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A B S T R A C T

When investigating the effect of muddy seabeds on marine vessels using Computational Fluid Dynamics (CFD)
software, one challenge is to adequately describe the complex non-Newtonian fluid behaviour of mud. Although
a number of rheological models have been proposed in the past, mud sediments are often simply regarded
either as highly viscous Newtonian fluids or as Bingham fluids in many engineering applications. In this study,
we investigate the accuracy of the Bingham model for numerical predictions of the viscous forces on a plate
moving through fluid mud in laminar regime. In this context, a plate could be regarded as the flat bottom
of a ship hull. The aim is to provide CFD practitioners with information about the accuracy of the Bingham
model for the prediction of the frictional resistance of a ship sailing through fluid mud. This work presents a
comparison of experimental and numerical data on the resistance of a plate moving through fluid mud from
the Europoort area (Netherlands). Results suggest that the regularised Bingham model can be a reasonable
compromise between simplicity and accuracy for CFD simulations to investigate the effect of muddy seabeds
on marine vessels. A comparison between CFD data and analytical formulas is also presented.
1. Introduction

The influence of muddy seabeds on the ships’ manoeuvring be-
haviour has been studied experimentally, both at full (Barth et al.,
2016) and model scales (Sellmeijer and van Oortmerssen, 1984; Dele-
fortrie et al., 2005), for safe navigation in confined waters. However,
the outcome of these studies is difficult to generalise because of the
large number of parameters involved (under-keel clearance, mud layer
thickness, mud properties, ship’s geometry and speed, fairway cross-
section, etc.) and the complex non-Newtonian behaviour of mud. These
reasons, combined with the rapid growth of computing power over the
past decades, have made Computational Fluid Dynamics (CFD) the tool
of choice.

One of the open questions for CFD simulations of mud flows is
selecting a constitutive equation that adequately describes the complex
non-Newtonian behaviour of mud. In particular, mud exhibits vis-
coplasticity and thixotropy. Viscoplastic fluids start to flow only when
the shear stress level exceeds a threshold called the yield stress. Below
the yield stress, viscoplastic fluids behave as solid-like materials. On
the other hand, thixotropy implies that, under constant and sufficiently

∗ Corresponding author.
E-mail address: s.l.lovato@tudelft.nl (S. Lovato).

high shear, the yields stress and viscosity of mud decrease due to
changes in the internal microstructure, meaning that the rheological
properties are dependent upon the shear history. Depending on the
level of approximation required, the complexity of the models can
range from the simple Newtonian constitutive equation to the Bing-
ham and Herschel–Bulkley models and ultimately to time-dependent
(thixotropic) yield-stress models (see e.g. Chhabra and Richardson
(2008) for an overview of non-Newtonian constitutive equations).

More complex models are typically found in rheological studies
as their objective is to reproduce the rheology of mud as precisely
as possible. Coussot and Piau (1994) showed that mud suspensions
can be well described by the Herschel–Bulkley model, which has also
been used to characterise the mud from the Port of Emden (Ger-
many) (Wurpts, 2005) and it is recommended by PIANC (McBride et al.,
2014). Wright and Krone (1989) used a more complex model that
is parametrised with the solid content. Continuing with higher level
of complexity, Toorman (1997) proposed a five-parameter thixotropic
model that is an extension of the Moore (1959) and Worrall–Tuliani
(Worrall and Tuliani, 1964) models. van Kessel and Blom (1998) used
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the Toorman model for a comparison of the rheological properties of
artificial and natural mud from the Port of Rotterdam (Netherlands).
Recently, Shakeel et al. (2021) proposed a two-step yielding model
containing six fitting parameters that was based on the rheological
analysis of mud from the Port of Hamburg (Germany) (Shakeel et al.,
2020a,b).

Such complex rheological models may be unnecessary for large-
scale processes, where in fact simpler models have found their own
field of applicability. For example, the wave-induced motions of muddy
beds have been studied assimilating the mud to a Bingham fluid (Mei
and Liu, 1987; Liu and Mei, 1989; Ko-Fei and Mei, 1993; Chan and
Liu, 2009) or a Newtonian fluid (Jiang and Mehta, 1992; Winterwerp
et al., 2007). As a counterexample, however, Knoch and Malcherek
(2011) used a modified version of the Worrall–Tuliani model for nu-
merical simulations of stratified mud flows in coastal and estuarine
environments.

Simple rheological models seem preferred also to study the effect
of muddy seabeds on marine vessels, which is the application that
motivated this work. The ship-induced undulation at the water–mud
interface can result in a very large increase in the resistance due to the
internal wave at the water–mud interface. This is also known as the
‘dead-water’ effect (e.g. Miloh et al. (1993)), which has been studied
extensively either using the Newtonian model (Miloh et al., 1993;
Zilman and Miloh, 1995) or even assuming inviscid mud (Sano and
Kunitake, 2018). These strong simplifications could be justified by the
fact that viscosity plays a minor role in gravity waves. Recently, Gao
et al. (2015) and Kaidi et al. (2020) have performed CFD simulations
to study the influence of muddy seabeds on ships. The former modelled
the mud as an Herschel–Bulkley fluid, whereas the latter used the
Newtonian model as they observed little difference in the computed
resistance when the Bingham model was used.

