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Chapter 1

Introduction

1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a technique that enables one to noninvasely view
the interior of living beings [2–4]. It is based on the phenomenon of nuclear magnetism [5].
Many nuclei possess a magnetic moment ~µn, where the subscript n stands for a particular
nuclear isotope. Examples of such nuclei are 1H, 13C, and 31P, with natural abundances
of respectively 99.98%, 1.11%, and 100%. The magnitude of ~µn depends on the isotopic
species at hand; that of 1H – the proton – is the largest of the mentioned three and
therefore this isotope can emanate the strongest MRI signal. Another property favouring
the strength of an MRI signal is mobility of the molecule hosting the nucleus. Since
mobile water (H2O) is the most abundant molecule in living tissue, it is used as medium
for MRI. Hence, a clinical MR image displays the distribution of water in a patient.
Other substances, such as fat, can contribute too.

Figure 1.1: A clinical MRI scanner.
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Fig. 1.1 shows a typical MRI scanner used in clinics. The bulk of the instrument
consists of a strong electromagnet capable of sustaining a homogeneous magnetic field
B0 of the order of 1 Tesla. The patient is slid into the bore of the magnet where his/her
magnetic nuclei are aligned along B0. Besides B0, one needs additional magnetic fields
to manipulate the nuclear moments once they are aligned. These fields are:

1. A radio-frequency field which is capable of tilting the aligned nuclei away from their
preferred orientation along B0.

2. Three so-called gradient fields which are parallel to B0 but whose magnitudes
depend linearly on the three spatial coordinates x, y, z respectively. More on this
in chapter 2.

Both the gradient fields and the radio-frequency field are computer-controlled, en-
abling one to adjust the nuclear magnetic moment as a function of time and spatial
coordinates. I emphasize that the resulting MRI signal is not immediately suitable for
use in the clinic. In fact, it is measured in the Fourier domain which implies that the
image information is coded beyond recognition. Fourier transformation of the MRI signal
to the spatial domain is required to obtain the desired image. The work described in
this thesis has to do with estimating an image from a given MRI signal, rather than with
MRI as such. This point is discussed in the next section.

1.2 Aim of this thesis

As mentioned in the previous section, the MRI signal is to be Fourier transformed from
the measurement domain to the spatial domain in order to make the clinical information
accessible to the human eye. Usually this poses no obstacle. However, increasingly one
wishes to image (scan) time-dependent phenomena like bolus-spreading or movement
of an object, e.g. of a heart. In those cases there is a dire need to omit part of the
measurements (samples) because otherwise the scanner is unable to follow the events.
Once this concession has been made, the Fourier transformation becomes inaccurate. In
mathematics, this is called the ‘inverse problem’: How to estimate a function in one
domain from incomplete (undersampled) data in another domain.

But there is more. Even if the data are complete, it may not have been possible
to sample them on a regular rectangular (Cartesian) grid. In that case the Fourier
transformation is time-consuming. It then becomes worthwhile to investigate whether
resampling (regridding) the data – by computer – from the experimental sampling grid
to a Cartesian sampling grid can be less time-consuming than Fourier transformation of
non-Cartesian data.

After these preliminaries, it is now possible to state the aim of this thesis.

1. Investigation and improvement of resampling complete data from one sampling grid
to another, also called regridding or gridding. I distinguish two kinds of resampling,
namely from an arbitrary to a Cartesian grid, and vice versa. The usefulness of
the first kind is evident: one wishes to make MRI data suitable for IFFT, enabling
speedy reconstruction. The compensation for variation of the density of sampling
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points requires special care. Kind 2) is useful for e.g. generation of radial or
spiral data from Cartesian data. Such semi-real-world data are in turn useful for
developing and testing image reconstruction algorithms.

2. Development of an algorithm for image reconstruction from MRI data that have
been both arbitrarily sampled and locally undersampled. Note that arbitrary un-
dersampling is not done intentionally, but rather is a consequence of unavoidable
patient motion. Intentional undersampling occurs when omitting sample positions
for the sake of scan time reduction. In both cases, the data contain insufficient
information to reconstruct an image without additional knowledge of a general
nature. Bayesian estimation is amenable to imposition of such knowledge and is
therefore used in this thesis.

3. Testing of the new and existing image reconstruction algorithms with three kinds
of data, namely

• Simulated data

• Semi-real-world data

• Real-world data

1.3 Outline of this thesis

Chapter 2 describes background information deemed useful for signal processing pro-
fessionals who wish to engage in image estimation from the raw MRI data which
are acquired in the Fourier space (measurement space).

Chapter 3 deals with image estimation from complete raw data. Here, ‘complete’ per-
tains to the condition that the Nyquist sampling criterion is satisfied throughout
the measurement space. In the case of Cartesian sampling, the estimator consists
simply of IFFT. In other cases, two approaches are distinguished: 1) The sample po-
sitions are such that one can apply a dedicated estimator. 2) The sampling-position
distribution is general, forcing one to interpolate the samples to a Cartesian grid
(‘gridding’). After this interpolation, one can resort to IFFT. Much attention is
given to the accuracy of interpolation. It turns out that in the case of general sam-
ple positions, the main source of error lies in properly accounting for the varying
density of the sample positions.

Chapter 4 complements chapter 3 in the sense that it focuses on alleviating the effect
of undersampling – i.e., the case of local violation of the Nyquist criterion. Un-
dersampling amounts to a fundamental lack of information. The effect of such a
condition can be alleviated by invoking general prior knowledge about images. I
impose this prior knowledge by applying Bayesian estimation which is particularly
suitable for the task. Much attention is given to optimization of my algorithm.
The computational cost per iteration has been reduced considerably. The number
of iterations is yet to be limited, especially in the 3D case.
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Chapter 5 concerns evaluation of image estimation from incomplete (undersampled)
raw data. Issues are; image quality measures, reference images, image estimation
(reconstruction) time.

Chapter 6 is devoted to the matter of how to omit spiral trajectories – i.e., sparse
sampling – with minimal loss of information. Ideally, the raw data satisfy Her-
mitian symmetry. This property can be exploited when designing and omitting
trajectories. I investigate various symmetric cases.

Chapter 7 deals with applications. The methods alluded to above are tested on simula-
tions and real-world data. The Bayesian estimator appears particularly suited for
pseudo-random sample positions.

Chapter 8, finally, provides overall conclusions and dwells on recommendations for future
research.
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Chapter 2

MRI scan techniques

2.1 Introduction

In this section, I consider those aspects of sampling an MRI signal, deemed necessary
to make signal processing professionals aware of some constraints attendant to MRI
scanning.

In thermal equilibrium, the magnetic nuclei (spins) to be imaged are aligned along
a strong magnetic field ~B, applied along the z-axis [5]. This results in a macroscopic
magnetic moment ~M , parallel to z. When tilted, ~M will precess around ~B with the
Larmor frequency, equal to

ω = −γ| ~B|, (2.1)

where γ is the gyromagnetic ratio of the spins under investigation, usually protons (for
protons γ/2π = 42.576 MHz/T. The precessing magnetic moment induces the MRI signal
in the receiver antenna. See Fig. 2.1.

As mentioned in chapter 1, the strength of ~B in a scanner is made dependent on
the spatial coordinates x, y, z and time t by special computer-controlled hardware [2,3].
Hence we write ~B(x, y, z, t). As a consequence of Eq. 2.1, ω undergoes the same spatial
and time dependence as ~B. We shall see below that this dependence serves to encode
the MRI signal such that one can obtain an image through Fourier transformation.

Recapping, the magnetic field ~B(x, y, z, t) comprises a static homogeneous part B0

and a space/time-dependent part. Note that both parts are assumed to be directed along
the z-axis. As a consequence of the latter, we drop the vector bars in the corresponding
equation,

B(x, y, z, t) = B0 + xGx(t) + yGy(t) + zGz(t), (2.2)

where Gx(t), Gy(t), and Gz(t) determine the strengths and time-dependences of linear
gradients of B. In scanner jargon, one speaks of the x, y, and z gradients respectively.
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Figure 2.1: Precession of a macroscopic magnetization vector ~M , tilted over an angle
θ with respect to a static homogeneous magnetic field B0 along the z-axis.
The component of ~M in the x, y-plane, ~M⊥, induces the MRI signal in the
antenna of the scanner.

Assume now that ~M is tilted away from the z-axis by a computer-controlled radio-
frequency pulse and thus makes a component ~M⊥ in the x, y plane. Fig. 2.1 shows an
example where the tilt angle equals θ. How to achieve this is beyond the scope of my
thesis. See (e.g. [2]) for a good description. Also, relaxation affecting the magnitude
of ~M⊥ is ignored till further notice. Let us consider the precession of ~M under this
simplifying condition.

Denoting the density of the magnetic moment at x, y, z and time t by the magneti-
zation ~m(x, y, z, t), the precession angle – or phase – accumulated by ~m(x, y, z, t)dV in
a volume dV at x, y, z is

φ(x, y, z, t) = −
t∫

t′=0

γ| ~B(x, y, z, t′)|dt′ = ω0t− 2π (xkx(t) + yky(t) + zkz(t)) , (2.3)

with the definitions

ω0 = −γ| ~B0|, (2.4)

kx(t) =
γ

2π

∫ t

t′=0

Gx(t′)dt′, (2.5)

ky(t) =
γ

2π

∫ t

t′=0

Gy(t′)dt′, (2.6)
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kz(t) =
γ

2π

∫ t

t′=0

Gz(t′)dt′. (2.7)

Note that these definitions differ from those given in [2] by a factor of 2π. With this choice
of ~k it is possible to get rid of any normalization constants in Fourier transforms. These
formulae indicate that the accumulated precession angle at position x, y, z relative to
that at the origin equals −2π times the inner product of the position vector ~r = (x, y, z)
and a vector ~k(t) = (kx(t), ky(t), kz(t)), defined in so-called k-space by Eqs. 2.5 - 2.7.
The corresponding time dependence of the magnetization at (x, y, z) is

m⊥(x, y, z, t) = m⊥(x, y, z, 0)eiφ(x,y,z,t) = m⊥(x, y, z, 0)eiω0te−2πi(xkx(t)+yky(t)+zkz(t)),
(2.8)

where m⊥ = mx + imy. Integrating then over the field of view (FOV) gives the macro-
scopic perpendicular magnetic moment

M⊥(t) =
∫∫∫
FOV

m⊥(x, y, z, t)dV = eiω0t

∫∫∫
FOV

m⊥(x, y, z, 0)e−2πi(xkx(t)+yky(t)+zkz(t))dV.

(2.9)

After removing the term eiω0t in the detection stage, one finally arrives at the signal

S(~k(t)) ∝
∫∫∫
FOV

I(~r)e−2πi~k(t)·~rdV, (2.10)

where m⊥(x, y, z, 0) has been replaced by I(~r). The latter explicit replacement should
make one aware of the fact that MRI images the nuclear magnetization rather than the
nuclear density. Since the magnetization is influenced by relaxation, one possesses a
handle to distinguish between tissues that have equal nuclear densities but are subject to
different degrees of relaxation. This aspect is beyond the scope of this thesis; see Ref. [2]
for details.

Eq. 2.10 states that the MRI signal is proportional to the Fourier transform of the
image. As it stands, it implies that if one samples a signal in 3D k-space, subsequent
inverse Fourier transformation yields a full, 3D image of the object under investigation.
In general S(~k(t)) is complex-valued. Fig. 2.2 shows an example of the absolute value of
a 2D MRI signal on a logarithmic scale.

At this point, two comments are in order.

1. Often, one restricts a scan to two dimensions. To this end, one tilts (excites)
~M only in a slice of interest and subsequently adapts the time dependence of
Gx, Gy, Gz accordingly. In this way, one can produce 2D images of slices at various
locations and in various orientations. As for slice orientation, one distinguishes
transverse, coronal, and sagittal images. The corresponding slices are respectively

7



ky

kx

Figure 2.2: Absolute value of a 2D k-space signal on a logarithmic scale. Note that the
signal is strong in the centre and weak at the edge.

perpendicular to the axis of a patient, from front to back along the axis, and from
left to right along the axis. Fig. 2.3 shows an example of each mentioned orientation.
Obviously, 2D scans require less time and less computing capacity than 3D scans.

2. Recall that I have ignored relaxation, which destroys M⊥ according to e−t/T ?
2 .

When T ?
2 is very long, it would suffice to tilt (excite) only once, and after this one

could cover all k-space by proper control of Gx, Gy, Gz as a function of time. See
e.g. Ref. [6–8] and section 2.2.3. This is the ideal case.

In reality, relaxation is fast (T ?
2 ≈ 20 ms), causing rapid decay of the signal. In

that case, one has to cover k-space piecewise, i.e. exciting the nuclear spins several
or many times. Before each new excitation, one has to await restoration of thermal
equilibrium to a an extent that is dictated by the type of scan at hand. The path
covered in k-space by ~k(t) from one excitation till the next is called a trajectory.
The time t in Eq. 2.10 is defined only during the course of a trajectory. The
total scan time is determined mainly by the repeated waiting for (partial) thermal
equilibrium before each new excitation. Hence, the fewer the number of excitations
required, the shorter the total scan time.

2.2 k-Space trajectories

From the previous section it is clear that MRI signals are measured in k-space. The
gradients Gx, Gy, Gz determine the path or trajectory of the endpoint of ~k through k-
space [9, 10]. Along a trajectory the signal S(~k(t)) is sampled at regular time intervals.
The stronger the gradients, the shorter the time required to cover a trajectory. As
mentioned in the previous section, ideally, all k-space is covered with a single, long
trajectory. However, due to relaxation and inhomogeneity of B0, the ideal case of only a
single, long trajectory is often not possible. The total scan time is determined mainly by

8



(a) (b) (c)

Figure 2.3: 2D images of slices of a human head in various orientations. (a) Transverse,
(b) coronal, (c) sagittal.

the accumulated waiting times between successive trajectories used to cover all k-space
(2D or 3D).

Many different trajectories have been conceived. I shall discuss mainly Cartesian,
radial and spiral trajectories in the 2D case. More can be found in the review article by
Hennig [10].

2.2.1 Cartesian scan

The most often used way of sampling k-space is Cartesian, depicted in Fig. 2.4. The
preference for Cartesian has to do with two advantages. 1) To obtain an image, inverse
FFT suffices. 2) Sampling starts at the edge of k-space where the signal is very weak.
Hence, sampling errors which tend to occur in the initial part of a trajectory have little
influence.

With Cartesian scanning, k-space is sampled along straight trajectories parallel to the
kx-axis. Along a trajectory, the sampling interval usually equals the distance between
the successive trajectories, resulting in a square sampling pattern. Sampling along a
trajectory starts at one edge of k-space and stops at the opposite edge. In this period,
Gx is constant and Gy = 0, resulting in kx(t) = (γ/(2π))Gxt and ky(t) is constant.
Prior to each trajectory, one needs gradients to go from ~k = ~0 to the starting point
of that trajectory. The corresponding paths are not shown in Fig. 2.4. If the gradient
strength and relaxation allow, one can combine a number of straight trajectories shown
in Fig. 2.4 into a single trajectory. This results in echo planar imaging (EPI), as discussed
in Refs. [2, 6].

2.2.2 Radial scan

When T ?
2 is short, there is no time to first go to the edge of k-space and subsequently start

a Cartesian trajectory. In that case one resorts to radial scanning. In radial scanning
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Figure 2.4: Cartesian k-space trajectories. The necessary paths from ~k = ~0 to the start-
ing point of each trajectory are not shown.

one starts at the centre of k-space and proceeds to the edge as fast as possible, i.e. along
some straight line. In order to satisfy the Nyquist sampling criterion up to the edge of
k-space, one needs (π times) more radial trajectories than Cartesian trajectories. On
the other hand, artefacts caused by radial undersampling – in outer k-space – are less
troublesome than artefacts caused by Cartesian undersampling.

Several radial scan alternatives suitable for 2D MRI exist. These are:

1. Projection Reconstruction (PR)
The oldest and most popular radial variant is the Projection Reconstruction (PR)
method. In PR, all angles between successive radial trajectories are equal, requiring
Gx = Gmax cos(α), Gy = Gmax sin(α), with α = n∆α, n = 0, . . . , Nrad − 1, and
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(a) (b) (c)

Figure 2.5: Radial k-space trajectories. (a) Projection Reconstruction (PR). (b) Lino-
gram. (c) SRSFT. Taken from G.H.L.A. Stijnman’s MSc Thesis [11].

∆α = 2π/Nrad, with Nrad the number of radials. In addition, the sampling interval
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is independent of α; see Fig. 2.5a. Note that the sample positions reside on radial
as well as circular lines. See Ref. [12] for recent applications in MRI.

After inverse FFT of every radial, the reconstruction becomes equal to that of X-ray
tomography. The latter entails interpolation which causes some loss of accuracy.
In addition, it requires more computation time. To alleviate these two drawbacks,
Edholm et al. [13, 14] devised linogram scanning, described in the next point.

2. Linogram
With linogram scanning, the angles between successive radials, and the sample
interval on each radial, vary such that the sample positions reside on radials as well
as squares, see Fig. 2.5b. This makes reconstruction amenable to an FFT-based
technique called chirp-z [11, 15–17], which is faster than projection reconstruction
and obviates interpolation.

Linogram scanning is applied in X-ray tomography [13, 14, 18], in ultrasound to-
mography [19], and in MRI [20,21].

3. SRSFT
The abbreviation SRSFT stands for Sparse Radial Scanning and Fourier Transform
[22–24]. As with linogram, the angles between successive radials and the sample
interval on each radial vary again such that the sample positions reside on radials
as well as squares, see Fig. 2.5c. However, the number of sample positions that
coincide with Cartesian grid points near the centre of k-space is maximized. An
advantage of this sample distribution is that a preliminary fast (but low-resolution)
reconstruction can be provided with inverse FFT. A price to pay is that some outer
regions of k-space are undersampled, especially near the kx and ky axes.

2.2.3 Spiral scan

Like radial trajectories, spiral ones start at the center of k-space. However, these tra-
jectories are not straight, but rather spiral around thus covering more of k-space. This
allows a smaller number of trajectories to fulfill the Nyquist criterion, however at the
expense of a longer acquisition time per trajectory [25–27].

A trajectory is an Archimedean spiral if described by the equation

k(t) = Aθ(t)ei(θ(t)+θ0), (2.11)

where k(t) = kx(t) + iky(t). The function θ(t) does not determine the shape of the
trajectory, it only determines the sample positions along the trajectory. The associated
gradients are

G(t) =
2π

γ
A(1 + iθ(t))

dθ(t)
dt

ei(θ(t)+θ0), (2.12)

where G(t) = Gx(t) + iGy(t). Note that for large θ(t), |G(t)| ∝ θ(t)dθ(t)
dt .

A nice property of an Archimedean spiral is the constant distance (2πA) between
windings. This helps to design the correct spiral trajectory for a given FOV. Ref. [28]
provides a recent clinical application of spiral scanning.
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Filling k-space with only one spiral trajectory is possible although acquisition time
will be long, which can cause problems due to B0 inhomogeneities. The solution is to
use more spiral trajectories with different starting angles θ0.

The function θ(t) determines the sampling along the spiral trajectory. Several choices
are possible. The use of velocity in the following descriptions comes from interpreting
k(t) as a position vector and G(t) as its associated velocity.

1. constant angular velocity spiral
θ(t) ∝ t. For large θ(t) the angular velocity is constant, because |G(t)|/|k(t)| ∝
θ(t)dθ(t)

dt /θ(t) = const.

2. constant linear velocity spiral
θ(t) ∝

√
t. This gives |G(t)| = const. for large θ(t). The expression is not valid

close to the centre of k-space, since the gradient will become infinite. Therefore one
starts with a constant angular velocity spiral which changes into a constant linear
velocity spiral as soon as the gradients allow this.

3. optimal spiral
θ(t) is numerically optimized given the maximum gradient and slewrate (dG(t)

dt ) of
the system [29, 30]. This is the preferred acquisition scheme, since it will give the
shortest acquisition time with a given gradient system.

ky ky

kx kx

Figure 2.6: Constant angular velocity and constant linear velocity spiral trajectories.

Originally, the research for this thesis was aimed at sparse spiral scanning [31–33].
Unfortunately, economical conditions forced our industrial partner to abandon activities
on spiral scanning halfway through my project. As a result, only a few preliminary spiral
measurements could be put at my disposal. Only gradually, background information
about the measurements turned out to be inadequate to warrant pursuit of my original
subject.
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2.3 Some other trajectory shapes

It should be mentioned that additional trajectory shapes have been reported. These are
circular [34, 35], rosette [36–38], and stochastic trajectories [7, 39]. In addition, there is
unintentional pseudo-random sampling, arising through correction of Cartesian scans for
patient motion [40].

2.4 Summary

This chapter provided some background knowledge about MRI scanning deemed nec-
essary for the signal processing community [41, 42]. Summarizing, the following points
were dealt with.

• Sampling is done trajectory-wise in the Fourier domain, called k-space.

• Often, sample positions do not coincide with a rectangular (Cartesian) grid.

• The number of trajectories required to satisfy the Nyquist criterion everywhere in
k-space, depends on the shape of the trajectories. For instance, one needs fewer
spiral trajectories than radial trajectories.

• Each trajectory shape has its advantages and disadvantages. Technical realization
of particular shapes is not a trivial matter.

• The measurement time is proportional to the number of trajectories. Hence, omis-
sion of trajectories results in reduction of measurement time.

• Omission of trajectories entails local undersampling, which in turn causes artefacts
in the image.

13





Chapter 3

Image reconstruction from
complete data

3.1 Introduction

Image reconstruction is the process of estimating an image from the raw data. This
process is necessary because the raw data are acquired in the k-space and are therefore
not directly interpretable as an image.

