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Chapter 1

Introduction

Empirical studies on real-life networks, such as the Internet, the World-Wide
Web, social networks, and various types of technological and biological net-
works, show fascinating similarities. Many of the networks are small worlds,
meaning that typical distances in the network are small, and many of them
have power-law degree sequences, meaning that the number of vertices with
degree k falls off as k=" for some exponent 7 > 1. (...) Incited by these
empirical findings, random graphs have been proposed to model and/or ex-
plain these phenomena.

M. Deijfen, H. van den Esker, R. van der Hofstad and G. Hooghiemstra; [29]

Random graphs are mathematical objects that have been proposed to model
real-life networks. A random graph produces graphs, a graph consists of nodes
which are connected by each other by edges. A real-life network that is abundantly
considered in the literature is the Internet. We can define the graph corresponding
to the Internet as the set of routers (the nodes) and the wires (the edges) between
them.

In 1959 Erdgs and Rényi [34] introduced the first random graph, which we
refer as the Erdds and Rényi (ER) random graph. The study of this random graph
is to be considered the start of random graph theory. At first only static random
graphs are considered in the literature. In these random graphs the number of
nodes is fixed, and edges are added between the nodes using a connection rule. The
ER random graph is an example of a static random graph, since in this model
the number of nodes is fixed and between each pair of nodes an edge is added
with some fixed probability. By appropriately choosing the connection rule of the
edges we can produce graphs with power-law degree sequences. An example of a
static random graph that produces power-law degree sequences is the configuration
model, which is one of the random graphs used in this thesis, see Chapter 2.

Most real-life networks have the property in common that they grow over
time. For example, the Internet is growing due to the addition of routers. A
static random graph cannot reveal the growth of a network over time. We need
dynamic random graphs that are able to mimic the growth of a network. In
1999, Barabési and Albert introduced the first dynamic random graph. Barabési
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and Albert show in [4], that the model produces graphs with power-law degree
sequences.

At this moment, the research interest in random graph theory is shifting from
static random graphs to dynamic random graphs. In the past static random
graphs were a logical choice to start with, since they are more tractable from a
mathematical point of view. Nowadays, it is clear that dynamic random graphs
are a more natural choice, although these random graphs are more complex and
more difficult to analyze.

1.1 OQOutline of thesis

In this section we will give an overview of the articles in this thesis. In total
there are four papers, Chapter 2 up to Chapter 5, which are preceded by this
introductionary chapter. After giving an overview of the articles, we end this
section with an overview of the remainder of the sections in this chapter. The
overview will be brief and technicalities will be avoided, since at this point no
formal introduction to graph theory has been given.

In Chapter 2 we consider the configuration model. In this model we start with
a fixed number of nodes, where from each node a random number of stubs or half-
edges emanates. We construct the graph by randomly connecting pairs of stubs,
where two different stubs combined give precisely one edge. Observe that the total
number of stubs should be even, otherwise we end up with one free stub. The
configuration model can be used to model the network of routers of the Internet,
where we ignore the underlying geometry. In Chapter 2, we will study the case
that for each node the expected number of stubs of a node is infinite. We will show
that if the number of nodes goes to infinity, then one needs either 2 or 3 edges to
connect two randomly chosen nodes, or in other words the distance between two
randomly chosen nodes is either 2 or 3. It is possible that the number of stubs of a
single node exceeds the number of available nodes, since its expectation is infinite.
This is in real networks not very likely. Consider for example the Internet, where
connections between routers are identified with edges. Therefore, we consider the
same model with the following restriction: if the total number of nodes is n, then
the number of stubs of a single node is at most n®, where « is some value between
0 and 1. Under this restriction, we will show that, in the limiting case, the distance
between two randomly chosen nodes is with high probability constant and that
this constant depends only on the value of a.

In Chapter 3, we introduce a preferential attachment model with random initial
degrees. Conveniently, we call it the PARID random graph. Initially, we start off
with two nodes which are connected by a random number of edges. Then at each
discrete time step, we add a new node with a random number of stubs. Each stub
is randomly connected to one of the old nodes by forming an edge, where nodes
with a high number of outgoing edges are preferred, which is called preferential
attachment. By repeating this process, we can construct a graph with any number
of nodes. In Chapter 3 we describe the degree distribution of the PARID random
graph, i.e., the distribution of the number of edges of a node, as the number of
nodes goes to infinity.

In Chapter 4 we consider random graphs consisting of n nodes, where each
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node has a random weight. The number of edges between each pair of nodes
v and w does only depend on the weights of the nodes v and w. The classical
example is the Erdds and Rényi random graph, where each node has the same
weight. In this model the number of edges between pairs of nodes is at most one,
and each of the (g) possible edges occurs independently with probability p, which
depends on the weights. In Chapter 4 we will consider the Poissonian random
graph and derive distance results for this random graph. Furthermore, we show
that these distance results, also, do hold for other random graphs found in the
literature.

In the models above the underlying geometry is ignored. However, in for exam-
ple wireless ad-hoc networks the geometry is of great importance, since in these
networks nodes are spread over some surface and nodes can only communicate
with neighbors within a certain range, depending on the geometry. The random
graph, which we present in Chapter 5, could serve as a model for wireless ad-hoc
networks.

The remainder of this chapter consists of 5 subsections. In Section 1.2, we
list the 4 publications. In Section 1.3, we give some preliminaries of graph theory.
Then we give the history from the first definition of a graph up to the introduction
of scale-free graphs in Section 1.4, and, in Section 1.5, we discuss the properties
of these graphs. After that, we introduce two types of random graphs. In Section
1.5.3, we define two type of random graphs: static and dynamic random graphs.
For both types we give examples in Section 1.6.

1.2 List of publications

In this section we give the list of all papers presented in this thesis.

e Distances in random graphs with infinite mean degree sequence (2006)
H. van den Esker, R. van der Hofstad, G. Hooghiemstra and D. Znamenski;
published in Extremes 8, pages 111-140.

o A preferential attachment model with random initial degrees (2007)
M. Deijfen, H. van den Esker, R. van der Hofstad and G. Hooghiemstra;
accepted by Arkiv for Matematik.

e Universality for the distance in finite variance random graphs (2007)
H. van den Esker, R. van der Hofstad, and G. Hooghiemstra; submitted.

o A geometric preferential attachment model with fitness (2008)
H. van den Esker; submitted.

1.3 Preliminaries of graph theory

In this thesis it is assumed that the reader has some familiarity with basic prob-
ability theory.

A graph is the basic element of graph theory. A graph consists of vertices or
nodes, which are connected to each other by directed or undirected edges. We will
introduce the simple graph and the multigraph.
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A simple graph is a pair G = (V, E), where V and F are sets. An element of V/
is called a wertex or a node and an element of F is called an edge or a link. Each
element in F is an unordered pair (z,y), where x and y are elements of V such
that x # y. Furthermore, each element in E is unique. Thus, in a simple graph it
is assumed that there are no multiple edges and no self-loops, since the elements
in FE are unique and (z,z) ¢ F for all € V. The left picture in Figure 1.1 is an
example of a simple graph.

In a multigraph we allow for multiple edges between vertices and self-loops.
A multigraph is a pair G = (V, F), where V and E are sets. As before, V' is the
set of vertices. Each element in F is an ordered pair (z,y), where z and y are
elements of V' and are not necessarily different. An edge (x,y) € E represents a
directed edge from the vertex z to y. In literature this is often the definition of
a multigraph, but there are ambiguities concerning this definition. In this thesis,
we will use the definition as given here.

Figure 1.1: Some examples of graphs.

() V2

” " m
o]
V1 U1

Vs U5

(a) A simple graph consisting (b) A multigraph consisting of (c) A graph with 3 compo-
of 5 vertices and 4 edges. 6 directed edges; one of the nents.
edges is a self-loop.

A path of length n in the graph G = (V, E) from vertex v € V to vertex
w € V is a sequence xg = v,x1,...,T, = w of distinct elements of V' such that
(xi_1,x;) € Efori=1,...,n.

We call v,w € V connected if there exists a path between the vertices v and
w. The graph distance, or hopcount, between the vertices v, w € V is the length of
the shortest path between the vertices v and w. We denote by d(v,w) the graph
distance if the nodes v and w are connected, otherwise we set d(v, w) = co.

The typical distance of the graph G is the graph distance between two con-
nected randomly chosen vertices, which we denote by

Dist(G). (1.3.1)

The diameter of a graph G is the maximum finite distance between any pair of
vertices in GG, which we denote by

diam(G) = max, d(v,w). (1.3.2)
v,w
d(v,w)<oo

Observe that the diameter is a real number, but the typical distance is a random
variable.
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The graph G is connected if for any two vertices v, w in V there exist a path
between the vertices v and w. A graph that is not connected can always be divided
into connected components, i.e., disjoint connected subgraphs. For example, the
right most graph in Figure 1.1 consists of three connected components.

1.4 History

“The origins of graph theory are humble, even frivolous. Whereas many
branches of mathematics were motivated by fundamental problems of cal-
culation, motion, and measurement, the problems which led to the develop-
ment of graph theory were often little more than puzzles, designed to test the
ingenuity rather than to stimulate the imagination. But despite the apparent
triviality of such puzzles, they captured the interest of mathematicians, with
the result that graph theory has become a subject rich in theoretical results of
a surprising variety and depth.”

From ‘Graph Theory/1736-1963’; [13]

In this section we will give a brief overview of the history of random scale-free
graphs. We will consider, in chronological order, the most influential persons in
the history. We start with the roots of graph theory, founded by Leonhard Euler.
Then, we will consider Frigyes Karinthy, who published the short story titled
Chains in 1929. In this story, Karinthy claims that the modern world is shrinking
due to the ever-increasing connectedness of human beings. We will continue this
argument, and we will end with scale-free random graphs.

1.4.1 Euler

From a mathematical point of view, Leonhard Euler’s solution of the Kdnigsberg
bridge problem is to be considered the first theorem of graph theory [39].

The Konigsberg bridge problem is based on an actual place and situation. The
city of Konigsberg, now Kaliningrad in Russia, was situated at the Pregel River.
It included two large islands which were connected to each other and the mainland
by seven bridges, see Figure 1.2. It is said, that the people of Koénigsberg used
to entertain themselves by trying to find a route around the city which crosses
each of the seven bridges just once and where the starting point and the endpoint
coincide. As their attempts were in vain, it was believed that finding such a route
is impossible.

In 1736, Euler proved that it is not possible to give a route which crosses
each bridge only once and where the starting point and the endpoint coincide. In
proving the result, Euler formulated the problem in terms of graph theory, i.e.,
by abstracting all features of the problem. The landmasses are substituted by
vertices, and the bridges are substituted by edges which connect the vertices. In
this way, the first graph was defined, see Figure 1.2. Observe that replacing the
bridges of Kénigsberg by a simple mathematical object, i.e., the graph, is perhaps
more important than actually solving the problem.

The paper by Leonhard Euler on the seven bridges of Kénigsberg was published
in 1736. It is regarded as the first paper in the history of graph theory. The paper
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Figure 1.2: On the left we see, in gray, the engravings illustrating the 1736 paper of Euler
about the bridges of Konigsberg. The bridges are labeled a,b,c,d, e, f and g. On the
right they correspond to the edges a, b, c,d, e, f and g. Similarly, the landmasses are are
labeled A, B, C and D, corresponding to the vertices A, B, C and D in the graph.

Lomment: Aoad. SisTm VI 22 VA p. /28.

(a) The engraving illustrating the paper [39]. (b) A graph representing the
bridges of K6nigsberg.

demonstrates that there is no possibility for a route which crosses all bridges only
once starting and ending at the same point. Euler gave an intuitive argument
to explain why there is no such route. In order that such a route exists, one
needs that the number of edges that is incident to a vertex, the so-called degree
of vertex, is even. The idea is simple, each time you enter a vertex (landmass) by
an edge (bridge) and depart from it the degree is augmented by 2. Therefore all
the degrees should be even. In Figure 1.2 we see that the degree of any node is
odd, therefore no such route can exist.

1.4.2 Karinthy

In the previous section, we discussed the very early roots of graph theory. In
this thesis we are interested in properties of large graphs, i.e, questions related to
the diameter or typical distance of graphs when the number of vertices goes to
infinity. The first paper that addressed these questions dates back to 1929. This
publication is not a scientific paper at all, but a short story titled Chains. The
author Frigyes Karinthy published this story in a volume of short stories titled
Everything is Different. The author of Chains described the small-world effect or
siz degrees of separation, although without proof. In Chains Karinthy argued that
the world is getting smaller. Due to technological developments in communications
and travelling, social networks grow larger and span greater distances in the same
amount of time. As a result, Karinthy believed that any two individuals can be
connected through at most five acquaintances.

1.4.3 Erd6s and Rényi

Generally speaking, a random graph is a graph that is ‘constructed’ by some
‘random procedure’. In probability theory the ‘random procedure’ is represented
by a probability space and the ‘construction’ by a function from the probability
space into a suitable family of graphs. Thus, the theory of random graphs is a
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mix of graph theory and probability theory. The study of random graphs began
a few decades ago, independently and almost simultaneously, by several authors,
namely Ford and Uhlenbeck [45], Gilbert [46], Austin, Fagen, Penney and Riordan
[7], and Erdés and Rényi [34]. From these authors, Erdds and Rényi are considered
to be the founding fathers of the theory of random graphs. They were the first to
introduce methods which underlie the probabilistic treatment of random graphs,
while the other authors were more concerned with enumeration problems.

In the paper [34], Erdés and Rényi introduce the random graph G(n,m), where
n and m are positive integers. In the G(n, m) model a graph is chosen uniformly
at random from the collection of all graphs with n vertices and m edges. A second
model of interest is the random graph G(n,p), which is often referred to as the
Erd6s and Rényi (ER) random graph, although the random graph was introduced
by Gilbert [46]. In this model each graph consists of n vertices and each of the (%)
possible edges occurs independently with probability p. The two random graph
models are closely related, see for example [58, §1.4] or [16, §2.2].

1.44 Milgram

Until the experiments of Stanley Milgram, the challenge of linking two individuals
to each other by at most five other individuals had been a brainteaser. Stanley
Milgram, a famous experimental social psychologist, started to experiment in 1967
at Harvard University in Cambridge, Massachusetts, USA; to test the hypothesis
of the six degrees of separation. Like Karinthy, Milgram was intrigued by the
increasing social interconnectedness among individuals over time. However, it is
not known to me whether Milgram knew the work of Karinthy.

Milgram’s experiments were designed to measure the typical number of inter-
mediaries between two randomly selected people. In one of the experiments, which
is described in [81], Milgram determined how many intermediaries it took to send
a booklet from selected individuals in Nebraska and Boston to a specific target
in Massachusetts. Participants were asked to try to get the booklet to the tar-
get by passing the booklet to someone they knew personally, who they believed
either knew the target, or might know someone who did. These acquaintances
were asked to do the same, repeating the process until the booklet had reached
the target.

A significant problem was that people refused to participate. As a conse-
quence, the majority of the booklets never reached their destination. In the above
described experiment 232 out of the 296 booklets never reached the destination,
see [81]. However, 64 of the booklets did reach their target, and the mean number
of intermediaries between the starters and the target was 5.2. Milgram deducted
that people in the US are separated by about six people on average. Although
Milgram himself never used the term six degrees of separation, these findings
attributed to the widespread acceptance of six degrees of separation.

1.4.5 Watts and Strogatz

The paper of Watts and Strogatz [82] was probably the first paper to compare net-
works from different sciences and to show that their diameters were considerably
smaller than those of regularly constructed graphs, i.e., lattices or grid graphs,
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with the same number of vertices and edges. In the literature, the existence of a
small diameters is called the small-world effect. Watts and Strogatz considered
the collaboration graph of actors in featured films, the electrical power grid of the
western United States and the neural network of the worm C. FElegans.

Watts and Strogatz introduced the so-called Watts-Strogatz (WS) random
graph, which generates highly clustered graphs with a relatively small diameter.
Essentially, the model is a rewiring model. One starts with a fixed set of vertices
on a circle and one connects each vertex only to its k& neighbors on the right and
to its k£ neighbors on the left. Then, with given probability, edges are rewired.
The graphs obtained by rewiring edges on a circle do not resemble real networks,
although they share some of their characteristics. To model real networks, it was
desirable to define new families of graphs models.

1.4.6 Barabasi and Albert

As indicated in the previous subsection there was a need for introducing new
random networks that both explain the small world effect and the occurrence of
so called power-law degree distributions, which we will explain now. In [66, 67, 76]
it was observed that in many real-life networks the number of nodes with degree
k is proportional to an inverse power of k. More precisely, if Nj is the number of
nodes in the network having degree k, then

N~ Ck™7 (1.4.1)
where C' is a constant and 7 > 1 a parameter of the network which is called the
power-law exponent. See Figure 1.3 or [66, Table IT] for a more extensive overview

of examples of networks with the corresponding power-law exponent.

Figure 1.3: Some real-life networks from [76, Table 1].

Network | nodes links T  Brief description

Gnutella 1.026 3.752 1.4 A file sharing network. The users are
the nodes and the upload and down-
load links are the edges.

PIN 2.115 2240 24 Protein Interaction Networks.

Citation | 783.339 67.161.198 3.0 Each node is an author, where authors
are connected to one and another if they
have published a paper together.
Actors 449913 255.516.482 2.3 Each node is an actor, where two actors
are connected if they featured together
in the same moving picture.

Internet 10.697 31.992 25 The nodes are (large) routers and the
links are the connection between the
routers.

The paper by Barabéasi and Albert [4] was the first paper that gave the cause
of the existence of these power-law degree distributions. Barabasi and Albert
introduced a random graph model, which is nowadays referred to as the Barabdsi-
Albert (BA) random graph model. The BA model incorporates two important
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general concepts, which are present in most real networks, namely: growth and
preferential attachment. In the BA model nodes are entering the model one by
one at discrete time steps. At time n a new node enters the network and from
this node there are emanating a fixed number m > 1 edges. These edges are then
connected to the old nodes 1,2,...,n — 1 of the network, where the attachment
probabilities are taken proportional to the degrees of the old nodes. Barabéasi and
Albert showed by simulation that the above set-up leads to a random graph having
power-law degree sequences. A rigorous proof of the fact that the BA-model has
power law degree sequence was given by Bollobds and Riordan [19]. The small
world effect was also proved by Bollobas and Riordan. They showed for the BA
model that the diameter scales for m = 1 as logn, i.e, the logarithm of the number
of nodes. For m > 1, the diameter scales as logn/loglogn.

1.5 Scale-free graphs and modeling

“Nature normally hates power laws. In ordinary systems all quantities follow
bell curves, and correlations decay rapidly, obeying exponential laws. But
all that changes if the system is forced to undergo a phase transition. Then
power laws emerge — Nature’s unmistakable sign that chaos is departing in
favor of order.”

Albert-Laszl6 Barabasi

To study a real-life network one could identify the nodes and edges and con-
struct the corresponding graph. For example the Internet consists of routers
(nodes) which are connected to each other by wires (edges), or, the World-Wide
Web (WWW) consists of web pages (nodes) which are linked to each other by
hyper links (directed edges). In practice this is not very useful, since the networks
of interest are large and, as a consequence, this procedure is very time consuming
and the amount of memory to store the corresponding graph is huge. Therefore,
it is practically impossible to give a full description of the network.

The solution is to model a real-life network under consideration using a random
graph, where random rules describe how vertices are connected to one another.
In this thesis we consider scale-free networks, which will be explained in the next
subsection. We close this section by introducing two types of random graphs.

1.5.1 Scale-free graphs and their properties

The random graphs, which are used to model real-life networks, have in common
that the degree distribution follows a power law, i.e., the probability that a vertex
has degree k is proportional to k=7, for some constant 7 > 1, the so-called power-
law exponent, as already mentioned in Section 1.4.6. It turns out the asymptotic
behavior of the degree sequence is independent of the size of the graph, and
depends only on the constant 7. We call a graph with this property scale-free.

In the literature, we observe that the word network and graph are used as
synonyms. We use the terminology real-life network for a network existing in the
real world. As a consequence, a scale-free network is a scale-free graph. In this
thesis we prefer to use the word graph over the word network.
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Figure 1.4: In the picture, we see the degree sequence of a realization G of the configura-
tion model with 2500 vertices and parameter 3, this model will be introduced in §1.6.1.
The theoretical power-law exponent is 3. Observe, if pr ~ Ck™3, for some positive con-
stant C, then logpr =~ logC — 3logk. Therefore, we expect that if the values py are
plotted against k on a log-log scale, then the points lie, approximately, on a straight line
with slope —3. This is indeed the case, as shown by the dotted line. The slope of this
line on the log-log scale is —3 and the intercept is 10°**'*, which is obtained by using
least squares estimation on the log-log data. In the right picture, we see the largest
component of the simulated graph.
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(a) The degree sequence of the (b) A visual representation of the largest component of
graph G on a log-log scale, where the graph G. The component consists of 1051 vertices
pg is the fraction of vertices with  and 1126 edges.

degree k.

In Figure 1.3 a table is given of some scale-free networks and their correspond-
ing power-law exponents as found by experimental data. We, also, included the
number of nodes and links.

Another property, that is seen in real-life networks is the existence of hubs.
We identify hubs in graphs with vertices with a high degree. If one models a
network by a scale-free random graph, then this property is a consequence of the
fact that the degree distribution follows a power law, since this is a skewed and
heavy tailed distribution. The skewness explains that most vertices are of low
degree, and the heavy tailness explains the existence of vertices with a very high
degree (the hubs).

1.5.2 Characteristics of the power-law exponent

We defined a scale-free graph by the existence of a power-law exponent 7 > 1.
The value of the power-law exponent determines the characteristics of the random



§1.5 Scale-free graphs and modeling 11

graph. Depending on the value of 7, we classify the following three categories:
the infinite mean case, the finite mean and infinite variance case, and the finite
variance case, which corresponds to 7 € (1,2), 7 € (2,3) and 7 > 3, respectively.

These categories are of interest, since it influences the properties of the graph,
e.g., the existence of hubs or the size of the typical distance.

Results in the literature show that if 7 > 3, then the graph is homogeneous or
flat in the sense that all vertices have roughly the same kind of neighborhood. If
T € (2,3), then there will appear vertices with a high degree. These vertices act
as hubs, and their impact on the connectivity cannot be neglected. If 7 € (1,2),
then a finite number of vertices act as super hubs for all the other vertices, the
graph has a star-shaped structure, see [71].

Tt should be clear that the power-law exponent 7 directly influences the typ-
ical distance. For 7 € (1,2) the typical distance is bounded by some constant,
because of the star-shaped structure, see [38]. If 7 € (2,3) then the hubs acts as
shortcuts which results in typical distances of order loglogn, see [53, 56]. If 7 > 3
then the typical distance is of order logn, because it lacks hubs, see [53, 54, 71].
Although these properties are only proven for certain families of random graphs,
we conjecture that these results do hold in general, i.e., that they only depend on
the value of 7, for any random graph where 7 is well-defined.

Observe that we ignored the boundary cases 7 € {1,2,3}. The classification
in the three above mentioned cases depends on the model, which is illustrated in
Chapter 2 by means of examples. In this chapter, we consider the configuration
model, and using this model we generate random graphs with 7 € (1,2). One of
the main results, Theorem 2.1, states that the typical distance is concentrated with
high probability on the values 2 and 3, where an sequence of events {A;};>1 occurs
with high probability (whp) if the probability of the event A, tends to one if n
tends to infinity. It is shown that for the boundary case 7 = 1, see Theorem 2.3,
the typical distance is whp concentrated only on 2, which implies that one node
acts as a hub for every other node. In Section 2.4.2 two examples are presented
and in both examples the resulting power-law exponent is 7 = 2. In one example
the typical distance is whp concentrated on the values 2 and 3, while in the other
example the typical distance drifts away to +oo if the number of nodes tends to
infinity. Thus, the categorization of the boundary cases, 7 € {1, 2,3}, depends on
the used model.

1.5.3 Dynamic verus static random graph models

Most large networks that we encounter in nature are growing over time. If one
wants to model such a network than one can use either a static or a dynamic
random graph.

Static random graphs aim to describe a network and its topology at a given
time instant, and it tries to mimic the network under consideration. The Erdd&s-
Rényi graph is an example of a static random graph, see Section 1.4.3. On the
other hand, a dynamical random graph aims to explain how the network came
to be as it is. Dynamic random graphs often focus on the growth of the network
under consideration as a way to explain the power-law degree sequences by means
of preferential attachment growth rules, where added vertices and links are more
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Figure 1.5: In the three figures we see the typical structure of the network for the infinite
mean(l < 7 < 2), finite mean and infinite variance(2 < 7 < 3) and finite variance(T > 3)

case.
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likely to be attached to vertices that already have large degrees. The Barabési-
Albert random is an example of a dynamic random graph, see Section 1.4.5.

In the literature, the first random graphs introduced used to model real-life
networks are static ones. For example, the first paper that describes the Erdés-
Rényi random graph is published in 1959, c.f. [34], while the first paper about
the Barabasi-Albert random graph is published in 1999, c.f. [4]. In general,
static random graphs are from a mathematical viewpoint more tractable than
dynamic ones. Therefore, static random graphs were the first random graphs to
be studied. Nevertheless, over time it became clear that static random graphs are
not well suitable to model real-life networks. Dynamic random graphs are more
appropriate as a choice to model real-life networks, since static random graphs
lack the ability to minic the growth of network. Unfortunately, dynamic random
graphs are more complex and more difficult to analyze.
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1.6 Models for complex networks

“I think I've been contacted by someone from just about every field out-
side of English literature. I've had letters from mathematicians, physicists,
biochemists, neurophysiologists, epidemiologists, economists, sociologists;
from people in marketing, information systems, civil engineering, and from
a business enterprise that uses the concept of the small world for networking
purposes on the Internet.”

Duncan Watts

Over the years, many random graph models have been introduced in the lit-
erature. Often, each newly introduced random graph tries to mimic a property
of a real network. In the field of physics, we see often that a network is modeled
by a random graph, and that subsequently some properties of the random graph
are derived using simulations or mean-field theory. One often starts with the be-
havior of the degree sequence. Next, the researchers consider the diameter or the
expected value of the typical distance. At this stage these results are sometimes
picked up by mathematicians and provided with rigorous proofs.

1.6.1 Static models for complex networks

In this section, we will consider some static random graphs. These graphs aim to
describe networks and their topology at a fixed time instant.

The Watts-Strogatz random graph

Watts and Strogatz defined a random graph, which generates highly clustered
graphs with a small diameter. Essentially, their model is a rewiring model, see
Section 1.4.5. It is difficult to derive results rigorously from the definition given
by Watts and Strogatz, since both the order of updating the edges is of impor-
tance, as are the restrictions that Watts and Strogatz impose in order to keep
the random graph simple. Newman and Watts [69] considered a variant of this
random graph, which we call the Watts-Strogatz (WS) random graph. We will
consider the random graph on a circle, with given parameters n, k and p = p(n).
To construct the initial graph, one distributes n vertices evenly on a circle and
connects each vertex to its k& neighbors to the left and to its k& neighbors to the
right. For example, the leftmost graph in Figure 1.6 shows the initial WS graph
for the parameters n = 12 and k£ = 2. Instead of rewiring, we add a random
number of shortcuts (edges). More precisely, the number of shortcuts is Poisson
distributed with mean pkn/2, where p € [0,1]. The begin and end-points of each
shortcut are chosen, independently, at random from the n vertices and one allows
for multiple edges and self-loops. From a mathematical viewpoint, this random
graph is more tractable than the random graph defined by Watts and Strogatz.

The behavior of the typical distance depends on the value pkn. If pkn is small
compared to 1, that is pkn = o(1), n — oo, then the distance scales with the
number of vertices n:

DiSt(Gn) p 1
—Z2\Tn) B
n 4k
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Figure 1.6: Three realizations of the Watts and Strogatz random graph with n = 12,
k=2 and p € {0.00, 0.15, 0.85}.

(a) p=0.00 (b) p=0.15

On the other hand, if pkn is large compared to 1, n — oo, then the typical distance
scales as logn:
Di 1
Dist(Gn) £ 1 (1.6.1)
logn k%p
We refer to [5, VI.A] or [8] for a more in-depth analysis of the scaling behavior of
the distance.

The Erdgs-Rényi random graph

The study of random graphs began independently and almost simultaneously by
several researchers, see Section 1.4.3. In 1959, Erdés and Rényi [34] introduced
the G(n,m), a random graph with n vertices and m edges. The random graph
G(n,m) is taken at random from the collection of all graphs with n vertices and
m edges. A second random graph is called G(n, p), where, again, n is the number
of vertices and p is the probability that there exists an edge between any pair of
vertices. In the literature, the graph G(n,p) is often referred to the Erdgs-Rényi
(ER) random graph, although, the random graph was introduced by Gilbert [46].
The graph G(n,p) consists of n vertices and between each pair of vertices there is
possibly an edge, where each of the (g) possible edges occurs independently with
probability p.

To compare two different graphs, we need to compare properties of the graphs.
Properties are for example the number of triangles, the chromatic number, the
existence of a large component. Intuitively, it seems clear that the two random
graphs G(n,m) and G(n, p) are similar if p = m(g)_1 = (niinll)n’ since the expected
number of edges in the random graph G(n,p) is (5)p. It turns out that it depends
on the property under consideration. We refer to [58, §1.4] or [16, §2.2], where
conditions are stated for different properties when the two random graphs are
similar, or not. That is, when one can replace G(n,m) by G(n,p) or the other
way around. From a probabilistic viewpoint, it is more pleasant to work with
the random graph G(n,p) than with G(n,m), because of the independence of the
edges.
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We close with some properties of the ER random graph. We will consider
the distribution of the degree sequence, the typical distance and the diameter.
We start with the behavior of the degree sequence distribution. For p = \/n,
the degree of any vertex has a binomial distribution with parameters n — 1, the
number of possible neighbors, and p = A/n. Hence, the degree of any vertex is
asymptotically Poisson distributed with parameter A\ as n tends to infinity.

Before considering the typical distance or the diameter, we first discuss the
existence of a giant component. We again take p = A/n. If A € (0,1), then
whp every component of the graph G(n,A/n) has at most O(logn) vertices. If
A > 1, then G(n, A/n) contains, whp, an unique giant component with cxn+o(n),
0 < ¢x < 1, vertices. All other components have at most O(logn) vertices.

We now turn to the typical distance, assuming A > 1. The typical distance,
Dist(G(n, p)), normalized by log n converges in probability to the reciprocal value
of log A, i.e.,

Dist(G(n,p)) p 1

. 1.6.2
logn - log A ( )
The proof of this result can be found in [31, Section 2.4].
Similarly, for A > 1, the diameter, Diam(G(n,p)), satisfies
Di 1 2
im(G(n.p)) 163

— =+ s
logn log A |log ]|

where j is the unique solution of uye™#* = Xe™* such that uy < 1, see [42].

Intuitively, the scaling of the typical distance and the diameter can be ex-
plained as follow: each vertex has on the average (n — 1)p &~ X neighbors. Thus,
the number of neighbors up to distance k is approximately bounded from below
by order A\*. Solving A¥ = n, that is k = log, n, gives a clue about the expected
typical distance between two randomly chosen vertices. This, does not explain
the second term in (1.6.3), i.e., 2/|log x| This term accounts for long isolated
paths which can cause the distance between particular pair of vertices to be signif-
icantly longer than the average distance. Intuitively, the length of the diameter is
the length of the average path (logn/log\) extended by two strands each having
length logn/|log | For more details, we refer to [42].

The configuration model

The configuration model(CM) is introduced by N.C. Wormald [83] and B. Bollobés
[15], independently of each other. Given a probability distribution F of a random
variable with support {0,1,2,...}, the model describes a way to construct an
undirected multigraph on n vertices, whose degree distribution has probability
distribution F. We allow for multiple edges and self-loops.

Consider an i.i.d. sequence {D;}" ,, where each D; is distributed as D, with
P (D < k) = F(k), for nonnegative integer valued k. The value of D;, 1 < i < n,
is the degree of vertex v;. The random graph is constructed as follow:

e Create a list in which the label i, for 1 < i < n, of each vertex appears
exactly D; times. The list consists of L,, labels.
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e Choose at random a label [; from the list and remove it from the list. Then,
again, we choose at random a label Iy from the list and remove it from the
list. The labels /; and [l form a pair. Repeat this process, until all labels in
the list are paired.

e Take n vertices and join the pairs above by edges.

Figure 1.7: A realization G of the configuration model with parameters n = 15 and
Flz)=1—2 "% forz > 1.

i f\%/\ﬂ\/&ﬂ\ A @

(a) The graph G. ) The graph G, where the
vertlces are put on a circle.

The construction fails if L, = Z?Zl Dj is odd, because after pairing L, —1
labels we end with a list of one label and we need at least 2 to make a pair. We
solve this problem by increasing D,, by 1, i.e., we replace D,, by D,, + 1. This
change will make hardly any difference in what follows, and we will ignore it in
the sequel.

Our main assumption will be that

11— F(2)] (1.6.4)

is slowly varying at infinity for some given 7 > 1.

We consider the distribution of the degree sequence and the typical distance
for different values of 7.

By construction, the degree distribution of a vertex v;, 1 < i < n, equals
the distribution function F' of the random variable D;. By picking the weight
distribution F', we can obtain any degree distribution.

The typical distance depends solely on the tail behavior of the distribution
function F', which, by (1.6.4), determines the power-law exponent 7. We will
consider the cases 7 € (1,2), 7 € (2,3) and 7 > 3, separately:

e 1 < 7 < 2: The typical distance takes only 2 values as n tends to infinity.
In Chapter 2 we will consider this case more in-depth. In this thesis we will
show that there exists some probability pr € (0,1), depending on F, such
that

lim P (Dist(G,) =2) =1— lim P (Dist(G,) = 3) = pF, (1.6.5)
n—oo n—oo
see Theorem 2.1. In Chapter 2, we also consider the case where we condition
the degrees to be at most n® for some o > 0. For fixed k& € {0,1,2,...}
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and o such that (7 +k)"! < a < (7 +k —1)71, the hopcount converges to
k + 3 in probability, while for o > (7 — 1)1, the hopcount converges to the
same limit as for the unconditioned degrees, see (1.6.5). These results are
the contents of Theorem 2.2.

e 2 <7 < 3: In [56] it is shown that, under some mild conditions for F,

Dist(G,) p 2
loglogn |log(T — 2)|

e 7 > 3: Define v as v = E[D(D — 1)] /E[D]. If v > 1, which implies that
there is whp a giant component, then we can show that

Dist(Gn) p 1
— .
logn logv

(1.6.6)

The above result is proven in [54]. The key ideas behind this proof are
also used in Chapter 4, where we derive the fluctuations of the typical dis-
tance for another random graph model, which will be introduced in the next
paragraph.

Furthermore, for the diameter, a similar, result can be given

Diam(Gn) p 1 2 — 1{p1=0} — 1{p2=0}

1.6.7
logn - log v log v/ ( )

where p, = F(k) and ¢/ is some constant depending on F' [42]|. The second
term in (1.6.7) is due to isolated paths, compare to (1.6.3).

The inhomogeneous random graph

In the Erdds-Rényi random graph G(n,p), the existence of an edge between any
pair of vertices is independent of all the other edges. More precisely, the edges are
defined by independent Bernoulli random variables {X;;}1<i<j<n, the occupation
statuses, with P (X;; = 1) = p;; and p;; = p for all edges. The event {X;; = 1}
signifies the presence of an edge between the vertices v; and v;. For convenience,
we set Xj; = X5, for1 <i<j<nand X;; =0,for1 <i<n.

In Chapter 4, we generalize the above definition, which results in the definition
of the inhomogeneous random graph (IRG). We obtain the inhomogeneous random
graph by replacing the probabilities of the occupation statuses in the ER random
graph. To that end, we associate with each vertex v; a weight A;, for 1 < i < n.
These weights can be taken random or fixed, and both options have been con-
sidered in the literature. We assume that the weights {A;}}_; are independent
and identically distributed (i.i.d) random variables. The occupation probabilities
will be defined conditionally on the weights. Denote by L, = Y., A; the to-
tal weight. In the IRG, as used in Chapter 4, we assume that the occupation
probabilities are given by

pij = f(Aid;/Lyp), 1 <i<j<m,
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for some given function f, satisfying
f(z) =2+ 0(2?), forz | 0.

Observe that the IRG involves double randomness: first the weights of the
vertices are sampled, and then, in turn, the occupation statuses are sampled.
As already mentioned, one could investigate the IRG for fixed weights, since the
occupation statuses are taken conditionally on the weights. The advantage is that
the results are more general, because often the results for random weights can
be concluded from the ones where the weights are fixed. The disadvantage, is
that one has to make detailed assumptions concerning the precise structure of the
deterministic weights, see [25]. The use of i.i.d. weights implies exchangebility of
the vertices, which is a nice property to work with.

The Erdés-Rényi random graph is a special case of the IRG. We obtain the
ER random graph G(n,A/n) by taking f(z) = z and A; = A, for 1 < i < n,
which implies that p;; = A/n, for 1 <¢ < j < n. Furthermore, the random graphs
introduced in [23, 25, T1], i.e., the generalized random graph (GRG), the expected
degree random graph and the Poissonian random graph (PRG) are special cases
of the IRG. This will be shown in Section 4.1.2.

We now consider the distribution of the degree sequence and the typical dis-
tance, under the condition that the first two moments of A; do exist. We start
with the degree sequence distribution.

If the first two moments of A; exist, then the degree of a vertex in the IRG is
asymptotically a mixed Poisson random variable with mean the weight A;. This
contrasts with the configuration model, where the degree distribution of a vertex
is, always, the distribution of the random weight A;.

Using results from Chapter 4, the scaling of the typical distance is given by

Dist(Gn) p 1
—
logn logv’

(1.6.8)

where IE[A2]

Y= Ea] (1.6.9)
and where we assume that v > 1, which guarantees that there is, whp, a giant
component.

Observe that, by construction, in the CM the degrees of the vertices are inde-
pendent, and the edges are not, whereas in the IRG model precisely the opposite
is true, i.e., in the IRG model the edges are independent and the degrees are not.

The IRG is a special case of the random graph introduced in [18]. The 120
pages paper [18] uses kernels to define the construction of the graphs. Instead of
giving the formal, and lengthy, definition of this random graph, we only mention
that the IRG is a rank I case, see [18, §16.4]. The results of [18] are impressive,
the authors show for the finite variance case that the expected typical distance
scales with logn, see Lemma 14.3 in [18]. In Chapter 4 we extend this result by
giving the fluctuations around the mean of the typical distance.

Next, we show that the distribution of the fluctuations of the typical distance
in IRG model does not converge to a limiting distribution for the finite mean
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case, but depends on the number of nodes. This statement has been proved for
the configuration model [54] and therefore the result is not new. Nevertheless,
it is nice to illustrate this phenomenon using simulations. Below we will use the
Poissonian random graph (PRG), which is a special case of the IRG.

Using Theorem 4.1 in Chapter 4, one can show that:

Corollary Let G,, be the Poissonian random graph on n vertices. Assume that
1—F(z)<cx' ™, x>0, (1.6.10)

for some given constant ¢ > 0 and fived T > 3, such that

E[A?]
= 1. 1.6.11
YT ER (16.11)
For k>1, let
o = |log, k] and ay = oy, — log, k, (1.6.12)

then there exists random variables (Rq)qe(—1,0) such that as n — oo,

P (Dist(Gy) = 0 +1) =P (R,, =1) 4+ 0(1), (1.6.13)
where | is a positive integer.
Figure 1.8: In the picture the empirical survival functions of the graph distance for 4
IRGs are plotted. Each plot is averaged over 1000 samples. The parameters are given

by 7 = 3.5 and v = 2.231381.
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From (1.6.13) it follows that the limiting variable depends only the value a,.
Using simulations we will indicate that the above given corollary is indeed true.
To this end, we pick 1 — F(x) = cz!~"1{z>z0} with 7 = 3.5, ¢ = 2.5981847 and
ro = 0.7437937, then

= —— ~2.231381
v B ,
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where the distribution of A is given by F. We consider four PRG’s, where the
number of nodes is given by respectively ng = 5000, ny = 24.895, ny = 123.955
and nz = 617.181. Observe that n; ~ 500002, 0 < i < 3, and

Gn, = 0.6117... ay,, =0.6117... ap, =0.6117... and a,, =0.6117....

Thus, we expect that the distribution of the typical distance for these sizes, up to
a shift, are the same, since, for 0 <17 < 3,

Ra, = Rogur.. and oy, = [log, n;| = [log, (50000*")| = |log, 5000 + 2,

respectively. These conclusions are illustrated by Figure 1.8.

1.6.2 Dynamic models for complex networks

In this section, we will discuss some examples of dynamic random graphs. A
dynamic random graph aims to explain how a network came to be as it is by
modeling the growth of the network.

Most dynamic random graphs are based on preferential attachment. In these
random graphs one chooses the node v proportional to its degree d,, but one
could also consider non-linear preferential attachment by choosing the node v
proportional to its degree to some power, for example d} for some fixed v > 0,
see [24, 75]. The authors of [24] observe that this generalization cannot generate
power-law distributions, except if v = 1, and, as a consequence, if v # 1, then the
resulting random graphs are not scale-free.

