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A B S T R A C T

We consider a maintenance service provider that services geographically dispersed customers with its local
service engineers. Traditionally, when a system failure is reported, a service engineer makes a diagnostic visit
to the customer’s location to perform corrective maintenance. If spare parts are required, they are ordered and
a second visit is scheduled at a later date to complete the corrective maintenance. In this paper, the service
provider can proactively send spare parts to the customer to avoid the costly second visit. Motivated by a
real-world problem in the high-tech industry, our model considers the cost of a second visit, fixed shipment
costs, retrieval costs for the parts that are sent to the customer, and send-back costs for the parts that are sent
but not used for corrective maintenance. The uncertainty in the set of parts required for corrective maintenance
is modeled with a general distribution that can capture the dependencies between demands for different spare
parts. We formulate an integer linear program to find the optimal set of spare parts that minimizes the expected
total cost. We derive analytical results for the structure of the optimal policy and compare the optimal policy
with two benchmark policies from practice. We observe that the policies from practice often find the optimal
policy, and a new heuristic policy that exploits the structure of the optimal policy, on average, performs better
than the benchmark policies.
1. Introduction

High system availability is required for many complex capital goods.
In order to keep the systems up and running, it is key to have a
timely access to maintenance services. For complex high-tech systems
(e.g., wafer steppers, MRI scanners, industrial printers), it is common
that the manufacturers who design and build these systems also provide
maintenance service and spare part support. We refer to them as service
providers in the rest of this paper. A service provider may have many
different customers at geographically dispersed locations. In order to
manage such a network of after-sales operations smoothly, the concept
of service control towers (SCT) has been developed (Song, van Houtum,
& Van Mieghem, 2020; Topan, Eruguz, Ma, van der Heijden, & Dekker,
2020). The data collected by the SCT from different systems can be
centrally processed in real-time for managing the resources (e.g., spare
parts, engineers) needed for on-site maintenance.

Our work has been motivated by a collaboration with a global
manufacturer of high-tech equipment, who is also responsible for pro-
viding maintenance services to a large customer base as the service
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provider. Traditionally, upon a system failure, the customer reports it
to the service provider and a corrective maintenance case is created.
A local service engineer then makes a so-called diagnostic visit to the
customer’s location to resolve the maintenance case. If a spare part
turns out to be necessary but it is not readily available on site during the
diagnostic visit, the service engineer must make a second visit at a later
date. The second visit can be very costly due to the additional downtime
caused by not resolving the maintenance case right away. For expensive
capital equipment operated at high capacity (e.g., lithography machines
in semiconductor fabs, imaging systems in hospitals), even a few hours
of downtime can cause serious problems. Therefore, service providers
invest in technologies that enable them, when there is a failure at a
customer, to match the relevant data (e.g., sensor data related to the
critical components remotely collected from various modules in the
system) with the data from the past corrective maintenance cases to
predict which spare parts may be needed. In our work, we consider a
service provider equipped with such technologies. Sending spare parts
proactively is especially common for complex high-tech equipment
vailable online 30 April 2024
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due to high downtime costs for them enforced by strict service level
agreements.

We refer to distinct spare parts as Stock Keeping Units (SKUs). We
assume that all SKUs are kept in a central warehouse. The service
provider does not exactly know which specific SKUs (if any) will be
needed until the diagnostic visit is performed, but can proactively send
spare parts to the failed system to avoid the costly second visit. The
service provider can choose to send too many SKUs from the central
warehouse to the failed system, but this may lead to unnecessary
shipment costs as well as SKU-specific retrieval costs and send-back
costs for unused SKUs. On the other hand, sending too few SKUs may
delay resolving the corrective maintenance case and requires a costly
second visit. The objective is to determine the set of SKUs that will be
sent to the failed system before the diagnostic visit that minimizes the
expected total cost.

In the remainder of the paper, we refer to the probabilities over
the possible sets of SKUs needed for the corrective maintenance as the
demand distribution. We emphasize that the demand distribution is
specific to a corrective maintenance case, and in practice, it can be built
by using the historical data on related cases. For example, Grishina,
Stolikj, Gao, and Petkovic (2020) already built a data-driven prediction
model that generates a list of SKU sets that may be required to be able
to close the maintenance case during the diagnostic visit along with
the likelihood of each SKU set being the true set of SKUs required.
To generate these likelihoods, the prediction model takes a text query
(e.g., failure code, description of the failure by the customer), retrieves
the related maintenance cases from the database of resolved cases
based on a similarity metric, and calculates the percentage of the
maintenance cases for each set of SKUs required in the past. The output
of such a prediction model (i.e., the relative frequencies of the sets of
SKUs required) can be used as the demand distribution in our model.
The way we model the demand distribution allows us to capture the
dependencies between the demands for different SKUs, which is one of
the main novel features of our model (see Section 2 for further details).

The contributions of our paper can be summarized as follows:

• We formulate an Integer Linear Programming (ILP) model to
optimize the selection of spare parts that will be sent to a failed
system before the diagnostic visit of a field service engineer.

• We derive the optimal policy structure for problem instances with
one or two SKUs, and we obtain analytical properties on the
structure of the optimal policy for the problem instances with a
general number of SKUs.

• We compare the optimal policy against two practically motivated
benchmark policies: ‘send nothing’ (Policy 1) and ‘send a fixed
number of SKUs with the highest demand probabilities’ (Policy 2).
Furthermore, we propose a new policy (Policy 3) that is capable of
exploiting the analytical properties on the structure of the optimal
policy.

• Our numerical analysis on realistic problem instances shows that
Policy 1, which reflects the traditional industry practice, is gener-
ally optimal when the marginal demand probabilities are similar
for different SKUs and the cost of a second visit is relatively low.
However, Policy 1 can be far from the optimal policy in other
situations. We observe that Policy 2 is, on average, 12.2% and
17.8% costlier than the optimal policy in two sets of experiments,
while these values are only 6.2% and 10.0% for Policy 3 in the
same experiments.

The remainder of the paper is organized as follows. We discuss the
relevant literature in Section 2, and provide a detailed problem de-
scription in Section 3. Section 4 presents the ILP formulation, Section 5
presents the analytical results for our structural analysis of the optimal
policy, and Section 6 describes the details of the benchmark poli-
cies and their practical motivation. Section 7 presents our numerical
72

experiments and insights, and Section 8 concludes the paper.
2. Literature review

The problem of which spare parts to choose to send in advance of
an on-site visit is related to the so-called Repair Kit Problem (RKP)
in the literature (Teunter, 2006), where a repair kit refers to the set
of spare parts taken by service engineers with themselves to perform
maintenance. In both problems, before the service engineer visits the
failed equipment, it is not precisely known which spare parts are
needed to be able to repair the equipment.

In the RKP, if all required parts are present in the repair kit, the
system can be repaired immediately, otherwise, a follow-up action is
needed. The RKP was first introduced by Smith, Chambers, and Shlifer
(1980) to optimize multi-item inventories necessary for repairing field
equipment by considering holding costs and the probability of job
completion (i.e., repairing a failed equipment). The main trade-off is
between the cost of holding parts in the repair kit and the cost of not
meeting the required service levels. There are two kinds of models in
the literature to model this trade-off: cost models (introduced by Smith
et al. 1980) and service models (introduced by Graves 1982). In cost
models, the holding cost is minimized, while not completing a job
during the first time is penalized with a cost (see Bijvank, Koole, and
Vis 2010, Mamer and Shogan 1987, Mamer and Smith 1982, Neves-
Moreira, Veldman, and Teunter 2021, Saccani, Visintin, Mansini, and
Colombi 2017, Smith et al. 1980, Teunter 2006). In service models,
the holding cost is minimized subject to a service level constraint
(see Bijvank et al. 2010, Graves 1982, Heeremans and Gelders 1995,
Mamer and Shogan 1987, Prak, Saccani, Syntetos, Teunter, and Visintin
2017, Rippe and Kiesmüller 2023a, Teunter 2006). The first papers in
the literature assume that a repair kit is used for a single job (Graves,
1982; Mamer & Shogan, 1987; Mamer & Smith, 1982; Smith et al.,
1980). Heeremans and Gelders (1995) are the first to relax the single
job assumption by introducing a multi-job model. In a multi-job model,
multiple on-site visits can be done with the same repair kit (see Bijvank
et al. 2010, Heeremans and Gelders 1995, Neves-Moreira et al. 2021,
Prak et al. 2017, Rippe and Kiesmüller 2023a, Saccani et al. 2017,
Teunter 2006).

The early papers assume that at most one unit from each stock-
keeping unit (SKU) is needed during a single job (Graves, 1982; Heere-
mans & Gelders, 1995; Smith et al., 1980). Mamer and Smith (1982)
relax this assumption by introducing a multi-unit model. (Mamer &
Smith, 1982) are also the first to relax the assumption of independency
between the failure behavior of different SKUs by defining represen-
tative job types. When the failure behavior of SKUs depends on each
other, demand for these SKUs during a corrective maintenance visit is
also dependent.

Similar to Mamer and Shogan (1987) and Teunter (2006), we also
assume demand dependency between SKUs. Different from (Teunter,
2006), Mamer and Shogan (1987), Mamer and Smith (1982), we do
not specifically define representative job types, but explicitly model the
probability for each possible part combination that can appear for a
maintenance case. This approach allows us to capture the likelihood of
all possible relationships between the demands for each distinct part,
which we refer to as the full dependency.

Our problem can be considered as an extension of the RKP. In
our problem, field service engineers travel to a failed system without
any spare parts, but the parts can be proactively sent from a central
warehouse to make them ready at the moment of the diagnostic visit.
At a central level, the maintenance service provider (e.g., an SCT that
collects data from all the equipment in the field) decides which parts
will be sent to the customer by using Advanced Demand Information
(ADI), for which we assume a general probability distribution that can
be obtained from the historical data on similar cases. Similar to our
problem, Rippe and Kiesmüller (2023a, 2023b) study the RKP with ADI.
The source of ADI in Rippe and Kiesmüller (2023a) is the sensors that
monitor the condition of a subset of parts. On the other hand, Rippe

and Kiesmüller (2023b) use the error codes provided by customers
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Table 1
An overview of the related RKP literature.

Smith et al.
(1980)

Graves
(1982)

Mamer and
Smith
(1982)

Mamer and
Shogan
(1987)

Heeremans
and Gelders
(1995)

Teunter
(2006)

Bijvank
et al.
(2010)

Saccani
et al.
(2017)

Prak et al.
(2017)

Neves-
Moreira
et al.
(2021)

Rippe and
Kiesmüller
(2023a)

Rippe and
Kiesmüller
(2023b)

Current
work

Number of jobs per tour

Single X X X X X X
Multiple X X X X X X X X

Number of units needed
per SKU per job

Single X X X X X
Multiple X X X X X X X X

Demand dependency between
different SKUs

No dependency X X X X X X X X X
Dependency via job types X X X
Full dependency X

Model characteristic

Service model X X X X X X X X
Cost model X X X X X X X X X

Additional features

Retrieval cost per item X X
Fixed transportation cost X X
Sending back cost per item X X

Advanced demand information
per corrective maintenance

Probability per SKU X X
Probability per any set of SKUs X
a
c
a
s
a
c
i
t
p
t
s
𝑀
𝐬

i
S

to describe the failures as the source of ADI. Similar to our work,
both (Rippe & Kiesmüller, 2023a) and Rippe and Kiesmüller (2023b)
consider the probability of having a demand for an SKU as the ADI in
their model. However, they do not consider dependency between SKU
demands.

A key characteristic of our model is to consider the retrieval cost,
sending back cost of SKUs, and fixed transportation cost. However,
previous work which explicitly models these costs is limited. The
ordering cost per item (referred to as retrieval cost in our model) is
considered by Prak et al. (2017), fixed transportation cost is considered
by Saccani et al. (2017), and sending back cost is considered by Rippe
and Kiesmüller (2023b). Table 1 provides an overview of the related
RKP literature and the positioning of our paper within this literature.

