OVER DE NAUWKEURIGHEID VAN DE BEREKENDE GELUIDSBELASTING IN KOSTENEENHEDEN

Memorandum M-858

Prof. ir. G.J.J. Ruijgrok
en
ing. D.M. van Paassen

opgesteld in het kader van RLD project 2
“bepaling onnauwkeurigheidsmarge”

TU Delft
Delft University of Technology
Mei 1999

DELFT AEROSPACE
FACULTY OF AEROSPACE ENGINEERING
Title: Over de nauwkeurigheid van de berekende geluidsbelasting in Kosteneenheden

Author(s): Prof. ir. G.J.J. Ruijgrok, ing. D. M. van Paassen.

Abstract: Dit Rapport geeft een beschrijving van de diverse oorzaken die kunnen leiden tot een verminderde nauwkeurigheid van het Nederlandse model voor de berekening van de geluidsbelasting in Kosteneenheden. Hierbij worden als eerste beschouwd de mogelijke invloeden van de verschillende invoergegevens in de Kostenformule, als basis van het rekenmodel. Ook worden besproken de in het model toegepaste parameters, vereenvoudigingen aannamen en modelleringen. In het bijzonder wordt aandacht gegeven aan het beginpunt en de definitie van de 'laterale geluidsverzwakking', als belangrijk onderdeel van het berekeningsvoorschrift. Als algemene conclusie van een analyse geldt dat vooral het maximale (A-gewogen) geluidsniveau als invoergegeven, verantwoordelijk is voor een aanzienlijk deel van de onnauwkeurigheid van het berekeningsresultaat. Verder onderzoek kan inzicht geven in de gevoeligheid van de berekende geluidsbelasting voor wijzigingen in de toegepaste modelleringen en de nauwkeurigheid van de modelparaters.

Keyword(s): Vliegtuiggeluid, geluidsbelasting, geluidshinder, Kosteneenhed.
Inhoud

1. Inleiding 1
2. Het berekeningsvoorschrift 2
3. De betekenis van de variabelen in de Kostenformule 5
4. Aannamen in het berekeningsvoorschrift 9
5. Nauwkeurigheid van de berekeningsresultaten 10
6. Laterale geluidsverzwakking 13
7. Een onnauwkeurigheidsmarge voor geluidscontouren 18
8. Literatuur 20
1. Inleiding

Teneinde de omwonenden van Nederlandse luchthavens te beschermen tegen een overmaat aan vliegtuiglawaai, eist de Overheid op basis van de vigemende Luchtvaartwet het vaststellen van geluidszones rondom alle vliegvelden in ons land (lit.1). Deze zonering geeft voor elke luchthaven het gebied aan waarbuiten de geluidsbelasting door aankomende en vertrekkende vliegtuigen een bepaalde grenswaarde ('geluidsnorm') niet mag overschrijden.

Binnen de zone ('geluidsruiinte') wordt bescherming tegen geluidsoverlast geboden door b.v. geen nieuwe woonbebouwing toe te staan en bestaande bebouwing te voorzien van geluidwerende voorzieningen. Ook afbraak van bebouwing behoort tot de mogelijkheden.

De op 9 november 1996 ingevoerde zonering van Schiphol wordt gevormd door twee geluidscontouren. De eerste is de 35 Ke-contour, waarvoor de Kosteneenheid (Ke) wordt gebruikt. De tweede is de 26 dBA-contour, bepaald bij toepassing van het equivalente A-gewogen geluidsniveau L_{Aeq} in dBA.

De geluidsbelasting in Kosteneenheden is gekozen als maat voor de beoordeling van de buitenshuis ondervonden hinder door het operationele vliegtuiggebruik van het luchtvaartterrein gedurende één jaar.

De L_{Aeq}-geluidsbelasting wordt gebruikt als maat voor de beoordeling van gezondheidseffecten (in dit geval slaapverstoringen) bij mensen t.g.v. de op de luchthaven landende en startende vliegtuigen, gedurende de nachtelijke periode. De nachtelijke periode betreft een periode van zeven aaneengesloten uren tussen 23.00 uur en 07.00 uur plaatselijke tijd.

L_{Aeq}-geluidsbelasting bepaald derhalve de geluidshinder binnenshuis.

De berekening van contouren voor deze geluidsbelastingen vindt plaats overeenkomstig twee berekeningsvoorschriften. Deze voorzien in regels omtrent het eenduidig berekenen van de geluidsbelastingen, en zijn vastgesteld bij ministeriële beschikkingen.

De feitelijke berekeningen voor de bepaling van geluidszones en voor de jaarlijks, in het kader van de handhaving, te bepalen contouren van de geluidsbelasting worden uitgevoerd door het Nationaal Lucht- en Ruimtevaartlaboratorium (NLR).

Volgens mededeling door de Rijksluchtvaartdienst (RLD) blijkt er geen of weinig kennis te bestaan over de nauwkeurigheid van de rekenmethodieken voor de berekening van de geluidsbelasting.