Tt was once believed that preferential attachment is the underlying mechanism,
which generates scale-free random graphs. In [10] a random graph is defined,
where the attachment rule of the edges is essentially a minimalization problem.
The authors of [10] prove that the resulting graphs are scale-free, and, therefore,
show that preferential attachment is not the only way to obtain scale-free graphs.

The Barabasi-Albert random graph

The Barabdsi-Albert (BA) random graph is introduced in [4]. The description
given in this paper is not well-defined, but is shown in detail in [19]. Therefore,
we present here the definition of the BA random graph as given in [19]. The
random graph is defined by two parameters: n and m, where n, as usual, is the
number of vertices and m is the number of edges emanating from each newly
added vertex. We define the random graph for m = 1, and using this definition
we give the definition for general m > 1. Let G{" be a graph consisting of one
vertex and one self-loop. Given the graph G, we construct the graph forl by
adding the vertex v}, together with a single edge directed from v;; to w, where
w is chosen randomly with probabilities

d(s) .
P(w=v0|GP) ={ 301 lssst (1.6.14)
%—H if s=1t+41,

where d;(s)® is the degree of vertex v in the graph G{". Observe that the BA
random graph is a preferential attachment random graph.
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Figure 1.9: In the figure we see two graphs. The upper graph is a realization of the BA
random graph Gilg, whereas the lower one is a realization of GéS)7 which is constructed
from the first graph Gils). The vertex 112(3), for 1 < ¢ < 6, is obtained by merging the
vertices vél()ifl)ﬂ, Uél()i,l)ﬂ, v§?171)+3 into a single vertex.
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To construct G, for m > 1, we first construct G{),,. Then G{™ is obtained
from GY), by merging the vertices in the latter graph. The graph G{™ consists of
the vertices {U;m) ™, and the vertex vém), 1 < < n, is obtained by merging the
vertices v;’(i71)+1, v;(i71)+2, e ’”;11)(1‘71)+m' In Figure 1.9 two realizations of BA
random graphs are given. The figure also illustrates the merging procedure how
Gy is obtained from G{3.

Now we consider the diameter, where we neglect the direction of the edges.
For m = 1 the diameter scales as logn, [74]. Bollobés and Riordan, [19, Theorem
1], show that for m > 2 whp the graph G{™ is connected and that for any fixed

e >0, whp,

logn logn

— = < Di G™) < (1
loglogn — iam(Gy”) < (1+¢)

(1—e)

In the literature, most dynamic random graphs have the BA random graph

as a special case, which is also true in this thesis. The PARID model and the

GPAF model are such examples, which are introduced in this thesis in Chapter 3

and Chapter 5, respectively. Later on, in this section, a brief description of these
models are given.

loglogn’

The Poissonian random graph; revisited

Norros and Reittu observed that in large real-life networks the number of edges
joining two disjoint sets of vertices are approximately Poisson distributed given
their degree sums. This was the starting point for Norros and Reittu to introduce
a random graph in which the number of edges joining two disjoint sets of vertices
is Poisson distributed: the Poissonian Random Graph (PRG), see [71].

The PRG was already introduced in Section 1.6.1 as a special case of the
inhomogeneous random graph using a static description of the model. However,
the PRG can also be described as a dynamic random graph. This description will
be given next.

Fix a positive integer n, which is the number of nodes of the final graph.
Let {A,}?_, be an ii.d sequence, where A;, for 1 < ¢ < n, is the weight of
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the vertex v; and denote by L;, 1 < t < n, the total weight of the graph Gy:
Li=A+ Ay +---+ Ay

First step: Start with the graph G consisting of the vertex v, and a Poisson
distributed number of loops with mean A;.

Induction step: Start with the graph G471 as an identical copy of the graph
G and add the vertex vyy1 with weight A;y;. Now we perform the following
two operations:

(i) Thinning of the edges: each edge of G4 is removed independently

with probability
Ly

Ly

P41 =1—

(i) Adding edges: we add new edges between the vertex v;y; and all
existing nodes v,, 1 < n < t+1. The number of edges we add between
vertices vy, and viy1 i Frq1(n,t+1) and this is a Poisson variable with
mean

AnAtJrl

E[Er1(n,t+ 1) [{As}57] =
Lyt

The preferential attachment model with fitness

The BA random graph is a pure preferential attachment model, i.e., vertices with a
high degree are preferred over others. Although the BA model has two parameters
n and m, the resulting power-law exponent of the degree sequence is always equal
to 3.

As a consequence of the preferential attachment, the degrees of the oldest
vertices will be the highest, since they had the most opportunities to acquire edges.
Numerous examples convincingly indicate that the connectivity of nodes in real-
life networks does not depend on their age. For example, in social networks, not
everybody makes friends at the same rate: some individuals are better in turning
a random meeting into a lasting social link than others. On the World-Wide Web
some pages, through a combination of good content and marketing, acquire a large
number of links in a very short time, easily overtaking websites that have been
around for much longer time, see [1].

We tend to associate these differences with some intrinsic quality of the nodes,
such as the social skills of an individual, or the content of the web page. We call
this the fitness of a node, which is similar by associating a weight to each vertex
in the random graphs we have seen in Section 1.6.1.

In [12] multiplicative fitness is introduced. Each vertex v;, ¢ > 1, has a corre-
sponding random fitness 7;, the multiplicative fitness. At time ¢+ 1 a new vertex
v41 is added to the old graph, and from this vertex emanates an edge. The end-
point of this edge is connected to one of the old vertices. One chooses vertex v;,
1 < i < t, proportional to the degree of vertex v; times its fitness: 7;d;(t). This
model is extended in [35] by adding additive fitness, each vertex has also a random
additive fitness (; and one chooses a vertex v; proportional to degree in G; times
the multiplicative constant plus the additive constant: n;d;(t) + &;.
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As an example, we consider the page rank of a newly added web page by
Google. Imagine that we create a web page about the Honda VFR 800 motorcycle.
It can be argued that if the page rank is high, then it is more likely that other
(new) web pages will link to our web page, instead of other ones. Initially, the
page rank of our web page is determined by its keywords and links (the additive
fitness). Over time, other web pages will cite out web page. As a consequence the
rank of our web page is determined by the web page itself and the number of other
web pages citing this web page times some ‘factor’ (the multiplicative fitness).

Unfortunately, the papers [12, 35] are not rigorous. In this thesis, we consider
two random graphs that use preferential attachment with fitness. The first model
is the GPAF model, and this model is introduced in the next paragraph and
considered more in-depth in Chapter 5. This model uses random multiplicative
fitness and additive fitness. The second model is the PARID model. In this model
the multiplicative fitness is constant, but the additive fitness is not. The additive
fitness is some positive integer-valued random value (the initial degree of a node)
plus some constant. We refer to Chapter 3 for a precise definition of the PARID
model.

The geometric preferential attachment random graph

A large number of graph models have been introduced to describe complex net-
works, but often the underlying geometry is ignored. In general it is difficult to
get rigorous results for properties like the degree distribution, typical distances
or diameter, even if one disregards the geometry. However, in wireless ad-hoc
networks the geometry is of great importance, since in these networks nodes are
spread over some surface and nodes can only communicate with neighbors within a
certain range, depending on the geometry. The geometric preferential attachment
(GPA) random graph, introduced in [43], could be a model for wireless ad-hoc
networks. Essentially, the model is a preferential attachment model with fitness,
multiplicative and additive. The multiplicative fitness depends on the position of
the vertices, but the additive constant is just a fixed value. The random graphs
used in [43] or [44] are restricted to the finite variance case, since the power-law
exponent is at least 3.

In Chapter 5 we introduce a random graph that uses the GPA random graph
as a starting point. By introducing additive fitness, we obtain a random graph
with geometric preferential attachment in which the power-law exponent can take
any value larger than 2.
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Chapter 2

Distances in random graphs
with infinite mean degree
sequence

Joint work with R. van der Hofstad, G. Hooghiemstra and D. Znamenski
article [38]

Abstract

We study random graphs with an i.i.d. degree sequence of which the tail
of the distribution function F' is regularly varying with exponent 7 € [1,2].
In particular, the degrees have infinite mean. Such random graphs can serve
as models for complex networks where degree power laws are observed.

The minimal number of edges between two arbitrary nodes, also called
the graph distance or the hopcount, is investigated when the size of the graph
tends to infinity. This chapter is as a paper part of a sequel of three papers.
The other two papers study the case where 7 € (2,3), and 7 € (3,00),
respectively.

The main result of this paper is that the graph distance for 7 € (1, 2) con-
verges in distribution to a random variable with probability mass exclusively
on the points 2 and 3. We also consider the case where we condition the
degrees to be at most N for some a > 0, where N is the size of the graph.
For fixed k € {0,1,2,...} and a such that (1 + k) ™' <a < (1+k—1)7",
the hopcount converges to k + 3 in probability, while for a > (7 —1)™!, the
hopcount converges to the same limit as for the unconditioned degrees. The
proofs use extreme value theory.

2.1 Introduction

The study of complex networks has attracted considerable attention in the past
decade. There are numerous examples of complex networks, such as co-authorship
and citation networks of scientists, the World-Wide Web and Internet, metabolic
networks, etc. The topological structure of networks affects the performance in
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those networks. For instance, the topology of social networks affects the spread
of information and disease (see e.g., [66, 78]), while the performance of traffic in
Internet depends heavily on the topology of the Internet.

Measurements on complex networks have shown that many real networks have
similar properties. A first example of such a fundamental network property is the
fact that typical distances between nodes are small. This is called the ‘small world’
phenomenon, see the pioneering work of Watts [33], and the references therein.
In Internet, for example, e-mail messages cannot use more than a threshold of
physical links, and if the distances in Internet would be large, then e-mail service
would simply break down. Thus, the graph of the Internet has evolved in such a
way that typical distances are relatively small, even though the Internet is rather
large.

A second, maybe more surprising, property of many networks is that the num-
ber of nodes with degree n falls off as an inverse power of n. This is called a
‘power law degree sequence’. In Internet, the power law degree sequence was first
observed in [40]. The observation that many real networks have the above prop-
erties has incited a burst of activity in network modelling. Most of the models use
random graphs as a way to model the uncertainty and the lack of regularity in real
networks. See [5, 66] and the references therein for an introduction to complex
networks and many examples where the above two properties hold.

The current chapter presents a rigorous derivation for the random fluctuations
of the graph distance between two arbitrary nodes (also called the hopcount) in a
graph with i.i.d. degrees having infinite mean. The model with i.i.d. degrees is a
variation of the configuration model, which was originally proposed by Newman,
Strogatz and Watts [68], where the degrees originate from a given deterministic
sequence. The observed power exponents are in the range from 7 =1.5to 7 = 3.2
(see [5, Table II] or [66, Table 3.1]). In a previous paper [54], the case 7 > 3
was investigated, while the case 7 € (2,3) was studied in [56]. Here we focus on
the case 7 € (1,2), and study the typical distances between arbitrary connected
nodes. In a forthcoming paper [55], we will survey the results from the different
cases for 7, and investigate the connected components of the random graphs.

This section is organized as follows. In Section 2.1.1, we start by introducing
the model, and in Section 2.1.2, we state our main results. In Section 2.1.3, we
explain heuristically how the results are obtained. Finally, we describe related
work in Section 2.1.4.

2.1.1 The model

Consider an i.i.d. sequence D1, D5, ..., Dy. Assume that Ly = Z;V:1 Dj is even.
When L is odd, then we increase Dy by 1, i.e., we replace Dy by D, + 1. This
change will make hardly any difference in what follows, and we will ignore it in
the sequel.

We will construct a graph in which node j has degree D; for all 1 < j < N.
We will later specify the distribution of D;. We start with N separate nodes and
incident to node j, we have D; stubs which still need to be connected to build the
graph.

The stubs are numbered in an arbitrary order from 1 to L,. We continue by
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matching at random the first stub with one of the Ly — 1 remaining stubs. Once
paired, two stubs form an edge of the graph. Hence, a stub can be seen as the
left or the right half of an edge. We continue the procedure of randomly choosing
and pairing the next stub and so on, until all stubs are connected.

The probability mass function and the distribution function of the nodal degree
are denoted by

=)
P(Dy=j)=f;, j=12..., and F(x)=)_fj, (2.1.1)
j=1

where |z is the largest integer smaller than or equal to . Our main assumption
will be that
e 1 — F(x)] (2.1.2)

is slowly varying at infinity for some 7 € (1,2). This means that the random
variables D; obey a power law with infinite mean.

2.1.2 Main results

We define the graph distance Hy between the nodes 1 and 2 as the minimum
number of edges that form a path from 1 to 2, where, by convention, this distance
equals oo if 1 and 2 are not connected. Observe that the graph distance between
two randomly chosen nodes is equal in distribution to H,, because the nodes are
exchangeable.

In this chapter, we will present two separate theorems for the case 7 € (1, 2).
We also consider the boundary cases 7 = 1 (Theorem 2.3) and 7 = 2 (Remark
2.1.2). In Theorem 2.1, we take the sequence D1, Ds, ..., Dy of i.i.d. copies of D
with distribution F', satisfying (2.1.2), with 7 € (1,2). The result is that the graph
distance or hopcount converges in distribution to a limit random variable with
mass p = pr, 1 —p, on the values 2, 3, respectively. In this chapter the abbreviation
whp, means that the involved event happens with probability converging to 1, as
N — 0.

Theorem 2.1 Fiz 7 € (1,2) in (2.1.2) and let D1, Ds,...,Dy be a sequence of
i.4.d. copies of D. Then,

lim P(Hy =2)=1— lim P(Hy =3) =pr € (0,1). (2.1.3)
N —oco N—oco
One might argue that including degrees larger than N — 1 is artificial in a
network with NV nodes. In fact, in many real networks, the degree is bounded
by a physical constant. Therefore, we also consider the case where the degrees
are conditioned to be smaller than N where « is an arbitrary positive number.
Of course, we can condition on the degrees to be at most M, where M is fixed
and independent on N, since in this case, the degrees are uniformly bounded, but
this case is treated in [54]. Therefore, we consider cases where the degrees are
conditioned to be at most a given power of N.
The result with conditioned degrees appears in the Theorem 2.2. It turns
out that for & > 1/(7 — 1), the conditioning has no influence in the sense that
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the limit random variable is the same as that for the unconditioned case. This
is not so strange, since the maximal degree is of order N'/("=1) g0 that the
conditioning does nothing in this case. However, for fixed k € NU {0} and « such
that 1/(7 +k) < o < 1/(7 + k — 1), the graph distance converges to a degenerate
limit random variable with mass 1 on the value k 4 3. It would be of interest to
extend the possible conditioning schemes, but we will not elaborate further on it
in this chapter.

In the theorem below, we write D™ for the random variable D conditioned
on D < N%. Thus,

i

P(D™ =j)=——"
( 7) B(D < No)’

0<j<N® (2.1.4)

Theorem 2.2 Fiz 7 € (1,2) in (2.1.2) and let D™ D", ... D" be a sequence
of i.i.d. copies of D™,

(i) For k e NU{0} and o such that 1/(t+ k) <a <1/(t+k—-1),

lim P(Hy = k+3) =1 (2.1.5)
(i) If a>1/(r — 1), then
lim P(H =2)=1— lim P(Hy =3) = pr, (2.1.6)

where pr € (0,1) is defined in Theorem 2.1.

The boundary case 7 = 1 and 7 = 2 are treated in Theorem 2.3 and Remark
2.1.2, below. We will prove that for 7 = 1, the hopcount converges to the value 2.
For 7 = 2, we show by presenting two examples, that the limit behavior depends
on the behavior of the slowly varying tail z[1 — F(x)].

Theorem 2.3 Fort=11n (2.1.2) and let D1, Ds, ..., Dy be a sequence of i.i.d.
copies of D. Then,

lim P(Hy =2) =1. (2.1.7)
N—oo
Remark. For 7 = 2 in (2.1.2) and with D, Ds,..., Dy a sequence of

i.i.d. copies of D, the limit behavior of Hy depends on the slowly varying tail
z[1 — F(z)], x — oco. In Section 2.4.2, we present two examples, where we have,
depending on the slowly varying function z[1 — F'(x)], different limit behavior for
Hy. We present an example with limy .o P(Hy < k) = 0, for all fixed integers
k, as N — oo, and a second example where Hy € {2,3}, whp, as N — oo.

2.1.3 Heuristics

When 7 € (1,2), we consider two different cases. In Theorem 2.1, the degrees are
not conditioned, while in Theorem 2.2 we condition on each node having a degree
smaller than N®. We now give a heuristic explanation of our results.
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In two previous papers [54, 56|, the cases 7 € (2,3) and 7 > 3 have been
treated. In these cases, the probability mass function {f;} introduced in (2.1.1)
has a finite mean, and the number of nodes on graph distance n from node 1
can be coupled to the number of individuals in the n'® generation of a branching
process with offspring distribution {g,} given by

j+1
gj = i, (2.1.8)
I
where yu = E[D;]. For 7 € (1,2), as we are currently investigating, we have 1 = oo,
and the branching process used in [54, 56] does not exist.

When we do not condition on D; being smaller than N%, then Ly is the i.i.d.
sum of N random variables D1, Ds, ..., Dy, with infinite mean. It is well known
that in this case the bulk of the contribution to Ly = N/(7=D+o(1) comes from
a finite number of nodes which have giant degrees (the so-called giant nodes). A
basic fact in the configuration model is that two sets of stubs of sizes n and m
are connected whp when nm is at least of order L. Since the giant nodes have
degree roughly N'/(7=1 which is much larger than /L, they are all attached
to each other, thus forming a complete graph of giant nodes. Each stub is whp
attached to a giant node, and, therefore, the distance between any two nodes is,
whp, at most 3. In fact, this distance equals 2 when the two nodes are connected
to the same giant node, and is 3 otherwise. In particular, for 7 = 1, the quotient
D(yy/Ly converges to 1 in probability, and consequently the hopcount converges
to 2, in probability.

When we truncate the distribution as in (2.1.4), with a > 1/(7 —1), we hardly
change anything since without truncation whp all degrees are below N®. On
the other hand, if & < 1/(7 — 1), then, with truncation, the largest nodes have
degree of order N, and Ly ~ N'T®2-7)  Again, the bulk of the total degree
Ly comes from nodes with degree of the order N¢, so that now these are the
giant nodes. Hence, for 1/7 < a < 1/(7 — 1), the largest nodes have degrees
much larger than /Ly, and thus, whp, still constitute a complete graph. The
number of giant nodes converges to infinity, as N — oo. Therefore, the probability
that two arbitrary nodes are connected to the same giant node converges to 0.
Consequently, the hopcount equals 3, whp. If @ < 1/7, then the giant nodes no
longer constitute a complete graph, so that the hopcount can be greater than 3.
For almost every o < 1/7, the hopcount coverges to a single value. The behavior
of the hopcount for the cases that o = 1/(7+k) for k € NU{0}, will be dependent
on the slowly varying function in (1.2), as is the case for 7 = 2. We do expect
that the hopcount converges to at most, 2 values in these cases.

The proof in this chapter is based on detailed asymptotics of the sum of N i.i.d.
random variables with infinite mean, as well as on the scaling of the order statistics
of such random variables. The scaling of these order statistics is crucial in the
definition of the giant nodes which are described above. The above considerations
are the basic idea in the proof of Theorem 2.1. In the proof of Theorem 2.2, we
need to investigate what the conditioning does to the scaling of both the total
degree L, as well as to the largest degrees.
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2.1.4 Related work

The above model is a variation of the configuration model. In the usual config-
uration model one often starts from a given deterministic degree sequence. In
our model, the degree sequence is an i.i.d. sequence D1, ..., Dy with distribution
equal to a power law. The reason for this choice is that we are interested in models
for which all nodes are exchangeable, and this is not the case when the degrees
are fixed. The study of this variation of the configuration model was started in
[68] for the case 7 > 3 and studied by Norros and Reittu [70] in case 7 € (2, 3).

For a survey of complex networks, power law degree sequences and random
graph models for such networks, see [5] and [66]. There, a heuristic is given why
the hopcount scales proportionally to log N, which is originally from [68]. The
argument uses a variation of the power law degree model, namely, a model where
an exponential cut off is present. An example of such a degree distribution is

fi=CjTeTi/" (2.1.9)

for some x > 0. The size of x indicates up to what degree the power law still holds,
and where the exponential cut off starts to set in. The above model is treated
in [54] for any k < oo, but, for k = oo, falls within the regimes where 7 € (2,3)
in [56] and within the regime in this chapter for 7 € (1,2). In [68], the authors
conclude that since the limit as k — oo does not seem to converge, the ‘average
distance is not well defined when 7 < 3’. In this chapter, as well as in [56], we
show that the average distance is well defined, but it scales differently from the
case where 7 > 3.

In [55], we give a survey to the results for the hopcount in the three different
re gimes 7 € (1,2), 7 € (2,3) and 7 > 3. There, we also prove results for the
connectivity properties of the random graph in these cases. These results assume
that the expected degree is larger than 2. This is always the case when 7 € (1, 2),
and stronger results have been shown there. We prove that the largest connected
component has whp size N(1+ o(1)). When 7 € (1,2) we even prove that the
graph is whp connected. When 7 > % this is not true, and we investigate the
structure of the remaining ‘dust’ that does not belong to the largest connected
component. The analysis makes use of the results obtained in this chapter for

€ (1,2). For instance, it will be crucial that the probability that two arbitrary
nodes are connected converges to 1.

There is substantial related work on the configuration model for the cases
T € (2,3) and 7 > 3. References are included in the paper [56] for the case
7 € (2,3), and in [54] for 7 > 3. We again refer to the references in [55] and [5, 66]
for more details. The graph distance for 7 € (1,2), that we study here, has, to our
best knowledge, not been studied before. Values of 7 € (1,2) have been observed
in networks of e-mail messages and networks where the nodes consist of software
packages (see 66, Table II]), for which our configuration model with 7 € (1,2)
can possibly give a good model.

In [2], random graphs are considered with a degree sequence that is precisely
equal to a power law, meaning that the number of nodes with degree n is precisely
proportional to n~7. Aiello et al. [2] show that the largest connected component
is of the order of the size of the graph when 7 < 79 = 3.47875. .., where 79 is the
solution of ((7 —2) — 2¢(7 — 1) = 0, and where ( is the Riemann zeta function.
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When 7 > 79, the largest connected component is of smaller order than the size of
the graph and more precise bounds are given for the largest connected component.
When 7 € (1,2), the graph is whp connected. The proofs of these facts use
couplings with branching processes and strengthen previous results due to Molloy
and Reed [64, 65]. See also [2] for a history of the problem and references predating
[64, 65]. See [3] for an introduction to the mathematical results of various models
for complex networks (also called massive graphs), as well as a detailed account
of the results in [2].

A detailed account for a related model can be found in [25] and [26], where links
between nodes ¢ and j are present with probability equal to w;w; divided by ), wy
for some ‘expected degree vector’ w = (wq,...,wy). Chung and Lu [25] show that
when w; is proportional to i_ﬁ, the average distance between pairs of nodes is
proportional log N(1 + o(1)) when 7 > 3, and equal to 2%(1 +0(1)) when
7 € (2,3). In their model, also 7 € (1,2) is possible, and in this case, similarly to
7€ (1, %) in this chapter, the graph is connected whp.

The difference between this model and ours is that the nodes are not exchange-
able in [25], but the observed phenomena are similar. This can be understood as
follows. Firstly, the actual degree vector in [25] should be close to the expected
degree vector. Secondly, for the expected degree vector, we can compute that the
number of nodes for which the degree is at least n equals

[{i:w; >n} ={i: cimTT > n} ocn= T,

where the proportionality constant depends on N. Thus, one expects that the
number of nodes with degree at least n decreases as n~"T!, similarly as in our
model. In [26], Chung and Lu study the sizes of the connected components in the
above model. The advantage of working with the ‘expected degree model’ is that
different links are present independently of each other, which makes this model
closer to the classical random graph G(p, N).

2.1.5 Organization of the chapter

The main body of the chapter consists of the proofs of Theorem 2.1 in Section
2.2 and the proof of Theorem 2.2 in Section 2.3. Both proofs contain a technical
lemma and in order to make the argument more transparent, we have postponed
the proofs of these lemmas to the appendix. Section 4 contains the proof of
Theorem 2.3 and two examples for the case 7 = 2. Section 2.5 contains simulation
results, conclusions and open problems.

2.2 Proof of Theorem 2.1

In this section, we prove Theorem 2.1, which states that the hopcount between
two arbitrary nodes has whp a non-trivial distribution on 2 and 3. We start with
an outline of our proof.

Below, we introduce an event A, v, such that when A, y occurs, the hopcount
between two arbitrary nodes is either 2 or 3. We then prove that P(A¢ ) < ¢, for
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N > N, (see Lemma 2.5 below). For this we need a modification of the extreme
value theorem for the k largest degrees, for all k£ € N.
We introduce
D(l) S D(2) S e S D(N)7

to be the order statistics of D1,..., Dy, so that Dy, = min{Ds,...,Dy}, D, is
the second smallest degree, etc. Let (uy) be an increasing sequence such that

Jim N[ - F(uy)] = 1. (2.2.1)

It is well known that the order statistics of the degrees, as well as the total
degree, are governed by uy in the case that 7 € (1,2). The following lemma
shows this in detail. In the lemma F;, Es,... is an i.i.d. sequence of exponential
random variables with unit mean and I'; = Ey + E2 + ... + E;, hence I'; has a
gamma distribution with parameters j and 1. Throughout this chapter, equality

in distribution is denoted by the symbol i, whereas % denotes convergence in
distribution. .

Lemma 2.4 (Convergence in distribution of order statistics)
For any k € N,

(LN, D) ooy D(Nk+1)> KA (n,&1,...,€k), as N — oo, (2.2.2)
Uy Uy Uy
where (1,&1,...,&k) is a random vector which can be represented by
d > — T— — T— — T—
(D Ersnn ) 2 er 1/( 1)7111 1/( 1)’ . kal/( DA (2.2.3)
j=1
Moreover,
& — 0 in probability, as k — oo. (2.2.4)

Proof. Because 7—1 € (0, 1), the proof is a direct consequence of [63, Theorem
1’], and the continuous mapping theorem [14, Theorem 5.1], which together yield
that on R x R*, equipped with the product topology, we have

(8%, 2™) 5 (5#, 2), (2.2.5)
where S¥ = uy'Ly, 2% = uz (D). ..., D(1).0,0,...), and Z; = T; /7Y,
j=>1

If we subsequently take the projection from R x R>® — R*+1 defined by

m(s,2) = (8,21, -, %K), (2.2.6)

i.e., we keep the sum and the k largest order statistics, then we obtain (2.2.2)
and (2.2.3) from, again, the continuous mapping theorem. Finally, (2.2.4) follows
because the series Z;’il Z; converges almost surely. O
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We need some additional notation. In this section, we define the giant nodes
as the k. largest nodes, i.e., those nodes with degrees Dy, ..., Dn_x.41), Where
ke is some function of €, to be chosen below. We define

AE,N = Bs,N N CE,N N De,N, (2.2.7)
where

(i) By is the event that the stubs of node 1 and node 2 are attached exclusively
to stubs of giant nodes;

(i) Cen is the event that any two giant nodes are attached to each other; and

(iii) Dy is defined as
DE,N = {Dl < ¢, Dy < (Is}v

where ¢. = min{n : 1 — F(n) < ¢/8}.

The reason for introducing the above events is that on A, ., the hopcount or
graph distance is either 2 or 3. Indeed, on B, y, both node 1 and node 2 are
attached exclusively to giant nodes. On the event C. y, giant nodes have mutual
graph distance 1. Hence, on the intersection B,y N Cc y, the hopcount between
node 1 and node 2 is at most 3. The event D, 5 prevents that the hopcount can
be equal to 1, because the probability on the intersection of {Hy = 1} with D,
can be bounded by ¢2/N — 0 (see the first part of the proof of Theorem 2.1 for
details). Observe that the expected number of stubs of node 1 is not bounded,
since the expectation of a random variable with distribution (2.1.2) equals +oc.
Putting things together we see that if we can show that A, v happens whp, then
the hopcount is either 2 or 3. The fact that A. v happens whp is the content of
Lemma 2.5, where we show that ]P’(A;N) < g, for N > N.. Finally, we observe
that the hopcount between node 1 and 2 is precisely equal to 2, if at least one
stub of node 1 and at least one stub of node 2 is attached to the same giant node,
and equal to 3 otherwise.

The events B,y and C.y depend on the integer k., which we will take to
be large for € small, and will be defined now. The choice of the index k. is
rather technical, and depends on the distributional limits of Lemma 2.4. Since
Ly/uy = (D1+Do+...4+Dy)/uy converges in distribution to the random variable
1 with support (0,00), we can find a., such that

P(Ly < asuy) <&/36, VN. (2.2.8)

This follows since convergence in distribution implies tightness of the sequence
Ly /uy ([14, p. 9]), so that we can find a closed subinterval I C (0, 00), with

P(Ly/uy€I)>1—¢, VN.

We next define b., which is rather involved. It depends on ¢, the quantile ¢, the
value a. defined above and the value of 7 € (1,2) and reads

1
Ezas P
b = , 229

(2304‘18) ( )
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where the peculiar integer 2304 is the product of 82 and 36. Given b., we take k.
equal to the minimal k such that

P(& > b./2) < e/72. (2.2.10)

It follows from (2.2.4) that such a number k exists. We have now defined the
constants that we will use in the proof, and we next claim that the probability of
A is at most e:

Lemma 2.5 (The good event has high probability)
For each € > 0, there exists N, such that

P(AS,) <&, N>N. (2.2.11)

The proof of this lemma is rather technical and can be found in appendix 2.A.1.
We will now complete the proof of Theorem 2.1 subject to Lemma 2.5.

Proof of Theorem 2.1. As seen in the discussion following the introduction of
the event A, v, this event implies the event { Hy < 3}, so that P(A¢ ) < ¢ induces
that the event {Hy < 3} occurs with probability at least 1 —e.

The remainder of the proof consist of two parts. In the first part we show that
P({Hy =1} NA.y) < e. In the second part we prove that

J\}EnooP(HN = 2) = DPr,

for some 0 < pr < 1. Since ¢ is an arbitrary positive number, the above statements
yield the content of the theorem.

We turn to the first part. The event {Hy = 1} occurs iff at least one stub of
node 1 connects to a stub of node 2. For j < D;, we denote by {[1.j] — [2]} the
event that j* stub of node 1 connects to a stub of node 2. Then, with P, the
conditional probability given the degrees D1, D, ..., Dy,

-
P({Hy =1} N A x) <E ZPN({U-J’] — 2} N A-w)

— by ,
4e

<E 2 1 <
= Ly — 1 MV =N

<e, (2.2.12)

j=1
for large enough N, since Ly > N.

We next prove that A}im P(Hy =2) = p, for some 0 < p < 1. Since by
definition for any ¢ > 0,

max{P(B; ), P(D; )} < P(AZ,) <,
we have that
1
= — = < = _—
U, =2) ~ (e = 210D | Ben) | < [P =2) (1= g )]
P(Hy =2) —P({Hy =2} N Doy N B )
P(Be~)
2]P) C C
< (BE,N) + ]P)(DE,N) < 3e 7
- P(B.n) “1l-c¢
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uniformly in IV, for IV sufficiently large. If we show that
A}im P{Hy =2} ND.n|Ben) =1(e), (2.2.13)

then there exists a double limit
pe=lim lim P({Hy =2} NDey|Bey) = lim F(Hy=2).
Moreover, if we can bound r(¢) away 0 and 1, uniformly in &, for £ small enough,

then we also obtain that 0 < p, < 1.
In order to prove the existence of the limit in (2.2.13) we claim that

By({Hy =2} N Dy | Bew)

can be written as the ratio of two polynomials, where each polynomial only involves
components of the vector

) b
Uy Uy Uy

(Dm’m Dixretn 1)_ (2.2.14)

Due to (2.2.2), this vector converges in distribution to (&1, ...,&k.,0). Hence, by
the continuous mapping theorem [14, Theorem 5.1, p. 30], we have the existence
of the limit (2.2.13). We now prove the above claim.

Indeed, the hopcount between nodes 1 and 2 is 2 iff both nodes are connected
to the same giant node. For any 0 < ¢ < D7, 0 < j < Dy and 0 < k < k., let
Fijx be the event that both the i stub of node 1 and the j' stub of node 2 are
connected to the node with the (N — k)™ largest degree. Then, conditionally on
the degrees Dy, D, ..., Dy,

Dy Dy k.—1

]P)N({HN = 2} N DE,N |BE,N) = PN U U U fi,j,k ’68,N 3

i=1j=1 k=0

where the right-hand side can be written by the inclusion-exclusion formula, as a
linear combination of terms

P (Fiy jrer N N Fi i on | Bew) - (2.2.15)

It is not difficult to see that these probabilities are ratios of polynomials of com-
ponents of (2.2.14). For example,

D (D — 1)
(Dix—kesry T+ Dy (Dix—ioyry + 0+ Dy — 1)

Py (Fijk | Ben) = , (2.2.16)

so that dividing both the numerator and the denominator of (2.2.16) by u?%, we
obtain that the right-hand side of (2.2.16) is indeed a ratio of two polynomials
of the vector given in (2.2.14). Similar arguments hold for general terms of the
form in (2.2.15). Hence, Py ({Hy = 2} N D, v | Bey) itself can be written as a ratio
of two polynomials where the polynomial in the denominator is strictly positive.
Therefore, the limit in (2.2.13) exists.
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We finally bound 7(¢) from 0 and 1 uniformly in e, for any € < 1/2. Since the
hopcount, between nodes 1 and 2 is 2, given B, y, if they are both connected to
the node with largest degree, then

P({HN = 2} N DE,N |BE,N) > ]E[IP)N(]:LLO | BE,N)] )
and by (2.2.16) we have

D Dny—1
r(e) = lim P({Hy =2} ND.y|Bey) > lim E[(D(Nﬁw;g)(;vmk#)n -

-=|(at) | 22[(5) ]

On the other hand, conditionally on B, y, the hopcount between nodes 1 and 2
is at least 3, when all stubs of the node 1 are connected to the node with largest
degree, and all stubs of the node 2 are connected to the node with the one but
largest degree. Hence, for any ¢ < 1/2 and similarly to (2.2.16), we have

r(e) = lim P({Hy =2} NDey|B.y) <1 lim P({Hy >2}NDey|By)

IA

1= Jm P <{HN >2}NDy w \BE,N)
D .
T Dny—2i
<1- lim E
= N—oco l(g Dy + -+ D(n_k.41) — D1
D .
T Dn-1y)—2i
* 1
<z]:£ D(N>+"'+D(N7k5+1)—D2 {’D%,N}

ooal(58)°)
n

because: (i) the event D, . implies that both D1 < ¢ and Dy < ¢y, (ii) the
event B,y implies that all stubs of the normal nodes 1 and 2 are connected to
stubs of giant nodes, (iii) Lemma 2.4 implies

q q1

1
2 D) — 2i 2 D(y_yy —2i
i—0 D(N) R D(N7k5+1) - Dl i—0 D(N) + -+ D(N—k5+1) - D2

|(eve) (atva) |
G+ +6/) G+t

if N — o0, and (iv) &+ -+ & <.

Both expectations

2 a1

E (51> and IEK&?) 2} , (2.2.17)
Ui n

are strictly positive and independent of . Hence, for any ¢ < 1/2, the quantity

r(e) is bounded away from 0 and 1, where the bounds are independent of €, and

thus 0 < pr < 1. This completes the proof of Theorem 2.1 subject to Lemma, 2.5.

O

E

is equal to
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2.3 Proof of Theorem 2.2

In Theorem 2.2, we consider the hopcount in the configuration model with degrees
an i.i.d. sequence with a truncated distribution given by (2.1.4), where D has
distribution F satisfying (2.1.2). We distinguish two cases: (i) « < 1/(7 — 1) and
(ii) @ > 1/(7 — 1). Since part (ii) is simpler to prove than part (i), we start with
part (ii).

Proof of Theorem 2.2(ii). We have to prove that the limit distribution of Hy
is a mixed distribution with probability mass p, on 2 and probability mass 1 — pp
on 3, where py is given by Theorem 2.1.

As before, we denote by D1, Do, ..., Dy the i.i.d. sequence without condition-
ing. We bound the probability that for at least one index i € {1,2,..., N} the
degree D; exceeds N, by

N N
]P’(U{Di>Na> Z (D; > N®)=N[1—F(N%)] <N,

=1

for some positive ¢, because a > 1/(7 — 1). We can therefore couple the i.i.d.
sequence D) = (DM, DY, ..., D) to the sequence D = (D, Dy, ..., Dy),
where the probability of a miscoupling, i.e., a coupling such that D@ #* 5, is
at most N—¢. Therefore, the result of Theorem 2.1 carries over to case (ii) in
Theorem 2.2. t

Proof of Theorem 2.2(i). This proof is more involved. We start with an outline
of the proof. Fix

1

_— 2.3.1
P 23.1)
with £ € NU {0} and define

N
My =Y DP. (2.3.2)

From [41, Theorem 1, p. 281], the expected value of M, is given by

N®—1
E[M,] = F(]J\\ffo‘) ; P(D > i) = NG 0Y(N), (2.3.3)

where N — ¢(N) is slowly varying at infinity. In the sequel, we will use the same
¢(N), for different slowly varying functions, so that the value of ¢(N) may change
from line to line.

For the outline, we assume that My has roughly the same size as E[M] in
(2.3.3). The proof consists of showing that P(Hy < k + 2) = o(1) and P(Hy >
k+3) = o(1). We will sketch the proof of each of these results. To prove that
P(Hy < k+2) = o(1), note that whp the degrees of nodes 1 and 2 are bounded
by ¢. for some large q.. Therefore, on this event, the number of nodes that can
be reached from node 1 in | — 1 steps is at most ¢ N¢=22 and the number of
stubs attached to nodes at distance [ — 1 is at most g. N~ The probability
that one of these stubs is attached to a stub of node 2, making H, at most [, is of
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the order g2 NU=1e/M,. By (2.3.3) and the assumed concentration of My, this
is at most ¢20(N)NU=3+7)a=1 = (1), whenever a < 1/(I — 34 7). Applying this
to I = k + 2, we see that this probability is o(1) if a < 1/(k+ 7 — 1).

To prove that P(Hy > k + 3) = o(1), we use the notion of giant nodes in
a similar way as in the proof of Theorem 2.1. Due to the conditioning on the
degree, Lemma 2.4 no longer holds, so that we need to adapt the definition of a
giant node. In this section, a giant node h is a node with degree D;Lm, satisfying
that, for an appropriate choice of 3,

NP < D™ < N@. (2.3.4)

Nodes with degree at most N? will be called normal nodes, and we will denote
by K the total number of stubs of the normal nodes, i.e.,

N
Ky = ZDéN)l{Dsfngﬂy (2.3.5)
n=1
Similarly to (2.3.3), we see that
E[Ky] = NPT g(N). (2.3.6)

To motivate our choice of 3, which depends on the value of k, observe that
a node with (at least) N stubs, which chooses exclusively other giant nodes, in
k + 1 steps can reach approximately N* D8 other nodes. The number of stubs
of N1 giant nodes is by definition at least N*+2)8 Hence, if we take 3 such
that My ~ NE+28 or equivalently, by (2.3.3), 1 + (2 — 7) < (k 4 2)8, then
we basically have all giant nodes on mutual distance at most k + 1, so that (the
non-giant) nodes 1 and 2, given that they both connect to at least one giant node,
are on distance at most k£ 4 3. In the proof, we will see that we can pick any
such that

1+a2-71)

— Tt e B<a,

k+2 Fe
where we use that %ﬁ;ﬂ < «, precisely when o > T—LC Having this in mind,

we choose
1 /1+a2-71)

== — . 2.3.7
f=3 ( K+z O‘) (2:3.7)

Here ends the outline of the proof.

We now turn to the definition of the events involved. This part is similar,
but not identical, to the introduction of A, in (2.2.7), because giant nodes no
longer are on mutual distance 1. We keep the same notation for the event By,
the event that the stubs of node 1 and 2 are attached exclusively to stubs of giant
nodes, although the definition of a giant node has been changed. We take this
slight abuse of notation for granted. The event D, v = {D;1 < ¢, D2 < ¢.}, where
ge = min{k : 1 — F(k) < £/8}, is identical to the definition in Section 2 (below
(2.2.7)). We define

ge,N = BE,N N D&N N Ha,}\h (2'3-8)
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where

H&N _ {N1+a(277)£(N) < My < N1+a(27T)E(N)} U {KN < N1+B(27T)£(N)},

(2.3.9)
where ¢(N),£(N),{(N) are slowly varying at infinity. The event H. , will enable
us to control the distance between any pair of giant nodes, as sketched in the
outline.

The following lemma is the counterpart of Lemma 2.5 in Section 2.2.

Lemma 2.6 (The good event has high probability) For each ¢ > 0, there
exists N, such that, for all N > N,

P(Gy) <e. (2.3.10)

The proof of Lemma 2.6 is rather technical and can be found in Appendix 2.A.2.