As already explained in chapter 2, k-space is the Fourier transform of the image space.
The Fourier transform being invertible, one should in principle be able to estimate an
image from the k-space data by applying the inverse Fourier-transform.

A number of aspects is to be dealt with:

• The raw data are sampled at discrete positions in k-space and are therefore not
amenable to the continuous Fourier transform. Hence, one is forced to discretize
the continuous Fourier transform which gives rise to various types of errors. This
will be discussed in this chapter.

• An important aspect is the distribution of sample positions. First of all, this distri-
bution should be sufficiently dense, implying that the Nyquist sampling criterion
be satisfied everywhere in the covered k-space. If this requirement is met, we
call the data complete or fully sampled. If the Nyquist sampling criterion is not
met everywhere we speak of (local) undersampling. In this chapter, the data are
complete.

• Complete data may have been sampled in various ways. One may distinguish the
following types of sample position distributions

– Cartesian; i.e. rectangular and uniform.

– Regular nonuniform; i.e. governed by a (simple) expression, e.g spiral.

– Irregular or random; e.g. Cartesian, disturbed by random patient motion.
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Various reconstruction methods exist. In this chapter, I distinguish

• Straightforward IFFT, for Cartesian sample position distributions.

• ‘Dedicated’ methods for some regular nonuniform sample position distributions
such as linogram.

• Gridding, for arbitrary sample position distributions.

• Maximum likelihood reconstruction, which tries to estimate a desired set of param-
eters in such a way that the probability of the measured data given these parameters
is maximized.

3.2 Discretization of the inverse Fourier transform

3.2.1 Reconstruction by DFT

The continuous inverse Fourier transform is defined as

I(~r) =
∫

S(~k)e2πi~k·~rd~k. (3.1)

Reconstruction by Eq. 3.1 needs the data at all ~k-positions. However, S(~k) is sampled
at discrete ~k-positions, ~kn. The sampling forces us to discretize Eq. 3.1, which results in
the following approximation:

I(~r) ' Irecon(~r) =
∑

n

S(~kn)e2πi~kn·~r∆kn (3.2)

in which ∆kn represents a patch of k-space around the sample at ~kn. Finding a suitable
size of ∆kn constitutes a major problem whenever the sample positions are irregular.
The problem is referred to as density compensation because intuitively one may relate
each ∆kn with the area/volume of the mentioned patch of k-space. See next section.
Fig. 3.1 shows the discretization and integration process, which is actually an application
of the trapezoidal rule known from numerical integration [43]. Applying the usually more
accurate Simpson’s rule is not applicable here, because the complex exponential is not
smoothly varying for large ~r.

3.2.2 Sampling density compensation

Substituting Eq. 2.10 into Eq. 3.2, one can express Irecon(~r) as the convolution of the
true continuous image with a so-called point-spread function.

Irecon(~r) =
∑

n

[∫
I(~r′)e−2πi~kn·~r′d~r′

]
e2πi~kn·~r∆kn (3.3)

=
∫ [∑

n

∆kne2πi~kn·(~r−~r′)

]
I(~r′)d~r′ (3.4)

= PSF(~r) ∗ I(~r) , (3.5)
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Figure 3.1: Discretization of integral. The value of the function is only known at the
points denoted by a circle. This picture shows the necessity of including the
∆kn term in Eq. 3.2 to establish a correct integration.

in which ∗ stands for convolution, and the point-spread function, PSF(~r), is defined in
MRI as

PSF(~r) def=
∑

n

∆kne2πi~kn·~r . (3.6)

Eq. 3.5 shows that the reconstructed image approaches the true image when PSF(~r)
approaches a delta function. Note that in MRI, the point-spread function is not related
to an experimental condition such as aperture in optics. Rather, the MRI point-spread
function is a mathematical contraption that can be manipulated through the choice of the
density compensation which is represented by the quantities ∆kn. Ideally, one should find
a density compensation that makes PSF(~r) approach a delta-function located at ~r = ~0.
Degradation of image reconstruction caused by an inadequate PSF(~r) – or inadequate
sampling density compensation – can not be repaired later on.

One can distinguish the following alternative ways to obtain a sampling density com-
pensation.

• Trivial case.
When the sample distribution is Cartesian, all ∆kn are equal for reasons of symme-
try. This allows replacement of the ∆kn by a constant in front of the summation
operator.

• Analytical derivation [11].
When the sample distribution is nonuniform but regular, derivation of an analytical
expression for the density compensation is feasible. For example, consider a radial
sample distribution. In this case one can rewrite Eq. 3.1 in polar coordinates and
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then discretize. This results in

Irecon(~r) = ∆kr∆kθ

∑
n

S(~kn)e2πi~kn·~rJ(krn
, kθn

), (3.7)

where J(krn , kθn) is the Jacobian resulting from the transformation to polar coor-
dinates. ∆kr and ∆kθ, the step-sizes in radial and angular direction respectively,
can be taken out of the summation because they are constants. Comparing Eq. 3.7
with Eq. 3.2 one can associate J(krn

, kθn
) with ∆kn, which means that we have

found an analytical expression for the density compensation.

• The Voronoi algorithm [44,45].
This algorithm constructs a polygon (in 2D) or polyhedron (in 3D) around each
sample position, in such a way that all points in the polygon/polyhedron are closest
to the accompanying sample position. The area/volume of the polygon/polyhedron
is substituted for ∆kn, on intuitive geometrical grounds. This algorithm is con-
tained in MATLAB. It can be used when an analytical expression is not avail-
able [11, 46, 47]. However, the ∆kn found with this method can vary wildly from
sample to sample when sampling is irregular, resulting in a PSF that does not
resemble a delta-function.

• The Pipe-Menon algorithm [48].
This algorithm has already been alluded to above. It is not based on geometric
considerations. Rather, it varies all ∆kn in such a manner that the point-spread
function approaches a delta function. This constitutes a superior philosophy. But
the computational cost may be high. I have made two implementations using the
C language [46, 47]. One of these constitutes an improvement of the original Pipe
algorithm. The details of these implementations are beyond the scope of this thesis.

3.3 Cartesian sampling

When a sample position distribution is Cartesian – Cartesian sampling – the notion of
Nyquist rate [49] applies. Consider the 1D case. A small drop of water at position x0

brings about an MRI signal proportional to exp(−2πix0kx). Suppose the drop is at the
edge of the region where aliasing starts. Then, the sampling interval ∆k is such that
2πx0∆k = π, yielding ∆k = 1/(2x0). Conversely, given a ∆k, the greatest value of x0

at which no aliasing occurs is 1/(2∆k). With the given ∆k, all drops in the interval
[−x0, x0] will be properly imaged. This leads to a so-called Field Of View – FOV – equal
to 2x0 = 1/∆k. In MRI practice, ∆k is determined by the magnitude of the gradient
field and the time domain sampling interval, as indicated in chapter 2.

The above considerations allow one to write for the 1D case kn = n∆k = n/FOV.
Using this simple relation, Eq. 3.2 becomes

Irecon(x) = FOV−1
∑

n

S(kn)e2πixn/FOV (3.8)
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In practical cases Irecon(x) is calculated only at a finite number of points, xm = mFOV/N ,
m = −N/2,−N/2 + 1, . . . , N/2 − 1, where N equals the number of k-space samples,
substituting gives

Irecon(xm) = FOV−1
∑

n

S(kn)e2πimn/N (3.9)

which can be calculated very efficiently with the inverse fast Fourier transform (IFFT).
The above theory extends naturally to 2D and 3D MRI. It follows that Cartesian

sampling enables one to use 2D or 3D IFFT for MR image reconstruction. The cor-
responding FOV’s are determined by the magnitudes of the available gradient fields,
through Eq. 2.5-2.7.

Finally, the possibility of uniform non-Cartesian sampling exists. For example, one
may sample on a uniform hexagonal grid. This option is not considered in my thesis.
Hence, in the sequel non-uniform and non-Cartesian sampling mean the same.

3.4 Non-uniform sampling

3.4.1 Introduction

In the previous section we saw that in case of Cartesian sampling the image can be
reconstructed by applying 2D or 3D IFFT. However, to apply IFFT it is essential that k-
space be sampled on a Cartesian grid. In case of a non-uniformly sampled k-space, one has
to cope with Eq. 3.2 which is not amenable to IFFT. Unfortunately, the computational
recourse – straightforward calculation of Eq. 3.2 – is very expensive. One way out is to
first interpolate the non-Cartesian samples to a Cartesian grid and then use the IFFT.
This results in the gridding algorithm which is explained in section 3.4.3.

Another aspect of non-uniform sampling is establishment of a FOV. This is problem-
atic because the sampling interval is not constant. In practice, one uses the reciprocal
of the largest or average sampling interval. Last but not least, non-uniform sampling
can cause a major problem with respect to estimating the quantities ∆kn – or density
compensation.

Before treating gridding, I shall first review some radial sampling distributions –
non-uniform by definition, see section 2.2.2 – that can be handled with dedicated recon-
struction algorithms.

3.4.2 Image reconstruction for radial scans

As mentioned in chapter 2 radial scanning is useful when the relaxation times are short.
Because of their symmetry, radial sample distributions are amenable to dedicated recon-
struction algorithms. Here, I distinguish two alternative radial implementations. 1) The
samples reside on both straight lines and circles – referred to as Projection Reconstruc-
tion (PR). 2) The samples reside on both straight lines and squares. Alternative 2) in
turn can be realized in several ways. Here, I shall dwell upon so-called Linogram and
SRSFT, with respectively chirp-z and sqUbe as construction algorithms.
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3.4.2.1 Projection reconstruction

Scanning along uniformly distributed radial trajectories is generally referred to as Projec-
tion Reconstruction (PR), which is actually a name of a reconstruction method borrowed
by MRI in the past from the field of X-ray tomography. An alternative name of the recon-
struction method is Filtered Back Projection. PR is MRI’s first scan technique, proposed
by Lauterbur [50] in 1973. The sample distribution is shown in Fig. 3.2. Note that the
samples reside on straight lines as well as circles.

ky

kx

Figure 3.2: Samples on radial trajectories of a 2D PR sampling distribution. The samples
are seen to reside on straight lines as well as circles.

A pictorial description of the principle of the PR reconstruction method is shown
in Fig. 3.3, taken from Ref. [11]. See Refs. [15, 16] for details. One distinguishes the
following steps.

1. Consider one radial trajectory only.

2. Apply 1D density compensation.

3. Apply 1D IFFT, resulting in a 1D projection image.

4. Spread the projection image over a 2D grid.

5. Rotate the spread projection image over the proper angle.

6. Interpolate the rotated spread projection image to the unrotated grid.

7. Repeat the above procedure for all trajectories and add all images. This yields the
image of the scanned object.

20



The PR reconstruction method is still used by many. It can be made very fast by
implementing dedicated hardware used in X-ray tomography. A disadvantage is that it
uses interpolation, which causes some loss of accuracy.

Below, we shall see that by adapting the angles between adjacent radials and the
sampling rate on each radial, such that the samples reside on straight lines and squares
– rather than circles – one can resort to reconstruction algorithms that obviate interpo-
lation. These reconstruction methods are called chirp-z and SqUbe.

Figure 3.3: Pictorial description of filtered back-projection, applied to one radial of a PR
distribution [11].
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3.4.2.2 Linogram and the chirp-z reconstruction

Unlike PR, in linogram neither the angle between adjacent trajectories nor the radial
sampling step are constant. In fact, these quantities are adapted such that the sample
positions reside both on straight lines and on squares, see Fig. 3.4. This example shows a
scan with Nrad = 32 radial trajectories, while the number of samples on each trajectory
is 1

2N + 1 = 7. The k-space is partitioned into four regions, i ) φ ∈ (− 1
4 π, 1

4 π] and ii )
φ ∈ ( 1

4 π, 3
4 π], where φ is the angle between a trajectory and the kx-axis. Regions iii and

iv are obtained from respectively regions i and ii by reflection with respect to the centre
of k-space. In region i, the trajectories pass through the points ( 1

8Nrad,m), where m
is an integer in the region − 1

8Nrad < m ≤ 1
8Nrad. Combining these preliminaries, the

sample positions in regions i and iii of Fig. 3.4 are determined by the integers k and m
through the expressions

Nkx = n, − 1
2N < n ≤ 1

2N,

Nky = n
8m

Nrad
, − 1

8Nrad < m ≤ 1
8Nrad. (3.10)

In regions ii and iv, the roles of kx and ky are interchanged with respect to regions i and
iii, respectively.
Substituting the k-space coordinates of Eq. 3.10, the argument of the 2D IDFT expo-

nential, 2πi(xkx + yky), becomes 2πi(xn + yn(8m/Nrad))/N . The term in x is amenable
to IFFT, but the term in y is not. However, chirp-z can handle the term in y by subse-
quently two FFTs, an inner product, and an IFFT and is therefore still fast and accurate;
see Ref. [11,51,52] and references therein. Interpolation is obviated. A similar approach
applies to 3D linogram [11].

For more details, the reader is referred to the forthcoming PhD thesis of R. Lethmate
(UCB Lyon I, december 2001). In the present thesis, I limit myself to mentioning that for
linogram scanning chirp-z is faster and more accurate than PR and is a good alternative
to gridding.

3.4.2.3 SqUbe reconstruction

Linogram scanning is useful in that it enables one to perform fast and accurate image
reconstruction. Note however, that the indices determining the directions of 2D linogram
trajectories possess only a single variable. This limits the degrees of freedom in the
design of radial/square (2D). (A similar restriction occurs in 3D radial/cubic (3D) sample
distributions.) For instance, linogram does not provide the possibility to maximize the
number of sample positions coinciding with a Cartesian grid. The latter circumstance
prompted Graveron-Demilly to use two indices l and m for determining the directions
of 2D radial/square and three for radial/cubic trajectories [22]. This enabled her to
maximize the number of Cartesian sample positions in a square/cubic region around
~k = ~0 where the signal is strongest. This distribution is indicated by the name SRSFT.
See Fig. 2.5c.
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Figure 3.4: Radial trajectories in k-space of a 2D linogram distribution. Indicated are
the indices ( 1

8Nrad,m) or (m, 1
8Nrad) of several directions. In this example,

Nrad = 32 and N = 12 (ignoring points at Nkx or Nky = −6). Regions i, ii,
iii, iv, mentioned in the text, range from respectively NE to SE, NW to NE,
NW to SW, and SW to SE.

The rationale for applying SRSFT is that it allows one to very quickly reconstruct a
low-resolution previewing image. The remaining points can be used later on to improve
the resolution. For the latter purpose, Stijnman devised the reconstruction algorithm
sqUbe (square ∪ cubic) [11]. Like chirp-z, sqUbe obviates interpolation.

As mentioned above, the task is to accommodate two directional indices in the
reconstruction algorithm. For the 2D case, the argument of the IDFT exponential,
2πi(xkx + yky), becomes 2πi(xk + yk(l/(mN))), with − 1

2N < k ≤ 1
2N . In SRSFT, l

and m are to satisfy the relations |l| ≤ Ns and |m| ≤ Ns, where 2Ns + 1 is the size of the
square around ~k = ~0 not lacking any Cartesian positions. As a rule, Ns � N .

As with 2D linogram, the term involving y is again computationally expensive. How-
ever, one can easily check that

exp[2πi(xk + (y + m)k(l/m))/N ] = exp[2πi((x + l)k + yk(l/m))/N ],

which serves to greatly reduce the computational burden of the sqUbe reconstruction.

In conclusion, sqUbe is a reconstruction algorithm for general square/cubic radial
sample distributions that obviates interpolation and exploits a symmetry relation to
reduce the computation time.
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3.4.3 Gridding

3.4.3.1 Introduction

Gridding is an algorithm for computation of Eq. 3.2 in the case of an arbitrarily non-
uniformly sampled k-space. Non-uniformity of sample positions makes it impossible to
use IFFT and straightforward computation of Eq. 3.2 is time-consuming. The main
feature of gridding is fast and accurate interpolation of the data from the given non-
uniform grid to a uniform one, restoring the possibility of using IFFT. See Fig. 3.5 which
is based on work by Zwaga [53]. Overall, gridding consists of four steps:

1. Density compensation.

2. Interpolation to a Cartesian grid.

3. Inverse fast Fourier transform.

4. Roll-off correction.

The first step of gridding, the density compensation, is common to most reconstruction
methods. A notable exception is Bayesian reconstruction, treated in the next chapter.
Finding an optimal density can be truly difficult, especially when the non-uniformity is
severe. Recently, an important contribution to optimizing the density compensation was
made by Pipe and Menon [48]. Jointly with Woudenberg and de Jong, I have made an
implementation of their method. For this aspect, see [41,46,47,54].

For this thesis, I have spent considerable time on the interpolation step resulting in
1) improved formulation, 2) increased accuracy, 3) reduction of computation time.

3.4.3.2 Pictorial Explanation of Gridding

In gridding, interpolation is accomplished by convolving the samples with a kernel. One
can compare this to sinc-convolution, the classical way to interpolate a uniformly sampled
bandlimited signal [55]. What type of kernel to use will be explained in section 3.4.3.5.
Note that this type of interpolation is different from normal interpolation, because in the
former a sample at a Cartesian point can be affected by neighbouring samples, while in
the latter it keeps its value. Moreover, the entire k-space is treated the same way.

Writing out the convolution with the kernel, C(~k), and discretizing like in Eq. 3.2

S′(~k) =
∫

S(~k′)C(~k − ~k′)d~k′ (3.11)

'
∑

n

S(~kn)C(~k − ~kn)∆kn (3.12)

=
∑

n

[S(~kn)∆kn]C(~k − ~kn) (3.13)

Eq. 3.13 shows that one has to convolve the density-compensated signal, S(~kn)∆kn,
with the kernel C(~k). At first, it looks like we have not gained anything, because we have
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k-space → F−1 → image domain∑
n[S(kxn)∆kn] δ(kx − kxn) Irecon(x)

∗ C(kx) × c(x)

= =

× FOV qq(FOVkx) ∗ qq(x/FOV)

= =

× u (x/ROI)/c(x)

= Irecon,g(x)

Figure 3.5: Nonuniform sampling and convolution gridding image reconstruction. The
left column shows the sampling and reconstruction process in k-space, the
right column shows the corresponding signals and operations in the image
domain. Based on a Figure in Ref. [53]. The arrows show the actual compu-
tational route.

to sum over all n in Eq. 3.13 to get one value of S′(~k). However, S′(~k) can be sampled
on a Cartesian grid allowing IFFT to be used. To reduce the computation time of the
convolution we use a finite-sized kernel, which means that the kernel will be zero outside
a certain limited interval. This means that the summation in Eq. 3.13 is reduced to a
summation over the points where we know that the kernel is non-zero. Choosing the
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size of the kernel many times smaller than the total size of k-space, results in a drastic
reduction of calculation time for the evaluation of the convolution in Eq. 3.13.

The signal resulting from the convolution, S′(~k), is sampled on a Cartesian grid with
sampling interval ∆kCart. This interval should be small enough to support a FOV of
the same or larger size as the region of interest (ROI). This is the region where we
want to know Irecon(~r). Unfortunately, a finite-sized kernel in k-space has infinite extent
in image space. This infinite extent causes aliasing artefacts, whenever the image of
the density-compensated signal S(~k)∆k is non-zero outside the FOV defined by the
resampling interval, ∆kCart, of the Cartesian grid we are convolving to. Fortunately,
these artefacts can be made arbitrarily small by choosing the kernel appropriately and
making ∆kCart small enough. This will be explained in section 3.4.3.6. Fig. 3.6 shows
that the part of the signal that will alias into the ROI. It is contained in ROI-wide regions
centered around multiples of FOV. The inverse Fourier transform of the kernel should
have the property that it suppresses any signal present in these regions. Regions that do
not alias into the ROI are indicated by “don’t care”. Finally, I dwell briefly on steps 3
and 4 of gridding. In step 3, the resampled result of the convolution is IFFT’ed to the
image domain. When we choose ∆kCart smaller than required to support the ROI, we
cut off the outer part. Step 4 corrects for the shape of the inverse of the convolution
kernel. The convolution with the kernel in k-space is equivalent to a multiplication with
the inverse Fourier transform of the kernel in the image domain, c(x). To correct for the
non-rectangular shape of c(x), the final step consists of division by this function. This is
called the roll-off correction.

3.4.3.3 Algebraic explanation

This section will give a more formal derivation of the gridding algorithm with an arbitrary
number of dimensions.

Writing down the relation between the kernel C(~k) and its inverse Fourier transform
c(~r) gives

c(~r) =
∫

C(~k)e2πi~k·~rd~k. (3.14)

Multiplying both sides with e2πi~kn·~r one gets

e2πi~kn·~rc(~r) =
∫

C(~k)e2πi(~k+~kn)·~rd~k =
∫

C(~k − ~kn)e2πi~k·~rd~k. (3.15)

Discretizing the integral on the right hand side of Eq. 3.15 on a Cartesian grid with
interval ∆kCart gives

e2πi~kn·~rc(~r) ' ∆kCart

∑
m

C(~km − ~kn)e2πi~km·~r. (3.16)

The step-size of this grid, ∆kCart, is chosen smaller than the step-size needed to support
the desired ROI.

26



-�

-�

-�-�-� -�suppress suppressdon’t care ROI don’t care

FOV=1/∆kCart = fogROI

Figure 3.6: Necessary properties of the convolution kernel. By choosing ∆kCart small
enough, FOV will be larger than the ROI. This results in don’t care regions
that will alias into the FOV but not into the ROI. The suppress regions
are where the inverse Fourier transform of the convolution kernel should be
ideally zero.

