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Abstract—When developing and maintaining large software
systems, a great deal of effort goes into dependency management.
During the whole lifecycle of a software project, the set of
dependencies keeps changing to accommodate the addition of
new features or changes in the running environment. Package
management tools are quite popular to automate this process,
making it fairly easy to automate the addition of new dependen-
cies and respective versions. However, over the years, a software
project might evolve in a way that no longer needs a particular
technology or dependency. But the choice of removing that
dependency is far from trivial: one cannot be entirely sure that
the dependency is not used in any part of the project. Hence,
developers have a hard time confidently removing dependencies
and trusting that it will not break the system in production.
In this paper, we propose a decision framework to improve the
detection of unused dependencies. Our approach builds on top
of the existing dependency analysis tool DepClean. We start by
improving the support of Java dynamic features in DepClean. We
do so by augmenting the analysis with the state-of-the-art call
graph generation tool OPAL. Then, we analyze the potentially
unused dependencies detected by classifying their logical rela-
tionship with the other components to decide on follow-up steps,
which we provide in the form of a decision diagram. Results show
that developers can focus their efforts on maintaining bloated
dependencies by following the recommendations of our decision
framework. When applying our approach to a large industrial
software project, we can reduce one-third of false positives when
compared to the state-of-the-art. We also validate our approach
by analyzing dependencies that were removed in the history
of open-source projects. Results show consistency between our
approach and the decisions taken by open-source developers.

Index Terms—unused dependencies, call graph generation,
static analysis

I. INTRODUCTION

Modern software systems rely on package managers to gain

benefits from the increasing number and massive support of

dependencies [1]. Software dependencies hosted on central-

ized code repositories by package managers allow software

engineers to reuse code, reduce development costs and ease

maintenance efforts. While the convenience of adding new

collections of software dependencies speeds up software de-

velopment, software projects might retain dependencies that

gradually become obsolete throughout the process of develop-

ment [2]. Dependencies that become obsolete and overlooked

can increase complexity, decrease maintainability, and in some

cases bloat software size. Thus, it is important for developers

to properly clean outdated dependencies.

This is a problem taken seriously at ING Bank [3]. ING

is a global company and large software organization that

offers financial products and services to 38.5 million customers

in over 40 countries and has 15,000 employees in software

technology. Hence, at ING it is quintessential that software

projects are continuously maintained and meet high-quality

standards. Leaving unused dependencies in large software

projects can lead to major problems downstream (e.g., in

security, maintainability, scalability, etc.). However, deciding

to remove a dependency can be an intimidating task: one

wrong decision could make core business services temporarily

unavailable.

The mainstream approaches to detecting unused dependen-

cies rely on static dependency analysis or dynamic dependency

analysis [4]. The performance of the static approaches depends

on the soundness and precision of the call graph construction

whereas the performance of the dynamic approaches resorts

to the coverage of route collections at runtime. Hence, static

approaches tend to be quicker and more scalable. However,

generating a static call graph has been considered an unde-

cidable problem [5], meaning that it is difficult to confidently

say whether a dependency is being reached or not based on

state-of-the-art call graph generation tools.

Several static analysis tools have been developed to re-

move unused but declared dependencies. For Java projects,

fundamental efforts have been contributed by communities

to help developers analyze dependencies statically in JDK1

and Maven2. Also, advanced tools [6]–[8] have been built

to address prevalent dynamic language features: reflection,

dynamic proxy, and classloading [9]. Despite these efforts,

1https://wiki.openjdk.java.net/display/JDK8/Java+Dependency+Analysis+Tool
2https://maven.apache.org/shared/maven-dependency-analyzer/
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finding unused dependencies of Java projects is not a trivial

goal. It has been demonstrated that all state-of-the-art static

analysis frameworks fail to capture complete dynamic lan-

guage features in call graphs [10].

These limitations give rise to false positives of the unused

dependency detection, which is a challenge when creating

tools to help developers in removing these dependencies.

When they receive false alerts too often, they are likely to

ignore warnings, filter alerts, or turn away from using tools

altogether [11]. To encourage the usage of tools, researchers

start to think that it is not only beneficial to pursue the

precision of tools but also critical for tool authors to present

warnings from developers’ perspectives [12].

The underlying principle of current static dependency anal-

ysis tools is reachability. Any dependency is classified as

unnecessary if it cannot be reached from the application code.

Based on this binary result i.e., reachable or unreachable,

tools provide recommendations that help developers remove

unused dependencies. However, we argue that the existing

analysis result produced by tools shows more information than

a binary recommendation. If the reachability is interpreted in

more detail, for example, complexity and evolution of method

calls between artifacts, tools may report the reasoning behind

recommendations and allow developers to be effective in their

decision-making.

Making a decision on removing a dependency is far from

an easy task, especially for software in production. Devel-

opers need to balance the potential risk of making serious

errors and the future benefit of saving maintenance efforts.

In this regard, the reasoning behind such a decision should

be adequate to minimize the potential risk; otherwise, devel-

opers will not take risks to reduce maintenance. Thus, we

propose a decision framework that examines several aspects

of the results generated by static analysis tools and guides

developers through the decision on whether to remove a

given dependency or not. We provide a public replication

package with our experiments and results: https://bitbucket.

org/scam2022chingchichuang/static dependency analysis/.