Als een inleiding op de uitvoering van een gevoeligheidsanalyse voor de systeemvariabelen in het berekeningsvoorschrift voor de Ke-geluidsbelasting, worden in dit rapport besproken de mogelijke invloeden van de verschillende invoergegevens, de aannamen en vereenvoudigingen in het berekeningsvoorschrift, en het beginsel en de definitie van de laterale geluidsverzwakking.
2. Het berekeningsvoorschrift

Het aan de berekening van de Ke-geluidsbelasting ten grondslag liggende berekeningsvoorschrift betreft een wijziging van het bij beschikking van 12 januari 1984 (Stb. 95, 1984) vastgestelde berekeningsvoorschrift (lit. 2).

In het berekeningsvoorschrift wordt de geluidsbelasting berekend met de 'Kostenformule', zoals opgesteld door de 'Adviescommissie Geluidshinder door Vliegtuigen' (lit. 3):

\[B = 20 \log \sum_{p-1}^{N} n_p \cdot 10^{L_{A_{max}}/15} - 157. \] (1)

Hierin is:

- \(B \) de geluidsbelasting in een gegeven punt op de grond in Kosteneenheden (Ke),
- \(N \) het aantal ter plaatse waargenomen vliegtuigpassages of vliegtuigbewegingen in één jaar (1 vliegtuigbeweging is een start of een landing),
- \(p \) een index voor een vliegtuigpassage,
- \(n_p \) de nachtstraffactor, een weegfactor die afhankelijk is van het tijdstip waarop het vliegtuig wordt gehoord (tabel 1),
- \(L_{A_{max}} \) het waargenomen maximale (A-gewogen) geluidsniveau in het beschouwde punt tijdens de vliegtuigpassage (\(p \)).

Aangezien een vliegtuig geluid produceert in een groot frequentiegebied, wordt op het fysische geluidsdrukniveau ('Sound Pressure Level') SPL de zogenaamde A-weging toegepast. Deze brengt i.h.b. de bijdragen van lagere frequenties verminderd in rekening, overeenkomstig de relatieve ongevoeligheid van het menselijk gehoororgan voor lagere tonen (zie ook lit. 4):

\[L_A = 10 \log \left[\sum_{f_i=20}^{f_i=20000} 10^{(SPL(i) + \Delta L_A(i))/10} \right], \text{ dBA}. \]

Hierin is \(f_i \) de middenfrequentie van een tertsband (\(i \)) in Hertz, \(SPL(i) \) het geluidsdrukniveau per tertsband (1/3-octaafband), en \(\Delta L_A(i) \) een frequentie afhankelijke correctie.
Tabel 2. De verdeling van geluidfrequencies in tertsbanden.

Tabel 2 en figuur 1 tonen resp. de verdeling van het hoorbare frequentiegebied in tertsbanden en de correctie ΔL_A.
De middenfrequencies f_i in tabel 2 zijn gedefinieerd door het bandnummer n volgens:

$$f_i = 10^{n/10} \quad (n = 1 - 43) .$$

De geluidsbelasting B wordt uitgedrukt in Kosten- eenheden Ke, genoemd naar de voorzitter van de 'Adviescommissie Geluidhinder voor Vliegtuigen', Prof. dr. ir. C.W. Kosten, die in 1963 rondom de luchthaven Schiphol het in lit. 3 gerapporteerde belevingsonderzoek uitvoerde.

De geluidsbelasting wordt berekend in netwerkpunten op de grond. Vervolgens worden lijnen van constante geluidsbelasting bepaald door middel van interpolatie tussen de in de netwerkpunten berekende waarden van de geluidsbelasting (figuur 2).
De Kostenformule is een dosis-effect relatie, d.w.z. de constanten in de formule zijn zo bepaald dat het aantal Kosteneenheden een directe maat is voor het aantal mensen (in procenten van het aantal omwonenden) dat een bepaalde mate van hinder ondervindt.

De enquête resultaten geven b.v. de navolgende cijfers betreffende het verband tussen de grootte van de geluidsbelasting en de fractie min of meer ernstig gehinderden.

<table>
<thead>
<tr>
<th>geluidsbelasting B, Ke</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractie ernstig gehinderden, %</td>
<td>9</td>
<td>18</td>
<td>29</td>
<td>42</td>
<td>46</td>
</tr>
</tbody>
</table>

Blijkbaar is op basis van de destijds uitgevoerde enquêtes, de Kosteneenheid zodanig ontworpen dat het aantal Ke overeenkomt met een percentage ernstig gehinderden ongeveer gelijk aan $B \approx 10$.

figuur 2. Contouren voor de geluidsbelasting rondom Schiphol (jaar 1975; $N = 123.543$).

I.v.m. een beperkte beschikbaarheid van onderzoeksgegevens is de Kostenformule uitsluitend geldig binnen de grenzen: $20 Ke < B < 80 Ke$.