In summary, simple models are often used for applications where
viscosity plays a minor role (e.g. propagation of gravity waves) or
where the fluid is highly sheared (e.g. in the boundary layer at the hull
of a ship). In fact, CFD practitioners are usually not interested in the
quality of the fit to the flow curves but rather in the accuracy of the
flow and force predictions. In the present work, the Bingham model is
used to characterise the rheology of mud as it is very simple and yet it
can capture an important feature of mud, i.e. viscoplasticity. To the best
of our knowledge, numerical predictions of the drag forces exerted on
bodies moving through mud have not been compared with experiments
before. This is an important aspect that can help CFD practitioners in
deciding whether a more complex model is required or not.

This work makes a first step forward by investigating the accuracy
of the Bingham model for numerical prediction of the resistance of a
plate moving through mud in laminar regime. In the context of ships
sailing through mud, the plate can be regarded as a part of the flat
bottom of a typical ship hull.

The article presents an analysis and comparison of experimental
and numerical data. The experiments consist of towing a plate in a
towing tank filled with mud from the Europoort area (Rotterdam,
Netherlands) and diluted with sea water from the same location. Three
mud conditions are considered, all with density below or equal to
1200 kg∕m3, in line with the nautical bottom criterion applied in several
arbours across the world (McBride et al., 2014; Kirichek et al., 2018).
umerical simulations were performed using a finite-volume CFD code.
inally, CFD results have been compared with predictions from simple
nalytical formulas.

. Experimental data

.1. Facility and setup

The experimental data were obtained in the ‘Water and Soil Flume’
2

t Deltares (Netherlands) (wsf). In the remainder, the flume will be i
Table 1
Main information about the experiments.

Plate Towing tank

Chord, 𝐿 (m) 0.8 Length (m) 30.0
Thickness, 𝑡 (m) 0.012 Width (m) 2.4
Draught, 𝑇 (m) 0.96, 1.0 Mud level, ℎ (m) 1.96, 2.0
Speed, V (m/s) 0.27, 0.52, 0.77, 1.02
𝐹𝑛 = 𝑉 ∕

√

𝑔𝐿 0.10, 0.19, 0.27, 0.36
𝐹𝑛ℎ = 𝑉 ∕

√

𝑔ℎ 0.06, 0.12, 0.17, 0.23

referred to as ‘towing tank’ as the latter better describes how it was
used in this work.

The towing tank is 30m long and 2.4m wide. The experiments
consisted in towing a smooth plywood plate through the mud in the
tank. The plate was attached to a carriage through a load cell (Fig. 1),
which enabled force measurements in the towing direction. The nomi-
nal towing speed of the carriage was varied between 0.25 and 1.0 m/s
and, for each speed, the tests were repeated eight times in order to
estimate the random scatter of the mean force.

The plywood plate has a chord of 0.8m and it is 0.012m thick.
For the tests with the most dense mud (Mud_23 in Table 2) the plate
was submerged by 0.96m, whereas for all other cases it was 1.0m.

he plate has been reinforced with vertical and horizontal wooden
eams to increase its stiffness and to reduce possible bending. The main
nformation about the experimental setup is summarised in Table 1.

To make an analogy with a ship, the aforementioned dimensions
orrespond to ℎ∕𝑇 = 2, where ℎ and 𝑇 are the mud depth and the
hip’s draught, respectively. This depth-to-draught ratio is considered
o be shallow enough to influence the forces acting on a sailing ship.
owever, the relative width of the plate is an order of magnitude lower

han expected for a ship, which practically eliminates the blockage and
he subsequent shallow water effects.

.2. Mud preparation

The mud was collected from the Calandkanaal (Europoort, Nether-
ands) and transported to the towing tank. In order to test the accuracy
f the Bingham model on different mud conditions, the mud was diluted
ith sea water (having the same salinity as the natural system) to
btain three densities that correspond to target yield stress values of
pproximately 10, 20 and 30 Pa.

To ensure the homogeneous properties within the towing tank, the
ud was stirred using a rotating mixer (Fig. 2), which has been towed

hree times back-and-forth prior the start of the experiments with each
ud. After the homogenisation, samples of mud were collected twice

before the start of the experiments and after about six hours) at three
pecific locations along the towing tank. Thus, six samples for each mud
ere analysed for the density and the rheological properties.