This paper is structured as follows. In Section II, we

introduce a dependency analysis summary of four real-world

Maven projects that motivate this work. Section III compares

the differences between our work and existing literature. Sec-

tion IV and V describe the decision framework and method-

ology applied to answer the research questions. The results

are described in Section VI and their insights are discussed in

Section VII. In section VIII, the threats to the validity of our

work are explained. Finally, in Section IX we draw the main

conclusions and share our future work.

II. MOTIVATING EXAMPLE AND RESEARCH QUESTIONS

Since there is no static analysis tool that can guarantee its

finding on unused dependencies, tools usually emphasize the

result with warning such as “potentially” unused dependencies

to notify developers that their analysis results should be

accepted with caution. Table I summarizes the analyzed results

of one ING’s project and three open-source projects using the

TABLE I
THE SUMMARY OF DEPENDENCY ANALYSIS BY DEPCLEAN

Project Name
Number of Dependencies

Used Potentially Unused�

enterprise user management app 73 71
jenkins [core v2.343] 80 16
zipkin [zipkin-server v2.23.16] 94 22
onedev [server-core v7.0.9] 176 72
�This follows the term of DepClean. In this work, we call it flagged unused.

state-of-the-art tool DepClean3. The table presents the number

of used dependencies and potentially unused dependencies.

Part of these projects possesses a significant number of unused

dependencies, which is unusual and unexpected. We hypoth-

esize that some of the potentially unused dependencies may

be false positives – i.e., a dependency that is being incorrectly

classified as unused. This happens, for example, in cases where

it is difficult to collect using static analysis all the possible

entry methods of a dependency. Hence, it may happen that all

classes within the dependency become unreachable from the

application, and tools misclassify it as unused.

To reduce false positives and improve the recommendation,

we propose a framework that 1) combines different call graph

tools, 2) considers the history of changes in the dependencies

of a project, and 3) guides developers through the decision

process before yielding a final result.

RQ1: Can we systematically combine automated and man-
ual analyses to improve the detection of unused dependencies
of software projects at ING?

Why: As shown in the motivating example, some of the de-

tected unused dependencies in the enterprise user management

application may be false positives. Reducing false positives

can save the effort of developers in decision making, which

encourages them to invest time in removing dependencies with

high confidence and deals with less probable ones later. Also,

the recommendations of the decision framework have to be

evaluated by developers, which may not be available for open-

source projects. Hence, this work relies on developers at ING

to judge and verify the correctness actively.

How: One enterprise user management application in the

production is chosen because of its peculiar software structure

which poses challenges for the state-of-the-art tool. After being

presented with the suggestions of the decision framework,

developers select some dependencies for testing based on their

understanding of the usage of the dependencies. The result of

the tests is compared to the recommendation of the decision

framework.

RQ2: Is our decision framework to detect unused dependen-
cies confirmed by the commit history of other open-source
projects?

3https://github.com/castor-software/depclean/releases/tag/2.0.0
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Why: Since the selected enterprise user management ap-

plication at ING is maintained by the production team, the

available testing windows and the capacity of developers are

limited. Hence, dependencies that were previously deleted in

the open-source projects are valuable to evaluate the decision

framework.

How: We inspect the history of three open-source projects:

Jenkins, Zipkin, and Onedev. For each project, we collect all

the commits that add or remove dependencies and compare

the reasons behind these changes with the proposals from our

decision framework.

III. RELATED WORK

A. Dependency Analysis Tools

Previous work has conducted a study to find out the pres-

ence of unused dependencies in Maven artifacts [13]. The

authors develop a tool called DepClean, which extends the

maven-dependency-analyzer maintained by the Maven team.

They collect a list of dependencies declared in the POM

and analyze the bytecode to identify all potentially unused

dependencies. They analyze the bytecode by using the ASM

library4 while capturing annotation, field, method, and limited

dynamic features like class literals in each class. But when

analyzing a dependency that is invoked by other dynamic

features, a used dependency may be considered unused due

to missing edges established by dynamic features.

Their goal is to generate a variant of the POM without

those unused dependencies. The authors also applied the same

tool to study how unused dependencies increase, decrease or

remain stable over time in hundreds of single-module Maven

projects [14]. In this work, we further extend DepClean by

adding support of a static call graph tool OPAL5. Moreover,

instead of removing unused dependencies from the POM based

on a binary evaluation of the bytecode, we investigate the

relationship of unused dependencies with other dependencies

and provide more reasoning than the binary evaluation.

Another previous work has augmented the static reachability

analysis with dynamic reachability analysis [4]. Their tool,

JShrink, uses test cases to find dynamic features invoked at

runtime and adds them back to amend static call graphs. Their

analysis is fine-grained down to the level of method and field.

To preserve behaviors after removing unnecessary bytecode,

they build type dependency graphs using the ASM library to

ensure type safety. Compared to their work, our analysis is

coarse-grained at the artifact level and purely static. In our

targeted scenario, test cases are not widely available or only

include a few basic ones; therefore, JShrink cannot provide

much help. Also, we intend to remove unused dependencies

for modules. Instead of removing redundant bytecode in each

artifact, we can notify developers to refactor when the usage

of an artifact is relatively low. Additionally, the authors make

use of this tool as a backend of WebJShrink, a visualization

interface allowing developers to select removal options [15].

4https://asm.ow2.io/
5https://github.com/fasten-project/fasten/tree/develop/analyzer/javacg-opal

We acknowledge the idea that the decision of removing

dependency should be made by developers rather than the

tool’s authors.