The remainder of the proof of Theorem 2.2 is divided into two parts, namely,
the proofs of

P({Hy < k+2}NGey) < /2, (2.3.11)
and

P({Hy > k+3} NG v) <e/2. (2.3.12)
Indeed, if we combine the statements (2.3.11) and (2.3.12), then

P(Hy =k+3) =P{Hy =k+3}NGon) + P{Hy = k+3} NG )
>P{Hy=k+3}NG.n)—¢
=1-P({Hy >k+3}NGcn) —P{Hy <k+3}NGcn)—¢
> 1 - 2¢,

and the conclusion of Theorem 2.2(i) is reached. We will prove (2.3.11), (2.3.12)
in two lemmas.

Lemma 2.7 (The distance is at least k + 3 on the good event) For a non-
negative integer k, and o as in (2.8.1), for each € > 0, there exists an integer N,
such that

P{Hy <k+2}NG.n) <e/2, N > N..

Proof. The inequality of the lemma is proved by a counting argument. We will
show that for each I € {1,2,3,...,k + 2}

P({Hy =1}NG.y) < N7, (2.3.13)

for some §; > 0. Since

k+2
P({Hy <k+2}NGep) <> P{Hy =1}NGon) < (k+2)N7,
=1



40 Distances in random graphs with infinite mean degree sequence

where § = min{dy, ..., 0k+2} > 0, the claim of the lemma follows if we choose N,
such that (k+2)N7% <e/2.
To prove that P({Hy =1} NG. ) < N~% for any | < k + 2, we note that on G. y,
the degrees of nodes 1 and 2 are bounded by ¢.. Therefore, on G, , and using that
all degrees are bounded by N<, the number of nodes that can be reached from
node 1 in [ — 1 steps is at most ¢-N¢=2% and the number of stubs incident to
nodes at distance [ — 1 from node 1 is at most ¢g- N~ When H, = [, then one
of these stubs should be attached to one of the at most ¢. stubs incident to node
2.

Denote by MY the number of stubs that are not part of an edge incident to
a node at distance at most [ — 1 from node 1. Then, conditionally on My and
the fact that node 2 is at distance at least [ — 1 from node 1, the stubs of node 2
will be connected to one of these M stubs uniformly at random. More precisely,
conditionally on M’ and the fact that node 2 is at distance at least [ — 1 from
node 1, the event {H, = [} occurs precisely when a stub of node 2 is paired with
a stub attached to a node at distance [ — 1 from node 1.

We note that, on G v,

MO > My —2¢. N2 = M (14 0(1)) > ¢(N)N'HEDa (2.3.14)

when (I —2)aa <1+ (2 —7)a, ie., when a < 1/(I +7 —4). Since [ < k+ 2 and
a < 1/(k+ 7 —1), the latter is always satisfied.

The probability that one of the at most g. stubs of node 2 is paired with
one of the stubs attached to nodes at distance [ — 1 from node 1 is, on G, y and
conditionally on MY’ and the fact that node 2 is at distance at least [ — 1 from
node 1, bounded from above by

qu(l—l)oz q?N(l—l)a

0 = g (o) < (N)NU=3Fmel o N=0 - (2.3.15)
N N

for all 5 < 1—(I—3+47)a and N sufficiently large. Here, we use the lower bound

on My in (2.3.9). Applying this to I = k + 2, which gives the worst possible

value of §;, we see that this probability is bounded from above by N—9 for any

d<1—(k+7—1)a. Since a < 1/(k+7—1), we have that 1 — (k+7—1)a > 0,

so that we can also choose § > 0. g
We turn to the proof (2.3.12), which we also formulate as a lemma:

Lemma 2.8 (Distance is at most k + 3 on the good event) Fiz a nonneg-
ative integer k, and « as in (2.3.1). For each £ > 0 there exists an integer N,
such that,

P{Hy > k+3} NG n) < /2, N > N..

In the proof of Lemma 2.8, we need that the number of giant nodes reachable
from an arbitrary giant node h in at most [ steps, has a lower bound proportional
to N'¥. We denote by Z\" the set of all nodes which are reachable in exactly [
steps from a node h:

Z) ={n=1,2,...,N : d(h,n) =1} for  €{0,1,...},

where d(h,n) denotes the graph-distance between the nodes h and n. The number
of giant nodes in Z;” is denoted by E}’.
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Lemma 2.9 (Growth of the number of giant nodes) For each ¢ > 0, a <
1/(r+k—-1),1€{0,1,...,k} and B given by (2.8.7),

N
P(ﬂ {(1-¢)'N" < B < N'*} n{his giant} N QE,N>
h=1

k
>1— ]\]Ze—?;a(l—z;‘)stﬂ/IG7

s=1
for sufficiently large N.

Proof. The upper bound N on E;L” is trivial, because each node has less than
N stubs. We will prove by induction with respect to I, that for [ € {0,1,...,k},
and k fixed,

N I
IP(U {E) < (1—¢)'N"} n{his giant} N gs7N> < NZe_?’E(l_E)SNSﬂ/w.
h=1

s=1
(2.3.16)
Denote
N
Fiy = ﬂ HEY = (1 - e)!N"Py N {his giant}} (2.3.17)
h=1
then it suffices to prove that
P((FO)C N FL NGey) < Ne 3= NP/16, (2.3.18)

Indeed, if (2.3.18) holds, then (2.3.16) follows, by the induction hypothesis, as
follows:

N

]P’(U {EY < (1—-¢)'N""} n{his giant} N Q&N) (2.3.19)

h=1

=P(Gen N (FLN)) < P(Ge N(FIN) N FELY) + P(Gew N (FERY)C)
-1

< Ne—35(1—s)lN“3/16 +Nze—35(1—s)SNSﬁ/16'

s=1

For [ = 0, (2.3.18) trivially holds. We therefore assume that (2.3.18) is valid for
I =m —1 and we will prove that (2.3.18) holds for I = m.

In this paragraph we will work conditionally given the degrees Dq,...,Dy.
For h a giant node, we consider only Ay = E;" V|NP| stubs of the nodes in
Z"~Y. To be more precise: we consider | N”] stubs of each of the E;" " giant
nodes in Z;"". We number these stubs by i € {1,2,..., Ay} and stub i will
connect to a stub of a node n;. Then we denote by ry;, for i € {1,2,..., Ay},
the probability that stub ¢ does not connect to a stub of a normal node. We
denote by sy ; the probability that stub ¢ does not connect to a stub of a node
in Z," " (and the total number of stubs of this set is at most N™), and finally,
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we denote by ty ; ; the probability that stub i does not connect to the giant node
h; previously selected by the stubs j € {1,2,...,7 — 1} (for each j there are are
most D;L};') < N< of such stubs). If none of the above attachments happens, then
we have a match with a not previously found giant node, and we denote by ¢y
the probability of such a match of stub 4, i.e.,

i—1
qni = 1- Tng — SNy — E tN,i,j‘
j=1

From the number of stubs mentioned between the parenthesis, we can bound this
probability from below by

KN N N
>l =X N 2.3.20
=TT ML T M ; M, (2:320)

Since,

i—1< E;:Wl) LNﬁJ < Na(m—l)LNBJ < Na(mfl)Jrﬁ,
and Ky < ]\fl-‘rﬁ(Q—T)g(]\/')7 My > E(N)NH'O‘(Q_T) on Ge, we can bound 1 — gy
on G. v from above by

K(N)Nl+ﬁ(2_7) + Nom _|_Na(m—1)+ﬁ+a
E(N)N1+a(2—-r) :

1 —qnyi S

For sufficiently large N and uniformly in ¢, we have that 1 — g ; < £/2, because
B<a,and ma+pf<ka+f<(k+Da<l+al2-—r1).

Introduce the binomially distributed random variable Y, with parameters
By and £/2, where By = [(1 — &)™ N™P]. On F!%", we have that Ay =
E" "' NB| > By, so that the number of mismatches will be stochastically domi-
nated by Yy. We need at least (1 — ) By matches, so that

PHE™ > (1—e)"N™}n{Ay > By} NGen) > P(Yy <eBy).  (2.3.21)

We will now use the Janson inequality [57], which states that for any ¢ > 0,

P(|Yy — E[Yy]| > t) < 2exp <_2(E[Y5]+t/3)) : (2.3.22)

Since E[Yy] = €By/2, we obtain, with ¢t = eBy/2,

3eB
P(Yy < eBy) < P(|Yy — E[Yy]| > eBy/2) < 2exp (_ iﬁ”) .

Combining this with (2.3.21), and since there are at most N giant nodes:

3e(1 — )" N™P
B((F)° AU NGen) < NB(Va < eBy) < 2N exp (—M) .

16
(2.3.23)
O
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Proof of Lemma 2.8. We start with an outline. On the event G v, each stub of
the nodes 1 and 2 is attached to a stub of some giant node. The idea is to show
that whp the distance between any two giant nodes is at most £+ 1. This implies
that the graph distance between nodes 1 and 2, intersected with the event G, , is
whp at most k£ + 3, and hence Lemma 2.8.

We will extend the event G, y to include the main event in Lemma 2.9:

v =Gen NFXR (2.3.24)

g,N’

where F was defined in (2.3.17). Then
P({Hy > k+3}NGen) <P{Hy > k+3}NT.n) + P(Gow N (FR)E), (2.3.25)

and the second term on the right hand side of (2.3.25) can be bounded by &/4
using Lemma 2.9. We use as indicated in the outline of the proof given above,
that

P{Hy > k+3}NZ.x)

<P|[ J {h. hoare giant} N {d(h1, ho) > k+1} N T,
hi,h2

< Y P({h1, hpare giant} N {d(h1, ha) > k+1} N L. ), (2.3.26)
hi,ha

where the sum is taken over all pairs of nodes, and where, as before, d(hi,hs)
denotes the graph-distance between h; and ho. Indeed, on Z, v, the nodes 1 and
2 are connected to giant nodes, so that when Hy > k + 3, there must be giant
nodes hi, ho at mutual distance at least k + 1.

Clearly for any pair of nodes h; and ho,
{d(hl, hg) >k + 1} - {d(hl, hg) > k},
which implies that for any pair of nodes hy and hs,

By ({d(h1,h2) > k+ 1} N {hy, he are giant} N Z. )
< PN({d(hl, h2) >k + 1} n {]’Ll, ho are giant} 0157]\] |d(h1, hg) > k)

On the event {d(hi,ha) > k} N {hy, ho are giant}, the giant node hy is not
attached to one of the nodes at distance k from the node h;. More precisely,
the giant node ho is not attached to one of the Uf_olZ;L” nodes. We have less
than My Zf_ ! E}) NP stubs to choose from, and the event {d(hy, hy) > k + 1}
conditioned on {d(hl,hg) > k} implies that no stubs of the giant node hy will
attach to one of the at least E;” N free stubs of Z;". Therefore, we have, almost
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surely,

PN({hl, ho are giant} n {d(hl, hg) >k + ].} n géi’v) ‘ d(hh hg) > k)

D%—l 1 E}(LA;)NQ )
— — - 7.
bl My — S50 EY)NA —2i +1 (e

DI s
- EPNA\ ) _ (=g NAeD N
M {Zen} =

IN

IN

N N1+a(277)E(N)

g(1 — )k NPK+2) kA7
< — = < — —e)” 3.
= eXp{ NN [ exp{—e(l—¢)"N°},  (2.3.27)
where we used the inequality 1 — z < e™", x > 0, in the one but last inequality,
and where 0 < 6 < B8(k +2) — (1 + a(2 — 7)). If we substitute this upper bound
in the right hand side of (2.3.26), then we end up with

P({Hy > k+3}NZ.x) < N?exp (—e(1 —e)*N%) < ¢/2.

This completes the proof of Lemma 2.8 and hence of Theorem 2.2. O

24 ThecasesTt=1land T =2

24.1 Proof of Theorem 2.3
It is well known, see e.g. [32, 8.2.4], that when 1— F(x) is slowly varying, the quo-

tient of the maximum and the sum of N ii.d. random variables with distribution
F', converges to 1 in probability, i.e.,

D
)4, in probability. (2.4.1)

N
Therefore, we obtain that whp, both node 1 and node 2 are connected to the

node with maximal degree, which gives the stated result.
O

2.4.2 Two examples with 7 = 2

In the following two examples we show that for 7 = 2, the limit hopcount distri-
bution is sensitive to the slowly varying function.
Example 1. Let, for x > 2,

2(log 2)?
1-F(z)= ——2 (2.4.2)
)= ) togla])?
Then we show that for all k fixed,
P(Hy > k) =1+ o0(1), as N — oo. (2.4.3)

We first prove (2.4.3) for k = 2. We show this in two steps. In the first step we
show that for any € > 0, there exists v. € N such that with probability at least
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1 — ¢ all nodes at distance at most 1 from nodes 1 and 2 have degrees at most v..
In the second step we show that there exists N, € N, such that for any N > N,,
with probability at least 1 — ¢, any two given nodes with degrees at most v., are
disconnected. Both steps together clearly imply (2.4.3).

The second step is similar to (2.2.12), and is omitted here.

To obtain the first step we consider the event Dy, defined below (2.2.7).
Then, for any v € N, the probability that within the first g. stubs of node 1 or
node 2 there is a stub connected to a stub of node with degree at least v + 1 is at

most N
2q
fg ZDil{Di>v}] -
N =1

It remains to show that the above expectation is at most £/2 for some v = v,
large enough. For this, we need that the first moment of the degree distribution
for this example is finite. Indeed, from (2.4.2)

E

. 2(log 2)? > 2(log 2)? 2/00 dy
E[D,] =1 ot <9 22 du =14 2(log 2 — .
D=1+ S <2+ [, aogu =1+ 2082 [ <o

(2.4.4)
Then, from the Law of Large Numbers applied to Ly = Dy +---+ Dy, we obtain

P(Ly > pu.N) < ,
(Ly > )*12(]5

for pe > E[D;]. Due to (2.4.4), (2.4.5) and the Markov inequality

(2.4.5)

E [i(f\i Zfil Dil{Di>U}:| < % +2¢.P (2% Zf\; Di]‘{Di>U} > ELTN>

N
9
< % +2¢:P (Ly > pe) +2¢:P (QQE ZDil{Di>v} > 6.U€N>

i=1

2442
<3+ 7K (Dil{p,>0}) < 5,

for large enough v, and hence we have the second step, since P(D¢ ;) < 2P(D; >
ge) < e/4.

In a similar way we can show that, for any € > 0, there exists v. € N such that
with probability at least 1 — ¢ all nodes at distance at most 2 from nodes 1 and 2
have degrees at most v.. This statement implies that P(Hy > 4) — 1. Similarly,
we obtain that for any € > 0 there exists v. € N such that with probability at
least 1 — ¢ all nodes at distance at most k from nodes 1 and 2 have degrees at
most v, which implies that for any fixed integer k,

Jlim P(Hy > 2k) =1, (2.4.6)

i.e., the probability mass of H, drifts away to +00 as N — oo. This behavior of
Hy for 7 = 2, is in agreement with the behavior of H, for the case 7 € (2, 3), (see
[56]), where we show, among other things, tightness of the sequence

loglog N
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O

Example 2. Let

1 loglogm—ll 1
1—F(x):c(0gx) - o8 oga:7 x>,z eN. (2.4.8)

where 2* is chosen such that for > z*, the right side of (2.4.8) is a non-increasing
function, and c is such that 1 — F(z*) = 1. We will show that

P(Hy € {2,3})) =1+0(1), as N — oc. (2.4.9)

Thus, we see entirely different behavior as in the first example.

Define giant nodes as nodes with degree at least N%JF‘S, for some § > 0, to be
determined later on. The nodes with degree at most N2+9 _ 1 we call normal.
Define the event A, y as in (2.2.7), where, in the definition of B, y, we use the
above definition of the giant node. In Appendix 2.A.3, we will prove the following
lemma, which is similar to Lemma 2.5:

Lemma 2.10 For each € > 0, there exists N, such that for all N > N_,
P(AC ) <e. (2.4.10)

We now complete the proof of (2.4.3) subject to Lemma 2.10, which is straight-
forward. By (2.2.12), we obtain that P ({Hy = 1} N A, x) = o(1). Moreover, when
A, occurs, all stubs of nodes 1 and 2 are connected to giant nodes due to B; x,
and the giant nodes form a complete graph due to C, , so that

P({Hy >3} NA.y) =0.

This proves (2.4.3). O

2.5 Simulation and conclusions

To illustrate Theorems 2.1 and 2.2, we have simulated our random graph with
degree distribution D = [Uﬁﬁ], where U is uniformly distributed over (0,1).
Thus,

1—F(1’):P(U7ﬁ >x)=z'"", r=1,2.3,...

In Figure 2.1, we have simulated the graph distance or hopcount with 7 = 1.8
and the values of N = 103,10%, 10°. The histogram is in accordance with Theorem
2.1: for increasing values of N we see that the probability mass is divided over
the values Hy = 2 and Hy = 3, where the probability P(Hy = 2) converges.

As an illustration of Theorem 2.2, we again take 7 = 1.8, but now condition

the degrees to be less than N, so that a = 1. Since in this case (7 —1)"! = 2 we

4
expect from Theorem 2.2 case (i), that in the limit the hopcount will concentrate
on the value Hy = 3. This is indeed the case as is shown in Figure 2.2.

Our results give convincing asymptotic for the hopcount when the mean degree

is infinite, using extreme value theory. Some details remain open:
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Figure 2.1: Empirical probability mass function of the hopcount for 7 = 1.8 and N =
10%,10*,10%, for the unconditioned degrees.

(i) It is possible to compute upper and lower bounds on the value pr, based
on Lemma 2.4. We presented two such bounds in (2.2.17). These bounds
can be obtained from simulating the random variables I'y,T's, . .. in (2.2.3).
It should be possible to obtain much sharper upper and lower bounds, and
possibly even numerical values, depending on the specific degree distribution
F.

(ii) In the boundary cases « = 1/(7+k), k € NU{0}, it is natural to conjecture
that the specific limit behavior of H, will depend on the slowly varying
function, as is the case for 7 = 2 and o > ﬁ = 1 as described in Section
2.4.2.

2.A Appendix.

In the appendix we prove Lemma 2.5, Lemma 2.6 and Lemma 2.10. The proofs
of Lemma 2.6 and 2.10 are both adaptations of the proof of Lemma 2.5 in Section
A.1 below.
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Figure 2.2: Empirical probability mass function of the hopcount for 7 = 1.8 and N =
10%,10*,10%,10%, where the degrees are conditioned to be less than N, (% <a=1<
1

7'71)'

2.A.1 Proof of Lemma 2.5
In this section we restate Lemma 2.5 and then give a proof.
Lemma 2.11 For each € > 0, there exists N. such that
P(AZ ) <e, N> N.. (2.A.1)
Proof. We start with an outline of the proof. By (2.2.7),
P(AC ) < P(B: ) +P(CC ) +P(DE ), (2.A.2)

and an obvious way to prove result (2.A.1) would be to show that each of the
three terms on the right-hand side of (2.A.2) is smaller than /3. This direct
approach is somewhat difficult and instead we introduce an additional event & y,
which controls the total degree L, in part (c), the degree of the giant nodes in
part (b), and the total degree of all normal (non-giant) nodes in part (a):

n

N {ls(kaE+1) > CEuN} (b)
N{Ly < d-uy}, (c)

N—k.
5E,N = { Z D(n) < 825LN} (a)
=1 (2.A.3)



§2.A Appendix. 49

where ¢, is the e-quantile of F' used in the definition of D, y and where c.,d. > 0
are defined by

P(&. <co)<e/24 and P(n>d.) <e/24,

respectively. Observe that c. is a lower quantile of £;,_, whereas b. defined in (2.2.9)
and (2.2.10) is an upper quantile of &_. Furthermore, d. is an upper quantile of
7, whereas a. defined in (2.2.8) is a lower quantile of 1. Intersection with the
additional event & v, facilitates the bounding of both B¢, and C¢ . Therefore,
we write

P(AC ) < P(BS yNDen NEen) +P(Cy NDe iy NEen) +P(D5 ) +P(EL ), (2.A.4)

and our strategy to prove the lemma is that we show that each of the four terms
on the right-hand side of (2.A.4) is at most ¢/4.

Nodes 1 and 2 are connected to giant nodes only. On BZ, N D,y at least one
of the 2¢. stubs is attached to a stub of the nodes D,,...,Dy_.,. Hence, the
first term on the right side of (2.A.4) satisfies

P(BS N Do NEan) < 2¢.E

| Nke

In > Dnl{ss,N}] <e/4,
n=1

due to point (a) of & .

The giant nodes form a complete graph. We turn to the second term of (2.A.4).
Recall that CZ  induces that no stubs of at least two giant nodes are attached to
one another. Since we have at most N? pairs of giant nodes h; and hs, the items
(), (¢) of & imply

[Dn,y/2]-1 D
c 2 h
P(CyNDeyNEw) <E|N 11 <1 R T 1) Lih, 1y giant)
ceun /2 2
CeU N c’u
<N?(1-=2X < N? —= M) <e/4
< ( dEuN> <Nexp -~ ) < e/4,

(2.A.5)

for large enough N, because u, = N/(7=1+o(1),

Nodes 1 and 2 have small degree. The third term on the right-hand side of
equation (2.A.4) is at most /4, because

P(Dg ) <2P(Dy > q.) <2e/8 =¢/4. (2.A.6)
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The order statistics. It remains to estimate the last term on the right side
of (2.A.4). Clearly,

B(ec,) < (E Den sL) (a)

+P (D(N ket1) < CEU’N) (b)
P (Ly > douy). (c)

(2.A.7)

We will consequently show that each term in the above expression is at most £/12.
Let a. and b. > 0 be as in (2.2.8) and (2.2.9), then we can decompose the first
term on the right-hand side of (2.A.7) as

N—k. N—ke
I3 3
P ( nE:1 D(n) > 8q LN> S P(LN < aguN) + P ( E D(n) > 8qECLEUN> (2A8)

€ n=1

<SP (Ly < acun) +P(Dn_y. 41y > beux)

+P (ZD 1{D <bcun} > 8 aeuN> .
e

=1

From the Markov inequality,

N
8¢.NE[D1 N

D;1 > —agu
; {D;<beun} 81]5 eUN Caty

Since 1 — F'(z) varies regularly with exponent 7 — 1, we have, by [41, Theorem
1(b), p. 281],

LbE“NJ
E[D1l{pcpuny) = D [1—F(k)] <2(2—7)bouy [L - Fbeuy)], (2.A.10)
k=0

for large enough N. Due to (2.2.1), for large enough N, we have also
N1 - F(uy)] <2 (2.A.11)
Substituting (2.A.10) and (2.A.11) in (2.A.9), we obtain

( ] e ) 16g:N (2 = 7)beuy [1 = F(beuy)]
8 ey

D1 oy >
; {D;<bcun} EUn e

32¢-(2 — 7)b- [1 — F(bouy)]
- gac [1 — F(uy)] ’

(2.A.12)

for large enough N. From the regular variation of 1 — F(z),

. 1- F(bEuN) 1—7
lim ————= = (b .
N 1 Fuy) (b)
Hence the right-hand side of (2.A.12) is at most

64q:(2 — 7) (b)*""
Ea,

< </36,
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for sufficiently large N, by the definition of b, in (2.2.9). We now show that the
second term on the right side of (2.A.8) is at most ¢/36. Since D y_s_ 1)/ /Un
converges in distribution to &_, we find from (2.2.10)

P(Dn—p.q1) > beun) <P (&, > b:/2) + /72 < /36,
for large enough N. Similarly, by the definition of ac, in (2.2.8), we have
P(Ly < acuy) < e/36.

Each of the three terms on the right side of (2.A.8) is at most €/36, so that the
term (2.A.7)(a) is at most e/12.
The upper bound for (2.A.7)(b), i.e., the bound

IP)(D(N—kg-f-l) < CEUN) < 6/12,

is an easy consequence of the distributional convergence of Dy _s_.1)/uUn t0 &,
and the definition of ¢.. Similarly, we obtain the upper bound for the term
in (2.A.7)(c), i.e.,

P(Ly > deuy) < e/12,

from the convergence in distribution of Ly/uy to n and the definition of d..
Thus we have shown that P(£¢ ) < /4. This completes the proof of Lemma
2.5. U

2.A.2 Proof of Lemma 2.6

In this section we restate Lemma 2.6 and give a proof.

Lemma 2.12 For each € > 0, there exists N such that for all N > N¢,
P(GEy) <e. (2.A.13)
Proof. From (2.3.8),
P(GSy) <P(DEy) +P(HE ) +P(BSy NHen N D) - (2.A.14)

We will bound each term on the right hand side of (2.A.14) separately.

From (2.A.6), and because the definition of D, is unaltered, the bound
P(D¢ ) < /4 is immediate.

For IP’(H;N), we will show that the total number of stubs My is of the order

¢(N)N'™2=7) and that the total number Ky of stubs attached to normal nodes
is of order /(N)N'+P2=7) We start with the first statement. Bound

N N

1

_ (N) «@

My =3 D> N D Loy
=1 i=1

The sum of indicators is distributed as a binomial random variable Vy with pa-
rameters N and N*(1=7)¢(N), because

IP’(D“\” > ;Na> = N*U=TY(N).
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We use Janson’s inequality (compare (2.3.22)), on the binomial random variable
Vi, with expectation N'**(I=7)¢(N), and with t = N'+t*(1=7)¢(N)/2, to obtain:

B([Vy —E[Vy]| 2 t) < 2exp (‘m>

= 2exp (—;E(N)Nl"'a(l_ﬂ) <e/8,

for N sufficiently large. Therefore, with probability at least 1 —&/8, we have, for
all § > 0,

1
My > SN°Vy > NFeC=mg(N), (2.A.15)

for N sufficiently large and some slowly varying function £(N).
The mean degree E[M] is given by (2.3.3). Thus, by the Markov inequality,

N
8 (2—7 €

n=1
so that with probability at least 1 — ¢/8, we have that
M, < NYFeC=7p(N), (2.A.16)
for some slowly varying function #(N). Similarly, the mean degree of a normal
node is
V7]

E[D™1(peysy] = Y P(D >n|D < N®) = NPCg(N),

n=1
so that in exactly the same way, we find from the Markov inequality, that with
probability at least 1 — /8,
Ky < NYAC=7(N). (2.A.17)
The inequalities (2.A.15),(2.A.16) and (2.A.17) together imply that
P(HE,) < 3¢/8.

We finally turn to P(BS, NHe,y). From the derivation above, we find that,
on H. , the fraction of the contribution of stubs from normal nodes and giant

nodes is at most
((N)NIHAC=7) p(N)

- MY N@=T)(B-a)
g(N)N1+a(2—7-) E(N)
Since 8 < a and T € (1,2) the above ratio tends to 0, as N — oo. Thus the total
number K of stubs of the normal nodes is negligible with respect to My on the
event H, ». This implies that, with probability at least 1 —¢/4, each stub of nodes
1 and 2 is attached to a stub of a giant node on the event H. . Therefore, we

have showed
P(B;,N n HE,N N DE,N) < 5/4~ (2.A.18)
Since 2¢/4 + 3¢/8 < e, the lemma is proved. O
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2.A.3 Proof of Lemma 2.10

In this section we restate Lemma 2.10 and give a proof.

Lemma 2.13 For each € > 0, there exists N such that for all N > N,
P(A: y) <e. (2.A.19)

Proof. The proof is a slight adaptation of the proof of Lemma 2.5 in Section A.1.
We use that
P(AZ ) S P(BZy NDen) + P(CEL) + P(DE ), (2.A.20)

and bound each of the three terms. The bound on P(Dg ) is identical to the one
in (2.A.6), and will be omitted here.
We next show that P(CS ) < 5. First observe that since 7 = 2,

P(Ly > N') < ¢/6.

Recall that CZ implies that no stubs of at least two giant nodes are attached to
one another. Since there are at most N? pairs of giant nodes hq and hs, we can

use a similar bound as in (2.A.5), to obtain

LDh/1/2J71 D
P(CS ) <E [ N? 1———h
lN%+5
Nzt+d\ 2 € 15 E €
2 2 —LiN
<N (1_W> +6§N€2 +6§§7

for large enough N.

We finally show that P(B¢ y ND.y) < §. The event B, occurs if there exists
a stub at node 1 or node 2 which is connected to a stub of a normal node. For
i=1,2and j < D;, let {[i.j] — [n]} denote the event that the j*® stub of the ‘!
node is connected to a stub of a normal node. Let K, denote the total number
of stubs of the normal nodes. Then, clearly,

D,
P(BSy N Do) < 2P | Doy N | J {[1.4] — [n]}
j=1
Ky Ky
<2E|D;—1 <2¢E|—]|.
>~ |: ILN DE,N:| > 4(e |:LN:|

Ky
Iy
remainder of this proof. We first bound

Therefore, it suffices to prove that E [ — 0. This is what we will do in the

Ly > Dyy > entin, (2.A.21)

where uy is such that (2.2.1) holds, and ey | 0 will be determined later on. To
compute uy, we use (2.4.8) to obtain

£(ux)

Uy

N[l - F(uy)] =N =1+o(1). (2.A.22)
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A tedious computation using

(log uy )8l un =1 loglog uy

£ =
(un) o )
yields
Uy = Ne(loglogN)2710glogN+o(loglogN). (2A23)
Furthermore, since K < L,
Ky 1
E| 70| € (enun) MBI+ B(Ly < eytiy). (2.A.24)
N

The second term is o(1) for any ey | 0, and for the first term, we compute

NZH
E[Ky] <N > [1-F(@)]. (2.A.25)

i=1
We now use that for any y > z*,

Y Y ~\log log i—1 .

1 glogt= 1 Jog 1
S-F@) =y desd 8o
i=x* i=x*

<cfh (log 2)'*1°5 ! loglog @ 7. (2.A.26)

x

lo ogyYy— oglo 2
= C fiontee 1y (108 Y)y'o8Y " dy < elloglosy)” - O(1).

Applying this to y = N2+9, we obtain

E[K ]< cNe(loglog(N2+ +O( ) Ne(loglogN)2+2log(%+5)loglogNwL(’)(l)’
(2.A.27)
so that, using (2.A.23),

(enxtuy) 'E[Ky] = et exp {(2 log (% +6) + 1) loglog N + o(log logN)] =o(1),

(2.A.28)
when ¢ < 1 is so small that 2log (3 +6) +1 < 0 and we take
1 1
en = exp {5(2 log (5 +9) + 1) loglog N] 0. (2.A.29)

This completes the proof that P(BZ , NDe x) = o(1), and thus the proof of Lemma
2.13. d
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Chapter 3

A preferential attachment
model with random initial
degrees

Joint work with M. Deijfen, R. van der Hofstad and G. Hooghiemstra
article [29]

Abstract

In this chapter, a random graph process {G(t)}+>1 is studied and its degree
sequence is analyzed. Let {W;},>1 be an i.i.d. sequence. The graph process
is defined so that, at each integer time ¢, a new vertex with W, edges attached
to it, is added to the graph. The new edges added at time t are then
preferentially connected to older vertices, i.e., conditionally on G(¢t — 1),
the probability that a given edge of vertex t is connected to vertex i is
proportional to d;(t — 1) + §, where d;(t — 1) is the degree of vertex i at
time ¢ — 1, independently of the other edges. The main result is that the
asymptotical degree sequence for this process is a power law with exponent
7 = min{7w, 7e }, where 1w is the power-law exponent of the initial degrees
{Wi}i>1 and 7p the exponent predicted by pure preferential attachment.
This result extends previous work by Cooper and Frieze.

3.1 Introduction

Empirical studies on real-life networks, such as the Internet, the World-Wide Web,
social networks, and various types of technological and biological networks, show
fascinating similarities. Many of the networks are small worlds, meaning that
typical distances in the network are small, and many of them have power-law
degree sequences, meaning that the number of vertices with degree k falls off as
k=7 for some exponent 7 > 1. See [40] for an example of these phenomena in the
Internet, and [61, 62] for an example on the World-Wide Web. Also, Table 3.1 in
[66] gives an overview of a large number of networks and their properties.
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Incited by these empirical findings, random graphs have been proposed to
model and/or explain these phenomena — see [31] for an introduction to ran-
dom graph models for complex networks. Two particular classes of models that
have been studied from a mathematical viewpoint are (i) graphs where the edge
probabilities depend on certain weights associated with the vertices, see e.g.
[18, 23, 25, 26, 77|, and (ii) so-called preferential attachment models, see e.g.
[4, 17, 20, 21, 28]. The first class can be viewed as generalizations of the classi-
cal Erdés-Rényi graph allowing for power-law degrees. Typically, the degree of a
vertex is determined by its weight. Preferential attachment models are dynamic
in the sense that a new vertex is added to the graph at each integer time. Each
new vertex comes with a number of edges attached to it which are connected to
the old vertices in such a way that vertices with high degree are more likely to
be attached to. This has been shown to lead to graphs with power-law degree
sequences, and these results are extended in the current chapter.

In preferential attachment models, the degree of a vertex increases over time,
implying that the oldest vertices tend to have the largest degrees. Indeed, vertices
with large degrees are the most likely vertices to obtain even larger degrees. This
is sometimes called the rich-get-richer effect. Models where the vertex degrees
are determined by associated weights, on the other hand, gives rise to something
which could be referred to as rich-by-birth effect (a vertex is born with a weight
which controls its degree). In reality, both these effects could play a role.

The aim of the current chapter is to formulate and analyze a model that
combines the rich-get-richer and rich-by-birth effects. The model is a preferential
attachment model where the number of edges added upon the addition of a new
vertex is a random variable associated to the vertex. For bounded initial degrees,
the model is included in the very general class of preferential attachment models
treated in [28], but the novelty of the model lies in that the initial degrees can have
an arbitrary distribution. In particular, we can take the weight distribution to be
a power law, which gives a model with two “competing" power laws: the power
law caused by the preferential attachment mechanism and the power law of the
initial degrees. In such a situation it is indeed not clear which of the power laws
will dominate in the resulting degrees of the graph. Our main result implies that
the most heavy-tailed power law wins, that is, the degrees in the resulting graph
will follow a power law with the same exponent as the initial degrees in case this
is smaller than the exponent induced by the preferential attachment, and with an
exponent determined by the preferential attachment in case this is smaller.

The proof of our main result requires finite moment of order 1 + ¢ for the
initial degrees. However, we believe that the conclusion is true also in the infinite
mean case. More specifically, we conjecture that, when the distribution of the
initial degrees is a power law with infinite mean, the degree sequence in the graph
will obey a power law with the same exponent as the one of the initial degrees.
Indeed, the power law of the initial degrees will always be the “strongest" in this
case, since preferential attachment mechanisms only seem to be able to produce
power laws with finite mean. In reality, power laws with infinite mean are not
uncommon, see e.g. [66, Table 3.1] for some examples, and hence it is desirable to
find a model that can capture this. We have not been able to give a full proof for
the infinite mean case, but we present partial results in Section 3.1.2.
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3.1.1 Definition of the model

The model that we consider is described by a graph process {G(t)};>1. To define it,
let {W;}i>1 be an independent identically distributed (i.i.d.) sequence of positive
integer-valued random variables and let G(1) be a graph consisting of two vertices
v and v1 with W; edges joining them. For ¢ > 2, the graph G(t) is constructed
from G(t — 1) in such a way that a vertex v, with associated weight W, is
added to the graph G(t — 1), and the edge set is updated by adding W, edges
between the vertex v; and the vertices {vg,v1,...,v;—1}. Thus, W, is the random
initial degree of vertex v,. Write dy(s),...,d;—1(s) for the degrees of the vertices
{vg,v1,...,v4—1} at time s > ¢t — 1. The endpoints of the W; edges emanating
from vertex v; are chosen independently (with replacement) from {vg,...,v:_1},
and the probability that v; is chosen as the endpoint of a fixed edge is equal to

tfif(t—l)+5 G Y S 31.1)
Sioldi(t—=1)+06) 2L+ 10

where L; = 22:1 W;, and 6 is a fixed parameter of the model. Write Sy, for
the support of the distribution of the initial degrees. To ensure that the above
expression defines a probability, we require that

d+min{z:z € Sy} > 0. (3.1.2)

This model will be referred to as the PARID-model (Preferential Attachment with
Random Initial Degrees). Note that, when W; = 1 and § = 0, we retrieve the
original preferential attachment model from Barabasi-Albert [4].

Remark 3.1 We shall give special attention to the case where P(W; = m) =1
for some integer m > 1, since it turns out that sharper error bounds are possible
in this case. These sharper bounds are needed in [53], where the diameter in
preferential attachment models is studied.

3.1.2 Main result

Our main result concerns the degree sequence in the graph G(t). To formulate
it, let Ny (t) be the number of vertices with degree k in G(¢) and define pi(t) =
Ni(t)/(t + 1) as the fraction of vertices with degree k. Furthermore, let {rg}r>1
be the probabilities associated with the weight distribution, that is,

re =P(Wy =k), k>1. (3.1.3)

Finally, assume that the weights have finite mean p > 0 and define 6 = 2 + 6/ p.
We are interested in the limiting distribution of py(t) as ¢ — co. This distribution,
denoted by {pk}r>1, is obtained as the solution of the recurrence relation

k—1496 k+46
Pr = 79 Prk—1 — 0 Pk + Tk- (3]‘4)

Roughly, this relation is derived by analyzing how the number of vertices with
degree k is changed upon the addition of a new vertex; see e.g. [28] for some



58 A preferential attachment model with random initial degrees

heuristic explanation. By iteration, it can be seen that the recursion is solved by

k—1 % .
0 k—j+9
- S >1 1.
Pr k+5+9;r’“ 1j1;[1k—j+5+9’ k21, (3.1.5)

where the empty product, arising when i = 0, is defined to be equal to one. Since
{pr}r>1 satisfies (3.1.4) with py = 0, we have that >;0 pr = D poq 76 = 1.
Hence, {py}r>1 defines a probability distribution. Our main result states that the
limiting degree distribution in the PARID-model is given by {pg}r>1.

Theorem 3.2 If the initial degrees {W;};>1 have finite moment of order 1 + ¢
for some € > 0, then there exists a constant v € (0, %) such that

. s =
Jim P (sae(t) = 277 ) =
where {pr}tr>1 is defined in (3.1.5). When r, = 1 for some integer m > 1, then

logt
t

t=7 can be replaced by C for some sufficiently large constant C'.

To analyze the distribution {py, }r>1, first consider the case when the initial degrees
are almost surely constant, that is, when r,, = 1 for some positive integer m. Then
r; = 0 for all j # m, and (3.1.5) reduces to

T (k+6)T (m+6+6) )
Pk = Tt iTotey 1or k= m;
0 for k < m,

where T'(-) denotes the gamma-function. By Stirling’s formula, we have that
I'(s 4 a)/T(s) ~ s as s — oo, and from this it follows that py ~ ck=(1*9 for
some constant ¢ > 0. Hence, the degree sequence obeys a power law with exponent
1+ 6 =3+ d/m. Note that, by choosing § > —m appropriately, any value of the
exponent larger than 2 can be obtained. For other choices of {rj}x>1, the behavior
of {pk}x>1 is less transparent. The following proposition asserts that, if {ry}x>1 is
a power law, then {py}r>1 is a power law as well. It also gives the aforementioned
characterization of the exponent as the minimum of the exponent of the r;’s and
an exponent induced by the preferential attachment mechanism.

Proposition 3.3 Assume that ri, = P(Wy = k) = k=™ L(k) for some 7 > 2 and
some function k — L(k) which is slowly varying at infinity. Then py = k=" L(k)
for some slowly varying function k — L(k) and with power-law exponent T given
by

T =min{7y, 7}, (3.1.6)
where Ty is the power-law exponent of the pure preferential attachment model given
by e =3+0/p.
When ry, decays faster than a power law, then (3.1.6) remains true with the con-
vention that T = oo.

Now assume that the mean of the initial degrees {W;};>1 is infinite. More specif-
ically, suppose that {ry}r>1 is a power law with exponent 7y, € [1,2]. Then, we
conjecture that the main result above remains true.
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Conjecture 3.4 When {ry}i>1 is a power law distribution with exponent T €
[1,2], then the degree sequence in the PARID-model obeys a power law with the
same exponent Ty, .

Unfortunately, we cannot quite prove Conjecture 3.4. However, we shall prove
a slightly weaker version of it. To this end, write N> (t) for the number of vertices
with degree larger than or equal to k at time ¢, that is, N> (t) = Zf:o Lia,(t)>k}s
and let p>x(t) = N> (t)/(t +1). Since d;(t) > W;, obviously

Elp>r(t)] = ]Eutvikl(t)] > E[Ei:tlj{lwizm]
t

= P(Wl > k‘)m = P(Wl > k‘)(l + 0(1))7 (317)

that is, the expected degree sequence in the PARID-model is always bounded from
below by the weight distribution. In order to prove a related upper bound, we
start by investigating the expectation of the degrees.