Elk vliegveld heeft of krijgt zijn eigen lawaaiplafond. Voor Schiphol is in 1996 de norm voor het geluid buitenshuis vastgesteld op 35 Ke (figuur 3).

figuur 3. De 35 Ke contour rondom Schiphol.
3. De betekenis van de variabelen in de Kostenformule

Voor het verkrijgen van enig inzicht in de betekenis van de verschillende parameters in de Kostenformule wordt in het navolgende verondersteld dat alle N vliegtuigen van hetzelfde type zijn, gelijke vliegbanen en gelijke grondpaden hebben, en ook een gelijke geluidsproductie vertonen.
Hierbij geldt $L_{A\text{max}}^p = L_{A\text{max}}$, en volgt:

$$B = \frac{4}{3} L_{A\text{max}} + 20 \log \sum_{p=1}^{N} n_p - 157 . \quad (2)$$

De som $\sum_{p=1}^{N} n_p$ in (2) is gelijk aan het effectieve aantal vliegtuigbewegingen N_{eff}, volgens:

$$\sum_{p=1}^{N} n_p = \sum_{p=1}^{N_1} n_1 + \sum_{q=1}^{N_2} n_2 + \ldots$$

$$= n_1 N_1 + n_2 N_2 + \ldots$$

$$= N_{\text{eff}} .$$

Blijkbaar kan onder deze omstandigheden voor de geluidsbelasting worden geschreven:

$$B = \frac{4}{3} L_{A\text{max}} + 20 \log N_{\text{eff}} - 157 . \quad (3)$$

Bij het gebruik van het effectieve aantal bewegingen kan worden onderscheiden een gemiddelde nachtstraffactor \bar{n}:

$$\bar{n} \overset{\text{def.}}{=} \frac{1}{100} \sum p_k n_k \quad \text{met} \quad k = 1, 2, \ldots \, ,$$

waarin p_k het percentage is van het aantal vliegtuigbewegingen N dat in het tijdsinterval k met een nachtstraffactor n_k wordt gewogen.

Dus:

$$p_k = 100 \frac{N_k}{N}$$

en

$$\bar{n} = \frac{1}{N} \sum n_k N_k .$$
Hiermede volgt de relatie:

\[N_{\text{eff}} = N \bar{n} . \]

Figuur 4 geeft een grafische voorstelling van de Kostenformule in de vorm (3). Hieruit valt af te leiden:

1. Onafhankelijk van het effectieve aantal vliegtuigbewegingen zal een verandering van het geluidsniveau \(L_{\text{Amax}} \) leiden tot een significante wijziging van de geluidsbelasting.

2. Eenzelfde wijziging van de geluidsbelasting bij gelijkblijvend geluidsniveau wordt slechts verkregen bij een zeer drastische verandering van het aantal vliegtuigbewegingen.

B.v. geldt dat voor een vermindering van de geluidsbelasting met 3 Ke, het effectieve aantal vliegtuigbewegingen met ongeveer 30% verlaagd moet worden. Om hetzelfde effect te bereiken dient het geluidsniveau met slechts 2,25 dBA te worden verminderd.

Deze eigenschappen van de Kostenformule (3) worden veroorzaakt doordat het geluidsniveau \(L_{\text{Amax}} \) niet achter het log-teken staat. Deze omstandigheid leidt tot de navolgende twee conclusies:

- Voor een vermindering van de geluidsbelasting komt vooral een verlaging van het waargenomen geluidsniveau in aanmerking.
- Een gevoeligheidsanalyse van de variabelen in de Kostenformule zal vooral een grote invloed te zien geven van fouten en on nauwkeurigheden in het geluidsniveau als invoergegeven.

Ondanks het feit dat in de afgelopen vijf en dertig jaar het aantal vliegtuigbewegingen spectaculair is toegenomen, lijkt de berekende geluidsbelasting rondom Schiphol weinig te zijn veranderd (figuur 5). Dit moet betekenen dat het geluidsniveau van de afzonderlijke vliegtuigen aanzienlijk is afgenomen.

Figuur 6 toont het verband tussen het aantal vliegtuigbewegingen en het geluidsniveau voor een geluidsbelasting Ke = 35.
Volgens de Kostenformule (3) geldt bij een gegeven geluidsbelasting B:

$$L_{A_{\text{max}}} = \frac{3}{4} (B + 157) - 15 \log N_{\text{eff}}.$$

De kromme in figuur 6 voldoet dus aan de relatie:

$$L_{A_{\text{max}}} = 144 - 15 \log N_{\text{eff}}.$$

Figuur 6 geeft aanleiding tot de opmerking dat de in de jaren zestig ontwikkelde Kostenformule (1), ongetwijfeld de hinder correct beschrijft voor de geluidsbelasting door de eerste generatie straalverkeersvliegtuigen met hoge geluids niveau's in combinatie met een relatief klein aantal vliegtuigbewegingen, maar dat er vraagtekens gezet kunnen worden bij de geldigheid van de Kostenformule als dosis-effect relatie bij het sterk toegenomen vliegverkeer met de moderne vliegtuigen, die aanzienlijk verlaagde geluids niveau's produceren.

De relevantie van de vraag zal toenemen bij predicties van de geluidsbelasting voor toekomstige ontwikkelingen van Schiphol, waarbij scenario's tot een totaal aantal vliegtuigbewegingen van $N = 700.000$ worden onderzocht (RIVM, 1998).