B. Static Call Graph Construction Tools

Call graph construction is a principal element of static

analysis tools to determine unused dependencies. Previous

work has laid out the difficulties of building a sound and

precise call graph statically in Java. The main obstacle is posed

by the usage of the Reflection API, a great mechanism for

developers to inspect and adapt the behavior of their software

in the runtime environment [9]. Since tools cannot correctly

predict how software is evolving, tools simply consider all

the possibilities, leading to unsoundness and imprecision.

According to an empirical study [16], as many as 78% of 461

representative open-source Java projects contain at least one

usage of the Reflection API. Likewise, the same study found

that 21% of open-source Java projects use dynamic proxies,

a proxy mechanism that brings the flexibility of forwarding

method calls to different objects at runtime. This mechanism

also generates a dynamic layer against static analysis tools to

model [7].

Many existing static analysis frameworks have implemented

numerous call graph algorithms to cope with these challenges.

Previous work has conducted a comparative study of four

state-of-the-art frameworks: Soot, WALA, DOOP, and OPAL

[10]. Their result helps us understand the performance of

frameworks w.r.t the profile of language features support and

runtime costs. Overall, OPAL with the Rapid Type Analysis

(RTA) call graph algorithm [17] is the most feature-completed

option which enables users to solve the most prevalent Java

dynamic features and APIs among 23 categories grouped from

predefined 122 test cases. OPAL is also the fastest framework

due to its scalability. This scalable feature ensures that data

structures are immutable while call graphs are constructed in

parallel [18].

Moreover, OPAL provides an API6 to analyze merely a

portion of dependencies by classifying them as project files
or library files. Since this API only analyzes project files and

their outgoing method calls to library files, it is efficient to

analyze the provided enterprise user management application

with a normal laptop [19].

Other studies have built reflective analysis [9] and dynamic

proxy support [7] on top of the DOOP framework with high

accuracy. However, DOOP’s call graph generator is so time-

consuming and memory-intensive that it is impractical for real-

world usage. As far as we know, no studies have discussed

the performance of applying these frameworks in industrial

software. In this work, we intend to investigate how OPAL

helps developers find unused dependencies in production code.

C. Software metrics for unused dependency

Software metrics are widely used for software fault detec-

tion [20], [21]. However, only a few previous works focus

6https://www.opal-project.de/library/api/SNAPSHOT/org/opalj/br/analyses/Project$.
html
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(Used dependency) 

Recommendation 
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Fig. 1. Decision framework workflow

on metrics for the detection of unused code. Haas et al. [22]

investigate whether code stability and code centrality indicate

the likelihood of unnecessary code. The authors report that

34% of recommendations for unnecessary code are confirmed

as true positives. Another study tries widely accepted objected-

oriented metrics to predict dead code methods [23]. It con-

cludes that LOC, WMC, and RFC are useful indicators to

discover dead code. However, these previous works focus on

the code level instead of the dependency level. In this work,

our approach is inspired by software metrics and aims to

contribute to the classification of the unused dependency for

decision-making.

IV. FRAMEWORK TO REMOVE UNUSED DEPENDENCIES

We propose a decision framework that comprises the fol-

lowing three steps to remove unused dependencies:

A. augmented CG. Combine different call graph tools for

the analysis of dependency usage.

B. graph analysis. Classify flagged dependencies by their

relationships with other dependencies in the call graph.

C. release history analysis. Analyze the history of code

changes related to a flagged unused dependency.

In this section, we pinpoint each of these steps as shown

in Fig. 1. Rounded rectangles represent procedures for every

software release. First, we build an augmented call graph by

which the dependency analysis flags dependencies as used

and unused. Next, we classify these flagged dependencies

according to their relationships in the call graph. Last, we

apply the decision process to provide recommendations for

the developers.

A. Dependency analysis based on a call graph built by differ-
ent tools

Software projects may contain different language features

and APIs which affects the performance of the dependency

analysis tools. Hence, we start by analyzing the project with

application.jar component1.jar

component2.jar

library3.jar

library-api-1.jar

library-impl-1.jar

library-api-2.jar

library-impl-2.jar

dependency group for
building call graph 1 

dependency group for
building call graph 3

dependency group for
building call graph 2

(a) A dependency tree example (there may be more than 3 layers in real scenarios)

component1.jar

library-api.jar

library-impl-1.jar

application.jar

component1.jar

component2.jar

library3.jar

component2.jar

library-api.jar

library-impl-2.jar

Artifacts for building  
call graph 1

Artifacts for building
call graph 2

Artifacts for building
call graph 3

Taken as project files for OPAL API parameter Taken as library files for OPAL API parameter

(b) The process of separating dependencies for the OPAL call graph construction

Fig. 2. OPAL call graph constructions by the dependency tree

DepClean to collect a preliminary result. To enhance the

support of dynamic features for the static dependency analysis,

we augment the call graph of DepClean with critical edges

collected with OPAL+RTA.

Although OPALRTA supports many dynamic features, the

way of applying OPAL API to build a call graph has a great

impact on the precision of the call graph. It is because OPAL

has high coverage and is designed to find all the possible

implementations of an interface or abstract class. If a global

call graph is built by joining all dependencies with the main

application code, there might be some theoretical edges created

between unrelated dependencies. To avoid these edges, two

factors are considered to maintain the precision of the call

graph: dependency tree, and critical edges.