Finally, we note that our work is related to the literature on the
multi-product newsvendor problem in inventory control, where most of
the early work is on developing exact or heuristic solution approaches
under budget or space constraints, e.g., Abdel-Malek and Areeratchakul
(2007), Abdel-Malek, Montanari, and Morales (2004), Moon and Silver
(2000), Nahmias and Schmidt (1984). We refer the reader to Turken,
Tan, Vakharia, Wang, Wang et al. (2012) for a review of these ap-
proaches. The literature on multi-product newsvendor problems has
expanded in many directions over the years. Some examples include
modeling the risk-sensitiveness of the decision makers (e.g., Choi and
Ruszczyński 2011, Özler, Tan, and Karaesmen 2009), substitution be-
tween different products (e.g., Dutta and Chakraborty 2010, Lei, Ru,
Shi, and Zhang 2022), advanced demand information (e.g., Bernstein
and DeCroix 2015, Kuthambalayan, Mehta, and Shanker 2015), and un-
certainty in the multivariate demand distribution (e.g., Olivares-Nadal
2024, Wang, Xiao, and Luo 2023). The spare-part selection problem
we study in this paper is related to the multi-product newsvendor
problem because in both problems there is a trade-off between the
costs of ordering more than needed (i.e., overage) and ordering less
than needed (i.e., underage). However, our problem is different from
several angles. First of all, in case of an underage (i.e., when an SKU is
not proactively sent to the failed system but that SKU turns out to be
necessary for corrective maintenance), the underage cost has the cost
of a second visit as a fixed setup cost in addition to typical part-specific
shortage costs. Also, we assume the most general demand structure
with demand as a binary vector and our demand model is capable
of capturing any feasible covariance structure between different SKU
demands. In the multi-product newsvendor literature, it is common to
adopt continuous demand assumptions or special forms of dependence
structures to generate analytical results.
73
3. Problem description

We consider a maintenance service provider who is fully responsible
for addressing the failures encountered in the systems operated by
its customers. Suppose that a customer reports a system failure to
the service provider on day 𝑡. At this moment, the service provider
creates a corrective-maintenance case in its case-management system
and determines the spare parts that have been used in similar main-
tenance cases in the past. Suppose that in total 𝑁 different SKUs
re demanded in matching cases. This means that the system failure
an be caused by the (possibly joint) failure of 𝑁 different SKUs,
nd the replacement of up to 𝑁 SKUs may be needed to fix the
ystem failure. We let 𝐼 = {1, 2,… , 𝑁} denote the set of SKUs. We
ssume that at most one part is needed for each SKU to successfully
omplete the corrective maintenance of the system. The main challenge
n practice is not knowing which SKUs will require replacement during
he corrective maintenance. The SKUs that require replacement are
recisely known only after a physical examination of the system during
he diagnostic visit. In the most general case, there are 2𝑁 possible
cenarios for the set of SKUs required for corrective maintenance. Let
= {0, 1,… , 2𝑁−1} denote the indices of these scenarios. Specifically,

𝑚 = (𝑠1𝑚,… , 𝑠𝑖𝑚,… , 𝑠𝑁𝑚) denotes the binary vector indicating the SKUs
required in scenario 𝑚∈ 𝑀 , where 𝑠𝑖𝑚 = 1 denotes that SKU 𝑖 is in the
set of SKUs required in scenario 𝑚, and 𝑠𝑖𝑚 = 0 denotes otherwise. The
indices of the scenarios are ordered such that they represent a situation
where the binary vectors 𝐬𝑚 are ordered lexicographically. If 𝑁 = 2, for
example, then 𝐬0 = (0, 0), 𝐬1 = (0, 1), 𝐬2 = (1, 0), and 𝐬3 = (1, 1).

Remark 1. Our model is capable of capturing a situation where not
just one but multiple units of a specific SKU are needed for corrective
maintenance by incorporating the additional units as distinct SKUs. For
example, suppose that there are 2 SKUs in total, and 2 units of SKU 1
and 1 unit of SKU 2 may be needed for corrective maintenance. We
can model the second unit of SKU 1 as a third SKU: (0, 0, 0) indicates
no parts are needed, (1, 0, 0) indicates 1 unit of SKU 1 is needed, (0, 1, 0)
ndicates 1 unit of SKU 2 is needed, (1, 1, 0) indicates 1 unit from each
KU is needed, (1, 0, 1) indicates 2 units of SKU 1 are needed, and

(1, 1, 1) means 2 units of SKU 1 and 1 unit of SKU 2 are needed. In
the remainder of the paper, we continue with the assumption that at
most 1 unit of an SKU is needed for corrective maintenance.

We let 𝑝̂𝑚 denote the probability that the set of SKUs that require
replacement during corrective maintenance is represented by scenario

𝑚. By explicitly modeling the probabilities {𝑝̂𝑚}𝑚∈𝑀 , we can capture the
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Fig. 1. Illustration of the spare parts shipment process for corrective maintenance.
most general distribution that represents the SKU demands, allowing
us to consider any possible dependency between SKU demands. In
practice, the service provider may have access to various degrees of
information about the failures (via the analysis of data on previous
maintenance cases as mentioned in Section 1) to determine a specific
distribution for each particular corrective maintenance case.

All spare parts are stored at a central warehouse. The service
provider can choose to send a set of SKUs from the central warehouse
to the failed system in advance of the diagnostic visit (note that this can
be an empty set, meaning that no spare part is sent to the customer). We
assume that the required SKUs are always in stock and that no spare
parts are kept on site. Retrieving one spare part for SKU 𝑖 from the
warehouse and including it in the shipment to the customer incurs a
cost 𝑟𝑖 (e/unit) (> 0). After the system failure occurs on day 𝑡, the spare
parts are shipped to the customer overnight as one batch with a fixed
transportation cost 𝐹 (e) (> 0), and they become available on the site
at the beginning of day 𝑡 + 1. On day 𝑡 + 1, the diagnostic visit of the
field service engineer also takes place. At that moment, the problem
is identified and the failed parts are replaced with the corresponding
spare parts.

If all required spare parts are already sent to the site (or it turns
out the failure is not because of a failed component and thus no spare
part is needed), the corrective maintenance case is completed on day
𝑡+1. It is possible that not all of the parts sent to the site are needed on
day 𝑡+ 1. The engineer collects and returns the unused parts to a local
return point (see Fig. 1 for an illustration). These parts are later sent
back to the central warehouse together with the old parts that come out
of the other failed systems in the region. For unused parts, an additional
cost arises related to checking and possibly re-packing them. Also, the
shipment of a part from the warehouse decreases the availability of
that SKU by one unit until it is returned back to the warehouse. We
introduce the cost parameter 𝑏𝑖 (e/unit) (> 0) to capture these aspects
related to re-packing and temporary unavailability of unused parts for
SKU 𝑖.

In case the system cannot be repaired during the diagnostic visit
because not all the required spare parts are available, the missing parts
are ordered on the same day (i.e., day 𝑡 + 1) based on the diagnosis of
the service engineer. Similar to earlier, a variable cost of 𝑟𝑖 for sending
a spare part of SKU 𝑖 from the warehouse to the customer, and the
fixed transportation cost 𝐹 must be charged. In addition, a second visit
must be performed by the service engineer for resolving the case on
the next day with the correct spare parts available on site. The cost
of the second visit, which we denote by 𝐷 (e) (> 0), includes the
operational costs to arrange the visit and any penalty for the additional
system downtime. On day 𝑡+2, the corrective maintenance is completed
with the second visit. The problem is to determine the optimal set of
SKUs to make available at the customer site during the diagnostic visit
by minimizing the expected total cost. Fig. 2 summarizes the order of
events in a corrective maintenance case.
74
4. ILP formulation

Decision variables

We let 𝐱 = (𝑥1,… , 𝑥𝑖,… , 𝑥𝑁 ) denote the decision variables that
indicate whether a spare part from a particular SKU is made available
for the service engineer during the diagnostic visit. Specifically, 𝑥𝑖 = 1
denotes that a spare part from SKU 𝑖 is selected to be sent to the
customer site so that it can be used during the diagnostic visit of
the service engineer, and 𝑥𝑖 = 0 otherwise. We introduce the binary
variable 𝑧 to indicate whether at least one part is sent, i.e., 𝑧 = 1 means
at least one SKU is chosen to make its spare part available during the
diagnostic visit of the service engineer, and 𝑧 = 0 means no SKU is
chosen. We use 𝑧 ≥ 𝑥𝑖,∀𝑖 ∈ 𝐼 as constraint (2) for the relation between
decision variables 𝑧 and 𝑥𝑖.

To describe the costs related to a possible second visit, we consider
all possible sets 𝑚 ∈ 𝑀 that form the set of parts that is needed to
resolve the maintenance case. Here, we only consider sets of SKUs
𝑚 ∈ 𝑀 with a strictly positive probability 𝑝̂𝑚, and we denote these
sets with 𝑀 ′ ⊆ 𝑀 . This reduces the number of variables and hence the
computation time when solving the ILP. The vector 𝐬𝑚 = (𝑠1𝑚,… , 𝑠𝑁𝑚)
defines a set of spare parts that can be shipped during the diagnostic
visit. If part 𝑖 ∈ 𝐼 is needed for corrective maintenance (i.e. 𝑠𝑖𝑚 = 1) but
it is not sent for the diagnostic visit (i.e. 𝑥𝑖 = 0), then that part 𝑖 will be
needed for the second visit. We let 𝑢𝑖𝑚 denote a binary variable that is
equal to 1 when SKU 𝑖 is sent for the second visit, and 0 otherwise. We
require 𝑢𝑖𝑚 ≥ 𝑠𝑖𝑚−𝑥𝑖 because a part should be sent either in the first or
in the second visit if it is needed. To be specific, if 𝑠𝑖𝑚 = 1 and 𝑥𝑖 = 0,
then 𝑢𝑖𝑚 will be forced to be 1. For example, suppose that 𝑁 = 2 and
a spare part from SKU 2 is not made available for the diagnostic visit.
Then, 𝑢21 = 1 because we know 𝐬1 = (0, 1) (i.e., SKU 2 is needed for
corrective maintenance in scenario 𝑚 = 1) but SKU 2 is not available
during diagnostic visit. Finally, the variable 𝑢̂𝑚 is 0 if 𝑢𝑖𝑚 = 0 for all
𝑖 ∈ 𝐼 and 1 otherwise. This variable denotes whether a second visit is
needed if set 𝑚 is the true set of parts. For the same example where
SKU 2 is not made available for the diagnostic visit, 𝑢1 = 1 and 𝑢3 = 1
because 𝑠1 = (0, 1) and 𝑠3 = (1, 1) (i.e. SKU 2 is needed for corrective
maintenance in scenarios 𝑚 = 1, 3).

Objective function

Now, we introduce the objective function of the ILP model. The
objective function has three parts. The first part,

(

𝐹𝑧 +
∑

𝑖∈𝐼 𝑟𝑖𝑥𝑖
)

,
represents the total cost related to the diagnostic visit which consists of
the fixed transportation cost and variable transportation cost of parts.
Let 𝑝𝑖 denote the so-called marginal demand probability for SKU 𝑖
representing the likelihood that the SKU 𝑖 is needed for corrective
maintenance, and it is given by

𝑝𝑖 =
∑

𝑠𝑖𝑚𝑝̂𝑚, ∀𝑖 ∈ 𝐼. (1)

𝑚∈𝑀
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Fig. 2. Process diagram for corrective maintenance.
The second part in the objective,
(

∑

𝑖∈𝐼 𝑏𝑖𝑥𝑖(1 − 𝑝𝑖)
)

, is the expected
cost of returning the parts that are sent to the failed system but not
needed. The third part,

(

(𝐷 + 𝐹 )(
∑

𝑚∈𝑀 ′ 𝑢̂𝑚𝑝̂𝑚) +
∑

𝑖∈𝐼 𝑟𝑖(1 − 𝑥𝑖)𝑝𝑖
)

, is
the expected cost for a second engineer visit if any required parts for
maintenance are not brought during the diagnostic visit. The overall
objective function is

𝐶(𝐱) =
(

𝐹𝑧+
∑

𝑖∈𝐼
𝑟𝑖𝑥𝑖

)

+
(

∑

𝑖∈𝐼
𝑏𝑖𝑥𝑖(1−𝑝𝑖)

)

+
(

(𝐷+𝐹 )(
∑

𝑚∈𝑀 ′

𝑢̂𝑚𝑝̂𝑚)+
∑

𝑖∈𝐼
𝑟𝑖(1−𝑥𝑖)𝑝𝑖

)

and it can be simplified as

𝐶(𝐱) = 𝐹𝑧 +
∑

𝑖∈𝐼
(𝑟𝑖 + 𝑏𝑖)(1 − 𝑝𝑖)𝑥𝑖 + (𝐷 + 𝐹 )(

∑

𝑚∈𝑀 ′
𝑢̂𝑚𝑝̂𝑚) +

∑

𝑖∈𝐼
𝑟𝑖𝑝𝑖.

For brevity in notation, we denote 𝑟𝑖 + 𝑏𝑖 with 𝑐𝑖. We also remove the
term ∑

𝑖∈𝐼 𝑟𝑖𝑝𝑖 from the objective function because it is a constant. Then,
the objective function is further simplified into

𝐶(𝐱) = 𝐹𝑧 +
∑

𝑖∈𝐼
𝑐𝑖(1 − 𝑝𝑖)𝑥𝑖 + (𝐷 + 𝐹 )(

∑

𝑚∈𝑀 ′
𝑢̂𝑚𝑝̂𝑚)

Integer linear programming (ILP) model

The complete ILP model is summarized below:

min
𝐱

𝐶(𝐱) = 𝐹𝑧 +
∑

𝑖∈𝐼
𝑐𝑖(1 − 𝑝𝑖)𝑥𝑖 + (𝐷 + 𝐹 )(

∑

𝑚∈𝑀 ′
𝑢̂𝑚𝑝̂𝑚)

s.t.

𝑧 ≥ 𝑥𝑖,∀𝑖 ∈ 𝐼 (2)
𝑢𝑖𝑚 ≥ 𝑠𝑖𝑚 − 𝑥𝑖,∀𝑖 ∈ 𝐼,∀𝑚 ∈ 𝑀 ′ (3)
𝑢̂ ≥ 𝑢 ,∀𝑖 ∈ 𝐼,∀𝑚 ∈ 𝑀 ′ (4)
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𝑚 𝑖𝑚
𝑥𝑖 ∈ {0, 1},∀𝑖 ∈ 𝐼 (5)
𝑧 ∈ {0, 1} (6)
𝑢𝑖𝑚 ∈ {0, 1},∀𝑖 ∈ 𝐼,∀𝑚 ∈ 𝑀 ′ (7)
𝑢̂𝑚 ∈ {0, 1},∀𝑚 ∈ 𝑀 ′ (8)

5. Structural analysis

In this section, we execute a structural analysis for the optimal
policy. First, we present our analysis for the single SKU case (𝑁 = 1),
then for the two-SKU case (𝑁 = 2), and finally for a general number of
SKUs. All of the proofs can be found in Appendix A.

5.1. Optimal policy structure for 𝑁 = 1

In the presence of a single SKU, the decision variables 𝐱 reduce to
𝑥1 and we denote the optimal policy with 𝑥∗1. We derive the optimal
policy structure in Proposition 1.