In figuur 7 is in beeld gebracht de afname van het (genormaliseerde) geluids niveau voor de certificatie op de 'sideline' positie. Het meetpunt voor deze, tijdens de start optredende, geluids niveau's bevindt zich op een hoogte van 1,2 m boven een lijn evenwijdig aan en gelegen op een afstand van 450 m van de hartlijn van de startbaan waar het 'sideline-noise' maximaal is (figuur 8).

De indrukwekkende akoestische prestatie van figuur 7 is i.h.b. tot stand gebracht door toepassing van de 'turbofan'-motor.
Bij dit motortype wordt een hoeveelheid vermogen aan de hete gasstroom door de motor onttrokken en toegevoerd aan een ommantelde 'fan'. De fan gebruikt dit vermogen vervolgens om een extra hoeveelheid lucht te versnellen, die niet aan het verbrandingsproces deelneemt. Het effect van deze vergroting van de massastroom is dat eenzelfde stuwkracht wordt verkregen bij een gemiddeld lagere uitstroomsnelheid. Dit heeft een gunstige invloed op zowel het brandstofverbruik als op het straalgeluid (figuur 9).

Indien de omloopverhouding of 'bypass-ratio' - de verhouding van de omstromende koude massastroom tot de massastroom van de primaire hete lucht - voldoende groot wordt, gaat het geluid van de fan domineren. Bestrijding hiervan vindt plaats door toepassing van b.v. de ééntrapsfan en het aanbrengen van geluidsabsorberende bekleding in de motor.

figuur 7. Sideline noise levels.

figuur 8. Meetlocatie voor 'sideline noise' volgens ICAO / Annex 16 / Chapter 3.
De figuren 7 en 9 maken ook duidelijk dat in de komende jaren, waarin een forse groei van het aantal vliegtuigbewegingen wordt voorzien, wellicht geen sprake zal zijn van een verdere afneming van de geluidsniveau's.

4. Aannamen in het berekeningsvoorschrift

Een belangrijke aannamer in het berekeningsvoorschrift is de indeling van de vliegtuigtypen in een beperkt aantal (12) gespecificeerde categorieën, waarbij per categorie een representatief vliegtuigtype is aangegeven. De categorie-indeling is gemaakt op grond van de overeenkomst van bepaalde vliegtuigtypen m.b.t. geluidseigenschappen, vliegprestaties en vervoerscapaciteiten. Alle vliegtuigtypen die tot één categorie behoren worden verondersteld identieke geluids- en prestatiekaracteristieken te hebben (lit. 5).

Per vliegtuigcategorie is een onverderdelling in ‘klassen’ gemaakt op grond van de eerstvolgende bestemming bij vertrek vanaf Schiphol (tabel 3). Hiermede wordt de benodigde brandstofvoorraad vastgelegd en het daarmede samenhangende startgewicht. Dit gewicht bepaalt dan het in de berekening te gebruiken hoogteprofiel en stuwkrachtsverloop.

Een andere vereenvoudigende aannamer is dat de prestatiegegevens van toepassing zijn voor rechtlijnige vluchten. Dit betekent dat bij het vliegen van bochten, geen correctie voor de verkleining van de stijghoek of voor de verhoging van de stuwkracht wordt toegepast.

Een opvallende aannamer is ook dat in de berekeningen wordt uitgegaan van rekenpunten op 1,2 m hoogte boven een obstakelvrij gebied met een met gras bedekte, vlakte bodem.

Verdere vereenvoudigende aannamen in het berekeningsvoorschrift zijn b.v. de atmosferische condities (standaard atmosfeer) en een zodanige drempelwaarde voor het geluidsniveau dat geluidsniveau's minder dan 65 dBA buiten beschouwing blijven. Het gebruik van deze drempelwaarde is overigens niet opgenomen in het eindverslag van de Commissie Kosten in lit. 3.

Ook wordt geen spreiding van vliegbanen in het verticale vlak in aanmerking genomen. De nominale vlieghoogten zijn de rekenkundig gemiddelden bij de vlieghoogten van vliegtuigen van eenzelfde categorie.
5. Nauwkeurigheid van de berekeningsresultaten

De variatie in de geluidsbelasting als gevolg van een onnauwkeurigheid in het geluids niveau \(L_{\text{Amax}} \) bedraagt volgens (3):

\[
\Delta B_L = \frac{4}{3} \Delta L_{\text{Amax}}.
\]

De geluidsgesegens in het berekeningsvoorschrift betreffen onder meer de door de vliegtuigfabrikanten verstrekte resultaten van geluidsmetingen, welke volgens de toelichting veelal zijn uitgevoerd in het kader van de typecertificatie en overeenkomstig de daarvoor geldende voorschriften.

De nauwkeurigheid die wordt gehanteerd voor de vaststelling van de geldigheid van de meetresultaten bij certificatiemetingen wordt beschreven in lit. 6. De oorspronkelijke tekst is in het nevenstaande opgenomen.

Op grond van dit gegeven mag worden aangenomen dat geluidsgesegens afkomstig van vliegtuigfabrikanten geen grotere nauwkeurigheid hebben dan \(\pm 1,5 \) dBA. De directe consequentie van dit gegeven is dat de geluidsbelasting als intrinsiek kenmerk zal hebben dat zijn nauwkeurigheid nooit groter is dan \(\pm 2 \) Ke!