The discretization causes parts of e2πi~kn·~rc(~r) outside the FOV,
x, y, . . . ∈ [−1/(2∆kCart), 1/(2∆kCart)) to alias into the ROI. The error in this approxi-
mation is dependent on the choice of C(~k) and will be elaborated in section 3.4.3.6.

We are only interested in a limited region of the image domain, i.e. the ROI. Suppose
c(~r) is non-zero inside this region so we can safely divide by it, giving

e2πi~kn·~r ' ∆kCart

c(~r)

∑
m

C(~km − ~kn)e2πi~km·~r. (3.17)

Eq. 3.17 gives us a recipe how to replace a complex exponential e2πi~kn·~r with a ~kn not
residing on a Cartesian grid with a linear combination of complex exponentials with their
~km on a Cartesian grid. The weights of the linear combination are determined by the
convolution kernel C(~k).

Using Eq. 3.17, Eq. 3.2 becomes

Irecon(~r) ' Irecon,g =
∑

n

S(~kn)

(
∆kCart

c(~r)

∑
m

C(~km − ~kn)e2πi~km·~r

)
∆kn. (3.18)

Finally, exchanging the summations gives

Irecon,g(~r) =
∆kCart

c(~r)

∑
m

(∑
n

[S(~kn)∆kn]C(~km − ~kn)

)
e2πi~km·~r. (3.19)

The inner summation is the convolution of the kernel with the non-uniform samples.
The outer summation is an IFFT. And the division by c(~r) is the roll-off correction. So
Eq. 3.19 describes the gridding algorithm.

The above derivation shows exactly which approximations occur in the gridding al-
gorithm due to the interpolation. There is only one, namely Eq. 3.17. The error in
approximating the continuous inverse Fourier transform by Eq. 3.2 – which includes the
density compensation – is shared with other reconstruction methods and can therefore
not be blamed only on gridding. As I will show in the following sections, the error in
Eq. 3.17 can be made arbitrarily small.
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3.4.3.4 Interpolation error

We will consider convolution kernels that are separable in the k-coordinates, i.e.
C(kx, ky, . . . ) = C1(kx)C1(ky) . . . . This means that the inverse Fourier transform of
the kernel is also separable, i.e. c(x, y, . . . ) = c1(x)c1(y) . . . . This allows us to reduce
the examination to 1D, as is easily shown by expanding Eq. 3.17. In the following sections
the subscript on c1 is dropped, for reasons of clarity.

3.4.3.4.1 Error in approximating complex exponential
In the previous section it was shown that gridding involves only one error, i.e. the
approximation in Eq. 3.17. Minimizing the absolute value of this error will minimize the
gridding error. Therefore, an appropriate criterion for selection of a convolution kernel
is the minimization of the maximum of

E1(x, kx) =

∣∣∣∣∣e2πixkx − ∆kCart

c(x)

∑
m

C(kxm − kx)e2πixkxm

∣∣∣∣∣ (3.20)

=
1

c(x)

∣∣∣∣∣c(x)−∆kCart

∑
m

C(kxm − kx)e2πix(kxm−kx)

∣∣∣∣∣ , (3.21)

with x ∈ [−ROI/2,ROI/2).
E1 is periodic in kx with period ∆kCart, so it is sufficient to use |kx| < ∆kCart/2.

3.4.3.4.2 Energy criterion
Writing out the complete gridding algorithm gives

Irecon,g(x) =
u(x/ROI)

c(x)
{qq (x/FOV) ∗ (c(x)Irecon(x))} (3.22)

and rearranging results in

Irecon,g(x) = u(x/ROI)
{
qq (x/FOV) ∗

([
u(x/ROI)

c(x)
∗ qq (x/FOV)

]
c(x)Irecon(x)

)}
.

(3.23)

The convolution of the left shah function with the term to the right causes aliasing.
The amount of energy that aliases into the ROI equals∫ ∣∣∣∣[u(x/ROI)

c(x)
∗ qq (x/FOV)

]
c(x)Irecon(x)

∣∣∣∣2 dx. (3.24)

The integral should be evaluated over all x that will alias into the ROI, i.e. |x−nFOV| <
ROI/2, n 6= 0, see Fig. 3.6.

However, the above equation depends on Irecon(x). Clearly any criterion should be
independent of the image to be reconstructed. Because we have no prior knowledge on
what Irecon(x) should be, we assume it constant, resulting in

E2 =
∫ ∣∣∣∣[u(x/ROI)

c(x)
∗ qq (x/FOV)

]
c(x)

∣∣∣∣2 dx. (3.25)
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Minimizing E2 gives us a second criterion for selecting a convolution kernel.
The term between brackets in Eq. 3.25 describes the influence of the roll-off correction.

Without this term the criterion becomes the minimization of

E3 =
∫
|c(x)|2 dx. (3.26)

This is the least squares criterion, and finding a kernel c(x) based on this criterion is
well known [56]. In case FOV = ROI, the solution is the zero order Prolate Spheroidal
Wavefunction (PSWF).

3.4.3.5 Choice of convolution kernel

To the author’s knowledge there is no way to optimize c(x) using either Eq. 3.21 or
Eq. 3.25 as the criterion. However, when c(x) is is more or less constant for |x| < ROI/2,
we expect the solution to approach the kernel found using the least squares criterion.
This will be the case for FOV � ROI.
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Figure 3.7: Inverse Fourier transform of two possible convolution kernels with width 3
plotted on a logarithmic scale, with ROI = 1 and FOV = 2, including roll-
off correction. Left: FirLS kernel. The locations where the kernel is large,
x = · · · ,−5,−3, 3, 5, · · · , are the don’t care regions of Fig. 3.6. Right: Kaiser-
Bessel kernel.

Fig. 3.7 on the left shows the inverse Fourier transform of an optimized kernel using
the least squares criterion in case ROI = 1 and FOV = 2, including the roll-off correction.
I will call this kernel the FirLS kernel [46]. The locations where the FirLS kernel is large,
x = · · · ,−5,−3, 3, 5, · · · , are exactly the don’t care regions of Fig. 3.6, because this is
the way the kernel was designed. Note that the shape of the FirLS kernel will depend on
its width L, the size of the FOV relative to the ROI. If any of these parameters change
we need to recalculate the FirLS kernel. However, the kernels could be precalculated and
stored in a lookup table.
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Fig. 3.7 on the right shows the inverse Fourier transform of the Kaiser-Bessel kernel,
again including the roll-off correction. The Kaiser-Bessel kernel [57] is equal to

C(kx) =


1
L

I0(B
√

1− (2kx/L)2) |kx| ≤ L
2

0 otherwise
, (3.27)

in which I0 is the zero-order modified Bessel function of the first kind, L is the width of
the kernel and B is a shape-parameter.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B= 7.9

B=23.6

B=55.0

Figure 3.8: Kaiser Bessel kernel for different values of B for L = 5. The value at kx = 0
has been normalized to 1. The width of the kernel is inversely proportional
to B.

The inverse Fourier transform of the Kaiser-Bessel kernel is given by

c(x) =
sin
√

π2L2x2 −B2

√
π2L2x2 −B2

. (3.28)

E2 of the Kaiser-Bessel kernel is slightly higher than that of the FirLS kernel [58, 59].
However, by increasing the width of the Kaiser-Bessel kernel or FOV just a little we get
similar values of E2 as that of the FirLS kernel. This means that with a small increase in
computation time we get similar performance. In MRI practice the Kaiser-Bessel kernel
is now widely used [26,59,60].

A benefit of using the Kaiser-Bessel kernel is that we have an analytic expression for
the kernel and its inverse Fourier transform. This allows easy adaptation when using
different FOV and/or ROI, or different levels of desired accuracy.

30



3.4.3.6 Interpolation errors using the Kaiser-Bessel kernel

Using the Kaiser-Bessel kernel as convolution kernel, the interpolation error will depend
on the three variables: B, L and fog. The latter two determine the computation time
of the gridding algorithm. Hence, at fixed computation time, B is left over as a free
parameter for adjusting the accuracy of interpolation. In this section it is assumed that
ROI = FOV/fog = 1. If this is not the case, all variables should be scaled appropriately.
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fog

Figure 3.9: Optimal values for B found by minimizing criterion E2 of Eq. 3.25 for different
values of L and fog. The lines are linear fits.

An optimal value for B was found by minimizing criterion E2 of Eq. 3.25. Fig. 3.9
shows the result. The optimal B appear to lie on straight lines. The lines in Fig. 3.9 are
linear fits and the fit is very accurate. Moreover, the linear fits suggested a very simple
relation between the optimal value for B and the other parameters fog and L. In fact,
through numerical analysis of the graphs we found [46,61])

Bopt = (fog − 1
2 )πL (3.29)

Fig. 3.10 shows the criterion E2 as a function of L and fog using the optimal value
for B. Note that the x-axis is equal to fogL, which determines the computation time of
the convolution. We see that the accuracy increases as both L and fog increase, but that
for a fixed computation time, the gain of increasing fog diminishes. Keep in mind that
increasing fog also increases the time necessary for computing the subsequent IFFT.
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Figure 3.10: Value of the criterion E2 for different values of L and fog using the optimal
value for B. Note that the x-axis is fogL, which determines the computation
time of the convolution. In the figure f stands for fog.

Using criterion E1 for finding an optimal value for B gives a slightly smaller value
for B. Such a value for B would increase accuracy according to criterion E1. However,
Eq. 3.29 allows a very simple expression for the accuracy.

Fig 3.11 shows the absolute value of criterion E1(x, kx) for L = 3 and fog = 2, for all
x inside the ROI. The values of kx are limited to 0 < kx < 1. This is allowed, because of
the periodicity of E1(x, kx) in kx. The period is equal to ∆kCart = 1/fog. The picture
is representative for typical values of L and fog. The largest error occurs at the edge of
the ROI, i.e. x = −1/2, and it is independent of kx. Remember that the error is an
aliasing error. The aliasing at x = −1/2 comes from x = mfog − 1/2, |m| = 1, 2, . . . ,∞,
as indicated in Fig. 3.6. Because c(x) decreases for increasing x, we only take the largest
contribution, coming from x = fog−1/2, since this one is closest to x = −1/2. Therefore
the error is approximately equal to

E1 ' E′
1 = |c(fog − 1/2)

c(1/2)
e2πi(fog−1/2)kx | =

πL
√

fog(fog − 1)
sinh(πL

√
fog(fog − 1))

, (3.30)

As an example, let us calculate E′
1 for the values used in Fig. 3.11. E′

1 = 4.34 × 10−5,
which compares well with the true value of E1 = 4.50× 10−5, see Fig. 3.11.
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Figure 3.11: Absolute value, on a log scale, of E1(x, kx) for L = 3 and fog = 2, for all x
inside the ROI. The values of kx are limited to 0 < kx < 1. This is allowed,
because of the periodicity in kx. The period is equal to ∆kCart = 1/fog.
The largest error (= 4.50 × 10−5) occurs at x = −1/2, and it is nearly
independent of kx.
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Fig. 3.12 shows the contour lines of E′
1 using Eq. 3.30. The dashed line is a line of

constant convolution computation time, given by fogL = const. For a fixed convolution
computation time, it is more accurate to use larger fog and a smaller L. Or, for a fixed
accuracy, the calculation will be faster with a larger fog and smaller L. Note that the
increase in accuracy at fixed computation time diminishes for larger fog. We have seen
the same behaviour with the E2 criterion.

Increasing fog also increases the calculation time for the subsequent IFFT. Therefore,
the procedure for finding optimal gridding parameters for L and fog is

1. choose appropriate level of accuracy

2. increase fog and decrease L, to keep the accuracy at the same level

3. continue up to the point where the increase in computation time for the IFFT
cancels the decrease in computation time for the convolution.

Finally, I conclude that at a certain choice of L and fog one can make E1 (ie. the error
in approximating the complex exponential by Eq. 3.17) smaller than machine accuracy.
This conclusion is supported by both criteria E1 and E2.

3.4.3.7 Computational details

I have reduced the computation of interpolation by taking the following measures.

• Making use of separability of Kaiser-Bessel kernel, i.e. in the 2D case C(kx, ky) =
C(kx)C(ky). This means that one has to evaluate the Kaiser-Bessel kernel only at
2fogL instead of 2f2

ogL
2 positions.

• The calculation of the Kaiser-Bessel kernel is expensive, due to the Bessel function.
Instead of evaluating C(kx) during the convolution, I precalculate and store it in a
table. Values between points in the table are interpolated.

• The array storing the result of the convolution should be large enough to store
values produced by the samples at the edge of k-space. This enables elimination of
tests (if-statements) that check whether the convolution produces results that are
outside the array that should be wrapped around. The wrapping around is done
in a separate routine.

3.4.3.8 Interpolation from uniform to non-uniform sample positions

Interpolation from uniform to non-uniform sample positions is often necessary. For in-
stance, one may need to validate an image with respect to the non-uniformly sampled
k-space data from which it was reconstructed. A way to do this is to FFT the image to
a Cartesian k-space grid and to then interpolate to the original sample positions. This
application is used in chapter 4. Another application is to generate samples on arbitrary
k-space positions from Cartesian data, for the purpose of simulations.

Sampling theory tells us that this interpolation is in principle possible by convolving
the uniform samples with a sinc-function. In practice, this convolution is impractical and
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we need to resort to a convolution with a finite-sized kernel. Using the same approach
as in gridding, but now in the reverse direction we write:

c(~r) =
∫

C(~k)e2πi~k·~rd~k. (3.31)

Multiplying both sides with e−2πi~kn·~r one gets

e−2πi~kn·~rc(~r) =
∫

C(~k)e2πi(~k−~kn)·~rd~k =
∫

C(~kn − ~k)e−2πi~k·~rd~k. (3.32)

The right-hand side of Eq. 3.32 is discretized using Cartesian positions ~km. Correspond-
ingly, ∆km = ∆kCart.

e−2πi~kn·~rc(~r) ' ∆kCart

∑
m

C(~kn − ~km)e−2πi~km·~r. (3.33)

Since c(~r) is greater than zero everywhere in the ROI, division by c(~r) is allowed, giving

e−2πi~kn·~r ' ∆kCart

c(~r)

∑
m

C(~kn − ~km)e−2πi~km·~r (3.34)

Next, I discretize the Fourier integral relating the k-space signal and its corresponding
image, Eq. 2.10, and substitute Eq. 3.34.

S(~kn) =
∫

I(~r)e−2πi~kn·~rd~r ' ∆rCart

∑
p

I(~rp)e−2πi~kn·~rp ' (3.35)

∆kCart∆rCart

∑
p

I(~rp)

(
1

c(~rp)

∑
m

C(~kn − ~km)e−2πi~km·~rp

)
. (3.36)

Exchanging then the summations, one finds for interpolation of I(~km) to arbitrary posi-
tions ~kn

S(~kn) ' ∆kCart∆rCart

∑
m

(∑
p

I(~rp)
c(~rp)

e−2πi~km·~rp

)
C(~kn − ~km). (3.37)

Sinc interpolation is a special case of Eq. 3.37. Note that density compensation is not
necessary because both ~km and ~rp reside on Cartesian grids. By proper choice of the
kernel parameters and ∆kCart, one can make the error (which is equivalent to the error
in Eq. 3.17) in Eq. 3.37 as small as necessary for the application at hand.
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3.5 Maximum likelihood estimation

Maximum likelihood (ML) tries to estimate a desired parameter, or set of parameters, in
such a way that the probability of the measured data given these parameters is maximized
[62–64]. In MRI, the image is to be interpreted as the set of parameters and the sampled
k-space as the data-set.

The model function I use for the ML estimation is a discretized version of the imaging
equation Eq. 2.10:

S(~kn) = ∆rCart

NxNy∑
p=1

I(~rp)e−2πi~kn·~rp +NS(~kn) (3.38)

Eq. 3.38 amounts to modelling the object as Nx × Ny drops of water each placed in
the centre of a pixel on a Cartesian grid. Drop No. p gives rise to a k-space signal =
amplitude×e−2πi~k·~rp . The number of water molecules in each drop – proportional to the
corresponding pixel intensity I(~rp) – is to be estimated by ML. The pixels residing on
known Cartesian positions, a density compensation is obviated, and ∆rp = ∆rCart can
be put in front of the summation operator.

Eq. 3.38 can be written compactly as

s = T i + n, (3.39)

by stacking the respective columns of S, I and NS on top of each other and Tn,p =
∆rCarte

−2πi~kn·~rp . The measurement noise, NS (or n), is assumed to be independently
and Gaussian distributed [65]. This means that the probability density function (PDF)
of the noise is given by

P(n) =
1

(2πσ2
S)Nsamp

e−(n†n)/2σ2
S =

1
(2πσ2

S)Nsamp
e−((s−T i)†(s−T i))/2σ2

S (3.40)

with Nsamp the number of samples in k-space and σS the standard deviation of the
measurement noise. Maximizing Eq. 3.40 results in the following well-known solution
[66,67].

iML = (T †T )−1T †s. (3.41)

The following comments on Eq. 3.41 are in order.

• Eq. 3.41 is equivalent to a linear least squares fit of the image pixel intensities to the
signal sampled at arbitrary positions ~kn. This simplification of the ML approach
is a consequence of the assumed Gaussian nature of the measurement noise.

• Numerical computation of Eq. 3.41, although obviating the density compensation,
is prohibitively expensive: If the sizes of the image and k-space data matrices are
both Nx × Ny, the size of T is NxNy × NxNy [53]. Ill-conditioning [66, 67] of
T †T may give numerical instabilities. Rosenfeld [68] used SVD to tackle these
instabilities.
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• If k-space sampling is Cartesian, and the sizes of the image and k-space data
matrices are both Nx ×Ny, multiplication by T is equivalent to an Nx ×Ny FFT,
and T †T is equal to the NxNy × NxNy unit matrix. In that case, Eq. 3.41 is
equivalent to reconstruction by IFFT.

• The maximum likelihood solution is closely related to Eq. 3.2. To see this, rewrite
the ML solution as iML = T †[T (T †T )−2T †]s. Eq. 3.2 can be written as irecon =
T (∆k)s. Here, ∆k is a diagonal matrix with the density compensation factors
on the diagonal. Therefore, Eq. 3.2 and Eq. 3.41 give the same result, whenever
T (T †T )−2T † is a diagonal matrix. For non-uniform sampling this would be a
coincidence [53]. The above equation does show an alternative to finding a density
compensation, i.e. find a diagonal matrix that ‘best’ fits T (T †T )−2T †, see [69] for
details. Again, the inversion of T †T may lead to instabilities.

• The maximum likelihood solution is equal to deconvolution of the PSF, for ∆kn = 1,
in Eq. 3.5. Eq. 3.41 can be rewritten as (T †T )iML = T †s. Now, T †T can be shown
to be equivalent to the PSF in case of using a density compensation of ∆kn = 1,
see Eq. 4.32. (T †T )iML is equal to a convolution of the PSF and iML, see 4.4.5.2,
and T †s is equal to irecon, for ∆kn = 1, Eq. 3.2. Therefore, Eq. 3.41 is equivalent
to a deconvolution of the PSF in Eq. 3.5.

• The maximum likelihood approach plays an important role in Bayesian reconstruc-
tion, which is the subject of the next chapter.

3.6 Influence of the sample distribution on noise prop-
erties in the image

If sampling of noise-corrupted k-space signal is Cartesian, the correlation between the
noise in individual pixels of the corresponding image domain is zero. This favours correct
interpretation of the image. The present section investigates the possible detrimental
influence of non-uniform sampling on the image noise properties.

S(~kn) = S′(~kn) +NS(~kn), (3.42)

where S′(~kn) is the k-space data devoid of noise, and NS(~kn) is the measurement noise.

I(~r) =
∑

n

S(~kn)e2πi~kn·~r∆kn = I ′(~r) +
∑

n

NS(~kn)e2πi~kn·~r∆kn = I ′(~r) +NI(~r), (3.43)

with I ′(~r) and NI(~r) the images reconstructed from the noiseless data and from the
measurement noise, respectively.

Next, we calculate the expectation of I(~r), and use E[NS(~kn)] = 0.

E[I(~r)] = I ′(~r) +
∑

n

E[NS(~kn)]e2πi~kn·~r∆kn = I(~r). (3.44)
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Eq. 3.44 enables one to derive the covariance of the noise contained in image pixels.

Cov[ReNI(~rp),ReNI(~rq)] = E[(ReNI(~rp)− E[ReNI(~rp)])(ReNI(~rq)− E[ReNI(~rq)])]

= σ2
S

∑
n

cos(2π~kn · (~rp − ~rq))∆k2
n, (3.45)

where we have used the fact that the k-space noise is uncorrelated and has equal variance
σ2

S at each sample position for both the real and imaginary part. Similarly we find

Cov[ImNI(~rp), ImNI(~rq)] = σ2
S

∑
n

cos(2π~kn · (~rp − ~rq))∆k2
n (3.46)

and

Cov[ReNI(~rp), ImNI(~rq)] = σ2
S

∑
n

sin(2π~kn · (~rp − ~rq))∆k2
n (3.47)

Eqs. 3.45 - 3.46 are the desired noise covariances. However, in order to better appre-
ciate the expression, I return to a continuous integral, replacing one power of ∆kn by
∆k(~k) and the other by d~k, and the summation by an integral. Eq. 3.45 then becomes

Cov[ReNI(~rp),ReNI(~rq)] ' σ2
S Re

∫
∆k(~k) e2πi~k·(~rp−~rq)d~k (3.48)

Eq. 3.48 says that the noise covariance in the image domain is proportional to the Fourier
transform of the sampling density compensation ∆k(~k). This result implies that the
flatter a sample distribution, the more the noise covariance is proportional to a delta
function δ(~rp−~rq). The sampling density compensation being flat in the Cartesian case,
the latter result concurs with the first sentence of this section. See also Ref. [70].