Proposition 1. For 𝑁 = 1, 𝑥∗1 = 0 for 𝑝1 ∈ [0, 𝑝̌1] and 𝑥∗1 = 1 for
𝑝1 ∈ [𝑝̌1, 1], where 𝑝̌1 =

𝐹+𝑐1
𝐷+𝐹+𝑐1

.

Proposition 1 states that the part should be sent to the system in
advance of the diagnostic visit if and only if 𝑝1, the probability that
the part is needed for the corrective maintenance, exceeds a certain
threshold, denoted by 𝑝̌1 (sending the part in advance or not sending
it has the same cost when 𝑝1 = 𝑝̌1). The optimal policy structure is
shown in Fig. 3. As the cost of a second visit 𝐷 increases, we see that
𝑝̌1 approaches 0, meaning that the optimality region for sending the
part in advance becomes larger. On the other hand, as the sum of
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Fig. 3. Optimal policy structure for 𝑁 = 1.

transportation cost 𝐹 and cost 𝑐1 (i.e., the cost of unnecessarily sending
the part) increases, we see that the threshold value 𝑝̌1 approaches 1,

eaning that the optimality region for sending the part in advance
ecomes smaller.

.2. Optimal policy structure for 𝑁 = 2

In the presence of two SKUs, recall that there are 4 possible demand
ealizations: 𝐬0 = (0, 0) (i.e. no parts are required for the corrective
aintenance), 𝐬1 = (0, 1) (i.e. only SKU 2 is required for the corrective
aintenance), 𝐬2 = (1, 0) (i.e. only SKU 1 is required for the corrective
aintenance) and 𝐬3 = (1, 1) (i.e. both SKU 1 and SKU 2 are required for

he corrective maintenance), where 𝑃 (𝑆 = 𝐬𝑚) = 𝑝̂𝑚 for 𝑚 ∈ {0, 1, 2, 3}.
et 𝑋 ∈ {0, 1} denote the demand for SKU 1, and 𝑌 ∈ {0, 1} denote
he demand for SKU 2. We start our analysis by reformulating the
ivariate demand distribution (which was presented in its most general
orm 𝑝̂0,… , 𝑝̂3 in Section 3) as an equivalent distribution that explicitly
pecifies the dependency between 𝑋 and 𝑌 . To be specific, let 𝜎1,2
enote the covariance of the random variables 𝑋 and 𝑌 :

1,2 = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌 ])] (9)

= 𝐸[𝑋𝑌 −𝑋𝑝2 − 𝑌 𝑝1 + 𝑝1𝑝2] (10)
= 𝐸[𝑋𝑌 ] − 𝑝1𝑝2 = 𝑝̂3 − 𝑝1𝑝2. (11)

here (9) is the definition of covariance, (10) follows from knowing
hat 𝐸[𝑋] is equal to 𝑃 (𝑋 = 1) = 𝑝1 and 𝐸[𝑌 ] is equal to 𝑃 (𝑌 = 1) = 𝑝2,
nd (11) follows from noting that 𝐸[𝑋𝑌 ] is equal to 𝑃 (𝑋 = 1, 𝑌 =

1) = 𝑝̂3. We observe from (11) that 𝑝̂3 is equal to 𝑝1𝑝2 + 𝜎1,2. By
using this observation, the relationships between the joint and marginal
distributions of 𝑋 and 𝑌 , and the fact that 𝑝̂0 + 𝑝̂1 + 𝑝̂2 + 𝑝̂3 = 1, it can
further be verified that

𝑃 (𝑆 = 𝐬0) = 𝑝̂0 = (1 − 𝑝1)(1 − 𝑝2) + 𝜎1,2
𝑃 (𝑆 = 𝐬1) = 𝑝̂1 = (1 − 𝑝1)𝑝2 − 𝜎1,2
𝑃 (𝑆 = 𝐬2) = 𝑝̂2 = 𝑝1(1 − 𝑝2) − 𝜎1,2
𝑃 (𝑆 = 𝐬3) = 𝑝̂3 = 𝑝1𝑝2 + 𝜎1,2.

Given the relationship between the parameters 𝑝̂0, 𝑝̂1, 𝑝̂2, 𝑝̂3 and the
parameters 𝑝1, 𝑝2, 𝜎1,2 characterized above, the requirement that the
probabilities 𝑝̂𝑖 must be in [0, 1] for all 𝑖 leads to the set of possible
values for the covariance 𝜎1,2 as a function of 𝑝1 and 𝑝2:

max{𝑝1 + 𝑝2 − 𝑝1𝑝2 − 1,−𝑝1𝑝2} ≤ 𝜎1,2 ≤ min{𝑝2 − 𝑝1𝑝2, 𝑝1 − 𝑝1𝑝2}. (12)

To put it in another way, for a given value of covariance 𝜎1,2, there is a
feasible set of values that the probabilities 𝑝1 and 𝑝2 can take. Our goal
is to characterize the optimal policy in the (𝑝1, 𝑝2) space for a given 𝜎1,2.
Definition 1 introduces a number of reference points and functions that
will be used in the characterization of the optimal policy.

Definition 1.

(i) We define four points such that

• (p1, 𝑝̄2) =
(

𝑐1
𝐷+𝐹+𝑐1

, (𝐹+𝑐2+(𝐷+𝐹 )𝜎1,2)(𝐷+𝐹+𝑐1)
(𝐷+𝐹+𝑐1)(𝐷+𝐹+𝑐2)−(𝐷+𝐹 )𝑐1

)

,

• (𝑝̄1,p2) =
( (𝐹+𝑐1+(𝐷+𝐹 )𝜎1,2)(𝐷+𝐹+𝑐2)
(𝐷+𝐹+𝑐1)(𝐷+𝐹+𝑐2)−(𝐷+𝐹 )𝑐2

, 𝑐2
𝐷+𝐹+𝑐2

)

,

• (𝑝̃1, 0) =
( 𝐹+𝑐1+(𝐷+𝐹 )𝜎1,2

𝐷+𝐹+𝑐1
, 0
)

, and

• (0, 𝑝̃2) =
(

0, 𝐹+𝑐2+(𝐷+𝐹 )𝜎1,2
𝐷+𝐹+𝑐2

)

.
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f

(ii) We define three functions of 𝑝1 such that

• 𝑓 (𝑝1) = − 𝐹+𝑐2+(𝐷+𝐹 )𝜎1,2
𝑐2+(1−𝑝1)(𝐷+𝐹 ) ,

• 𝑔(𝑝1) =
(𝐹+𝑐1+𝑐2+(𝐷+𝐹 )𝜎1,2)−(𝐷+𝐹+𝑐1)𝑝1

(𝐷+𝐹+𝑐2)−(𝐷+𝐹 )𝑝1
, and

• ℎ(𝑝1) =
𝐹+𝑐1+(𝐷+𝐹 )𝜎1,2−(𝐷+𝐹+𝑐1)𝑝1

𝐷+𝐹 .

In the remainder of this section, we will first analyze the special case
where the SKUs have independent demands, i.e., 𝜎1,2 = 0. Afterward,
we will investigate the optimal policy structure in the general case with
demand dependency.

5.2.1. Two SKUs with independent demands
Our analysis starts with Lemma 1 to show the relationship between

the coordinates of the points specified in Definition 1(i).

Lemma 1. For 𝜎1,2 = 0, it holds that 0 < p1 < 𝑝̃1 < 𝑝̄1 and 0 < p1 < 𝑝̃1 < 1.
imilarly, it holds that 0 < p2 < 𝑝̃2 < 𝑝̄2, and 0 < p2 < 𝑝̃2 < 1.

Fig. 4 illustrates the points specified in Definition 1(i) on a unit
square which represents the possible values of demand probabilities
(𝑝1, 𝑝2). These points and the functions specified in Definition 1(ii) split
the unit square into four regions. Theorem 1 characterizes the optimal
policy in each one of these four regions. Note that the decision variables
𝐱 reduce to (𝑥1, 𝑥2) when there are two SKUs. We denote the optimal
olicy with (𝑥∗1 , 𝑥

∗
2).

heorem 1. For two SKUs with independent demands (i.e., 𝜎1,2 = 0),

(i) (𝑥∗1 , 𝑥
∗
2) = (0, 0) for all values of (𝑝1, 𝑝2) ∈ 𝑅1, where the region

𝑅1 = {(𝑝1, 𝑝2) ∈ [0, 1]2|𝑝1 ∈ [0, p1], 𝑝2 ≤ 𝑓 (𝑝1)} ∪ {(𝑝1, 𝑝2) ∈
[0, 1]2|𝑝1 ∈ [p1, 𝑝̄1], ℎ(𝑝1) ≤ 𝑝2 ≤ 𝑔(𝑝1)}.

(ii) (𝑥∗1 , 𝑥
∗
2) = (0, 1) for all values of (𝑝1, 𝑝2) ∈ 𝑅2, where the region

𝑅2 = {(𝑝1, 𝑝2) ∈ [0, 1]2|𝑝1 ∈ [0, p1], 𝑝2 ≥ 𝑓 (𝑝1)}.
(iii) (𝑥∗1 , 𝑥

∗
2) = (1, 1) for all values of (𝑝1, 𝑝2) ∈ 𝑅3, where the region

𝑅3 = {(𝑝1, 𝑝2) ∈ [0, 1]2|𝑝1 ∈ [p1, 𝑝̄1], 𝑔(𝑝1) ≤ 𝑝2} ∪ {(𝑝1, 𝑝2) ∈
[0, 1]2|𝑝1 ∈ [𝑝̄1, 1], 𝑝2 ≥ p2}.

(iv) (𝑥∗1 , 𝑥
∗
2) = (1, 0) for all values of (𝑝1, 𝑝2) ∈ 𝑅4, where the region

𝑅4 = {(𝑝1, 𝑝2) ∈ [0, 1]2|𝑝1 ∈ [𝑝̃1, 𝑝̄1], 𝑝2 ≤ ℎ(𝑝1)} ∪ {(𝑝1, 𝑝2) ∈
[0, 1]2|𝑝1 ∈ [𝑝̄1, 1], 𝑝2 ≤ p2}.

The four regions 𝑅1, 𝑅2, 𝑅3, and 𝑅4 that characterize the optimal
policy in Theorem 1 are illustrated in Fig. 4. The shapes of these regions
provide insights on how the optimal actions change as the (𝑝1, 𝑝2) pair
aries. For example, the optimal policy is symmetric with respect to the
iagonal line 𝑝2 = 𝑝1 since the part costs are equal to each other

Fig. 5 provides further insights on how the cost parameters affect the
ptimal policy regions. We observe in Fig. 5(a) that an increased cost of
he second visit, 𝐷, increases the size of region 𝑅3 where (𝑥1, 𝑥2) = (1, 1)
s optimal. In Fig. 5(b), it is shown that increasing the value of the
ixed transportation cost, 𝐹 , increases the size of region 𝑅1 where
𝑥1, 𝑥2) = (0, 0) is optimal. It is intuitive that the optimal policy region
or bringing SKU 𝑖 becomes larger as the cost 𝑐𝑗 of the SKU 𝑗 increases

(𝑗 ≠ 𝑖). The comparison of Fig. 5(c) and Fig. 5(d) shows how the optimal
policy regions 𝑅3 and 𝑅4 (the ones where sending SKU 1 is optimal)
become larger as the cost 𝑐1 decreases from 100 to 20.

5.2.2. Two SKUs with dependent demands
Recall that Theorem 1 provided an explicit characterization of the

optimal policy regions (i.e., the sets of (𝑝1, 𝑝2) values where each action
is optimal) under the assumption that 𝜎1,2 = 0. However, an explicit
characterization of the optimal policy regions is not straightforward
when 𝜎1,2 ≠ 0 because the set of feasible (𝑝1, 𝑝2) values cannot be
erived in closed form for a given nonzero value of 𝜎1,2. The set

of feasible (𝑝1, 𝑝2) values can easily be obtained numerically, though.
ig. 6 shows the feasible set of (𝑝1, 𝑝2) values for 𝜎1,2 = 0.05 (left) and
or 𝜎 = 0.1 (right). The shaded (purple color) areas in Fig. 6 denotes
1,2
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𝑢

Fig. 4. Optimal policy regions for 𝜎1,2 = 0, 𝐹 = 100, 𝐷 = 100, 𝑐1 = 20, 𝑐2 = 20.

the set of infeasible (𝑝1, 𝑝2) values for the given 𝜎1,2 value. Note that
the expressions for p1, p2, and the functions 𝑓 (⋅), 𝑔(⋅), and ℎ(⋅) from
Definition 1 (which were introduced for a general 𝜎1,2 value) are used
in Fig. 6 to determine the optimal actions. The roles of these expressions
in determining the optimal actions follow from the arguments used in
the proof of Theorem 1, so we omit the details to avoid repetition.

In Fig. 6, we observe that there are only two feasible solutions
(i.e., (𝑥1, 𝑥2) = (0, 0) and (𝑥1, 𝑥2) = (1, 1)). When there is a sufficiently
large positive dependency between the demands of the two SKUs, it
is intuitive that either both or neither of these SKUs will be needed.
Furthermore, Fig. 6 shows that the switching curve between solutions
(𝑥1, 𝑥2) = (1, 1) and (𝑥1, 𝑥2) = (0, 0) (i.e., the blue solid line) shifts
upwards as the covariance 𝜎1,2 increases from 0.05 to 0.1. This means
that the region of the (𝑝1, 𝑝2) pairs where the solution (𝑥1, 𝑥2) = (1, 1) is
optimal shrinks as the degree of positive dependency increases. That
is, in this particular example, a larger covariance makes having a
diagnostic visit without part shipment more preferable. Finally, by com-
paring the dashed blue switching curve (which was obtained under the
assumption of no dependency) with the solid blue switching curve, we
can understand the effect of ignoring demand dependency in decision
making. For example, for all the (𝑝1, 𝑝2) pairs below the dashed blue
switching curve (i.e., the low values of the marginal probabilities), the
optimal actions under a false assumption of independent demands are
always the same as the optimal actions that would be obtained under
demand dependency.