We use the dependency tree to enhance the precision of

generating the global call graph. We do so because a global

call graph might lead to theoretical edges that are inconsistent

with the hierarchy defined by the dependency tree. Fig. 2

illustrates this process with a dependency tree of a Maven

application. These dependencies are downloaded and grouped

into multiple folders based on their layers in the Maven

dependency tree. Next, the artifact of a parent dependency in

each folder is classified as a project file whereas artifacts of all

the child dependencies are classified as library files as shown

in Fig. 2b. After the classification, OPAL API is applied to

build a call graph per folder. In this way, we avoid inconsistent

theoretical edges such as a method call from component1
to library-impl-2.

Critical edges are a set of edges that must be called at

runtime if they are reachable from the application code. Con-

versely, some edges occur frequently but may not necessarily

be called at runtime. For example, some methods such as

toString, hasNext, or toArray defined in JDK are implemented

by so many dependencies, which makes it difficult to anticipate
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Fig. 3. Classification of flagged used and unused dependencies. The rule of classification follows the symbol of method call types and artifact types shown on the upper-right
hand side. Method call types represent all the possible relationships between methods in two artifacts. Based on the incoming and outgoing method call types of an artifact, the
artifact can be categorized into five types. Type 1 and Type 2 only have relationships with other flagged unused dependencies. Type 3 and Type 4 are more complicated and have
relationships with flagged used dependency. Contrary to Types 1–4, we consider Type 5 as flagged used dependency and reachable from the entry code of the application.

which implementation will be executed during runtime. Hence,

OPAL will create edges leading to certain dependencies simply

because they implement these methods. To prevent the call

graph from exploding we apply the following approximation:

we remove any edges found by OPAL that point to multiple

implementations of the same method. Hence, we only keep

the critical edges. Since these critical edges are a unique path

between a component and a target method, we are certain that

the respective component will always call the target method

during runtime. After collecting these critical edges from all

OPAL call graphs, we add them to the call graph of DepClean.

With this approximation, we avoid an overly complex call

graph that takes too much time to generate and analyze.

To flag which dependency is used or not, we follow Dep-

Clean’s approach. A set of entry classes in a call graph must

be defined. For the enterprise user management application at

ING, all the classes that handle requests are possible entries.

For the open-source projects, all the classes in the source folder

are used as entries. Next, entry classes are used to traverse a

call graph and find all the reachable classes. If any class of a

dependency is found to be accessible from entry classes, this

dependency is flagged as used. Also, as long as a class contains

a method accessible from entry classes, all the methods in

the class are flagged as used too. An example of flagging a

dependency as used or unused is presented in Fig. 3.

B. Classification of flagged dependencies according to the call
graph

A call graph may expand with increased dependencies and

become difficult to trace, but method calls between depen-

dencies can be simplified according to their source and target

methods as exemplified in Fig. 3. If a method can not find

a route back to any entry class or used method, the method

is defined to be an unused method. An unused method could

exist both in flagged used and unused dependencies.

Based on the type of incoming and outgoing method calls,

a flagged dependency can be classified into five types. If the

dependency can be classified as more than one artifact type,

we choose the one with the largest number.

– Artifact type 1 represents an isolated dependency and it

has no external method call.

– Artifact type 2 indicates that a flagged unused dependency

has incoming or outgoing method calls to or from other

flagged unused dependencies.

– Artifact type 3 depicts that a flagged unused dependency

has outgoing method calls to any flagged used depen-

dency.

– Artifact type 4 portrays that a flagged unused dependency

has incoming unused method calls from any flagged used

dependency. The incoming unused method calls are not

accessible from any entry classes.

– Artifact type 5 describes a flagged used dependency.

Neo4j Bloom [24] is adapted to visualize classified artifact

types and their relationship to other artifacts. In Neo4j, a

graph data structure is organized as nodes, relationships, and

properties. The discrete nodes are connected by relationships

and both of them can be described further by properties

[25]. The definition of Fig. 3 is followed to set properties

of nodes and relationships. For example, the artifact type is

one of the properties of nodes while the method call type is

one of the properties of relationships. The visualization gives

an overview of which dependency is flagged unused while

artifact types indicate their relationships to other dependencies.

This approach may help developers comprehend the detailed

information of flagged unused dependencies.
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Fig. 4. Neo4j Bloom for the visualization of the call graph at the artifact level after the
classification of artifact types and the relationship between artifacts.

Type 3 or Type 4 (T3, T4)

Q1: What is the  
artifact type of the flagged

unused dependency?

Unused Dependency

T3, T4 or T5

Q3: What is the 
artifact type of the unused
dependency in previous

versions? 

Used Dependency

 
Method calls  

decreased Q2: How does the 
method calls vary since 

earlier versions?

Need additional steps
with developers

Type 5 (T5)
Q3: What is the  

artifact type of the unused
dependency in previous

versions? 

 

T3 or T4 T1 or T2

Type 1 or Type 2 (T1, T2)

Method calls  
unchanged

Method calls 
increased or oscillated

Fig. 5. Decision process for the recommendation of individual flagged unused depen-
dencies.

Fig. 4 demonstrates how to use the artifact classification and

Neo4j Bloom to observe the usage of one flagged dependency

in the Zipkin project. In earlier versions 2.23.0 and 2.23.4, this

flagged dependency is classified as artifact type 4. However,

in the later version since 2.23.7, the flagged dependency

is classified as artifact type 1. It shows that incoming and

outgoing method calls of this flagged unused dependency

decrease, which may be evidence of true unused dependency.

