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Abstract: The combined wind speed estimator and tip speed ratio (WSE-TSR) tracking control
scheme is widely used to regulate power production for large-scale modern wind turbines.
Although very effective, such an advanced control scheme, based on the prior model information,
is highly dependent on external measurements. For partial-load region control, the only external
information involved is commonly the measured rotor or generator speed. Inaccuracy in such
sole measurement results in an unintended turbine operation and might lead to sub-optimal
power production and instability. This paper presents a fault-tolerant control (FTC) method,
which aims to eliminate the sensor fault effects for modern wind turbine systems. To fulfil this
goal, an iterative learning scheme is proposed to detect and estimate the multiplicative sensor
fault, on which an adaptive FTC law is formulated such that the effects of the sensor fault are
eliminated. Case studies show that the proposed iterative learning FTC method performs well
in detecting, estimating, and accommodating the sensor fault under realistic turbulent wind
conditions. The advanced wind turbine controller can maintain its control performance even
under faulty conditions, preventing further damage to other turbine components and allowing

for continuous power production.
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1. INTRODUCTION

Over the past years, wind energy has played an increas-
ingly vital role in the international energy market. With
the 93 GW of new wind installations in 2021, the global
wind power capacity was increased to 837 GW (Global
Wind Energy Council, 2022). However, to meet the net
zero emission target by 2050, a four times annual installa-
tion capacity acceleration is needed in 2022—-2026 (Ko-
musanac et al., 2022). The ambitions mentioned above
inevitably demand scaling up the rated power generation.
Therefore, to empower wind power’s next era of growth,
the most cost-effective and economically viable solution for
wind energy is to enlarge wind turbine sizes.

With the increasing dimensions and the resulting complex-
ity in structural dynamics, turbines are becoming more
susceptible to unexpected events (Carroll et al., 2016).
This large-scale vulnerability aspect increases demand for
further optimization of wind turbine control systems. The
turbine’s control strategy is becoming ever more complex,
and the correct functioning and reliability of the control
system are of utmost importance to prevent turbine dam-
age from system faults and failures.

Modern wind turbines are equipped with an advanced con-
trol system consisting of a wind speed estimator and a tip-
speed ratio tracking controller. Only limited measurements
are required in such a scheme. The only external informa-
tion needed for partial-load region control is commonly
the measured rotor or generator speed. Inaccuracy in this
sole measurement inevitably leads to unintended turbine

operation, possibly leading to suboptimality in terms of
power capture or stability.

A few fault diagnosis and tolerant control methods have
been developed to counteract the effects of sensor faults
in wind turbine systems over the past years (Odgaard
and Johnson, 2013). Some contributions aim at detect-
ing and isolating sensor faults to maintain nominal wind
turbine performance. Subspace identification and Kalman
filter techniques (Wei et al., 2010) were used to detect
and isolate a blade sensor fault. An unknown input ob-
server (Odgaard and Stoustrup, 2010) was designed to
accommodate multiple sensor faults. A three-stage method
was proposed to detect and isolate sensor faults for wind
turbine condition monitoring (Peng et al., 2018).

In contrast to the abovementioned methods, this paper
presents a novel iterative learning fault-tolerant control
(FTC) method and focuses on inaccuracies in the rotor
speed measurement signal resulting from a sensor fault.
The proposed FTC method leverages the inherent infor-
mation and structure in advanced wind turbine controllers.
The method consists of steps for fault detection, estima-
tion, and accommodation to mitigate the fault effects in a
purely data-driven manner. It relies on the key assumption
that the rotor effective wind speed (REWS) is measurable.
In industrial practice, the REWS is usually obtained via
the hub-height anemometer and/or light detection and
ranging (LIDAR) measurement campaign for calibration
purposes.
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The proposed method augments advanced wind tur-
bine controllers with fault-tolerant potential providing re-
silience against uncertainty and/or inaccuracy in the rotor
speed measurement. In more detail, this is substantiated
by providing the following contributions:

(1) Exhibiting the potential that by exploiting the in-
formation on the REWS and the wind turbine prior
model, the sensor fault can be detected, estimated
and accommodated in a purely data-driven iterative
manner.