5.3. Characterization of the dominating and dominated solutions for a
general 𝑁 value

Suppose that we decide to send an SKU set 𝐼 ′ ⊆ 𝐼 to the main-
tenance site for the diagnostic visit. The solution that corresponds to
sending the parts in set 𝐼 ′ is denoted with 𝐱𝐼 ′ = (𝑥′1,… , 𝑥′𝑁 ), where

𝑥′𝑖 =

{

1 if 𝑖 ∈ 𝐼 ′

0 if 𝑖 ∈ 𝐼∖𝐼 ′.

Any set 𝐼 ′′ that is equal to 𝐼 ′ ⧵ {𝑙} with 𝑙 ∈ 𝐼 ′ or equal to 𝐼 ′ ∪ {𝑙} ⊆ 𝐼
with 𝑙 ∈ 𝐼 ⧵ 𝐼 ′ is referred to as a neighboring set of 𝐼 ′.

Definition 2. A solution 𝐱𝐼 ′ is dominated by another solution 𝐱𝐼 ′′ if
𝐶(𝐱𝐼 ′ ) > 𝐶(𝐱𝐼 ′′ ). We refer to 𝐱𝐼 ′ as the dominated solution and 𝐱𝐼 ′′ as
the dominating solution.
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In the remainder of this section, we will provide some analytical
properties that can be used to determine the dominance between two
neighboring solutions. Note that the probability that a second visit will
be required under the solution 𝑥𝐼 ′ is ℎ𝐼 ′ =

∑

𝑚∈𝑀 ′ 𝑢̂𝑚(𝐼 ′)𝑝̂𝑚, where

̂𝑚(𝐼 ′) =

{

0 if 𝐼 ′ contains all SKUs that are in 𝐬𝑚
1 otherwise.

Our analysis starts with establishing the monotonicity properties re-
lated to the probability of the second visit in Lemma 2.

Lemma 2. Let 𝑙 ∈ 𝐼 , 𝐼 ′ ⊂ 𝐼∖{𝑙}. It holds that ℎ𝐼 ′∪{𝑙} ≤ ℎ𝐼 ′ . It also holds
that the difference ℎ𝐼 ′ −ℎ𝐼 ′∪{𝑙} is a non-decreasing function of 𝐼 ′ on 𝐼∖{𝑙},
i.e., ℎ𝐼 ′1 − ℎ𝐼 ′1∪{𝑙} ≤ ℎ𝐼 ′2 − ℎ𝐼 ′2∪{𝑙} where 𝐼

′
1 ⊂ 𝐼 ′2 ⊆ 𝐼∖{𝑙}.

It is intuitive that the probability of a second visit decreases as the
set of parts sent to the site becomes larger. Lemma 2 further shows
that the difference in the probabilities of a second visit for a set 𝐼 ′ and
𝐼 ′ ∪ {𝑙} is greater than or equal to the difference in the probability of
a second engineer visit for a subset of 𝐼 ′ and the union of that subset
with SKU {𝑙}. Lemma 2 is helpful to provide results for the structure of
the optimal policy for a general 𝑁 number of SKUs.

Remark 2. Note that ℎ𝐼 = 0 and ℎ𝐼 ′ − ℎ𝐼 = 𝑝𝑖 for any 𝐼 ′ = 𝐼∖{𝑖}.
Additionally, the following closed-form representations hold when the
demands of the SKUs are independent:

• ℎ∅ − ℎ𝐼 = 1 −
∏

𝑖∈𝐼 (1 − 𝑝𝑖).
• ℎ𝐼 ′′ − ℎ𝐼 ′ =

(

∏

𝑗∈𝐼∖𝐼 ′′ (1 − 𝑝𝑗 )
)

for any set 𝐼 ′ ⊆ 𝐼 and 𝐼 ′′ = 𝐼 ′∖{𝑖},
where 𝐼 ′, 𝐼 ′′ ≠ ∅.

• ℎ∅ − ℎ𝐼 ′ =
(

∏

𝑗∈𝐼∖{𝑖}(1 − 𝑝𝑗 )
)

for any set 𝐼 ′ = {𝑖} and 𝐼 ′′ = ∅.

We derive some conditions in Lemma 3 that can be used to deter-
mine the dominating solution and the dominated solution in a given
pair of solutions. In other words, Lemma 3 characterizes when one
solution is better than the other one.

Lemma 3.

(i) Solution 𝐱∅ dominates the solution 𝐱𝐼 if and only if

𝐹 +
∑

𝑖∈𝐼
𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )ℎ∅ > 0. (13)

(ii) For any set 𝐼 ′ ⊆ 𝐼 with {𝑖} ∈ 𝐼 ′ and 𝐼 ′′ = 𝐼 ′∖{𝑖} where 𝐼 ′, 𝐼 ′′ ≠ ∅,
the solution 𝐱𝐼 ′′ dominates the solution 𝐱𝐼 ′ if

𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ𝐼 ′′ − ℎ𝐼 ′ ) > 0. (14)

In a special case with 𝐼 ′ = 𝐼∖{𝑖}, the solution 𝐱𝐼 ′ dominates the
solution 𝐱𝐼 if

𝑐𝑖
𝐷 + 𝐹 + 𝑐𝑖

> 𝑝𝑖. (15)

(iii) For 𝐼 ′ = {𝑖} and 𝐼 ′′ = ∅, the solution 𝐱𝐼 ′′ dominates 𝐱𝐼 ′ if

𝐹 + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ∅ − ℎ𝐼 ′ ) > 0. (16)

Lemma 3(i) shows that sending no parts is better than sending all
parts when condition (13) is satisfied. Condition (14) in Lemma 3(ii)
can be used to check whether removing a specific SKU from the
solution improves the solution or not. This condition reduces to an
easy-to-interpret formula (15) to check whether removing a certain SKU
improves the ‘‘send-all-parts’’ policy. Finally, Lemma 3(iii) can be used
to check whether adding a certain SKU improves the ‘‘send-no-parts’’
policy. The results in Lemma 3, together with the monotonicity result
in Lemma 2, lead to Theorem 2.

Theorem 2. If the solution 𝑥𝐼 ′∖{𝑖} is a better than the solution 𝑥𝐼 ′ , then
it also holds that the solution 𝑥𝐼 ′′∖{𝑖} is better than the solution 𝑥𝐼 ′′ , where
𝐼 ′′ ⊂ 𝐼 ′ with 𝑖 ∈ 𝐼 ′′.
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Fig. 5. Change of optimal policy regions for 2 SKUs with independent demand (𝜎1,2 = 0).

Fig. 6. Change of optimal policy regions for 𝐹 = 100, 𝐷 = 100, 𝑐1 = 20, 𝑐2 = 20 with dependent demand. The shaded area represents the infeasible combinations of 𝑝1 and 𝑝2 for
the given 𝜎1,2 value. In the presence of demand dependency, (𝑥∗1 , 𝑥

∗
2) = (0, 0) below the solid blue line, and (𝑥∗1 , 𝑥

∗
2) = (1, 1) above the solid blue line.
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Table 2
Characteristics of the demand distributions in Scenarios A, B, C and D.

(𝑝1, 𝑝2,… , 𝑝10) Demand
dependency

𝑝̂𝑚

0.09 for 𝑚 ∈ {6, 24, 96, 384, 513},
A 0.135,∀𝑖 ∈ 𝐼 Yes 0.045 for 𝑚 ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512},

0.1 for 𝑚 = 0,
0 otherwise

B 0.135,∀𝑖 ∈ 𝐼 No ∏

𝑖∈𝐼

(

𝑝𝑖𝑠𝑖𝑚 + (1 − 𝑝𝑖)(1 − 𝑠𝑖𝑚)
)

for 𝑚 ∈ {0,… , 210 − 1}

C (0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05) Yes 0.05 for 𝑚 = 293,
0.1 for 𝑚 ∈ {390, 448},
0.2 for 𝑚 = 392,
0.25 for 𝑚 ∈ {544, 592},
0 otherwise

D (0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05) No ∏

𝑖∈𝐼

(

𝑝𝑖𝑠𝑖𝑚 + (1 − 𝑝𝑖)(1 − 𝑠𝑖𝑚)
)

for 𝑚 ∈ {0,… , 210 − 1}
According to Theorem 2, if removing the SKU 𝑖 from a set 𝐼 ′ is better
than not removing it, this observation also holds for any subset of 𝐼 ′

that contain SKU 𝑖. This result has key implications in reducing the
solution space. For example, once it is confirmed that the condition (15)
holds for a specific SKU 𝑖, it is for sure known that the optimal solution
does not include SKU 𝑖, as stated in Corollary 1.

Corollary 1. For an optimal solution 𝐱∗, it will hold that 𝑥∗𝑖 = 0 if (15)
holds.

The results in Lemma 3 and Theorem 2 can guide the decision
makers to quickly determine whether a specific SKU can be eliminated
from the list of candidate SKUs to be sent in advance of the diagnostic
visit. Example 1 illustrates the practical use of our technical results in
reducing the solution space.

Example 1. Let 𝑁 = 3 with 𝐼 = {1, 2, 3}, and suppose that 𝑐1
𝐷+𝐹+𝑐1

> 𝑝1.
hen, we know that the solution (1, 1, 1) (i.e. sending the parts from
ll SKUs) is costlier than the solution (0, 1, 1) (i.e. sending the parts
nly for SKU 2 and SKU 3). Since we already know that sending the
et of parts {2, 3} is better than sending {1, 2, 3}, Theorem 2 implies
hat sending {2} is better than sending {1, 2}, sending {3} is better than
ending {1, 3}, and sending nothing is better than sending {1}. Thus, we
an remove the solutions with 𝑥1 = 1 from the list of possible optimal
olutions. Suppose that the condition 𝑐2(1−𝑝2)−(𝐷+𝐹 )(ℎ𝐼 ′−ℎ′′) > 0 also
olds, where 𝐼 ′ = {2, 3} and 𝐼 ′′ = {3}. That is, sending the part {3} is
etter than sending {2, 3}. Theorem 2 then implies that sending nothing
s better than sending {2}. Consequently, it can be concluded that the
ptimal solution must be one of the solutions (0, 0, 1) and (0, 0, 0).

In many real-world cases, the number of SKUs that represent the
ritical components related to a specific failure of a physical asset
ardly exceeds 𝑁 = 10, for which the ILP model presented in Section 4
an be instantly solved in an average personal computer. However,
solution approach that reduces the search space by exploiting the

nalytical properties presented in this section can still be useful as an
lternative to the ILP model. Section 6 will introduce such a solution
pproach along with two other benchmark policies that are commonly
sed in practice.

. Benchmark policies

In this section, we will introduce three benchmark policies as bench-
ark to the optimal policy. We choose these benchmark policies be-

ause they are easy to implement and can be attractive to the service
roviders for practical reasons as described below.

• Policy 1: No spare parts are sent to the failed system in ad-
vance of the on-site diagnostic visit by a service engineer. The
79
maintenance process starts with the on-site diagnostic visit of
the service engineer to determine which parts are needed for
corrective maintenance. Then, the set of required spare parts
(which are certainly known at that moment) is brought on-site
after which the failed system is repaired in a second visit. Policy
1 is a commonly used policy in practice by service providers who
do not have any spare part recommendation systems in place. The
comparison of Policy 1 with the optimal policy provides insights
on the potential business value of collecting historical data to
build a demand distribution and proactively sending spare parts
based on that distribution.

• Policy 2: The parts are ordered with respect to their frequency of
usage and the top 𝑘 parts with the highest frequency are sent to
the failed system in advance of the on-site diagnostic visit. This
policy is equivalent to ranking the parts with respect to their prob-
abilities 𝑝𝑖 specified in Eq. (1) and choosing the first 𝑘 parts with
the highest probability. We include this policy as a benchmark
to the optimal policy as it resembles the current practice of an
industry partner. The fixed number 𝑘 that determines how many
parts are sent for the diagnostic visit can be optimized. Note that
if 𝑘 is equal to zero, then Policy 2 is the same as Policy 1.

• Policy 3: While Policy 2 only considers the probabilities 𝑝𝑖,
Policy 3 also takes the cost parameters into account to decide
which parts to send to the failed system. It is essentially a greedy
heuristic that is capable of exploiting the structural properties
derived in Section 5.3. To be specific, Policy 3 decides which
parts to send in three steps. In Step 1, the parts which satisfy
condition (15) are eliminated. In Step 2, an ordered list of re-
maining parts is formed with an increasing ratio of 𝑝𝑖∕𝑐𝑖. Note
that the parts early in this list with a lower 𝑝𝑖∕𝑐𝑖 ratio are the
ones that are less likely to be in the optimal solution, so they are
better candidates to eliminate. In Step 3, the first part in the list
is temporarily removed and the cost of the solution that includes
the parts in this temporary list is compared with the cost of the
solution that includes the parts in the original list by checking the
condition (14) (or by checking the condition (16) if the temporary
list does not include any part). If the condition is satisfied, the list
is updated by permanently removing the part from the list, and
Step 3 is repeated. If the condition is not satisfied (i.e., removing
the part does not improve the solution), then the current list is
returned as the solution of Policy 3.