3.7 Conclusions

The work described in this chapter allows the following conclusions.

• For accuracy of reconstruction, Cartesian sampling is best.

• Physical conditions may demand non-uniform sampling, like radial or spiral. For
linogram sampling, a dedicated fast and accurate reconstruction algorithm is avail-
able.

• Gridding is a convenient and accurate image reconstruction method for any non-
uniformly, but sufficiently densely, sampled signal.

• The sampling density compensation is the main source of image reconstruction
errors. The more a sample distribution is irregular, the larger the errors.

• Irregular sample positions, locally violating the Nyquist sampling criterion, arise
through intrascan motion correction in k-space. This is detrimental to functional
imaging.

• The noise covariance in the image domain is proportional to the Fourier transform
of the sampling density compensation.
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Chapter 4

Image reconstruction from
incomplete data

4.1 Introduction

Incomplete or sparse sampling of k-space arises in several cases. For instance, this will
happen if one deliberately omits a number of trajectories to reduce the measurement
time. Secondly, there may be hardware imperfections or motion of the patient, which
may cause certain parts of k-space to be undersampled.

In this chapter, I will describe several methods that are used for reconstruction of
images from sparsely sampled k-space. A sparse scan means that locally the Nyquist
criterion may be violated – i.e. local undersampling. Images reconstructed from such
sparse datasets by an inverse Fourier transform will suffer from undersampling-related
artefacts. The algorithms employed should be able to reconstruct an artefact-free image
from such sparse data. Two types of algorithms can be distinguished.

The first type tries to estimate the omitted data. Together with the measured data
this should result in an artefact-free image. However, it is crucial that one should be
able to pinpoint which at which k-space positions data have been omitted. In the case
of scan-time reduction this task is usually possible since the reduction requires omission
of trajectories from a full scan. On the other hand, if the sample positions are irregular
– as is the case e.g. after motion correction – it is difficult to define used and omitted
trajectories.

The second type tries to estimate the image directly, given the available data. The
FT of the estimated image should agree with the available data to within the ‘noise
band’. This approach is more flexible.
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4.2 Scan-time reduction

4.2.1 Cartesian scanning

In Cartesian scanning, the trajectories are not equivalent to each other. One can distin-
guish them from each other by their shortest distance to the origin of k-space. Those
trajectories that pass the origin at short distance – also called low-frequency encodings –
are usually all scanned because they contain the highest signal energy. Omission of these
encodings is therefore highly detrimental. In fact, scan-time reduction is accomplished
rather by omitting high-frequency encodings; this results in ringing artefacts. Further-
more, the omission can be done either by truncating beyond a certain ky-value or by
irregular omission of ky-values. Fig. 4.1 shows the two approaches for 30% scan-time
reduction.

(a) (b)

Figure 4.1: Examples of 30% Cartesian scan-time reduction. a) Scan-time reduction by
one-sided k-space truncation. b) Scan-time reduction by omitting encodings
irregularly.

Truncating k-space as in Fig. 4.1a brings about a loss of resolution. Furthermore,
if the signal has not decayed completely at the point of truncation, the reconstructed
image will contain ringing artefacts. These can be diminished by windowing, but at the
cost of even more loss of resolution. To regain full resolution the measured data would
have to be extrapolated.

Omitting high-frequency encodings irregularly, as in Fig. 4.1b, will lead to ringing
artefacts in reconstructed images too. The difference with truncation is that to regain
full resolution, the measured data can now be interpolated between measured data which
do contain high-frequency information.

Measurement-time reduction of Cartesian scans has been investigated extensively by
Marseille [71].
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4.2.2 Radial and Spiral scanning

As explained in chapter 2, radial and spiral trajectories share the property that each
passes through the origin of k-space. Thus, unlike Cartesian trajectories, each ra-
dial/spiral trajectory is equally important; the notion of high- and low-frequency en-
codings does not apply. In addition, omission of various adjacent trajectories causes
significant loss of signal energy. See Fig. 4.2. The left-hand part of Fig. 4.2, a, shows
two aspects 1) As mentioned in chapter 2, SRSFT (radial) indeed possesses many Carte-
sian samples positions near the origin of k-space. 2) Wide gaps occur beyond a certain
value of |k|. As for spiral omissions, shown in Fig. 4.2b, one can see significant loss of
signal intensity near the origin of k-space. In the following, I shall discuss the two types

(a) (b)

Figure 4.2: Examples of radial and spiral scan-time reduction [72]. a) Radial, SRSFT;
see text. b) Spiral.

of algorithms to sparse k-space data. These are edge-preserving filtering (type 1) and
Bayesian image estimation (type 2).

4.3 Type 1: Edge-preserving filtering

Edge-preserving filtering is a method that has been used to eliminate artefacts caused by
the omission of encodings in Cartesian scans [71,73]. Before describing how this method
can also be applied to non-Cartesian scans I will first review the method.

As described above, the image reconstructed from a sparse Cartesian scan will contain
ringing-like artefacts. Smoothing the image will reduce these artefacts. However, the
smoothing must be carried out by a non-linear filter, because a linear filter can not
interpolate or extrapolate data in k-space. The reason being that linear filtering is equal
to a multiplication in k-space, and the omission of data, resulting in zeroes at certain
locations in k-space will remain zero after the multiplication.
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The non-linear filtering will accomplish the necessary interpolation or extrapolation
in k-space. However, it will also affect the measured data, which is not desired, since this
is a Type 1 algorithm, so it should keep the measured data intact. Therefore the data at
measured locations are should be constrained or reset after FT to their measured values.

The above process is repeated until convergence. This method was successfully ap-
plied to sparse Cartesian scans [71, 73]. In this section I will extend this technique to
non-Cartesian scans.

If possible, the data on omitted trajectories are initially estimated by averaging the
data on neighbouring trajectories. This suffices, for radial and spiral measurements,
for the centre of k-space, which is oversampled. However, the edges of k-space are
estimated poorly. Subsequently, the initial estimates are improved in an iterative manner
by shuttling back and forth between the measurement domain and the image domain [71].
In each iteration, the ringing artefacts in the image are smoothed by a non-linear Gaussian
filter, while fine details are subsequently restored in the measurement domain by resetting
the data on the measured trajectories to their measured values. A short description of
the non-linear Gaussian filter will be presented later in this section.

The flow diagram in Fig. 4.3 describes the core of the estimation procedure. Therefore
only the most important parts of the algorithm are displayed. A detailed flow diagram
is presented at the end of this section.

Smooth image
If(x, y) = Smooth(I(x, y))

?
If(x, y)

Estimate omitted S(kx, ky)
from If(x, y)

Calculate new I(x, y)

6I(x, y)

Figure 4.3: Basic flow diagram of the estimation procedure. It shows the shuttling be-
tween k-space and the image domain.

However, a complication arises whenever k-space sampling is non-Cartesian. As a
result, the transformation between the two domains in each iteration can not be accom-
plished by the 2D-(I)FFT. Moreover, Type 1 algorithms require density compensation
with its accompanying problems.

The transformation from k-space to image domain is accomplished by the gridding
algorithm, described in chapter 3. In principle, the reverse transformation could also be
accomplished by gridding, but this is not optimal since I wish to constrain the measured
data to their original values.

The solution is to estimate the omitted trajectories in such a way, that the resulting
image (after gridding reconstruction) matches the smoothed image best in least squares
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sense, while constraining the measured data to their measured values. This is described
by the following equation

MIN′
s(kx,ky)

∑
x,y

|Gs(kx, ky)− if(x, y)|2. (4.1)

s(kx, ky) is the data written as a vector. If(x, y) is the smoothed image also written as a
vector, see section 3.5. G is a matrix representing the gridding reconstruction. Gridding
can be written in this way because it is a linear operator. The prime on the MIN signifies
a constrained minimization.

Next, I decompose s(kx, ky) into a measured part, sm(kx, ky), and an omitted part,
so(kx, ky)

s =
(
sT
m sT

o

)T
. (4.2)

The gridding matrix G can be written as G = R−1F−1C∆K, see 3.4.3.1, with ∆K, C,
F−1 and R−1 representing density compensation, convolution with the kernel, IFFT and
roll-off correction, respectively. All these operations are linear so they can be written in
matrix form.

The decomposition in measured and omitted part is also applied on G, giving

G =
(
Gm Go

)
= R−1F−1

(
Cm Co

)(∆Km 0
0 ∆Ko

)
= R−1F−1

(
Cm∆Km Co∆Ko

)
. (4.3)

Combining Eqs. 4.2 and 4.3, one can derive:

i = Gs

= im + Goso. (4.4)

im(x, y) is the reconstructed image using only the measured samples, and is fixed given
the measured data sm(kx, ky).

Eq. 4.4 allows one to eliminate the constraint on the minimization in Eq. 4.1 to get

MIN
so(kx,ky)

∑
x,y

|Goso − (if − im)|2. (4.5)

Solving Eq. 4.5 for so(kx, ky) gives

so = (G†
oGo)−1G†

o(if − im). (4.6)

G†
oGo does not have a nice structure to allow fast inversion. Moreover, the size of Gnm

is typically on the order of 60000 × 20000, so direct evaluation of Eq. 4.6 is impossible.
I therefore use an optimization method, such as the conjugate gradient method, to find
so(kx, ky) in an iterative manner.

43



Measurement
Initialize

missing data

?
sm(kx, ky)

?
so(kx, ky)

im = Gmsm io = Goso

?
im(x, y)

?
io(x, y)

i = im + io

?
i(x, y)

if = Smooth(i)

?
if(x, y)

s′′o = FR(if − im)

?
s′′o(kx, ky)

MIN
s′o(kx,ky)

∑
kx,ky

|Cos′o − s′′o |2

?
s′o(kx, ky)

io = R−1F−1Gos′o

�

Figure 4.4: Detailed flow diagram of Type 1 algorithm using edge-preserving filtering.

Note that if one measures on a uniform Cartesian grid, Go = F−1
o . And because

F−1
o Fo = I, there is no need for any matrix inversion in Eq. 4.6. This means that Eq. 4.6

can be used directly, and actually reduces to a partial 2D-FFT.

One can speed up the minimization of Eq. 4.5 by weighting the summation with R†R.
This enables one to eliminate the 2D-IFFT during the minimization

MIN
so(kx,ky)

∑
x,y

|R(Goso − (if − im))|2 =

MIN
so(kx,ky)

∑
kx,ky

|Co∆Koso − s′′o |2, (4.7)

with s′′o(kx, ky) = FR(if(x, y)− im(x, y)). This simplification was possible due to the fact
that the Fourier matrix F is a unitary matrix. The minimization of Eq. 4.7 is, however,
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not equivalent to the minimization in Eq. 4.5. Rather, the minimization in Eq. 4.7 is
equivalent to

MIN
s′o(kx,ky)

∑
kx,ky

|Cos′o − s′′o |2, (4.8)

with s′o(kx, ky) = ∆Koso(kx, ky).
Combining everything results in the algorithm described in the flow diagram in

Fig. 4.4.

4.3.1 Non-linear Gaussian filter

The nonlinear Gaussian filter I use to smooth the image during each iteration of our
estimation algorithm, is defined by the following equation [65]:

If(k, l) =

D/2∑
m,n=−D/2

I(k + m, l + n)w(k, l,m, n)

D/2∑
m,n=−D/2

w(k, l,m, n)

. (4.9)

w(k, l,m, n) is given by

w(k, l,m, n) = e−
1
4 (I(k+m,l+n)−I(k,l))2/κ2

, (4.10)

where If(k, l) is the filtered pixel value at position (k, l), I(k, l) is the pixel value in the
original image at position (k, l). D is the ‘size’ of the filter.

The non-linear Gaussian filter is an edge-preserving filter, because only those pixels
with (I(k + m, l + n)− I(k, l))2 < κ2 will contribute significantly to the summation in
Eq. 4.9.

4.4 Type 2: Bayesian image estimation

4.4.1 Introduction

With Type 1 image reconstruction from sparse data, one estimates the omitted k-space
samples. However, with the alternative reconstruction of Type 2, one adjusts the image
iteratively until it is compatible with the available k-space data; the latter may be sam-
pled at arbitrary positions in k-space. Two important aspects in this approach are: 1)
The notion of omitted samples ceases to exist, especially in the case of motion-corrected
sample positions. 2) I chose to evaluate the compatibility between image and data in the
k-space rather than in the image domain. In section 3.4.3.8, I pointed out that this choice
avoids the density compensation because it involves transformation from a Cartesian to
an arbitrary grid instead of the reverse.
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As a result of undersampling, information is irretrievably lost. To alleviate this loss,
one may invoke prior knowledge. Following Fuderer, Marseille, Lettington and Hong, and
McNally [71,73–76], I make use of the fact that the histogram of differences of intensity
between nearest-neighbour image pixels has Lorentzian shape. Following Marseille [71],
I use Bayesian estimation to impose this property. Alternatively, one could treat the
Lorentzian property – called Cauchy in mathematics – as regularization imposed on
maximum likelihood estimation [77,78].

4.4.2 The most probable image

My reconstruction algorithm aims at finding the image IMAP, that maximizes the con-
ditional probability density function [79, 80] P(I|S), of the image I, given the measured
k-space data S, and ignoring omitted samples. In the context of Bayesian reconstruc-
tion, this conditional probability density function is called the posterior [81]. P(I|S) is
a shorthand notation for P(I1,1, I1,2, . . . , INy,Nx

|S1, . . . , SNsamp). I will use this notation
in all subsequent equations.

I1,1 I2,1 · · · Inx,1 · · · INx,1

I1,2 I2,2 · · · Inx,2 · · · INx,2

...
...

. . .
...

. . .
...

I1,ny
I2,ny

· · · Inx,ny
· · · INx,ny

...
...

. . .
...

. . .
...

I1,Ny
I2,Ny

· · · Inx,Ny
· · · INx,Ny

Figure 4.5: The image, I, written as a matrix. The matrix elements represent the pixels
in the image.

Using Bayes-theorem [62,81–85]

P(I|S) =
P(S|I)P(I)

P(S)
, (4.11)

and minimizing -log P(I|S) instead of maximizing P(I|S), one arrives at the following
problem

min
I

{
− log P(S|I)− log P(I)

}
. (4.12)

In deriving Eq. 4.12, the evidence P(S) was treated as a constant, because it does not
depend on the image I. P(S|I) is the likelihood. It is exactly the same term as in
maximum likelihood estimation, see section 3.5. The likelihood will be further elaborated
on in section 4.4.4. The prior, P(I), which describes any a priori knowledge one has about
the image, will be explained in the next section.
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4.4.3 The prior, P(I)

P(I) is the prior, which allows incorporation of a priori knowledge about the image
into the reconstruction algorithm. The prior depends on the number of dimensions of
the image. In case of 2D Cartesian scanning one dimension, for example ky, is fully
sampled. This means that we can already apply IFFT in the ky-direction. The 2D
reconstruction problem then reduces to a 1D problem. In this case all rows in the
image can be reconstructed separately using a 1D-prior, see [71] for details. So in the
Cartesian case no 2D-prior is necessary. In the non-Cartesian no dimension is fully
sampled. Therefore, the reconstruction problem is 2D and we want a 2D-prior.

I will now start discussing the one dimensional case and then extend to two dimen-
sions.

4.4.3.1 The 1D-Lorentz prior

Although in one dimension the image will be a vector, see Fig. 4.6, I will still call it
an image. As explained above, in 2D-Cartesian scanning it will be a single row in the
2D-image.

I1 I2 · · · Inx
· · · INx

Figure 4.6: The image, I, in the one-dimensional case. In this case the image will be
a vector. The vector-elements represent the pixels in the image. In 2D-
Cartesian scanning the picture represents a row in the 2D-image.

I start off by expanding the prior as follows [71,86,87]

P(I) = P(I1, I2, . . . , Inx , . . . INx) =
P(I1)P(I2|I1) · · ·P(Inx |I1, I2, . . . , Inx−1) · · ·P(INx |I1, · · · , INx−1). (4.13)

Every term describes the probability of finding a pixel value given the values of all the
pixels to the left of it. Note that there are no terms with dependency on a right neighbour.

I now assume that Inx
depends (directly) only on its left neighbour, Inx−1. This

corresponds to the image being a Markov sequence [82,83,86], with the following Markov
property

P(Inx
|Inx−1, Inx−2, · · · ) = P(Inx

|Inx−1). (4.14)

Substituting Eq. 4.14 into Eq. 4.13, and ignoring the boundaries, gives

P(I) =
Nx∏

nx=1

P(Inx
|Inx−1). (4.15)
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Figure 4.7: Scatterplot of the value of a pixel against the value of its left neighbour
pixel. There is a large concentration of points along the diagonal. Further
away from the diagonal are steadily fewer points. This is valid for all points
along the diagonal.

We know that P(Inx |Inx−1) = P(Inx ,Inx−1)
P(Inx−1)

. To simplify, I will assume P(Inx) uni-
formly distributed. This is equal to having no prior knowledge on the pixel values them-
selves. This results in P(Inx |Inx−1) ∝ P(Inx , Inx−1). Fig. 4.7 shows a typical scatterplot
of Inx against its left neighbour Inx−1. Most points are near the diagonal. Further away
from the diagonal are steadily fewer points. Since most points are along the diagonal
and the behaviour perpendicular to the diagonal is more or less the same for all points
along the diagonal, I write

P(Inx
, Inx−1) = P(

Inx
− Inx−1√

2
,
Inx

+ Inx−1√
2

) = P(
Inx

− Inx−1√
2

)P(
Inx

+ Inx−1√
2

),

(4.16)

by rotating the ‘coordinates’, where the last step follows from the assumed independency
of the behaviour perpendicular to the diagonal and along the diagonal. I again use the
fact that I have no prior knowledge of the pixels themselves, amounting to P( Inx+Inx−1√

2
)

being constant. Finally, this results in P(Inx
|Inx−1) ∝ P(Inx

− Inx−1) = P(ξnx
), where

ξnx

def= Inx − Inx−1. I have already left out the factor
√

2, because this will only scale the
a-parameter in the prior, see Eq. 4.18, it does not change the prior itself. Substitution
in Eq. 4.15 gives

P(I) ∝
Nx∏

nx=1

P(ξnx). (4.17)
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In [74], Fuderer found that the probability density function of ξnx is Lorentzian-shaped
(see also [71,75,76,79,88]). This leads to the following expression for the 1D-prior

P(I) ∝
Nx∏

nx=1

a

π(a2 + ξ2
nx

)
. (4.18)

4.4.3.2 Alternative derivation of the 1D-Lorentz prior

In this section I will describe an alternative derivation of the 1D-Lorentz prior. We start
off directly with the differences of the pixel-values, ξnx

, see Fig. 4.8. There is no loss

ξ1 ξ2 · · · ξnx
· · · ξNx

Figure 4.8: The difference image in the one-dimensional case. The elements are con-
structed from the image by ξnx = Inx − Inx−1.

of information (except for the DC-component), because we can reconstruct the pixel-
values from the differences by applying Inx+1 = Inx + ξnx . Therefore the differences and
the DC-component together contain the same information as the image itself. It should
have the same prior since both descriptions represent the same thing. First we shall
assume that the DC-component is uniformly distributed, effectively removing it from the
prior. Second, assume the pixel differences ξnx

are independent. These two assumptions
directly lead to the 1D-prior

P(I) ∝ P(ξ1, ξ2, . . . , ξNx) =
Nx∏

nx=1

P(ξnx), (4.19)

which is equivalent to Eq. 4.17.

4.4.3.3 Properties of the 1D-Lorentz prior

First, let us consider the following configuration of image pixels.

· · · Inx Inx+1 Inx+2 · · ·

We know the probability of finding a certain pixel value given the pixel value of its left
neighbour. Now let us calculate the probability of finding a certain pixel value given only
the second left neighbour, i.e.

P(Inx+2|Inx) =
∫

P(Inx+2|Inx+1)P(Inx+1|Inx)dInx+1 =
2a

π
[
(2a)2 + (Inx+2 − Inx)2

]
(4.20)

In this derivation it is assumed that the integration is from Inx+1 = −∞ to Inx+1 = ∞.
In practice Inx+1 will have only a finite range of values. However, when a is small enough
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the integration is still effectively from −∞ to ∞. Eq. 4.20 is a nice property: The prior
of an image with twice as low a resolution has the same form as the original image. The
width of the Lorentzian, a, is larger by a factor of two, showing the information loss of
omitting pixel Inx+1. This example can also be done for the third left neighbour etc., in
all cases the form of the prior will stay the same, only the a-parameter increases linearly
with the distance between the pixels.

�
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�
�
�

�
�

•

•

•

6

?

6

?

ξnx

ξnx+1

Inx−1

Inx

Inx+1

Figure 4.9: Possible intensity-steps for going from one intensity-plateau of an image to
an adjacent one in two steps.

The second property concerns the probability of intensity-steps in the image from
one intensity-plateau to another. Fig. 4.9 shows possible intensity-steps when going from
intensity-plateau to the next in two steps. The joint probability of the two steps is

P(ξ1, ξ2) =
a2

π2(a2 + ξ2
1)(a2 + ξ2

2)
, (4.21)

which is plotted in Fig. 4.10. The figure implies that the 1D-Lorentz prior prefers

• two equal steps, i.e. ξ1 = ξ2, if the total step (ξ1 + ξ2) is smaller than 2a

• one big step and a small step, if the total step is larger than 2a

This preference means that the 1D-Lorentz prior has an edge-enhancing property for
large edges and a smoothing property for small ones. The parameter a gives us control
at what level smoothing or enhanced should occur.