.3. Mud density and rheology

The bulk densities of the mud samples were determined by a
ortable density meter (Anton Paar, DMA 35). The mud rheology
as analysed using the HAAKE MARS I rheometer with a concentric

ylinder geometry (CC25) having a gap width of 1 mm. A Peltier
ontroller system was utilised to maintain the temperature at 20 °C
uring each experiment, which was the average temperature in the
owing tank.

The flow curves of the mud samples were obtained in controlled
hear rate mode with the following protocol: (i) shear rate ramp-up
rom 0 to 300 s−1 in 180 s, (ii) constant shear rate of 300 s−1 for 60 s,
nd (iii) shear rate ramp-down from 300 to 0 s−1 in 180 s. This protocol

s proven to be quite fast and repeatable to obtain the yield stress of
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Fig. 1. Schematic representation of the experiments (left) and picture of the plate immersed in mud (right).
Fig. 2. The rotating mixer used to homogenise the mud. The right panel shows the
mixer in action.

Table 2
Mean values (± standard uncertainty) of density and Bingham parameters for the three
mud dilutions. The mean values are calculated over the six samples of each mud.

Mud case 𝜌 (kg/m3) 𝜏𝐵 (Pa) 𝜇𝐵 (Pa s)

Mud_10 1171 ± 0.08% 9.96 ± 0.46% 0.0172 ± 0.67%
Mud_17 1190 ± 0.03% 17.3 ± 0.99% 0.0249 ± 0.63%
Mud_23 1200 ± 0.05% 23.0 ± 1.76% 0.0344 ± 2.56%

remoulded samples (Shakeel et al., 2021). Then, the ramp-down1 flow
curves between 200 and 300 s−1 were used for the least-squares fitting
of the Bingham model (Fig. 3). For simple shear flow, the Bingham
model reads

𝜏 = 𝜏𝐵 + 𝜇𝐵 �̇� , (1)

where 𝜏 (Pa) is the shear stress, �̇� (s−1) is the shear rate, 𝜏𝐵 (Pa) is
the Bingham yield stress and 𝜇𝐵 (Pa s) is the Bingham (or plastic)
viscosity. The mean density and the mean Bingham parameters (over
the six samples) of each mud are reported in Table 2, together with the
standard uncertainties that will be used for the estimation of the input
parameter uncertainties in the numerical simulations.

2.4. Analysis of experimental data

2.4.1. Calibration uncertainty
The experimental uncertainties were estimated following the proce-

dure in the ISO-GUM (International Organization for Standardization
(ISO), 1995). The first source of experimental uncertainty originates
from the calibration of the load cell, 𝑈𝑐𝑎𝑙. The calibration is needed to

1 The ramp-down curves were used because, after the mixing, the mud is
in a remoulded state.
3

Fig. 3. Ramp-down flow curves and Bingham fits for one of the six samples of each
mud.

find the coefficients that ensure the correct conversion of the measured
signal from Volt to Newton. This was done by attaching a thread to the
plate, and then pulling it in the flow direction with a dynamometer
that was previously calibrated using weights. The force was increased
from 4 to 24 𝑁 by constant increments of 2 N, and the calibration
coefficients were obtained from linear curve fitting. Thereafter, the load
cell was tested again using the found coefficients, and the maximum
observed discrepancy against the dynamometer was about 3.5%. One
possible explanation for such rather large discrepancy is that the load
cell, which is capable of measuring up to 1000 N, is working in a
low range of forces. In fact, the discrepancies between the load cell
and the dynamometer were lower when the applied forces were larger.
Another reason can be attributed to the non-perfect rigidity of the
system composed by the load cell and the plate. Eventually, it was
decided to adopt 𝑈𝑐𝑎𝑙 = 4% as a ‘Type B’ uncertainty.

2.4.2. Repeated tests uncertainty
The uncertainty in the mean force due to the repeated tests can be

estimated by statistical methods (‘Type A’ uncertainty). For a given mud
concentration and a given speed, tests were repeated eight times. In
order to determine the time window in which the force signal is sta-
tionary (see Fig. 4), the Transient Scanning Technique (TST) (Brouwer
et al., 2019) was applied using an open source code (Lemaire and
Klapwijk, 2021). Some force signals had to be discarded because it was
not possible to find any time window in which the signal appeared to
be statistically steady. This means that the actual number of repetitions
may be eventually equal or less than eight. After having established the
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r

Fig. 4. Instance of one of the force signals obtained at 0.27 m/s with Mud_10. Only
the steady part highlighted in the plot was used in Eq. (2).

time interval in which the force signal is stationary, the time-average
force 𝑅𝑖

𝑡.𝑎. was obtained from each 𝑖th signal as

𝑅𝑖
𝑡.𝑎. =

1
𝑛

𝑛
∑

𝑗=1
𝑓𝑗 , (2)

where 𝑛 is the number of sampling data points in the stationary time
interval and 𝑓𝑗 is the 𝑗th sampling force.