This way, the complexity of the call graph is simplified while

preserving high-level relationships between flagged used and

unused dependencies. Hence, developers are provided with

essential information but not overwhelmed.

C. Analysis of the history of code changes related to a flagged
unused dependency

The high-level classification of a flagged dependency also

helps us describe the code changes related to a dependency

across versions. Analyzing and comparing to earlier versions

might find crucial evidence that increases the confidence of

flagged unused dependencies. To convey the confidence in

removing a flagged unused dependency based on the change

in its usage, Fig. 5 provides a decision tree that depicts the

decision process and its recommendations. Hence, developers

may rely on these recommendations to prioritize which flagged

unused dependency could be removed. Three questions are

pinpointed as follows:

Q1 What is the artifact type of the flagged unused
dependency? Every unused JAR artifact is categorized

by the complexity of its relation with other artifacts. The

flagged dependency that has more method calls across

artifacts like type 3 and type 4 is handled differently in

comparison to the flagged dependency with few method

calls across artifacts.

Q2 How do the method calls vary since previous versions?
If there is any method call removed since previous

versions, this may be an indication of an unnecessary

dependency. On the contrary, if the number of method

calls increase compared to previous versions, the depen-

dency should be retained. However, if the connection is

unchanged throughout previous versions, it requires extra

effort to distinguish the usage of the dependency. It is

because the call graph tool is not sound, and possible to

miss some features. To be safe, developers have to decide

if it is required to be investigated further.

Q3 What is the artifact type of the flagged unused de-
pendency in previous versions? This question compares

both types 1,2 and types 3,4 to their artifact types in

the earlier version. For example, if their artifact type in

previous versions is type 5, it is obvious that some of the

method calls have been removed since earlier versions.

In this case, the flagged dependency is recommended as

unused. On the other hand, if the artifact type is the same

as in previous versions, the recommendation is needing

additional steps with developers.

Generally speaking, the decision process is designed to

be strict with giving recommendations to remove a flagged

dependency. When there is evidence that method calls have

reduced since an earlier version such as from type 5 to type 1–

4, the flagged dependency is recommended as unused. On

the other hand, when some method calls are observed to be

increased or varied, the flagged dependency is considered as

used (i.e. a false positive). For a flagged dependency that

has no method calls changed in earlier versions, the flagged

dependency needs additional steps with developers before

taking further actions.

V. METHODOLOGY

A. Evaluation of the decision framework at ING
We selected an enterprise user management application in

the production for the evaluation because it is legacy software

that certainly contains unused dependencies. The application is

packaged as an EAR file which includes 144 Jar dependencies,

and 43 of them are maintained by different groups at ING.

The class and line of code of dependencies are 3050 and

211657 respectively. The project migrated from an inhouse-

developed platform to Maven in 2019. Hence, there are 41

releases available to evaluate the decision framework.
To evaluate the recommendation, we guide developers

through the results of our decision framework and ask them

to provide their input: whether they agree with the recom-

mendation and what is the main reason. We discuss with
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three developers who develop or maintain the project. Two

developers have worked on these projects for more than 4

years. One developer has maintained this project for almost

2 years. All of them have more than 5 years of working

experience on Java projects.

We remove the dependencies approved by developers from

the project and execute the existing system and functionality

tests. If the tests pass, we deploy our changes to the test envi-

ronment of the software. This triggers a set of additional ING-

specific checks that maintainers have to perform to validate the

changes. Meanwhile, we also collect the system log to spot

any unusual behavior – e.g., an error message. In the absence

of any issue or concern from developers, we assume that the

dependency can be successfully removed and our code changes

can be merged into production.

This process is time-consuming and is taken very seriously

by developers at ING. To use their time efficiently, we opt for

removing multiple dependencies in the same merge request.

B. Evaluation of the decision process in open-source projects

For the open-source projects, we select three projects: Jenk-

ins, Zipkin, and Onedev. Jenkins is used in previous work [13]

to evaluate DepClean. We select Zipkin and Onedev from

a set of 50 projects collected with the search tool SEART7.

With SEART, we retrieve 50 top Java projects available on

Github that have more than 5k stars, more than 50 releases,

and were active in the first quarter of 2022. These projects are

then filtered according to the following criteria: 1) the project

uses maven to manage dependencies (e.g., Gradle projects

are discarded), 2) the project has a single main module that

we can use for analysis (we do not support multi-module

analysis), and 3) the project has at least 5 commits that remove

dependencies.

We then inspect all the commits that remove or add de-

pendencies in every release of the selected projects. For the

removed dependencies, we examine the code changes and

commit messages to assess why they are removed. For the

added dependencies, we check whether that dependency is

brought back in later releases. Any commit that does not

reveal the reason for removing a dependency is discarded. We

then determine the reasons behind removing dependencies by

reading the commit messages and inspecting code differences.

We then divide commits into three groups (R1) replace de-

pendency, (R2) remove code and dependency, and (R3) only

remove dependency. Reasons R1 and R2 imply that the depen-

dency is still needed by the project and some other reason lies

in its removal from the dependency specification (e.g., security

issues, API migration, etc.). Reason R3 clearly indicates that

the dependency is unused – hence, we compare these cases

with the recommendations provided by our framework (cf.

Fig. 5).

VI. RESULTS

In this section, we present the result collected using the

proposed methodology for two research questions.