In dit verband is het van belang om te bedenken dat een verandering van 1 dBA ongeveer de kleinste waarde is van een verandering in het geluids niveau die ons gehoororgaan kan detecteren. Echter, in de meeste praktische geluidssituaties wordt een variatie van het geluids niveau met 3 dBA pas als merkbaar ervaren.

In termen van geluidsbelasting betekent dit dus eveneens een marge van 4 Ke! Verder is vermeldenswaardig dat een verandering van 5 dBA (6,7 Ke) als 'duidelijk waarneembaar' wordt beoordeeld. Uit de psychofysica (wet van Weber en Fechner) is eveneens bekend dat een bepaald geluid ongeveer tweemaal zo luid wordt beoordeeld als een ander geluid, indien het geluidsniveau ongeveer 10 dBA (13,3 Ke) hoger is.

De betrekkelijk geringe nauwkeurigheid van \(\pm 2 \) Ke zal in werkelijkheid nog kleiner

5.5 Validity of results

5.5.1 Three average EPNL values and their 90 per cent confidence limits shall be produced from the tests results, each such value being the arithmetical average of the corrected acoustical measurements for all valid test runs at the appropriate measurement point (take-off, approach or sideline). If more than one acoustic measurement system is used at any single measurement location (such as for the symmetrical sideline measuring points), the resulting data for each test run shall be averaged as a single measurement.

5.5.2 The minimum sample size acceptable for each of the three certification measuring points shall be six. The sample shall be large enough to establish statistically for each of the three average noise certification levels a 90 per cent confidence limit not exceeding \(\pm 1.5 \) EPNdb. No test result shall be omitted from the average process unless otherwise specified by the certification authorities.

5.5.3 The average EPNL values and their 90 per cent confidence limits obtained by the foregoing process shall be those by which the noise performance of the aeroplane is assessed against the noise certification criteria, and shall be reported.
zijn door de vrijwel algemeen toegepaste microfoonhoogte bij het meten van vliegtuiggeluid van 1,2 m. Het is juist deze meehoogte die aanleiding geeft tot een grote variatie in de meetresultaten als gevolg van de reflecterende werking van het aardoppervlak (lit. 7).

Hierbij komen nog vele variaties in $L_{A_{\text{max}}}$ zoals b.v. door afwijkingen in afstand tot de vliegbaan in zowel horizontale- als in verticale zin.
In tegenstelling tot horizontale spreiding wordt in het berekeningsvoorschrift geen rekening gehouden met verticale spreiding van vliegbanken. Deze verticale spreiding treedt op indien afgeweken wordt van de nominale vliegprocedure (b.v. door ‘deraten’ van de motoren) en wordt verder bepaald door wind- en temperatuurinvloeden en door de actuele vluchttuivingoering door de piloot.

Verder geldt, zoals aangegeven in de door het NLR gegeven toelichting op het berekeningsvoorschrift, dat er slechts een beperkte beschikbaarheid is van geluids niveau’s in termen van dBA, daar de door de vliegtuigfabrikant aangeboden geluids niveau’s veelal gegeven zijn als ‘Perceived Noise Level’, L_{PN}, uitgedrukt in PNdB. Hierbij vindt een omrekening plaats naar dBA-eenheden met het verband:

$$L_A = L_{PN} - 14 \text{, dBA}.$$

Echter de waarde 14 is slechts te beschouwen als een gemiddeld optredend verschil tussen de numerieke waarden van beide geluids niveau’s, en heeft afhankelijk van het frequentiespectrum een nauwkeurigheid van $\pm 3 \text{ dBA}$ (lit. 4). Verwacht wordt dat ook hierdoor een verdere afneming van de nauwkeurigheid van de berekeningsresultaten wordt geïntroduceerd.

De prestatiegegevens en de geluids niveau’s gedefinieerd in het berekeningsvoorschrift worden representatief geacht voor standaardatmosferische condities (ISA) op zeeniveau (lit. 8):

- luchtdruk : $p = 1013,25 \text{ N/m}^2$
- luchttemperatuur : $T = 15^\circ \text{C}$
- luchtdichtheid : $\rho = 1,225 \text{ kg/m}^3$
- droge lucht
- geen wind.

Gesteld wordt dat de keuze van deze condities zowel gebaseerd is op de omstandigheid dat de voor Nederland representatieve condities hiervan slechts weinig afwijken, als op het feit dat de in diverse literatuurbronnen vermelde prestatie- en geluidsgegevens op grond van deze condities zijn bepaald.

In dit verband zijn nevenstaand enige jaargemiddelden van de temperatuur vermeld, zoals gemeten te De Bilt (bron: KNMI).
Het te De Bilt gemeten langjarig gemiddelde van de temperatuur bedraagt 9,4 ^oC.

-11-
Wat betreft de conditie 'geen wind' is bovenstaande aanneming eveneens onjuist. Vooral voor het meer nabij de kust gelegen Schiphol zal wind vrijwel altijd aanwezig zijn. Figuur 10 toont de verdeling van Nederland in een aantal zones met een bepaalde gemiddelde windsnelheid. Binnen elke zone is de frequentieverdeling van de windsnelheid ongeveer constant. Van west naar oost neemt de gemiddelde windsnelheid af.