The final measured force is the mean of the time-average forces,
i.e.

𝑅𝑇 ≡ 𝑅𝑚𝑒𝑎𝑛 =
1
𝑁

𝑁
∑

𝑖=1
𝑅𝑖
𝑡.𝑎. , (3)

where 𝑁 ≤ 8 is the number of repetitions. Then, the (unbiased)
standard deviation of the repeated tests reads

𝑠 =

√

√

√

√
1

𝑁 − 1

𝑁
∑

𝑖=1
(𝑅𝑚𝑒𝑎𝑛 − 𝑅𝑖

𝑡.𝑎.)2 , (4)

whereas the standard uncertainty is

𝑢 = 𝑠
√

𝑁
. (5)

Finally, the expanded uncertainty of the repeated tests is

𝑈𝑟𝑒𝑝 = 𝑘 𝑢 , (6)

where 𝑘 is the coverage factor. Assuming that the mean force follows
the Student’s t-distribution, 𝑘 = 2.306 ensures a 95% confidence level
with eight repetitions (degrees of freedom). For the cases where some
signals had to be discarded, larger coverage factors were used.

2.4.3. Other uncertainties
Other uncertainties such as those due to manufacture tolerances

and precision of the measuring devices were assumed to be negligible
compared to the calibration and repeated tests uncertainties, therefore
they were not considered. Another important source of uncertainty
originates from the experimental setup. A way to account for this is to
repeat the tests after having disassembled and reassembled the plate,
the load cell and the steel beam to which the load cell is attached.
In this way, the possible variability in the setup, such as that due to
small misalignments of the plate with the carriage direction, would be
included in the uncertainties of the repeated tests. However, this was
not done as the time required would have been incompatible with the
time window available to complete the experiments. As will be shown
in Section 4.5, even small rotations of the plate can visibly increase
the resistance, thus the experimental uncertainties might have been
somewhat underestimated.
4

Table 3
Mean experimental resistance and relative percentage uncertainty.
𝑉 (m/s) 𝑅𝑇 (N) 𝑈𝑒𝑥𝑝 𝑅𝑇 (N) 𝑈𝑒𝑥𝑝 𝑅𝑇 (N) 𝑈𝑒𝑥𝑝

Mud_10 Mud_17 Mud_23

0.27 18.0 5.4 30.0 5.3 39.2 4.7
0.52 20.4 4.2 34.2 4.3 44.7 6.2
0.77 23.8 4.2 38.9 4.0 49.0 4.6
1.02 28.3 5.0 45.1 4.6 55.2 4.5

Fig. 5. Extrapolation to 𝑉 = 0 of the experimental resistance (divided by the side
surface of the plate) using a second-order polynomial. The Bingham yield stresses are
plotted with their standard uncertainties.

2.4.4. Total experimental uncertainty and mean forces
Finally, the experimental uncertainties 𝑈𝑒𝑥𝑝 relative to the mean

esistance of the plate were obtained as RMS of 𝑈𝑐𝑎𝑙 and 𝑈𝑟𝑒𝑝, and are
reported in Table 3 together with the mean experimental resistance 𝑅𝑇 .
As expected, the total resistance increases with speed and it is larger for
the higher mud concentrations. It is also worth noticing that 𝑅𝑇 ≠ 0
as 𝑉 → 0, contrary to what would be expected in Newtonian fluids
such as air and water. This is because of the mud yield stress, which
approximately increases the resistance by 𝜏𝐵𝑆, where 𝑆 = 2𝐿𝑇 , with
𝐿 and 𝑇 being the plate chord and draught, respectively. In fact, a good
estimate of the Bingham yield stress can be obtained by extrapolation to
𝑉 = 0 of 𝑅𝑇 ∕𝑆 with a second-order polynomial (Fig. 5). These estimates
are within 3% of the Bingham yield stress for the three muds. This is a
first indication that, for this application, the rheology of mud is reason-
ably well captured by the Bingham model. Note, however, that small
deflections of the plate might have increased the measured resistance
at the higher speeds (this is discussed in Section 4.5). Therefore, results
at the higher speeds must be interpreted with caution.

3. CFD setup

The experimental data reported in the previous section have been
compared with the predictions obtained with a CFD code, which solves
the governing equations of fluid dynamics using numerical meth-
ods. This section presents the governing equations, the computational
domain, the boundary conditions and it gives an overview of the
particular flow solver used for this work. Finally, the numerical and
input parameters uncertainties are discussed.

3.1. Governing equations

An important decision that will have significant impact on the
computing costs is to whether the free surface must be modelled or
not.