Theorem 3.5 Suppose that Y, 1, = P(Wy > ) = &' ™WL(x), where 7 €
(1,2) and x — L(z) is slowly varying at infinity. Then, for every s < 7w — 1,
there exists a constant C > 0 and a slowly varying function x +— l(x) such that,
forie{0,...,t},

st <o) (19,

where © V y = max{z,y}.
As a consequence of Theorem 3.5 , we obtain:

Corollary 3.6 If >, 1, = P(Wy > z) = 2'""™WL(z), where 7 € (1,2) and
x +— L(x) is a slowly varying function at infinity, then, for every s < 7w — 1, there
exists an M (independent of t) such that

Elp>k(t)] < MEk™°.

Proof. For s < 1, — 1, it follows from Theorem 3.5 and Markov’s inequality that

=0 =0
1 & g s C Rt NS/ wmb ()N
St+1,§k Eld:(1)"] < k t+1§(i\/1) (@) s ME,

(3.1.8)

since, for s < 7 — 1 and using [41, Theorem 2, p. 283], there exists a constant
¢ > 0 such that

> v )T OWEI6) T = et W) T (L + o(1)). O
1=0
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Combining Corollary 3.6 with (3.1.7) yields that, when the weight distribution
is a power law with exponent 7 € (1,2), the only possible power law for the
degrees has exponent equal to 7. This statement is obviously not as strong as
Theorem 3.2, but it does offer convincing evidence for Conjecture 3.4. We prove

Theorem 3.5 in Section 3.3.

3.1.3 Related work

Before proceeding with the proofs, we discuss how the proof of our main result
is related to other proofs of similar results in the literature and describe some
related work.

Virtually all proofs of asymptotic power laws in preferential attachment models
consist of two steps: one step where it is proved that the degree sequence is con-
centrated around its mean, and one where the mean degree sequence is identified.
In this chapter, these two results are formulated in Propositions 3.7 and 3.8 below,
respectively. For bounded support of W;, the concentration result and its proof
are identical in all proofs. To handle the case where W; has unbounded support,
we make use of an additional coupling argument. The main differences however
arise in the statement and proof of the part where the expected degree sequence
is characterized. In our Proposition 3.8, a stronger result is proved than the ones
for § = 0 appearing in [21] for the fixed number of edges case, and in [59] and
[28] for the random number of edges case with bounded support and exponential
moments respectively. More precisely, Proposition 3.8 is valid for a wider range
of k values and the error term is smaller. The model in [28]  which is much more
general than the model discussed here — and the model in [59] indeed also allow
for a random i.i.d. number of edges {W;};,>1. However, as mentioned, there W;
is assumed to have bounded support and exponential moment respectively, and
hence, in those models, the competition of the exponents in (3.1.6) do not arise.

A related model related which also tries to combine the rich-get-richer and
the rich-by-birth effect is the so-called fitness model, formulated by Barabasi and
Bianconi 11, 12], and later generalized by Ergiin and Rodgers [35]. There the
vertices are equipped with weights, referred to as fitnesses, which determine their
ability to compete for edges. The number of edges emanating from each vertex
however is fixed. Recently, the degree sequence in this model has been analyzed in
[22]. Results similar to ours for various other random graph processes where a fixed
number of edges is emanates from each vertex can be found in [49]. Furthermore, in
[17], a directed preferential attachment model is investigated, and it is proved that
the degrees obey a power law similar to the one in [21]. In [3], the error bound in
our concentration result (Proposition 3.7) is proved for m = 1 for several models.
For related references, see [49] and [79]. Finally, we mention [60], where a graph
process is studied in which, conditionally on G(t), edges to different vertices are
added independently with probability proportional to the degree of the vertex. In
this case, as in [21], the power-law exponent can only take the value 7 = 3, but it
can be expected that by incorporating an additive J-term as in (3.1.1), the model
can be generalized to 7 > 3. However, since § < 0 is not allowed in this model
(by the independence of the edges to different vertices, the degree of any vertex
is zero with positive probability), we expect that 7 < 3 is not possible.
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3.2 Proof of Theorem 3.2 and Proposition 3.3

In this section, we prove Theorem 3.2 and Proposition 3.3. We start by proving
Proposition 3.3, since the proof of Theorem 3.2 makes use of it.

3.2.1 Proof of Proposition 3.3

Recall the definition (3.1.5) of pi. Assume that {r;}x>1 is a power law distri-
bution with exponent 7y > 2, that is, assume that r, = L(k)k~™, for some
slowly varying function k — L(k). We want to show that then py is a power law
distribution as well, more precisely, we want to show that p; = IA/(/f)k*T7 where
7 = min{7y, 1 +60} and k — L(k) is again a slowly varying function. To this end,
first note that the expression for p; can be rewritten in terms of gamma-functions
as

0-T(k+0) ~TD(m+6+0)

= . 2.1
Pk = T(k+0+1+0) “= T(m+0) fm (32.1)
By Stirling’s formula, we have that
L(k+o _ _
mﬁ((sﬂle) =k (1+0(k)), k—oo,  (322)
and r 5.6
m =m? (1+0(m™)), m— . (3.2.3)

Furthermore, by the assumption, r,,, = L(m)m~"™". It follows that

K T(m+6+6
) ( )

2.4
T(m+9) “Tm+to) ™ (3.2.4)

m=1

is convergent as k — oo if 8 — 1y, < —1, that is, if 7w, > 1 + 6. For such values

of 7y, the distribution py is hence a power law with exponent 7 = 1 + 6. When

0 — 7w > —1, that is, when 7 < 74, the series in (3.2.4) diverges and, by [41,
Lemma, p. 280], it can be seen that
k

T(m+9d+0)

k NPT ET Y

P> T(m—+o) ™

m=1
varies regularly with exponent 6 — 7, + 1. Combining this with (3.2.2) yields that
pr (compare (3.2.1)) varies regularly with exponent 7, as desired. O

3.2.2 Proof of Theorem 3.2

As mentioned in Section 3.1.3, the proof of Theorem 3.2 consists of two parts: in
the first part, we prove that the degree sequence is concentrated around its mean,
and in the second part, the mean degree sequence is identified. These results are
proved in two separate propositions — Proposition 3.7 and 3.8 — which are proved
in Section 3.2.3 and 3.2.4 respectively.

The result on the concentration of the degree sequence is as follows:
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Proposition 3.7 If the initial degrees {W;};>1 in the PARID-model have finite
moment of order 1 + €, for some € > 0, then there exists a constant a € (%,1)
such that

i ~ >t ) =0.
Jim P@;ﬂm(t) E[N (¢)] ) >t ) 0
When r,, = 1 for some m > 1, then t* can be replaced by C+/tlogt for some
sufficiently large C. Identical concentration estimates hold for N>y (t).

As for the identification of the mean degree sequence, the following proposition
says that the expected number of vertices with degree k is close to (¢ + 1)pj, for
large ¢. More precisely, it asserts that the difference between E[Ny(¢)] and (¢+1)pg
is bounded, uniformly in k, by a constant times t°, for some 3 € [0,1).

Proposition 3.8 Assume that the initial degrees {W,;};>1 in the PARID-model
have finite moment of order 1+ € for some € > 0, and let {py}r>1 be defined as
in (3.1.5). Then there exist constants ¢ > 0 and 8 € [0,1) such that

max [E[Ny ()] — (¢ + 1p| < ct’. (3.2.5)

When r,, =1 for some m > 1, then the above estimate holds with 3 = 0.

With Propositions 3.7 and 3.8 at hand it is not hard to prove Theorem 3.2:

Proof of Theorem 3.2: Combining (3.2.5) with the triangle inequality, it follows
that

g (Il?ﬁ‘i‘ [Nkt = (¢ + Dpe| = et + t") <P (‘?3? N (t) — E[NL ()] | = ta) .

By Proposition 3.7, the right side tends to 0 as ¢ — oo and hence, since py(t) =
Ni(t)/(t + 1), we have that

ot +to
. _ S AN
Jim P (?35"”“0 Pl = =3 ) 0

The theorem follows from this by picking 0 < v < 1—max{«, 8}. Note that, since
0<pB<1and % <a<l1, wehave 0 < v < % The proof for r,, =1 is analogous.
O

3.2.3 Proof of Proposition 3.7

This proof is an adaption of a martingale argument, which first appeared in [21],
and has been used for all proofs of power-law degree sequences since. The idea is
to express the difference Ny (t) — E[Ng(t)] in terms of a Doob martingale. After
bounding the martingale differences, which are bounded in terms of the random
number of edges {W;};>1, the Azuma-Hoeffding inequality can be applied to con-
clude that the probability of observing large deviations is suitably small, at least
when the initial number of edges has bounded support. When the initial degrees
{W;}i>1 are unbounded, an extra coupling step is required. The argument for
N>j(t) is identical, so we focus on Ny (t).
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We start by giving an argument when W; < t* for all ¢ < ¢t and some a € (0, %)
First note that

Ni(t) < %ZlNl(t) < %Zzz\@(t) = (3.2.6)

Thus, E[N(t)] < pt/k. For a € (3,1), let n > 0 be such that n + o > 1 (the
choice of a will be specified in more detail below). Then, for any k > ¢", the event
[Nk (t) — E[Ng(t)]| > t* implies that Ny(t) > t*, and hence that L; > kNg(t) >
t1ta It follows from Boole’s inequality that

P (s Vo) ~ EINL0)] | 2 1)

can be bounded from above by
t’?
S P(INk(E) ~ EINk(D)] | = £2) + (L, > ¢72),
k=1

Since n + a > 1 and L;/t — p almost surely, the event L; > "7 has small
probability. To estimate the probability P (| Ny (t) — E[Nk(¢)] | > t*), introduce

M, =E[N:()|G(n)], n=0,....t

where G(0) is defined as the empty graph. Since E[M,,] < oo, the process is a Doob
martingale with respect to {G(n)} _,. Furthermore, we have that M; = Ny(t)
and My = E[N(t)], so that

Ni(t) — E[Nk(t)] = My — M.

Also, conditionally on the initial degrees {W;}!_,, the increments satisfy |M,, —
M, 1| < 2W,,. To see this, note that the additional information contained in
G(n) compared to G(n — 1) consists in how the W,, edges emanating from v,, are
attached. This can affect the degrees of at most 2W,, vertices. By the assumption
that W; < ¢® for all ¢ = 1,...,¢, we obtain that |M,, — M,,_1| < 2t*. Combining
all this, it follows from the Azuma-Hoeffding inequality — see e.g. [47, Section 12.2]
— that, conditionally on W; <t® for alli =1,...,¢,

t2a

=9 _t2a—1—2a 8 ,
82:1{“} exp { /8}

so that we end up with the estimate, again conditionally on W; < t* for all
i=1,...,1,

]P’(|Nk(t) “EN,()]| > ta) < 2exp {—

11»( max | Ni(t) — E[Nk(1)]| ta) < 27 exp {—12271720 /8) L P(L, > $179).,
- (3.2.7)
Since a < 1/2, the above exponential tends to 0 for any « < 1 satisfying that

a > a+ 1/2. When the initial degrees are bounded, the above argument can
be adapted to yield that the probability that maxy>1 |Nk(¢t) — E[Ny(t)] | exceeds



64 A preferential attachment model with random initial degrees

Cy/tlogt is o(1) for some C' > 0 sufficiently large. We omit the details of this
argument.

We conclude that Proposition 3.7 has been proved for all graphs G(t) satisfying
that W; < t* for arbitrary a € (0,1/2). Naturally, this assumption may not be
true. When the initial degrees are bounded, the assumption is true, even with t*
replaced by m, but we are interested in graphs having initial degrees with finite
(14¢)-moments. We next extend the proof to this setting by a coupling argument.

Fix a € (0, 3), arbitrary, and define, for i = 1,2,...,t and 1 < s <,

Wl =Wint',  Li=Y W, (3.2.8)
1=1

where © A y = min{x,y}. Then, the above argument shows that the PARID-

model with initial degrees {W/}!_, satisfies the claim in Proposition 3.7. Denote

the graph process with initial degrees {W/}{_; by {G’(i)}!_; and its degrees by

dl(s), i < s < t. We now present a coupling between {G(i)}!_; and {G'(i)}!_;.
Define the attachment probabilities in {G(¢)}:_; and {G’(i)}i_; by

di(s—1)+0 by di(s—=1)+06

pi(s) = :
2L, _, +6s

i(s) = , / 3.2.9
pi(s) L. 1 105 (3.2.9)

Observe that pf(s) is properly defined since d(s—1)4+6 > W/+6 = W;At*+4 > 0,
for t* > min{z : x € Sy}, which is true for ¢ not too small.

We number the edges by saying that the edge (s,l) is the edge of vertex
s, where 1 < [ < W,. The aim is to couple all edges in such a way that most
edges have the same starting and end vertex in G and G’. For this, we shall
split the set of edges into two classes, the successfully coupled edges, and the
miscoupled edges. The successfully coupled edges will have an identical starting
and end vertex in both G and in G’, while the miscoupled edges will either only
exist in G (when [ > W/ for edge (s,!)) or will have the same starting vertex,
but a different end vertex in G and in G’ (when [ < W/ for edge (s,1)). We shall
denote the set of miscoupled edges with number (s,[) with s < ¢ by U(t). We now
explain when an edge is miscoupled. For any W/ < [ < Wy, the edge with number
(s,1) is miscoupled. In the graph G(s), we attach the edge to a vertex i with
probability p;(s), while in G’(s), this edge is absent. For 1 < < W/, the edge
with number (s,[) in both graphs is attached to i, where ¢ = 0,1,...,s — 1, with
probability m;(s) = p;(s) Ap)(s). Observe that 3= p;(s) = 320, pi(s) = 1, but
Zf;ol m;(s) < 1. For each edge with number (s,1) with 1 <[ < W, we take one
trial, independent of all randomness involved, with probability vector

lth

(mo(s), m1(s),...,ms—1(s),v(s)), (3.2.10)

where v(s) = 1 — Z;;Ol m;(s). If the trial ends in cell 4, which happens with
probability m;(s), then we attach the edge (s,1) to vertex 7 in both G(s) and G'(s),
and the edge (s, 1) is coupled successfully. If the trial ends in cell s, which happens
with probability v(s), then the edge (s,l) is miscoupled, so that (s,l) € U(s).
Then, in the graphs G(s) and G'(s), respectively, we attach the edge (s,1) to
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vertex 0,1,...,s—1 according to two further, independent trials with probability
vectors
1

Z/(S) (po(s) - mO(S)a s 7ps—1(5) - ms—l(s)), (3.2.11)

and

@(136(5) - mo(s), s 7p{§—1(5) - mS—l(S))7
respectively (note that since m;(s) = p;(s) Api(s), these draws are indeed different
a.s.). From this definition, we conclude that the probability of attaching any edge
of vertex s to vertex ¢ in the graph G has marginal probability

pi(s) — mi(s)
i = pi(s), 3.2.12
ma(s) + () P o (3:2.12)
as required. Similarly, this marginal probability equals p}(s) in G’, so that the
graphs G and G’ have the correct marginal distributions. We note that each

miscoupled edge in U(s) creates a difference in degrees of at most 2 in G(s) and
G'(s), so that

Z|d s)| < 2JU(s)]. (3.2.13)

Indeed, when [ > W/, the edge (s,1) is absent in G’(s) and present in G(s), so that
the sum of absolute difference in degrees is increased by at most 2, while if [ < W
and (s,l) € U(s), then only the end vertices of the edge (s,[) are different in G(s)
and G'(s), so that the sum of absolute difference in degrees is again increased by
at most 2.

From the above construction we get

E[U(s)[] = E[|U(s — D] + 2E[W, — W] + E[RJ], (3.2.14)

where R is the total number of miscoupled edges during the attachment of the
edges with numbers (s,!) and I < W/. From (3.2.11), we obviously obtain

E[R,] = E[E[R|W.]] = E[W{v(s)] = E[W]E[v(s)], (3.2.15)

S

because W is independent of m;(s), i =0,1,...,s — 1, and hence of v(s).
In order to bound E[R;], we observe that

s—1
3):1*27”1 Z[pz /\pz Z|p1 z |
=0

We bound

[pi(s) = pi(s)| =

di(s—1)+46 d;(s—l)—f—&‘
s—1+ 0s 2Lls—1 +ds
s =1) —di(s = D)| | 2(Ls—1 = Li_y)(di(s = 1) +9)
- 2Ls 1 + 05 (2Ls—1 + 0s)(2L._, +6s)
(3.2.16)
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because L, _; < L;_1. From (3.2.16) we obtain the following upper bound for

v(s):

s—1 1 ds

v(s) = %Zm‘(s) —pi(s)] < ;ZZ:; (5 ;Ll) — di(s —1)|

0

152 2L~ (5= 1) +9)
2 (2L,_1 +0s)(2L._, + 05)
U(s— 1) | Lo~ I,

3.2.17
=~ 2L, 1+68s 2Ls_1+6s’ ( )

by (3.2.13). The following lemma bounds the expected value of |U(t)]:
Lemma 3.9 There exist constants K > 0 and b € (0,1) such that for all t € N,
E[U(¢)]] < Kt'. (3.2.18)

Proof: We prove Lemma 3.9 by induction. We start with some preparations for
the induction step. Obviously, E[W!] < E[W,] = p and, from the existence of the
1+ & moment of Wy, we obtain:

E[W, — W[ = E[(W, — t")1{w, say] < tT“E[W, 7] < Ct%. (3.2.19)

Secondly, from the strong law of large numbers Ly/s — p, a.s. Using this in
combination with (3.2.17), we find that, taking ¢ > 0 such that 2(1 — () + 9 =

(14 ¢)u > 1, which is possible since 2u + 6 > p,

ElU(s —1)]] . 2E[Ler — L,y

Ev@l < Coigont — sor tREem <0-0ua-1)
_ E[U(s -] o o

= oD on T EWet = W[+ P(Leo < (1= Quls — 1))

(3.2.20)

We are now ready to prove (3.2.18). Obviously, for any finite set of natural
numbers ¢, the inequality (3.2.18) holds by making K sufficiently large. This
initializes the induction hypothesis, and we may assume in the induction step
that ¢ is large. So assume (3.2.18) for s—1 < ¢, with s large and we will show that
(3.2.18) holds for s. From (3.2.14), (3.2.15), (3.2.19), (3.2.20) and the induction
hypothesis, it follows that

E[U(s)[] < E[|U(s — D] + 2E[W, — W(] + E[R,]
K(s—1)°
<K(s—1)"+20(1 +p)t™ " + —————
: i+ 061

+HP(Ly < (1= Ouls — 1))

20(1 + 1—1/s)
= Ks’ {(1 —1/s)" + K(smf) + (1(+ C)(i) 1)}

+ pP(Ls—1 < (1= Qu(s — 1))
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Standard large deviation techniques and the fact that L; is a sum of ¢ i.i.d. non-
negative random variables show that s — P(Ls—1 < (1 — ()u(s — 1)) converges
to 0 exponentially fast for any ¢ > 0, so that we obtain the required bound K s’
whenever s is sufficiently large and

2C(1+ p) (1—1/s)®
Ksroe T4 Qs )

(1—1/s)"+ <1

This can be established when b 4 ae > 1, by taking s and K sufficiently large. O]

We now complete the proof of Proposition 3.7. The Azuma-Hoefding argument
proves that N/ (t), the number of vertices with degree k in G’(t), satisfies the bound
in Proposition 3.7, i.e., that (recall (3.2.7))

P <mx INY(t) ~ EIN(1)]| = ta) < 27 exp {—#2071 20 8} L B(L] > 749,

(3.2.21)
for a € (3,1) and 1 > 0 such that a +7 > 1 and a € (0,1). Moreover, we have
for every k > 1, that

[N(t) = Ne(D)] < [U@)], (3.2.22)
since every miscoupling can change the degree of at most one vertex. By (3.2.22)
and (3.2.18), there is a b € (0,1) such that

’E[Nk(t)] - E[N,;(t)]‘ <E[U®#)]] < Kt*. (3.2.23)

Also, by the Markov inequality, (3.2.22) and (3.2.18), for every « € (b, 1), we have
that

J}D(r]?g(wk(t) — NL(t)| > t“) <P(|Ut)| > t*) <t *E[U(t)|] = o(1). (3.2.24)

Now fix a € (bV (a + 1),1), where 2 V y = max{z, y}, and decompose
_ < ! _ ! _ !
maxx [Ni(t) — B[N, ()] < max Vi (¢) — EIN;(8)]] + max [E[Nu(8)] - EIN; (0)]
+ max | Nk (t) — N (8)]. (3.2.25)

The first term on the right hand side is bounded by t* with high probability
by (3.2.21), the second term is, for ¢ sufficiently large and with probability one,
bounded by ¢ by (3.2.23) while the third term is bounded by ¢* with high prob-
ability by (3.2.24). This completes the proof. O

3.2.4 Proof of Proposition 3.8

For k > 1, let
Ni(t) = B[Nk () {Wi}izi] (3.2.26)

denote the expected number of vertices with degree k at time ¢ given the initial
degrees W1, ..., Wy, and define

er(t) = Ni(t) — (t + 1)px, k> 1. (3.2.27)
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Also, for @ = {Qx}x>1 a sequence of real numbers, define the supremum norm of
Q as ||Q[| = supy>1 |Qk|- Using this notation, since E[Ny(t)] = E[Ny(t)], we have
to show that there are constants ¢ > 0 and 8 € [0, 1) such that

IE[e()] || = sup [E[N4(t)] — (¢t + Dp| < ct?,  for t=0,1,..., (3.2.28)
E>1

where €(t) = {ex(t)}32,. The plan to do this is to formulate a recursion for (¢),
and then to use induction in ¢ to establish (3.2.28). The recursion for e(t) is
obtained by combining a recursion for N(t) = {Nj(¢)}x>1, that will be derived
below, and the recursion for pj; in (3.1.4). The hard work then is to bound the
error terms in this recursion; see Lemma 3.10 below.

Let us start by deriving a recursion for N(¢). To this end, for a real-valued
sequence @ = {Qy}r>0, with Qo = 0, introduce the operator T}, defined as

k4o
2L, 1+t

k—1456

29 0, k> 1. 3.2.29
2L 4 —i—t(SQk L = ( )

(TiQ)k = (1 > Qr +

When applied to N(t — 1), the operator T; describes the effect of the addition
of a single edge emanating from the vertex v, the vertex v, itself being excluded
from the degree sequence. Indeed, there are on the average Ny_1(t — 1) vertices
with degree k — 1 at time ¢t — 1 and a new edge is connected to such a vertex
with probability (k — 1 4 0)/(2L;—1 + td). After this connection is made, the
vertex will have degree k. Similarly, there are on the average Ny (t — 1) vertices
with degree k at time ¢ — 1. Such a vertex is hit by a new edge with probability
(k4 6)/(2Ls—1 + td), and will then have degree k + 1. The expected number of
vertices with degree k after the addition of one edge is hence given by the operator
in (3.2.29) applied to N(t).

Write T;* for the n-fold application of T, and define 7] = TtWt. Then T}
describes the change in the expected degree sequence N (t) when all the W; edges
emanating from vertex v; have been connected, ignoring vertex v, itself. Hence,
N (t) satisfies

Ni(t) = (T{N(t = 1)k + 1w,k k>1. (3.2.30)

Introduce a second operator S on sequences of real numbers Q = {Q}r>0.
with Qo = 0, by (compare to (3.1.4))

-1
%Qk—l - MQ;W k>1, (3.2.31)

(SQ = .

where § = 2+ §/p and p is the expectation of Wj.
The recursion (3.1.4) is given by px, = (Sp)r + 7k, with initial condition py = 0.
It is solved by p = {px}x>1, as defined in (3.1.5). Observe that

(t+Dpr = tpx+ (Sp)k + 76 = t(Tip)k + i — Ki(t), k> 1(3.2.32)

where
ki (t) = t(T{p)x — (Sp)i — k- (3.2.33)
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Combining (3.2.27), (3.2.30) and (3.2.32), and using the linearity of 7}, it follows
that e(t) = {ex(¢) }r>1 satisfies the recursion

er(t) = (TtIE(t - 1))+ Low,—ky — 715+ Ki(t), (3.2.34)
indeed,
ex(t) = Ni(t) = (t+ L)pw

= (TNt = 1)k + Lgw,=ry — L(T(P)r — 15 + rr(t)
= (Tje(t — 1)k + Lyw, =k} — 7% + sx(t).

Now we define k; = nt, where nn € (u,2p + J). Since, by (3.1.2), 6 > —min{z :
x € Sw} > —pu, the interval (u,2u + 6) # @. Also, by the law of large numbers,
Li < k¢, as t — oo, with high probability. Further, we define &;(t) = ex(t)11p<r,)
and note that, for k < k;, the sequence {&x(t)}r>1 satisfies

ék(t) = l{kékt}(TtIE(t — 1))k + l{Wt:k} — 1k + Ri(t), (3.2.35)

where 7y (t) = ki(t)Lip<y,}- 1t follows from E[1{w,—x}] = r and the triangle
inequality that

IE[(@)] 1| < [El() — 0] | + [EE®) |
< Ele(t) — £ | + IE[L (oo (VTie(t — D] | + [ER] ], (3.2:36)

where 1(_ o ,](k) = 1ix<k,}. Inequality (3.2.36) is the key ingredient in the proof
of Proposition 3.8. We will derive the following bounds for the terms in (3.2.36).

Lemma 3.10 There are constants Cz, CV, C* and Cy, independent of t, such
that for t sufficiently large and some [ € [0, 1),

() Bl - 0] < 75,
(0) JE[L( oo g (VTe(t = D] | < (1~

() IERMII < 25

When r,, = 1 for some integer m > 1, then the above bounds hold with 3 = 0.

o 0(2)
=) IEL( - D] + 555,

Given these bounds, Proposition 3.8 is easily established.

Proof of Proposition 3.8: Recall that we want to establish (3.2.28). We shall
prove this by induction on t. Fix ty € N. We start by verifying the induction
hypothesis for ¢ < ¢y, thus initializing the induction hypothesis. For any t < ¢,
we have

[E[e@] I < supE[Nu()] + (o + 1) suppy, < 2(to + 1), (3.2.37)

since there are precisely to + 1 vertices at time to and p; < 1. This initializes the
induction hypothesis, when ¢ is so large that 2(¢g + 1) < ctg. Next, we advance
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the induction hypothesis. Assume that (3.2.28) holds at time ¢ — 1 and apply
Lemma 3.10 to (3.2.36) to get that

Ble@Il < NEe) = E@N + B[ (—o0 by () Tie(t = D] [ + [EF] |
- (1) (2) -
< t?ﬁ+<1—ci)cu—1W+;%ﬁ+t?;

¢-CO —(C® + C: + C;)
t1=p ’

P —

IN

)
as long as 1— C; > 0, which is equivalent to ¢t > C{". If we then choose ¢ large so

that ¢-C" > C® + C. + Cy and ¢ > 2(tg + 1)taﬁ (recall (3.2.37)) and to > C,
then we have that |E[e()] || < ct?, and (3.2.28) follows by induction in ¢. O

It remains to prove Lemma 3.10. We shall prove Lemma 3.10 (a)-(c) one by
one, starting with (a).

Proof of Lemma 3.10(a): We have ||E[e(t) — £(¢)] || < E[|le(t) — &(¢)]|], and, using
the definition of £(t), we get that

le(t) =)l = sup [Ny(t) — (¢ + px| < sup Ni(t) + (t + 1) sup py.
k>kq k>k¢ k>kq

The maximal possible degree of a vertex at time ¢ is L;, implying that

sup Ni(t) = 0, when L; < k;.
k>ky

The latter is true almost surely when r, = 1 for some integer m, when ¢ is
sufficiently large, since for ¢ large Ly = mt < nt = k;, where n € (m,2m + 90),
by the fact that 4 = m and 6 > —m. On the other hand, by (3.2.6), with Nj(?)
replaced by Ni(t) we find N (t) < % for k > k;, and we obtain that

Blsup Ne(t)] < () ELLiL z,50) (3.2.38)
>kt

With k; = nt for some 1 € (u,2u + ), we have that

E[LiLiL,>ky) < ki BILE 1L, 5,)]
<k, “E[L: — Mt‘H_E] + (Nt)1+6k;EP(Lt > k),

and, by the Markov inequality
P(Ly > ki) < P(ILe = put] ¢ > (ke = ) *) < (ke = ut) O FIE L, -t ],

Combining the two latter results, we obtain

—€ H 1+e 1
BlLel >k <k (1 + (W) )]EHLt — pt['TE]. (32.39)

To bound the last expectation, we will use a consequence of the Marcinkiewicz-
Zygmund inequality, see e.g [48, Corollary 8.2 in §3], which runs as follows. Let
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g € [1,2], and suppose that {X;};>1 is an i.i.d. sequence with E[X;] = 0 and
E[|X1|7] < co. Then there exists a constant ¢, depending only on ¢, such that

t

o

=1

q] < e tE[|X17]] . (3.2.40)

Applying (3.2.40) with ¢ = 1 + €, we obtain

_ 1+e€
E[sup Ny (¢)] < k&, 1+ (1 + (L) )E[|Lt — "] < gt (3.2.41)
k>kt n—p

Furthermore, since by Proposition 3.3, we have p; < ck™7, for some v > 2 (see
also (3.1.6)), we have that supy.,, pr < ct™” for some constant c. It follows that

Cp

(t+1) sup py e

k>kt
and, since v > 2, part (a) is established with Cz = ¢14.+C), and 1—3 = (eAy)—1.
d

Proof of Lemma 3.10(b): Moving on to (b), we will start by showing that for ¢
sufficiently large,

B0t = D] (1 S ) VBl O = 0]+ 55
(3.2.42)

which is (b) when we condition on W; = 1. We shall extend the proof to the case
where W; > 1 at a later stage. To prove (3.2.42), we shall prove a related bound,
which also proves useful in the extension to W; > 1. Indeed, we shall prove, for
any real-valued sequence Q = {Qx}r>0, satisfying (i) Qo = 0 and (ii)

sup |k + 0]|Qk| < CuLi—1, (3.2.43)
k>1
that there exists a 8 € (0,1) (independent of @) and a constant ¢ > 0 such that
for ¢ sufficiently large,

cw C
IE[1(—ook) (VT2 Q] || < <1 - ; ) IE[L ook (Q] Il + tcl_%. (3.2.44)

Here we stress that @ can be random, for example, we shall apply (3.2.44) to
g(t — 1) in order to derive (3.2.42).
In order to prove (3.2.44), we recall that

__k+d
2L;_1 +t6

k—1456

——Qr_ k>1. (3.2.45
2Lt_1+t6Qk 1> - ( )

BT =E |1 )au+

In bounding this expectation we will encounter a problem in that @, which is
allowed to be random, and L;_; are not independent (for example when @ =
g(t —1)). To get around this, we add and subtract the expression on the right
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hand side but with the random quantities replaced by their expectations, that is,
for £ > 1, we write

k+96 k—1+4+46
E(T:Q),] = (1 - 2#(75—1)‘”5) E[Qx] + mﬂ@k—ﬂ (3.2.46)
2Li—1 — 2u(t — 1)
okt 5)1&{@,6 L1t t5>] (3.2.47)
2u(t —1) — 2Ly
+ (k+d-LE [Qk‘l (Lo +10)(2ut — 1) + té)] - (8249

Note that, when 7, = 1 for some integer m > 1, then L; = ut = mt. Hence the
terms in (3.2.47, 3.2.48) are both equal to zero, and only (3.2.46) contributes. We
first deal with (3.2.46). Observe that k < k; = nt, with n € (u,2u + 9), implies
that & < (2u+ 0)(t — 1) for ¢ sufficiently large, and hence

k+46
l1——>0. 2.4
o2u(t — 1) +t0 — 0 (3:249)
It follows that, for ¢ sufficiently large,
E+9 k—1496
l—-—— | E —E[Qr_ 2.
e ( 2u(t—1) + té) @]+ 2u(t — 1) + t6 (@] (3:2:50)

< (1- g tyas) s OQ) |

oW
) B[ a (IR

<(1-

for some constant C{. This proves (3.2.44) — with C, = 0 — when the number of
edges is a.s. constant since (3.2.47, 3.2.48) are zero. It remains to bound the terms
(3.2.47, 3.2.48) in the case where the number of edges is not a.s. constant. We
will prove that the supremum over k of the absolute values of both these terms
are bounded by constants divided by ¢'=# for some 3 € [0,1). Starting with
(3.2.47), by using the assumption (ii) in (3.2.43), as well as 2L;_; + 0t > L;_4 for
t sufficiently large, it follows that

sup (2Ly—1 +16)(2p(t — 1) + t6)

k>1

(k + 5)E|:Qk

To bound the latter expectation, we combine (3.2.40) for ¢ = 1+ ¢, with Holders
inequality, to obtain

E[[ Ly — ut]] < (E[|Lt — Nt|1+6])1/(1+5)

1/(1+
e < ett/(Fe)] (3.2.51)

< <Cl+sﬂE|:|W1 - M\H_ED
since W; have finite moment of order 1+ ¢ by assumption, where, without loss of
generality, we can assume that € < 1. Hence, we have shown that the supremum
over k of the absolute value of (3.2.47) is bounded from above by a constant
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divided by t'7%, where 3 = 1/(1+¢). That the same is true for the term (3.2.48)
can be seen analogously. This completes the proof of (3.2.44).

To prove (3.2.42), we note that, by convention, £o(t — 1) = 0, so that we only
need to prove that sup,~q |k + d||ex(t — 1)| < ¢L¢—;. For this, note from (3.2.6),
the bound p; < ck™7, 77> 2, and from the lower bound L; > t that

sup|k+5\|5k(t7 | < Z (k4 10))|ex(t — 1)

k>1
< Z k+ |6) Ni(t — 1) +t2(k + |6])px
k>1 k>1
S Loy +16(t— 1)+ (k+1[6)pr < cLiq, (3.2.52)

E>1

for some constant c¢. This completes the proof of (3.2.42).
To complete the proof of Lemma 3.10(b), we first show that (3.2.44) implies,
for every 1 <n <t,and all k > 1,
oW nC®
= ) IE[L oo (et = V] 1| + 255
(3.2.53)

E[Lpsk (Tt = 1),] < (1-

To see (3.2.53), we use induction on n. We note that (3.2.53) for n = 1 is precisely
equal to (3.2.42), and this initializes the induction hypothesis. To advance the
induction hypothesis, we note that

Lipcky (T7e(t — 1)), = Ly T (Q(n — 1)), (3.2.54)

where Qp(n —1) = 1ip<p,y (T e(t— 1))k. We wish to use (3.2.44), and we first

check the assumptions (i-ii). By definition, Qq(n — 1) = 0, which establishes (i).
For assumption (ii), we need to do some more work. According to (3.2.29), and
using that 2L, 1 +td > L,y >t — 1, for ¢ sufficiently large,

S+ D@ < (141 ) Slh+ 16D,
k=1 k=1

and hence, by induction,

> (k+ 10T Q) < (1 + D_ > (k+10)Qx

k=1 k=1

Substituting Q = e, (t — 1) and using |ex(t — 1)| < Ni(t — 1) + tpyg, yields

Sk BTN = 1))+t > (ke 18T o)

k<k: k<k:

1 n—1 oo 1 n—1 o)
§(1+t) Zk+|6| th—1)+(1+t) tZ(k—H(SDpk
k=1 k=1

n—1
1
< (1 + t) ccLy_1, (3.2.55)
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according to (3.2.52). Using the inequality 1+x < e®, x > 0, together with n <,
this in turn yields,

sup |k + §||Qr(n — 1) < ecL;_q, (3.2.56)
k>1

which implies assumption (ii).
By the induction hypothesis, we have that, for k < &,

™ (n— 1)C®

E[Qk(n—1)] < <1 - C; ) IE[L(— ook (et = D)] || + s (3.2.57)

so that we obtain, from (3.2.44), with Q = 1(_ ,](-)T3e(t — 1),

E[Lgpary (Te(t — 1), < (1 - Cy)) JE[L ey (et — 1] |

t
(n—1)C® + cCy,
tliﬁ ) (3.2.58)
which advances the induction hypothesis when C® > c¢Cl,.

By (3.2.58), we obtain that, for W; <,

oW W,C®
Bltuen (Tt~ )W) < (15 ) ekt~ 0w | + s

oW W,C®

= (1= 55 imete - v+ T

where we use that (¢ — 1) is independent of W;. In the case that W; > ¢, we
bound, similarly as in (3.2.52),

sup |(T{e(t —1)),| < cLy, (3.2.59)
E<ke

so that

cw W0
E{1jucun (77— D), W] < (1- 5 ) e - 11+ s

+ cE[Lelw, >3 | Wil

The bound in (b) follows from this by taking expectations on both sides, using

l)E[I/Vt“ﬂf], (3.2.60)

E[L (i) = ot = DB, > ) +EWiLw,o] < (G4

after which we use that 8 =1/(1+¢) > 1 — ¢ and choose the constants appropri-
ately. This completes the proof of Lemma 3.10(b). O

Proof of Lemma 3.10(c): For part (c) of the lemma, recall that

Fr(t) = ke(t)1ip<r,) with ki (t) = t((T) — Dp)x — (Sp)«, (3.2.61)
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where T} is defined in (3.2.29), T/ = T}"*, S is defined in (3.2.31), and where I
denotes the identity operator. In what follows, we will assume that & < ki, so
that Ry (t) = ki (t). We start by proving a trivial bound on kg (t). By (3.2.34), we
have that

Iﬁ:k(t) = Ek(t) - (Tt/E(t - 1))k - 1{W{,:k} + 7k, (3.2.62)

where supysq [ex(t)] < cLy by (3.2.52) and supy <y, [(T{e(t — 1))x| < cLy by
(3.2.59), so that hence

sup |ki(t)| < Cy Ly (3.2.63)
<k,

for some C,, (recall that k, = nt where n € (u,2u1+ 9)). For z € [0,1] and w € N,
we denote

filw;w) = (I +2(Ty = 1)"p) .-
Then ki (t) = ri(t; W), where
ki (tw) =t fe(Lw) — fi(0;w)] = (SP)k, (3.2.64)

and x — fi(x;w) is a polynomial in x of degree w. By a Taylor expansion around
r=1,

1
fu(Lw) = pi + w((Tt — I)p)k + §f,'€’(xk, w), (3.2.65)
for some z, € (0,1), and, since I + z(T3 — I) and T; — I commute,

(i) = wlw 1) (7 +a(T, - )" (T, - DPp) .

We next claim that, on the event {k; < 2L;_; + (¢t — 1)d},

sup

((+2(T = D)Q), | < sup Qul.
k<k: <k

Indeed, I + x(T; —I) = (1 — z)I + 2T} and = € [0,1], so that the claim follows
when supy<, [(T;Q)x| < supy<y, Qx| The latter is the case, since, on the event
that k+ 6 < 2L;_1 + td, and arguing as in (3.2.50), we have

k4o
2L 1+t

k—1456

_ K-140
sup [(TiQ)x| < sup [(1 2L, 1 + 10

k<ke k<k:

)1Qx] + lo

IN

1
R L )
( 2Lt—1 +t5 kﬁkpt ‘Qk|

Since k < ki, the inequality k+0 < 2L;_1 +td follows when k; < 2L; 1 + (¢t —1)0.
As a result, on the event {k; <2L;_1 + (t — 1)d}, we have that

max sup | fi/ (z;w)| < w(w — 1) sup |((T; — I)Qp)k’. (3.2.66)
z€[0,1] k<k, <k

Now recall the definition (3.2.31) of the operator S, and note that, for any sequence

Q = {Qx}2,, we can write

0

(SQ)x = i(SQ)k + (ReQ)r, (3.2.67)
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where the remainder operator R; is defined as

k+6 k+6 k=146 k—146
(FeQ)i = <2tu+t6 2L, +t5> @t <2Lt_1 116 2Ap+1o ) @it
(3.2.68)

Combining (3.2.64), (3.2.65), (3.2.66) and (3.2.67), on the event {k; < 2L; 1 +
(t — 1)} and uniformly for k < k;, we obtain that

1
ki (t; w) < (q: - 1) (Sp)k + wt sup |(Rp)k| + iw(w - 1>t1§3£ ’((Tt - [)2p)k|’

k<ky

(3.2.69)
together with a similar lower bound with minus signs in front of the last two terms.
Indeed,

K (t;w)

t[fe(Lw) = fr(0;w)] = (Sp)k
= tw((Ty ~ Dp), + 37 (s w) — (Sp)s

t 1
= (5P wt(Rp) = (Sp + 51 (ks ),

and (3.2.69) follows from this identity and (3.2.66).