(2) Showing that the widely-used wind turbine torque
controller, i.e. the combined wind speed estimator
and tip speed ratio (WSE-TSR) tracking control
scheme, benefits from the proposed learning method
for tackling the sensor fault occurring at the rotor
speed measurement.

(3) Evaluating the validity of the learning method under
realistic turbulent wind conditions and multiplicative
sensor fault scenarios.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the wind turbine model and its partial-
load region control scheme considered in this paper. Sec-
tion 3 details the theoretical framework of the iterative
learning FTC method. Next, a case study illustrating
the FTC performance under turbulent wind conditions
is demonstrated in Section 4. Finally, Section 5 presents
concluding remarks.

PREREQUISITES

This section introduces the prerequisites needed for the de-
velopment of the iterative learning FTC method. Through-
out the whole paper, measured and estimated quantities
are indicated by (-) and (f), respectively. The time deriva-
tive is denoted by (-).

The following assumptions are imposed on the presented
wind turbine model and control scheme.

Assumption 1. Only the rotor speed measurement is con-
sidered uncertain by a multiplication factor. Other mea-
surements are unaffected, and the internal model included
in the turbine control scheme perfectly represents the ac-
tual wind turbine system.

Assumption 2. The wind turbine operates in the partial-
load region, under which only the torque controller is
active, and the pitch angle is set to its fine value of zero
degrees. Therefore, the power coefficient is only a function
of the tip-speed ratio.

Assumption 3. An accurate rotor-effective wind speed
measurement s available during a short-term calibration
campaign.

Assumption 4. The aerodynamic power is completely
converted to the generator power. Hence, the drive-train
efficiency is lossless.

2. WIND TURBINE MODEL AND CONTROL
DERIVATION

This section introduces the derivation of the considered
wind turbine model and control scheme. Subsequently, the
sensor fault considered in this paper is described.
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Fig. 1. Block diagram of the combined wind speed esti-
mator and tip-speed ratio tracking control scheme.
The represents the NREL’s 5MW reference
wind turbine. The wind speed estimator is indicated
in purple, and the tip-speed ratio tracker is indicated
in cyan. A sensor fault occurs at the rotor speed
measurement in red.

2.1 Wind turbine model and control scheme

In control systems for large-scale modern wind turbines,
the REWS estimator is combined with the TSR tracker
to achieve dynamic torque (or power) control, such that
the rotor is regulated at the desired operating point. The
overall structure of the wind turbine model as well as the
control scheme is sketched in Fig. 1 and explained below.

First, the wind turbine dynamics are formulated as a first-
order system as

Jisy =T,/N — Ty, (1)

where J is the equivalent inertia at the generator high-
speed shaft (HSS) obtained from J = J; + J,/N?, with
Jy and J,; being the rotor and generator inertia. The
gearbox ratio is defined as N = wg/w;, representing the
transmission between the generator speed wg and the rotor
speed w;, whereas T; and T, are the aerodynamic and
generator torque, respectively. The former mentioned is
given by

1
T, := AUCp(N), 2
5 PAU*Cr () )
in which p is the air density, A the rotor swept area and
U the REWS. The nonlinear power coefficient mapping
Cp(+) is a function of the dimensionless tip-speed ratio A,
that is defined as

wr R
A= 3
3 @

in which R is the radius of the rotor.

According to (2), the definition of the turbine’s nonlinear-
ity is presented as follows:

T, pA U

O(wy,U) := =——Cp(N), 4
(6 U) = 35 = o7 oGV (@)
and is considered a basis for formulating the REWS esti-
mator. In detail, the extended immersion and invariance
(I&I) scheme with a proportional and integral (PI) correc-
tion term (Ortega et al., 2013; Liu et al., 2022) is utilized

to estimate the REWS, denoted as U:
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with &, representing the measured rotor speed signals, U
the estimated wind speed, @, the partial derivative of the
rotor speed with respect to the time, v the proportional
gain, 8 the integral gain, t the present time, and 7 the
variable of integration.