In a first crude approximation, the plate can regarded as a marine

vessel and the resistance can be divided into a viscous component
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Fig. 6. Pressure resistance computed with and without the free surface (𝑀 = 12000,
ee Section 3.5.2).

nd a wave component. The latter can be reasonably considered to
e a function of only the Froude number, 𝐹𝑛 = 𝑉 ∕

√

𝑔𝐿, where 𝑉 is
the speed, 𝑔 is acceleration of gravity and 𝐿 is the plate length. The

aximum 𝐹𝑛 for the plate is 0.36, a value that is typical of fishing
essels. For these type of vessels the wave resistance is roughly 60% of
he total resistance (Larsson and Raven, 2010). However, it is possible
o identify at least two reasons to neglect the wave resistance for the
ase of a plate moving in mud.

First, with the given dimensions, the plate has a wetted surface that
s roughly ten times that of a fishing vessel, thus the viscous component
s also roughly ten times larger. This already reduces the wave expected
esistance from 60% to about 15% of the total resistance. Second,
ven neglecting the yield stress, the least viscous mud (Mud_10) has
viscosity that is about twenty times that of water. Since in laminar

egime the drag on a flat plate scales with
√

𝜇𝐵 , the viscous resistance
in mud is at least four times larger than in water. This brings the
expected wave resistance for the highest speed down to only a few
percent of the total resistance, meaning that the effect of the free
surface could be neglected.

To further validate this assumption, preliminary calculations were
performed including the free surface, which was modelled using the
Volume-Of-Fluid (VOF) method (Hirt and Nichols, 1981). Simulations
were run in unsteady mode and the time integration was performed
implicitly with a first-order backwards Euler scheme. The convective
flux of the volume-fraction equation was discretised with an interface-
capturing scheme (Klaij et al., 2018) and the grid was refined around
the initial mud level. Fig. 6 shows that double-body (without free sur-
face) and free-surface calculations produce virtually the same pressure
resistance. In terms of the total resistance, the average and maxi-
mum difference are 0.3% and 0.9%, respectively, in percentage of the
double-body results.

In light of the above considerations, the contribution of the wave re-
sistance can be neglected, thus double-body calculations are performed
unless stated otherwise. The equations being solved are the incompress-
ible continuity and momentum equations (in Cartesian coordinates):

∇ ⋅ 𝒖 = 0 , (7)

𝜕𝜌𝒖
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖 𝒖) = ∇ ⋅ 𝝉 − ∇𝑝 , (8)

where 𝐮 is the velocity vector and 𝑝 is the pressure. The flow behaviour
of mud has been described by the Bingham constitutive equation, for
5

Fig. 7. Effect of the regularisation parameter, 𝑚, on the Bingham model for simple
shear flow.

which the deviatoric stress tensor, 𝝉 ≡ 𝜏𝑖𝑗 , reads:

⎧

⎪

⎨

⎪

⎩

𝜏𝑖𝑗 = 2
( 𝜏𝐵

�̇�
+ 𝜇𝐵

)

𝑆𝑖𝑗 for 𝜏𝐵 ≤ |𝜏𝑖𝑗 | ,

𝑆𝑖𝑗 = 0 for |𝜏𝑖𝑗 | < 𝜏𝐵 ,
(9)

where 𝑆𝑖𝑗 = 1∕2(∇𝐮 + ∇𝐮𝑇 ) is the deformation rate tensor, �̇� =
2
√

𝑆𝑖𝑗𝑆𝑖𝑗∕2 and |𝜏𝑖𝑗 | =
√

𝜏𝑖𝑗𝜏𝑖𝑗∕2.
In order to avoid numerical difficulties caused by the infinite

viscosity when �̇� = 0, the regularisation approach of Papanastasiou (Pa-
panastasiou, 1987) is used, thus the non-differentiable constitutive
equation Eq. (9) is replaced by

𝜏𝑖𝑗 = 2
[ 𝜏𝐵(1 − 𝑒−𝑚�̇� )

�̇�
+ 𝜇𝐵

]

𝑆𝑖𝑗 , (10)

here 𝑚 is the regularisation parameter. In the limit of 𝑚 → ∞, Eq. (10)
ends to Eq. (9), as shown in Fig. 7. The uncertainties originating from
he use of the regularisation are discussed in Section 3.5.2. The term
etween square brackets in Eq. (10) is often called apparent viscosity,
nd it reduces to 𝜇𝐵 for Newtonian fluids.

.2. Force calculations

One of the advantages of numerical methods over the experiments
s the possibility to distinguish between the frictional and the pressure
esistance. These components are calculated respectively as:

𝐹 =

(

∫𝑆𝑤

𝝉 ⋅ 𝒏𝑑𝑠

)

𝑥

, 𝑅𝑃 =

(

∫𝑆𝑤

−𝑝 ⋅ 𝒏

)

𝑥

𝑑𝑠 , (11)

here 𝑆𝑤 is the total wetted surface of the plate, 𝒏 is the unit normal
ector of the plate pointing outwards and the subscript 𝑥 indicates the
-component (flow direction). The total plate resistance, 𝑅𝑇 , is simply
he arithmetic summation of 𝑅𝑃 and 𝑅𝐹 .