7. Numerical analysis

Section 7.1 introduces the main test bed for our numerical analysis.
Section 7.2 presents our numerical insights on the effects of demand
dependency and cost parameters on the optimal policy and optimal

cost. Section 7.3 compares the optimal policy with the benchmark
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policies introduced in Section 6 and provides insights into how the
performance of the benchmark policies changes with varying levels of
demand dependency and cost parameters. Note that our model assumes
the demand distribution 𝑝̂𝑖, 𝑖 ∈ 𝑀 , is known. In the real world, it
is possible that the number of corrective maintenance cases may be
limited, making it difficult to obtain an accurate demand distribution
that adequately reflects the true demand behavior. Section 7.4 will
present a numerical study that investigates the sensitivity of the policies
introduced in our work with respect to the uncertainty associated with
not knowing the true demand distribution.

7.1. Description of the test bed

We let 𝐹 ∈ {25, 50, 100} and 𝐷 ∈ {100, 200, 400}, and consider
instances with 𝑁 = 10 SKUs. The SKU-specific cost parameters 𝐜 =
(𝑐1,… , 𝑐10) are sampled from a uniform distribution on the interval [10,
25] such that 𝐜 = (20.13, 17.65, 10.51, 12.87, 10.49, 10.44, 14.38, 17.3, 14.5,
4.86). In our experiments, our first goal is to generate insights into
he effects of marginal demand distributions and the level of demand
ependency on the optimal policy. So, we defined two types of marginal
emand distributions (i.e., two distinct (𝑝1,… , 𝑝10) values) and two
evels of dependency (i.e., dependent demands and independent de-
ands), leading to four distinct scenarios. Scenarios A and B assume

ach SKU has the same marginal demand probability, while Scenar-
os C and D have marginal demand probabilities varying from 0.05
o 0.5. The case of equal marginal demand probabilities represents a
ituation where the service provider does not have enough information
o distinguish between SKUs. The demand distribution 𝑝̂𝑖, 𝑖 ∈ 𝑀 , is
pecified in Scenarios A and C such that there are SKUs that are likely
o be demanded together, while Scenarios B and D do not have such
ependence. Table 2 provides the details on these demand scenarios.
ur second goal is to investigate how the part-specific costs affect the
ptimal policy. For this purpose, we will vary the cost parameter 𝑐𝑖 for
ne of the SKUs to observe how the optimal policy changes.

.2. Results on the optimal policy

The optimal solution and optimal cost for each instance are given
n Table 3. In 10 out of 36 instances, the optimal policy is the same
s Policy 1. In 13 out of 36 instances, the optimal policy is equal to
he ‘send all parts’ solution. For the remaining instances, the optimal
umber of parts that should be sent for the diagnostic visit varies
etween seven and nine. We observe only ‘send no parts’ or ‘send all
arts’ solutions under Scenarios A and B, where the marginal demand
robabilities of SKUs are equal. The optimal solution is ‘send no parts’
hen the second engineer visit cost 𝐷 is relatively low in comparison

o fixed transportation cost 𝐹 , and the optimal solution is ‘send all
arts’ when 𝐷 is relatively high in comparison to 𝐹 . When we look at
cenarios C and D, we observe that optimal solutions other than ‘send
o parts’ and ‘send all parts’ are also possible. That is, when there is
ore variety in the marginal demand probabilities of different SKUs

i.e., 𝑝𝑖 values are less similar to each other), optimal solutions are more
ikely to be heterogeneous (i.e., a mix of zeros and ones).

The comparison of Scenarios A and B and the comparison of Sce-
arios C and D in Table 3 provide insights into the effect of demand
ependency on the optimal policy. For example, we observe that the
emand dependency does not influence the optimal solution when the
ost of the second on-site visit cost is high, i.e., all instances from
cenarios 𝐴 and 𝐵 and all instances from Scenarios 𝐶 and 𝐷 have the
ame optimal solution when 𝐷 is equal to 400. For lower values of 𝐷,
e generally observe that the dependency leads to having less parts

n the optimal solution (e.g., instances 22–23 compared to instances
1–32), but there are also exceptions to this observation (e.g., instance
compared to instance 15). Furthermore, while the dependency leads
80

o an increase in optimal costs for Scenarios 𝐴 and 𝐵 with identical P
arginal demand probabilities, it leads to a decrease in optimal costs
or Scenarios 𝐶 and 𝐷 with varying marginal demand probabilities.

Next, we investigate the effect of part-specific costs on the optimal
olicy. We do this by inflating the part-specific cost of one of the SKUs
hile keeping everything else the same. For brevity, we only focus on
cenarios C and D with various levels of marginal demand probabilities,
nd increase the cost of SKU 4 to make it significantly higher than the
osts of other SKUs. Table 4 presents the results.

The comparison of Tables 3 and 4 leads to some interesting insights.
or example, instance 22 in Table 3 has SKU 4 in its optimal solution.
n Table 3, on the other hand, we see that SKU 4 is not in the optimal
et of spare parts due to the high cost of 𝑐4. We also see that SKU 6 is
ot in the optimal solution due to the high demand dependency with
KU 4 and low marginal demand probability (i.e., 𝑝6 = 0.25). Recall
hat the demand distribution in instance 22 was specified such that the
emand vector 𝑠544 (which involves SKUs 1, 4, and 6) has probability

𝑝̂544 = 0.25, so there is dependency between SKUs 1, 4, and 6 by
onstruction. Despite the dependency of SKU 4 with also SKU 1, we
bserve that SKU 1 is still in the optimal solution because its marginal
emand probability is relatively higher (i.e., 𝑝1 = 0.5). In the instances
9, 20, and 28 of Table 3, 𝑥∗𝑖 was equal to 1 for some SKU 𝑖. However,
n Table 4, the optimal solution is ‘send no parts’ in these instances.

hen the transportation cost is high or there is a high part-specific cost
or an SKU that has a high marginal demand probability, we observe
more conservative optimal solution (i.e., the parts are sent only after

he diagnostic visit confirms which specific parts are needed).

.3. Comparison of the optimal policy with the benchmark policies

The goal of this section is to compare the performance of the
ptimal policy with the benchmark policies introduced in Section 6.
e denote the cost of Policy 1 by 𝐶1, the cost of Policy 2 for a given
∈ {1,… , 𝑁} (referred to as Policy 2(𝑘)) by 𝐶2(𝑘), the cost of Policy 3
y 𝐶3, and the cost of the optimal policy by 𝐶opt . Table 5 reports
he relative differences 𝛥1 =

𝐶1−𝐶opt
𝐶opt

100%, 𝛥2(𝑘) =
𝐶2(𝑘)−𝐶opt

𝐶opt
100%, and

𝛥3 =
𝐶3−𝐶opt
𝐶opt

100%.
In Table 5, we observe that Policy 1 is the best policy for Scenarios A

and B when the cost parameter 𝐷 is the lowest (i.e, instances 1–3 and
10–12). That is, it is optimal to send no parts before the diagnostic visit
when marginal demand probabilities are similar to each other and the
cost of second visit is relatively lower. On the other hand, when Policy 2
finds the optimal or a close-to-optimal solution, the best 𝑘 value seems
to be closer to 𝑁 , i.e., for the instances where Policy 2 finds the optimal
solution, the value of 𝑘 is at least 7. That is, for problem instances where
the optimal solution includes many of the candidate parts, Policy 2 is
a logical approach. We further observe in Table 5 that either Policy 1,
Policy 2, or Policy 3 finds the optimal policy in each instance. However,
one particular heuristic policy cannot find the optimal solution in all
problem instances. On average, Policy 3 is the best benchmark policy
with only 6.2% deviation from the optimal policy, while this deviation
is 57.4% for Policy 1 and 12.2% for Policy 2 with the best 𝑘 value. In
ddition, Policy 3 is better than Policy 1 in 26 (out of 36) instances,
nd it is better than the Policy 2 with the best 𝑘 value in 23 (out of 36)
nstances. The superior performance of Policy 3 can be attributed to its
bility to exploit the structural properties from Section 5.3.

Table 6 compares the benchmark policies with the optimal policies
f the instances in Table 4 to investigate how the increase of a part-
pecific cost affects our insights. In general, we continue to observe that
olicy 3 is the best policy on average. Policy 3 is the best benchmark
olicy with only 10.0% average deviation from the optimal policy,
hile this deviation is 30.7% for Policy 1 and 17.8% for Policy 2 with

he optimal 𝑘 value. Furthermore, we observe in Table 6 that neither
olicy 1 nor Policy 2 finds the optimal policy in instance 31, while
olicy 3 can find the optimal solution in that instance.
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Table 3
Results on the optimal policy for SKU-specific costs equal to 𝐜.

Instance 𝐹 𝐷 Scenario Optimal solution Optimal cost

1 25 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 112.5
2 50 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 135.0
3 100 100 A (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 180.0
4 25 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
5 50 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
6 100 200 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5
7 25 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
8 50 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
9 100 400 A (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5
10 25 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 95.7
11 50 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 114.8
12 100 100 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 153.1
13 25 200 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
14 50 200 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
15 100 200 B (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 229.6
16 25 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 157.5
17 50 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 182.5
18 100 400 B (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 232.5
19 25 100 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 104.9
20 50 100 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 133.6
21 100 100 C (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 190.0
22 25 200 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 119.9
23 50 200 C (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 148.6
24 100 200 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 203.9
25 25 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 135.1
26 50 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 161.4
27 100 400 C (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 212.5
28 25 100 D (1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 118.9
29 50 100 D (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 145.1
30 100 100 D (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 193.4
31 25 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 125.1
32 50 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 151.4
33 100 200 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 203.9
34 25 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 135.1
35 50 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 161.4
36 100 400 D (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 212.5
c
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Table 4
Optimal policy when the SKU-specific costs are equal to 𝐜 except SKU 4 with 𝑐4 = 121.87
nstead of 12.87.

Instance Optimal solution Optimal cost

19 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 118.8
20 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 142.5
21 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 190.0
22 (1, 1, 1, 0, 1, 0, 1, 0, 0, 0) 183.7
23 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 220.8
24 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 276.0
25 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 207.3
26 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 233.5
27 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 284.6
28 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 120.9
29 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 145.1
30 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 193.5
31 (1, 1, 1, 0, 1, 1, 1, 1, 1, 0) 192.9
32 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 223.5
33 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 276.0
34 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 207.3
35 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 233.5
36 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 284.6

It is a natural question to ask which policy should be adopted in
ractice. As mentioned at the end of Section 5.3, we choose 𝑁 = 10
ecause, in our experience, it is a realistic value to consider as the
umber of SKUs. For highly complex capital equipment such as indus-
rial printers and lithography systems, there are definitely more than 10
81

o

ritical components, but recall that we assume the service provider is
quipped with the technology that can match the current maintenance
ase to the previous maintenance cases. This initial analysis typically
educes the set of SKUs relevant for the current maintenance case to
subset of all critical components. Since the ILP can easily be solved

n a standard personal computer for 𝑁 = 10, the optimal policy is a
atural choice to follow in practice. If an ILP solver is not available,
he three benchmark policies can be implemented and the one with
he best performance can be chosen for a specific instance.

.4. Sensitivity with respect to the demand-distribution uncertainty

Recall that we argued the demand distribution 𝑝̂𝑚, 𝑚 ∈ 𝑀 , is
btained by counting the frequencies of the part combinations that
ere needed to resolve the related corrective maintenance cases in the
ast. If there is a large number of such maintenance cases in the past,
hat leads to a data set that can be used to build an accurate empirical
istribution of the true (but unknown) probability distribution of the
emand scenarios. However, it may be possible that the number of
orrective maintenance cases in the past is limited. The objective of
his section is to investigate how the number of the past corrective
aintenance cases, which we denote by 𝑇 , affects the performance of

he optimal policy.
In our experiments, we assume that the demand distributions speci-

ied in Table 2 are the true demand distributions and they are unknown
y the service provider. The service provider uses the past maintenance
ases to build an empirical demand distribution (i.e., the frequencies
f each part combination in the historical maintenance cases), and
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Table 5
Comparison of the optimal policy against Policies 1, 2, and 3 for SKU-specific costs equal to 𝐜.