4.4.3.4 The 2D-Lorentz prior

The 1D-prior described in section 4.4.3.1 ignores the dependence of a pixel on the pixel
‘above’. This was allowed in the 1D case, because in 1D a pixel has only left and
right neighbours. To derive the 2D-prior I will use the approach used in section 4.4.3.2.
Fig. 4.11 is the equivalent of Fig. 4.8 for the 2D case. Again, ξnx,ny

= Inx,ny
− Inx−1,ny

and ηnx,ny

def= Inx,ny −Inx,ny−1. Although not valid in this case, for example I2,2−I1,1 =
ξ2,1 + η2,2 = η1,2 + ξ2,2, I still assume independent pixel differences at different locations
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Figure 4.10: Contour curves of P(ξ1, ξ2). Left: For ξ1/a against ξ2/a. Right: For ξ1/a
against (ξ1 + ξ2)/a.

in the image, resulting in

P(I) ∝ P((ξ1,1, η1,1), . . . , (ξnx,ny
, ηnx,ny

), . . . , (ξNx,Ny
, ηNx,Ny)) =
Nx,Ny∏

nx=1,ny=1

P(ξnx,ny
, ηnx,ny

). (4.22)

ξ1,1, η1,1 ξ2,1, η2,1 · · · ξnx,1, ηnx,1 · · · ξNx,1, ηNx,1

ξ1,2, η1,2 ξ2,2, η2,2 · · · ξnx,2, ηnx,2 · · · ξNx,2, ηNx,2

...
...

. . .
...

. . .
...

ξ1,ny
, η1,ny

ξ2,ny
, η2,ny

· · · ξnx,ny
, ηnx,ny

· · · ξNx,ny
, ηNx,ny

...
...

. . .
...

. . .
...

ξ1,Ny
, η1,Ny

ξ2,Ny
, η2,Ny

· · · ξnx,Ny
, ηnx,Ny

· · · ξNx,Ny
, ηNx,Ny

Figure 4.11: Matrix of the pixel value differences ξnx,ny = Inx,ny −Inx−1,ny and ηnx,ny =
Inx,ny − Inx,ny−1.

The problem of finding the 2D-prior has now been reduced to finding P(ξnx,ny
, ηnx,ny

).
Fig. 4.12 shows a contour plot of the 2D-histogram of the pixel value differences ξx,y and
ηx,y of an image of a human brain. It appeared representative for a whole class of MRI
images. The contours of the histogram are approximately circular, which means that the
histogram is an isotropic function of ξx,y and ηx,y. To model this histogram, one could
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Figure 4.12: Contour plot of the 2D-histogram of ξx,y and ηx,y of an image of a hu-
man brain. The contours are approximately circular, which means that
the histogram is an isotropic function of ξx,y and ηx,y. This histogram is
representative for a whole class of MRI images.

simply multiply the 1D-priors of the x-direction and the y-direction, as in

a2

π2(a2 + ξ2
nx,ny

)(a2 + η2
nx,ny

)
. (4.23)

However, this function is not isotropic. To remedy this, I propose the following function
[89,90]

P(ξnx,ny
) =

a

2π(a2 + ξ2
nx,ny

+ η2
nx,ny

)1.5 . (4.24)

This expression is isotropic. Furthermore, this function is consistent with the 1D-prior,
since integrating over ξx,y or ηx,y results in the correct 1D-prior.

Fig. 4.13 shows the central slice through the histogram in Fig. 4.12 and the fit to it
of the function of Eq. 4.24. The quality of the fit appears good. Note that the power of
1.5 in the denominator of Eq. 4.24 is essential in fitting the histogram. In Eq. 4.23, the
corresponding power is only 1, which is too small to follow the descent of the histogram at
large ξx,y. This constitutes another reason to reject Eq. 4.23 as a model for the histogram
in Fig. 4.12. Using Eq. 4.22 and Eq. 4.24, I end up with the following equation, which I
use as 2D-prior:

P(I) =
Nx,Ny∏

nx=1,ny=1

a

2π(a2 + ξ2
nx,ny

+ η2
nx,ny

)1.5 . (4.25)

No further prior knowledge, see [71], was used.
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Figure 4.13: Plot of the central slice (ηx,y = 0) through the histogram in Fig. 4.12 and
the fit to it of the function of Eq. (4.24). The highest values of the histogram
are in the centre. This means that the most probable values are ξx,y = 0
and ηx,y = 0. These values correspond to the homogeneous regions in the
image. Also shown is a fit of a Gaussian function. Apparently, the tails of the
histogram are wider than that of a Gaussian, which means that ξx,y or ηx,y

have a substantial probability of being large. These quantities correspond
to the edges in the image.

4.4.4 The likelihood

In the following equations I will write the image as a vector, i, by stacking all columns
of the image on top of each other, as in

i = (I1,1, I1,2, . . . , INx,Ny
)T (4.26)

As already mentioned in section 3.5, the k-space signal and image are related to each other
through the 2D Fourier-transform. In addition, the samples in k-space are contaminated
by additive, white, Gaussian noise with zero mean and standard deviation σS [65]. I
therefore model the data as

s = T i + n, (4.27)

in which Tn,p = ∆rCarte
−2πi~kn·~rp and n is the measurement noise. ~rp are the locations of

the pixels, which are assumed to be distributed on a Cartesian grid. Arbitrary, irregular
sample positions, ~kn, are allowed. When the ~kn are indeed irregular, straight-forward
calculation of T i is very expensive. A solution to this problem will be given below.
Should the ~kn coincide with a rectangular grid, T reduces to a 2D-FFT (actually cutting
out part of the FFT of the image).

Using the Gaussian nature of the measurement noise results in the following expression

53



for the log-likelihood term

log P(S|I) = −|s− T i|2

2σ2
S

+ const. (4.28)

The log-likelihood is, up to an unimportant constant, equal to an unweighted least-
squares term. It is unweighted, because we assumed uncorrelated noise with equal vari-
ance at each sampling point. However, it may be beneficial to ignore these assumptions
and include some weighting to speed up convergence. In [58,91] it is suggested to use the
density compensation as weighting. This indeed has the nice property that the resulting
image after the first iteration in the optimization process is equal to the image obtained
using the gridding algorithm. However, finding a suitable density compensation, espe-
cially for sparse sample distributions, is difficult. In the following, we therefore use the
unweighted approach.

The usual least-squares solution of Eq. 4.28, which in this case is equivalent to the
solution of the maximum likelihood technique, is impossible if the number of k-space
data is smaller than the number of pixels in the image. This happens when deliberately
omitting k-space samples. As already explained in section 3.5, even if we have enough
samples T can be ill-conditioned, effectively making the inversion of T †T in Eq. 3.41
impossible.

However, maximizing the posterior Eq. 4.12, allows incorporation of a priori infor-
mation (the P(I) term) about the image. This will regularize the reconstruction and
compensate any ill-conditioning of T .

4.4.4.1 Gradient of the log-likelihood

In following paragraphs we will need the gradient of the log-likelihood, which is equal to

∇ log P(S|I) =
∂

∂i
log P(S|I) =

T †(s− T i)
σ2

S

. (4.29)

Note that the maximum likelihood estimator Eq. 3.41 can be derived by setting the
gradient of the log-likelihood to zero.

4.4.5 Computation of the log-likelihood and its gradient

4.4.5.1 Cartesian sampling

In this case T i is equivalent to cutting out part of the FFT of the image. Calculation of
the log likelihood can be done straightforward by applying Eq. 4.28. This requires only
one FFT.

The gradient of the log-likelihood is also calculated in a straightforward way by ap-
plying Eq. 4.29. Since the gradient includes the same factor, s−T i, as the log-likelihood
this needs to be calculated only once. The multiplication with T † is equivalent to an
IFFT. This means that the gradient can be calculated using one IFFT.
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4.4.5.2 Non-Cartesian sampling

In the case of non-Cartesian sampling T will be equal to a DFT matrix and straight-
forward calculation of the matrix-vector product T i is very expensive (order of N4 opera-
tions as opposed to 2D-FFT which requires N2 log(N) operations, when Nx = Ny = N).

To speed up the calculation one can apply the interpolation method described in
section 3.4.3.8 for a multiplication by T and the method described in section 3.4.3.3 for
a multiplication by T †. This will drastically reduce the computation cost. The inter-
polations, however, have to be carried out for every iteration during the minimization.
Luckily this can be circumvented using the following approach.

First of all, I expand the likelihood term as follows:

|s− T i|2 = s†s− 2Re(i†T †s) + i†T †T i, (4.30)

where the division by 2σ2
S has been dropped for reasons of clarity.

The first term in Eq. 4.30 can be completely dropped since it does not depend on the
image, while i†T †s is equal to

i†T †s = ∆rCart

∑
p

I∗(~rp)

(∑
n

S(~kn)e2πi~kn·~rp

)
, (4.31)

the term in parentheses equals a non-uniform 2D-IDFT as described in 3.2. It will be
approximated using the technique implied by Eq. 3.18. Note that there is no density
compensation in Eq. 4.31.

The right part of the third term of Eq. 4.30 can be rewritten as

(T †T i)(~rp) = ∆r2
Cart

∑
n

e2πi~kn·~rp

(∑
q

e−2πi~kn·~rqI(~rq)

)
=

∑
q

(∑
n

e2πi~kn·(~rp−~rq)

)
I(~rq) =

∑
q

Q(~rp − ~rq)I(~rq), (4.32)

where Q(~r) def=
∑

n e2πi~kn·~r has exactly the same form as the term in parentheses in
Eq. 4.31, so I calculate it using the same approximation technique. Actually they are
calculated at the same time, because the only difference is the S(~kn) term. Note, however,
that the size of Q(~r) should equal two times the size (in each dimension) of the image,
since ~rp − ~rq has twice the range of ~rp. This forms no obstacle in applying Eq. 3.18 and
Eq. 4.31 and Q(~r) can still be calculated at the same time.

The last term in Eq. 4.32 represents a 2D convolution of Q(~r) with the image I(~r),
which can be calculated efficiently using the 2D-FFT, i.e. (T †T i)(~rp) = (IFFT(FFT(Q) ·
FFT(I)))(~rp).

Now we return to the calculation of i†T †T i,
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i†T †T i =
∑

p

I∗(~rp) · (IFFT(FFT(Q) · FFT(I)))(~rp) (4.33)

=
∑
m

(FFT(I)∗)(~km) · (FFT(Q) · FFT(I)))(~km) (4.34)

=
∑
m

(FFT(Q))(~km) · (|FFT(I)|2)(~km). (4.35)

Eq. 4.34 is derived from Eq. 4.33 by using the unitarity of the FFT or equivalently
by using Parsevals relation. This speeds up the calculation of i†T †T i, since it removes
an FFT (FFT(I) is present twice in Eq. 4.34).

Because Q(~rp) is a constant during the minimization of the log-posterior, we can store
the 2D-FFT of Q(~rp) instead of Q(~rp) itself. This removes yet another FFT, reducing
the number of FFT’s required to calculate the log-likelihood to only one. However, we
need to FFT a twice as large matrix as in the uniform case. Moreover, if in the uniform
case one direction is fully sampled, we can already apply the FFT along that direction
reducing all operations to 1D.

The gradient likelihood is written as

∇ log P(S|I) =
T †s− T †T i

σ2
S

. (4.36)

Again the term T †s arises. The second term (T †T i)(~rp) = (IFFT(FFT(Q)·FFT(I)))(~rp).
However, in the computation of the log-likelihood we have already calculated FFT(Q) ·
FFT(I), see Eq. 4.35. This means that we can compute the gradient with only one IFFT.
It is advantageous to have this IFFT in the gradient and not in the computation of the
log-likelihood, because as we will see the log-likelihood is computed three times as often
as its gradient.

4.4.6 Choice of the hyperparameters [1] σS and a

σS can be estimated by assuming that at the edge of k-space the signal has decayed and
only noise remains. This is usually the case since otherwise there would be a discontinuity
at the edge of k-space giving Gibbs artefacts in the image.

The a parameter of the Lorentzian prior is linked to σI in the following way. In flat
parts of the image (ξ ≈ 0 and η ≈ 0) the intensity changes are dominated by noise.
The source of this image noise is the noise in k-space. Since the noise in k-space is
Gaussian distributed, so will the noise in the image, because the Fourier transform is a
linear operator. Therefore, in flat parts of the image the distribution of ξ and η should
approximate a Gaussian with zero mean and twice the variance of the image noise. This
can be accomplished by setting the second derivative of the Lorentzian equal to the
second derivative of the Gaussian, both at the peak. The value for a found in this way
is equal to

a = 2σI (4.37)
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Finally, I approximate σI by NσS , which can be found by applying Eqs. 3.45 - 3.47 to a
Cartesian sample distribution.

4.4.7 Posterior optimization

Substituting Eq. 4.25 and Eq. 4.28 in Eq. 4.12, while ignoring any constant terms, one
gets the following optimization problem:

min
I

 |s− T i|2

2σ2
S

+
3
2

∑
nx,ny

log
{

a2 + (ξnx,ny
)2 + (ηnx,ny

)2
} (4.38)

The image IMAP which results from Eq. 4.38 is the reconstructed image. The minimiza-
tion is done with the conjugate gradient method.

We could start directly with Eq. 4.38, and associate the prior with a regularization
term, leading to a constrained maximum likelihood method. The preceding sections was
an attempt to derive Eq. 4.38 using the Bayesian approach and showing why we use this
type of regularization instead of just trying one or several [88].

4.4.8 Optimization method

The function to be minimized is the minus log-posterior probability, − log P(I|S). The
independent variables in this function are the Nx × Ny pixel values in the image I.
The number of independent variables is huge, so I cannot use an optimization method
based on inverting the Hessian, like Gauss-Newton or Broyden-Fletcher-Goldfarb-Shanno
(BFGS [43]), since these require storage on the order of (NxNy)2. This leaves simple
gradient search algorithms of which I chose the conjugate gradient method. This will be
explained briefly.

At each iteration n, the image is updated as

In+1 = In + λnδIn, (4.39)

in which δIn is the search direction at iteration step n. The conjugate gradient algorithm
chooses the search direction as follows

δIn = −∇f(In) +
|∇f(In)|2

|∇f(In−1)|2
δIn−1 (4.40)

δI0 = 0, (4.41)

in which ∇f(In) = ∂f(In)
∂In

.
The iteration starts with image I1 (n = 1). Since we have no knowledge of how the

image should look like we set I1 = 0.
Having the search direction, δIn, the scalar λn is chosen in such a way that− log P(In+

λnδIn|S) is a minimum. This one-dimensional problem is called line-search. Eq. 4.39 is
repeated until convergence is achieved.

Finding the minimum of − log P(In + λnδIn|S) is performed in two steps. First the
minimum is bracketed. The second step is to actually find the location of the minimum.
These steps will now be explained more thoroughly.
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4.4.8.1 Bracketing the minimum

The bracketing procedure ensures that we know that there is a minimum in the first
place. It also gives us an interval where to look for the minimum.

g(λn)

−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
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c

λ
min

λn

Figure 4.14: Bracketing the minimum. a, b and c as in the figure ensures that g(λn) =
− log P(In + λ!lanδIn|S) has a minimum between λ = a and λ = c.

The bracketing procedure finds λa
n, λb

n and λc
n in such a way that − log P(In +

λb
nδIn|S) < − log P(In + λa

nδIn|S) and − log P(In + λb
nδIn|S) < − log P(In + λc

nδIn|S).
This ensures that there is a minimum of − log P(In + λnδIn|S) between λn = λa

n and
λn = λc

n. I choose a = 0. This saves one function evaluation, because − log P(In|S) is
the function evaluated at the minimum of the previous iteration.

Assuming that the size of the search steps (i.e. λn) do not change a lot from it-
eration to iteration, choosing λb

n = λn−1 and c = 2λn−1, will ensure fast bracketing.
If − log P(In + λa

nδIn|S), − log P(In + λb
nδIn|S) and − log P(In + λc

nδIn|S) are not as
required, I set λb

n = 2λn−1 and c = 4λn−1, etc. This requires only one extra function
evaluation per increase of λb and λc. This procedure stops when bracketing is achieved.

4.4.8.2 Isolating the minimum along the search direction

Finding the location of the exact minimum is difficult when the function is non-linear.
However, it is not necessary to find the exact minimum because this is a minimization
along this search direction and the next search direction will be in a different direction.

Therefore, the exact minimum is approximated by the minimum of the parabola
passing through − log P(In +λa

nδIn|S), − log P(In +λb
nδIn|S) and − log P(In +λc

nδIn|S).
This procedure does not require any extra function evaluations, which makes it fast. The
value for λn thus found is used for λn.

Finally, we need to calculate the new value of the criterion function − log P(In +
λnδIn|S).
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4.4.8.3 Number of function evaluations

Using the above procedure for the line-search requires the following number of operations
per iteration

• The bracketing requires at least 2 function evaluations. When the bracketing does
not succeed immediately, each successive try requires one extra function evaluation.
With the above procedure bracketing usually succeeds with 2 function evaluations.

• The evaluation of the criterion function at the ‘minimum’ along the search direction
requires one function evaluation.

• Finding the next search direction requires one gradient evaluation.

We see that it is beneficial to have a faster function than gradient evaluation, simply
because the number of function evaluations is at least three times the number of gradient
evaluations per iteration. This is the reason of calculating the likelihood and its gradient
in the way explained in section 4.4.5.

4.5 Summary and conclusions

This chapter treated image reconstruction from incomplete data. According to my def-
inition ‘incomplete’ or ‘sparse’ pertains to undersampling. Undersampling brings about
irretrievable loss of necessary information. Hence, inference of the true image from incom-
plete data is impossible. This predicament can be alleviated by invoking prior knowledge
(physical approach) or by regularization (mathematical approach). Undersampling can
have at least two causes: 1) Omission of trajectories. This occurs when the scan time is
to be reduced. 2) Correction for patient motion, directly in k-space.

When trajectories have been omitted, an obvious procedure is to estimate the samples
on these trajectories and then proceed as if one deals with complete data; this was called
type 1 reconstruction. However, when originally complete data are corrected for motion,
(irregular) changes of most sample positions occur. As a result, the notion of missing
data does no longer apply. In this case, I reconstruct an image that satisfies the available
(locally undersampled) data, without estimating any other data; this was called type 2
reconstruction.

The material treated in this chapter allows the following conclusions.

• Reconstruction from incomplete data requires prior knowledge or regularization.

• Type 1 image reconstruction can be done with edge-preserving filtering.

• Edge-preserving filtering requires gridding, which in turn requires the density com-
pensation. When the sampling is irregular, the density compensation is error-prone.

• Type 2 image reconstruction can be done with Bayesian estimation. Properties of
Bayesian estimation are

– it obviates the density compensation
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– it can handle arbitrary sample positions

– it can be applied to data with omissions as well as motion-corrected data.

– The algorithm is iterative and therefore computationally intensive. To allevi-
ate this aspect, the computation of the ‘likelihood term’ has been streamlined
considerably.
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Chapter 5

Evaluation of image
reconstruction from incomplete
data

5.1 Introduction

This chapter concerns performance evaluation of image reconstruction from incomplete
k-space data. The word incomplete pertains to local violation of the Nyquist sampling
criterion, also alluded to as local under-sampling or sparse sampling. In this thesis
there are two sources of local under-sampling. One is intentional omission of k-space
trajectories aimed at reduction of scan time, the other is unintentional changes of the
angles between successive k-space trajectories due to patient motion, called intra-scan
rotations.

Ultimately, only the judgment of persons applying a reconstruction algorithm counts.
Regular contacts with clinicians are therefore desirable. However, developers of recon-
struction algorithms cannot efficiently progress under solely such a regime. Consequently,
various performance estimators, producing a single number that represents the results
for all pixels, have been devised. An important aspect in this is the choice of the refer-
ence image. One may refer to the image estimated from complete (no Nyquist violation)
k-space data, or to the image obtained when omitted samples are zero-filled or to a
combination of the two. In the case of intra-scan rotations, one refers to the case of no
rotation. In general, a complication arises due to the fact that even fully sampled data
are necessarily truncated at the edge of k-space which causes Gibbs artefacts (ringing).
The next section treats several alternative performance estimators.
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5.2 Criteria

5.2.1 Image performance measures

For easy evaluation of the performance of the image reconstruction from the sparse data-
set, this performance has to be specified by a number. Ideally, we would like a number
given only the reconstructed image. However, practical performance measures compare
the reconstructed image to a reference image. Whenever we only have the sparse data-
set, the choice of reference is not a trivial matter. However, I will assume that the
sparse data-set was constructed from a full data-set from which one can reconstruct a
reference image or that a separate reference image (Cartesian measurement) is available.
Note that the reference image is in no way ideal since it may have Gibbs-artefacts due
to truncation of k-space or other artefacts related to system imperfections. A reason
for using simulations is to avoid these problems since we then know the true image.
However, we have to make sure that the simulations are representative of the type of
data-sets/images we are likely to find in real-world situations.

To compare the reconstructed image with the reference image, it is convenient to
introduce the residue. The residue is defined as the difference between the reference
image, Iref , and the reconstructed image, Irecon. These images may have been scaled
differently and may have different DC-offsets. Therefore I define the residue as follows

iresidu
def= iref − αirecon + β, (5.1)

in which the factor α compensates difference in scaling and β is a difference in DC-offset.
In this and subsequent equations, the images are written as vectors by stacking their
columns on top of each other. Thus, iresidu corresponds to Iresidu, etc.

The first three performance measures are all based on the energy of the residue
|iresidu|2 = i†residuiresidu. They differ in whether or not they include the scaling and/or
DC-offset in the calculation of the residue.