Combined with the REWS estimator in (5), the TSR
tracker is utilized to operate the wind turbine at the
desired set point \*, providing a generator torque reference
with a PI control paradigm

t
T, = Kpex + Ki/ ex(r)dr, (6)

0

in which the error ey is computed as

ex =\ — A, (7)
where \ denotes the TSR estimate, which is computed as

~ R
A= —. 8
= (®)

2.2 Sensor fault formalization

This section defines a sensor fault occurring in the mea-
surements of the wind turbine signal. As illustrated in (5)
and (6), the performance of the WSE-TSR tracking con-
troller is highly dependent on prior model information and
a limited set of measurements.

Under Assumption 1 and according to Odgaard and John-
son (2013), the commonly-investigated multiplicative scal-
ing factor is considered in this paper to model the sensor
fault. The multiplicative scaling factor a : (0,00) — Ry is
applied to obtain the measured rotor speed

Oy = awy, (9)
with w; being the faulty-free actual rotor speed. Under
the fault-free condition, « is equal to 1, thus leading to an
unbiased measurement. Once the sensor fault occurs, the
measurement inaccuracy will lead to a biased estimate of
U in (5) and thus to a biased A in (8). Consequently, the
turbine will operate far from the desired optimal condition.

The sensor FTC problem addressed in this paper is for-
malized as follows.

Problem statement: Consider the wind turbine (1)
and the control scheme in (5)-(6) with the unknown
measurement uncertainty defined in (9), find a consistent
estimate of the scaling factor caused by the sensor fault,
such that:

tli>n<;lo a(t) = a.

3. ITERATIVE LEARNING FAULT-TOLERANT
CONTROL

In this section, the overall structure of the proposed
FTC method is introduced. First, the derivation of the
iterative learning method is presented, which is then
used to formulate the FTC framework in the subsequent
sections.
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Fig. 2. Block diagram of the iterative learning FTC
method.

8.1 Iterative learning method

Under steady-state conditions, and given Assumption 4,
the aerodynamic torque in (2) is balanced by the generator
torque provided by the WSE-TSR tracking control scheme.
Therefore, the following torque balance equation is met

1 U3 1 U3 .

The estimated TSR is in steady-state enforced to A\* by
the TSR tracker, thus
L (11)
U
By crossing out the constant proportion pA/2, the relation
in (10) is rewritten into

=\*.

U? Us

—Cp(A\) = —Cp(N).

o CP(N) = Z-Cr(N)
Substituting (9) to (12) respectively, it becomes evident
that

(12)

al3Cp(\) = UCp(N). (13)

Replacing A and \* with (3) and (11), (14) can be rewritten
into R

aU3Cp(%) = U3Cp(\). (14)

It is worth noting that the real value of the rotor speed w;

is unknown in the real-world scenario due to the unknown

multiplicative measurement scaling factor. Therefore, by

combining (9) with (14), the following is obtained

R&

Usc .

@ p( Ua

) =U3Cp(\). (15)
Under Assumption 3, U is replaced with U in (15). Then,
moving all the available information to the right-hand side
results in
R,
aCp(—=
ol Ua

U3
)= §CP(A*). (16)
From (16), the scaling factor « induced by the considered
sensor fault is the only unknown quantity. It will lead to a
biased estimate of TSR, which result in turbine operation
away from the desired operating point. The main goal is
to obtain a consistent estimate & of the unknown quantity
« based on all the available information involved.

With the above-derived equations in mind, the optimiza-
tion problem can be formulated as
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U3Cp (M)

3

R,
—aCp(—=
p()

; (17)

arg min
&

Y, Y.,

where Y, includes all the available information for building
up the iterative learning method, while Y, represents those
unknown quantities related to a need to be estimated.