With (3.2.69) at hand, we are now ready to complete the proof of (c). We
start by treating the case where r,, = 1 for some integer m > 1. In this case, with
w = W; = m = pu, we have that (% —1)(Sp)r = 0. Furthermore, the inequality
ke <2L;_1+ (t —1)¢ is true almost surely when ¢ is sufficiently large. Hence, we
are done if we can bound the last two terms in (3.2.69) with w = W;. To do this,
note that, by the definition (3.2.29) of T; and the fact that 2L; 1 +t§ > k; = nt,
with n > wu,

sup | (T~ 1)Q), | < 2 sup(k + I8))|x. (3.2.70)
E>1 Mt k>1

Applying (3.2.70) twice yields that
(@~ 17%0), | < g 0l + 1612
L 02e sy )

and, since by Proposition 3.3, py < ck™" for some y > 2, there is a constant C},
such that

sup(k + |6])?px < G- (3.2.71)
E>1

Finally, since L; = mt, we have that

2 2C
< - < ——--P
|(Rep)i| < D)t i?l)(kJr 6P < -

Summarizing, we arrive at the statement that there exists c,, s such that

Cm,s
sup [k (t;m)] < ==,
E<ke t
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which proves the claim in (¢) with =0 when r,, = 1.
We now move to random initial degrees. For any a € (0, 1), we can split

Kr(t) = ﬁk(t)]-{wtgta} + Kk(t)]-{wt>ta}- (3.2.72)

On the event {k; < 2L; 1 + (t — 1)d}, the first term of (3.2.72) can be bounded
by the right side of (3.2.69), i.e.,

k() 1w, <pey < ((Wt/ﬂ —1)(Sp)x + tW; ’?EE |(Rep) k|

Wy (W, —1
n (W —1)

5 t sup |((Tt — I)Qp)k|)1{w,,gta}7
K<k,

with a similar lower bound where the last two terms have a minus sign. From
(3.2.63), we obtain the upper bound

Fék(t)l{Wpta} < CnLtl{W,,>ta}~

Combining these two upper bounds with (3.2.72), and adding the term (W;/p —
1)(Sp)k1{w,>¢e} to the right side, yields that on the event that {k; < 2L; 1 +

(t —1)d},

W,
ki (t) < (; - 1) (Sp)r + tWilgw, <qay Sup |(Rep)i| (3.2.73)

T WL wiceny S [((Te = D?P) | + Lgwis sy Co L,
and similarly we get as a lower bound, using |W;/p — 1| < W4,

W,
Kr(t) > (,ut - 1) (SP)k — tWilgw, <por ICSEE |(Rep)k| (3.2.74)

— tWEl{WtSta} :2]13 ‘((Tt — I)2p>k{ — 1{Wt>ta} (CSWt + CnLt) 5

where we used that sup; [(Sp)x| < Cs. We use (3.2.73) and (3.2.74) on {k; <
2Ly 1 + (t — 1)6}, and (3.2.63) on the event {k; > 2L;_1 + (t — 1)d} to arrive at

Wi
) < (0 1) (S + Wik oy sup [(Rip (3:2.73)

+ Wil iw,<pay sup |((T: — 1)°p), |
E<ky
+ (Liw,stey + Ligysor, 1+0—1ys}) ((Cs + Cp )Wy + CyLy—1),

with a similar lower bound where the last three terms have a minus sign. We now
take expectations on both sides of (3.2.75) and take advantage of the equality
E[W;/u] = 1 and the property that (Sp)x is deterministic, so that the first term
on the right side drops out. Moreover, using that W; and L;_; are independent,
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as well as that k; > 2L;—1 + (¢t — 1) implies that L;—; < k;, we arrive at

Elkt (D] < B[y ((Cs + C) Wi+ Cyut)] (3.2.76)
+ (Cylo + (o + Co)u ) P(ke > 2Ly + (£ = 1)9) (3.2.77)
+ ﬂE{ks;la \(Rtp)kﬂ]E[th{tha}} (3.2.78)
+ t]E[W31{Wt§ta}]JE{:2£ (T, - I)Qp)k”. (3.2.79)

We now bound each of these four terms one by one. To bound (3.2.76), we use
that W; has finite (1 4 €)-moment, to obtain that

E[1gw, >ty Wi] = E[Lw, sy Wy SWTE] < t7“E[WH] = Ot %),
and,
tE[1w,510y] = t]P;(Wt1+6 > ta(1+8)) < tl—a(1+6)E[Wt1+6] = O(t1—e(+e)y,
which bounds (3.2.76) as

E [1{Wt>ta} ((cs +C)W + Cnut)} = 0@th), (3.2.80)

with b = max{—ae,1 —a(l +¢)}.

To bound (3.2.77), we use that when k; > 2L, 1 + (¢t — 1)J, then L; ;1 <
%(nt —6(t—1))=4(n—0)(t—1)+ in. Now, since 1 € (u, 2pt + §), we have that
5(n—29) < p. Standard large deviation theory and the fact that the initial degrees
W, are non-negative give that the probability that L;_; < o(t — 1), with o < p,
is exponentially small in ¢. As a result, we obtain that

Ok + (Cs + O )Pk > 2041 + (t —1)8) = Ot ). (3.2.81)
( Je( )

To bound (3.2.78), we use that 2L;_1 +t§ > L;—1 >t —1 > t/2, and also use
(3.2.71), to obtain that

c c

]E[ sup ‘(Rtp)kﬂ < SE[Li—1 — tu[sup(k + [6])pr < SE[Li—1 — tpl.
k<k, t E>1 t

Thus,

ﬂE[ sup I(Rtp)kl}E[th{w,,w}] < %EILH —tul 7 <0 (t—a8—6/<1+8>) :
k<k:

(3.2.82)
where the final bound follows from (3.2.51).
Finally, to bound (3.2.79), note that

E[W21w,<iay] = E[W! W1, <pay] < " U DEW ] = O (ta(1—5>) :

and, by (3.2.29) and the fact that 2L; 1 + ¢td > nt for some 1 > 0, we have

C
E|sup |((Ty — I)?p), || < 5 sup(k + |5])*p. (3.2.83)
E<ke 1% p>1
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This leads to the bound that

tE[W?21 o |E T, — 1)? }<0 roll=e)=1) 3.2.84
(WL iw, <te}) ]CS;III;H( r—1)%p), || < ( ) ( )

Combining the bounds in (3.2.80), (3.2.81), (3.2.82) and (3.2.84) completes the

proof of part (c) of Lemma 3.10, for any a such that 1/(e +1) < a < 1. O

3.3 Proof of Theorem 3.5

In this section, we write F/(x) = P(W; < z), and assume that 1—F(z) = 27" L(z)
for some slowly varying function z — L(x). Throughout this section, we write
T = Tw.

From (3.1.1) it is immediate that

di(t) = di(t — 1) + Xoy,  fori=0,1,2,...,t—1, (3.3.1)
where, conditionally on d;(t—1) and {W; }2-:1, the distribution of X ; is binomial
with parameters W; and success probability

Gi(t) = % (3.3.2)
Hence, for t > 1,
E[(d:(t) +6)" {W;}i=1]
= E[E[(dz(t —1) 4+ 6+ X;,)" |di(t — 1), {Wj}zzl] |{Wj}§:1]
S E[(di(t — 1)+ 6 + E[ X |di(t — 1), {W;}._,])°] (3.3.3)
where we have used the Jensen inequality E[(a + X)*] < (a + E[X])®, which
follows from concavity of ¢ — (a +¢)® for 0 < s < 1. Next, we substitute

E[Xi,t|d,-(t -1, {Wj}§':1] = Wyq;i(t) and use the inequality 2L;_1+td > Li—1+9,
to obtain that

E[(di(t) +0)" KW, }jo] S E[(di(t = 1) +0)°{W;}j-1] (1 * 2LtVV1t+té)
< E[(di(t — 1) 4 6)°{W;}5_,] (;ﬁ;ﬁ;)

Thus, by induction, and because d;(i) = W;, we get that, for all ¢ > i > 1,

s t s : Ly+d )"
E[(d:(t) +0)" {W;}5o,] < (Wi +6) ngl (Ln1+6)

= (W; +6)° (Lt+5)s.

Li+6
The case i = 0 can be treated by (do(t) + 8)° = (d1(t) + 0)°, which is immediate
from the definition of G(1). Thus,

(3.3.4)

E[(di(t) + 6)*] <E {(Wi +6)° (ﬁt I g ) ] . (3.3.5)
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Define f(W;) = (W, 4+ 6)*® and

(Wi) = Lit oy _ 1 Wigi + Wi + -+ Wi\°
g\ L;+6 Wi4+Wo+ ... +W,+6)
and notice that when we condition on all W;, 1 < 5 <t, except W;, then the map

W, — f(W;) is increasing in its argument, whereas W; — ¢(W;) is decreasing.
This implies that,

E[f(Wi)g(W:)] < E[f(W3)]E[g(W3)]. (3.3.6)

Hence,

Bl + 0] < B+ e | (215 ) |
< E[(W; 4+ 0)*|E[(L + 6)°] E [(L; +0)~*] (3.3.7)

where in the final step we have applied the inequality (3.3.6) once more.
For ¢,t — o0,

E [(Ll + 5)*5} =(1+0(1)E [Li_s] , E[(Li+9)°]=(1+01)E[L]]. (3.3.8)
The moment of order s of W; 4+ § can be bounded by

Emm+®ﬂ5Eh7@+W5f}su+MWMWﬂ:u+wwmwm

W;
(3.3.9)

since W; > 1. Combining (3.3.7), (3.3.8) and (3.3.9) gives for i sufficiently large
and t > 1,

E[(di() + 0)*] < (1+ [8)) E[W] E [L7*] E[L;] (1 + o(1)). (3.3.10)

%

We will bound each of the terms E[W7], E[L;] and E [L; *] separately.
Evidently, E[W?] can be bounded by some constant, since all moments smaller
than 7 — 1 are finite. We will show that, for some constant Cj,

E[L{] < Cot¥/T=V1(1)* (3.3.11)
and, that, for ¢ sufficiently large,
E[L;®] < Cyi™*/ = Di(5) 2. (3.3.12)

We will first show claim (3.3.12) and then (3.3.11). For claim (3.3.12), we
define the norming sequence {a,},>1 by

ap =sup{z:1—F(z) >n"'}, (3.3.13)

so that it is immediate that a,, = n'/("=1I(n), where n — I(n) is slowly varying.
We use that L; > W,y = maxi<;j<; Wj, so that

E[L7*] <E [Wg)s] = -E[(-Yu)’], (3.3.14)
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where Y; = —W,; ' and Y, = maxi<j<;Y;. Clearly, Y; € [~1,0], so that
E[(-Y1)®] < oo. Also, a;Y;y = —a;/W,,, converges in distribution to the ran-
dom variable —E~Y/(™W=1_ where E is exponential with mean 1, so it follows

from [73, Theorem 2.1] that as i — oo,
E((ai/Li)*] < —E[(=a;Y;,)*] = E[E~YD] < o, (3.3.15)

which proves the claim (3.3.12).

We now turn to claim (3.3.11). The discussion on page 565 and Corollary 1
of [50] yields, for s < 7 — 1, E[L§] = E[|L¢|*] < 25/2),(t), for some function \(t)
depending on s, t and F. Using the discussion on page 564 of [50], we have that
(1) < Ot/ T=D A (£1/(7=1)s where M*(-) is a slowly varying function. With
some more effort, it can be shown that we can replace M*(¢}/("=1)) by I(t), which
gives (3.3.11).

Combining (3.3.10), (3.3.11) and (3.3.12), we obtain

R t s/(t—1) l(t) s
; < — . 3.1

El(di(t) +9) ]_C(i\/l) (z(i)) (3.3.16)
Finally, we note that, since d;(t) > min{z : z € Sy} = § + v where v > 0, and
using (3.1.2), we can bound E[d;()%] < (1V v=1)°E[(d;(t) + §)°], which together

3

with (3.3.16) establishes the proof of Theorem 3.5. O
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Chapter 4

Universality for the distance in
finite variance random graphs

Joint work with R. van der Hofstad and G. Hooghiemstra
article [37]

Abstract

The asymptotic behavior of the graph distance between two uniformly cho-
sen nodes in the configuration model is generalized to a wide class of random
graphs, where the degrees have finite variance. Among others, this class
contains the Poissonian random graph and the generalized random graph
(including the classical Erdés-Rényi graph).

We prove that the graph distance grows like log, N, when the base of
the logarithm equals v = E[A®] /E[A], where A is a positive random variable
with P(A > 2) < cx'™7, for some constant ¢ and 7 > 3. TIn addition, the
random fluctuations around this asymptotic mean log, N are characterized
and shown to be uniformly bounded.

The proof of this result uses that the graph distance of all members of
the class can be coupled successfully to the graph distance in the Poissonian
random graph.

4.1 Introduction

Various papers (see e.g., [17, 25, 54, 68, T1]) study properties of random graphs
with a given degree sequence. Among such properties as connectivity, cluster
size and diameter, the graph distance between two uniformly chosen nodes is an
important one. For two connected nodes the graph distance is defined as the
minimum number of edges of a path that connects these nodes. If the nodes are
not connected, then the graph distance is put equal to infinity.

For the configuration model (see Section 1.4 for a definition) a distance result
appeared in [54], when the distribution of the i.i.d. degrees D@ satisfies

P(D© > z) < cax'™, (4.1.1)
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for some constant ¢, all > 0, and with 7 > 3. We use the superscript (C)

to differentiate between models. The result in [54] states that with probability

converging to 1 (whp), the typical distance between nodes in the giant component

has, for

E[D©(D® —1)]
E[D(C)]

= > 1, (4.1.2)
bounded fluctuations around log; N. The condition 7 > 1 corresponds to the
supercritical case of an associated branching process.

In this chapter we extend the above distance result to a wide class of random
graph models. Models which fall in this class are the generalized random graph
(GRG), the expected degree random graph (EDRG) and the Poissonian random
graph (PRG). All three models will be introduced in more detail below.

The method of proof is coupling. It is shown that the distance result holds for
all models in the general class if and only if the result holds for the PRG (Section
2). In Section 4 we prove the distance result for the Poissonian random graph.
This proof is parallel to that in [54] for the configuration model. In this chapter
we included full proofs of the auxiliary lemmas contained in Section 4.3, since
details of these proofs are different from those in [54].

4.1.1 Model definition

The graph models considered here are static models, meaning that the number
of nodes is fixed. The graph G has N nodes, numbered 1,2,..., N. Associated
with the nodes is a sequence {A;}Y; of positive i.i.d. random variables, with
distribution F(x) = P(A <z). We call A; the capacity of node i. In all graphs
below nodes with a large capacity will obtain a high degree, whereas nodes with
small capacity have only a limited number of edges. Furthermore, we define

Ly=A+As+---+ Ay, (4.1.3)

i.e., Ly is the total capacity of all nodes of the graph Gy.

The binary random variables {X;;}i<i<;<n, are defined by setting X;; = 1, if
there is a connection, i.e., one or more edges, between node i and node j in the
graph Gy, otherwise we set X;; = 0. If i > j, then by convention X;; = X;;. We
call X;; the connection variable and p;; = Py(X;; = 1) the connection probability,
where Py(-) is the conditional distribution given the capacities {A;}Y ;. The
graph G obeys the following two assumptions:

A1: Conditionally on the capacities, the connection variables {Xij}1§i<j§N, are
independent.

A2: The connection probability p;;, for 1 < ¢ < j < N, can be written as
pi; = h(A;A;/Ly), for some function h : [0,1] — [0, 1], satisfying

h(z) —z = O(2?), for z | 0. (4.1.4)

The current chapter presents a derivation for the fluctuations of the graph
distance in the graph G, with finite variance degrees, that is, we assume that
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for some fixed 7 > 3 and some positive constant ¢, the capacity distribution
E (z) =P(A < z) satisfies:

1 — F(x) <cz' ", for all z > 0. (4.1.5)

The often used condition that 1 — F(z) = 2!~V L(x), for some v > 3, with L(z)
a slowly varying function is covered by (4.1.5), because by Potter’s Theorem [41,
Lemma 2, p. 277], any slowly varying function L(z) can be bounded from above
and below by an arbitrary small power of z, so that (4.1.5) holds for any 7, with
3<T <.

4.1.2 Three special cases

We give three examples of random graph models, which satisfy assumptions A1
and A2, and hence fall in the class of models considered here.

The first example is the Poissonian random graph (PRG), which was intro-
duced by Norros and Reittu in [71]. The second and third example are variants of
random graph models found in the literature. The second random graph model,
which we call the expected degree random graph (EDRG), is a variant of a random
graph model introduced by Chung and Lu in [25, 26]. Instead of fixed weights we
consider the model with i.i.d. weights {A;} ;. The third and last example is the
generalized random graph (GRG), which was introduced by Britton, Deijfen and
Martin-Lof [23].

We now define the three models and verify that they satisfy the conditions A1
and A2 .

e The Poissonian pandom graph: In [71] the Poissonian random graph
is introduced. The main feature of such a graph G’ is that, conditionally
on the capacities, the number of edges between any pair of nodes ¢ and j
is a Poisson random variable. The model in [71] is introduced as a growth
model, but as a consequence of [71, Proposition 2.1], it can be formulated as
a static model, and we will do so. Start with the graph G’ consisting of N
nodes and capacities {A;},. The number of edges between two different
nodes ¢ and j is given by an independent Poisson random variable El(;) with
random parameter

A/ Ly. (4.1.6)

The connection variables are then Xi(;) =1 so that, for 1 < i <

(B >0)
7 < N, the connection probabilities are given by

Aid

PO = By(X(D = 1) = B (B > 0) = 1 — exp (_ :
‘N

) B h(P)(AiAj/LN)a
where h® (z) = 1—e~*. Obviously, h® (z) —x = O(mz) for x | 0. Since, by
definition, the random variables {Xi(;)}lékjéN are independent given the
capacities, we conclude that the assumptions A1 and A2 are satisfied.

e The expected degree random graph: In [25, 26] a random graph model
is introduced starting from a sequence of deterministic weights {w;},. We
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give a variant of this random graph model, where we replace the determin-
istic weights by the sequence {A;}Y ;. We construct the EDRG GY’ as
follows. Let {Xi(jE)}lﬁiSjSN be a sequence of independent Bernoulli random
variables with success probability

p; =Py(X =1) = (MiA;/Ly) A1, for 1 <i<j<N,

where z A y denotes the minimum of x and y. This minimum is to ensure
that the result is a probability.

Assumption A1 is satisfied, as by definition the connection variables condi-
tionally on the capacities are independent Bernoulli variables, and assump-
tion A2 is also satisfied if we pick h®(z) =z A 1.

If we assume that whp A;A;/Ly < 1forall 1 <4< j <N, which is the
case for 7 > 3, then the expected degree of a node i is given by A;, as

N N
| S| = oA/ = A
j=1

j=1

where we used the notation E,[-] as the conditional expectation under the
probability measure Py( ).

The Erdds-Rényi random graph, usually denoted by G(N,p), is a special
case of the EDRG. In the graph G(N,p), an edge between a pair of nodes is
present with probability p € [0, 1], independently of the other edges. When
p = A/N for some constant A > 0, then we obtain the graph G(N, A\/N) from
the EDRG by picking A; = A for all 4, since then pif) =MNA;j/Ly = A/N =p,
forall 1 <i<j<N.

The generalized random graph: The GRG model is an adapted version
of the EDRG model, see the previous example. We define G’ with N
nodes as follows. The sequence of connection variables, is, conditionally on
the capacities, again given by a sequence of independent Bernoulli random
variables {Xﬁ)}lgiqu with

NA;/L
WX =) =P = TR
In [23] the edge probabilities are given by pEJG») = (MA;/N)/(1+ AA;/N),
so that we have replaced A;/N/2 and A;/N'/2 by A;/L¥? and A,/LY?,
respectively. This makes hardly any difference since by the strong law of
large numbers Ly /N — E[A].

Again, the assumptions A1 and A2 are satisfied. To satisfy assumption A2
we pick A @ (z) = /(1 + z) =z + O(2?).

4.1.3 Main results

Before we can state the main result, we introduce a specific delayed branching
process (BP), which we need in the formulation of the main theorems. We define
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the process {Z }i>0 as a BP starting from Z, = 1, where in the first generation
the offspring distribution is equal to

n

= / e’w%dﬂ(x) - E{eA/;'} n >0, (4.1.7)
0 . .

whereas in the second and further generations the offspring is chosen in accordance
to

_(tDfar _ 1g {e/\ A

= r " n' ],nZO. (4.1.8)

Here p is the expected number of offspring in the first generation:

o o0 B An
u:nz_:lnfanLZ_:lne AH

and we have used the notation Poi(\), for A > 0, to denote a Poisson random
variable with parameter \. Similarly, the expected number of offspring in the
second and further generations is given by v =3~ | ng,, wich expands to

—E —E[A], (4.1.9)

A P(Poi(A) = n)
n=0

o'} n+1 o0 A2
v = iE[Z:ln(m 1)eA (nA+ 5| = %E A2 Z:OP(POZ'(A) —n)| = E[M )
- - (4.1.10)

We define the graph distance or hopcount Hy between two different randomly
chosen nodes A; and As in the graph G as the minimum number of edges that
form a path from the node A; to node As where, by convention, the distance
equals oo if the nodes A; and A, are not connected.

Theorem 4.1 (Fluctuations of the graph distance)

Fiz 7 > 3 in (4.1.5), assume that v > 1 and that assumptions A1l and A2 are
satisfied. For k > 1, let oy, = |log, k| and ar, = o, — log, k. There exists random
variables (Ry)qe(—1,0) such that, as N — oo,

P(Hy = oy + 1| Hy < 00) = P(Ray, = 1) + o(1). (4.1.11)

We identify the random variables (R4)qe(—1,0) in Theorem 4.3 below. Before
doing so, we state a consequence of Theorem 4.1:

Corollary 4.2 (Concentration of the graph distance) Under the given as-
sumptions of Theorem 4.1,

o with probability 1 — o(1) and conditionally on Hy < oo, the random variable
Hy is in between (1 £¢)log, N for any e > 0;

o conditionally on Hy < 00, the sequence of random variables Hy — log, N
forms a tight sequence, i.e.,

im limsupP(|Hy —log, N| < K|Hy < o0) = 1. (4.1.12)

|
K—oo N0
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We use a limit result from branching process theory to identify the limiting
random variables (R,)aec(—1,0- It is well known, see [41, p. 244], that the process
{Z,/ur'=1};>1 is a martingale with uniformly bounded expectation and conse-
quently converges almost surely to a limit W:

Z
lim —— =W, as. (4.1.13)
l—oo pvt—
Let W® and W® be two independent copies of W in (4.1.13), then we can
identify the limit random variables (R, ),e(—1,0] as follows:

Theorem 4.3 Under the assumptions of Theorem 4.1 and for a € (—1,0],
P(Ra > ) = E[exp {—I{Va+jW(l)W(2)} |W(1)W(2) > O] ,

where k = pu(v —1)71.

4.1.4 Relations with the configuration model

The configuration model (CM) appeared in the context of random regular graphs
as early as 1978 (see [9, 58]). Here we consider the CM as introduced in [54]. Start
with an i.i.d. sequence {D;C)}ﬁil of positive integer valued random variables ,
where Dz@ will denote the degree of node i. To built a graph it is mandatory that
D\? + DS + ...+ DY’ is even, so if DI + DS + ...+ DY’ is odd we increase
D by one, which will have little effect. We build the graph model by attaching
Déc) stubs or half edges to node ¢ and pair the stubs at random, so that two half
edges will form one edge.

In [54], the authors prove a version of Theorem 4.1-4.3 for the configuration
model. The Theorems 4.1-4.3 hold verbatim for the configuration model with only
two changes:

1. Replace the condition v > 1 in Theorem 4.1 by the condition 7 > 1, defined
in (4.1.2).

2. Replace the offspring distributions of the BP {Z;};>0, by

(a)

fn:P(D(C):TL), n=>1,

(b) N
_ (n+1)fot1
> omet Mfm ’
One wonders why a result like the Theorems 1.1-1.3, holds true for the class
of models introduced in Section 1.1, especially if one realizes that in the CM the
degrees are independent, and the edges are not, whereas for instance in the GRG
(and in the other two examples) precisely the opposite is true, i.e., in the GRG
the edges are independent and the degrees are not. To understand at least at an
intuitive level why the distance result holds true, we compare the configuration
model with the generalized random graph.

n>0

n
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By construction the degree sequence D{”, D7, ... D’ of the CM is an i.i.d.

sequence, and conditionally on D = {D\” = dy, D" = dy,...,DY’ = dy},
the graph configuration is uniform over all configurations satisfying D, because
the pairing is at random. Hence if we condition on both the event D and the
event S = {the resulting graph has no self-loops and no multiple edges}, then the
CM renders a simple graph, which is picked uniformly from all possible simple
configurations with degree sequence satisfying D. Since for N — oo the probability
of the event S converges to exp(—v/2—v?/4) > 0 (see [16, p. 51]), it follows from
[58, Theorem 9.9] that properties that hold whp in the CM also hold whp in
the conditioned simple graph. Hence a property as tightness of the graph distance
H in the CM is inherited by the conditioned simple graph, with the same degree
sequence. This suggests that also the limiting distribution of the fluctuations of
the graph distance in the CM conditioned on § is the same as the one in the CM
as identified in [54]. A direct proof of this claim is missing.

On the other hand the GRG with given degree sequence dy,ds, ...,dy is also
uniform over all possible (simple) configurations. Moreover [23, Theorem 3.1]
shows that the degree sequence D, DS? ... DY’ of the GRG is asymptotically
independent with marginal distribution a mixed Poisson distribution:

o] Cll‘k
P(D© = k) :/ et TR (@), k=0,12..., (4.1.14)
0 .
where F) is the capacity distribution. Hence starting from D{®, DS¥ ... D’ as

an ii.d. sequence with common distribution given by (4.1.14), the (conditioned)
CM with these degrees is close to the GRG, at least in an asymptotic sense, so
that one expects that the asymptotic fluctuations of the graph distance of the CM
also hold for the generalized random graph. Also note from the mixed Poisson
distribution (4.1.14), that

__EDO(D -1)] _E[N]

E[D©] E[A]

which is equal to v, according to (4.1.9) and (4.1.10). As said earlier, a proof of
this intuitive reasoning is missing, and our method of proof is by coupling each
random graph satisfying A1 and A2 to the Poisson random graph (PRG), and
by giving a separate proof of Theorem 1.1-1.3 for the PRG.

We finish this section by giving an overview of different distance results in
random graphs. Let 7 denote the exponent of the probability mass function of
the degree distribution. In this chapter and in [25, 54] the case 7 > 3 is studied.
Results for 2 < 7 < 3 for various models appeared in [25, 56, 71, 70]. Typically in
that case, the distance fluctuates around a constant times 2 loglog N/|log(T — 2)|.
For 1 < 7 < 2, there exists a subset of nodes with a high degree, called the core
(see [38]). The core forms a complete graph and almost every node is attached to
the core and, thus, the graph distance is whp at most 3.

4.1.5 Organization of the chapter

The coupling argument that ties the fluctuations of the graph distance HY in
the PRG to the fluctuations of the graph distance in random graphs satisfying
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assumptions A1 and A2 is treated in Section 4.2. In Section 4 we show that the
fluctuations of the graph distance HY is given by Theorem 4.1. The derivation
of the fluctuations of the graph distance H{’ is similar to the derivation of the
fluctuations of the graph distance HY’ in the configuration model, see [54]. The
proof in [54] is more complicated than the proof presented here for the PRG model,
mainly because in the latter the expansion of a given node (e.g. the nodes on a
given distance) can be described by means of the so called Reittu-Norros process,
a marked branching process. This branching process will be introduced in Section
4.3.

In this paper full proofs of the auxiliary propositions and lemmas introduced
in Sections 4.3 and 4.4 are presented in the appendix. These proofs were omitted
in [37].

4.2 Coupling

In this section we denote by Gy the PRG and by G’ some other random graph
satisfying the assumptions A1 and A2, given in Section 4.1.1. We number the
nodes of both Gy and G’ from 1 to N and we assign the capacity A;, for 1 <
i < N, to node ¢ in each graph. We denote by H, and HY/ the graph distance
between two randomly chosen nodes A; and As, such that A; # As, in G and
G',, respectively. We will show that for N — oo,

P(Hy # H',) = o(1). (4.2.1)

The above implies that whp the coupling of the graph distances is successful.
Therefore, given the succesful coupling (4.2.1), it is sufficient to show Theorem
4.1 for the PRG.

421 Coupling of Gy and G,

We next describe the coupling of the connection variables of the graphs G and
G’y. A classical coupling is used, see e.g. [80]. Denote by {X;;}1<i<j<n and
{Xi;}1<i<j<n the connection variables of the graphs Gy and G';, and, similarly,
denote the connection probabilities by {p;;}i<i<j<n and {pgj}1§i<j§N- For the
coupling we introduce independent random variables {K;;}i<i<j<n. Set P, =
min{p;;,p;} and p;; = max{p;;,p;;}, and define random variables X;; and X{j
with

IE”N(XM —0,X}, = 0,Ky :0) —1-p,

whereas all other combinations have probability 0. Then the laws of Xij and X,’]
are the same as the laws of X;; and X{j, respectively. Furthermore, K;; assumes
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the value 1 with probability |p;; — p;;|, and is 0 otherwise. Note that we do abuse
the notation in the above display. We should replace the probability measure Py in
the above display by some other probability measure Q,, because the probability
space is defined by the graphs G and G/, instead of only the graph G . Since the
graphs, conditioned on the capacities, are constructed independently from each
other, this abuse of notation is not a problem.

Consider the nodes 7 and j, 1 < ¢ < j < N, in the graphs Gy and G/,
simultaneously. Then the event {K;; = 0} = {X,; = Xz']} corresponds to the
event that in both graphs there exists a connection between nodes ¢ and j, or that
in both graphs there is no connection between nodes i and j. The event {K;; =
1} = {X,;; # X{]} corresponds with the event that there exists a connection in one
of the graphs, but not in the other one. We call the event {K;; = 1} a mismatch
between the nodes ¢ and j.

Assumption A2 implies that for some constant C’ > 0,

A2A2
Py(Kij = 1) = |pij — pij| < Ipij — Midy/Ln| + |pi; — Ay /Ly| < C 22]7
N
(4.2.2)

for all 1 <i < j < N. The number of mismatches due to all the nodes incident
to node 7, 1 <7 < N, is given by

K=Y K. (4.2.3)
i

Obviously, we cannot couple all the connections in the graphs G, and G/,
successfully, but the total number of mismatches due to all the nodes can be
bounded from above by any positive power of N. Before proving this, we introduce
a lemma. In its statement we use the event

Sga0 = {1Sn.g —E[AY]| < N7}, (4.2.4)

where €, ¢ > 0, and where the random variable Sy 4 is defined as

1 N
Sva =7 D AL (4.2.5)
=1

Lemma 4.4 For each fized q € (0,7 — 1), there exist constants o, By > 0 such
that

P(8S 4,) < N7, (4.2.6)
Proof. The proof is deferred to Section 4.A.1. O

As a consequence of Lemma 4.4, and since 7 > 3, there exist positive constants
S and S such that whp

§ S SN7q S §7 (427)
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for ¢ = 1,2 and N sufficiently large.

Pick ao,ﬁo > 0, using Lemma 4.4, such that IP(S” ) < NP for g =1,2. On
the event S o, N S2.q,, using (4.2.2), (4.2.3), (4.2.5) and (4.2.7), we bound whp
the total expected number of mismatches due to a single node by

= ZEN[KU] = ZPN( (VR =1)
J#i J#i
CA2 Sy 2
N 52

STZNNTL < CA2NTY, (4.2.8)

where C is a constant that may change from line to line. Thus, whp the total
number of mismatches is bounded from above by N7, for any v > 0, since

(ZK >N”> <NE ZE i1 181 0y NS2.00

<CN~ 7+O(N Foy .

+P(S7 4y US5 4,)

We see that the right hand goes to zero if N goes to infinity, which implies that
whp the total number of mismatches is bounded from above by N7 for any v > 0.
Define the event A, as

N N

i=1 i=1
where ¢y = N¢ for each € > 0. Then, on the event A, all nodes with capacity
greater than c, are successfully coupled.
Lemma 4.5 For each £ > 0 there exists a constant 8 > 0 such that
Pe(AS) = O(N7Y). (4.2.10)
Proof. Fix ag > 0 as in Lemma 4.4. On the event S; o, N S2,q,, We bound
By (AS,) using Boole’s inequality, the Markov inequality and (4.2.8), which yields

N N
Pu(AS) <Y B (Kilga,5cny > 0) ZE il Liniseny < ZAfl{Apm}-
i:l

i=1

Therefore,

P(AIC\, n Sl,ag N SQ’QO) = E[PN(A%) 131’010[132,&0]

C N
< NZ]E[AZQI{A7>CN}] = CE[A21{A>CN}] )
i=1

1—7

for some constant C' > 0. Using integration by parts and 1 — F(z) < cz'™7 we

have that E[A*1(5~..}] is equal to

W=CN

= —w’[l - Rw)]|,_. + 2/00 w[l — B (w)]dw = O(N—<T—3>f) . (4.2.11)

CN
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since

W[l - B@))2 <

w=o0 — N

[1 - B(ex)] = O(N=0%)
and

/Oo w(l — R (w))dw < c/m w? T dw = O(N—<T—3>f) .

CN CN

This yields
P(AS) < P(AS N S1iap NS2,00) + P(ST0,) + P(S54,) = O(N7?)

for some 6 = min{fy, (1 — 3)§} > 0. O

4.2.2 Couple the graph distances of G and G,

In this subsection we couple the graph distance of the PRG with any random
graph satisfying assumptions A1 and A2.

Theorem 4.6 Let Gy be a PRG and let and G, be a random graph satisfying
assumption Al and A2. Let Hy and H), be the graph distances between two
different uniformly chosen nodes A; and As in, respectively, the graphs Gy and
G',. Then

P(Hy # HY) = o(1). (4.2.12)

The above theorem implies that, whp , the coupling of the graph distances H
and HY, is successful.

In order to prove Theorem 4.6, we use the following proposition. In its
statement, we consider the neighborhood shells of a uniformly chosen node A €
{1,2,..., N}, ie., all nodes on a fixed graph distance of node A. More precisely,

ONo={A} and  ONi={1<j<N:dAj) =1}, (4.2.13)

where d(i, j) denotes the graph distance between nodes i and j, i.e., the minimum
number of edges in a path between the nodes ¢ and j. Furthermore, define the set
of nodes reachable in at most j steps from root A by

l
N ={1<j<N:dA,j) <l}=] oM. (4.2.14)

k=0

Proposition 4.7 For N sufficiently large, | € N, some constant C' > 0, and
every b € (0,1),

P(Hy # H) <P(AS) + P(Hy > 21) + 2IP(|Ni—1| > N°) +2C'S AN -0l
(4.2.15)

Before giving a proof, we show that Theorem 4.6 is a consequence of Proposi-
tion 4.7.
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Proof of Theorem 4.6. By Lemma 4.5, we have that, for 7 > 3, P(AS) < N9,
We fix | =1y = (% +n)log, N|. Then, from Corollary 4.2, applied to the PRG
model, we obtain that P(Hy > 2l) = o(1). The third term in the right hand side
of (4.2.15) can be bounded using the following lemma:

Lemma 4.8 Let {N;};>¢ be the reachable sets of a uniformly chosen node A in
the PRG Gy. Then forn,d € (—=1/2,1/2) and alll < (1/24n)log, N, there exists
a constant B1 > 0 such that

P(\/\m > N1/2+5) - (’)((logu N)N- min{é—"vﬁl}) . (4.2.16)
Proof. See the proof of Lemma 4.18. O

We now prove that all terms in the right hand of (4.2.15) are o(1) for an
appropriate choice of b. Lemma 4.8 implies that 2lIE”(|J\fl\ > Nb) = o(1) for
some appropriately chosen b > % Then, provided that b < 1, we see that
2C'STAINY~t = 20" SN+ = (1), where we substitute ¢y = N¢, and
picking £ € (0, (1 — b)/4). Hence, by Proposition 4.7, P(Hy # HY,) = o(1), which
is precisely the content of Theorem 4.6. O

Proof of Proposition 4.7. We use that

P(Hy # H',) < P(AS) + P(Hy > 20) + B({Hy < 21} N Ay O {Hy £ H}).
(4.2.17)
Let N” and N/, for i = 1,2, be the union of neighborhood shells of the nodes
A; in Gy and G/, respectively. Now, we use the fact that if Hy < 2[ and if

Hy # Hl, then N[V # N/® and/or N # N]®. By the exchangeability of the
nodes, we have

P({Hy <2} N Ay 0 {Hy # L)) S2PAN A NFNAL),  (4218)

where V] and N} are the neighborhood shells of a uniformly chosen node A in
respectively Gy and G'y. If Nj # N/, then there must be a k € {1,...,1} for
which Ny, # N/, but Nj—; = N/ _,. Thus,

P({Hy <20} N Ay N{Hy # H}})

l
<2Y P{Ne #NIN{Neor =N JNAy) . (4.2.19)

k=1

In turn, the event {Nj # N/ }N{Nk_1 = N/ _,} implies that one of the edges from
ON—1 must be miscoupled, thus K;; = 1 for some i € ONj_1 and j € N_;, where

<1 =1{1,2,...,N}\Wi_1. The event A, implies that A;, A; < cy. Therefore,
we bound

PN({Nk #N,;} N {Nk,1 Z./\/}éfl} ﬂAN) < ]P’N(|Nk71| > Nb)
+ ) B ({i € ONk-1,J € NE_y, Kij = 1} 0 {INkm1| < NP}) 1,4 <en -

.3

(4.2.20)
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Also, under Py, since i € N¢_; and j € ONj_1, the event {K;; = 1} is
independent, of Nj,_1 and, therefore, from ON,_; as ON,_1 C Niy_1. The edge
between the nodes 7 and j points out of N_1, while AV,_; is determined by the
occupation status of edges that are between nodes in Ny_» or pointing out of
ONj.—o. Thus, we can replace each term in the sum of (4.2.20) by

]P)N(Kij =1) ]P’N({i € ONj_1,j € ng—l} n {|Nk_1| < Nb}) 1{/\1'7/\3601\7}‘ (4.2.21)
Since by (4.2.2) and (4.2.7), we have

Py(Kij = 1) Lia, A <eny = EnlBj] Lia, A <en)
2A2

AZAS B ~
< sz l{A'ivAjSCN} <C'Ss 2leVN 2, (4.2.22)

N

we can bound the right hand side of (4.2.20) from above by

PN(|Nk_1| > Nb)
+C'STPANTY Py({i € ONg—1,5 € N 3 N {[Niea| < NP}

2]

Finally, we bound the sum on the right side by
NEN[[ONs-1[1gn s <am] < NP
Therefore, we can bound each term in the sum of (4.2.19), with P replaced by Py,
Py ({Ne # NN {Nim1 = NV b NVAy) < By((Nimi| > NP) + C'S 72y, N1,
Since, for k < [, we have that PN(|Nk_1| > Nb) < ]PN(|./\/1_1| > Nb), by summing
over k=1,...,lin (4.2.19), we arrive at
Py({Hy <20} N Ay N {Hy # H}) < 2P (Ni21] > N?) + 'S 21l N—(70),
which in turn implies
P({Hy <20} N Ay N {Hy # H}) < 20P(|Nj—1] > N?) + C'S 21, N~(170),
Therefore, we can bound P(H, # HY), see (4.2.17) by
P(AS) +P(Hy > 20) + 2IP(INj—1| > N®) + C"S 21t N~(170),
which is precisely the claim (4.2.15). O

4.3 The Poissonian random graph model

The proof of the fluctuations of the graph distance in the configuration model in
[54] is done in a number of steps. One of the most important steps is the coupling
of the expansion of the neighborhood shells of a node to a BP. For the PRG, we
follow the same strategy as in [54], although the details differ substantially.

The first step is to introduce the NR-process, which is a marked BP. The NR-
process was introduced by Norros and Reittu in [71]. We can thin the NR-process
in such a way that the resulting process, the NR-process, can be coupled to the
expansion of the neighborhood shells of a randomly chosen node in the PRG.
Finally, we introduce capacities for the NR-process and the NR-process.
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4.3.1 The NR-process and its thinned version

The NR-process is a marked delayed BP denoted by {Z,, ML}ZZO; where Z, denotes
the number of individuals of generation [, and where the vector

M, = (Mz,laﬁl,z,n.,Mljl) € {1,2,...,N}Zl,

denotes the marks of the individuals in generation [. We now give a more precise
definition of the NR-process and describe its connection with G, the PRG. We
define Z, = 1 and take M, , uniformly from the set {1,2,..., N}, corresponding
to the choice of A;, which is uniformly over all the nodes. The offspring of an
individual with mark m € {1,2,..., N} is as follows: the total number of children
has a Poisson distribution with parameter A,,, of which, for each i € {1,2,..., N},
a Poisson distributed number with parameter

Ailm (4.3.1)
I, .3.
bears mark i, independently of the other individuals. Since

N N
A Ay, B
I —L—N;AZ—AW

i=1

and sums of independent Poisson random variables are again Poissonian, we may
take the number of children with different marks mutually independent. As a
result of this definition, the marks of the children of an individual in {Z,, ML}ZZO
can be seen as independent realizations of a random variable M, with distribution

]PN(M:m):L—N, 1<m<N, (4.3.2)
and, consequently,
Ex[An] = i A Po(Ayr = Ap) = XN: A By (M =m) = € XN: A2 (4.3.3)
m=1 m=1 L m=1 "

__For the definition of the NR-process we start with a copy of the NR-process
{Z,,M,};>0, and reduce this process generation by generation, i.e., in the order

Mo, M, ,,...M, 5 ,M,,,... (4.3.4)

by discarding each individual and all its descendants whose mark has appeared
before. The process obtained in this way is called the NR-process and is denoted
by the sequence {Z,, M, };>0. One of the main results of [71] is Proposition 3.1,
but for completeness we also add the proof.:

Proposition 4.9 Let {Z,, M, };>0 be the NR-process and let M, be the set of
marks in the —th generation, then the sequence of sets {M,};>o has the same
distribution as the sequence {ON}i;>0 given by (4.2.13).
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Proof. We proceed by induction. By definition 4; and M, , = M, , have the
same distribution. It is clear that the NR-process {A,Ml}l>0 can be generated
simultaneously with {Z,, M, },>0, by deleting each new individual whose mark has
already been seen without letting it reproduce. Let us do this, and assume that
generation k has been fully generated and is identical in both processes, and that
the same holds for the children of the first 141 members of the k" generation. It
now suffices to show that we obtain a similarly distributed result for the children
of the (i + 1)~ member of the k~*® generation.