7https://seart-ghs.si.usi.ch/

TABLE II
DEPENDENCY ANALYSIS RESULT OF THE PROJECT AT ING

Dependency Analysis Tool
Number of Flagged Dependencies

Used Potentially Unused

DepClean 73 71a

DepClean + OPAL 85 59b

DepClean + OPAL + Decision process 98 46c

a From which 26 are direct, 45 transitive, and 0 inherited.
b From which 16 are direct, 43 transitive, and 0 inherited.
c From which 16 are direct, 30 transitive, and 0 inherited; we conclude that are 10
unused and 36 need additional steps with developers.

A. Can we systematically combine automated and manual
analyses to improve the detection of unused dependencies of
software projects at ING? (RQ1)

The usage of dependencies is analyzed and presented in

Table II which compares the results collected from differ-

ent dependency analysis tools. The baseline is provided by

DepClean which flags 73 used and 71 unused dependencies.

After augmenting the DepClean call graph with critical OPAL

edges, another 12 dependencies become accessible from the

entry classes. Hence, the number of flagged used dependencies

increases to 85 while the number of flagged unused dependen-

cies decreases to 59.

Next, all the 59 flagged unused dependencies are classified

as the corresponding artifact types and are compared to their

classification in the earlier versions. By doing so, we find

that the number of method calls in another 13 flagged unused

dependencies has increased since earlier versions. Hence, these

13 flagged unused dependencies are recommended as used
by the decision process. As a consequence, the number of

potentially unused dependencies lowers again to 46. Within

these 46 flagged unused dependencies, there are 10 flagged

unused dependencies whose method calls reduce since an

earlier version, so these 10 flagged unused dependencies are

recommended accordingly as unused by the decision process.

For the rest 36 flagged unused dependencies, their method

calls are relatively stable, which calls for additional steps with
developers.

Table III summarizes the recommendations of the decision

process and developers’ feedback on 59 potentially unused

dependencies flagged by DepClean+OPAL. For the recommen-

dation as used dependencies, developers agree with eight of

them because they know the functionalities of these eight de-

pendencies and are certain about their use cases. On the other

hand, they are clueless about the other five recommendations

since all these five dependencies are transitive and are barely

noticed.

For the recommendations that need additional steps with
developers, the majority of them are declined by developers to

remove due to several reasons. Firstly, some of their function-

alities are known and needed by developers. Secondly, devel-

opers avoid excluding currently unused transitive dependencies

in case they may become used after the dependency upgrade

in the future. Thirdly, the dependency may aim to package

other file formats such as javascript instead of adding java
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TABLE III
SUMMARY OF THE RECOMMENDATIONS OF THE DECISION PROCESS AND DEVELOPERS’ FEEDBACK.

Recommendation Developers’ Decisions Developers’ Reasons Number

Used dependencies (13)�
Agree with the recommendation The functionalities of these dependencies are known and needed. 8

Not sure about the recommendation These are transitive dependencies and functionalities are unknown. 5

Need additional steps with
developers (36)

Do not remove dependencies

The functionalities of these dependencies are known and needed. 8

These are transitive dependencies and may become used in the future. 18

The dependencies only contain javascript code. 4

Can be removed These dependencies have not changed for years. 6

Unused dependencies (10)
Do not remove dependencies

These are transitive dependencies and may become used in the future. 6

These dependencies may be used in edge cases. 1

The functionalities of these dependencies are known and needed. 2

Can be removed This is a duplicated dependency. 1

�In total, there were 98 flagged used artefacts. We selected the 13 artifacts that had been flagged as unused in the early stages of the analysis but were then
discarded by our decision process.

TABLE IV
SYSTEM AND FUNCTIONALITY TEST FOR SELECTED DEPENDENCIES BASED ON THE

RECOMMENDATION AND DEVELOPERS’ FEEDBACK.

Recommendation
Developers’ Reasons for
Tests

Dependency
Removing Tests

Used dependencies (3/13)�
Verify that dependen-
cies are indeed used.

Test=3; Pass=0; Fail=3

Need additional steps with
developers (6/36)�

Can be removed Test=6; Pass=3; Fail=3

Unused dependencies (1/10)� Can be removed Test=1; Pass=1; Fail=0

�Only partial dependencies were selected for dependency-removing tests.

class files. In addition to the majority, developers decide that

6 dependencies can be removed since they have not used them

for years. For the recommendation as unused dependencies,

9 of them are declined by developers to remove because

of the future upgrade of transitive dependencies, possible

usages by edge cases, and the necessity of functionalities.

Only 1 dependency in these recommendations is accepted by

developers due to the existence of a duplicated dependency.

The result of the system and functionality test for de-

pendency removal is presented in Table IV. Only 10 out

of 59 unused dependencies flagged by DepClean+OPAL are

forwarded to dependency removal tests. It is because many

dependencies are declined by developers to remove due to

safety concerns. For the recommendation of used dependen-
cies, three dependencies are selected for the tests, and all of

them cause some failures of functionalities as expected. For the

dependencies that need additional steps with developers, six

dependencies are chosen while half of them fail the tests. For

the recommendation of unused dependencies, one dependency

is picked and passes the test.

B. Is our decision framework to detect unused dependencies
confirmed by the history of other open-source projects? (RQ2)

The results of the consistency between the reason for

removing a dependency in the open-source projects and the

recommendation of the decision process are presented in

Table V. We divide each dependency removal by the different

reasons behind that change: R1, R2, R3 (as explained in

Section V-B).