Different algorithms can be applied to (17) to estimate @.
In this paper, an iterative learning framework is considered
to attain the optimization goal. By minimizing the learning
error in the optimization problem the scaling factor can be
approximated in an iterative fashion as

alk+1) = alk) + L-ey(k), (18)

with L being the learning rate. The learning error ey (k)
at time step k is:

eU(k) = Yr(k) - Ya(k) . (19)
The scaling factor « is successfully estimated if the error
ey is minimized to zero. Based on the aforementioned
iterative learning framework, a FTC strategy is presented
in the subsequent section, such that the sensor fault can
be detected, estimated, and accommodated in an adaptive

way.

3.2 Realization of the fault-tolerant control

The block diagram of the iterative learning FTC method
has been sketched in Fig. 2. It includes a fault estimation
block based on the abovementioned iterative learning
method. It is active in monitoring the potential sensor fault
of the measured rotor speed signal. An error sample e (k)
crossing a user-designed threshold ey, implies that a sensor
fault has been detected at time step k which triggers the
fault detection alarm, that is
lev (k)| >= eu

= 1,if

B Oalf |€U(k)‘ < eéu
in which ¢ denotes the fault detection alarm signal, and
1 and O represent fault and fault-free, respectively. In
practice, the threshold éy implies the uncertainties of the
learning method induced by the wind turbulence, internal
models, etc. It can be determined based on the learning
error under the fault-free condition.

; (20)

Once the sensor is detected, the following condition is
given to check if a consistent estimate & has been obtained:

a<a, (21)
with & being the changing rate of the estimated & with
respect to the time, and & representing the user-designed
bound. With the fault detection alarm, a small changing
rate of & activates the fault accommodation step and thus
leads to the calibration of the measured faulty signal, such
that

~

(22)
with @] denoting the calibrated rotor speed signal.

Afterwards, the calibrated rotor speed signal is fed back to
the wind turbine controller to eliminate the effects of the
sensor fault, as shown in Fig. 2. As a consequence of such
an FTC action, the estimated factor & is recovered to 1.
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Table 1. Parameters of the iterative learning
FTC method for the considered cases.

Parameter Value
L Learning rate 0.1
&o Initial value 1
ey Threshold 0.01
@ Bound 0.005

4. CASE STUDY

This section presents a case study to illustrate the effec-
tiveness of the proposed iterative learning FTC method
for sensor fault accommodation. The National Renewable
Energy Laboratory (NREL)’s 5MW reference wind turbine
model (Jonkman et al., 2009) is considered in this paper. It
is modelled as a first-order nonlinear system. The WSE-
TSR tracking control scheme and the proposed iterative
learning FTC method are implemented in Mathworks
Simulink.

To evaluate the performance of the proposed method, a
turbulent wind profile with a mean wind speed of 9 m/s
with a turbulence intensity (TI) = 5% is simulated in the
case study. The simulation duration is 1200 s with a time
step of 0.01 s. To simulate the faulty condition, a rotor
speed sensor fault with the constant scaling factor o = 0.95
is introduced at 500 s. Such a sensor fault is simulated
in all the cases to illustrate the FTC performance. The
parameters of the iterative learning FTC method are
summarized in Table 1. In the following sections, first, only
the fault detection and estimation function of the proposed
method is activated for evaluation. Afterwards, the fault
accommodation function is also enabled to demonstrate
the overall FTC performance.

4.1 Fault detection and estimation

The main results are shown in Fig. 3. In detail, a compar-
ison between the (unknown) real rotor speed w, and the
measured rotor speed signal @, is presented. Before 500s,
the wind turbine operates in a fault-free, nominal healthy
condition. The sensor fault is introduced at 500s, and
the wind turbine operates at the faulty condition between
500s and 1200s, as indicated by a yellow background. It
is evident from Fig. 3(c) that the measured rotor speed
is scaled down due to the considered sensor fault. The
real rotor speed, however, slightly increases, which leads
to a significant difference between the real and measured
faulty signals. As shown in Fig. 3(f), due to the biased
REWS estimate, such a biased rotor speed signal leads
to deviations between the real and estimated TSR set
point, which results in degraded power production under
the faulty condition in Fig. 3(d).