In beginsel wordt altijd gestart en geland met tegenwind, waarbij de prestaties beter zijn dan zonder wind.

Met betrekking tot de geluidsgegevens geldt dat sommige Amerikaanse vliegtuigfabrikanten hun akoestische gegevens omrekenen naar een referentieconditie met een luchttemperatuur van 25°C (lit. 9). Deze afwijking van de standaard temperatuur van $T = 15^\circ C$ wordt waarschijnlijk niet gecorrigeerd bij gebruik in de berekening van de geluidsbelasting.

Hierbij is van belang te onderkennen dat de luchttemperatuur invloed heeft op de mate van atmosferische demping, welke in beginsel toeneemt bij afnemende temperatuur.

Zoals eerder genoemd kent het berekeningsvoorschrift een drempelwaarde van 65 dBA, waar beneden geen bijdragen worden meegeteld bij de bepaling van de geluidsbelasting.

Van betekenis voor het effect van de toepassing van deze drempelwaarde is de ontwikkeling van de stillere vliegtuigen, gecertificeerd volgens FAR 36 / Stage 3 of ICAO / Annex 16 / Chapter 3, waarvoor de geluids niveau's aanzienlijk verlaagd zijn in vergelijking met die van de jaren zestig vliegtuigen (figuur 7).

De grootste toename van de berekende geluidsbelasting $(\Delta B)_{max}$ door het niet toepassen van de drempelwaarde treedt uiteraard op indien alle geluids niveau's van de vliegtuigbewegingen waarvoor de bijdragen niet werden meegeteld, gelijk zijn aan 65 dBA.

Figuur 11a toont de grootte van $(\Delta B)_{max}$ voor drie waarden van de berekende geluidsbelasting met toepassing van de drempelwaarde. Het blijkt dat het verschil tussen de

Figuur 10. Windsnelheden op zee niveau.

Figuur 11a. Betekenis van het toepassen van de drempelwaarde.
geluidsbelastingen berekend met en zonder de drempelwaarde groter is naarmate de geluidsbelasting (met toepassing van de drempelwaarde) geringer is. Ook geeft de figuur aan dat het zeer wel mogelijk is dat de invloed van de drempelwaarde op de ligging van de contour voor de geluidsruimte enige kosteneenheden bedraagt!
Al toelichting op de bepaling van de kromme in figuur 11a wordt vermeld dat de resulterende geluidsbelasting B_{tot} van twee deel- geluidsbelastingen B_1 en B_2 wordt verkregen door een sommatie van de (gmodificeerde) geluidsenergieën binnen de twee afzonderlijke bijdragen.
Dit levert voor de toename van de hoogste geluidsbelasting $(B_1 > B_2)$:

$$\Delta B = B_{tot} - B_1 = 20 \log \left[1 + 10^{-\frac{(B_1 - B_2)/20}{}} \right].$$

Figuur 11b geeft ΔB in afhankelijkheid van het verschil $(B_1 - B_2)$. De verhoging van de geluidsbelasting ΔB blijkt toe te nemen naarmate het verschil tussen B_1 en B_2 geringer is. Voor $B_1 = B_2$ volgt $\Delta B = 6$ Ke.

Een fout in de berekende geluidsbelasting kan ook optreden als gevolg van een afwijkung in het effectieve aantal bewegingen. Hiervoor valt te denken aan de invloed van gewijzigde aankomsten vertrektijden en de daarmede samenhangende nachtstraftactoren.

Op basis van de uitdrukking (3) zal een variatie in de geluidsbelasting bedragen:

$$\Delta B_N = 20 \log \left(1 + \frac{p_N}{100} \right),$$

waarin p_N de procentuele afwijking van N_{eff} is.

Een toeneming van N_{eff} met 10% geeft dus een verhoging van de geluidsbelasting met slechts 0,8 Ke.

6. Laterale geluidsverzwakking

De ‘Adviescommissie Geluidhinder door Vliegtuigen’ heeft destijds een direct verband vastgesteld tussen het maximale geluidsniveau in dBA en de geluidshinder. Benadrukt wordt dat hierbij aan de orde is de relatie tussen de op een bepaalde plaats ontvonden hinder en het maximale geluidsniveau dat ter plaatse wordt waargenomen.
In een appendix bij het berekeningsvoorschrift wordt voor elk representatief vliegtuigtype (vliegtuigcategorie) het maximale geluidsniveau voor een aantal motorregelingen of stuwkrachtsindexen gegeven in afhankelijkheid van de kortste afstand tussen vliegbaan en het waarnemingspunt op de grond (figuur 12). In werkelijkheid zijn deze geluidsniveaus' gegeven in tabelvorm.

Als gevolg van de ‘directivity’ van de geluidsuitslating hoeven de in deze zogen NTD-tabellen (‘Noise-Thrust-Distance’) aangegeven geluidsniveaus niet noodzakelijkerwijs op te treden bij de kortste afstand tot de vliegbaan (figuur 13).

