic ordering, objects are compared w.r.t. attributes on a certain impor-
tance level. The highest importance level where a preference can be derived determines
the overall preference. In the Boolean case, preference within an importance level is
determined solely by the number of true attributes of both objects (the number of false
attributes can be ignored because it can be computed when the number of true attributes
is known). This comparison is relatively easy, since we only have to compare two num-
bers. In the case of defeasible knowledge, instead of two possible values for an attribute,
we have four. Therefore, preference within an importance level is determined by the
number of certainly true, defeasibly true and defeasibly false attributes of both objects
(like above, the number of certainly false attributes can be ignored). So in this case,
we compare two triples of numbers. Such a comparison can be done in different ways,
resulting in different strategies. Abstractly, we can say that the triples are compared by
a ‘beats’ relation B. If on some importance level object a has n certainly true, m defeasi-
bly true and r defeasibly false attributes, object b has n’ certainly true, m’ defeasibly true
and r’ defeasibly false attributes, and (n,m,r) >p (n',m’,r'), then object a is preferred
over object b on that importance level.

We first introduce a generic argumentation framework that can derive preferences
if a relation B is given. The argumentation framework we present here builds on the
framework introduced in [1]. An abstract argumentation framework (AF) [9] is a pair
(A,—) where A is a set of arguments, and — a binary defeat relation (informally, a
counterargument relation) on A. To define which arguments are justified, we use Dung’s
[9] preferred semantics.

Definition 1. (Preferred semantics) A preferred extension of an AF (A, —) is a max-
imal (w.r.t. C) set S C A such that: VA, BE€ S:A /4 B and YA € S: if B— A then
dC € S : C — B. An argument is credulously (sceptically) justified w.r.t. preferred se-
mantics if it is in some (all) preferred extension(s).



Informally, a preferred extension is a coherent point of view that can be defended
against all its attackers. In case of contradictory information there will be multiple pre-
ferred extensions, each advocating one point of view. The contradictory conclusions
will be credulously, but not sceptically justified. The advantage of preferred semantics
over e.g. grounded semantics is that a preference based on contradictory information
can still be sceptically justified.

We instantiate an abstract AF by specifying the structure of arguments and the de-
feat relation. Arguments are built from formulas of a logical language, that are chained
together using inference steps. Every inference step consists of premises and a con-
clusion. Inferences can be chained by using the conclusion of one inference step as a
premise in the following step. Thus a tree of chained inferences is created, which we
use as the formal definition of an argument (similar to e.g. [10]).

Definition 2. (Argument) An argument is a tree, where the nodes are inferences, and
an inference can be connected to a parent node if its conclusion is a premise of that
node. Leaf nodes only have a conclusion (a formula from the knowledge base), and
no premises. A subtree of an argument is also called a subargument. inf returns the
last inference of an argument (the root node), and conc returns the conclusion of an
argument (the conclusion of its last inference).

Definition 3. (Language) Let P be a set of attribute names with typical elements P, Q;
O a set of object names with typical elements a,b. The input language L is defined as
oeLlL:=L|P-Q|P=Q|Ly,...,Ly,~Ly,...,~ Ly, = L, where L= P(a) or —P(a).

This language allows us to express facts about the attributes that objects (do not) have,
statements about the importance ordering of attributes, and defeasible rules. Other for-
mulas, e.g. expressing a preference between two objects, can be derived using inference
steps that build up an argument.

Table 1a shows the inference schemes that are used. The first inference scheme is
called defeasible modus ponens. It allows to infer conclusions from defeasible rules. To
distinguish these conclusions from hard facts, they are labelled with an asterisk. The
next two inference rules define the meaning of the weak negation ~. A formula ~ ¢
can always be inferred (inference rule 2), but such an argument will be defeated by an
undercutter built with inference rule 3 if ¢ is the case. Inference scheme 5a is used to
count the number of attributes of equal importance as some attribute P that object a cer-
tainly has. Similarly, the inference schemes 5b and 5c count the number of defeasibly
true and defeasibly false attributes of an object a at some importance level. Inference
scheme 4 can be used when an object has no certainly true (defeasibly true/defeasibly
false) attributes. It is possible to construct an argument that does not count all attributes
that are certainly true (defeasibly true/defeasibly false), a so-called non-maximal count.
This can lead to the conclusion of incorrect preferences. To ensure that only maximal
counts are used, we provide an inference scheme to construct arguments that undercut
non-maximal counts (inference scheme 6). An argument of this type says that any count
which is not maximal is not applicable. Inference scheme 7 aggregates the counts of the
different certainty levels for an object at some importance level. Inference scheme 8
uses these aggregated counts and the relation B to infer a preference between two ob-
jects. This inference can be undercut by an argument using inference scheme 9, stating
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Table 1. Inference schemes

that there is a difference in preference on a higher importance level. Similar inference
schemes for equal preference have been omitted due to space limitations.