The performance of the proposed iterative learning method
is shown in Fig. 3(a-b). The proposed FTC method is
able to approximate the scaling factor online successfully.
Some oscillations are observed in the learned & due to the
wind turbulence, which may cause uncertainties in such a
learning procedure. Under the nominal condition, & varies
around 1 before 500s, indicating no sensor fault at the
rotor speed measurement. After 500s, the scaling factor
& drops to around 0.95 close to the reference, implying
good fault estimation performance. Since the learning er-
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Fig. 3. Case study of the FTC method where only the fault detection and estimation step is activated. A turbulent
wind condition with a mean wind speed of 9m/s and TI of 5% is considered. The iterative learning method is
implemented online. The sensor fault occurs between 500s and 1200s as indicated by the olive background.
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Fig. 4. Fault detection alarm and the fault-tolerant signal
generated in the iterative learning FTC method where
the fault accommodation is enabled.

ror crosses the designed threshold, as shown in Fig. 3(b), a
sensor fault has been detected, which triggers the detection
alarm at 506 s in Fig 4(a).

In summary, it can be concluded from Fig. 3 that the
proposed algorithm can detect and estimate the multi-
plicative sensor fault automatically under turbulent wind
conditions.

4.2 Enabling the fault accommodation

Based on the sensor fault information derived in the fault
detection and estimation step, the fault accommodation
step complements the FTC method by online calibrat-
ing the faulty signal induced by the sensor fault. This
calibration will eliminate the effects of the sensor fault
and thus increase the control system’s resilience against

the inaccuracy and uncertainties of the measurement. The
same wind condition and the fault scenario are considered
in this case study and exhibited in Fig. 5. Similarly, a
rotor speed sensor fault is detected in the fault detection
and estimation step, which triggers the detection alarm,
as shown in Fig. 4(a). Once a consistent estimate of the
scaling factor is obtained according to (22), the learned
scaling factor, considered the FTC law, is fed back to the
WSE-TSR tracking control scheme to calibrate the faulty
signal of the rotor speed as seen in Fig. 4(b). Consequently,
the effects of the sensor fault on the estimates of REWS
and TSR are eliminated, as shown in Fig. 5(e-f). Because of
the fault accommodation step, the wind turbine controller
maintains its torque control performance in wind turbine
operation even under faulty conditions. The learned scal-
ing factor is then recovered to around 1, as demonstrated
in Fig. 5(a).

In summary, the proposed method, including fault detec-
tion, estimation and accommodation steps, is a valuable
addition to the current wind turbine control scheme. With
the augmented iterative learning FTC method, the wind
turbine controller is able to deal with the frequently oc-
curring sensor fault and increases its resilience against the
inaccuracy and uncertainties in the rotor speed measure-
ment.

5. CONCLUSION

The combined wind speed estimator and tip speed ratio
(WSE-TSR) tracking controller is widely used in wind
turbines to regulate power production. Although very
effective, this control scheme highly relies on the prior
model information and a limited set of measurements.
Inaccuracy in the measurements used in the control scheme
will result in turbine operation away from the desired
operating point. This suboptimal operation may lead to
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Fig. 5. Case study of the FTC method where the fault detection, estimation and accommodation steps are enabled.
Similarly, a turbulent wind condition with a mean wind speed of 9m/s and TI of 5% is considered. The whole
framework is implemented online. The sensor fault occurs between 500s and 1200s as indicated by the olive

background.

degraded power production and, more severely, give rise
to unstable operation. This paper proposes an iterative
learning fault-tolerant control (FTC) method to tackle
the sensor fault, which frequently occurs at the measured
rotor speed signal. It leverages wind speed measurements
and the inherent knowledge and structure of the wind
turbine controller to detect, estimate and accommodate
the potential sensor fault. With the iterative learning FTC
method in the loop, the considered wind turbine control
shows high resilience against measurement uncertainties.
It is thus able to cope with the sensor fault under faulty
conditions. Simulation results illustrate that the proposed
method performs well in fault detection, estimation and
accommodation. More importantly, the FTC based on the
iterative learning method is achieved in an adaptive way,
such that the impacts of the sensor fault can be eliminated
shortly.
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