For each reason for removing dependencies, the dependency

usage immediately before being removed can be inferred as

ground truth to compare the recommendations of our proposed

decision process and DepClean. For any recommendation that

is inconsistent with the reasons for being removed, the result

is labeled with an asterisk symbol in Table V.

In sum, the results show that only 3 recommendations from

our decision process are inconsistent with the actual reasons

for being removed. This result is far better than DepClean’s

recommendation, where 21 recommendations are not reflected

in the commit history. In addition, there are 11 dependencies

that our decision process can not determine their usage. In

those cases, we need additional steps with developers.

VII. DISCUSSION

In this section, we answer our research questions and

discuss the implications of the results.

A. Can we systematically combine automated and manual
analyses to improve the detection of unused dependencies of
software projects at ING? (RQ1)

The combination of automated and manual analyses
reduces false positives and helps developers prioritize the
tests of unused dependencies. Results presented in Table

II show that 12 dependencies that were initially flagged as

unused by DepClean become used after we augment the call

graph with critical OPAL edges. We conjecture three reasons

that may explain this. First, the provided project heavily relies

on dynamic proxies to invoke various implementations of

services – this is the case for 10 out of 12 dependencies

that implement such services. The dynamic proxy is one of

the dynamic features in the Java language that is supported

by OPAL. Second, there are 2 out 12 dependencies that

become used not because they implement dynamic features

but because they are direct dependencies used by some of the
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TABLE V
EVALUATION OF THE DECISION PROCESS BY CHECKING THE REASONS OF REMOVING DEPENDENCIES IN THE OPEN-SOURCE PROJECTS.

Project
Name

Reasons for Removing Dependencies

Dependency Usage Immediately
Before Being Removed (GT)

Recommendations by the Decision Process Recommendations by DepClean

Used (44) Unused (12) Used (37) Unused (8)

Need additional steps
with developers (11) Used (29) Unused (27)

T1||T2 T3||T4

Jenkins
core (25)

Replace dependency(R1) 3 0 3 0 0 0 3 0
Remove code and dependency(R2) 12 0 12 0 0 0 12 0
Only remove dependency(R3) 0 10 2∗ 8 0 0 2∗ 8

Zipkin
server (23)

Replace dependency(R1) 1 0 0 0 0 1 0 1∗

Remove code and dependency(R2) 20 0 15 0 2 3 7 13∗

Only remove dependency(R3) 0 2 1∗ 0 0 1 1∗ 1

Onedev
server (8)

Replace dependency(R1) 1 0 1 0 0 0 1 0
Remove code and dependency(R2) 7 0 3 0 2 2 3 4∗

Only remove dependency(R3) 0 0 0 0 0 0 0 0
∗The recommendations contradict to the commit history (GT).
GT : ground truth, T1||T2: Artifact type1 or type2, T3||T4: Artifact type3 or type4

previous 10 dependencies. Thirdly, it is noticed earlier that

many of the frequent-occurred OPAL edges are overestimated

by method implementations such as toString, hasNext, and

toArray. However, none of these 12 dependencies become used

due to overestimated method implementations since only crit-

ical edges are accepted. Hence, depending on the application,

the degree to which our augmented analysis brings benefits

will change. In particular, we anticipate that our augmentation

brings more value to applications that rely heavily on dynamic

features of Java, which is the case of the software project we

study at ING.

The results also show the usefulness of the decision process.

For the recommendation of used dependencies, developers

agreed that 8 out of 13 dependencies are used. For another

5 out of 13 dependencies that developers are uncertain about,

they consider these dependencies as used because they are all

transitive dependencies and the functionalities are unknown.

When the functionalities of unused dependencies are unknown,

removing them may cause potential errors in the application.

For the dependencies that need additional steps with devel-
opers, the majority of these dependencies are declined by

developers to remove. This fact indicates that it is necessary for

the dependency analysis tool to offer this kind of recommen-

dation rather than merely providing a binary recommendation

(used/unused). For the recommendation of unused dependen-
cies, developers are more concerned about considering them

unused. Developers only accept this recommendation for the

dependency that is duplicated.

To evaluate the recommendation and developers’ feedback,

ten dependencies are selected for system and functionality

tests in Table IV. After developers remove 3 dependencies

recommended as used, each of them causes different failures

which include error messages in the system log and function-

ality breaks at the server. In other words, these dependencies

are verified as actually used in the application. Hence, it

shows that the decision process can indeed help us reduce

false positives. For dependencies that need additional steps
with developers, the result shows that developers may not

always be correct on the usage of the dependencies. Three

out of 6 dependencies that developers approve tests cause

functional errors after they are removed. Hence, when the

decision process recommends needing additional steps with

developers, developers indeed need to take more efforts to

investigate. For the only unused dependencies accepted by

developers, it passes the test as expected. Therefore, with the

help of the decision process, developers may prioritize how

they plan to test and remove the unused dependencies.

However, the current design of the decision framework has

a limitation and would falsely recommend a dependency as

unused in some circumstances. For example, two dependencies

are recommended as unused but are considered as needed

by developers in Table III. It is because we only select

critical edges in the OPAL call graph. When we examine the

OPAL call graph, we find that all target methods of these

2 dependencies occur more than once. Since we only select

critical edges to augment the call graph, the edges created by

these 2 dependencies are ignored. Another corner case that is

not covered by our approach is when transitive dependencies

are directly called by the application. However, we do not

observe this corner case in our data.

