Exploring the automatic Level of Detail inference for the validation of buildings in 3D city models

MSc thesis presentation
Geomatics for the Built Environment

Balázs Dukai
Supervisors:
 Dr. Filip Biljecki
 Dr. Hugo Ledoux
 Anna Labetski
Co-reader: Dr. Jorge Lopez Gil 30.01.2018
Source: [1]

TU Delft
Philadelphia Redevelopment

Level of Detail (LoD)
Motivation

Source: LoD2 model of Bad Godesberg, NRW, Germany

Source: Google Maps
Motivation

Source: LoD2 model of Amsterdam, virtualcitySystems

Source: Google Maps
Motivation

Source: LoD2 model of Bad Godesberg, NRW, Germany

Source: Google Maps
Motivation

• Knowing the accurate LoD is important for analysis and maintenance

• CityGML 2.0 is not clear on LoD, CityGML 3.0 will probably complicate things

• Roof reconstruction (>LoD2) fails occasionally

• Heterogenous LoD

• CityGML has no explicit LoD attribute per building, non-semantic formats have no tag at all
Research questions (paraphrased)

How to determine the geometric LoD automatically?

- How to classify the geometry of 3D building models (in terms of LoD)?
 - How to describe the geometry of a building model for the classification?
Research questions (paraphrased)

• How to validate the LoD automatically?
 − Without comparing to a reference data set?
 − By comparison with a reference data set?
LoD3 revisited

CityGML2.0
LoD0.1-0.3, 1.1-2.3
Method

Step 1
- 3D city model (OBJ)
- Extract building surfaces
- Generate features
- Create design set
- Classifier training and evaluation
- Trained classifier
- Classify buildings

Step 2
- Ref. data: point cloud
- Clip point cloud to building extent
- Compute point cloud - mesh distance
- Compute RMSE

Optional: manual LoD validation
Synthetic data – LoD0.1-0.3, 1.1-2.3

1000 buildings
100 per class
Amsterdam data – LoD1.2, LoD2

482 valid buildings (green)
Amsterdam data – LoD2 (and LoD1)

Imbalanced LoD classes – LoD2 (reds), LoD1 (blues)
Extract building surfaces
Generate features

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Feature</th>
<th>Related LoD requirement</th>
<th>Relevant LoD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D footprint</td>
<td>Number of Shape Characterising Points (NSCP)</td>
<td>none</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Shape Characterising Lengths (SCL)</td>
<td>Size of building parts</td>
<td>≥ 0.1</td>
</tr>
<tr>
<td></td>
<td>Footprint Area</td>
<td>Size of building parts</td>
<td>≥ 0.1</td>
</tr>
<tr>
<td></td>
<td>Building Part Footprint Area</td>
<td>Size of building parts</td>
<td>≥ 0.1</td>
</tr>
<tr>
<td>3D solid</td>
<td>Building Volume</td>
<td>none</td>
<td>all</td>
</tr>
<tr>
<td>3D surface</td>
<td>Roof Type</td>
<td>Roof representation</td>
<td>≥ 1</td>
</tr>
<tr>
<td></td>
<td>Median Roof Gap</td>
<td>Top surface (Single / Multi)</td>
<td>0.2-1.3</td>
</tr>
<tr>
<td></td>
<td>Roof Overhangs</td>
<td>Explicit roof overhangs (if 0.2m)</td>
<td>≥ 2.3</td>
</tr>
<tr>
<td></td>
<td>Footprint-Roof Triangle Ratio</td>
<td>Roof superstructures</td>
<td>≥ 2.2</td>
</tr>
<tr>
<td></td>
<td>Walls</td>
<td>Presence of walls</td>
<td>0</td>
</tr>
<tr>
<td>3D solid, Point Cloud</td>
<td>RMSE of PC-Model distance</td>
<td>(LoD validity)</td>
<td>all</td>
</tr>
</tbody>
</table>
NSCP & SCL

Inner angle < 160°
Building part area

Building part 1

Building part 2
Roof type

- planar
- non-planar
- mixed
Median roof gap

Roof gap 2

Roof gap 1
RMSE

- Signed distance from point cloud to mesh
- With CloudCompare, per building

Figure 2: Signed distance evaluation; distance is positive in p_1 and negative in p_2 (S_1 is the sampled curve).
RMSE
Frequency distribution of Shape Characterising Point per LoD

Amsteram LoD2

Frequency distribution of Shape Characterising Point per LoD

Synthetic data set
Min. SCL

Frequency distribution of minimal footprint SCL per LoD

Amsterdam LoD2

Synthetic data set

Minimum Shape Characterising Lenght (SCL) [m]
Footprint-roof ratio

Footprint-roof triangle ratio per LoD

Amsterdam LoD2

Footprint-roof triangle ratio per LoD

Synthetic data
Classification

- Logistic Regression
- Linear Discriminant Analysis
- K Nearest Neighbours
- Decision Tree
- Gaussian Naive Bayes
- Support Vector Machine
Experiment 1&2

- Not / Standardized features
- Train and test in the same data
- Cross-validation and prediction
Experiment 1 & 2 – Raw and standardized features

Synthetic data
LR prediction: 42.5%

Amsterdam data
DTree prediction: 88.6%
Experiment 4

• Standardized features
• Train and test in Amsterdam data
• Include RMSE
• Binary classes (LoD2 or not)
Experiment 4

Algorithm Comparison

Dtree prediction 92.5% but:

<table>
<thead>
<tr>
<th></th>
<th>Not LoD2</th>
<th>LoD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not LoD2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>LoD2</td>
<td>2</td>
<td>83</td>
</tr>
</tbody>
</table>
Experiment 5

- Standardized features
- Train and test in Amsterdam data
- Replace 10, 25, 50 of LoD2 with LoD1
- Include RMSE
- Multi-class and Binary classes (LoD2 or not)
Experiment 5 – mixed LoD1&2

Algorithm Comparison, Multi-label, combined 10%, 25%, 50% LoD1

LR LDA kNN DTree GaussianNBLinearSVM
Experiment 5 – kNN
Experiment 3&6

- Standardized features
- Train in synthetic and test in Amsterdam
- Replace 10, 25, 50 of LoD2 with LoD1
- Include RMSE
- Multi-class
Experiment 3 & 6

Experiment 3
With LoD0

Experiment 6
No LoD0

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>DTree</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.4%</td>
<td>3.7%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Conclusions

• Synthetic data is not suitable as design set
 – Representative data set
• Features seem to be OK, but are there better?
• 42%, 88%, binary classes 92%
• Class imbalance is an open problem
• Issues with noisy point cloud, distances are not reliable
 – Other reference data?
 – RMSE might be too coarse
• LoD inference and validation
References