First we consider the neighborhood expansion process {ON,};>0. Here we need
only to consider vertices that have not yet been reached. With probability

1—exp (_AMkI;iHAj)
N

there is at least one edge between such vertex v; and the present vertex. Moreover,
the numbers of edges to different vertices are independently, by assumption. In the
branching process, on the other hand, for each j =1,2,..., N the corresponding
individual produces a Poisson number of offspring each bearing mark j, where the
parameter is given by AMk +1Aj /L. For different values of j, these numbers are
independent. The pruning then removes all vertices whose mark were generated
in previously steps, and also all newly generated duplicates. Clearly the set of
remaining marks is distributed in the same way as the above-described set of new
neighbors in the neighborhood expansion. 0

As a consequence of the previous proposition, we can couple the NR-process
to the neighborhood shells of a uniformly chosen node A € {1,2,..., N}, i.e., all
nodes on a fixed graph distance of A, see (4.2.13) and note that A ~ M, . Thus,
using the above proposition, we can couple the expansion of the neighborhood
shells and the NR-process in such a way that

M, = 0N and Z, =|0N;|, 1> 0. (4.3.5)

Furthermore, we see that an individual with mark m, 1 < m < N, in the NR-
process is identified with node m in the graph G, whose capacity is given by
A -

We will now show that the offspring distribution of the BP {Z,};>¢ converges
as N — oo to the offspring distribution of {Z;},>0, introduced in Section 4.1.3.
The offspring distribution f®™ of Z,, i.e., the first generation of {Z,};>, is given
by

N
F = Py(Poi(As) =n) = > Py (Poi(As) = n|A = m)P(A = m)
m=1
N
1 A A
- N > e Tl (4.3.6)
m=1

for n > 0. Recall that individuals in the second and further generations have a
random mark distributed as M, given by (4.3.2). Hence, if we denote the offspring
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distribution of the second and further generations by ¢$", then we obtain

giLN) = (POZ A]\/j Z POZ AM = n|M m) IF)N(Z\4 = m) (437)
N N
A7 Am 1 —Am An+1
_ A B A 1 438
mZ::l e T = T mz::l e (4.3.8)

for n > 0. Furthermore, we can relate g and [ by

N n N n
g™ = 1 Z o= At _ (n+1) 1 Z - At _ (n+1) 7(1?1
nT Ly nl Ly/N N &~ (n+1)! Ly/N
(4.3.9)

Observe that {f{" },>0 is the average over Poisson probabilities, whereas (4.3.9)
shows that {Q(N)}nzo comes from size biased sampling of {f\};}n>0. Since the
sequence {A,,}N_, isii.d. the strong law of large number states that for N — oo
the limit distributions of f™ and g are given by

N

1 Al A"
F = ~ efAmnir;z - E[ —A - ] = fn, n>0, (4.3.10)
m=1 :

and, as a consequence,

w _ (n+1) 1 _ A Dfan

" Ly/N 1
Indeed, according to (4.1.7) and (4.1.8) the limit distributions are equal to the
offspring distributions of the delayed BP {Z;};>¢ introduced in Section 4.1.3.

=gn, n>0. (4.3.11)

4.3.2 Coupling the thinned NR-process with a delayed BP

In this subsection we will introduce a coupling between the NR-process with the
delayed BP {Z,},;>¢, which is defined by (4.1.7) and (4.1.8) in Section 4.1.3. This
coupling is used in the proof of Theorem 4.1 and 4.3 for the PRG, to express the
probability distribution of Hy in terms of the BP {Z};>¢.

Introduce the capacity of the I-th generation of the NR-process {Z,Mz}lzo
and the NR-process {Z,, M, };>0 as, respectively,

Civ=> AMM,) and C,,=> AM,), >0 (4.3.12)

Using the coupling given by (4.3.5), we can rewrite the capacity C

—=I+1

Chn= Y A (4.3.13)

1€EON;

For the proof of Theorem 4.1 and 4.3, in the case of the PRG, we need to control
the difference between C, and C, for fixed . For this we will use the following
proposition:
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Proposition 4.10 There exist constants as, B2 > 0, such that for all 0 < n < as
and all 1 < (1/2+n)log, N,

k=1

l
]P’(Z(Ck -C,)> Nlﬂ_az) < NP2, (4.3.14)

Proof. The proof is deferred to Section 4.A.3. O

In order to prove Theorem 4.1 and Theorem 4.3 we will grow two NR-processes
{Z?, M"}1>0, for i = 1,2. The root of {Z, M{"},>¢ starts from a uniformly
chosen node or mark A4; € {1,2,...,N}. These two nodes are different whp |,

because 1

=5
By (4.3.5) the NR-process can be coupled to the neighborhood expansion shells
{N"}>0 and {N[?};>0. In the following lemma we compute the distribution of
the number of edges between two shells with different subindeces, i.e., N,i” and

)
N2

Lemma 4.11 Consider the neighborhood ezpansion shells {N"} and {N/*}.
Then conditionally on N" and N/ and given that N’ N N® = 0 the num-
ber of edges between the nodes in N,il) and M(z), for fized positive integers k and
l, is distributed as a Poisson random variable with mean
O e
Gl ) (4.3.15)
Ly

Proof.  Conditioned on N", N/® and N” N N = 0, the number of edges
between N;" and N? is given by

> > ED, (4.3.16)

icoN ) jean®

P(A; = Ay)

where Eff) are independent Poisson random variables with mean AiAj/LN, see
(4.1.6). Sums of independent Poisson random variables are again Poissonian, thus
(4.3.16) is a Poisson random variable with mean the expected value of (4.3.16):

NA; 1 CihC3
Yoy WLy a]| x| -ge
icoN D jeaN? icoN D icON?
where we have used (4.3.13) in the last step. O

The further proof of Theorems 4.1-4.3 crucially relies on the following technical
claim:

Proposition 4.12 There exist constants as, B3,m > 0 such that for all | < (1 +
2n)log, N, as N — oo,

1kt I+1
il @ @ @) @
IP(N ‘ Z 21y 2 i) Z CriymCie)
k=2 k=2

>N") = O(N). (43.17)
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Proof. The proof is deferred to Section 4.A.4. O

In the next section we will use this proposition in combination with Lemma
4.11 to replace sums over capacities, which do depend on N, by sums over sizes
of a BP, which do not depend on N anymore.

4.4 Proof of Theorem 4.1 and 4.3 for the PRG

In this section, we give the proof of Theorem 4.1 and 4.3 for the PRG model.
Using the coupling result in Proposition 4.7 we obtain Theorem 4.1 and 4.3 for
all random graphs satisfying the assumptions A1 and A2. As in the previous
section, we denote by G, a PRG.

We grow two NR-processes. Each NR-process starts from a uniformly chosen
node A; € {1,2,...,N}, i = 1,2, such that A; # A, whp .

Step 1: Expressing P(Hy > ) in capacities. We have Hy > 1 iff (if and only
if) there are no edges between the nodes A; and As, which is equivalent to the fact
that X 4,4, = 0. Given the capacities C" and C®, the number of edges between
the nodes A; and A, has, according to Lemma 4.11, a Poisson distribution with
mean

W@
Qngl . (4.4.1)
‘N
By taking expectations
cOo®
P(Hy > 1) =E[Py(Xa,4, =0)] = E[exp {_ILIH . (4.4.2)
‘N

We next inspect the capacity of the first generation of Z" given by C{". Given
C” and C®, that is the total capacity of the nodes in Z" and the capacity of
node As, we again have a Poisson number of edges between node A, and the nodes
in Z, however, this time with parameter

Qél)QF)
Ly

. (4.4.3)

In order to compute the survival probability P(Hy > [) we need more notation.
We write Q' forl t’he conditional probabilities given {chl)}]f%l and {C®}e .
We further write E(Cl"2) for the expectation with respect to @(C'}"z). For I3 = 0, we
only condition on {Q;(:)}Ll:y Lemma 4.11 implies that

0(1)0(2)
QUO(Hy > k+1—1Hy > k+1-2) = exp{_kLl }
N

Indeed, the event {Hy > k+—2} implies that N NA® = (). Then from (4.4.1)
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and the above statement,
P(Hy >2) = E[QZ"(Hy >1)Q4"(Hy > 2|Hy > 1)]

= ]E[Q(Clvl)(H >1)]E(11) [Q(Ql)(H >2|H >1)H
= E[E" [Q¢7(Hy > 1)QE" (Hy > 2|Hy > 1)]]

C<1)O(2) 0(1)0(2)
oS pew {55 ]

() (2)
— ]E[exp{ Z""’ 2 Eﬂ/ﬂctim}
‘N

I
=

By induction we obtain as in [54, Lemma 4.1],

l+1 1 2)
= E|exp {— =2 ChnClia H ) (4.4.4)

P(Hy > 1) 7

Note that (4.4.4) is an equality, while in [54] an error needed to be taken along.

Step 2: Coupling with the BP with offspring distribution {g,}. In this
step we replace C and C® by 2 and Z®.
For each event B, and any two nonnegative random variables V and W,

[E[e™"] —E[e]]

[E[(e” ]|+ |E[(e™V — e V) 1s]
[E[(e™" — e ™)15]| + P(B).

IN A

Now take

s I+1
_ @) @) e @ —ag
B = N‘ Z 21y 22y — Z Ork/ﬂcwzj <N ’

k=2 k=2

and the random variables V and W as

I+1 I+1
(1) (2) (1) (2)
N Z Z(k/ﬂ Lk/2]? N ZQUC/ZWQUC/ZJ

Then for [ < (1+2n)log, N the Proposition 4.12 implies that P(B°) = O(N %),
whereas on the event B we have |V —W| < N~%3. Hence, using that e™" —e™% =
O(v — w) when v, w are small, and that e=" <1, v > 0, we obtain

[E[e™"] —E[e”"]] < O(N~*) P(B) + P(B°) = O(N~**) + O(N~) . (4.4.5)

It is now clear from step 1, the above result and Lemma 4.4, where we take ¢ = 1,
that for some 8 > 0 and all I < (1 + 27)log, N

l+1 (1) @
Z Z
P(H, >1)=E _ [k/21%|k/2)
( N ) lexp{ i

+O(NP). (4.4.6)




102 Universality for the distance in finite variance random graphs

Step 3: Evaluation of the limit points. From this step on, the remainder of
the proof of our main theorem is identically to the proof of Theorem 1.1 in [54]. To
let the proof be self-contained, we finish the main line of the argument. Starting
from (4.4.6) we replace [ by oy + [ and assume that oy +1 < (1 + 27n)log, N
where, as before, oy = [log, N|, to obtain

Y

onN+HI+1 1) (2)
202G
P(Hy > oy +1) = Elexp {— =2 e TP }

N +O(NP). (447

We write N = v1°8 N = po~=an where we recall that ay = |log, N| — log, N.
Then

oN+I+1 (1) @) on+I+1 ) (2)
k=2 Zﬂﬂ/ﬂ ZL’C/2J — I/aN+l Zk:2 ka/ﬂ ZLK‘/2J
MN ,LL /,LQVUN +1 :

In the above expression, the factor v~ prevents proper convergence.
Without the factor uv®¥+! we obtain from Appendix A4 of [54] that, with
probability 1,

on+Hi+1 F@) 2 MWIN@)
. k=2 BB WOW
lim : = , (4.4.8)
N—oo plront v—1

We now use the speed of convergence result of [6], which was further developed in
Section 2 of [54] and which reads that there exists a positive § such that:

1
P(IW = Wi| > (log N)™*) = O(N ) | k < L§ log, N|. (4.4.9)
for each positive . Combining (4.4.7) and (4.4.9) we obtain that for each a > 0
and for [ < 2nlog, N,
P(Hy > oy +1) = Elexp{—sv** "W W, }] + O((log N) ™). (4.4.10)

From (4.4.10) one can finally derive as in [54], that, asymptotically as N — oo, the
probability P(H, < co) is equivalent to the probability ¢ = P(W; W, > 0), where
q is the survival probability of the branching process {Z };>0, so that (4.4.10)
induces for [ < 2nlog, N,

P(Hy <oy +I|Hy < ) = E[l — exp{—f@'V“NHWleHWle > O] + o(1).
(4.4.11)

4.A Appendix

4,A.1 Proof of Lemma 4.4

In this section we prove Lemma 4.4. For convenience we restate the lemma here
as Lemma 4.13. Recall the definition of the event S, 4, given in (4.2.4).

Lemma 4.13 For each fized q € (0,7 — 1), there exist constants ag, Bp > 0 such
that

P(SS 4,) < N7, (4.A.1)

q9,%0
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Proof. For ¢ < (7 — 1)/2, in which case E[A%Y] < oo, we simply apply
Chebychev’s inequality:
P(85 4) < N**Var(Sy,q) = N**~'Var(A?) = O(N>*~ 1), (4.A.2)

so each 0 < ap < % and Gy = —1 + 2a will do the job.

For ¢ € [(t —1)/2,7 — 1), the proof is more involved. Since E[AY] < oo
no longer holds, we have to cut off the large values of Sy ,. Take ¢ such that
1 <6< (1-1)/(29) <1, and define for r = 2¢d, the event

g’r = {SN,T S NO‘U}.
Since r = 2¢0 < 7 — 1 implies E[A"] < oo, the Markov inequality yields
P(GE) < N™™E[Sy,,] = N"*E[A"] = O(N~). (4.A.3)

We also use Minkowski’s Inequality, [51, (2.11.24), page 30|, implying that for
each s € [0,1],

N s N
(Z Ai> <> AL (4.A.4)

Applying both (4.A.3) and (4.A.4), we arrive at
P(Sga,) < P({(Sv.q — EIAT) > N72} NG, ) +P(G7)

4,0
N
< N2xw0—2R [Z A?qlgr + P(GS)

i=1

N

1/68
< N?0—2R (ZA§q5> 1g. | +P(G5)

=1
_ N2a0_2N(1+a0)/6E|:(N_ao SN,2q6)1/5 1g2q5} + IP’(Q,E)
_ O(N* min{72a0+2*(1+0¢0)/5a0‘0}) .

Consequently, for g € [(1 —1)/2,7 — 1) we can take 8y = min{ap,2 — 2ap — (1 +
ap)/d}, and By > 0 provided that we choose 0 < ag < (26 —1)/(26 + 1).

4.A.2 Coupling of {Z.};>0 and {Z }i>0

We will couple the delayed BP {Z,};>0 to the delayed BP {Z},>0 with law f
in the first generation and law g in the second and further generations, using a
classical coupling argument, see [80].

We give each individual of {Z,};>¢ an independent indicator, which is 1 with
probability

1 )
i = 50U~ Ful
n=0
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in the first generation and with probability

qQi,~vn = 3 Z|g(N)7gn ’

in the second and further generations. When this indicator is 0 for a certain
individual, then the offspring of this individual is successfully coupled. When, on
the other hand, the indicator is 1, then an error has occurred, and the coupling is
not successful. In this case, the law of the offspring of {Z,};> is different from the
one in {Z;};>0, and we record an error. The following proposition gives bounds
on the probability that the random variables qg v and ¢; y are larger than N to a
certain negative power:

Proposition 4.14 For each T > 3, there exist constants a; > 0 and B; > 0 such
that

P(Z(n +1) 95" = gnl > N““) < NP (4.A.5)

n=0

Consequently,
P(max{qon,qi,n} > N~ ) < N~ (4.A.6)

Using Proposition 4.14 we will render a coupling between the sums 22:1 Z,

and 22:1 Z
In the proof of this proposition we need an additional lemma from analysis.
Recall the definition of f,, in (4.1.7).

Lemma 4.15 Fiz 7 > 3, then for s =0,1,2 and 6 = min{(r — 3)/4,1/4}, there
exists a constant mg > 0 such that for all m > myq,

i ) a1 <m0, (4.A.7)

n=m

We defer the proof of Lemma 4.15 to the end of this section.
Before we give the proof of Proposition 4.14, we introduce the function

tolz) = %e*m, x> 0. (4.A.8)

Using this function we can rewrite (4.3.6) and (4.3.8) as:

N N
1
£ = Z and g, = nL+ tns1 (A) (4.A.9)
— N

i=1

Proof of Proposition 4.14. The proof is based on the proof of [54, Proposition
34]. For 0 <u <1, v >0and ag € (0,1/2) we define B = By N By N B3 N By,
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where
omstor= {55}
N>
By = Ba(u,v) = {N ;ngu(n‘i' 1) tn(Ay) < N_U}7
s N
By = Bs(u,v) = {N ;(n+ 1)2 ;(tn-&-l (Ai) = frr1)] < N_U} )

oy
Ny
\
=
Q
N
\
——
=

The precise values of ag,u and v will be chosen later in the proof. The strategy
of the proof is as follows. We will show that

P(B¢) < N1, (4.A.10)

for some (; > 0, and that on the event B,

oo

> (n+1) g = gn| = O(N™), (4.A.11)

n=0

for some a7 > 0.
We start by proving (4.A.11). We bound

_ (N) (N) _
Qv = n§_0(n+1)lg —gn| < n§ 0(n+1)lg T, —=gu|+(v+1)| 7.l (4.A.12)

using v =y~ ;ng,. On By, the second term on the right-hand side of (4.A.12)
is bounded by O(N~%°). The first term on the right-hand side of (4.A4.12) can be
rewritten by (4.3.9), (4.A.8), (4.A.9) and (4.1.8), respectively, as

oo

N l
E (n+1)]g,"” — M9n| =7 § (n+1)?%| E (tnra(Ai) = frs1) |-
N

n=0

Consequently, the first term on the right-hand side of (4.A4.12) can be bounded
on By, for N sufficiently large, by

[o'e) N o) N
D+ Dla = Tl € 5 S0+ D2 3 (b))
n=0 N n=0 =1

We next split the sum over n into n < N* and n > N*. On Bs, the contribution
from n < N is at most %N’“, whereas we can bound the contribution from
n > N% on By by

oo

00 N
2 2
5 2 (17D (M) + fag) < 2N 2N (e )2 .
K n=Nu =1 H n=Nu
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For 7 > 3, the latter term is bounded by N~ by Lemma 4.15. Thus, we obtain
the claim in (4.A.11) for each

0 < a1 < min{agp, ud,v}. (4.A.13)
To show (4.A.10), it is sufficient to show that
P(BS) + P(1BS) + P(BS) + P(BS) < N~71, (4.A.14)

for some 3; > 0. We will prove that P(Bf) < N~%, where aq,az,...,as depend
on «q,d,u and v. Later we will show that we can take «ag,d,u and v such that
(4.A.13) is satisfied and a1, as,as,aq > 0.

Lemma 4.13 states that P(Bf) = O(N "), thus a; = ). We bound P(B5) b
using the Markov inequality and Lemma 4.15:

o0 oo

P(BS) < N D (n+1)Eltn1(A)] = NY D (n+ 1) fopy < N80 = N2,
n=Nuv n=Nu

for some constant § > 0 and we take as = ud — v and N sufficiently large.
Before we bound P(55) from above, we first note that

N
= Var (Z tn+1 (Az)> < NE[tn+1 (A)2:| < N,

(4.A.15)

N

E (Z[tn+1( ) = fat1))?

=1

where we used in the last step that ¢,1(x) is a probability. In the sequence of
inequalities below, which gives the bound for P(B5), we use the Markov inequal-

ity, Cauchy-Schwarz in the form Y™ b, < (XN 125N $2)2, the Jensen

inequality applied to the concave function z — +/x and (4.4.15), reqpec‘rlvely, to
obtain

N N
P(B9) < N IE[ (0 + 12 3 (basa(Ai) — fus)]
n=0 i=1
N N 2\ 1/2
NV 1(N“ﬁ—l)%]E Z n—|—1 (Z nt1(A fn+1)>
n=0 i=1
NU 2 1/2
< aNvH 2 BN (4 1) (Z ni1(A an))
n=0 =1
NT 1/2
S 2N’u+u/2—1(2(n + 1)4N) S 2NU+3u—1/2 _ O(N—ag) ,
n=0

for ag =1/2 — v — 3u.
Finally, we bound the fourth term of (4.A.14) using the Chebychev inequality

N
P(BS) < N2u—2Var<Z tO(Ai)> — N2u_1Var(t0(A)) < N2u—1 _ N~ua

i=1
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where a4 = 2u — 1, because to(A) < 1, as it is a probability.
We now verify that we can choose ag,d,u and v in such a way that both «;
and (3, can be taken positive. Recall that

a1 =Py, az=ud—v, az3=1/2—3u—v, and a4 =2u—1 (4.A.16)

The constant § > 0 follows from Lemma 4.15, we pick 0 < ap < 1/2 and use
Lemma 4.13 to find a positive §y, then finally we choose v = 1/12 and v such that
0 < v < min{1/4,6/12}. The reader easily verifies that these conditions imply
that the constants a1, as, az and a4 are positive, so that (3; equal to the minimum
of these four quantities does the job. For a; we can take any value that satisfies
(4.A.13). This completes the proof of (4.A.13).

In order to show (4.A.6) it is sufficient to show that P(qyy > N~%) < N5,
i.e.,

P(i(nﬂ)lf,&” — fal ZN‘O“) < NP (4.A.17)
n=0

because we already have shown that P(g; v > N7%1) < N—Br,
On the event B, we have that

N

% > (to(A) = fo)| < N™

i=1

|fa" = fo| =

Thus, using the event B, the, now proven, bound (4.A.11), Ly/N < 2u for N
sufficiently large, and the fact a; < o we have that

Gon = (n+1)[f = ful < |f§V - f\+22n+1!n+l Fot1]
n=0 n=0

< [fs" = fol + 4#2 9551 — gnsr| +4p ‘g\}v - u' — o N mn{eneol),
n=0

<|f5" - f|+2 Z|gn+1 gn+1|+2 Zgn

and remark that min{ay,ap} = oy O

We close this section with the proof of Lemma 4.15.
Proof of Lemma 4.15. It is sufficient to consider only the case s = 2, because

Zn+ fn+1<Zn+1 fny1, for s =0,1,2.
n=m

Recall that we denote by Poi()) a Poisson random variable with mean A. Then,
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using (4.1.7) we can bound the right side of the above equation by

e 5 AR+l
ElZ(n—Fl) e A(n—l—l)!

n=m

=FE

< 2E[A’P(Poi(A) > m|A)]

2y e (nAn_l)!(Hl/n)

< 2E[A’L{psmuy] 4+ 2m* E[P(Poi(A) > m|A) 1iacpmey],  (4.A.18)

for each w € (0,1). Using (4.2.11), where we replace ¢y by m™, we bound the
first term on the right hand side by Cm*®=7) for some constant C. To bound
the second term on the right hand side of (4.A.18) we use that conditioned on
the event {A < m"}

P(Poi(A) > m|A) < m *E[Poi(A)|A] = m™ A <m* L.
Therefore, we bound the second term on the right hand side of (4.4.18) by 2m3*~1.
Thus, pick w =1/4 and 0 < ¢ < min{(7 — 3)/4,1/4}, then

00
Z (’I’L + 1)2f7z+1 < C«mw(3f'r) + 2m3w71 < mié.

n=m

4.A.3 Proof of Proposition 4.10.

In this part of the appendix we give the main result on the coupling between the
capacities of the NR-process and those of the NR-process. For convenience we
restate Proposition 4.10 as:

Proposition 4.16 There exist constants as, B2 > 0, such that for all 0 < n < asg
and all 1 < (1/2+n)log, N,

l
P(Z(Ck -C) > N1/2”‘2> < NP, (4.A.19)

k=1

Before we go to the actual proof of Proposition 4.A.19, we explain where the
difference between C, and C, stems from, and we give a outline of the proof.

The difference between C, and C, stems from individuals, whose mark has
appeared previously and which is consequently discarded together with all its
descendants. Call such an individual a duplicate. To show the claim (4.A.19) we
need some more details of the thinning procedure of the NR-process {Z,, M, };>0.
We relabel the marks of the NR-process

Mo, ,M,,....Myz,,M,.,...,

1

given in Section 4.3.1, as

Mo, My, Ms,..., My M5 |, ... (4.A.20)
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By definition, Mj is a random variable uniformly chosen from {1,2,..., N} and
the marks M, for v > 0, are independent, copies of the random variable M given
by (4.3.2). Introduce the random variable Y,,, such that Y, = 1 if M, is a duplicate
and Y, = 0 otherwise, so that

Yo =100t tancan o (4.A.21)

and denote by s(v), v > 0, the generation of individual v in the NR-process. Let
Dup; be the set of all the duplicates in the first [ generations of the NR-process,
so that

Dup,={v>1:Y,=1and s(v) <}, I >0.

Consider the subtree with root the duplicate d, d € Dup,. The NR-process is a
marked BP, therefore the subtree with root d is also a marked BP and we denote
this subtree by {Z/”, M”};>0. The offspring distribution of {Z;"};>¢ is in the
first generation given by

F9 = Py(Poi(A(Mg)) =n|Yy=1), n >0, (4.A.22)

and in the second and further generations by {g$"},>0, defined in (4.3.8). Next
we describe { M, )}120 The capacity of a duplicate depends on the previous seen
marks. The distribution of the mark of a duplicate d is given by

By(M =m|Yy=1), form=1,2,...,N. (4.A.23)

Furthermore, the marks of each individual of the progeny of d are, by construction,
independent copies of the random variable M, see (4.3.2). The vector

(d) — (d) (d) (d)
M = (M, M2, . M%)

denotes the marks of the individuals in generation k of the subtree with root d.
Using the above definitions we set M(® = (M{?), where M is an independent
copy of the mark given by (4.A.23), and all the other marks are independent copies
of the random variable M, see (4.3.2).

By construction,

l I—s( 1—s(d)
NZ.o-z)< > Z ZP =Dup |+ Y Y. ZP, (4.A.24)
k=0 deDup; k=0 deDup; =1

and, similarly,
! 1—s(d) Z\*
S@-cos Y A YOS YAME). A
k=0 deDup; deDup; k=1 m=1

Suppose we can find an event D, with P(D¢) < N~ such that the event D,
which we will introduce later on, ensures that there are few mismatches between
the NR-process and NR-process. Then the Markov inequality, yields:

l
P(Z(Ck _Qk) > N1/2—0Q> S N—l/2+(x2E

k=1

l

D (G

k=1

+ NPz,

(4.A.26)
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According to (4.A.26) it is sufficient to show that there exists a event D with
P(D¢) < N=P2 such that

l

E[S (@ -

k=1

- O(Nl/Q—az—ﬂz) . (4.A.27)

We will show below that we can bound the capacity of each duplicate by N7 for
some 0 < 7 < 1/2 on the event D. This is a very crude bound, but it is sufficient.
Furthermore, as the marks in the second and further generations of a duplicate are
independent copies of the random variable M, we can bound E[Ap;1p] by SSs1
where we recall (4.2.7) for the definition of S and S. Then the expected value of
(4.A.25) becomes

l I—s(d)
E|Y (C.—C)1p| < N7E[|Dup|1p] + SS'E| > Z Z1p |,
k=1 deDup; k=1
(4.A.28)
Using auxiliary lemmas we will show that
I—s(d)
E[|Dllpl|1v} :O(Nl/2—5—7> and E Z Z Z(d)l <N1/2 6)
deDup; k=1
(4.A.29)

for some € > 0. Combining (4.A.28) and (4.A.29) yields (4.A.27). We end the
outline with a list of all statements that we will prove, which together imply the
statement in Proposition 4.A.19. The list consists of the following steps:

1. Define D and show that P(D¢) < N~P2,

2. Show that maxi<,<n Ay, < N7, whp, and that E[Ay1p] < <§st
3. Show the two statements in (4.A.29).

We start with Step 2. Define AY" as

AL = max A;.
1<i<N

Then,

Lemma 4.17 For every v > 0,
P(AY > N7) = O(NHH)V) .

Proof. Boole’s inequality yields:

N
P(AY > N7) < Z P(A; > N7) < eN'-O—D7,
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Now, define the event C as -
C=CiNCyNCs, (4.A.30)
where
Cr=Ci(ap) = {|Sxg — | SN} {|Sy2—v|< N >}, (4.A.31)
Cy =Ca(y) ={AY’ < N7}, (4.A.32)
C3 =Cs(a1) = {anfn = 1< NC”} n {angn —gii“} o (4A33)
n=1 n—1

where v € (1/(7 — 1),1/2), o and o are taken such that Proposition 4.4 and
Proposition 4.14 hold, respectively. Then, according to Lemma 4.17 and the afore
mentioned propositions, we have

P(CC) < P(CS) + P(CS) + P(CS) = O(N~™) + @( Nl—cf—lw) +O(NPY
(4.A.34)

where we can replace the right hand side by O(N~¢) with ¢ = min{f, (1 — 1)y —
1,51} > 0. On the event C it follows from (4.2.7) that whp

N
1 N -~ o —
Ex{Anlc] = 7 > A1 = S.2 1c <S5~ (4.A.35)

m=1

Hence, if the event D, which will be defined later, contains C, then Step 2 holds.
To control the size of the set Dup; we will use the following two lemmas:

Lemma 4.18 For n,0 € (—1/2,1/2) and all 1 < (1/2 4 n)log, N, and with £
given in (A.2.1),

l
P(Z Z, > N1/2+5> - O((logy N)N— mi“{éf’%ﬁl}) :
k=0

and, consequently, if {N;}i>0 are the reachable sets of an uniformly chosen node
A in the graph Gy, then

P(IMi] > N'/240) = O (1og, N)N~minto=.in})

Proof. We have for [ < (1/2+ n)log, N,

l k
P({sz > NVM} mcg> < N*l/Q*‘*ZE@kS]

k=0 k=0

< —-1/2-46 A
<(+1)N gggllﬁzmm]. (4.A.36)
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Let
(oo} (oo}
Iy = anr(LN) and vy = anilm, (4.A.37)
n=1 n=1

then, by definition, we have E|Z, lcs} = MNV]@*llcg for each k > 1. Furthermore,
on the event C3 we have

v 'max {v,vy} =1+ v ! max {07 Z n(gn — gff’))} =1+O(N~™) (4.A.38)
n=0
and, similarly,
p o max {p, puny =14+ O(Nfal) . (4.A.39)

Thus, on C3, and for k <1 < (1/2+ n)log, N,
Er[Ze] = vt <7t (14 O(N-)) = (N2, (4.A.40)
The above yields,

max E[Z,1¢,] = max E[Ex[Z1c,]] = o(N2). (4.A.41)

Therefore, if we substitute (4.4.41) in (4.A4.36), then we end up with

l
P<{ZZk > NWH} mcg> <(+ 1)N*1/2*50(N1/2+n) :

k=0

ans observe that the order of the right hand side is O((log,, N)N"~°). Combining
this with Proposition 4.14 yields the main statement of the lemma. Finally, using
the coupling (4.3.5),

1
]P’(\/\/l| > N1/2+6> _ P(sz > N1/2+5>

k=0

l

< P(sz > N1/2+5> = O((log, N)N"~°)
k=0

O

Lemma 4.19 There exists a constant € > 0, such that for each 6 € (—1/2,1/2),
u>0 and v < NY/2Ho,

P(i Y, > N“) = O(N- min{u—m}) . (4.A.42)

w=1
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Proof. From the definition of Y,, see (4.4.21), and Boole’s inequality,

Be(Y, = 1M, =m —o {M, =m})

) =By (U,
sz m) =+ -7

Therefore, using (4.2.7) and v < N'/?*9 we have, on the event C, that

N N
1 Am A2 1 U—lSNQ
B(V,=1)=<Y Z+-1)Y “2=— :
W =1) N;LN+(U )z::Lg NN 5,
I = 5-1/2 _ 5-1/2
< —
<5 +587N o(N*=1/2) .

From the Markov inequality, we hence deduce, on the event C, that

PN(ZY >N”> <N ZIP’N <v(’)(N5 1/2— u) :O(NQtS—u).

Thus,
P({ZszN“}mC> = ]P’N<ZYU,2N“> 1c| +P(C°)
w=1 w=1
_ O(N7 min{u725,5}) ,
which implies the claim (4.4.42). O

Proof of Proposition 4.16. Define the event D = D; N Dy N D3 NC, where

D= {D‘”‘pul/wn) log, N| = (2)}, (4.A.43)
Dy = {’DUPL(l/zm) log, NJ’ < NS"} ; (4.A.44)
Ds = M {217 <N} (4.A.45)

deDup | (1/244) 1og, N

and 0 = 61+ 7.

As Step 2 has been shown above, it remains to prove P(D¢) < N~72 with D
as defined above (Step 1), and the two statements in (4.A.29) (Step 3).

We start with the first statement in (4.A.29). We have,

E[[Dup;[1p] < E|Dup (12 p)10g, v 1n| < N°T < NVZ777 (4.A.46)

by choosing 1 and € small and v € (1/(r — 1),1/2) appropriately.

The second statement in (4.A.29) proceeds in the following way. On the event
D1NDs duplicates do not appear in the first (1/2—2n) log,, N generations, implying
that,

 nax (I —s(d)) <l-(1/2—2n)log, N < 3nlog, N. (4.A.47)
€Dup,
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Thus,

1—s(d) [3nlog, N|
El > > zP1p| <E| Y. > ZP1p|. (4.A.48)
deDup; k=1 deDup,; k=1

The right hand side is the expected size of the progeny of the duplicates and its
offspring. The total children of all the duplicates on Dj is bounded from above
by the the total number of duplicates times N?. Since on D, the total number of
duplicates is bounded from above by N®7, therefore the total number of children
of all the duplicates is bounded from above by N°7t? on Dy N Ds. Furthermore,
the offspring distribution of each child of a duplicate is an independent copy of
{Zl}l20, where {Zl}lzo is a BP with Z; = 1 and where each individual has
offspring distribution {g{},>0. Since, the mark of a child of a duplicate is by
definition an independent copy of the random variable M.

Therefore, (4.A.48) can be bounded by

I—s(d) [3nlog, N]
E Z ZP1p | < N0 4 NOTHOR Z Zile
deDup; k=1 k=1

On C we bound Y 12118 M Z, 1y

[3n(log, N)|
Zy, < 3n(log, N)wa"" %" = O((log, N)N*7) = O(N*")
k=1

compare with (4.A.40) and (4.A.41). Thus, we bound (4.A.48) by

l—s(d)
E Z Z Z](Cd)lD S N577+9 + N577+90(N4?7) — O(N6‘+9?7) _ O(N1577+’y) 7
deDup; k=1

which is more than sufficient for the second statement of (4.A.29), since v < 1/2
and we can pick 7 arbitrarily small. This completes the proof of Step 3.
We continue with the proof of Step 1. For this, we bound

P(D°) < P(DS) + P(D5) + P(D5 N Dy N C). (4.A.49)

We now bound these terms one by one. For P(Df), we use Lemmas 4.18 and 4.19
to obtain

L(1/2—2n) log, N]

F(Di) < F| PPN > Z, <NV S ) O((logy N)N—min{ml})
k=0
LN1/2—nJ
<P Z Yo>0| + O(N7 min{ﬂ/lﬁl/ﬂ) _ O(Nf min{n/2’,@1/2’€})
w=1

(4.A.50)
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and, similarly,

[(1/2+n)log, N|

P(DS) < P| DS S Zo<NVEEA ) O((logl, N)N- min{"vﬁl})
k=0
LN1/2+2”
<P Z Y, > N°7 | + O(N*min{n/lﬁlﬂ})
w=1
- O(N— min{"/wl/“}) : (4.A.51)

To bound P(D§ N D2 NC), we first bound Py(D§ N Ds) on the event C. Using
the Markov inequality and Boole’s inequality we have, on C, that

T PT SN I SRR e I e |
dEDUD | (1 /24 9) 10g,, N deDup,
(4.A.52)

where we, for convenience, set k = [(1/2 + n)log, N|. If we condition on the
sequences {A;}N, and {M,},>0, recall (4.A.20), then Z{”, for d € Dupy, is an
independent Poisson random variable with mean A(M). Thus, conditioned on the
sequences {A;}; and {M,},>0, the sum 3 ,cp,,, 7" is distributed as a Poisson
random variable with mean ZdEDupk Mgy. Which in turn can be stochastically
bounded from above by a Poisson random variable with mean |Dup,|N” on the
event C, because A(My) < AY’ < N7 for all d € Dup,. Since Dy and Dup, are
measurable with respect to {M,},>0, therefore the above yields

Ex| Y Z{"1p,| =Ex| Y Ex[Poi(Z")[{My}v30] 1p,
dcDupy, | d€Dupy,

=Ey|Ex| Poi| > Z || {My}oz0]| 1n,
deDupy,

< En[En[Poi(|Dupy[N7)[{My}v>0] 1p,]
< Ex[Ex[Poi(N") [ {M,}u30]]
= Ey[Poi (N*"T7)] = N°"H7. (4.A.53)
Thus, we bound (4.A.52) by
Py (D5NDy) < NYE, > ZP1p, | < N70+m+Y = =7,

deDup | (1/244) 10g, N

(4.A.54)

Hence,

P(D2 N Dy NC) = E[1cBy (DS N Ds)] = O(N* min{"/wl/zﬁ}) (4.A.55)
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and, finally, by (4.A.50), (4.A.51), (4.A.55) and (4.A.49),

P(D°) = O(N* min{n/2,61/2,s}) :

which proves Step 1 and therefore the proposition. O

4.A.4 Proof of Proposition 4.12

In this section we prove Proposition 4.12, which we restate here for convenience
as Proposition 4.20.

Proposition 4.20 There exist constants as,B3,m > 0 such that for all | < (1 +
2n)log, N, as N — oo,

I+1 I+1
(1) (2) E (2)
(N‘ Z ZM/N Ztk/zJ C(k/ﬂCLk/zJ

> N‘“?’) = O(N~%). (4.A.56)

We start with an outline of the proof. Define

I+1 I+1
(2) ZWm (1) (1) Z3 (2)
Z Zlk/2J [k/2] C [k/2] ‘ and Ty = Z C(k/ﬂ Lk/2] C Lk/2] ’

(4.A.57)
To show (4.A.56), it suffices to prove that for an appropriate chosen event H,
1 1
IP’<T11H > 2N_°“3> = O(N_BS) and IP’(T21H > 2N_0‘3> = (’)(N_BS),
(4.A.58)

and that P(H®) = O(N~¢) for some £ > 0. We choose the event H such that on
this event, for each k <1 < (1+ 2n)log, N,

E[Ztkmlﬁ] - <N1/2+2n) HZr(i)/zw rk/zw | 1H] - O(Nl/ziu) )
(4.A.59)
B[l = O(NV2720)  and B[|27,, — Ol 10] = O(N'27),
(4.A.60)
for some wu, ag,n > 0 such that
ag < u—2n. (4.A.61)

The claims (4.A.59), (4.4.60) and (4.A4.61) implies (4.A.58). This is straightfor-
ward from the Markov inequality, the independence of Z® between Z® and the
associated capacities and the inequality [ < (1 + 2n)log, N. We leave it to the
reader to verify this.
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Instead of showing (4.4.59) and (4.A.60), it is sufficient to show that there
exists constants ag,n,u > 0 satisfying (4.A4.61) and such that for each k£ <1 <
(1/2+4n)log, N,

E[|Z, —C,|1x] = (Q(Nl/Q—u) : E[Z,14] = O(N1/2+2n)
and
E[C,1x] = O(NY/2+21), (4.A.69)

which simplifies the notation considerably.
We choose the event H as H = H1 N He NHz NHy NC, where

l
Hy = {Z(Ck -C,) < Nl/zaz} : (4.A.63)
k=1
Hopo = {[C B Z| < NV20) 0 Mo =0l Has,  (4A64)
Hap = {\Zk —vZ_| < N1/2‘5}, Hy =Nk Hap  (4.A.65)
Hy = {|ExfAn] —v| < N7°}, (4.A.66)

and the event C is given by (4.4.30). Hence, for the proof of Proposition 4.20
it suffices to show the three claims in (4.A4.62) with u — 2 > 0, and that for
some & > 0 we have that P(H®) = O(N~%). For the latter statement, we use

the following lemma. In this lemma we denote by dy a random variable with
)

distribution {g{"},>0 given by (4.3.8).
Lemma 4.21 For every v > 0, for {\;}N.,, such that C occurs,

Vary(Ap) = O(N7) and Vary(dy) = O(N7), (4.A.67)
where Vary(-) is the variance under Py(-).