The first performance measure ignores any scaling and DC-offset difference (α = 1
and β = 0). This results in the widely used mean squared error [1]

MSE(Iref , Irecon) =
|iref − irecon|2

NxNy
, (5.2)

where the size of both images is Nx ×Ny.
The MSE depends on the scaling of Iref and Irecon. For instance, if we multiply both

images by 10, the MSE increases by a factor of 100. To eliminate this effect we calculate
the MSE relative to the energy of the reference image (actually

√
|iref |2|irecon|2, to keep

the measure symmetric in iref and irecon), which gives the relative mean squared error

rMSE(Iref , Irecon) =
|iref − irecon|2√
|iref |2|irecon|2

(5.3)

Using the rMSE, the first performance number is defined as

perf1
def= −10 log10(rMSE) = −10 log10

(
|iref − irecon|2√
|iref |2|irecon|2

)
(5.4)
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The measure perf1 only gives usable results whenever Iref and Irecon are scaled equally.
The performance should not be influenced by a change of scaling because a change of
scaling does not really change the image. The second performance measure eliminates
the necessity of equal scaling by adapting α in the residue. The value of α is found
by a least squares fit (β is still fixed at 0). This minimizes the energy of the residue,
which maximizes the resulting performance measure. Using this value for α and ensuring
symmetry in iref and irecon of the resulting performance measure, one gets

perf2 = −10 log10

(
1−

(i†reconiref)(i
†
ref irecon)

|iref |2|irecon|2

)
. (5.5)

Finally, the third performance measure compensates also for a possible DC-offset
difference by adapting β. Although I will not use this performance measure, I include it
here for completeness. Again minimizing the energy of the residue in least squares sense,
results in the following performance number

perf3 = −10 log10

(
1− |r|2

)
, (5.6)

where r is the correlation coefficient of Iref and Irecon. Note that Eq. 5.6 follows easily
from Eq. 5.5 by subtracting the mean value from both Iref and Irecon. M.R. Smith has
devised a rather more elaborate performance criterion [92].

Table 5.1: Performances of IFFT reconstruction for full Cartesian scanning, using alternative

noiseless reference images, Icart and Itrue. The central column represents the effect

of noise, the right-hand column represents the combined effects of noise plus Gibbs-

artefacts.

SNR perf2 (in dB) perf2 (in dB)
Iref = Icart Iref = Itrue

10 15.0 14.0
15 18.4 16.6

20.7 21.2 18.2
30 24.4 19.5
50 28.8 20.5
∞ ∞ 21.2

Fig. 5.1 shows IFFT reconstructions from four fully sampled Cartesian Shepp-Logan
simulations, generated with increasing noise. These reconstructions serve to provide some
insight in the relation between a performance number and the visual judgment of image
quality. At SNR = 10 and 15, noise visibly perturbs the image; the performance is below
20 dB. At SNR = 30, noise barely perturbs the image, while the performance approaches
25 dB. Gibbs artefacts can be detected clearly only after zooming.
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SNR = 10, perf2 = 15.0 dB SNR = 15, perf2 = 18.4 dB

SNR = 20.7, perf2 = 21.2 dB SNR = 30, perf2 = 24.4 dB

Zoomed, SNR = 50

Figure 5.1: Reconstructions from a full Cartesian-sampled Shepp-Logan simulation.
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Table 5.1 shows the performance of IFFT reconstruction from a full Cartesian scan,
at various noise levels and using alternative noiseless reference images. In Cartesian
scanning, one can use as reference image either that obtained from IFFT of the full data
set – Icart – or the true image – Itrue (if known). When using Icart as reference, the
reconstructed image and the reference image possess the same Gibbs artefacts; hence,
the performance number is affected only by noise. As expected then, at SNR = ∞, the
performance is ∞ too. When using Itrue as reference, the performance is of course lower:
at SNR = ∞, it is only 21.2 dB. The latter value is attained already at SNR = 20.7 when
using Icart as reference.

5.2.2 Special performance measure for scan-time reduction

The three performance measures (Eqs. 5.4, 5.5 and 5.6) discussed so far each compare
a reconstructed image with a reference image, therefore using two images. The per-
formance measure I discuss in this section uses three images, one reference image and
two reconstructed images. It was especially developed for Cartesian scan-time reduc-
tion [71, 74]. The main idea of this performance measure is to compare the quality
(actually the MSE’s) of two reconstructed images.

The first reconstructed image, Itrunc, is obtained from the full Cartesian data-set with
the simplest way of scan-time reduction, i.e. omission of the outer trajectories resulting
in a truncation of k-space, see Fig. 4.1a. The reason for omitting the outer trajectories
is that they contain the least signal energy, resulting in lowest reduction of the MSE.
Itrunc is reconstructed from the truncated k-space in the simplest way, i.e. by zero-filling
the missing trajectories and subsequently applying IFFT.

The second reconstructed image, Irecon, is obtained from the same full data-set by
omitting trajectories in a sophisticated irregular way, see Fig. 4.1b. The image should be
reconstructed using a special algorithm capable of handling such data-sets, for example,
one of the reconstruction methods explained in chapter 4; see [71] for the dedicated
Cartesian case. Using zero-filling and IFFT results in a worse image than Itrunc, i.e.
lower MSE. The reason is that with irregular omission, using the same amount of scan-
time reduction, we omit trajectories closer to k = 0 than in the case of truncation. The
samples on these trajectories have higher signal energy. Without a special algorithm,
this approach would result in a lower quality (i.e, lower MSE).

The definition of this performance criterion is such that it provides a measure of
whether or not the sophisticated way of scan-time reduction was worthwhile with respect
to simple truncation

perf4 = 1− MSE(Iref , Irecon)
MSE(Iref , Itrunc)

= 1− ||iref − irecon||2

||iref − itrunc||2
, (5.7)

where Iref is the reference image reconstructed (by 2D-IFFT) from the full Cartesian
data-set.

The value of perf4 is smaller than, or equal to, 1. perf ′ <= 0 occurs when MSE(Iref , Irecon)
is larger than, or equal to, MSE(Iref , Itrunc). In that case, the image obtained by scan-
time reduction through irregular omission of trajectories is worse than the image obtained
by simple truncation of k-space. This indicates a failure of the scan-time reduction

65



through irregular omission. A perf4 between 0 and 1 indicates that Irecon is ‘closer’
to Iref than Itrunc is. This indicates a successful scan-time reduction through irregular
omission of the trajectories. The maximum value of perf4 is 1. This occurs when Irecon

equals Iref , indicating perfect estimation of the omitted data/trajectories. Typical values
of perf4 are around 0.65 for 30% scan-time reduction [71].

5.2.2.1 Problems with applying perf4 to non-Cartesian data-sets

For perf4 one needs two sparse data-sets. In the Cartesian case one can construct both
of them from the full data-set simply by omitting trajectories. Hence, it is not neces-
sary to measure separately. This is important because such measurements are usually
unavailable. In the following discussion, I will assume that we have only the complete
non-Cartesian data-set. Any sparse data-set must be constructed from the complete
data-set by omitting trajectories.

First of all, there is no problem with Iref or Irecon. Iref is reconstructed using an
appropriate algorithm suitable for full non-Cartesian data-sets; see chapter 3. For Irecon,
one of the algorithms described in chapter 4 should be used. Which trajectories to omit
is discussed in the next chapter. This corresponds exactly to what was done in the
Cartesian case.

a) perf2 = 20.0 dB b) perf2 = 20.3 dB

Figure 5.2: Bayesian reconstruction from sparse spiral data for two alternative ap-
proaches to omitting trajectories. a) Every third trajectory of the full set
is omitted. The remaining ones stay put. b) Trajectories are omitted at
random from the full set, the remaining ones staying put.

The first problem in applying perf4 lies in the fact that in the non-Cartesian case there
is no simple way of omitting trajectories. Remember that in the Cartesian case simple
scan-time reduction was accomplished by omitting the outer trajectories corresponding
to a truncation of k-space. The reason for omitting these trajectories, as already ex-
plained above, is that we know that the outer trajectories have lowest signal energy, and
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omitting them results in the lowest reduction of the MSE. Moreover, since we omit tra-
jectories with small signal energy we can reconstruct Itrunc with zero-filling and applying
a reconstruction algorithm suitable for complete data-sets, i.e. IFFT in the Cartesian
case.

In the non-Cartesian case there are not (necessarily) any outer trajectories. For
instance, in spiral scanning all trajectories start at the centre of k-space. Moreover,
all spiral trajectories have more or less equal signal energy, so we do not have simple
selection of which trajectories to omit based on their energy content.

Therefore we must have a different simple selection rule; for example, for 25% scan-
time reduction ‘omit every fourth trajectory’. However, we then arrive at the second
problem. Since we are still omitting trajectories with high signal energy content, we
expect image artefacts if we reconstruct using a ‘simple’ reconstruction algorithm, i.e.
zero-filling and application of one of the algorithms described in chapter 3. This would
correspond to what was done in the Cartesian case. However, using zero-filling and
IFFT in the Cartesian case still resulted in an acceptable Itrunc, because the omitted
trajectories contained little signal energy.

One could ignore the fact that Itrunc contains artefacts, but this will cause perf4 to be
nearly equal to 1. The reason for this is that MSE(Iref , Itrunc) is so large, that any reason-
able Irecon will have a smaller MSE. However, this does not mean that MSE(Iref , Irecon)
is small; therefore Irecon can still be pretty bad. Values of 0.9 for perf4 are easily attain-
able, but still represent a bad Irecon. In the Cartesian case perf4 = 0.9 is considered very
good.

Fig. 5.2 shows that even though two images may have close performance measures,
their subjective qualities can be completely different: The image on the left has a severe
square-like artefact.

5.3 Summary and conclusions

This chapter concerned quality evaluation of image reconstruction from the raw k-space
data. In my opinion, evaluation of a reconstructed image should ultimately be left to the
clinical users. However, continual involvement of clinical users during the development of
a reconstruction algorithm is impractical. Hence, the need for evaluation algorithms that
provide some measure of image quality in the form of a single number. My evaluation
algorithms are based on the relative energy of the difference between the reconstructed
image and a reference image. The choice of the reference image is not trivial.

For sparse scans, I made a distinction between Cartesian and non-Cartesian sampling.
With Cartesian sampling, one can restrict omission of trajectories to the ones with a
relatively weak signal. This allows use of two reference images, one obtained from the
complete scan and the other from the truncated scan. With radial and spiral scanning,
on the other hand, all trajectories have roughly equal signal intensity. The latter implies
that the notion of truncation ceases to exist, and with it the corresponding reference
image. This lowered the level of sophistication.

Finally, an application of my quality evaluation algorithm to reconstructions from
two alternative sparse spiral scans yielded a high quality for a visually bad result. This

67



result suggests that automatic image-quality ranking without human interaction, may
pose problems.
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Chapter 6

Optimal sparse sample
distributions

6.1 Introduction

A sample distribution is a collection of sample points in k-space. For instance, spiral
scanning gives us a spiral sample distribution. Usually the distribution is chosen in such
a way that the Nyquist criterion is fulfilled everywhere in k-space. Image reconstruc-
tion from a data-set sampled according to such a complete sample distribution can be
accomplished by one of the methods described in chapter 3.

To accomplish scan-time reduction I omit certain trajectories from the complete sam-
ple distribution. This sparse sample distribution is bound to violate the Nyquist criterion
at certain locations in k-space and I will need to apply one of the methods described in
chapter 4, or accept any image artefacts due to the k-space under-sampling.

This chapter concerns optimal sparse sample distributions. Such a distribution allows
reconstruction of images with minimal artefacts. In other words, which trajectories do
we have to omit from the complete sample distribution in order to have optimal image
reconstruction and how to choose them.

I shall restrict myself to radial and spiral scanning. I shall distinguish two types of
sparse sample distributions. The distinction pertains to the angle between successive
radial or spiral trajectories. In one category this angle is constant during a scan, in the
other category it is varied during a scan. In the sequel, I shall speak of regular and
irregular sparse scanning, respectively.

For sparse Cartesian scanning, I refer the reader to Refs. [71, 93].

6.2 Regular sparse spiral scanning

This section pertains to sparse radial or spiral sampling with a constant angle between
successive trajectories, i.e. the trajectories are distributed regularly over k-space. I begin
by recalling the ideal relation between a continuous image and corresponding continuous
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k-space signal

S(~k) =
∫∫∫
FOV

I(~r)e−2πi~k·~rdV , (6.1)

and vice versa. If I(~r) is real-valued, it follows immediately from Eq. 6.1 that

S(−~k) = S∗(~k), (6.2)

where ∗ denotes complex conjugation. In words, Eq. 6.2 implies that reflection of the
signal with respect to ~k = ~0 results in complex conjugation, if the image is real-valued.
This in turn, suggests that sampling at both ~k and its origin-reflected value ~−k yields
redundant information.
As derived in chapter 3, the reconstructed image can be written as the convolution of the
point-spread function and ‘true’ image obtained from the continuous Fourier transform

Irecon(~r) = PSF(~r) ∗ Itrue(~r) = [Re PSF(~r) + i Im PSF(~r)] ∗ Itrue(~r) (6.3)

in which ∗ stands for convolution. See Eq. 3.6 for the definition of the point-spread
function.

Assuming Itrue(~r) to be real-valued – a simple matter in the case of simulations –
Eq. 6.3 says that in general a reconstructed image is complex-valued. However, Irecon(~r)
becomes real-valued when the point-spread function PSF(~r) is real-valued. According
to Eq. 3.6, PSF(~r) in turn becomes real-valued if the distribution of sampling points in
k-space is symmetric with respect to ~k = ~0. This symmetry condition can be satisfied
by taking an even number of radial or spiral trajectories, with equal angles between
successive trajectories.

If the number of radial and spiral trajectories is uneven, and the angles between all
successive trajectories are equal, one can consider two different realisations related to
each other by the operation ~k → −~k. I shall distinguish between the two realizations and
corresponding results by adding a prime to the symbols involved, i.e. I write PSF(~r),
PSF′(~r), and Irecon(~r), I ′recon(~r). From Eq. 3.6, it follows for an uneven number of radial
or spiral trajectories

Re PSF′(~r) = Re PSF(~r) , (6.4)

Im PSF′(~r) = − Im PSF(~r) , (6.5)

and subsequently,

Re I ′recon(~r) = Re Irecon(~r) , (6.6)

Im I ′recon(~r) = − Im Irecon(~r) , (6.7)
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Figure 6.1: Examples of point-spread functions of spiral scans. The region shown is four
times the ROI as defined by the gridding procedure described in chapter 3.
a) 49 spirals, real part, b) 49 spirals, imaginary part, c) 50 spirals, real part,
d) 98 spirals, real part. The intensity scales in a), b), c), and d) are equal to
each other. In a), b), and d), the peak at ~r = ~0 – ideally, a ’δ-function’ – has
been truncated. Slices of a), b), c), and d), along the x-axis, are displayed in
Fig. 6.2. The latter indicate clearly that the intensity of the peak at ~r = ~0 is
much higher than that of the circular features which are sampling artefacts.
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Figure 6.2: Slices through ~r = ~0, parallel to the x-axis, of the point-spread functions
shown in Fig. 6.1. The region shown, −2 ≤ x ≤ 2, is four times the FOV as
defined by the gridding procedure described in chapter 3. a) 49 spirals, real
part, b) 49 spirals, imaginary part, c) 50 spirals, real part, d) 98 spirals, real
part. The height of the peak at x = 0 – which is actually a sinc function – in
a), c), d) has been normalized to unity. It exceeds the height of the sampling
artefacts seen for |x| > 0.5 by about two orders of magnitude.

so that

Re Irecon(~r) =
1
2

(Irecon(~r) + I ′recon(~r)) . (6.8)

Eqs. 6.4 through 6.8 are useful for investigating optimal sparse sampling. For the same
purpose, I provide Figures of Re PSF(~r) and Im PSF(~r).

Fig. 6.1 shows real and imaginary parts of 2D PSF’s for 50 and 49 spiral trajectories.
To visualize the structure at lower intensity, the central peaks of Re PSF(~r) at ~k = ~0 have
been truncated, while the remainders are depicted with equal grey scale. An important
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Figure 6.3: Reconstruction from sparse spiral scans, using gridding; the angles between
successive spirals are all equal. a) 50 spirals, absolute-value image, b) 49 spi-
rals, absolute-value image, c) 25 spirals, absolute-value image, d) 25 spirals,
real part of image.

result is that Re PSF for 49 spirals (b) has significantly fewer artefacts than Re PSF
for 50 spirals (a). This will be explained later on in this section. The dominance of the
central peaks is apparent from the 1D slices of PSF(~r) plotted in Figs. 6.2. Fig. 6.2b
shows that the imaginary part of a PSF for an uneven number of spiral trajectories is
indeed non-zero; however it is much less intense than the peak of the real part of the
same PSF. This phenomenon grows stronger for increasing number of spirals.
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I shall now show results of a Shepp-Logan simulation of spiral scanning using 50 and
49 spiral trajectories. I chose the number of 50 (and 49, for that matter) such that
the Shepp-Logan object is larger than the spiral FOV. The reconstruction method was
gridding. In conformity with the prevailing convention, I display the absolute value of
an image, |Irecon(~r)|. Fig. 6.3 shows the results.

Fig. 6.3a shows |Irecon(~r)| for 50 spiral trajectories. Two things are important here: 1)
Satisfying the Nyquist sampling criterion would require about 60 spirals. 2) 50 is an even
number. It can be seen that the quality is strongly degraded by streaks. Next, I decrease
the number of spirals to 49 which is an uneven number. The resulting image is shown
in Fig. 6.3b. Although the number of spirals has been lowered with respect to Fig. 6.3a,
the quality of the image is rather better. This phenomenon can be explained via Eq. 6.8
combined with the fact that the imaginary part of Irecon(~r) is rather less intense than the
real part. Eq. 6.8 implies that Re Irecon(~r) equals the sum of two images, one obtained
from 49 spirals and the other from 49 spirals obtained by reflection with respect to ~k = ~0.
Note, that the reflected spirals do not form the same set as the original one because their
number is uneven. In fact, the sum of the two sets comprises 98 unique spirals with equal
angles between neighbours. It follows that Re I49

recon(~r) equals I98
recon; the superscripts

49 and 98 indicate the number of spirals used in the scan. An image from 98 spirals is
sufficiently densely sampled to be artefact-free. Because I display the absolute value of
I49
recon(~r), one can see some perturbation by the non-zero imaginary part.

Next, I consider the case of 50/2=25 spirals. Fig. 6.3c shows the corresponding image
|I25

recon(~r)|; it is heavily degraded by undersampling and the influence of the imaginary
part. In agreement with Eq. 6.8, Re I25

recon(~r), shown in Fig. 6.3d, equals |I50
recon(~r)| which

is shown in Fig. 6.3a.
The above results indicate that although a number of 49 spiral trajectories formally

amounts to undersampling, appropriate distribution of these trajectories over k-space
still enables one to retrieve all information required to estimate the image. As a conse-
quence, I recommend that regular sparse spiral scanning (and radial scanning as well)
be done with an uneven number of trajectories.

6.3 Irregular sparse spiral scanning

6.3.1 Introduction

The rationale for varying the angle between successive radial or spiral trajectories stems
from sparse Cartesian scanning practice. Marseille found that images resulting from
irregular omission of Cartesian trajectories are superior to those resulting from regular
omissions [71]. It is natural to investigate whether the same tendency exists for radial or
spiral scanning. Following the Cartesian ‘recipe’, one can omit radial or spiral trajecto-
ries at irregular positions, leaving the remaining trajectories on their original positions.
Evidently, this recipe leads to irregular distributions of trajectories. Hence the name
irregular sparse spiral scanning.

The reference distribution in this investigation is a full scan comprising an even num-
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ber of trajectories with equal angle between successive trajectories. Next, I omit tra-
jectories pair-wise. The members of a pair are related by point-symmetry with respect
to ~k = ~0. An example is presented in Fig. 6.4. The pair-wise omission avoids entangle-
ment with the point-symmetry effect investigated above. This is necessary to distinguish
between the effectiveness of the two approaches.

Below, two feasible methods of selecting an optimal irregular sparse spiral sample
distribution are described. The first is to select the best distribution from an appreciable
number – e.g. thousand – of randomly chosen distributions. The second is a brute-force
search over all possible distributions, subject to certain restrictions. I have applied the
first method to a real-world spiral scan.

Figure 6.4: Two pairs of spiral trajectories in k-space, indicated by a drawn line and a
dashed line. The members of a pair are related point-symmetry with respect
to ~k = ~0.

The selection criterion is based on the performance measure described in chapter 5.
The sparse sample distributions in question being irregular, Bayesian reconstruction is
needed.

6.3.2 Best of random distributions

This method selects the best sample distribution from a certain number of randomly
chosen sample distributions. In this approach one counts on covering a representative
subset from the total number of combinations. The result is that we find very bad and
good distributions, with all sorts of intermediate cases. This enables one to extract
desirable properties a sample distribution must have in order to produce artefact-free
reconstructions. The method was applied to an in vivo measurement of a human skull.
The full scan consisted of 30 pairs of regularly distributed spiral trajectories. From 30 of
these pairs, I omitted 10, in 1000 randomly chosen ways. For reconstruction, I used the
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Bayesian algorithm described in section 4.4. The distributions were sorted according to
the performance defined by Eq. 5.5. Fig. 6.5 shows the result. The performance varies
between 17.2 dB and 19.2 dB.