Inst. 𝛥1 𝛥2(𝑘) 𝛥3

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

1 0.0% 32.7% 41.2% 34.4% 39.3% 32.4% 35.4% 31.4% 39.7% 35.8% 40.0% 26.8%
2 0.0% 45.0% 51.3% 43.0% 46.2% 37.9% 39.6% 33.9% 39.9% 34.2% 35.2% 27.5%
3 0.0% 60.2% 63.7% 53.8% 54.9% 45.0% 45.0% 36.9% 40.2% 32.2% 29.2% 30.0%
4 28.6% 49.1% 52.4% 38.9% 39.5% 26.0% 25.3% 13.9% 17.0% 5.7% 0.0% 0.0%
5 23.3% 54.1% 56.3% 42.8% 42.7% 29.2% 28.0% 16.3% 18.4% 6.7% 0.0% 0.0%
6 16.1% 60.9% 61.6% 48.1% 47.1% 33.5% 31.7% 19.6% 20.2% 8.2% 0.0% 0.0%
7 142.9% 157.7% 155.2% 124.6% 119.5% 88.8% 82.4% 53.9% 51.2% 22.8% 0.0% 0.0%
8 121.9% 147.8% 145.0% 116.8% 111.8% 83.5% 77.3% 50.8% 47.9% 21.5% 0.0% 0.0%
9 93.5% 134.4% 131.3% 106.2% 101.3% 76.1% 70.4% 46.7% 43.4% 19.8% 0.0% 0.0%
10 0.0% 39.5% 49.9% 53.1% 57.4% 58.3% 57.8% 59.5% 61.9% 59.7% 64.6% 0.0%
11 0.0% 53.9% 61.7% 63.2% 65.6% 64.9% 62.9% 62.3% 62.2% 57.8% 58.9% 59.2%
12 0.0% 71.9% 76.4% 75.9% 75.8% 73.2% 69.2% 65.9% 62.5% 55.5% 51.9% 52.9%
13 9.4% 31.1% 34.7% 33.5% 32.5% 29.0% 23.9% 19.3% 14.3% 5.7% 0.0% 0.0%
14 4.9% 36.8% 39.4% 37.6% 36.0% 32.1% 26.6% 21.5% 15.8% 6.7% 0.0% 0.0%
15 0.0% 46.3% 47.5% 45.0% 42.5% 37.9% 32.0% 26.0% 19.3% 9.5% 1.2% 1.9%
16 106.6% 123.6% 121.9% 114.5% 106.3% 94.4% 79.7% 64.1% 46.3% 22.8% 0.0% 0.0%
17 88.8% 116.7% 114.6% 107.6% 99.7% 88.5% 74.8% 60.1% 43.5% 21.5% 0.0% 0.0%
18 64.6% 107.3% 104.7% 98.1% 90.8% 80.6% 68.2% 54.8% 39.5% 19.8% 0.0% 0.0%
19 13.3% 46.6% 56.0% 62.0% 58.0% 35.2% 12.9% 0.0% 14.0% 14.6% 31.1% 0.0%
20 6.7% 51.6% 58.9% 63.6% 58.6% 36.1% 13.8% 0.0% 11.0% 9.6% 21.6% 9.5%
21 0.0% 57.9% 63.1% 66.4% 60.2% 37.8% 15.6% 0.6% 8.3% 4.7% 11.8% 5.3%
22 78.3% 107.5% 115.7% 120.9% 109.1% 68.3% 27.9% 0.0% 12.3% 4.4% 14.7% 4.3%
23 59.8% 100.2% 106.8% 111.0% 99.8% 62.7% 25.9% 0.0% 9.9% 1.9% 9.4% 1.8%
24 39.8% 93.8% 98.5% 101.6% 91.0% 57.8% 24.9% 1.1% 8.3% 0.0% 4.2% 0.0%
25 198.8% 224.8% 232.0% 236.6% 211.4% 138.2% 65.3% 11.0% 21.8% 0.0% 1.8% 0.0%
26 164.9% 202.1% 208.1% 212.0% 189.3% 124.2% 59.3% 10.7% 19.8% 0.0% 0.7% 0.0%
27 123.5% 175.3% 179.9% 182.9% 163.3% 107.9% 52.8% 11.1% 18.0% 0.7% 0.0% 0.0%
28 1.7% 27.7% 30.2% 27.2% 23.0% 15.4% 6.7% 1.1% 0.0% 1.0% 15.6% 0.0%
29 0.0% 38.0% 39.1% 35.3% 30.0% 21.6% 11.9% 4.8% 1.7% 0.9% 12.0% 1.8%
30 0.0% 53.5% 53.0% 48.1% 41.3% 31.6% 20.6% 11.5% 5.9% 2.8% 9.8% 3.5%
31 73.9% 96.1% 94.2% 85.0% 72.4% 54.8% 34.9% 18.0% 6.6% 0.0% 9.9% 0.0%
32 59.7% 94.0% 91.5% 82.6% 70.5% 53.8% 34.9% 18.6% 7.1% 0.0% 7.3% 0.0%
33 42.3% 91.5% 88.4% 79.8% 68.2% 52.5% 35.0% 19.2% 7.6% 0.0% 4.2% 0.0%
34 204.3% 219.9% 210.3% 189.9% 162.5% 126.8% 86.9% 49.7% 20.2% 0.0% 1.8% 0.0%
35 169.7% 197.8% 188.8% 170.6% 146.0% 114.1% 78.4% 45.0% 18.4% 0.0% 0.7% 0.0%
36 127.6% 171.7% 163.7% 148.0% 126.7% 99.4% 68.9% 40.1% 16.8% 0.7% 0.0% 0.0%

Avg. 57.4% 95.0% 96.9% 90.6% 83.1% 62.5% 44.6% 27.2% 24.8% 13.5% 12.2% 6.2%
Table 6
Comparison of the optimal policy against Policies 1, 2, and 3 when SKU-specific costs are equal to 𝐜 except SKU 4 with 𝑐4 = 121.87 instead of 12.87.

Inst. 𝛥1 𝛥2(𝑘) 𝛥3

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

19 0.0% 29.5% 37.7% 43.0% 99.2% 80.1% 60.4% 49.1% 61.4% 61.9% 76.5% 19.2%
20 0.0% 42.2% 49.0% 53.4% 98.5% 78.2% 57.4% 44.4% 54.7% 53.3% 64.6% 34.6%
21 0.0% 57.9% 63.1% 66.4% 97.5% 75.7% 53.6% 38.6% 46.3% 42.6% 49.8% 37.8%
22 16.3% 35.4% 40.7% 44.1% 75.0% 49.1% 22.8% 4.5% 12.5% 7.4% 14.1% 7.1%
23 7.6% 34.8% 39.2% 42.0% 66.6% 42.2% 17.4% 0.0% 6.7% 1.3% 6.3% 1.2%
24 3.3% 43.2% 46.7% 48.9% 66.8% 42.7% 18.4% 0.8% 6.2% 0.0% 3.1% 0.0%
25 94.8% 111.7% 116.4% 119.4% 137.1% 90.1% 42.5% 7.1% 14.2% 0.0% 1.2% 0.0%
26 83.1% 108.8% 113.0% 115.7% 130.3% 85.8% 41.0% 7.4% 13.7% 0.0% 0.5% 0.0%
27 66.9% 105.6% 109.0% 111.2% 121.5% 80.6% 39.4% 8.3% 13.5% 0.5% 0.0% 0.0%
28 0.0% 25.6% 28.1% 25.1% 79.6% 73.2% 64.7% 59.1% 58.1% 59.1% 73.4% 19.9%
29 0.0% 38.0% 39.1% 35.3% 78.8% 71.3% 61.7% 54.6% 51.4% 50.6% 61.7% 26.3%
30 0.0% 53.5% 53.0% 48.1% 77.9% 68.9% 57.9% 48.8% 43.2% 40.1% 47.1% 33.2%
31 12.9% 27.2% 26.0% 20.0% 48.6% 37.8% 24.9% 13.9% 6.6% 2.3% 8.7% 0.0%
32 8.2% 31.4% 29.8% 23.7% 47.2% 36.4% 23.7% 12.6% 4.8% 0.0% 5.0% 0.0%
33 5.1% 41.4% 39.2% 32.8% 49.9% 38.8% 25.8% 14.2% 5.6% 0.0% 3.1% 0.0%
34 98.3% 108.5% 102.2% 89.0% 105.3% 82.6% 56.6% 32.4% 13.2% 0.0% 1.2% 0.0%
35 86.4% 105.8% 99.7% 87.1% 100.4% 78.9% 54.2% 31.1% 12.7% 0.0% 0.5% 0.0%
36 69.9% 102.8% 96.8% 85.1% 94.2% 74.2% 51.4% 30.0% 12.6% 0.5% 0.0% 0.0%

Avg. 30.7% 61.3% 62.7% 60.6% 87.5% 65.9% 43.0% 25.4% 24.3% 17.8% 23.1% 10.0%
finds the ‘‘optimal’’ solution by solving the ILP that takes the empirical
demand distribution as input. We evaluate the cost of the resulting
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policy under the true demand distribution, and report its percentage
deviation from the true optimal policy (i.e., the policy that is obtained
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Table 7
Percentage deviation from the true optimal cost when the optimal policy is calculated
based on a demand distribution estimated from historical data of 𝑇 maintenance cases

Inst. 𝑇 = 15 𝑇 = 30 𝑇 = 50 𝑇 = 100

1 12.8 ±0.9% 3.8 ± 0.5% 0.6 ± 0.2% 0.0 ± 0.0%
2 9.0 ± 0.9% 1.0 ± 0.3% 0.1 ± 0.1% 0.0 ± 0.0%
3 2.9 ± 0.6% 0.0 ± 0.0% 0.0 ± 0.0% 0.0 ± 0.0%
4 15.0 ± 0.5% 11.1 ± 0.5% 6.5 ± 0.4% 2.0 ± 0.2%
5 15.1 ± 0.5% 9.9 ± 0.4% 5.5 ± 0.3% 2.0 ± 0.2%
6 16.4 ± 0.5% 9.6 ± 0.5% 3.7 ± 0.3% 1.2 ± 0.2%
7 30.4 ± 1.3% 9.5 ± 0.8% 2.9 ± 0.5% 0.1 ± 0.1%
8 23.9 ± 1.1% 9.7 ± 0.8% 2.8 ± 0.5% 0.1 ± 0.1%
9 21.9 ± 1.0% 9.1 ± 0.7% 2.3 ± 0.4% 0.1 ± 0.1%
10 4.4 ± 0.9% 0.3 ± 0.2% 0.0 ± 0.0% 0.0 ± 0.0%
11 1.1 ± 0.5% 0.2 ± 0.2% 0.0 ± 0.0% 0.0 ± 0.0%
12 0.3 ± 0.3% 0.0 ± 0.0% 0.0 ± 0.0% 0.0 ± 0.0%
13 18.8 ± 0.5% 12.3 ± 0.5% 7.7 ± 0.4% 3.0 ± 0.3%
14 16.3 ± 0.6% 8.9 ± 0.5% 5.4 ± 0.4% 2.1 ± 0.2%
15 12.9 ± 0.7% 5.7 ± 0.5% 1.9 ± 0.2% 0.9 ± 0.1%
16 34.7 ± 1.5% 10.4 ± 0.9% 2.9 ± 0.5% 0.2 ± 0.1%
17 28.9 ± 1.4% 7.8 ± 0.8% 2.2 ± 0.4% 0.4 ± 0.2%
18 25.7 ± 1.2% 8.7 ± 0.8% 3.3 ± 0.5% 0.0 ± 0.0%
19 9.8 ± 0.7% 5.4 ± 0.4% 2.4 ± 0.3% 1.0 ± 0.2%
20 7.0 ± 0.5% 2.8 ± 0.3% 2.1 ± 0.2% 0.8 ± 0.1%
21 3.0 ± 0.4% 1.9 ± 0.2% 0.8 ± 0.1% 0.6 ± 0.1%
22 7.1 ± 0.7% 2.9 ± 0.4% 2.4 ± 0.3% 1.3 ± 0.1%
23 5.6 ± 0.6% 1.8 ± 0.2% 1.3 ± 0.2% 0.7 ± 0.1%
24 3.9 ± 0.5% 1.5 ± 0.2% 1.1 ± 0.1% 0.8 ± 0.1%
25 8.7 ± 0.9% 3.8 ± 0.3% 2.8 ± 0.2% 1.8 ± 0.2%
26 8.8 ± 1.1% 2.3 ± 0.3% 1.8 ± 0.2% 1.1 ± 0.2%
27 5.1 ± 0.7% 1.6 ± 0.2% 1.4 ± 0.2% 0.6 ± 0.1%
28 6.7 ± 0.5% 2.1 ± 0.2% 1.3 ± 0.1% 0.9 ± 0.1%
29 5.9 ± 0.4% 2.9 ± 0.2% 2.0 ± 0.2% 1.2 ± 0.1%
30 5.2 ± 0.4% 2.8 ± 0.2% 1.6 ± 0.2% 0.7 ± 0.1%
31 9.8 ± 0.7% 5.7 ± 0.4% 4.0 ± 0.3% 1.3 ± 0.2%
32 6.5 ± 0.5% 3.6 ± 0.4% 2.6 ± 0.3% 0.9 ± 0.2%
33 5.6 ± 0.5% 3.1 ± 0.3% 2.6 ± 0.2% 0.7 ± 0.1%
34 13.2 ± 1.2% 3.6 ± 0.6% 1.8 ± 0.3% 1.0 ± 0.1%
35 11.0 ± 1.0% 2.5 ± 0.5% 1.4 ± 0.3% 0.3 ± 0.0%
36 10.5 ± 1.0% 2.3 ± 0.4% 1.4 ± 0.3% 0.4 ± 0.1%

by solving the ILP that takes the true demand distribution as input)
in Table 7. Note that these percentage deviations are calculated by
using simulation (i.e., by generating 𝑇 samples of required parts from
the true distribution to mimic the past corrective maintenance cases
in each simulation). For each instance, we performed 300 simulations
and reported the average percentage deviation with its standard error
after the ± sign. As 𝑇 increases, the empirical demand distribution is
expected to converge to the true demand distribution. This explains
why the percentage deviations shrink as 𝑇 increases.

For 𝑇 = 100, Table 7 shows that the percentage deviation never
exceeds about 3% and it is often much lower across all instances.
This observation suggest that service providers can use our model with
reasonable confidence after collecting data from nearly one hundred
corrective maintenance cases performed in the past. Grishina et al.
(2020) had already reported that their predictive model is the most
useful when the number of past corrective maintenance cases is high
enough (larger than 100 for their specific example). Our numerical
results confirm this finding, and also show how the number of cor-
rective maintenance cases in the historical data specifically affects the
performance of the optimal policy.