.3. Computational domain and boundary conditions

Although experiments at the higher speed may have been affected
y small deflections of the plate, calculations will be initially performed
ith a plate perfectly aligned with the flow direction. The effect of the

otation will be investigated in Section 4.5.
In light of this, only the starboard side of the domain containing the

late has been modelled due to symmetry. The computational domain
as been discretised with H-type grids (Fig. 8). In order to reproduce
he experimental setup, two series of grids were generated: one where
he plate is immersed in the mud up to 1.0 meter (used for Mud_10 and
ud_17), and another where the plate is immersed up to 0.96 meter

used for Mud_23). For both series, the finest grid is made of about 1.77
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Fig. 8. Computational domain (finest grid) and boundary conditions.
million cells and the size of the first cell away from the plate surface
is 2 × 10−4, yielding the maximum 𝑦+ between 0.6 and 2.4 among all
calculations.

For the boundary conditions, the inflow velocity (towing carriage’s
speed) was applied at the inlet boundary, whereas the no-slip/non-
permeability condition was applied to the plate surface (Fig. 8). At
the outlet, a Dirichlet condition was imposed for the pressure while
symmetry conditions were applied to the top and symmetry plane. The
side and bottom boundaries were set as impermeable walls moving at
the same velocity of the inflow.

The inlet and outlet boundaries were placed at a distance equal to
2.5 and 5.25 plate lengths, respectively. Calculations performed with
twice the distance showed a maximum difference lower than 0.1%
in the plate’s drag, confirming that the domain is sufficiently long to
neglect the influence of the inlet and outlet boundaries.

3.4. Flow solver

The CFD code used for the present work is ReFRESCO (Vaz et al.,
2009), a viscous-flow code currently being developed and verified for
maritime purposes by the Maritime Research Institute of the Nether-
lands (MARIN) in collaboration with several non-profit organisations
around the world. The code solves incompressible momentum and
continuity equations, together with the volume-fraction equation for
free-surface calculations. Originally developed for Newtonian fluids,
ReFRESCO has been recently extended and verified for flow simulations
of Herschel–Bulkley fluids, of which Bingham is a particular case (Lo-
vato et al., 2018, 2021). The code includes a number of other features
such as cavitation and turbulence models, even for Herschel–Bulkley
fluids (Lovato et al., 2022), however they are not considered in the
present work.

Equations are discretised in strong-conservation form with a second-
order finite-volume method for unstructured mesh with cell-centred
co-located variables (see, e.g., the textbook of Ferziger and Perić
(1996)). Mass conservation is ensured with a pressure-correction equa-
tion based on a SIMPLE-like algorithm (Klaij and Vuik, 2013). The
convective fluxes of the transport equations are linearised with the
Picard method and discretised with the Harmonic scheme (van Leer,
1979).

3.5. Numerical uncertainties

For steady flows, numerical errors are usually divided into three
components: round-off, iterative and discretisation errors. However, the
use of the regularisation for the Bingham model produces additional
errors, hereafter labelled as regularisation errors. Present calculations
were performed on a double-precision machine, therefore round-off
6

errors are neglected and not further discussed.
Fig. 9. Grid sensitivity of 𝑅𝑇 for Mud_23, 𝑉 = 0.27 m∕s. The grid refinement ratios
are ℎ𝑖∕ℎ1 = 1, 1.12, 1.45, 2, which correspond to grids having 1.77, 1.26, 0.59, 0.22
millions cells, respectively,.

3.5.1. Iterative and discretisation uncertainties
Iterative errors stem from the use of iterative methods to find

the solution of the discretised equations. For this work, the iterative
convergence criterion was set to 𝐿∞ < 10−7. However, this convergence
tolerance was actually hardly met; thus, in practice, iterations were
stopped when the maximum number of iterations was reached. As a
result, iterative errors could not be neglected and the uncertainties, 𝑈𝑖𝑡,
were estimated using the method of Eça and Hoekstra (2009).

Discretisation errors arise from the use of grids with a finite number
of points, and from the use of finite differences instead of partial
derivatives. The discretisation uncertainties, 𝑈𝑑 , were estimated with
the method of Eça and Hoekstra (2014) using four geometrically similar
grids. Fig. 9 shows an example of the grid sensitivity of 𝑅𝑇 for Mud_23
and 𝑉 = 0.27 m∕s.

The iterative and discretisation uncertainties are reported in Table 4
for the pressure, friction and total resistance. The larger percentage
uncertainties are found in the pressure component, especially at low
speed, with a maximum 𝑈𝑃

𝑖𝑡 + 𝑈𝑃
𝑑 of about 16% for Mud_23. For the

frictional component, on the other hand, the uncertainties are much
lower and do not exhibit a clear trend. Overall, 𝑈𝑇

𝑖𝑡 +𝑈𝑇
𝑑 never exceeds

2.4%.