In beginsel heeft de kortste afstand uit sluitend betrekking op de afstand tot het grondpad; afstand \((h_0 - z_0) \cos \gamma\) (figuur 14).

De verklaring is het feit dat geluidseigenschappen i.h.a. hun oorsprong vinden in geluidsmetingen verricht loodrecht onder de vliegbaan. De meetmicrofoon is hierbij vrijwel altijd geplaatst op een hoogte van 1,2 m boven de grond, zoals toegepast bij de ICAO/Annex 16 / Chapter 3 certificatiemetingen (figuur 15).

In de gevallen dat de geluidsbelasting wordt berekend op zijdelingse posities t.o.v. het grondpad kunnen de in figuur 12 aangegeven geluidsniveaus' worden toegepast door te veronderstellen dat het uitstralingspatroon bolsymmetrisch is.

Wel is het dan nodig een correctie op het geluidsniveau aan te brengen, die wordt aangeduid als ‘lateral geluidsverzwakking’ (Lateral Noise Attenuation), kortweg LGV genoemd.

\[
s = \sqrt{z^2 + (h_0 - h_0)^2 \cos^2 \gamma}
\]

\(\beta = \arctan\left(\frac{(h_0 - h_0) \cos \gamma}{z}\right)\)

\(p = \) waarnemingspunt
\(s = \) ‘slant distance’
\(h_0 = \) hoogte van de ontvanger
\(h_0 = \) hoogte van de bron
\(\beta = \) elevatiehoek
\(\gamma = \) stijghoek

De reden voor het in rekening brengen van deze extra demping is dat de overdracht van geluid door de atmosfeer, behalve door de afstand (spreading van geluidsenergie en atmosferische demping), wordt beïnvloed door de aanwezigheid van het grondoppervlak, meteorologische omstandigheden in de vorm van verticale wind- en temperatuurgradiënten en eventueel door de afschermende werking van bepaalde vliegtuigdelen.

De invloed van de twee eerstgenoemde factoren worden hier aangeduid als ‘extra gronddemping’. Hiermede wordt de extra demping aangegeven die op zijdelingse posities optreedt bij gelijke afstand (‘slant distance’) tot de vliegbaan (afstand s in figuur 16).

Zoals aangegeven in lit. 10, is in het berekeningsvoorschrift de extra gronddemping afhankelijk gesteld van de afstand s en de elevatiehoek β (figuren 14 en 16).

Onderstaand is de berekeningsmethode voor de bepaling van de LGV samengevat. De methode wordt geldig geacht voor rekenpunten op 1,2 m hoogte boven een obstakelvrij gebied met een vlak oppervlak dat bedekt is met gras.

a) Voor $0 \leq \beta \leq 0,35$ rad (20°):

$$\text{LGV} = \Delta L (5,471 \beta^2 - 4,774 \beta + 1) + 3q (1 - \sqrt{\sin \beta}) \text{, dBA}.$$

Hierbij wordt ΔL de bodemverzwakking genoemd en is q de afschermingsfactor. Voor iedere vliegtuigcategorie is vermeld of demping door afscherming wel ($q = 1$) of niet ($q = 0$) van toepassing is.

<table>
<thead>
<tr>
<th>s_0, m</th>
<th>ΔL, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 $\leq s < 50$</td>
<td>0</td>
</tr>
<tr>
<td>50 $\leq s < 400$</td>
<td>0,0163 s/s_0 - 0,815</td>
</tr>
<tr>
<td>400 $\leq s < 2300$</td>
<td>16,1847 log (s/s_0) - 36,4086</td>
</tr>
<tr>
<td>$s \geq 2300$</td>
<td>18</td>
</tr>
</tbody>
</table>

$s_0 = 1$ m is referentieafstand
b) Voor $0,35 < \beta < 1,57 \text{ rad (90°),}$

$$LGV = 3q (1 - \sqrt{\sin \beta}) \text{ dBA}.$$

De modellering van de LGV is grafisch weergegeven in figuur 17.

In de door het NLR gegeven toelichting op het berekeningsvoorschrift wordt vermeld dat als basis voor bovenstaande modellering is gekozen de methode ontwikkeld in lit. 11 (SAE AIR 923).

T.a.v. deze literatuurbron wordt opgemerkt dat hierin onderzoekresultaten worden gebruikt van voor 1966. De motoren van de vliegtuigen uit die tijd hebben een omloopverhouding van maximaal één, waardoor de frequentie-spectra van deze verouderde motoren verschillen van de spectra van het geluid van de moderne motoren met omloopverhoudingen van 5 en hoger.

Ook is van belang dat de veronderstelde atmosferische condities van wind- en temperatuurgradiënten niet in overeenstemming zijn met de ISA-condities.

Verder worden de geluidsniveau’s in lit. 11 gegeven als 'Effective Perceived Noise Level', uitgedrukt in EPNdB.

figuur 17. Modellering LGV in berekeningsvoorschrift.

figuur 18. Modellering LGV in SAE 1751.
Een meer recente studie in lit.12 (SAE AIR 1751) geeft de laterale geluidsverzwakking op een vergelijkbare wijze. Opvallende verschillen zijn de maximale demping die nu 13,86 dB bedraagt en een invloed van de elevatiehoek tot $\beta = 60^\circ$ (figuur 18). Verder is in deze modellering geen invloed van afscherming door vliegtuigdelen opgenomen. Merk op dat de bodemverzwakking in figuur 18a afhankelijk is gesteld van de horizontale afstand tussen waarnemer en grondpad (afstand z in figuren 14 en 16).