To complete our argumentation framework, we need to specify a defeat relation.
The most common type of defeat is rebuttal. An argument rebuts another argument if its
conclusion is the negation of the conclusion of the other argument. Defeat by rebuttal
is mutual if both arguments express defeasible information (we assume that certain
information is consistent). An argument claiming a certain fact cannot be defeated by
an argument that defeasibly derives the opposite. Another type of defeat is undercut.
An undercutter is an argument for the inapplicability of an inference used in another
argument. Undercut works only one way. Defeat is defined recursively, which means
that rebuttal can attack an argument on all its premises and (intermediate) conclusions,
and undercut can attack it on all its inferences.



Definition 4. (Defeat) An argument A defeats an argument B if (i) conc(A) = ¢
and conc(B) = —¢@ (rebuttal) and it is not the case that conc(A) is defeasible and
conc(B) is certain, or (ii) conc(A) =‘inf(B) is inapplicable’ (undercut), or (iii) A
defeats a subargument of B.

4 Qualitative strategies

We have seen above that a risk attitude is determined by the relation between the prob-
ability of truth of a certainty level and the relative valuations of certainty levels. For ex-
ample, if p(v'?) = 0.75, then a risk neutral person would equally prefer an object with
four defeasibly true attributes and an object with three certainly true attributes and one
certainly false attribute (at the same importance level), while a risk prone person would
prefer the former and a risk averse person the latter. If we would take a quantitative
approach and fix the valuation of certainly true attributes at 1 (v(v'!) = 1) and the valu-
ation of certainly false attributes at 0 (v(X!) = 0), then in this case the risk neutral person
would have v(v'?) = p(/?) = 0.75, the risk averse person v(v'?) < 0.75 and the risk
prone person v(v'?) > 0.75. Of course, the same holds for v(X?). Note that if the values
of p(v/?) and p(X?) are unknown, we are not able to distinguish this clearly between
risk prone and risk averse attitudes, since the risk neutral boundary would be unknown
too. However, as the possible values of p(v'?) and p(X?) are bounded (0.5 < p(v'?) < 1
and 0 < p(X?) < 0.5), we can identify some extreme cases. Consider for example the
valuations v(X?) = v(v'?) = v(v/'!) = 1. Essentially, this means that whenever it is not
completely certain whether an attribute is true or false, it is assumed to be true. This is
an extremely risk prone approach and overly optimistic, since it would mean an equal
preference between a certainly true attribute and a defeasibly false one. The opposite
case v(v'?) = v(X?) = v(X!) = 0 is extremely risk averse and overly pessimistic. Note
that both approaches are a waste of defeasible reasoning, since they do not distinguish
between defeasibly true and defeasibly false information. A third extreme option is
v(X?) = v(X!) =0 and v(v'?) = v(v'!) = 1, which shows great confidence in the cor-
rectness of defeasible information. But as this approach does not distinguish between
defeasible and certain information, it does not take risk into account. For any non-
extreme risk sensitive approach, we would have v(v'!) > v(v'?) > v(X?) > v(X!).

The strategies we present in this section all apply the lexicographic ordering in
the sense that a preference between two objects is determined at the highest importance
level of attributes where a preference can be derived. They differ in the way a preference
is determined within one importance level.

In a quantitative approach, one object is preferred over another on a certain impor-
tance level if the utility of the first object on that level is higher than the utility of the
second. A utility function U takes the number of certainly true (n), defeasibly true (m),
and defeasibly false (r) attributes that an object has at a certain importance level and
returns that object’s utility at that level. A linearly additive utility function is defined as
U(n,m,r) =n-v(/!)+m-v(v/?)+r-v(X?). This can be incorporated into our generic
argumentation framework by means of inference rule 10 in Table 1b.



4.1 Lexicographic strategy

In this section we model a strategy in which no number of defeasibly true attributes
can be valuated higher than a single certainly true attribute. We do this by applying a
lexicographic ordering within one importance level. That is, within one level, we first
count all certainly true attributes. If one object has more of those than another, the first
object is preferred over the second (within this level). If both objects have the same
number, we go on to count the defeasibly true attributes, and so on. When both objects
have the same number of certainly true, defeasibly true and defeasibly false attributes,
we go on to consider the next importance level.

Instead of the inference schemes 8 and 9 from Table la, we use the inference
schemes in Table lc. Inference scheme 11 says that an object a is preferred over an
object b if the number of attributes of object a at a certain importance level and with
a certain certainty level is higher than the number of attributes of object b on the same
importance and certainty levels. It is also required that a and b have the same number
of attributes on any higher certainty level within the same importance level, and on any
certainty level at importance levels higher than that of P. We model this by defining
inference schemes 12 and 13 that undercut scheme 11 if either is not the case. Similar
inference schemes can be used for equal preference.

Example 1 Consider the situ-
ation to the right. Argument A
claims that b is preferred over a
because it has more defeasibly
true attributes at the second im- : : :
portance level. This argument is R(b)* S(b)* T(b)* R~S~T

| P~Q>R~S~T
aX? V! /! /1 X?
bv! X2 /1 /1

undercut, by argument B stating has(b,[R],v/?,3) has(a,[R],¥/2,0)  3>0
that since a and b have a differ- A: pref(b,a) B
ent number of certainly true at- R@) S(a) R~S

tributes at this importance level, has@ R /12) has(b RIL/LO) V1SV 240
preference cannot be derived on . B is inapplicable

the basis of the number of de-
feasibly true attributes. The only
justified preference argument is
C, which states that a is pre-
ferred over b because it has more certainly true attributes at the second importance level.