3.5.2. Regularisation uncertainty
The use of regularisation methods produces an additional error com-

ponent, the regularisation error, which is the difference between the
solution obtained with the regularised and the ideal (non-regularised)
model. This error can be minimised by using very large regularisation
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Table 4
Iterative and discretisation uncertainties in percentage of the corresponding resistance
component for the pressure, frictional and total resistance on the finest grid and keeping
the non-dimensional regularisation parameter at 𝑀 = 12000 (see also Section 3.5.2).
𝑉 (m/s) 𝑅𝑃 (N) 𝑈𝑃

𝑖𝑡 𝑈𝑃
𝑑 𝑅𝐹 (N) 𝑈𝐹

𝑖𝑡 𝑈𝐹
𝑑 𝑅𝑇 (N) 𝑈𝑇

𝑖𝑡 𝑈𝑇
𝑑

Mud_10
0.27 2.5 1.4 6.5 17.2 0.0 0.6 19.7 0.1 1.1
0.52 3.6 0.0 2.6 18.0 0.0 1.7 21.6 0.0 0.9
0.77 5.5 0.5 0.7 18.3 0.6 2.7 23.7 0.3 2.0
1.02 8.2 0.1 2.5 18.1 0.7 0.6 26.3 0.1 0.5
Mud_17
0.27 4.1 1.7 7.1 29.6 0.0 0.1 33.7 0.2 0.8
0.52 5.2 0.0 1.6 31.0 0.0 1.2 36.2 0.0 1.3
0.77 7.1 0.0 2.1 31.7 0.0 0.8 38.8 0.0 0.3
1.02 9.7 0.3 0.8 32.2 0.2 2.6 41.9 0.1 1.9
Mud_23
0.27 5.1 3.4 13.0 37.8 0.0 0.2 42.9 0.4 1.8
0.52 6.3 4.3 6.0 39.6 0.0 1.2 45.9 0.3 0.4
0.77 8.1 0.0 5.1 40.8 0.0 0.7 48.9 0.0 0.3
1.02 10.6 0.3 0.1 41.6 1.0 0.4 52.3 0.5 0.3

Table 5
Regularisation uncertainties in percentage of the corresponding resistance component
for the pressure, frictional and total resistance on the finest grid and 𝑀 = 12000.
𝑉 (m/s) 𝑈𝑃

𝑟𝑒𝑔 𝑈𝐹
𝑟𝑒𝑔 𝑈𝑇

𝑟𝑒𝑔 𝑈𝑃
𝑟𝑒𝑔 𝑈𝐹

𝑟𝑒𝑔 𝑈𝑇
𝑟𝑒𝑔 𝑈𝑃

𝑟𝑒𝑔 𝑈𝐹
𝑟𝑒𝑔 𝑈𝑇

𝑟𝑒𝑔

Mud_10 Mud_17 Mud_23

0.27 15.0 1.5 3.2 15.8 1.5 3.2 17.6 2.0 3.9
0.52 10.4 1.5 3.0 12.7 1.7 3.2 15.1 2.0 3.8
0.77 6.4 1.3 2.5 9.1 1.5 2.9 10.9 1.8 3.3
1.02 4.2 1.1 2.1 6.3 1.3 2.5 7.7 1.5 2.8

parameters. However, this often leads to slow or stagnating iterative
convergence. Furthermore, large regularisation parameters produce
stronger viscosity gradients and consequent larger discretisation errors.
Because of this interdependency, the final numerical uncertainty was
estimated as

𝑈𝑛𝑢𝑚 = 𝑈𝑖𝑡 + 𝑈𝑑 + 𝑈𝑟𝑒𝑔 , (12)

where 𝑈𝑟𝑒𝑔 is the regularisation uncertainty.
It is now convenient to introduce 𝜖 = 1∕𝑀 , where 𝑀 = 𝑚𝜏𝐵∕𝜇𝐵 is a

on-dimensional regularisation parameter, representing the ratio of the
aximum and minimum viscosity attainable by the fluid. In order to

stimate 𝑈𝑟𝑒𝑔 one needs to know how the solution varies with 𝜖. While
his is unknown for the present problem, Frigaard and Nouar (2005)
howed that for typical shear flows (like Poiseuille flow) of Bingham
luids, the 𝐿∞ and 𝐿2 error norms of the regularisation errors are
(𝜖) when using the Papanastasiou regularisation. Thus, in absence of
alidated methods to estimate 𝑈𝑟𝑒𝑔 from numerical data, it is reasonable
o estimate 𝑈𝑟𝑒𝑔 adopting the same method used for 𝑈𝑑 , with the grid
ize replaced by 𝜖, as shown in Fig. 10. The uncertainty estimates are
eported in Table 5, and they were obtained by varying 𝑀 between

4000 and 12000. Clearly, the pressure component is (percentage-wise)
the most sensitive to the regularisation, especially at low speeds, where
𝑈𝑃
𝑟𝑒𝑔 ranges between 15% and 17.6%.