In literatuur 13 wordt aangegeven dat het verschijnsel van de extra grondemping i.h.b. wordt veroorzaakt door het verschil in het effect van de (spiegellende) grondreflectie van de geluidsstralen op resp. het grondpad en op de laterale positie (figuur 19). Op grond van dit gegeven en zijn definitie (zie figuur 16) is de extra grondemping uitsluitend een functie van de elevatiehoek, waarbij de mate van demping bepaald wordt door de vorm van het spectrum, de meethoogte en ook de gebruikte geluidsmaat (figuren 20a en b).
7. Een onnauwkeurigheidsmarge voor geluidscontouren

Zoals vermeld in de inleiding van dit rapport bestaat thans onvoldoende kennis over de nauwkeurigheid van de methodiek voor de berekening van de geluidsbelasting rondom Schiphol.

Voor het verkrijgen van een inzicht in de orde van grootte van de onnauwkeurigheid en de verdeling hiervan over de geluidscontouren is een studie van de modelleringen en het uitvoeren van een gevoeligheidsanalyse van de systeemvariabelen een goede aanpak.

Als mogelijke onderwerpen van onderzoek komen hiervoor volgens de voorgaande beschouwingen in aanmerking (zie ook lit. 9):

a) Uitbreiding van het aantal vliegtuigcategorieën met verbeterde prestatiegegevens.

b) Uitbreiding van het aantal afstandsklassen.

c) Het in rekening brengen van de invloed van (tegen)wind op de start- en landingsprestaties.

d) Het in rekening brengen van de invloed van het actuele jaargemiddelde van de temperatuur op de prestatie en de geluidskarakteristieken.

e) Het in rekening brengen van de invloed van het beschrijven van bochten tijdens de verschillende (standaard) startprocedures.

f) Het veranderen of opheffen van de drempelwaarde van 65 dBA.

g) Het in rekening brengen van de effecten van het ‘deraten’ van de motorstuwkracht in de start.

h) Het bepalen van de variaties in het effectieve aantal vliegtuigbewegingen.

i) Het ontwikkelen en implementeren van een verbeterde methode voor de berekening van de laterale geluidsverzwakking.

j) De toepassing van fysieke maatregelen, zoals verschuiving van aankomst- en vertrektijden, discriminatie van bepaalde vliegtuigtypen en keuze baangebied.

Het is goed voorstelbaar dat het hier aanbevolen onderzoek ook zal leiden tot een verbetering van de nauwkeurigheid van de berekende geluidsbelasting.

Hierbij dient bedacht te worden dat de nauwkeurigheid waarmede de geluidshinder via de geluidsbelasting wordt voorspeld, in belangrijke mate zal afhangen van de juiste waarden van de geluidsniveaus als invoergegeven in het berekeningsvoorschrift.
Het vaak voorgestelde directe meten van L_{Amax} garandeert op voorhand geenszins een grote mate van nauwkeurigheid (zie lit. 7, 14 en 15). Dat het tegendeel waar kan zijn, wordt veroorzaakt door de sterk variabele effecten van atmosferische en meteorologische condities, omgevingssituatie en grondreflectie op het gemeten geluids niveau.

Figuur 21 brengt de verschillende invloeden in beeld, en maakt duidelijk dat elk geluidsprobleem wordt gevormd door vier elementen:

1. Eigenschappen van de geluidsbron.
2. Geluidsoverdracht.
3. Invloed meetomgeving.

Als voorbeeld toont figuur 22 een sequentie van geluids niveau's gemeten aan overvliegende lichte schroefvliegtuigen (lit. 14). De resultaten geven aan dat zelfs onder de omstandigheid van een zeer geringe windsnelheid, grote variaties in de geluids niveau's optreden. Hierbij is uiteraard inbegrepen de eventuele fout geïntroduceerd door de geluidsmeter.

De conclusie van de onder punt 5 gegeven beschouwing is dat de berekende geluidsbelasting als intrinsiek kenmerk heeft dat zijn onnauwkeurigheid altijd groter is dan $\pm 2\text{ Ke}$. Deze onnauwkeurigheid zal ons echter niet verontrusten gelet op de menselijke perceptie van geluid.

De ultieme vraag die wel aan de orde is, zal gaan over de actuele onnauwkeurigheid, in afhankelijkheid van de grootte van de geluidsbelasting en de bijbehorende locatie.

De directe consequentie hiervan zal zijn de noodzaak tot het ontwikkelen van activiteiten op het gebied van het bepalen van de mate van onnauwkeurigheid.

Vervolgens dient onderzocht te worden de mogelijkheid om deze onnauwkeurigheid te verkleinen en te komen tot een te definiëren onnauwkeurigheidsmarge voor geluidssonen-
8. Literatuur