Also shown is the case of omitting every third pair, resulting in a rather ordered
distribution. The latter yields a performance of 19 dB, which ranks amongst the best.
However, note that the attendant image suffers from the same square artefact as in
Fig. 5.2a. (The performance in Fig. 5.2a is 1 dB higher than in Fig. 6.5, because the
former underwent an extra treatment after Bayes reconstruction.
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Figure 6.5: Performances obtained with 1000 randomly selected sample distributions,
sorted according to increasing value. The extra horizontal line indicates the
performance value obtained with ‘equidistant’ omission of every third pair.

The ten worst and the ten best distributions are shown in Fig. 6.6a and b respectively,
black and white representing omitted and measured respectively. It can be seen that the
best distributions 1) are mostly irregular, but 2) avoid clustering. As an exception,
distribution 995 has a regular appearance. The ten worst distributions appear irregular
too, but clustering of omissions is significant.

Further investigation awaits availability of more spiral scans of a variety of objects.
In addition, it is to be ascertained that the square artefact – mentioned before, and to
be discussed in the next chapter – be absent in future scan-time reduction experiments.

6.3.3 Brute force search, by minimax

A brute-force search tries all possible combinations of omissions of trajectory pairs. This
approach guarantees finding the optimal combination. However, the total number of
combinations is usually prohibitively large. For example, with a total number of 30
pairs and omitting 10 – resulting in a 30% scan time reduction – the total number of
combinations is

(
30
10

)
≈ 3× 107. Even if a reconstruction would last only one second, the

total calculation time would be nearly a whole year. However, this example is rather
optimistic: The number of pairs may be as high as 128 and the reconstruction may take

76



1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60
1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

a) b)

Figure 6.6: Twenty radial sample distributions obtained from a random generator. The
black regions indicate omissions. From the set of 1000, this Figure shows those for the
a) 10 worst performances, b) 10 best performances.

several minutes, resulting in an unrealistic search method. Under the circumstances, one
must resort to the minimax method [71].

The minimax search strategy starts by considering all measured trajectory pairs.
From these, it omits the pair that contributes least to the performance. Using the
numbers above, this first step requires 30 reconstructions. From the remaining pairs,
one then again omits only the one that contributes least to the performance, etc. Note
that omitted pairs are not reconsidered. The procedure is to be pursued till the number
of omitted pairs reaches 10. The total number of reconstructions required amounts to
30 + 29 + 28 + · · · + 21 = 255. Since omitted pairs are rejected for good, this search
strategy can only be suboptimal.

Application of the minimax method awaits the availability of a set of spiral scans of
different objects.

6.4 Summary and conclusions

This chapter concerned mainly sparse spiral scanning. I have made a distinction between
regular an irregular distributions of trajectories, defined as follows.

In a regular distribution, all angles between successive trajectories are equal.

An irregular distribution is derived from a full – Nyquist satisfied everywhere – regular
distribution by irregular omission of trajectories and fixing the remaining trajecto-
ries to their original positions.

For sparse regular spiral distributions, I conclude

• 2N − 1 trajectories yield better image quality than do 2N trajectories. (N is
integer.)

77



• It is advisable to routinely scan with an uneven number of trajectories, irrespective
of exploitation of point-symmetry with respect to ~k = ~0.

• Image reconstruction can be done with gridding.

For sparse irregular spiral distributions, I conclude

• Irregular omission yields better image quality than does regular omission.

• Omissions should not be strongly clustered.

• Image reconstruction needs Bayesian estimation.

78



Chapter 7

Applications

7.1 Introduction

In this chapter, I apply the 2D Bayesian reconstruction program described in section 4.4.
My predecessor G.J. Marseille has successfully devised a Bayesian reconstruction

algorithm for sparse 2D Cartesian scans [71]. As explained in chapter 2 of the present
thesis, Cartesian sparsity pertains to a single dimension. My task was to expand the
Bayesian methodology to sparse 2D spiral scanning which requires a 2D approach; see
chapter 2.

Aiming at more general applications than just spiral scanning, I have adapted the
algorithm to arbitrary 2D sample positions. Thus, the algorithm starts by reading a
list of complex-valued samples and corresponding ~k’s; the values of these vectors can
be arbitrary. The algorithm checks whether the reconstructed image agrees with the
available samples, wherever their positions. Moreover, the procedure obviates the notion
of sampling density. In the case of undersampling, the adopted 2D prior should warrant
a correct image. These properties need testing.

I distinguish two test phases. In phase 1, one tests image reconstruction with simu-
lated k-space data. A simulation can be made realistic by ‘reverse gridding’ of a real-world
Cartesian full scan, as pointed out in chapter 3. An advantage of simulations is that the
true image is available for comparison, preventing doubts about the quality of the result.
In phase 2, one tests image reconstruction with raw data coming straight from a clinical
scanner. In the case of non-Cartesian scanning, e.g. radial or spiral, the algorithm has
to cope with deficiencies of the signal at the starting point ~k = ~0 of the trajectories. The
latter test may be very hard.

Before proceeding, I mention use of the algorithm by others – in the context of
TMR/Networks cooperation. Bourgeois has applied 2D Bayesian reconstruction to motion-
corrected k-space data [40,94–97], and Reczko did the same for sparse spiral data [98,99].
Martinez has extended the 2D algorithm to 3D and has applied it to arbitrarily sampled
data and real-world animal radial scans [100, 101]. Lethmate has applied both the 2D
and 3D versions to real-world radial scans of various objects [102,103].
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Figure 7.1: Reconstruction from sparse randomly positioned samples, generated by re-
verse gridding of a Cartesian brain scan. a) Random sample positions. b)
Bayesian reconstruction. The hyperparameters σS and a were set according
to section 4.4.6. c) Difference between b) and the inverse FFT of the original
Cartesian data. d) Gridding reconstruction.
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7.2 Simulations

7.2.1 Random scan

In order to investigate whether the algorithm can cope with both undersampling and
arbitrary sample positions, I generated randomly sampled scan data by reverse gridding
of Cartesian human brain scan data. Fig. 7.1a displays the sample positions. In a circular
central region of k-space, |k| ≤ 0.25, the average density of sample positions satisfies the
Nyquist criterion, but beyond |k| = 0.25 I reduced the average density to 40% of this
value. Results obtained with this sample distribution are displayed in Fig. 7.1b,c,d, and
described below. I assume that Bayesian reconstruction can handle sparse Cartesian,
radial, and spiral sample distributions equally well.

Fig. 7.1b shows the successful Bayesian reconstruction [104]. For reference, Fig. 7.1c
shows the difference with respect to the FFT of the original Cartesian data. The
residue is seen to be small. This indicates that the Bayesian algorithm can cope
with random sample positions that do not satisfy – not even on average – the
Nyquist sampling rule.

Fig. 7.1d shows the result of gridding. Visual inspection confirms immediately what
was to be expected: Gridding cannot cope well with this case, because

1. The density compensation for sparse random sample positions is problematic.

2. Prior knowledge cannot be used, while undersampling makes it indispensable.

Figure 7.2: Effect of intrascan patient-rotation on a Cartesian scan. a) Full 2D scan.
b) Details of the perturbed sample positions, with corresponding Voronoi
polygons. [96]
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7.2.2 Intra-scan rotation

The performance of the Bayesian algorithm for arbitrary sparse sample distributions
proves very useful for handling motion-corrected data in functional MRI, abbreviated as
fMRI [40, 42, 94–97]. In fMRI, one wishes to detect small differences in image intensity
induced by some function. Motion artefacts hamper detection of the fMRI effect. Hence
the need for motion-correction.

The present application pertains to motion that takes place between measuring suc-
cessive trajectories. The measurement time of a trajectory is assumed sufficiently small
to assume patient-immobility during its course. Translation of the object (image) results
in a phase-change in k-space while trajectories retain their directions. A rotation of the
object (or image), however, amounts to a rotation of k-space and therefore the trajecto-
ries will rotate along. Fig. 7.2 shows the effect of intrascan-rotation on a Cartesian scan.
Each trajectory is rotated by a ‘random’ patient rotation, which in turn causes under-
sampled regions of k-space. If ignored prior to applying the reconstruction algorithm,
these rotations inevitably result in image artefacts.

Bourgeois has developed the estimation of true sample positions from the raw data; see
[96, 97] for details. As an illustration of the role of Bayesian reconstruction, I reproduce
briefly his simulation of intrascan motion-correction with Shepp-Logan data; see Fig. 7.3.
Fig. 7.3a shows the image obtained by 2D-FFT, ignoring the simulated intrascan rotations
applied to the dataset. Attendant artefacts are clearly visible. Fig. 7.3c shows the signal
after estimation of the intrascan rotations. Subsequent gridding applied to these data did
not produce a satisfactory result. Next, the Bayes algorithm was applied; see Fig. 7.3b.
The quality of this image proves that both the motion-correction and the subsequent
Bayes reconstruction were successful. Finally, Fig. 7.3d is the reconstruction of the
original motion-free k-space signal.

7.3 Real-world spiral scans

7.3.1 Preamble

The previous section dealt with image reconstruction from simulated signals. Although
simulations are indispensable for testing reconstruction algorithms, it is difficult to in-
clude in vivo conditions or scanner imperfections. This section deals with Bayes recon-
structions from real-world spiral scans. First, I report experimental conditions that gave
rise to unacceptable artefacts in Bayes reconstructions from sparse scans.

7.3.2 Problems at ~k = ~0

As mentioned in chapter 2, spiral trajectories start at ~k = ~0 where the signal is strongest.
In addition, the sampling density for small |~k| is high. As a result, spiral scanning is less
sensitive to object motion than is Cartesian scanning. A disadvantage of spiral scanning
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is uncertainty about the initial part of the trajectory; this has to do with the finite build-
up time of the field gradient. Since the signal is strongest at ~k = ~0, uncertainty about
the exact sample positions around and at ~k = ~0 can have serious consequences for image
reconstruction.

(a) (b)
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Figure 7.3: Correction for intrascan rotations using a Shepp-Logan simulation [42,96,97].
Trajectories were rotated over random angles having a Gaussian distribution
(µ = 0.0, σ = 1.0 degree): (a) Distorted image reconstructed using 2D IFFT
and perturbed by motion artefacts. (b) Bayesian reconstruction of the image.
(c) The k-space data with rotation artefacts. (d) The k-space data after
Bayesian reconstruction.
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Figure 7.4: Complete spiral trajectory, starting with a small loop – dashed line. Sampling
starts when the trajectory is at ~k = ~0 for the second time.

In order to circumvent deficiencies at the start of sampling, the trajectories first
make a small loop and return to ~k = ~0 before taking off on their true course; see Fig. 7.4.
During this initial loop, no samples are taken. In fact, sampling starts when the trajectory
supposedly is at ~k = ~0 for the second time. Note that at ~k = ~0, the phase of the signal
is zero by definition. To verify this property in practice, I display the phases of the first
fifteen samples on all trajectories in Fig. 7.5a. It can be seen that the desired effect of the
loop does not take place: At index = 0, the phases have not nearly coincided with each
other. Back-extrapolation of the lines reveals that this occurs at index ≈ - 4. Fig. 7.5b
displays the absolute values of the first fifteen samples of all trajectories. Again, the
curves do not coincide at the assumed ~k = 0.

7.3.3 Bayes reconstruction from sparse scans

This section pertains to reduction of the scan time by means of omission of trajectories
[72]. The number of spiral trajectories required to satisfy the Nyquist criterion depends
on the curvature of the trajectories. Going from ~k = ~0 to the edge of k-space, the
direction of our trajectories changes by 4π. At this rate of change, one needs about
60 trajectories to avoid undersampling throughout k-space. This already constitutes a
substantial reduction of measurement time with respect to Cartesian and radial scanning.
Our aim is to reduce the measurement time further, to 2/3, by omission of 20 trajectories.
The omission was done pairwise so as to avoid intermixing of possible point-symmetry
effects – see chapter 6.

I chose the following three omission approaches.

a. The remaining 40 trajectories are evenly spread over k-space.
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Figure 7.5: Observed properties of the first fifteen samples of all trajectories. Horizontal:
index of sample. a) Phases, in units of radians. At index = 0, all phases
should be zero. They are not. Extrapolation revealed coincidence at index
≈ -4. b) Amplitudes, in arbitrary units.

b. Every third trajectory of the full set of 60 is omitted. The remaining 40 retain their
positions.

c. Trajectories are omitted at random from the full set of 60. The remaining 40
retain their positions. This was repeated with 1000 different random omissions; see
chapter 6.

For testing, I used a full spiral scan of a human brain made up of 60 trajectories.
Fig. 7.6 displays Bayesian reconstructions obtained with the three approaches. As ex-
plained in chapter 6, approach (a) causes a reduction of the FOV and hence suffers from
the same artefacts as shown in Fig. 6.3a; see also [105]. Apparently, the prior knowledge
described in section 4.4.3.4 does not suffice to suppress artefacts of this type.

Fig. 7.6b displays the Bayes reconstruction for approach (b). A square artefact is
clearly visible. The cause of this artefact was ascribed to imperfections of the measure-
ments at ~k = ~0, described in section 7.3.2. The size of the square increases with the
number of regularly omitted spirals. With simulations, no such artefact appeared. It fol-
lows that approach (b) will be applicable if experimental conditions could be improved.
Given the uncertainty around spiral imaging at the point of time of this work, further
investigation of the properties of the artefact was abandoned.

Fig. 7.6c displays the Bayesian reconstruction for random omission as described in
section 6.3. The best-performing random omission, displayed in Fig. 7.6d, has been
chosen. Random omission is optimal for Cartesian scanning [71]. Note that the square
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artefact has disappeared. This indicates that the effect of the experimental imperfections
at ~k = ~0 is averaged out when spreading the omissions randomly. Further tests await
the availability of new spiral scans.

7.4 Summary and conclusions

This chapter concerned applications of the 2D Bayes reconstruction algorithm developed
in chapter 4. The desired property of the algorithm is that it be capable of handling
sparse arbitrary sampling. This includes obviating the sampling density compensation.
If sparse arbitrary sampling can be handled, the same capability should be expected
for sparse spiral sampling. I tested the 2D Bayes reconstruction algorithm with sparse
simulated data and sparse real-world spiral scans.

Simulations

Bayes reconstruction

• The performance for sparse randomly sampled data is high. This indicates
that an undersampled scan, made up of any currently accepted trajectory
shape, can be accommodated.

• The density compensation is indeed obviated.

• The computation time is long compared to gridding.

Gridding

• Gridding performs badly with sparse randomly sampled data. This remains
true when using the Pipe-Menon density compensation. As a result, I do not
recommended gridding for sparse spiral scans.

Real-world spiral scans

• The 2D Bayes reconstruction algorithm is sensitive to a deficiency of our real-
world spiral scan for small |~k|. This leads to square artefacts when omitting
trajectories in regular fashion. The nature of the deficiency is not understood,
nor is the appearance of the artefact.

• Further investigations await new measurements.
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Figure 7.6: Bayesian reconstruction from sparse spiral data for three alternative ap-
proaches to omitting trajectories that correspond to 33% reduction of mea-
surement time. (a) The remaining trajectories aren evenly spread over k-
space. (b) Every third trajectory of the full set is omitted. The remaining
ones remain in place. (c) Trajectories are omitted at random from the full
set, the remaining ones remaining in place. The best-performing sparse set
of Fig. 6.5 was chosen. (d) Best-performing sparse data set pertaining to (c).
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Chapter 8

Conclusions and Future Work

8.1 Preamble

At the outset, the theme of this thesis was image reconstruction from raw spiral scan
data. In particular, it was to be investigated whether scan time reduction through smart
omission of spiral trajectories is feasible. To that end, I concentrated on two algorithms:
1) Gridding, 2) Bayesian reconstruction of images from 2D sparse spiral k-space data.

Initially, the gridding algorithm merely served to produce an image from complete,
non-Cartesian k-space data. The resulting image, in turn, served as reference image for
reconstructions from sparse spiral k-space data. The challenge of the Bayesian recon-
struction algorithm was to expand the existing 1D version [71] to 2D and beyond. In
addition, Gaussian edge-preserving filtering was investigated.

As time progressed, our industrial partner abandoned activities on spiral scanning.
As a result my emphasis on spiral scanning diminished. Instead, I turned to analysis
and improvement of gridding, and on alternative non-Cartesian sampling schemes such
as radial and random. Radial scanning is applied when the decay of the signal is fast.
Random scanning is unintentional, for example, it can be caused by correcting Cartesian
sample positions for random patient motion.

First, I summarize and conclude first in general terms. Subsequently, gridding and
Bayesian reconstruction are reviewed in some more detail. Finally, I suggest ideas for
future research.

8.2 General Overview

The first two chapters serve to inform signal-processing readers about some aspects of
MRI scanning. The main message is that sampling is done along trajectories in k-space.
The duration of a trajectory is not influenced by the number of samples taken during its
course. Between successive trajectories, the scanner waits for (some degree of) thermal
re-equilibrium of perturbed magnetic moments. The scan time is determined by the
number of trajectories needed to sufficiently cover k-space.
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When the number of samples and their positions in k-space enable complete recon-
struction of the image without use of prior knowledge, I speak of complete sampling.
Chapter 3 is devoted to image reconstruction – especially gridding – for this case.

Image reconstruction from incomplete sampling is impossible unless one adds alter-
native information (prior knowledge). An algorithm that is capable of taking alternative
information into account is the above-mentioned Bayesian reconstruction. This is treated
in chapter 4.

Criteria for judging the quality of an image reconstruction constitute a source concern.
So long as testing is done with simulations, such as the Shepp-Logan case, a non-medical
person should be able to judge the result visually by him/herself. But already, replace-
ment of visual judgment by an algorithm that automatically produces a single number
indicative of quality, poses problems. In any case, judgment of reconstruction of a real-
world image remains very difficult for a non-medical person. It is not uncommon that
visual judgment does not agree with the single number-judgment produced by computer.
These aspects are treated in chapter 5.

Whereas chapter 4 concerned reconstruction from sparse arbitrarily sampled k-space
data, chapter 6 concerned design criteria for sparse sampling schemes. The treatment
is based on the so-called point-spread function. I conclude that for spiral scanning the
number of trajectories be uneven.

Finally, chapter 7 is devoted to application of the 2D Bayesian reconstruction algo-
rithm described in chapter 4. The main conclusion is that the algorithm can handle
arbitrary sparse sampling distributions while obviating the sampling density compensa-
tion. At the same time, the algorithm is perturbed by imperfections of real-world spiral
scans at the origin of k-space.

8.3 Gridding

This section summarizes gridding, as treated in chapter 3.

• The main algorithm for image reconstruction from complete non-uniform scans is
gridding. Algorithms dedicated to special non-uniform sampling schemes – e.g.
chirp-z for linogram scans – seem no longer required.

• Gridding comprises three steps:

1. Sampling density compensation

2. Convolution-interpolation

3. IFFT

4. Roll-off correction

• In the case of irregular sampling, the sampling density compensation should prefer-
ably be estimated with the method of Pipe and Menon [48]. This method forces the
point-spread function to approach a delta function. Yet, as the sample positions
become more random, the sampling density compensation becomes the dominant
source of error of gridding.
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• The accuracy of convolution-interpolation can be set according to needs, using a
Kaiser-Bessel kernel. The following three parameters are important.

1. The width L of the Kaiser-Bessel kernel.

2. The overgridding (resampling) factor fog. Given L and fog, the accuracy and
relative computation time can easily be derived with the theory of chapter 3.

3. The shape parameter B of the Kaiser-Bessel kernel. I derived an expression
for the optimal value of B, given L and fog.

8.4 Bayesian Reconstruction

This section summarizes 2D Bayesian reconstruction, as treated in chapter 4.

• In the case of incomplete sampling, prior knowledge and or regularization are in-
dispensable. The Bayesian approach facilitates accommodation of prior knowledge.
The function to be minimized – the posterior – is the sum of the likelihood term
and the prior.

• The Bayesian approach obviates the density compensation. In other words, the
likelihood term is not weighted. This implies that arbitrary sample positions are
handled without additional effort, which in turn constitutes a decisive practical
advantage. Inclusion of weights may accelerate convergence.

• The way of computing the likelihood term saves considerable time. The same prin-
ciple can be applied to image reconstruction for SENSE, as described in Appendix
A.

• The prior is a 2D Lorentzian distribution of nearest-neighbour pixel-intensity dif-
ferences. For the sake of simplicity, the distribution is isotropic in x and y. The
width of the distribution is derived from the noise level.

8.5 Suggestions for further research

The project enabled me to make some contributions to reconstruction of images from raw,
non-uniformly sampled k-space data. Meanwhile, MRI scanners and their applications
evolved and perennially posed new challenges. Below, I mention some subjects that
presently need attention.

Complete sampling

Gridding can now handle all sample positions, provided the latter are sufficiently
densely distributed. Points of concern are:

• When the sample positions are irregular, the sampling density compensation –
which is part of gridding – becomes inaccurate. This aspect, and the attendant
computational load, need further investigation.
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• The positions of initial samples on trajectories that start at ~k = ~0 may be
inaccurate. Methods to correct these positions ought to be devised.

Incomplete sampling

In spite of its long computation time, Bayesian reconstruction seems to be the
method of choice for sparse irregular sampling, because it obviates the sampling
density compensation. The 2D version is described in this thesis. A 3D version is
in progress [100]. I recommend the following continuation of activities on Bayesian
reconstruction.

• Presently, the prior is an isotropic multidimensional Lorentzian distribution of
nearest neighbour intensity differences. The need for anisotropic distributions
should be investigated.

• In my implementation, the chosen width of the distribution has no bearing on
the actual width following from a complete scan. Investigation is desired into

– Automatic estimation of an optimum width for accuracy of reconstruction.
– Influence of the width on the convergence speed.