8. Conclusion

In this paper, we consider a spare part recommendation problem
from the perspective of a maintenance service provider. We develop
a decision support model for the selection of spare parts that will be
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proactively sent to a failed system. In this way, a costly second visit
caused by the unavailability of the right spare parts can be avoided and
the corrective maintenance can be completed in the first visit of a local
service engineer. We formulate an ILP model that minimizes the ex-
pected total cost that consists of the cost of a second visit in addition to
the spare-part transportation costs, and SKU-specific retrieval and send-
back costs. We provide analytical results on the structure of the optimal
policy for the special cases of single and two SKUs. In addition, we
derive analytical properties of the optimal policy for a general number
of SKUs. We introduce a greedy heuristic policy that can exploit these
structural properties and, on average, performs better than two other
benchmark policies that are commonly used in practice. In this work, it
is assumed that the service provider knows the probability distribution
of the demand. But, in practice, this distribution is estimated from data
related to past corrective maintenance cases. Our numerical analysis
shows that the estimation errors becomes negligible once the historical
data consists of about one hundred corrective maintenance cases. When
the number of previous corrective maintenance cases is limited, an
integrated estimation and decision-making approach to simultaneously
learn the demand distribution and make spare-part recommendations
can be an interesting research direction.
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ppendix A. Proofs

roof of Proposition 1. For 𝑁 = 1, there are two solutions for the
LP: 𝑥1 = 1 and 𝑥1 = 0. The costs under these solutions are

(1) = 𝐹 + 𝑐1(1 − 𝑝1)

(0) = (𝐷 + 𝐹 )𝑝1.

ote that 𝐶(1) is strictly decreasing as a function of 𝑝1 and 𝐶(0) is
strictly increasing. Let 𝑝̌1 be the point where the cost under both
solutions is equal. Then:

𝐶(1) − 𝐶(0) = 0 ⟺ 𝐹 + 𝑐1(1 − 𝑝̌1) − (𝐷 + 𝐹 )𝑝̌1 = 0

⟺ 𝑝̌1 =
𝐹 + 𝑐1

𝐷 + 𝐹 + 𝑐1

When 𝐶(1) ≥ 𝐶(0) (i.e. 𝐹+𝑐1
𝐷+𝐹+𝑐1

≥𝑝1), solution 𝑥1 = 0 is optimal. When
𝐶(1)≤𝐶(0) (i.e. 𝐹+𝑐1

𝐷+𝐹+𝑐1
≤𝑝1), solution 𝑥1 = 1 is optimal. □

roof of Lemma 1. We assume that 𝜎1,2 = 0. Then, 𝑝̃1 =
𝐹+𝑐1

𝐷+𝐹1+𝑐1
, and

𝑝̄1 =
(𝐹 + 𝑐1)(𝐷 + 𝐹 + 𝑐2)

(𝐷 + 𝐹 + 𝑐2)(𝐷 + 𝐹 + 𝑐1) − (𝐷 + 𝐹 )𝑐2
=

𝐹 + 𝑐1
(𝐷 + 𝐹 + 𝑐1) −

(𝐷+𝐹 )𝑐2
𝐷+𝐹+𝑐2

.

Obviously, 0 < 𝑐1
𝐷+𝐹+𝑐1

< 𝐹+𝑐1
𝐷+𝐹+𝑐1

< 𝐹+𝑐1
(𝐷+𝐹+𝑐1)−

(𝐷+𝐹 )𝑐2
𝐷+𝐹+𝑐2

. Hence, 0 < p1 <

𝑝̃1 < 𝑝̄1. Additionally, 0 < p1 < 𝑝̃1 < 1. It also holds that 0 < p2 < 𝑝̃2 < 𝑝̄2
and 0 < p < 𝑝̃ < 1 from symmetry. □
2 2
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Fig. A.7. Points defined in Definition 1.

Proof of Theorem 1. Assume that 𝜎1,2 = 0 and 𝑁 = 2. There are
four possible solutions: 𝐱0 = (𝑥1, 𝑥2) = (0, 0), 𝐱1 = (𝑥1, 𝑥2) = (0, 1),
𝐱2 = (𝑥1, 𝑥2) = (1, 0) and 𝐱3 = (𝑥1, 𝑥2) = (1, 1). Let ℎ̃𝑚 be the probability
of a second engineer visit if combination 𝐱𝑚 is chosen for the repair kit.
ℎ̃0 = 𝑝1+𝑝2−𝑝1𝑝2, ℎ̃1 = 𝑝1, ℎ̃2 = 𝑝2 and ℎ̃3 = 0. From these probabilities
we calculate costs under each solution (𝑥1, 𝑥2) as

𝐶(0, 0) = (𝐷 + 𝐹 )(𝑝1 + 𝑝2 − 𝑝1𝑝2)

𝐶(0, 1) = 𝐹 + 𝑐2(1 − 𝑝2) + (𝐷 + 𝐹 )𝑝1
𝐶(1, 0) = 𝐹 + 𝑐1(1 − 𝑝1) + (𝐷 + 𝐹 )𝑝2
𝐶(1, 1) = 𝐹 + 𝑐1(1 − 𝑝1) + 𝑐2(1 − 𝑝2).

We define 𝜔1(𝑝1, 𝑝2) as the cost difference between the solutions (0, 0)
and (1, 1).

𝜔1(𝑝1, 𝑝2) = 𝐶(0, 0) − 𝐶(1, 1)

= (𝐷 + 𝐹 )(𝑝1 + 𝑝2 − 𝑝1𝑝2) − (𝐹 + 𝑐1(1 − 𝑝1) + 𝑐2(1 − 𝑝2))

= (𝐷 + 𝐹 + 𝑐1)𝑝1 + (𝐷 + 𝐹 + 𝑐2)𝑝2 − (𝑝1𝑝2)(𝐷 + 𝐹 ) − (𝐹 + 𝑐1 + 𝑐2)

We define 𝜔2(𝑝1, 𝑝2) as the cost difference between the solutions (1, 1)
and (1, 0).

𝐶(1, 1) − 𝐶(1, 0) = 𝐹 + 𝑐1(1 − 𝑝1) + 𝑐2(1 − 𝑝2) − (𝐹 + 𝑐1(1 − 𝑝1) + (𝐷 + 𝐹 )𝑝2)

= 𝑐2 − 𝑝2(𝐷 + 𝐹 + 𝑐2)

We define 𝜔3(𝑝1, 𝑝2) as the cost difference between the solutions (1, 1)
and (0, 1).

𝐶(1, 1) − 𝐶(0, 1) = 𝐹 + 𝑐1(1 − 𝑝1) + 𝑐2(1 − 𝑝2) − (𝐹 + 𝑐2(1 − 𝑝2) + (𝐷 + 𝐹 )𝑝1)

= 𝑐1 − 𝑝1(𝐷 + 𝐹 + 𝑐1)

We define 𝜔4(𝑝1, 𝑝2) as the cost difference between the solutions (1, 0)
and (0, 0).

𝐶(1, 0) − 𝐶(0, 0) = 𝐹 + 𝑐1(1 − 𝑝1) + (𝐷 + 𝐹 )𝑝2 − ((𝐷 + 𝐹 )(𝑝1 + 𝑝2 − 𝑝1𝑝2))

= 𝐹 + 𝑐1 + (𝐷 + 𝐹 )(𝑝1𝑝2) − 𝑝1(𝐷 + 𝐹 + 𝑐1)

We define 𝜔5(𝑝1, 𝑝2) as the cost difference between the solutions (0, 0)
and (0, 1).

𝐶(0, 1) − 𝐶(0, 0) = (𝐹 + 𝑐2(1 − 𝑝2) + (𝐷 + 𝐹 )𝑝1) − (𝐷 + 𝐹 )(𝑝1 + 𝑝2 − 𝑝1𝑝2)

= 𝐹 + 𝑐2 + (𝐷 + 𝐹 )(𝑝1𝑝2) − 𝑝2(𝐷 + 𝐹 + 𝑐2)

We define 𝜔6(𝑝1, 𝑝2) as the cost difference between the solutions (1, 0)
and (0, 1).

𝐶(0, 1) − 𝐶(1, 0) = 𝐹 + 𝑐 (1 − 𝑝 ) + (𝐷 + 𝐹 )𝑝 − (𝐹 + 𝑐 (1 − 𝑝 ) + (𝐷 + 𝐹 )𝑝 )
84

2 2 1 1 1 2
= (𝑐2 − 𝑐1) − 𝑝2(𝑐2 +𝐷 + 𝐹 ) + 𝑝1(𝑐1 +𝐷 + 𝐹 )

i. Solution 𝐱 = (0, 0) is optimal if and only if 𝜔1(𝑝1, 𝑝2) ≤ 0,
𝜔4(𝑝1, 𝑝2) ≥ 0 and 𝜔5(𝑝1, 𝑝2) ≥ 0.

ii. Solution 𝐱 = (0, 1) is optimal if and only if 𝜔3(𝑝1, 𝑝2) ≥ 0,
𝜔5(𝑝1, 𝑝2) ≤ 0, and 𝜔6(𝑝1, 𝑝2) ≤ 0.

iii. Solution 𝐱 = (1, 1) is optimal if and only if 𝜔1(𝑝1, 𝑝2) ≥ 0,
𝜔2(𝑝1, 𝑝2) ≤ 0 and 𝜔3(𝑝1, 𝑝2) ≤ 0.

iv. Solution 𝐱 = (1, 0) is optimal if and only if 𝜔2(𝑝1, 𝑝2) ≥ 0,
𝜔4(𝑝1, 𝑝2) ≤ 0, and 𝜔6(𝑝1, 𝑝2) ≥ 0.

Please note that if 𝜔2(𝑝1, 𝑝2) ≥ 0, then 𝜔5(𝑝1, 𝑝2) ≤ 0. If 𝜔4(𝑝1, 𝑝2) ≤ 0
and 𝜔5(𝑝1, 𝑝2) ≤ 0, then 𝜔6(𝑝1, 𝑝2) ≥ 0. So, solution 𝐱 = (1, 0) is
optimal if and only if 𝜔2(𝑝1, 𝑝2) ≥ 0 and 𝜔4(𝑝1, 𝑝2) ≤ 0. Therefore,
condition 𝜔6(𝑝1, 𝑝2) ≥ 0 is redundant. Similarly, if 𝜔3(𝑝1, 𝑝2) ≥ 0, then
𝜔4(𝑝1, 𝑝2) ≥ 0. If 𝜔4(𝑝1, 𝑝2) ≥ 0 and 𝜔5(𝑝1, 𝑝2) ≤ 0, then 𝜔6(𝑝1, 𝑝2) ≤ 0.
Therefore, solution 𝐱 = (0, 1) is optimal if and only if 𝜔3(𝑝1, 𝑝2) ≥ 0 and
𝜔5(𝑝1, 𝑝2) ≤ 0. The condition 𝜔6(𝑝1, 𝑝2) ≤ 0 is redundant.

In order to derive the structure of optimal policy, we determine the
intersection points of 𝜔𝑘(𝑝1, 𝑝2) = 0, 𝑘 ∈ {1, 2, 3, 4, 5}. We first calculate
the intersection of 𝜔2(𝑝1, 𝑝2) = 0 and 𝜔4(𝑝1, 𝑝2) = 0. If 𝜔2(𝑝1, 𝑝2) = 0,
then 𝑝2 =

𝑐2
𝐷+𝐹+𝑐2

. We first plug 𝑝2 into 𝜔4(𝑝1, 𝑝2) = 0.

𝐹 + 𝑐1 − 𝑝1
[

(𝐷 + 𝐹 + 𝑐1) −
𝑐2

𝐷 + 𝐹 + 𝑐2
(𝐷 + 𝐹 )

]

= 0

⟺ (𝐹 + 𝑐1)(𝐷 + 𝐹 + 𝑐2)

− 𝑝1
[

(𝐷 + 𝐹 + 𝑐2)(𝐷 + 𝐹 + 𝑐1) − 𝑐2(𝐷 + 𝐹 )
]

= 0

⟺ 𝑝1 =
(𝐹 + 𝑐1)(𝐷 + 𝐹 + 𝑐2)

(𝐷 + 𝐹 + 𝑐2)(𝐷 + 𝐹 + 𝑐1) − (𝐷 + 𝐹 )𝑐2
=

(𝐹 + 𝑐1)

(𝐷 + 𝐹 + 𝑐1) −
(𝐷+𝐹 )𝑐2
𝐷+𝐹+𝑐2

.

We characterize the intersection point of 𝜔2(𝑝1, 𝑝2) = 0 and 𝜔4(𝑝1, 𝑝2)
= 0 as (𝑝̄1,p2).