The proof of this lemma, is deferred to the end of this section. Although it seems
that we can take any v > 0, this will not be the case in the proof of Proposition
4.20. We need that the event C happens whp , which is the case when v >

1/(r —1).
Proof of Proposition 4.20 Consider the first claim given by (4.A.62). Using
the triangle inequality we arrive at

EHQk - Zk| ]-'H] S EHQk - 6k| ]-H] + EHak - ]EN[A]\/[} 7k—1| ]-H]

+ EHZk—l(EN[AM] - V)| 17—(] + Z/EHZk—l - Zk—1| 17—[] + E“Vzk—l - Zk| 17—[] )
(4.A.68)

The first, second and the last term on the right hand of (4.4.68), we bound by
N1/2—min{d.a2} yging the events Hq, Ho and Hs, respectively. We bound the third
term of (4.A.68) using the event Hy and (4.A.40), which gives

E[|Z, . (Ex[And] = v)| 13une] < NE[|Z,_1c|] = 0(N1/2+2’7—5) . (4.A.69)
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Finally, we need to bound the fourth term of (4.A.68). On the event Cj the
following inequality holds for each k& < (compare with [54, (A.1.4) and (A.1.15)]),

l

ENﬂfk - ZkH <max{Vv — ay,Vy — Qy} ZENE,J (max {v, VN})l_k , (4.A.70)
k=1

where

oy = Z nmin{g,, g\’

and vy is given by (4.A.37). We bound the sum in (4.A.70), using (4.A.40), which
implies

l l

> En[Z.] (max {v,va}) ™ =3 ™ (max (v, vy })

— k=1
< Imax {,Lh ,UN} (max {V7 VN})Z_l
<L+ O(N ) (N2 < N2

(4.A.71)

for N sufficiently large. On the event C3 we have

max {v — ay,Vy —ay} < in\gn—gf{v)| < N, (4.A.72)

n=1
Combining (4.A.70), (4.A.71) and (4.A.72), we obtain that, on Cs,
EA[|Z. - 2] = o( w2+,

Thus, all together, the left side of (4.A4.68) satisfies

E[C, — Z,|15] = (’)(Nl/Q‘mi“{5"’275‘2"’&1‘2”}) . (4.A.73)

This gives a bound for the right hand of (4.4.62) with
u = min {0, ag, 6 — 21, a1 — 2n}.

The second claim of (4.A.62) is evident, because k <1 < (1/2+ n)log, N and
therefore

E[Z14] < E[Z] = wF ! < ! = 0(N1/2+") . (4.A.74)

Finally, the third claim of (4.4.62) follows from using in turn C, < C,,

Zy—1

[C]-H]<]EC]-H ZA klv
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Now by taking conditional expectation with respect to Z,_, and the capacities,
we obtain

7k1 Zkl

ZA k—1,v 17-{ Zlcl ZE k111)1H|Zk 1]
v=1
Zr—

so that (4.A.40) implies that

Zy—s

ECAn] <E|Ey Z MM, ) 1| Zo o | | <SSE[Z, 1c] = O(NV2H20).
Thus, we have shown the claims given by (4.A4.62) if we restrict n to 0 < 5 <
min{as, az}/2 due to (4.A.73). To satisfy condition (4.A4.61), we restrict n to

0 <n < min{a; /4, a2/2,5/2}, (4.A.75)
and pick ag = (u—2n)/2. Then ag > 0 and condition (4.A.61) is satisfied, because
u—2n<az=(u—21)/2 =min{a; —4n,as — 20,5 — 2n}/2 > 0,

for each 0 < § < 1/2 and for each 7 given by (4.A.75).
We finish the proof by showing that P(H¢) = O(N_g) for some £ > 0. We
bound P(H¢) by

P(H®) <P(H{) + P(HSNC)+P(HENC) +P(H N C) +P(CY). (4.A.76)

The last term we bound by (4.A4.34), which states P(C¢) = O(N~¢) for some ¢ > 0.
We bound P(H$) using Proposition 4.16,

P(H]) = O(N 7). (4.A.77)

Next, we will bound P(H$ N C) and P(H§ N C) from above. We will show that by
using the Chebychev inequality that
By (M5, NC) = o(N*1/2+25+7+2"> ,for k<1< (1/2+n)log, N. (4.A.78)

Then by Boole’s inequality we have,

l l
P(HS) <P<UH2kﬂC>+PCC Z 2 (HS, NC)] +P(CO)

k=0 =0
< IN“V/2H25++2n +P(C) = (’)((log,, N)N- min{1/2—26—’y—2n,n/2,5}) .
(4.A.79)
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Fix k, 1 <k <1< (1/2+n)log, N, and denote by V,, = A(M,_, ) — Ex[An]
for v =1,2,...,Z,_,. We have that E,[V,] = 0, and conditionally on the marks

Ay, ..., Ay the sequence {V, fﬁ{l is an i.i.d. sequence. Hence, on C and using
Lemma 4.21,
Z—1 2 B Zy_1Zy1
Ex| | Y Vol |Zi]| = En[Vy Vil
v=1 v=1 w=1
k—1 7)671 7k—l
= ExVo] ExlVi] + ) En[V/]
v=1 w=1,w#v v=1
Zr-a
= Eyv[V?] = Z, Vary(Ay) < Z, .N". (4.A.80)
v=1

Therefore, using (4.A.40), on C,

7}671 Zg—1 2
Var, Z V, | =E,|Ex Z vl | Z._,
v=1 v=1

<EN[Z, ] N = O(N1/2+v+2n> )
Thus, by the Chebyshev inequality, on C,

Zi1
]P)N( gk):]P)N ZV'U 2N1/275

s

v=1
Zk—l
< N2571VarN Z Vv < N71/2+25+"/+2'r].
v=1
Similarly, we can show that

P(H5,NC) = 0((10& N)N~ mi“{1/2*25*7*2mn/2}) 7

when we replace Z,_; by Z,_,, set V,, = X1, — Eyldy], where X;_1, is an
independent copy of dy. This, yields on C,

Zi_1 21 2
By(M5h) =B || D Vo| 2 NV270 | < N*TIEy |Ey Vo | | s
v=1 v=1

= NP-1R[Z,_, Vary(dy)] .

Using that Vary(dy) is constant under Py, Lemma 4.18 and (4.A.74) we have that
on C:

En[Z, . Vary(dy)] = Vary(dy ) Ex[Z, 1] = O(Nl/“’””’) .
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The above yields, compare with (4.A.79)

P(HS) = O((logu NN~ min{l/%%*%%m/?f}) . (4.A.81)

To bound P(HS) we will use that Ex[Ay] = Sy,2/Sn 1, where Sy 4, = % Zil A,
g = 1,2. Notice that on S1,q, N S2,q,, recall (4.2.4), that

(1- 0N =")) < 2 < (14 O(v )

&

and

(1-0()) < g2

< Az S (1+O(N=)),

which yields, together with v = E[A?] /E[A]
< SN 2

(1-O(N~™))v = < (1+O(N~))v. (4.A.82)

Sy
Thus, using Lemma 4.4, the Markov inequality and (4.A.82) we have
P(HS) < P(HS N S1a NS2,a0 NC) +B(SF 4, NC) +P(S5,,, NC) +P(C)
< N[l ~ 2115, 050 yn] + O(N-P00:4)
= N°E[|Sn.2/Sn1 = |18, on8s0gnc) + O(N’ mi“{ﬁ“’s})

_ o) 4 oY) o N-mnebs0l) (443

By Lemma 4.4 we can pick ap > /2 and By > 0 for all § < 1/2.
Combining (4.A.77), (4.A.79), (4.A.81) and (4.A.83) with (4.A.76) gives

P(H®) = O(N~¢),

where £ = min{(1/2 — 26 — v — 21)/2, 82,1/2, Bo,&,« — 0}. Remember that - is
restricted to —5 <y < 1/2, that § is restricted to 0 < § < 1/2 and 7 is restricted
by (4.A.75). So, pick 1,6 > 0 such that 26 + n < 1/2 — ~, because we can pick
0 > 0 and n > 0 arbitrary small, then & > 0. O

Proof of Lemma 4.21 Consider the first claim of (4.4.67). The variance of a
random variable is bounded from above by its second moment. Therefore, using
(4.3.2), Lemma 4.17 and (4.2.7), on C

1 N AW N
V() < B - - Y4 < 5050
N
< NT— 30 A = N8, e85k 1e < 58 TINT = o(VY),

m=1
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for N sufficiently large. We turn to the second claim of (4.4.67). Using (4.3.8)
we bound (4.A4.67) on C from above by

Vary (d 1C<Zn g<N>1C_ZS Nze mL
1

We split off the term with n = 1 and use (4.2.7) and the fact that for n > 1, we
have %5 < 2, to obtain, on C,

N N 0o
1 Y . n
< § m E E Am
VarN(dN) N SNle m=1 Am i N, N m=1 n=2 ' n- 1
Sy 2 &
< =24 LA < 1 a7y
< § §N mE: + 2S5y 28 A SS' 425857 IN".

Hence, Vary(dy) = O(N7). O
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Chapter 5

A geometric preferential
attachment model with fitness

article [36]

Abstract
We study a random graph G,, which combines aspects of geometric ran-
dom graphs and preferential attachment. The resulting random graphs have
power-law degree sequences with finite mean and possibly infinite variance.
In particular, the power-law exponent can be any value larger than 2.

The vertices of G, are n sequentially generated vertices chosen at ran-
dom in the unit sphere in R®. A newly added vertex has m edges attached
to it and the endpoints of these edges are connected to old vertices or to the
added vertex itself. The vertices are chosen with probability proportional
to their current degree plus some initial attractiveness and multiplied by a
function, depending on the geometry.

5.1 Introduction

Preferential attachment models are proposed by Barabasi and Albert [4] as models
for large-scale networks like the Internet, electrical networks, telephone networks,
and even complex biological networks. These networks grow in time, because, for
example, new routers, transform houses, switchboards or proteins are added to
the network. The behavior can be modeled by means of a random graph process.
A random graph process is a stochastic process that describes a random graph
evolving with time. At each time step, the random graph is updated using a given
rule of growth, which will be specified later.

In literature a number of different rules of growth are explored. For example,
each time step we add or remove edges/vertices [27], or, more advanced, copy
parts of the graph [61]. Furthermore, there is freedom in the choice how to connect
endpoints of newly added edges. Mostly, one randomly chooses the endpoint over
the vertices, or proportional to the degree. Another possibility is to assign to
each vertex a fitness. In [29, 30| additive fitness is explored where one chooses
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proportional to the degree plus some (random) value. In [35, 71| multiplicative
fitness is explored where each vertex has a random fitness and one chooses a vertex
proportional to the degree times the fitness. In this chapter we use a constant
additive fitness and a variant of multiplicative fitness, depending on the distance
between vertices.

Many large networks of interest have power-law degree sequences, by which we
mean that the number of vertices with degree k falls off as k=7 for some exponent
7 > 1. The parameter 7 is called the power-law exponent. Depending on the value
of 7 we classify the following three categories: the infinite mean case, the finite
mean and infinite variance case, and the finite variance case, which corresponds
toT € (1,2), 7 € (2,3) and 7 > 3, respectively.

These categories are of interest, because the behavior of the typical distance
is determined by the power-law exponent 7. Results in the literature show that if
7 € (1, 2) the typical distance is bounded by some constant, if 7 € (2, 3) the typical
distance is concentrated around loglogn and if 7 > 3 it is concentrated around
log n, where n is the number of vertices of the graph, see [38, 53, 54, 56, 71].

A large number of graph models have been introduced to describe complex
networks, but often the underlying geometry is ignored. In general it is difficult
to get rigorous results for properties like the degree distribution, typical distances
or diameter, even if one disregards the geometry. However, in wireless ad-hoc
networks the geometry is of great importance, since in these networks nodes are
spread over some surface and nodes can only communicate with neighbors within
a certain range, depending on the geometry.

In this chapter we will rely on the geometric preferential attachment (GPA)
model introduced in [43] and extended in [44] by the same authors. The GPA
model is a variant of the well known Barabasi-Albert (BA) model. In the BA
model new vertices are added to the graph one at a time. Each new vertex is
connected to m of the existing vertices, where we choose to connect to an old
vertex proportional to its degree. In the GPA model each vertex has a position
on a surface, and we choose to connect to an old vertex proportional to its degree
times a non-constant multiplicative value. This multiplicative value depends on
the distance of the old vertex and the newly added vertex. For instance, let
the multiplicative constant be 1 if the vertices are at distance at most r,, and
otherwise zero. The latter attachment rule essentially describes the construction
of a simplified wireless ad-hoc network.

5.1.1 Definition of the model

In this section we will introduce the Geometric Preferential Attachment model
with fitness (GPAF). The GPAF model is described by a random graph process
{Gs}!_y, which we will study for large values of n. For 0 < o < n, each vertex
of the graph G, = (V,, E,) is positioned on the sphere S C R?. The radius of
the sphere S is taken equal to 1/(24/7), so that, conveniently, Area(S) = 1. The
vertices of the graph G, are given by V,, = {1,2,...,0} and E, is the set of edges.
The position of vertex v € V,, in the graph G, is given by x, € S and the degree
at time o is given by d,(v).

To describe the GPAF random graph consisting of n vertices we need 3 pa-
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rameters and a function F,, : [0,7] — R;. The first parameter of the model is
m = m(n) > 0, which is the number of edges added in every time step. The
second parameter is a > 0, which is a measure of the bias toward self-loops. The
third one is § > —m, which is the initial attractiveness of a vertex. The value
F,(u), u € [0, 7], is an indicator of the attraction between two vertices at distance
U.

Before we give the model definition, we first will explain the use of the pa-
rameter . Assume that the graph G, is given, consisting of the vertices V. We
construct the graph G,11 by choosing vertex x,1 uniformly at random in S and
add it to G, with m directed edges emanating from the vertex z,,1. Let, for
c=1,2...,n—1,

g
Ton(u) = Z(dg(v) + 0)F(|zy — ul), (5.1.1)

v=1

where |z, —u| € [0,7] is the distance from w to wy on the geodesic through
the points v and ug. Furthermore, let the endpoints of the m emanating edges
be given by the vertices vf;il, . ,vgfﬁl. Intuitively, we would like to choose the
endpoints at random (with replacement) from V., such that v € V,, is chosen with

probability

(dy(v) + 5)Fn(|xv — Toy1])
To,n(mo-',-l)

o, ('Uz(rijrl = v) = )
where B, () = P(-|Gs,2541). However, the above given rule of growth is not
well-defined. To see this, consider the simplified model for wireless ad-hoc net-
works, i.e., F,,(z) = 1{z<r,}. Then, for any o, there is a positive probability that
there are no vertices within reach of the newly added vertex z,,; and therefore
Ta,n(anrl) = 0.

To overcome this problem we could add self-loops if Ty, (z,41) = 0 or if
Ton(Zoy1) is small. We will introduce a variant of the above model, which is
based on the GPA model introduced in [44]:

Rules of growth for o > 0:

e Initial Rule (¢ = 0): To initialize the process, we start with Gy being the
empty graph.

e Growth Rule (at time o+ 1): We choose vertex z,41 uniformly at random
in S and add it to G, with m directed edges emanating from the vertex
Zyy1- Let the endpoints of the m emanating edges given by the vertices

v ..., 05 . We choose the endpoints at random (with replacement)
from V,, such that v € V, is chosen with probability
‘ d 0)F, -
B, (vi), = v) = (dg () + 0) Fully = To11]) (5.1.2)

maX{Ta,n(xo-&-l)a QE[To,n (Tot1 )] /2} ,
and

Ta,n (xU—Q—I)
max{Ton(2o+1), OB[To 5 (T011)] /2}

B, (v, =0+1)=1- (5.1.3)
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forie {1,2,...,m}.

The above given random graph model is well defined, since the denominator
is always strictly positive. Indeed, the following lemma calculates the value of
E[Ty,n(zs+1)] which is strictly positive.

Lemma 5.1 For any fixed point v € S,

/ F.(Jv—ul|)du = I, (5.1.4)
s

where

1 ™
I, =1(F,) = 5/ OFn(m)sinxdx.
r=

As a consequence, if U is a randomly chosen point from S, then
E[T,,,(U)] = In(2m + §)o. (5.1.5)

Proof. First note that I, does not depend on v due to rotation invariance.
Thus, without loss of generality, we can assume that v is at the north pole of
the sphere. Using spherical coordinates, we find du = r3sindf dy, where 7y =
1/(2y/7), and |v — u| = 6, so that:

2 ™ ™
/Fn(|v—u|)du=/ / r8F,(0)sinfdf dy = 2771"8/ F,(0)sinfdd = I,,.
s ©=0J6=0 0

For the second claim we calculate the expected value of T, ,(U), (5.1.1), condi-
tional on the graph G,:

ElT,»(U)|Go] = Z(do(v) + O)E[Fy(|lzy — Ul) | Go]
v=1

=1, Y (ds(v) +0) = I,(2m + 6)o,

v=1
where we apply (5.1.4) on E[F,,(|x, — Ul)| G,], since v < ¢ and, therefore,
ElF.(|z, = U|)|Gs] = | Fullzy — u|)du = 1I,,. (5.1.6)
s
Hence, E[T,.,(U)] = E[E[T,..(U) | G,]] = L.(2m + §)o. 0
We use the abbreviations, for u € S,
M, n(u) = max{T, ,(u),a®@l,c} and A,;n(u)=F,(Ju—2z541]), (5.1.7)
where
0 =0(,m)=2m+9)/2. (5.1.8)
As a consequence, we can rewrite the attachment rules as
(do(v) + 8)Agn(2v)
MO’,’R(‘TUJrl)

B (v = v) =
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and

TO’,n<xU+1)

—anitotl) 5.1.9
Ma,n(xo-&-l) ( )

]P@(Ugﬂrl :0+1) =1-

fori e {1,2,...,m}.

Remark 5.2 In the above description we add directed edges to the graph and
therefore we construct a directed graph. For questions about the connectedness
and diameter of the graph we ignore the direction of the edges, but we meed the
direction of the edges in the proofs of the main results.

Remark 5.3 In this chapter we will illustrate the theorems using the canonical
functions

1

F(O) =1 F(l) = 1{|u Tn d F(Q) = o A
n () =1 F(u) = Hidsry - and B2 () = Som =g

(5.1.10)
where 1, > 02 ¢ < 1/2, 4 < 1/2 and B € (0,2) U (2,00). The canonical
function F© implies that the vertices are chosen proportional to the degree, and,
furthermore, the geometry is ignored, the model is then equivalent to the PARID
model, see [29] or Section 5.1.2. The function F\" implies that a new vertex can
only connect to vertices at distance at most r,. Finally, canonical function F»
implies that vertices are chosen proportional to the degree, and, in contrast to
E©  will prefer vertices close to the new vertex, since F\? is non-increasing as
a function in u. Let I? = I,(F$), then in [44] it is shown that one can take

IO ~7r2/4, I® = O1) if B € (0,2), and [ ~ Zr—x

5.1.2 Heuristics and main results

Using the results of [44], which is a special case of our model when ¢ = 0, together
with the results of the PARID model, introduced in [29], we will predict how the
power-law exponent of the degree sequence will behave.

Consider the PARID random graph process {G,},>¢ as introduced in the
paper [29] with constant weights equal to m. For this special case, we give a brief
description of the model.

The construction of the PARID graph G = (V/,E!) depends on the graph

! _1. The rule of growth is as follow: add a vertex to the graph G/ _; and
from this vertex emanates m edges. The endpoints of these m edges are chosen
independently (with replacement) from the vertices of G’._,. The probability that
vertex v € V/_; is chosen is proportional to the degree of vertex v plus §, more
specifically:
dy(v)+ 6
(2m+d)o’

Ifa<2,6>—mandF, = F, then the GPAF model coincides with the
PARID model where the weight of each vertex is set to m. Note that, for the
chosen parameters,

P(choose vertex v |GL) = (5.1.11)

1 ™
Agn(zy) = FP(|xy — 2o41]) = 1, IO = 5/ sin(z)dz =1,
=0
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and
a®IV0 <200 = (2m+8)o = > _ (dg(v) +6) = T, (2511),
veV,
thus MY, (zo41) = T, (251+1) = (2m + d)o. Therefore, the equations (5.1.9)
turns into (5.1.11), since
(de(v) +0)Asn(zy)  de(v)+0d

B, (v$}, = v) = B, (choose vertex v) = M (oer) = am 100

Furthermore, note that for these parameters there are no self-loops, since

©) ()
PU+(US)+1:U+1):1—M:1—W:O.
Ma‘,n(xa—i-l) Md,n($a+1)

For the PARID model, we know that the power-law exponent is 3+ §/m, thus
we expect that the power-law exponent in our model is 3 + §/m if @ < 2 and
F,=F9Y. For a > 2, 6 =0 and F,, satisfying some mild condition, see (5.1.12),
we know from [44] that the power-law exponent is 1+ «, which is independent of
F,.

We will show in this chapter that the power-law exponent is given by 1 +
a(1+3/2m), which generalizes the two mentioned papers [43, 44]. More precisely,
let Ni(o) denote the number of vertices of degree k in G, and let Ni(o) be its
expectation. We will show that:

Theorem 5.1 (Behavior of the degree sequence) Suppose that o > 2, 6 >
—m = m(n) and in addition that for n — oo,

/ Fo(z)?sinzdz = O(nefﬁ) , (5.1.12)
=0

where 6 < 1 is a constant. Then there exists a constant v, > 0 such that for all
k=k(n)>m,

Ni(n) = ner(mad) (E)1+a(1+5/2m)

. +0O(n'™m), (5.1.13)

where ¢r(m, o, 8) = O(1) tends to a constant doo(m, v, d) as k — oco.
Furthermore, for each € > 0 and n sufficiently large, the random variables
Ni(n) satisfy the following concentration inequality

]P’(\Nk(n) _ Nk<n)| > Iznmax{l/2,2/a}+e) < e~ (5.1.14)

Remark 5.4 Note that the power-law exponent in (5.1.13) does not depend on
the choice of the function F,. We will see in the proof, that F, manifests itself
only in the error terms.

All the given canonical functions in Remark 5.3 do satisfy the condition given
by (5.1.12): it should be evident that for F{” the constants I, and 0 are given by
IV =1 and 0 = 0, respectively. Furthermore, from Remark 5.3 it follows that
we can take 0 = 0 for F!Y and 0® = 0 for F? if B € (0,2) and 6® = 2¢ if
8> 2.
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Before we consider the connectivity and diameter of G,,, we place some addi-
tional restrictions on the function F,. These restrictions are necessary to end up
with a graph which is with high probability connected. Keep in mind the function
FM(u) = 1{|u|<rn}, then it should be clear that 7, should not decrease too fast,
otherwise we end up with a disconnected graph.

Let p, = p(p,n) be such that

1 Pn
wl, = f/ F,(z)sinzdz,

2 Ja=0
for some p € (0,1].
We will call F,, well-behaved (for some value of u) if there exist constants N,
L and c3 such that for all n > N:

(W1) F,, is monotone non-increasing;
(W2) np? > Llogn, for some constant L;
(W3) p2 F,,(2p,) > c31,,, for some constant c3 which is bounded from below.

Remark 5.5 In [/4] the word ‘smooth’ is used instead of ‘well-behaved’. It is
generally accepted that a ‘smooth function’ is a function that has derivatives of
all orders. Therefore, we refrain from using the word ‘smooth’, and use the word
‘well-behaved’ instead.

Before stating the theorem, we will give an intuitive meaning of p,. To
that end, consider the function F"(u) = 1{u<r,} and use the fact that if r, =
O(n=1/27¢) for some & > 0, then the limiting graph is not connected, see [72]. It
should be intuitively clear that in the limit, each newly added vertex x, should
connect to at least one other vertex. Thus, there should be at least one vertex
within distance r,, of x,. At time n there are n — 1 vertices and the probability
that at least one of these vertices is at distance at most r, of vertex z,,, denoted
by pe(n,ry), is at most C(n — 1)r2 for some constant C. On the other hand,
we see that if 7, = O(n_1/2_5) then pc(n,r,) = O(n™%) tends to zero for large
n, and, as a consequence, in the limit the graph is not connected. If, as is our
assumption, r, > n°~ /2, then p.(n,r,) — co.

The value of p,, is the ‘generalized radius’ indicating the relevant radius for
the model. The condition that p.(n,r,) — oo is replaced by np2 > Llogn. Then,
intuitively, condition W2 implies that for general F,, the value p.(n, p,,), does not
tend to zero and implies that the limiting graph is connected. The conditions
W1 and W3 are technicalities, combined they ensure that the ‘area’ due to the
radius p, is sufficiently large: condition W1 states that Fj, is monotone non-
increasing and combined with W3 one can show that the ‘area’ within radius 2p,
is (2pn)2F(2p,), which is at least 4ezl,,.

Theorem 5.2 If a > 2 and F, is well-behaved, m > Klogn, and K is a suffi-
ciently large constant, then with high probability

e (3, is connected;

o G, has diameter O(logn/py).
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Remark 5.6 All the canonical functions are well-behaved. It should be evident
that one can take for F®: p©@ =1, p@ =1 and ¢’ =1 for . For F"(u) one
can take for ezample p® ~ 1/4 and p’ = r,/2 and 5’ ~ 1. Finally, F is also
well-behaved, we refer to [{4] for the precise values of p/?, u® and c3’.

We end with a sharper result on the diameter, however we, also, need stronger
restrictions on the function F,,. We will call F;, tame if there exists strictly positive
constants C7 and Cy such that

(T1) Fo(z) > Ci for 0 <z <
(T2) I,, < Cs.

Theorem 5.3 If « > 2, § > —m and F, is tame and m > Klogn, and K
sufficiently large, then with high probability

e (4, is connected;

e G, has diameter O(log,, n).

Remark 5.7 It should be evident that the function F° is tame, since one can
take Cy = Cy = 1. If 5 € (0,2) then we also have that F® is tame, since

1 [ n2=ph
F?(z) > 7P for0<ax<m, and I? = f/ x Psinzdr < ———.
) 2 Ja=o 2(2-0)

Remark 5.8 If we consider the configuration model (CM), see Section 5.1.3, [54,
56] or the Poissonian random graph (PRG), see [87, T1], then the typical distance
depends on the power-law exponent. If the power-law exponent is larger than 3,
then the typical distance is of O(logn), where n is the number of vertices in the
graph, and if the power-law exponent is between 2 and 8 then the typical distance
is of O(loglogn). It is not clear if this holds for the GPAF model. Theorem 5.2
only states an upper bound on the diameter, independent of §.

If F,, = F® =1 and § € (—m,0) then the authors of [53] show that the diam-
eter in the graph G,, fluctuates around loglogn. If F,(u) = FV(u) = 1{ju|<r.},
then, intuitively, the diameter depends only on r,, since r,, determines the mazx-
imal length of an edge, and we conjecture that the diameter is at least of order
logn.

5.1.3 Related work

In this section we consider random graph models, which are related to the Geo-
metric Preferential Attachment model with fitness (GPAF).

As mentioned earlier the model is related to the Albert-Barabasi (BA) model.
In the BA-model the power-law exponent 7 is limited to the value 3, which was
proven by Bollobas and Riordan.

Cooper and Frieze introduced in [27] a very general model preferential attach-
ment model. In this model it is both possible to introduce new vertices at each
time step or to introduce new edges between old vertices. Due to the weights with
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which edges of the new vertices are attached to old vertices and the adding of
edges between old vertices, the power-law exponent 7 can obtain any value 7 > 2.

In [30] the authors overcome the restriction 7 > 3 in a different way, by choos-
ing the endpoint of an edge proportional to the in-degree of a vertex plus some
initial attraction A > 0. This is identical by choosing the endpoint of an edge
proportional to the degree of a vertex plus some amount § = A —m > —m, as
done in the PARID model (cf. [29]). The power-law exponent in [30] is given by
T = 3+ d/m. Note that for 6 = 0 we obtain the BA model. The authors of [29]
show more rigorously some of the results in [30].

Both in [27] and in [29] it is allowed to add a random number of edges W, with
the introduction of a new vertex. In case the mean of W is finite the power-law
exponent is given by 7 = 3 + §/E[W]. Hence, if P(W = m) = 1 for some integer
m > 1 then we see that 7 = 3 + d/m > 2, since we can choose for § any value in
(—m,0).

In [43, 44] the authors add geometry to the BA model, which corresponds to
the GPAF model, introduced above, with § = 0. Due to a technical difficulty
the model has an additional parameter, called @ > 2. As a consequence of this
restriction they only obtain power-law exponents greater than 3, since the power-
law exponent is given by 7 = o + 1.

By combining the GPA and PARID model, we obtain the GPAF model, in-
troduced in this chapter. Due to the additional parameter ¢, it is in this model
possible to obtain any power-law exponent 7 bigger than 2.

5.1.4 Overview of the chapter

The remainder of this chapter is divided into three sections. In Section 5.2 we will
derive a recurrence relation for the expected number of vertices of a given degree.
In Section 5.3 we will present a coupling between the graph process and an urn
scheme, which will be used in Section 5.4 to show that the number of vertices with
a given degree is concentrated around its mean.

5.2 Recurrence relation for the expected degree se-
quence

In this section we will establish a recurrence relation for Ny (o) = E[Ny(o)], the
expected number of vertices with degree k at time o, which is claim (5.1.13) of
Theorem 5.1. From this recurrence relation, we will show that

Ni(o) ~ opk,

where pp ~ k~(1Ha(1+8/2m)) aq | 50. The proof of claim (5.1.13) depends on
a lemma, which is crucial for the proof. This lemma states that for sufficiently
large n the value M, ,(z,41) is equal to a©I,0, with high probability. This
is a consequence of the fact that Ty, ,(x,+1) is concentrated around its mean
E[Ty 0 (zo41)] = 201,00 < aOI, 0, see (5.1.5) and (5.1.8), which is the content of
the next lemma.
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Lemma 5.9 Ifa>2,0>—-mand 0=0,1,2,...,n, then
P(|Ton(011) = ElTpn(w011)]| > OI (0% + 0"/ log o) logn) = O(n"2).

The proof of this lemma is deferred to Section 5.4.1.

We will allow that m depends on n, thus m = m(n), as already pointed out
previously. In establishing the recurrence relation for Ny (o), we will rely on the
derivation for § = 0 in [44, Section 3.1].

At each time, we add a new vertex from which m edges are emanating, and for
each of these m emanating edges we need to choose a vertex-endpoint. The first
possibility for a vertex to have degree k at time o + 1 is that the degree at time o
was equal to k and that none of the m endpoints, emanating from =, 1, attaches
to the vertex. Furthermore, ignoring for the moment the effect of selecting the
same vertex twice or more, the vertex could also have degree k — 1 at time ¢ and
having one endpoint attached to it at time o 4 1. Finally, it is also possible that
the newly added vertex x,1 has degree k. The total number of vertex-endpoints
with degree k is distributed as Bin (m, pi (o)), where

pk(U) — Z w7 (5.2_1)

vED(0) Ma,n(xa—&-l)

and Dy (o) C V, is the set of vertices with degree k in the graph G,. Similarly,
the number of vertex-endpoints with degree k — 1 is distributed as
Bin (m7pk71(‘7)) .

If the newly added vertex x,41 ends up with degree k, then this vertex has
k — m self-loops. The number of self-loops, d,+1(0 + 1) — m, is distributed as
Bin (m, pe seir), where

Do,self = 1-— To,n(za+1)/Ma,n(Ia+1)~ (522)
For k > m, this leads to

E[Ni(0 + 1)|Go. 241] = Ni(0) — mpi(o) + mp—1(0)

+ E[l{d6+l(‘7+1):k} | Ga; ‘T(T+1] + O(mnk(GU7 xa+1)) )
(5.2.3)

where 7, (G, xs41) denotes the probability, conditionally on G,, that the same
vertex-endpoint is chosen at least twice and at most k times.
Taking expectations on both sides of (5.2.3), we obtain

_ s (k+0)Aqn(xy)
Nk(a + 1) - Nk(o) mE Z Mn,n(za-‘rl)
vEDy (o)

(k—1+0)Agn(zy)
+mE ’
”GDkzl(a) an(xa-u)

+P(dyt1(c+1) —m=k—m)+ OmE[ng(Gs,2541)]). (5.2.4)
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Let
B, = {|Ton(z641) — 201,0| < C101,07 logn}, (5.2.5)

where

max{2/a,0} <y <1, (5.2.6)
and C is some sufficiently large constant. If
o >ty = to(n) = (logn)?/ =7,
then B, implies that for sufficiently large n,
Ton(xoy1) <2010 + C101,0" logn = 201,00 (1 + (’)(log{1 n)) < a®l,o,
since a > 2, and, hence, with high probability
My n(Xoy1) = max{Ty n(Tot1), Ol 0} = aOI,0. (5.2.7)

Next, we consider each term on the right hand side of (5.2.4) separately, for
o =1,2,...,n. For the first two terms on the right hand side of (5.2.4) we will
use that py (o) is a probability and that P(BS) = O(n~?), for o > to, see Lemma
5.9, which yields

Elpi(0)] = Elpi(0) | Ba] P(B) + Elpi (o) | BR] P(B;,) = Elpi(0) | Ba] + O(n?) .
Also, using that Np(o) < o,

E[N(o)] — E[Nk(o) | B]
P(B,)

E[Ni(0) | Bn] = = Ni(o) + O(on™?). (5.2.9)
For o sufficiently large, using (5.1.4), (5.1.7), (5.2.1) and (5.2.9),

k+6
a®l, o

E Z Ao,n(x'u) B

| vE€Dk ()

k+46
_a@InUE Z /SFn(|xU—u|)du B

Elpk(0) [ Bn] =

| vE€Dk (o)
(k4 0)E[Nk(0)|Bn]  (k+6)Ni(o) 9
= B0 = B0 +0(kn™?%).  (5.2.10)

Combining (5.2.8) and (5.2.10), we obtain

S (k+8)Agn(@y) | _ (k+0)Ni(0) +O(kn2), (5.2.11)

Elpi(0)] = E My n(Tot1) aOc

vED (o)

for o > to = to(n) = (logn)*(*=7). The above statement remains true when we
replace k by k — 1.



134 A geometric preferential attachment model with fitness

For the third term on the right hand of (5.2.4), observe that
P(dot1(o11) = k| Go,2011) = P(Bin(m,p) =k —m|Gq, z511)

m —m m—
( )plg,self(l - pcr,self)2 k. (5.2.12)

k
Observe that on B, using Lemma 5.9, (5.2.2) and (5.2.7),

Ton(top1)  201,0+ @InO((UQ/a + 0'/?1log o) log n)

L= Posar == - a®l,0
2 | 2/a—1 , _1/2—1
=— +O((0 +o logo) logn)
a
2
==+0(c""'logn), (5.2.13)
a

where « is given by (5.2.6). Therefore, combining (5.2.12) and (5.2.13), we obtain
P(dyt1(zot1) —m =k —m|[B,)

_ (k Tm> <1 _ 2)]“” (i)%m (1+ O(mo™ " logn))

- (k Tm) <1 - i)km <2>2km +O(mo" logn) .

It follows from Lemma 5.9 that

P(dot1(ot1) = k) = P(do41(2o11) —m =k —m|[B,) P(B,) + OP(B))

AR O S

For the fourth and final term on the right hand side of (5.2.4), we use

2
(G0'7 -'170'+1 min Z Z ’L i |6| (:L‘U) ,1 ’

$
i=m veD; (o) an a+1)

which generalizes Equation (5) in [44]. Using similar arguments that led to
(5.2.11), one can show for

o>t =t1(n) =n0TD/27 and k< ko =ko(n) =n"D (5.2.15)

that
k2n?
mo

E[mne(Goy Toi1)] = O( ) =0(c" ). (5.2.16)
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Substituting (5.2.11), (5.2.14) and (5.2.16) in (5.2.4), we end up with the
following recurrence relation:

m

Ni(o +1) = Ni(0) e

(k + 8)Nyu(0) /o + %(k 14 0)Ny_1(0)/o

m ) (1 B 2a,1)k—m (2a,1)2k—m

+ 1{m<k<2m} (k
+ O(ma”’*l log(n)), (5.2.17)

for £ > m and Nm,l(a) =0 for all o > 0. The above recurrence relation depends
on ¢ and k. Consider the limiting case, i.e., 0 — 00, and assume that for each k
the limit

Ni(0)/o — pi (5.2.18)

exists. If this is indeed the case, then in the limit the recurrence relation (5.2.17)

yields:

m m
= — (k—-14+80pp_qg — —(k+0s
D a@( +0)pr—1 a@( + 6)pk

+ 1{m<k<2m} <]€ m > (1 — 2a71)k_m (20[71)276—7” ’

where k > m and p,,—1 = 0. By induction, we then obtain, for k > 2m,

om0 kol4s T+ 14d+ 500+
P 2+ 0 T ks @ T D oDk + L+ 0+ 29) P

Using that T'(t + a)/T'(t) ~ t* for a € [0,1) and ¢ large, we can rewrite the above
equation as follow:

)

e = ¢r(m, @, ) <T>l+%

m\ 1+a(14+d6/2m)
: )

= ¢k‘(m7 @, 5) (?
where ¢r(m,a,d) = Z(1) tends to the constant ¢ (m,a,d) depending only on
m,« and § as k — oco. Finally, following the proof in [44, from equation (15) up
to the end of the proof], which shows that there exists a constant M independent
from n, such that

|N(0) — pro| < M(n'=0=9/% L 57 logn), (5.2.19)

for all 0 < o < n and m < k < ko(n). Thus, the assumption (5.2.18) is satisfied.
By picking 1 > 0 sufficiently small, we can replace the right hand of (5.2.19) by
n'=7, and one obtains the claim (5.1.13).

5.3 Coupling

In this section we make preparations for the proofs of Lemma 5.9 and the concen-
tration result in Theorem 5.1, see (5.1.14). In this section we take 7 € {1,...,n}
fixed and we consider the graph process up to time 7 — 1 resulting in the graph
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Gr_1. At time 7 we apply the Growth Rule, see Section 5.1.1, twice on G._1,
independently of each other, which results in the graphs G and G,. Theideais to
compare the graphs G, and GT over time by considering G, and GU forr <o <n.
To this end, we will introduce two urn processes {Us}s>- and {Us}s>,. The urns
consist of weighted and numbered balls. Instead of choosing a vertex-endpoint
v € Vyy1 at time o + 1 by (5.1.2) and (5.1.3), we will draw (with replacement)
a ball proportional to its weight and then the vertex-endpoint is given by the
number on the ball.

Next we describe briefly how we use the urns together with growth of the
graphs G, and ég, for ¢ > 7. For the graphs G, and éa we define the urns U,
and U,. Then we draw balls from these urns and using the numbers on the drawn
balls, we construct the graphs G,41 and @U+1, which will be explained in next
section. This process can be repeated until we end up with the random graphs
G, and Gn for some n > o.

The coupling between the urns will be introduced in four steps. The first step
is to introduce for any o > 7 two urns. Secondly, we will introduce a probabilistic
coupling between the two urn processes. Thirdly, we will describe the coupling
between the graph processes G, G, and the two urn processes. Finally, we
consider the vertex-endpoints v$” and 0{?, for ¢ = 1,2,...,m, in the graphs G,
and G, respectively, and we will calculate the probability that v #£ 0.

5.3.1 The two urns

In this section we describe the contents of the urns corresponding to the graphs
G, and Ga, for o = 7,7+ 1,...,n, and we give an alternative way of choosing
the vertex-endpoints using the urns.

Fix two graph processes {G,} and {G’s} such that the graphs up to time
7 — 1 are identical, i.e., G4 = G, for s = 0,1,2...,7 — 1, and that x, = &, for
s=7+1,7+2,...,n. Thus, the points x, and Z, are sampled independent of
each other, and therefore they will differ from each other, and, as a consequence,
also, the edge sets F; and ES, fors=7,74+1,...,0, will be different. Finally, we
assume, without loss of generality, that T, ,,(2541) < Thyn(Zos1).

Next, we will describe the contents of the urns U, and UU given the graphs G,
and G’J, and the newly added vertex x,1. We will use the following abbreviations:

Tom =Ton(Tot1) and My pn = Mo pn(To41). (5.3.1)

Furthermore, if e is an edge, then we denote by TO(e) the endpoint of the edge.
Thus, if edge e is added at time ¢, emanating from the vertex ¢, points to a vertex
s € V; then TO(€) = s.

Contents of the urns:

e For each edge e € E,, such that TO(e) # 7, there is a white ball in
Us of weight Ay ,(%1o(c)) and numbered TO(e). Similarly, for each edge
in e € E,, such that To(e) # 7, there is a white ball in U, of weight
Agn(Troe)) = Aon(Tro(e)) and numbered To(e). Observe that Zro) =
Tro(e) Since TO(e) # 7.
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e For each vertex v € V,\{7} there is a red ball in each of the urns U, and
U, of weight (m + 0) A (z,) and numbered v.

e For the vertex 7 there is in U, a purple ball of weight (d (7’)—|—6) om(z-) and
number 7, and in U, there is an orange ball of weight (d, U(T) 0) Ao n(Zr)
and numbered 7.

e For the vertex o+1 each of the urns U, and U, contain a green ball of weight
(a®Il,,0—T,,)", where ()" = max{0, -}, and numbered o +1. Furthermore,
we add only to U, a blue ball of weight ((a©I,,0—T,,)t —(aO®I,0—T, ) ") "
and numbered o + 1.