• Weighting of the likelihood term may accelerate the convergence. Possible
weights are the coefficients of the density compensation. In any case, this
would yield a near-gridding result at the first iteration.

• Signal imperfections at the origin of k-space have a detrimental effect on image
quality. The origin of this effect ought to be established, once new spiral scans
become available.

As for sparse spiral imaging, I recommend investigation of using an uneven number
of trajectories.
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Appendix A

Major Speedup of Reconstruction for
Sensitivity Encoding

with Arbitrary Trajectories
Proceedings of the ISMRM, p. 767, 2001

F.T.A.W. Wajer, K.P. Pruessmann*
Spin Imaging Group, Faculty of Applied Physics, Delft University of Technology, Delft,

The Netherlands
*Institute of Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland

A.1 Introduction

Sensitivity encoding (SENSE) with receiver coil arrays was recently proposed for enhanc-
ing imaging speed in MRI [106]. While relatively easy with Cartesian sampling, SENSE
has been difficult with general k-space trajectories due to enhanced complexity of the
reconstruction. For efficient SENSE reconstruction from arbitrary k-space trajectories,
several iterative reconstruction algorithms have recently been proposed [107–109]. As
a common feature, in each iteration step these methods require matrix-vector multipli-
cations, which largely determine the reconstruction speed. In this work we propose a
novel implementation of the specific matrix-vector multiplications that occur in SENSE
reconstruction, enabling substantial further increases in reconstruction efficiency.

A.2 Method

SENSE reconstruction from arbitrary k-space trajectories was formally described in [106].
By neglecting noise statistics or decorrelating receiver noise as proposed in [109], the
reconstruction problem reduces to

EHEI = EHm, (A.1)

where E(γ,κ),ρ = sγ(rρ)eikκ·rρ , with sγ(rρ) the sensitivity of coil γ at position rρ. ρ
indexes the voxels and κ the k-space sampling positions, respectively. I is the image to
be reconstructed from the measured k-space data m.
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In iterative solving of Eq. A.1, the key procedures are the calculations of EHm, which
is constant during iteration, and EHEI(n), with I(n) the reconstructed image at iteration
n.

As pointed out in [107,109], EHm can be written as

[EHm]ρ =
∑

γ

s∗γ(rρ)

(∑
κ

e−ikκ·rρmγ,κ

)
, (A.2)

where the last sum can be evaluated efficiently using gridding.
We will now turn attention to the evaluation of EHEI(n). In [109] EHEI(n) is evalu-

ated in two steps as EH(EI(n)), which can be accomplished by two gridding steps (per
coil). We will now show how to remove the two gridding interpolation steps, and since
the calculation time is heavily determined by these two steps we get a major speedup.

Instead of using EHEI(n) = EH(EI(n)) we examine the components of EHE,

[EHE]ρ,ρ′ =
∑

γ

s∗γ(rρ)

(∑
κ

e−ikκ·(rρ−rρ′ )

)
sγ(rρ′) (A.3)

=
∑

γ

s∗γ(rρ)Q(rρ − rρ′)sγ(rρ′), (A.4)

with

Q(r) =
∑

κ

e−ikκ·r. (A.5)

Note the similarity between the summation in Eq. A.5 and the term in parentheses
in Eq. A.2. They can be evaluated at the same time prior to starting the iterations using
gridding. The only thing we need to take care about is that the size of Q is twice the
size of I(n), since rρ − rρ′ has twice the range of rρ.

The elements of EHEI(n) are now evaluated as

[EHEI(n)]ρ =
∑

γ

s∗γ(rρ)

∑
ρ′

Q(rρ − rρ′)sγ(rρ′)I
(n)
ρ′

 (A.6)

=
∑

γ

s∗γ(rρ)
[
Q ∗ (sγ(rρ′)I

(n)
ρ′ )

]
ρ
, (A.7)

where the ∗ in Eq. A.7 stands for a discrete convolution [72]. This convolution can
be efficiently evaluated using the FFT [49], i.e. Q ∗ (sγ(rρ′)I

(n)
ρ′ ) = IFFT(FFT(Q) ·

FFT(sγ(rρ′)I
(n)
ρ′ )). Instead of storing Q, FFT(Q) is stored, which leads to Q∗(sγ(rρ′)I

(n)
ρ′ )

being evaluated using only two FFT’s. The size of these FFT’s is equal to the size of
Q, requiring sγ(rρ′)I

(n)
ρ′ to be zero-filled before applying the FFT. This size is the same

as used in [109], so there is no increase in calculation time of the FFT’s. Therefore,
the gain is that we have replaced two gridding interpolations (per coil) by a coil-wise
multiplication in k-space by FFT(Q), which can be evaluated much faster.

Finally, including a diagonal preconditioning matrix D into the algorithm, as sug-
gested in [109], i.e. EHDEI = EHDm, presents no problem and does not increase
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computation time. In Eq. A.2 we include an extra term Dκ,κ and the definition of Q
changes to

Q(rρ) =
∑

κ

Dκ,κe−ikκ·rρ . (A.8)

A.3 Results

The proposed convolution approach was implemented in the iteration scheme described
in [109]. Its performance was compared with that of the original method using explicit
gridding. Single-shot spiral acquisition with radial density reduced to 40% of the Nyquist
limit (R=2.5) was simulated using an array of six circular receiver coils surrounding
a cylindrical phantom. All calculations were performed on a 400 MHz DEC Alpha
workstation using PV Wave (Visual Numerics Inc., Houston, Texas).

The speed benefit of the new approach was assessed for typical image sizes. The
results are summarized in Tab. A.1, proving a substantial speed advantage of the convo-
lution method. As expected, except for negligible numerical error, the novel implemen-
tation yielded exactly the same image progressions as did the original method.

Table A.1: Comparison of CPU times per iteration.
Image size 64× 64 128× 128 256× 256

Convolution 1.1 s 2.7 s 12 s
Gridding 4.5 s 17 s 68 s

A.4 Conclusions

The novel method is really fast (gain of 3− 6×) and makes SENSE in combination with
spiral even more practical. The actual speed benefit is greatest for low reduction factors,
because gridding is most costly with dense k-space sampling.
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Appendix B

On the use of Gaussian prior
knowledge

This appendix is a short explanation of why Gaussian-type prior knowledge is not able
to estimate missing k-space datapoints in case the k-space measurement noise is uncorre-
lated and Gaussian-distributed. The derivation is for the 1D Cartesian case. Extension to
the two- or more-dimensional case is straightforward. The non-Cartesian case is included
by taking the Cartesian grid in the following explanation fine enough.

I start by setting up a model of the measurement for the 1D Cartesian sampling case.
Since k-space is the Fourier transform of the image, I write

s = MF i + n, (B.1)

where i is the image, s the k-space data at measured locations, n is the noise contribution.
F is the unitary FFT matrix and M is a matrix selecting the appropriate columns of F i,
where s is sampled. Each row of M contains only zeros, except for one element which is
1.

Assuming Gaussian-type prior knowledge, image reconstruction amounts to a mini-
mization of

1
σ2

S

|s−MF i|2 +
λ

σ2
S

|Di|2, (B.2)

in which D is a circulant matrix. D is circulant, because all pixels in i are assumed to
obey the same prior. A well-known example for D is the unit matrix, for minimum norm
estimation. Another example is D having ones on the diagonal and minus ones on the
first subdiagonal. In this case the prior knowledge amounts to the gradient of the image
having a Gaussian distribution.

The reconstructed image can now be found by setting the gradient of Eq. B.2 to zero,
i.e.

−F †M†

σ2
S

(s−MF irecon) +
λ

σ2
S

D†Direcon = 0 (B.3)
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The resulting reconstructed image can be written as

irecon = (F †M†MF + λD†D)−1F †M†s (B.4)

Taking the FFT of the reconstructed image gives

srecon = F irecon = F (F †M†MF + λD†D)−1F †M†s (B.5)
= (F [F †M†MF + λD†D]F †)−1M†s (B.6)
= (M†M + λFD†F †FDF †)−1M†s (B.7)
= (M†M + λY †Y )−1M†s (B.8)

The circulant matrix D is diagonalised by the FFT matrix F , which implies that Y is a
diagonal matrix. Y †Y is therefore also diagonal, as is M†M . Since M†s contains zeros
at the missing k-space positions, so does srecon.
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Summary

Non-Cartesian MRI Scan-Time Reduction through Sparse Sampling

Magnetic resonance imaging (MRI) signals are measured in the Fourier domain, also
called k-space. Samples of the MRI signal can not be taken at will, but lie along k-space
trajectories determined by the magnetic field gradients.

MRI measurements are usually Cartesian, where the trajectories are parallel and
equidistant and sampling along the trajectories is also equidistant. This allows fast
reconstruction using the inverse Fast Fourier transform (IFFT). However, this thesis
focuses on non-Cartesian MRI. Typical trajectories in this case are radial and spiral, but
there exists a multitude of other possibilities. Chapter 2 gives a basic introduction on
MRI relevant for this thesis.

Image reconstruction in the non-Cartesian case can not be accomplished by IFFT. In
certain cases, however, dedicated reconstruction algorithms are available. For example,
for radial scanning there exists the Filtered Back Projection algorithm. Another possi-
bility, aiming at maintaining the IFFT for the transformation to the image domain, is
the gridding algorithm. This algorithm, which is capable of image reconstruction from a
k-space sampled along arbitrary trajectories, is given extensive attention in this thesis.

A major complication in non-Cartesian sampling is the compensation for the non-
uniformity of the sampling density. In case the trajectories are rather regular, an analyt-
ical expression for the density may be derived or Voronoi triangulation can be applied.
Another more recent approach is the Pipe-Menon algorithm. However, all these ap-
proaches fail in more irregular cases.

The above-mentioned image reconstruction algorithms are described in chapter 3.
They are based on the inverse Fourier transform and therefore require k-space sampling
to obey the Nyquist criterion. These algorithms cannot cope with k-space undersam-
pling. However, in certain cases there may not be enough time to fully sample k-space;
or scan-time is deliberately reduced by omitting trajectories, the total scan-time being
proportional to the number of trajectories. Under these circumstances we still want to
be able to reconstruct an image.

Chapter 4 presents two algorithms that are able to cope with undersampled k-space
data, and still reconstruct artefact free images.

99



The first, based on work by G.J. Marseille, who worked on Cartesian scans, aims on
estimating values for the missing data. In this approach the missing data are estimated
iteratively by shuttling back and forth between image and k-space, while smoothing the
image with an edge-preserving filter and resetting the measured data to their original
values. This algorithm has a major drawback in that it requires density compensation.
This means that this algorithm is only applicable if the trajectories are regular. Moreover,
the algorithm requires user input on which k-space points are missing. In certain cases,
especially when sampling is irregular, this may be impossible or not desirable. Note that
this difficulty is absent in undersampled Cartesian scans.

The second algorithm, also based on work by G.J. Marseille, directly estimates the
image from the available k-space data. It is based on Bayes theorem, which allows
both incorporation of consistency with the measured data, as in maximum likelihood
estimation, and prior knowledge about the image. If k-space is undersampled, the k-
space data alone give insufficient information to reconstruct satisfactory images. The
prior knowledge gives the required additional information.

In the Cartesian case, one dimension is always completely measured. Along this
dimension IFFT can already be applied. This effectively reduces the image reconstruction
problem to one dimension, meaning that different columns in the image can be treated
separately. Consequently, the used prior knowledge, i.e. the Lorentzian edge distribution
model, is a function taking only into account edges in one direction.

In the non-Cartesian case, no dimension is completely sampled. Therefore the image
can not be treated column-wise. Moreover, the prior has to take into account edges in
both directions, since there is no preferred direction. In this thesis the prior used in
Cartesian work is extended to include edges in more than one direction.

In contrast to the first algorithm, the Bayesian approach allows one to obviate density
compensation. Therefore, this algorithm can handle any type of sampling, to whatever
degree of irregularity of sampling. In addition, since the image is directly estimated there
is no need for the user to input which k-space points are missing.

Chapter 5 discusses image quality measures. The measures are necessary for evalua-
tion of the developed reconstruction algorithms.

The performance of the mentioned reconstruction algorithms, in case of deliberate
omission of trajectories to reduce the scan-time, depends on which trajectories are omit-
ted. Chapter 6 is devoted to the matter of how to omit trajectories. Ideally, the raw data
satisfy Hermitian symmetry. This property can be exploited when omitting trajectories.
This chapter also describes two ways of finding optimal omission of trajectories from a
full measurement. Finally, one of these methods is applied to an in vivo spiral scan.
Optimal distributions seem to omit trajectories irregularly, without clustering too many
omitted trajectories together so as to keep local undersampling to a minimum.

Finally, chapter 7 deals with applications. The methods alluded to above are tested
on simulations and real-world data. The Bayesian estimator appears particularly suited
for pseudo-random sample positions.

Frank Wajer, Delft University of Technology
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Samenvatting

Niet-Cartesische MRI Scan-Tijd Reductie door Schaars Bemonsteren

Magnetische resonantie (MRI) signalen worden gemeten in de Fourier ruimte, in MRI
ook wel k-space genoemd. Bemonsteren van het MRI signaal kan niet op een willekeurige
manier, maar langs k-space trajecten, die bepaald worden door de aangelegde magnetis-
che veldgradienten.

MRI metingen zijn meestal Cartesisch, waarmee bedoeld wordt dat de trajecten par-
allel en even ver van elkaar liggen en dat het bemonsteren langs de trajecten regelmatig
is. Dit staat toe de zogenaamde inverse Fast Fourier transformatie (IFFT) te gebruiken
voor beeldreconstructie. Dit proefschrift richt zich op niet-Cartesische MRI. Typische
trajecten in dit geval zijn radiaal en spiraal, maar er zijn nog verscheidene andere mo-
gelijkheden. Hoofdstuk 2 geeft een basis uitleg over MRI die voor het lezen van dit
proefschrift relevant is.

Beeldreconstructie in het niet-Cartesische geval kan niet met behulp van de IFFT.
Echter, in sommige gevallen bestaan er specifieke algoritmes. Bijvoorbeeld, voor radi-
aal meten bestaat er het zogenaamde Filtered Back Projection algoritme. Een andere
mogelijkheid, die probeert het voordeel van de IFFT te behouden, is het gridding algo-
ritme. Aan dit algoritme, dat beelden kan reconstrueren uit een willekeurig bemonsterde
k-space, wordt uitvoerig aandacht geschonken in dit proefschrift.

Een grote moeilijkheid bij niet-Cartesisch bemonsteren is het compenseren van de
bemonsterdichtheid. In het geval de trajecten redelijk regelmatig zijn, kan een analytische
uitdrukking voor de dichtheid worden gevonden of kan het Voronoi algoritme uitkomst
bieden. Recent is hier het Pipe-Menon algoritme bij gekomen. Helaas bieden al deze
aanpakken geen uitkomst in de onregelmatige gevallen.

De bovengenoemde beeldreconstructie methoden worden beschreven in hoofdstuk 3.
Zij zijn allen gebaseerd op de inverse Fourier transformatie en daarom moet de bemon-
stering voldoen aan het Nyquist criterium. Deze algoritmen kunnen niet overweg met
een onderbemonsterd k-space. Echter, in sommige gevallen kan het gebeuren dat het
niet mogelijk is een volledig bemonsterd k-space te meten of er is, om de meettijd te
verkorten, met opzet voor gekozen om bepaalde trajecten weg te laten; de meettijd is
evenredig met het aantal trajecten. Ook in deze gevallen willen we nog steeds een beeld
reconstrueren.
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Hoofdstuk 4 behandelt twee algoritmen die overweg kunnen met onderbemonsterde
k-space data.

De eerste, afgeleid van werk van G.J. Marseille, die gewerkt heeft aan Cartesische
metingen, probeert weggelaten meetpunten te schatten. De missende data wordt iter-
atief geschat door heen en weer te pendelen tussen beelddomein en k-space, terwijl het
beeld gefilterd wordt met een edge-preserving filter en de gemeten data teruggezet worden
op hun gemeten waarde. Dit algoritme heeft als grote nadeel dat het de dichtheidcompen-
satie benodigd. Dit maakt het algoritme alleen toepasbaar in gevallen met regelmatige
trajecten. Bovendien benodigt dit algoritme invoer van de gebruiker welke datapunten
missen. Vooral in gevallen waarbij k-space zeer onregelmatig bemonsterd is, is dit ofwel
niet mogelijk ofwel niet wenselijk. Deze problematiek doet zich in het Cartesische geval
niet voor.

Het tweede algoritme, ook afgeleid van werk van G.J. Marseille, schat het beeld direct
gegeven de beschikbare k-space data. Hierbij wordt gebruik gemaakt van het theorema
van Bayes. Dit schept de mogelijkheid om naast het inbouwen van consistentie met
de beschikbare data, zoals met maximum likelihood methoden, ook voorkennis over het
beeld in te bouwen. De gemeten data geeft te weinig informatie om geschikte beelden te
reconstrueren indien k-space onderbemonsterd is. De voorkennis levert in deze gevallen
additionele informatie.

Bij Cartesisch meten is altijd één richting volledig bemonsterd. In deze richting kan
dus de IFFT al toegepast worden. Hiermee wordt beeldreconstructie gereduceerd tot
een één dimensionaal probleem; elke kolom in het beeld kan apart behandeld worden.
Dientengevolge is de gebruikte voorkennis, nl. het Lorentziaans zijn van de distributie
van de randen in het beeld, slechts een functie die alleen randen in één richting meeneemt.

In het niet-Cartisische geval is geeneen richting volledig bemonsterd. Daarom is een
kolomsgewijze aanpak niet mogelijk. Bovendien is het nu noodzakelijk om randen in
beide richtingen mee te nemen in de voorkennis, want er is nu geen voorkeursrichting. In
dit proefschrift wordt de voorkennis die gebruikt werd in het Cartesische geval uitgebreid
om ook randen in meer dan één richting mee te nemen.

In tegenstelling tot het eerste algoritme heeft de Bayesiaanse aanpak het voordeel dat
de dichtheidscompensatie overbodig is. Dit betekent dat dit algoritme elk bemonsterd
k-space aankan, hoe willekeurig ook. Bovendien vervalt de noodzaak voor invoer van de
gebruiker welke datapunten missen.

Hoofdstuk 5 behandelt verscheidene beeldkwaliteit maten. Deze zijn nodig voor eval-
uatie van de behandelde reconstructie methoden.

De kwaliteit van de genoemde reconstructiemethoden, in het geval van opzettelijk
weglaten van trajecten om de meettijd te verkorten, hangt af van welke trajecten wegge-
laten worden. Hoofdstuk 6 is gewijd aan het op een optimale manier weglaten van
trajecten. In het ideale geval voldoet de data aan Hermitische symmetrie. Deze eigen-
schap kan gebruikt worden als er trajecten worden weggelaten. Dit hoofdstuk behandelt
ook twee manieren om op een optimale manier trajecten weg te laten uit een volledige
meting. Een van deze methoden wordt toegepast op een in vivo spiraal meting. Optimale
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distributies blijken trajecten op een willekeurige manier weg te laten, waarbij er zoveel
mogelijk wordt voorkomen dat er trajecten naast elkaar worden weggelaten. Dit houdt
lokale onderbemonstering tot een minimum.

Als laatste, behandelt hoofdstuk 7 toepassingen. The genoemde methoden worden
getest op simulaties en real-world data. De Bayes schatter lijkt vooral geschikt in gevallen
waarbij de bemonsterpunten zeer willekeurig verspreid liggen.

Frank Wajer, Technische Universiteit Delft
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Cérébrale par Résonance Magnétique, Ph.D. thesis, Université Claude Bernard-
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List of symbols and
abbreviations

a Width of the Lorentzian prior
B Shape parameter of Kaiser-Bessel kernel
B0 Main magnetic field strength [T]
c(x) Gridding convolution kernel in image space
C(k) Gridding convolution kernel in k-space
fog Overgridding factor
FOV Size of field of view
Gx, Gy, Gz Magnetic field gradients along x, y and z [T/m]
I Image
i Image written as a vector
~k Position vector in k-space, (kx, ky, kz)
L Width of gridding convolution kernel
~M Macroscopic magnetization
M⊥ Transverse magnetization
~m Magnetisation
m⊥ Transverse magnetisation
Nrad Number of radial trajectories
NI Noise in image domain
NS Noise in k-space
n Measurement noise written as a vector
perf Performance measure
PSF Point spread function
P(I|S) Posterior
P(S|I) Likelihood
P(I) Prior knowledge
P(S) Evidence
ROI Size of region of interest
T Discrete Fourier transform written as matrix
T ∗

2 Transverse relaxation time including field inhomogeneities [s]
~r Position vector in image space, (x, y, z))
S k-space data
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s k-space data written as a vector
t Time [s]
δI Gradient search direction
∆kn Sampling density compensation at location ~kn [m−1]
∆kCart Cartesian k-space sampling step [m−1]
∆rCart Step size in image space [m]
γ Gyromagnetic ratio of proton [rad s−1T−1]
λ Step-size in gradient search direction
ξ Image intensity difference in x direction
η Image intensity difference in y direction
σI Standard deviation of the noise in image space
σS Standard deviation of the noise in k-space
φ Accumulated phase of magnetization [rad]
ω Resonance frequency [rad s−1]

DFT Discrete Fourier Transform
FirLS Finite Impulse Response Least Squares
(I)FFT (Inverse) Fast Fourier Transform
ML Maximum Likelihood
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
PR Projection Reconstruction
PSF Point Spread Function
SENSE Sensitivity Encoding
SNR Signal to Noise Ratio
SRSFT Sparse Radial Scanning and Fourier Transform
ROI Region of Interest
FOV Field of View
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