Next, we determine the intersection point of 𝜔1(𝑝1, 𝑝2) = 0 and
𝜔2(𝑝1, 𝑝2) = 0. We also plug the point 𝑝2 =

𝑐2
𝐷+𝐹+𝑐2

in 𝜔1(𝑝1, 𝑝2) = 0:

(𝐷 + 𝐹 + 𝑐1)𝑝1 +
(𝐷 + 𝐹 + 𝑐2)𝑐2
𝐷 + 𝐹 + 𝑐2

−
(𝐷 + 𝐹 )𝑐2𝑝1
𝐷 + 𝐹 + 𝑐2

− (𝐹 + 𝑐1 + 𝑐2) = 0

⟺ (𝐷 + 𝐹 + 𝑐1)𝑝1 + 𝑐2 −
(𝐷 + 𝐹 )𝑐2𝑝1
𝐷 + 𝐹 + 𝑐2

− 𝜎1,2(𝐷 + 𝐹 ) − (𝐹 + 𝑐1 + 𝑐2) = 0

⟺ (𝐷 + 𝐹 + 𝑐1)𝑝1 −
(𝐷 + 𝐹 )𝑐2𝑝1
𝐷 + 𝐹 + 𝑐2

− (𝐹 + 𝑐1) = 0

⟺ 𝑝1
(

(𝐷 + 𝐹 + 𝑐1) −
𝑐2

𝐷 + 𝐹 + 𝑐2
(𝐷 + 𝐹 )

)

= 𝐹 + 𝑐1

⟺ 𝑝1 =
(𝐹 + 𝑐1)(𝐷 + 𝐹 + 𝑐2)

(𝐷 + 𝐹 + 𝑐2)(𝐷 + 𝐹 + 𝑐1) − (𝐷 + 𝐹 )𝑐2

We characterize the intersection point of 𝜔1(𝑝1, 𝑝2) = 0 and 𝜔2(𝑝1, 𝑝2) =
0 as (𝑝̄1,p2). We see that 𝜔1(𝑝1, 𝑝2) = 0, 𝜔2(𝑝1, 𝑝2) = 0 and 𝜔4(𝑝1, 𝑝2) = 0
intersects at the same point. From symmetry, the same holds for the
intersection point of 𝜔1(𝑝1, 𝑝2) = 0, 𝜔3(𝑝1, 𝑝2) = 0 and 𝜔5(𝑝1, 𝑝2) = 0.
We characterize this point with (p1, 𝑝̄2) where (p1, 𝑝̄2) =

(

𝑐1
𝐷+𝐹+𝑐1

,
(𝐹+𝑐2)(𝐷+𝐹+𝑐1)

(𝐷+𝐹+𝑐1)(𝐷+𝐹+𝑐2)−(𝐷+𝐹 )𝑐1

)

.
At point (𝑝̄1,p2) solutions (1, 1), (1, 0) and (0, 0) are all optimal.

At point (p1, 𝑝̄2) solutions (1, 1), (0, 1) and (0, 0) are all optimal.
𝜔4(𝑝1, 𝑝2) cuts the 𝑝1-axis at the point 𝑝̃1 = 𝐹+𝑐1

𝐷+𝐹+𝑐1
. 𝜔5(𝑝1, 𝑝2) cuts the

𝑝2-axis at 𝑝̃2 =
𝐹+𝑐2

𝐷+𝐹+𝑐2
. We describe these points in Definition 1 and we

demonstrate them in Fig. A.7.
Finally, we derive Theorem 1 from the following results. First, we

reformulate 𝜔5(𝑝1, 𝑝2) = 0 as 𝑓 (𝑝1) = 𝑝2, reformulate 𝜔1(𝑝1, 𝑝2) = 0 as
𝑔(𝑝1) = 𝑝2 and reformulate 𝜔4(𝑝1, 𝑝2) = 0 as of ℎ(𝑝1) = 𝑝2 (please see
Definition 1). Then we formulate Theorem 1.

(i) We let 𝑅1 define a region where 𝜔1(𝑝1, 𝑝2) ≤ 0, 𝜔4(𝑝1, 𝑝2) ≥ 0 and
𝜔5(𝑝1, 𝑝2) ≥ 0. Therefore, the solution (0, 0) is optimal in region
𝑅1.

(ii) We let 𝑅2 define a region where 𝜔5(𝑝1, 𝑝2) ≤ 0 and 𝜔3(𝑝1, 𝑝2) ≥ 0.
In region 𝑅 the solution (0, 1) is optimal.
2
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(iii) We let 𝑅3 define a region, where 𝜔3(𝑝1, 𝑝2) ≤ 0, 𝜔1(𝑝1, 𝑝2) ≥ 0,
and 𝜔2(𝑝1, 𝑝2) ≤ 0. The solution (1, 1) is optimal in region 𝑅3.

(iv) We let 𝑅4 define the region, where 𝜔4(𝑝1, 𝑝2) ≤ 0, and 𝜔2(𝑝1, 𝑝2) ≥
0. The solution (1, 0) is optimal in the region 𝑅4. □

roof of Lemma 2. First, we show that ℎ𝐼 ′ ≥ ℎ𝐼 ′∪{𝑙}. Hence, we have
o show

𝐼 ′ − ℎ𝐼 ′∪{𝑙} =
∑

𝑚∈𝑀 ′
(𝑢̂𝑚(𝐼 ′1) − 𝑢̂𝑚(𝐼 ′1∖{𝑙}))𝑝̂𝑚 ≥ 0. (A.1)

t holds that
̂𝑚(𝐼 ′) − 𝑢̂𝑚(𝐼 ′ ∪ {𝑙})

=

{

1 if SKU 𝑙 in 𝑠𝑚 and 𝐼 ′ contains all other SKUs from 𝐬𝑚,
0 otherwise.

ence, (A.1) holds. Next, we need to show that ℎ𝐼 ′1 − ℎ𝐼 ′1∪{𝑙} ≤ ℎ𝐼 ′2 −
ℎ𝐼 ′2∪{𝑙} where 𝐼 ′1 ⊂ 𝐼 ′2 ⊆ 𝐼∖{𝑙}. This is equivalent to showing that
∑

𝑚∈𝑀 ′
(𝑢̂𝑚(𝐼 ′1) − 𝑢̂𝑚(𝐼 ′1 ∪ {𝑙}))𝑝̂𝑚 ≤

∑

𝑚∈𝑀 ′
(𝑢̂𝑚(𝐼 ′2) − 𝑢̂𝑚(𝐼 ′2 ∪ {𝑙}))𝑝̂𝑚.

It holds that

̂𝑚(𝐼 ′1) − 𝑢̂𝑚(𝐼 ′1 ∪ {𝑙})

=

{

1 if SKU 𝑙 in 𝑠𝑚 and 𝐼 ′1 contains all other SKUs from 𝐬𝑚,
0 otherwise.

̂𝑚(𝐼 ′2) − 𝑢̂𝑚(𝐼 ′2 ∪ {𝑙})

=

{

1 if SKU 𝑙 in 𝑠𝑚 and 𝐼 ′2 contains all other SKUs from 𝐬𝑚,
0 otherwise.

Notice that 𝑢̂𝑚(𝐼 ′1)− 𝑢̂𝑚(𝐼 ′1 ∪{𝑙}) = 1 implies that 𝑢̂𝑚(𝐼 ′2)− 𝑢̂𝑚(𝐼 ′2 ∪{𝑙}) = 1
because 𝐼 ′1 ⊂ 𝐼 ′2. Hence, will hold. □

Proof of Lemma 3.

(i) Cost of bringing all parts is 𝐶(𝐱𝐼 ) = 𝐹 +
∑

𝑖∈𝐼 𝑐𝑖(1 − 𝑝𝑖). The cost
of bringing no parts is 𝐶(𝐱∅) = (𝐷 + 𝐹 )ℎ∅. Their difference is
𝐶(𝐱𝐼 )−𝐶(𝐱∅) = 𝐹 +

∑

𝑖∈𝐼 𝑐𝑖(1−𝑝𝑖)−(𝐷+𝐹 )ℎ∅. If this difference is
greater than zero, (i.e. 𝐹 +

∑

𝑖∈𝐼 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )ℎ∅ > 0), then
the solution 𝐱∅ dominates the solution 𝐱𝐼 .

(ii) Now, we write the condition for removing a part 𝑖 from any set
𝐼 ′, where the new set is 𝐼 ′′ = 𝐼 ′∖{𝑖}. The cost of solution, 𝐱𝐼 ′ is
𝐶(𝐱𝐼 ′ ) = 𝐹 +

∑

𝑗∈𝐼 ′ 𝑐𝑗 (1 − 𝑝𝑗 ) + (𝐷 + 𝐹 )ℎ𝐼 ′ and the cost of taking
solution, 𝐱𝐼 ′′ is 𝐶(𝐱𝐼 ′′ ) = 𝐹 +

∑

𝑗∈𝐼 ′′ 𝑐𝑗 (1 − 𝑝𝑗 ) + (𝐷 + 𝐹 )ℎ𝐼 ′′ . The
solution 𝐱𝐼 ′′ dominates the solution 𝐱𝐼 ′ if the following holds.

𝐶(𝐱𝐼 ′ ) − 𝐶(𝐱𝐼 ′′ ) = 𝐹 +
∑

𝑗∈𝐼 ′
𝑐𝑗 (1 − 𝑝𝑗 ) + (𝐷 + 𝐹 )ℎ𝐼 ′

− 𝐹 −
∑

𝑗∈𝐼 ′′
𝑐𝑗 (1 − 𝑝𝑗 ) − (𝐷 + 𝐹 )ℎ𝐼 ′′

= 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ𝐼 ′′ − ℎ𝐼 ′ ) > 0.

As a special case, the condition for removing part 𝑖 from the
solution 𝐼 is

𝐶(𝐱𝐼 ) − 𝐶(𝐱𝐼∖{𝑖}) = 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )𝑝𝑖 > 0,

which can be rewritten to condition (14).
(iii) Let assume 𝐼 ′ = {𝑖} and 𝐼 ′′ = ∅. Solution 𝐱∅ dominates the

solution 𝐱′𝐼 if the following holds.

𝐶(𝑥𝐼 ′ ) − 𝐶(𝑥∅) = 𝐹 + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ∅ − ℎ𝐼 ′ ) ≥ 0,

where ℎ∅ − ℎ𝐼 ′ > 0. □

Proof of Theorem 2. Let assume 𝐼 ′∖{𝑖} is a better solution than 𝐼 ′.
𝐼 ′∖{𝑖} is a better solution than 𝐼 ′, if and only if 𝐹1{𝐼 ′∖{𝑖}≠∅}+𝑐𝑖(1−𝑝𝑖)−
85

(𝐷+ 𝐹 )(ℎ𝐼 ′∖{𝑖} − ℎ𝐼 ′ ) > 0 holds. We need to show that 𝐱𝐼 ′′∖{𝑖} is a better
solution than 𝐱𝐼 ′′ , therefore, 𝐶(𝐱𝐼 ′′ ) − 𝐶(𝐱𝐼 ′′∖{𝑖}) > 0, to complete the
proof. Please note that (ℎ𝐼 ′∖{𝑖} −ℎ𝐼 ′ ) ≥ (ℎ𝐼 ′′∖{𝑖} −ℎ𝐼 ′′ ) holds by Lemma 2.

𝐶(𝐱𝐼 ′′ ) − 𝐶(𝐱𝐼 ′′∖{𝑖}) = 𝐹1{𝐼 ′′∖{𝑖}≠∅} + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ𝐼 ′′∖{𝑖} − ℎ𝐼 ′′ )

≥ 𝐹1{𝐼 ′∖{𝑖}≠∅} + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ𝐼 ′∖{𝑖} − ℎ𝐼 ′ ) > 0.

This shows that 𝐱𝐼 ′′∖{𝑖} is a better solution than 𝐱𝐼 ′′ . □

roof of Corollary 1. Let 𝐱∗ be an optimal solution and suppose that
15) holds. Then, we need to show that 𝑥∗𝑖 = 0. First consider a set 𝐼 ′,
here 𝑖 ∈ 𝐼 ′. Then the cost of the solution 𝐱𝐼 ′ is 𝐶(𝐱𝐼 ′ ) = 𝐹 +𝑐𝑖(1−𝑝𝑖)+
𝑗∈𝐼 ′∖{𝑖} 𝑐𝑗 (1 − 𝑝𝑗 ) + (𝐷 + 𝐹 )ℎ𝐼 ′ . In order to show that 𝑥𝑖 = 0 is a better

olution than 𝑥𝑖 = 1, we need to show that 𝐶(𝐱𝐼 ′ ) − 𝐶(𝐱𝐼 ′∖{𝑖}) > 0.

(𝐱𝐼 ′ ) − 𝐶(𝐱𝐼 ′∖{𝑖}) = 𝐹1{𝐼 ′∖{𝑖}≠∅} + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )(ℎ𝐼 ′∖{𝑖} − ℎ𝐼 ′ )

≥ 𝐹1{𝐼 ′∖{𝑖}≠∅} + 𝑐𝑖(1 − 𝑝𝑖) − (𝐷 + 𝐹 )𝑝𝑖

> 𝐹1{𝐼 ′∖{𝑖}≠∅} + 𝑐𝑖(1 −
𝑐𝑖

𝑐𝑖 +𝐷 + 𝐹
) − (𝐷 + 𝐹 )

𝑐𝑖
𝑐𝑖 +𝐷 + 𝐹

= 𝐹1{𝐼 ′∖{𝑖}≠∅} +
𝑐𝑖(𝐷 + 𝐹 )
𝑐𝑖 +𝐷 + 𝐹

−
𝑐𝑖(𝐷 + 𝐹 )
𝑐𝑖 +𝐷 + 𝐹

= 𝐹1{𝐼 ′∖{𝑖}≠∅} > 0

lease note that from Remark 2 and Lemma 2 it holds that (ℎ𝐼 ′∖{𝑖} −
𝐼 ′ ) ≤ 𝑝𝑖. □

Appendix B. Service level constraint

Service level agreements with system users may enforce a mini-
mum level on the level of service delivered by the service provider.
Therefore, we introduce a service level constraint

1 −
∑

𝑚∈𝑀 ′
𝑢̂𝑚𝑝̂𝑚 ≥ 𝛼 (B.1)

to ensure the probability of resolving a maintenance case during the
diagnostic visit is at least at the desired level 𝛼. Note that ∑𝑚∈𝑀 ′ 𝑢̂𝑚𝑝̂𝑚
is the probability that a second visit is required. We let 𝐶𝛼

opt be the cost
of the optimal solution with the service level constraint under a given
𝛼. In the presence of a service-level constraint, the cost parameter 𝐷 for
the second visit can be interpreted as the cost of travel (or additional
operational costs incurred by the service provider due to the second
visit) instead of the penalty cost for the additional downtime of the
failed system.
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