Remark 5.10 The total weight of the white and red balls in U, are given by
Z Agn(Tro(e)) L{To(e)#r} and Z (m+98)Asn(Ty),
ecE, vEVL\{7}
respectively, and the weight of the purple ball in U, can be rewritten as
(do(T) + 0)Agin () = Y Agn(Tro(e)) Lrole)=r} + (m + 6) Ag p(z-).
ecE,
Therefore, the total weight of the white, red and purple balls in U, is equal to:
N7 Apn(Troie) + D (m+8)Agn(zy) = > (do(v) + 0)Agn(w0) = T
ecE, veEV, veEV,

Furthermore, from (5.1.7), and some easy calculation, the total weight of all the
balls in Uy, is M, . Similarly, the total weight of the white, red and orange balls
in the urn [70 18 Tg,n and the total weight of all the balls in Ug 18, precisely an.

The weight of a ball depends on the time o, the color of the ball and the number
on the ball. Let b be a ball in U, or U,, then we define the weight function w,,
as

Aa,n(xg b)) lf b is White,
m+6)Agn(Ten)) if b is red,

wo (b) = C{U({ET) + 5)Aawn(3:"7) ?f b ?s purple, (53.9)
dy(&;) + 5)Ag n(Zr) if b is orange,

a®l,o—T,,)" if b is green,
(a®I,0 — T W)t = (@@, —T,,)")T if bis blue,

(
(
(
(
(

where £(b) is the number on the ball. Observe that the number and the color
together determine the weight of a ball.

We identify a set B C U, or B C U, of distinct balls by the set of pairs (¢, k),
where ¢ denotes the color and %k the number of the ball. For any set B of distinct

balls, define
1Blle = wo(b)
beB
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We will draw the balls {b{ }/" ; with replacement from the urn U, proportional
to the weight. Let {b’}, be the sequence of balls drawn from U,, then it is
easy to show that

PEDYL) =v|Us) =P(vS ), =v|Go,2ot1) (5.3.3)

and ]P’(f(l;gil) =uv| Ug) = P(@f,lj_l =] é0,£0+1), for v € V,11. As an example
we will show (5.3.3) for v € V,41\{7,0 + 1}. Observe that in this case the left
hand side of (5.3.3) corresponds to the probability of the event that we draw the
red ball numbered v or one of the d,(v) — m white balls, thus
(m + 0)Agn(@y) + (do(v) — m)Ag i (z0)

1Uslo
(do(v) 4+ 0)Ao,n ()

T =P(v5h1 = v[Go2ora),
ollo

by (5.1.9), since |Uy|le = My, (see Remark 5.10).

P(&(bgyy) =v|Us) =

5.3.2 The joint distribution of drawing balls

In this section we describe how we simultaneously draw the balls from the urns
U, and U,. As before, we will assume that Tom < Tg,n, or, equivalently, |Uy|ls <
|U, ||, see Remark 5.10. In the last part of this section we calculate the probability
of the event {b) # l;f;)}, fori =1,2,...,m, and 7 < o < n, i.e., the event that
the two balls b%) and b$ in the i* draw do not agree on number or color, which
we call a mismatch.

Define the following sets

R, = U,\U,, C,=U,NU, and Ly = U \U,,
where, as before, we compare the balls by color and number.

Remark 5.11 By construction, L, only contains white and orange balls, C, con-
tains only white, red and green balls, and R, contains only white, purple and blue
balls. Furthermore, concerning the weights, we have the following relations

||CU||<T + ”RUHU = ”UUHU and 1Cs o + HLUHU = HUU”U' (5.3.4)

Next, we give the joint distribution of drawing balls from the urns U, and U,.

The joint distribution: Draw, with replacement, m balls bf,ljrl, e ,b;"jr)l from
U,. For convenience we write b = b\’ for i = 1,...,m. For each i, we define
b = ?’gld by
o If b € C, then, with probability
U,
IUllo (5.3.5)
1Usllo

we set b = b, otherwise we choose b@ from L,, i.e., we choose b € L,
with probability w(b)/|| L, ||-; observe that the quotient in (5.3.5) is bounded
by 1, because, as remarked earlier, ||Usy|lc < ||Us|o-
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e If b € R,, then we choose b from L,, i.e., choose b € L, with probability
we (0) /|| Lo |o-

The marginal distributions: Let P7 the measure under the above coupling
where we start from the fixed graphs G, and G, ie., IFDT() = P<-|GT7C¥T).
Furthermore, define, for o > 7,

g

Py = PT(- |Gy, éc,) and  BI(.)= I@T(. feiyen x(,H) . (5.3.6)

Observe that, for o > 7,

B U, T0) = B+ G Gt ) = B 00) = BE(-).

We will show that under the coupling

]f”;(bu) =b) = |1|UT;(|IT) =P =b|U,) (5.3.7)
and
. b) ) .
B (b0 =) = 22O _pho Zp0,), (5.3.8)
+( ) 1Us |l ( )

for b € U, and b € U,, respectively. The claim (5.3.7) is true by construction.
For the claim (5.3.8), if b € U,, then this implies that b € C, or b € L, but not
in both. Firstly, assume b € C,,, then

D7 (71 o7 [ B(L 1 1 DT (1(1 ”UUH(T wU(b) ’LUg(b)
ng+(b< ) — b) _ Pmr(b( )= pW D = b) BT (0 =) = TARLA = AR

Secondly, if b € L, then

Bz (b =0) = B7 (b = b € €, ) B0 € C)
+ B (B<1> — b € Rg) B (b € R,)

_we®) (1 WWelle ) NCello | wo(®) [ Follo
Lo lo 1Us o 1Uslle  NLolle [1Usllo

wo(8) ((ICs lo + I1Rsllo) 1T ls = 1UallolIColle ) 4 (b
_ _ wo(b)
1o llo1Usllol1Us o 105l

where we used in the last step the relations given by (5.3.4). Hence, again, the
claim (5.3.8) is true.
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5.3.3 The joint growth rule between coupled graphs

Fix 7 € {1,2,...,n}, as before, and consider the graph process {Gs}g;é. Let
{és};;é be an identical copy of {G}7_, and choose at time 7 the position z,
and Z, in G, and GT, respectively, at random in S, independently of each other.
Using the urns, we will describe the growth of the graphs G, and G, over time.

At time 7 we apply the Growth Rule, independently, on the graphs G,_;
and G,_;. Then at time o + 1, for ¢ > T, let Zy+1 randomly chosen from S
and set #5401 = z,41. Let U, and U, the urns correspond to (Goyxyi1) and
(GU,§70+1), respectively. Note that this is precisely the setting as described in
Section 5.3.1 and, as a consequence, we can use the results of Section 5.3.2. Draw
with replacement m balls, {b(’H}Z 1, from Uy, then the vertex-endpoints of z,4;
are given {€(b(,1)}™,. We, also, draw with replacement m balls, {5},  }7*,, from
Ug, and construct GU+1 in the same way.

5.3.4 The probability of a mismatch

The event of a mismatch of vertex-endpoints in the graphs G, and Gy, 0> T,
can be expressed in terms of drawing balls from the urns U, and U,, since

{0y #6000} = {6 # €0 } < b5, #B0 ) (5.3.9)

Thus, we will concentrate on the probability of a mismatch between the drawn
balls from the urns. Without loss of generality, we assumed that |U,|lo < ||Us ]«
or, equivalently, T, < ngn. Using the joint distribution of the urns, see Section
5.3.2, and (5.3.4), we obtain

Br (v #65%) =1~ Z B (0% = b0 = b) BL(8S, = D)

o b ol||lo LO’ g
beC, |U ||a ”U ”‘7 HUUHU ||U[,—||U
By (5.1.7) and Remark 5.10, we can bound the denominator on the right hand
side of (5.3.10) from below by
1Usllo = 1Usllg = Mo = aOl0.

Next, we consider the numerator on the right hand side of (5.3.10). The set
L, only contains white balls and the orange ball, see Remark 5.11. Therefore,
compare (5.3.2), the total weight of L, can be written as

ILollo = D Aon(wn) + (do(7) + 8) A n(ir),
he&,
where
Es = UeEEU\E”{e : TO(e) # 7} (5.3.11)
Thus, the probability of a mismatch between balls is bounded from above by

) < Zhesa Agn(Tn) + (&U(T) +6) Ao n(2r)
- a®l, o

Bz (v # 05 (5.3.12)
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Remark 5.12 IfT,, > Ta’n, then it should be clear that one can interchange the
roles of G, and G in Section 5.3, which implies that for this case

Ll SXED) 7(1) _ ||RJHJ < Zheéu AU,n(xh) + (dU(T) + 5)Aa,n($r)
Pg+(ba'+1 3"é bg+1) - HUO'HO' — a@[na

, (5.3.13)

where £, = Uee\ g, {€ 1 TO(e) # T}

5.4 Proof of the main results

In this section we will prove the main results, i.e Theorem 5.1, 5.2 and 5.3. The
diameter results, Theorem 5.2 and 5.3, can be proved almost immediately using
the proofs in [44], but this is not true for Theorem 5.1. The proof of Theorem 5.1
relies on Lemma 5.9 and this takes more effort.

This section is divided into 3 parts: in the first part we will give the proof of
Lemma 5.9, then, in the second part, we will give the proof of the main results, and
in the last part we show a bound on the number of expected mismatches, which
is necessary for the proof of Lemma 5.9. Before doing so, we will consider the
number of mismatches between G, and G’m for ¢ > 7 > 1, where a perturbation
is made at time 7 as defined in Section 5.3.3.

At each of the times s = 7,7+ 1,...,0 — 1, we sample (with replacement) m
balls from each of the urns Uy and Us under the coupling as introduced in Section
5.3. After m draws we end up with the balls {b¢)}™, and {6} . Tf the two
balls b{? and 13;” in the i*® draw do not agree on number or color, then, as before,
we call the draw a mismatch, i.e., {bQ) # b®}. Let AT, for ¢ > 7, the total
number of mismatches between the urns U, and UU, then

AT =) 100} (5.4.1)
s=T1 =1
Furthermore, for u € S and o > 7 define

Af(w) =)

s=1 i=1

Fn(|x£(bgi>) —ul) — Fn(|$§(3g>) —ul)]. (5.4.2)

Next, we will relate the expected values of (5.4.1) and (5.4.2). Fix any y € S and
let U be randomly chosen in S, then

E|

Fullaggn = UD = Fallegge, = U]
< EKFH(‘%@S)) U]+ F"(|x£(132“) - U|)) 1{bgi)¢6§i)}:|
= IE[?/ Fo(ly — ul) dul{bguagw}} =2L,E[1{s0)#0}]
S

where we used (5.1.4). Thus,

E[A”(U)] < 21, i i E[1{0#"}] = 2I,E[AT]. (5.4.3)

s=71 1=1
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The next lemma bounds the number of expected mismatches between the
graphs G, and G,.

Lemma 5.13 Under the conditions of Theorem 5.1, let 0 > 7 > 1 and U ran-
domly chosen in S, then for some constant C > 0,

JE

E[AT(U)] < CmlI, (9) " Jog o, (5.4.4)
T

and, as a consequence,

1[N

E[AL(U)] < Cml, (2)°
since (©/m)~! < 2.
The proof of the above lemma is deferred to Section 5.4.3.

Remark 5.14 For the proof of the main result, we need that the number of mis-
matches is of o(o), which implies that the exponent in (5.4.4) should be smaller
than 1, i.e., m/a© < 1. For o > 2 and § > —m this is indeed the case:

m _ 2m <2<2
O " m+(m+45) m~

)

thus m/a® < 1.

If § = 0, which is precisely the model introduced in [44], then the condition
simplifies to 1/a < 1, which is a weaker condition than the condition used in [{4]:
2/a < 1. Nevertheless, we cannot get rid of the condition o > 2, because we need
that the event B, occurs with high probability, see (5.2.5).

5.4.1 Proof of Lemma 5.9

In this section we will prove Lemma 5.9 using the Azuma-Hoeffding inequality,
which provides exponential bounds for the tails of a special class of martingales:

Lemma 5.15 Let {X;};>0 be a martingale process with the property that, with
probability 1, there exists a sequence of positive constants {e.},>1 such that

|X‘r—1 - XT| S €r,

for all T > 1. Then, for every A > 0,

)\2
P(| X, — Xo| > \) <2 —

For a proof of this lemma, we refer to [52].
We will apply Lemma 5.15 by taking a Doob-type martingale

X; = E[Ta,n(xﬂ+1) |G-,
for 0 <7 <o+ 1. By, convention, we let Gy be the empty graph, then

XO = E[To,n(anrl)] = 2®In0' and XU+1 = To,n(xa+1)~
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At each time step s we add a new vertex and m edges, see the Growth Rule
in Section 5.1.1, call this an action. We call an action A acceptable if the action
can be applied with positive probability. Furthermore, denote by A(G) the set of
all acceptable actions that can be applied on the graph G.

Clearly, for 1 <7 <041,

| Xro1 — X7| = |E[T0,n(x0+1)|G'rfl] - E[Ta,n(x0+1)|GT]|

<sw s (BT (040)|Gro1(A)] ~ E[Ton(@041)|Gr o1 (A)]
Gro1 A,AEA(GTfl)

)

(5.4.5)

where the first supremum is taken over all possible graphs G,_1, and the graphs
G._1(A) and G,_1(A) are obtained by applying the action A and A on the graph
Gr_1, respectively.

Next, we fix the graph G,_; and let G; = G,_1(A) and G, = G,_1(A), then
let P7 the probability measure as introduced in Section 5.3 where we start with
the graphs G, and GT, then

sup (BT (5041)|Gr 1 (A)) — E[Ton(040)|Gr1 (A)]
AA€A(Gr—1)

IAET{TUW(%H) _ Tg,n(xm)} ) (5.4.6)

= sup
AAcA(G,_1)

Using the triangle inequality, the above implies, under the coupling,

er < sup sup ]ET[ Ton(Tos1) — Ta7n(xn+1)H . (5.4.7)

Gr-14,A€A(G- 1)

We claim that, independently of G,_1, A and A, and, for o > T,

ET[ Tyn(Tos1) — Tgyn(a:gH)H < Cml, (o)1), (5.4.8)

where the proof of this claim is deferred to the end of this section. Thus, using
(5.4.7) and (5.4.8),

Z ez < C?mPI2 ot ZT‘MQ = (’)(mQIZ(aMO‘ + olog O')) .
T=1 T=1

To show the above, let 3 = 4/a, then 3 € (0,2). If B € (1,2), then }.7_ 77 <
oo, and, if 4 € (0, 1], then
UBZT*ﬁSU'@JrZ(T/a)*ﬁSJﬂJrU/ 7tz = o + ologo.
=1 T=2 z=1

From Lemma 5.15 we then obtain for some constant C1,

P(|To,n(xo+l) - E[To,n(x0+l)] | > )\) < 26_210gna



144 A geometric preferential attachment model with fitness

for A\ = CymI, (0% + 0'/?logo)(logn)'/2. Remember that © = (2m + 4)/2,
therefore by taking n sufficiently large, we can replace Cym(logn)/? by ©logn,
which is, precisely, the statement of Lemma 5.9, given the claim (5.4.8). O

Proof of claim (5.4.8): Denote by d (v) the in-degree of the vertex v at time
o, and observe that

d,(v) =d; (v) +m, (5.4.9)
since each vertex has by construction m edges pointing outward to other vertices
or itself. Furthermore, we denote by y( the position of the i** vertex-endpoint

at time s, thus
Y =z 0. (5.4.10)

By construction of G and GT, we can apply the coupling introduced in Section
5.3.3. Rewrite Ty (2541), see (5.1.1) and (5.1.7), using (5.4.9), (5.4.10), and the
coupling, as

Un x0+1 Zd (rn Iv +6ZAU71 xv)

v=1
_Zd Un (xy) + (m+6)ZAU,7L(xv)
v=1
=SS Ap) (4 63 Ag(e)
s=1i=1 v=1
= z; 2; Aa,n b(” (m + (5) z_; Ao,n(xv)'

Up to and including time 7 — 1 both graphs are identical, thus the absolute
difference

Ta,n(xUJrl) - Ta,n(anrl)’ )

equals

ZZ( (Te0)) = Arn(@eio) ) + (1 + ) (A () = Agu(ir)].

s=7 =1

Using the triangle inequality and (5.4.2), we obtain

Ton(Tot1) — Ta,n(xo'Jrl)‘ <AL (o41) + (M +0) (Ao n(2r) + Ao in(24)) -

Taking expectations, under ET, on both sides of the above display, and using
(5.1.6), (5.1.7) and (5.4.3), yields, for 1 <7 < o,

ET[\TM(%H) - Tg,n(xm)@ < 2L (B7[A,] + (m +4)), (5.4.11)

and for r =041,
B[ T 11) ~ T o) = 0
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since G, = G,. Applying Lemma 5.13 on (5.4.11) finally results in
E" |Ta,n<x0+1) - Ta,n(xo+l)| < ém[n(g/T)z/a>

for some constant C. This is precisely the claim (5.4.8). O

5.4.2 Proofs of the main results

In this section we show the main results. The proof of Theorem 5.1 is almost
similar to the proof of Lemma 5.9. The diameter results, i.e, Theorem 5.2 and 5.3
will be proved by adapting the proofs in [44].

Proof of Theorem 5.1: The first part of Theorem 5.1, i.e., claim (5.1.13), has
been proved in Section 5.2. For the second part, i.e., claim (5.1.14), we now give a
proof, which is similar to the proof of Lemma 5.9. Therefore, we follow the proof

of the previous Section 5.4.1, where we now choose X, = E[Ny(n) | G;] instead of
X, =E[T,,(U)|G;]. Similar to (5.4.5), we have that

B[Ny (1)|Gr—1] — B[Ny (n)|G]]

<sup  sup  |E[Ny(n)|Gr_1(A)] _E[Nk(nnGT_l(A)} ]
Gr—1 A, AcA(G-_1)

Using the coupling, we can bound the right hand side in the above display by
twice the number of mismatches, since each mismatch can influence at most two
edges. Thus,

[E[Nk(n)|Gr-1] — E[Nk(n)|G,]| < 2ET[AT].

Therefore, we can take e, = 2ET[A;] and we, again, can apply Lemma 5.15, as
done in the previous section, which proves claim (5.1.14) and hence Theorem 5.1.
O

Proof of Theorem 5.2: The proof is almost identical to the proof of [44, The-
orem 2]. To apply this proof for general 6 > —m, we only need to replace the
constant cs in [44] by ¢}, where ¢} = ¢3/2 and ¢3 is the constant of condition W3,
see Section 5.1.2. This will be explained in more detail now.

Pick p and p, = pp(p, Fy,) such that F, is well-behaved for u, see conditions
W1, W2 and W3, see Section 5.1.2. Fix u € S and denote by A, the spherical
cap with center u and radius p,, then there exists positive constants c¢; and ca,
independent of p,,, such that

A, :/ dw € [e1p2, cap?], (5.4.12)
{'wES: |w_“|§pn}

which is shown in [44]. Furthermore, in [44] the authors consider the graph at
certain time steps ts, where s is a positive integer, such that the area of the
spherical cap is given by

/2 < Ay ts < 3s/2. (5.4.13)
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In the proof of [44, Theorem 2|, the essential step is the statement that the prob-

ability that v;, chooses vertex v € V;_, assuming that |z, — z,| < 2p,, is at least

2cic3

—_, L.e.,
as

201 C3

P(vy” = v |Gy, —1) > et

In our model this is still true, when we replace c3 by ¢ = ¢3/2, since, using the
assumptions W1, W2 and W3, (5.4.12) and (5.4.13),

Bt =[Gy _y) > D)+ Dl —l) (4 9)Fa(2p0)

Ol@]nts - CV@Ints
> 2(m +6)Ap, Fn(2pn) > 2(m + 8)c1p;, Fr(2pn)
- a®Ol,s - a®l,s

N 2(m +0)cics  (m+0) 2cic3 S 12cic3  2cic}

)

- aOs (C) as 2 as as

where we used that (m +6)/0 = 1+46/(2m+95) > 1/2 for —m < § < 0 and
(m+96)/© >1>1/2for § > 0. If we replace the constant cz by ¢} in the proof
of Theorem 2, then the proof of [44] holds without further modifications. O

Proof of Theorem 5.3: For § = 0 the proof is given by the proof of Theorem
3 in [44]. The constant A = C;/C5 in the proof of [44, Theorem 3| should be
replaced by A = (Cy + 6)/2C5, then the proof holds verbatim. O

5.4.3 Bounding the expected number of mismatches

In this section we will prove Lemma 5.13. In the proof of the lemma, we rely on
two claims, which will be stated now. The first claim bounds for any vertex and
all time steps the expected degree:

E[d,(0) + 8] < mC (%)a : (5.4.14)

where C' is some constant and
a=m/a®. (5.4.15)

The second claim is a technical one, which bounds the expectation of

Qo= > Agn(@n)U{To<lon} + Y Agn(@n)1{T00>T,0} (5.4.16)

he€y heés
from above. More precisely, for any o > T,
E[Q,] < I, (E[A;] +E[d, () + 0] + ]E[dc, (r) + 5} n 2@) . (5.4.17)
Next, we will assume that the claims (5.4.14) and (5.4.17) do hold and we will

show that Lemma 5.13 follows from these two claims. After the proof of Lemma
5.13, we will prove both claims separately.
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Proof of Lemma 5.13: Let 7 < ¢ < t, then the number of mismatches is
recursively defined as

o+1 = AT + Z bfw)ﬂ 0+1
and, therefore,
B[A7.] = BTA7] + mPr (b0, £ B0)), (5.4.18)

since we draw the balls with replacement.
Combining (5.3.12) and (5.3.13), yields

, ) o+ (do(T) + ) Agn(27) + (do (7) + 6) A (&1
Br (s, £ 563,) < & + (d(7) +9) ’Oféllj( (1) +6)Agn(@r)

Observe from (5.1.4) that
E;[da (T)Aa,n(-rT)] =dg (T)]]::;[F“xr - -ro—i-l)]
—dy(7) [3 Flles — u))du = dy (),

(5.4.19)

and, hence R R
E™[(dy () + 0)Agn(z7)] = ET[d, () + 6] I,

Similarly, IAET{(JU (1) + 5)Ag7n(§:T)} = ET[JU(T) + 6] I,.
Thus, taking expectations on both sides of (5.4.19) results in

oy ElQo]+ (Elds (1) + 6] 1) + (E|do () + ] 1)
(ba—i—l 7é ba+1) — a@]nU 5 (5420)
Substituting (5.4.14) and (5.4.17) in (5.4.20), yields

) 1 AT] + (26 + 4mC(o/7)"
(b()l#b;-)H)_ E[A7] +( a‘(gam (‘7/7'))7

for some sufficiently large constant C' > 0. Therefore, we can bound the right
hand side of equation (5.4.18) by,

a\ 20 +4mC(o/7)*
E>+ aBo

— E[A,] (1 + g)+w,

g

E[A7,,] < E[A7] (1 +

where we used that a = m/a®© (5.4.15), 1/a < 1/2 and m/O < 2. Finally, by
taking the constant C' larger, we can replace the above inequality by

T T a —a __a—
E[A7 4] <E[A]] (1 + ;) +COr %L

We will now prove an upper bound for E[A;H] To this end, we consider the
solution of the recurrence relation (o +1) = g¢(o)(1+a/o)+b(o), for o > 7, with
initial condition ¢(7) = ¢. The solution is given by

0—|—a T(s+1) CF(a+a)F(7')
Fs+1+a T(o)(r+a)

q(o) =
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The above solution implies, that if one takes b(s) = Cr—9s%~1 < Cr—ohlsta)

T'(s+1)°
then
U+a s+1 0+ I'(s+a)
E[AT] <
ElAs] < 4(0) rs+1+ “T(s+1+a)

The summation can be bounded from above by log o, therefore, for some constant
c,

E[A7] < C (g)alog .

This proves (5.4.4) and hence Lemma 5.13, given the claims (5.4.14) and (5.4.17).
O

Proof of (5.4.14): Note that, see (5.1.7) and (5.1.9),

E7, [do+1(v) 4 0] = (do(v) + 6) + B [dos1(v) — do (v)]

= (dy(v) +6) (1 + mz\m)

< (do(v) +0) (1+mW>'

Therefore, by taking expectations on both sides in the above display, and using
(5.1.6), the value of E[d,41(v) + d] is bound from above by

E{(d,,(v)—&—é) (1+mWﬂ (1 +E) E[(d, (o) + §)].

Thus, by induction, and using a = m/a®©,

I'(o+a+1)'(v)
I'(c+ 1)I'(v+a)

o+a

Bl (0) +0] = (T ) Bl (o) + )] = E[(dy (0) + 8)].

Finally, note that d,(v) < 2m and that ¢ is a constant, which implies the claim
(5.4.14). O

Proof of (5.4.17): Observe that for i = 1,...,m and s > 7, see (5.4.10),
L0 A0} 4 10 o=} = Lp a0} = 1 ko ), (5.421)

since, x; = 4, if i # 7 and x, # Z,. The above statement is stronger than (5.3.9).
Using the definition of &, see (5.3.11), and (5.4.21), we have that

Z Agon(zn) <ZZAU" Y1 {y 0250,

he&, s=T1 i1=1
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and we can bound }; s A, n(zp) in a similar way. Hence, we can bound (5.4.16)
from above by

Qo <D 1250} (Ao (W) LTrin <o} + Ao (§87)1{Trn>To0})

s=1 =1

- ZZ {250 Ay (55)

s=T1 i=1

F T <Ton} Y Y {0400} (Aen(y) — Aen(3)) . (5.4.22)

s=T7 1=1

Next, we will show that the rightmost double sum of (5.4.22) can be bounded by
(m+6)(Aon(2r) — Aon(zr)).

For this, we rewrite T, ,, as

Tom = Z(dS(U) +0)Aon(zs) = Z dy (0)Asn(zs) + (m+0) Z Ao n(Ts).
s=1 s=1 s=1
Note that
Z d; (0)Asn(zs) = Z { Z 1{vf”—s}} Agn(xs)
s=1 s=1 t=s i=1
o m t o m
= Z Z {Z v =s} Aon (xg)} = Z Apn(1?”)
t=11i=1 \(s=1 t=1 i=1
Therefore,

Typn = Z Ao,n(yg)) + (m + 5) Z Ao,n (xé)

s=1i=1 s=1

and a similar result hold for 7, o.n- The difference of these two expressions equals:

T~ T = 323 (Ao (58) — Agn(5)) + (m + 0)(Agn(e) — Agia(i).
s=11i=1
or
S (on0?) — Apm (i) = Ty — T — (m+ 5)(Agin(7) — Agin(2)).
s=11=1
Hence,
<0} 3D (o) + ArinG0) < 04 8) (A7) — Agia(2)).
s=11i=1

(5.4.23)
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Substituting (5.4.23) in (5.4.22) yields,

Qo <305 1O 200} Ao (50 + (1 4+ 6) (A (27) + Ay (@1))-

s=7 1=1
Taking the conditional expectation with respect to the graphs G, and G, results

in

IAET{QHGWGJ} B7[Q,) = ZZl{y<>¢y<>}ET[ o (9]
s=T1 i1=1

+ (m+6)( Ao (1)) +1E;[A(,,n(i;7)]). (5.4.24)

For any fixed value z € S and using (5.1.4), we have that
Ef[Aqn(@)] = EFF (|2 — wora])] = EZ{ . F(lz —yl) dy} =1I
ye

which, in turns, yields that (5.4.24) can be rewritten as

E7Q,) = I, (ZZl{y“)#y“)}-l-Q(m—Fé))

s=T1 1=1

Note that (5.4.21) implies

DD 120} =) ) 1@z} + > 1= =r} < A, + do(7).

s=T7 1=1 s=T7 1=1 s=T7 1=1

Thus,
BrfQo] < In(As + do(7) + 20m + 6)) = L (A + (dy (7) + 8) + (2m + 8)).
For convenience, we will use the following weaker statement:

ET[Qo] < In(Ag + (do (1) + 0) + (dy () + 6) + 20),

where we replaced (2m+ 9) by 20, see (5.1.8). Finally, by taking the expectation
on both sides in the above display, we obtain the claim (5.4.17). O
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Samenvatting

Uit onderzoek blijkt dat complexe netwerken, zoals het Internet, het World-Wide
Web, sociale netwerken en andere technologische en biologische netwerken fasci-
nerende overeenkomsten hebben. Een complex netwerk is te representeren door
een graaf: een verzameling van knopen die onderling zijn verbonden met kan-
ten. Het Internet wordt mogelijk gemaakt door routers die onderling verbonden
zijn door kabels. De bijbehorende graaf wordt verkregen door de routers te ver-
vangen door knopen en de kabels door kanten.

Veel complexe netwerken zijn “kleine werelden” (small worlds): de afstand
tussen twee willekeurige gekozen knopen is klein. Verder blijkt dat de verdeling
van de graad van een knoop een machtswet volgt: het aantal knopen met graad
k is proportioneel met £~7 voor een exponent 7 > 1. Zulk een netwerk wordt
een schalingsvrij (scale-free) netwerk genoemd.

Aangezien de netwerken groot en complex zijn is het onmogelijk om voor
zulke netwerken de corresponderende grafen exact te construeren. Dit kost te
veel tijd en de benodigde opslag capaciteit is enorm. In de literatuur zijn vele
modellen geintroduceerd om complexe netwerken te simuleren door middel van
stochastische grafen. Stochastische grafen beschrijven niet de precieze structuur
van een complex netwerk, maar proberen juist de kenmerken van een complex
netwerk na te bootsen.

In dit proefschrift wordt er onderscheid gemaakt in twee soorten stochasti-
sche grafen: de statische en de dynamische stochastische graaf. In een statische
graaf start men met een vast aantal knopen waarbij er stochastisch kanten wor-
den toegevoegd tussen de knopen. De resulterende grafen kun je interpreteren
als het nemen van een foto van een complex netwerk op een vast tijdstip. Aan
de andere kant tracht men met een dynamische random netwerk juist de groei
van het complexe netwerk over de tijd te imiteren. Men start met een gegeven
graaf en daarna voegt men één voor één nieuwe knopen toe aan de bestaande
graaf. Deze knopen worden verbonden met de bestaande knopen. Als bestaan-
de knopen met een hoge graad worden geprefereerd boven de rest, dan zal in de
limiet de verdeling van de graad van een knoop een machtswet hebben. Dit groei
mechanisme wordt “voorkeurs aanhaken” (preferential attachment) genoemd.

In dit proefschrift worden de volgende twee statische modellen bestudeerd:
het configuratie model (CM) en de inhomogene stochastische graaf. Verder
worden er twee dynamische modellen geintroduceerd: de preferential attach-
ment random graaf met initiéle stochastische graden, welke afgekort wordt tot
PARID model, en de geometrische preferential attachment graaf met initiéle
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aantrekkingskracht, welke afgekort wordt tot het GPAF model. In dit proef-
schrift wordt de verdeling van de graad van een knoop, de typische afstand, dat
is de graaf afstand tussen twee willekeurige knopen, en de diameter, dat is de
maximale afstand tussen elk paar van knopen, in de verschillende modellen be-
studeerd. De typische afstand, en ook de diameter, wordt in veel gevallen slechts
beinvloed door de exponent 7 van de machtswet. Als 7 > 3 dan zijn de resul-
terende grafen homogeen. Daarmee wordt bedoeld dat de structuur rond een
knoop invariant is voor de positie van de knoop in de graaf. Als 7 € (2,3), dan
zijn er knopen waarvan de graad hoog is ten opzichte van alle andere knopen in
een graaf. Zo'n knoop fungeert als lokaal middelpunt of hub. Als 7 € (1,2), dan
zijn er een eindig aantal knopen die als hub fungeren voor alle andere knopen
in een graaf. Deze hubs beinvloeden de de typische afstanden en de diameter,
omdat ze als shortcuts fungeren.

Het configuratie model is het eerste statische stochastische graaf model dat
in dit proefschrift behandeld wordt. Een realisatie van het configuratie model
bestaat uit een vast aantal knopen, waarbij elke knoop een stochastisch aantal
half-kanten heeft. De graaf wordt geconstrueerd door steeds twee willekeurige
half-kanten te verbinden tot een kant. Merk op dat het aantal half-kanten even
moet zijn, anders blijft er aan het eind van het combineren een half-kant over. In
dit proefschrift is de verdeling van het aantal half-kanten per knoop identiek en
onafhankelijk verdeeld, waarbij de verdeling een oneindige verwachting heeft.
Als het aantal knopen naar oneindig gaat, dan blijkt dat de afstand tussen twee
willekeurige knopen 2 of 3. Het is mogelijk dat het aantal half-kanten van één en-
kele knoop het aantal knopen overtreft. Dit is voor de meeste complexe netwer-
ken niet realistisch. Denk bijvoorbeeld aan het Internet. Daarom wordt er ook
gekeken naar de volgende beperking: als er n knopen zijn, dan is het maximale
aantal half-kanten per knoop maximaal n® met o een gekozen waarde tussen 0
en 1. Het blijkt dat onder deze beperking de afstand tussen twee willekeurige
knopen constant is en deze constante hangt af van de gekozen c.

De tweede statische stochastische graaf die behandeld wordt in dit proef-
schrift is de inhomogene stochastische graaf. In dit model ligt het aantal knopen
vast. Elke knoop krijgt een gewicht, welk stochastisch is. Het aantal kanten tus-
sen een tweetal knopen v en w is stochastisch en hangt alleen af van de gewichten
van de knopen v en w. Het klassieke voorbeeld is de Erd6s and Rényi stochas-
tische graaf, welke wordt verkregen door elke knoop een identiek gewicht mee
te geven. Tussen elk tweetal knopen is er maximaal één kant, en elke van de
() mogelijke kanten is aanwezig met kans p onafhankelijk van elkaar. In dit
proefschrift worden de asymptotische fluctuaties van de typische afstand in de
Poisson stochastische graaf, een model uit de literatuur, bestudeerd. De resulta-
ten gelden echter ook voor de IRG, hetgeen bewezen wordt door middel van een
koppeling.

Het PARID model is het eerste dynamische model wat in het proefschrift
wordt geintroduceerd. Het model wordt beschreven door een groeiproces. Initi-
eel bestaat de graaf uit twee knopen, welke verbonden zijn door een willekeurig
aantal kanten. Op elk discreet tijdstip wordt er een nieuwe knoop toegevoegd
met een willekeurig aantal kanten. Elk kant wordt verbonden met een knoop
uit de oude graaf, waarbij de kans dat een knoop met graad k£ wordt gekozen is
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proportioneel aan k + J, waarbij  een constante is. De ¢ is de initiéle aantrek-
kingskracht van een knoop. In dit proefschrift wordt de verdeling van de graad
van een knoop afgeleid: een machtswet, waarbij de exponent elke waarde groter
dan 2 kan aannemen.

Het tweede dynamische model is het GPAF model. Een stochastische graaf
die ook de onderliggende geografische structuur van een complex netwerk in
acht neemt. In vele modellen wordt deze structuur vergeten, maar er zijn com-
plexe netwerken waar dit wel degelijk van belang is. In bijvoorbeeld een wireless
ad-hoc netwerk, een netwerk van mobiele routers die wireless communiceren,
kan de onderliggende structuur niet genegeerd worden. In zo’n ad-hoc netwerk
zijn de routers verspreid over een gebied, en routers kunnen alleen met andere
routers communiceren die in de buurt staan. In dit proefschrift wordt een variant
op een geometrische stochastische graaf uit de literatuur gepresenteerd. Door de
introductie van initiéle aantrekkingskracht, zoals in het PARID model, wordt er
een stochastische graaf verkregen waarbij de exponent van de machtswet elke
waarde groter dan 2 kan aannemen. In het oorspronkelijke model is de onder-
grens voor de exponent 3.
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Summary

Empirical studies on real-life networks, such as the Internet, the World-Wide
Web, social networks, and various types of technological and biological net-
works, show fascinating similarities. Many of these networks are small worlds,
meaning that typical distances in the network are small, and many of them have
power-law degree sequences, meaning that the number of nodes with degree k&
falls off as k=7 for some exponent 7 > 1. Such a network is called a scale-free
network.

In the literature many models are introduced to model real-life networks. The
structure or topology of the network is modeled by a random graph consisting
of nodes which are connected by edges. For example, the Internet consists of
routers (nodes) which are connected to each other by wires (edges). One way
to construct a random graph is to start with a fixed number of nodes and ran-
domly add edges between pairs of nodes. The resulting graph is a snap-shot of
the network at a given time instant. Using a growth model is a second way to
construct a random graph. In such a model one starts with a given graph, and
at each discrete time step a new node is added to the graph, from this node em-
anates a number of edges. The end-point of each edge is connected to one of the
old nodes, where nodes with a high number of edges are preferred. This is called
preferential attachment, and it is believed that preferential attachment is one of
the underlying mechanisms, which generates scale-free random graphs.

In this thesis two types of random graphs are considered: static random
graphs and dynamic random graphs. A static random graph aims to describe
a network and its topology at a given time instant, and, on the other hand, a
dynamical random graph aims to explain how the network came to be as it is.
Dynamic random graphs often focus on the growth of the network under con-
sideration as a way to explain the power-law degree sequences.

In this thesis two static random graphs are studied which produce power-
law degree sequences: the configuration model (CM) and the inhomogeneous
random graph (IRG). Furthermore, two dynamic random graphs are introduced:
the preferential attachment model with random initial degrees (PARID) and
the geometric preferential attachment model with fitness (GPAF). In this thesis
the degree sequence, the typical distance (the asymptotic behavior of the graph
distance between two uniformly chosen nodes), and the diameter for each of the
models is considered. For example, the typical distance is solely influenced by
the power-law exponent 7. If 7 > 3, then the graph is homogeneous or flat in the
sense that all nodes have roughly the same kind of neighborhood. If 7 € (2,3),
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then nodes with a high degree will appear. These nodes act as hubs, and their
impact on the connectivity cannot be neglected. If 7 € (1, 2), then a finite number
of nodes act as super hubs for all the other nodes, the graph has a star-shaped
structure. The hubs directly influences the typical distance, since they are used
as short-cuts.

The first static random graph considered in this thesis is the configuration
model. In this random graph the number of nodes is fixed, where from each
node emanates a random number of stubs or half-edges. The random graph
is constructed by connecting randomly pairs of stubs, where two different stubs
combined give precisely one edge. Observe that the total number of stubs should
be even, otherwise there will be one free stub in the end. In the thesis it is as-
sumed that the expected number of stubs of each node is infinite. The distance
between two randomly chosen nodes is either 2 or 3 as the number of nodes goes
to infinity. It is possible that the number of stubs of a single node exceeds the
number of available nodes, since its expectation is infinite. In real-life networks
this not very likely. Consider for example the Internet, where connections be-
tween routers are identified with edges. Therefore, the same model is considered
with the following restriction: if the total nodes is n, then the number of stubs of
a single node is at most n®, where « is some fixed value between 0 and 1. Under
this restriction, it is shown, in the limiting case, that the distance between two
randomly chosen nodes is with high probability a constant, which depends only
on the value of a.

The inhomogeneous random graph (IRG) is the second static random graph
that is considered in this thesis. The IRG consists of a fixed number of nodes,
where each node has a random weight. The number of edges between each pair
of nodes v and w is random and it only depends on the weights of the nodes
v and w. The classical example is the Erd6s and Rényi random graph, where
each node has the same deterministic weight. In this model the number of edges
between pairs of nodes is at most one, and each of the (%) possible edges occurs
independently with probability p. The asymptotically fluctuations of the typical
distance is derived for the Poissonian random graph, a known random graph in
the literature, and using a probabilistic coupling these results are extended to the
IRG.

The first dynamic random graph introduced in the thesis is the PARID model,
which is essentially a preferential attachment model. Initially, the graph is given
by two nodes which are connected by a random number of edges. Then at each
discrete time step a new node with a random number of stubs is added. Each
stub is randomly connected to one of the old nodes by forming an edge, where
nodes with a high number of outgoing edges are preferred. More precisely, an
old node is chosen proportional to its degree plus some given additive fitness ¢.
By repeating this process, a graph of any size can be constructed. In this thesis the
degree distribution of the PARID random graph is described, i.e., the distribution
of the number of edges of a node, as the number of nodes goes to infinity. The
power-law exponent can take any value bigger than 2.

Most random graphs ignore the underlying geometry of the network, which

can be unrealistic. In for example wireless ad-hoc networks the geometry is of
great importance, since in these networks nodes are spread over some surface
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and nodes can only communicate with neighbors within a certain range, depend-
ing on the geometry. In this thesis a geometric preferential attachment model
from the literature is used, which produces power-law degree sequences with
exponents which can take any value bigger than 3. By extending this random
graph one obtains the GPAF model, which is the second dynamic model intro-
duced in this thesis. By introducing additive fitness, as done in the PARID model,
it is shown that in the GPAF model the power-law exponent can take any value
bigger than 2.
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