B. Is our decision framework to detect unused dependencies
confirmed by the history of other open-source projects? (RQ2)

The recommendations of the decision process are consis-
tent with the history and are cautious not to remove false
positives. The results show different fingerprints of three open-

source projects that can help us check if the recommendations

of the decision process are consistent with the history.

For the recommendation of used dependencies by the

decision process, 34 of 37 recommendations are correct since

R1, R2 indicate that those dependencies are still used or

maintained. Specifically, if a dependency is replaced by an-

other dependency or removed along with some source code, it

means that the removed dependency is still used before they

are removed. Hence, the recommendation of not removing

them is correct. On the other hand, 3 of 37 recommendations

contradict the developers’ reasons for removing dependencies.

However, when the detail of the commit history is investigated,

it is found that these dependencies are removed either because

they are duplicated [26] or because they become provided
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[27], meaning that they are still used before they are removed.

Thus, the suggestion of the decision process matches all of

the commit histories in this category. For the recommendation

of unused dependencies by the decision process, all of them

match the history of 8 commits in the Jenkins project that only

remove unused dependencies.

For the recommendation that needs additional steps with
developers by the decision process, 10 out of 11 dependencies

are used according to the ground truth of commit history.

However, these 10 dependencies are unreachable from the

entry classes, which means there are some missing method

calls to these 10 dependencies in the call graph. In this cir-

cumstance, DepClean flags these 10 dependencies as unused.

In contrast, our decision process does not falsely classify

them as unused because artifact types in previous releases

are also considered. Since the decision framework does not

find evidence to support whether the dependency is used or

unused, the decision process is cautious and recommends

taking additional steps with developers.

Likewise, when DepClean is used to decide the usage

of these dependencies, the analysis result shows that 18

dependencies in the Zipkin and Onedev project are consid-

ered unused; however, these recommendations contradict the

ground truth inferred from the commit history. In contrast,

since our decision process considers the history changes of

method calls and artifact types, some of these 18 dependencies

are recommended as used by the decision process while others

need additional steps with developers. In this manner, even

though the call graph can not capture some dynamic features

in the Java language, the decision process does not wrongly

suggest developers remove false positives. This feature is

crucial for the production environment.

VIII. THREATS TO VALIDITY

A. Construct

The approach to augmenting the call graph is designed

according to the context of the provided ING project. Since

the provided web application is developed a decade ago, they

use the feature of the dynamic proxy to conveniently invoke

various services before the technique of dependency injection

becomes popular. For the project developed in recent years, the

context of the software development must have changed and

our approach should be adjusted to fit the different context.

Specifically, the call graph construction tool, the mechanism

of selecting critical edges, and the questions of the decision

process may need to be adapted for the targeted project.

B. Internal

The system and functionality test rely on the experience

of developers and the identification of error messages in the

system log. However, even the senior developers may not know

all the details in the dependencies maintained internally at

ING. Also, the time allocated for the tests is limited, so some

dependencies have to be tested within a batch. Although the

result is expected to be the same as being tested individually,

this premise has not been verified yet. Moreover, it is assumed

that the error caused by the removed dependency can be

triggered in a short time, which may not always be the case.

Some faults may exist in the system for a long time without

causing error messages.

C. External

Although the history of open-source projects is applied

to confirm the recommendation of the decision framework,

the system and functionality test can not be executed in the

open-source projects as being done in the project at ING. In

addition, only a few open-source projects regularly remove

unnecessary dependencies like Jenkins. For most of the studied

open-source projects, developers remove dependencies usually

when the dependency is replaced or the software updates. This

fact presents a difficulty for us to gain more data on unused

dependencies to support our decision process.

IX. CONCLUSIONS AND FUTURE WORK

In this work, a decision framework to reduce false positives

of unused dependency detection is proposed. The decision

framework extends the state-of-the-art dependency analysis

tool DepClean and analyzes one industrial Maven project at

ING along with three open-source projects.

For the project at ING, it is found that the augmented

call graph helps reduce 12 false positives out of 71 unused

dependencies detected. Also, the decision process based on the

classification of the relationship between dependencies helps

reduce 13 false positives. Hence, a decision framework of

these two approaches filters out one-third of false positives of

unused dependencies. The decision process further categorizes

the remaining two-thirds of unused dependencies according to

their release history, which allows developers to decide which

dependency could be removed with ease or not.

Furthermore, the recommendations of the decision process

are verified to be consistent with the reasons for removing

dependencies in three selected open-source projects. Even

though the dynamic feature of Java hampers the accuracy of

the dependency analysis tool and creates false positives, the de-

cision process relies on the changes in the relationship between

dependencies and successfully points out 18 dependencies that

could have become false positives.

In future work, our decision framework can be extended in

different ways: improve the precision of OPAL when building

a call graph for large software projects; analyze hierarchical

multi-module Maven projects and see how the decision process

needs to be adjusted; expand our methodology with other

call graph tools to enhance the soundness to a great extent.

Furthermore, it would be interesting to expand the study

to understand how the visualization tool helps developers

understand why dependencies are classified as unused.
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[8] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular collaborative
program analysis in opal,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 184–196.

[9] Y. Li, T. Tan, and J. Xue, “Understanding and analyzing java reflection,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 28, no. 2,
pp. 1–50, 2019.
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