R(a) S(a) R=S
has(a,[R],v/,2) has(b,[R],v/!,0)  2>0
C: pref(a,b)

With the quantitative approach described above, we can model the same preferences
if we choose the right valuations for the certainty levels. In this case, the valuations for
v'? and X? depend on the maximal number of attributes at an importance level, n. Since
no number of defeasibly true attributes is enough to beat one certainly true attribute, we

! (7
have v(vV?) < @ Similarly, we have v(X?) < ‘('/T) So, for example, v(v'?) = ﬁ
and v(X?) = —— would satisfy these constraints and produce the same preferences as

(n+1)2
the lexicographic strategy. Since the maximum number of attributes at one importance
level is typically more than one, both v(v/?) and v(X?) would be low, certainly below
p(v?) and most probably below p(X?), which means that this strategy is risk averse.



4.2 Adaptive strategy

Up till now we have been specific in assigning valuations to certainty levels. But the
probability of truth associated with a certainty level is not so specific. So maybe a user
is hesitant to specify exact values for certainty levels, especially if he is risk neutral or
only moderately risk averse or risk prone. In that case the valuation of a certainty level
would have to be the same as or close to the probability of truth, which is unknown.
We do know some lower and upper bounds: 0.5 < p(v'?) < 1 and 0 < p(X?) < 0.5.
We can use these to construct worst and best scenarios. In the worst case, v(v'?) = 0.5
and v(X?) = 0, and in the best case, v(v'?) = 1 and v(X?) = 0.5. Now we can use the
following intuition. If the worst possible case for object a is still preferred over the
best possible case for object b, then a has to be preferred over b (on some importance
level). This is formalised by inference rule 14. Two objects are equally preferred if
they are equally preferred in every possible scenario, which can only be the case if the
probabilities of truth are known exactly, or neither object has any defeasibly true or false
attributes. There are also cases in which no preference can be derived. To facilitate the
use of the undercutting scheme 9 we use inference scheme 15 which states that unless
two triples of numbers can be derived to be equal according to B, they are inequal.

It may happen that the user is able to give more information regarding the prob-
abilities of truth of the defeasible certainty levels. If for example a user knows that
p(v?) lies between 0.8 and 0.85, the upper and lower values for v'? could be adapted
accordingly. This makes this strategy adaptive to the background knowledge of the user.
The strategy is less decisive than the others we presented, since it is not always able to
derive a preferene between two objects. But it can also be considered safer because it
takes into account the uncertainty of the probability of truth of defeasible information.

Example 2 Consider the same situation again. If nothing specific is known about the
probabilities of truth of v'? and X?, no preference can be derived, because the best
scenario for a is better than the worst scenario for b and the best scenario for b is
better than the worst scenario for a. But if we would know that 0.8 < p(v?) < 0.9 and

9 .
0.1 < p(X?) < 0.2, we can construct the following argument. 210401<04+2.440

has(a,[R],(2,0,1)) has(b,[R],(0,3,0)) (2,0,1) <p (0,3,0)
pref(b,a)
Finally, if we knew exactly that p(v/?) = 0.75 and p(X?) = 0.25, then we could derive
an equal preference between a and b.

The lexicographic strategy results in a complete preorder of preference between
objects. The preference order induced by the adaptive strategy is not necessarily com-
plete. Preference is determined by the ‘beats’ relation B. In the lexicographic strategy,
(n,m,ry >p (0’ ,m',F')yifn>n';orn=n"andm>m',orn=n"andm=m' and r >, or
n=n'and m =m' and r = . Since this relation is complete (for any n,m,r,n’,m’,r we
have either (n,m,r) >p (n',m’,r') or (n',m',r') >p (n,m,r)), the resulting preference
order is also complete. In the adaptive strategy, triples are mapped to a range between
the worst case and the best case. Since ranges may overlap, this ordering is not com-
plete. One case where no preference can be derived was shown in Example 2.



5 Conclusion

In this paper we have made the following contributions. We discussed the risk involved
in basing preferences on defeasible information and identified the relation between this
type of risk and risk as defined in utility theory. We then proposed a generic argumenta-
tion framework to reason about multi-attribute preferences in the context of defeasible
information. Finally, we presented several qualitative strategies to deal with risk sensi-
tive preferences, which were incorporated into the generic framework.

In our future work we would like to evaluate the strategies in more detail. It would
be interesting to understand the properties of the adaptive strategy better. We would
also like to distinguish more explicitly between mental attitudes such as beliefs, goals,
desires and preferences. This will also allow us to reason about these attitudes, for ex-
ample that a certain preference we have is based on some specific beliefs. We hope
to gain insight from modal preference languages with belief operators. Other interest-
ing areas for future work include the representation of dependent preferences, different
degrees of satisfaction of attributes, and preferences based on underlying interests.
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