A possible reason for the strong influence of 𝑀 on 𝑅𝑃 is that
affects the viscosity in low shear rate regions, such as near the

tagnation points at the front and rear face of the plate where 𝑅𝑃 is
enerated. In these regions, the pressure increases with 𝑀 (Fig. 11).
n the other hand, in the high shear rate region at the sides of the
late, where the friction component is generated, the viscosity is nearly
nsensitive to 𝑀 , explaining the lower sensitivity of 𝑅𝐹 . Fortunately,
he pressure contribution is small and so the uncertainties in 𝑅𝑇 are

within 4%.
In conclusion, 𝑀 = 12000 was adopted to mimic the ideal Bingham
7

model. w
Fig. 10. Sensitivity of 𝑅𝑇 to the inverse of the non-dimensional regularisation
arameter 𝜖 = 1∕𝑀 for Mud_23, 𝑉 = 0.27 m∕s. The refinement ratios are 𝜖𝑖∕𝜖1 =

1, 1.5, 2, 3, which correspond to M = 12000, 8000, 6000, 4000, respectively.

Table 6
Non-dimensional sensitivity coefficients 𝜕𝑅𝑇 ∕𝜕𝑋𝑖 𝑋𝑖∕𝑅𝑇 for each input parameter 𝑋𝑖:
late’s draught 𝑇 , carriage’s speed 𝑉 , mud density 𝜌, Bingham yield stress 𝜏𝐵 and
iscosity 𝜇𝐵 . 𝑋𝑖 is the mean input parameter that is used in the CFD simulations

whereas 𝑅𝑇 is the total resistance from the analytical formulas evaluated for 𝑋𝑖.
𝑉 (m/s) 𝜌 𝑇 𝑉 𝜏𝐵 𝜇𝐵 𝜌 𝑇 𝑉 𝜏𝐵 𝜇𝐵

Mud_10 Mud_23

0.27 0.04 1.00 0.10 0.94 0.02 0.02 1.00 0.04 0.97 0.01
0.52 0.12 1.00 0.28 0.83 0.05 0.07 1.00 0.17 0.90 0.03
0.77 0.21 1.00 0.49 0.72 0.07 0.12 1.00 0.30 0.83 0.05
1.02 0.30 1.00 0.70 0.61 0.09 0.18 1.00 0.43 0.75 0.07

3.6. Input parameters uncertainty

Numerical simulations require input parameters that are experimen-
tally determined and that have uncertainties associated with them.
The standard input uncertainty, 𝑢𝑖𝑛𝑝𝑢𝑡, can be calculated using the
perturbation method, as

𝑢2𝑖𝑛𝑝𝑢𝑡 =
∑

𝑖

( 𝜕𝑅
𝜕𝑋𝑖

𝑢𝑖
)2

, (13)

where 𝑅 is the resistance of the plate, 𝑋𝑖 is the 𝑖th input parameter,
𝑢𝑖 is its corresponding standard uncertainty, 𝜕𝑅∕𝜕𝑋𝑖 is the sensitivity
coefficient.

For the present work, the input parameters are the following:
plate’s draught 𝑇 , carriage’s speed 𝑉 (flow velocity), mud density 𝜌,
Bingham yield stress 𝜏𝐵 and viscosity 𝜇𝐵 . The standard uncertainties
associated with the mud properties were reported in Table 2. For 𝑇
and 𝑉 , the standard uncertainty could not be estimated with statistical
methods, therefore they were both assumed to be 1%. The sensitivity
coefficients could be determined from CFD calculations, however this
would lead to an unfeasible number of simulations. It was thus decided
to approximate the drag force on the plate by modelling CFD data
with the analytical formulas that are discussed in Section 5. While
there are some discrepancies between these formulas and CFD data,
the agreement is deemed sufficient for the purpose of determining the
sensitivity coefficients.

The derivation of 𝜕𝑅∕𝜕𝑋𝑖 from analytical formulas becomes then
a simple yet lengthy task, which was thus carried out with the aid of
computer algebra systems. Table 6 shows the non-dimensional sensitiv-
ity coefficients of 𝑅𝑇 with respect to each input parameter for Mud_10
and Mud_23.

The largest sensitivity coefficient is for the draught 𝑇 . As expected,
it is exactly equal to 1 (i.e. linear relation) since both 𝑅𝑃 and 𝑅𝐹 are
roportional to the plate surface, which is in turn a linear function of
. For all the other input parameters, the coefficients are less than 1,
hich means that the input uncertainty for 𝑅 grows less than linearly
𝑇
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Fig. 11. Effect of regularisation parameter 𝑀 on the apparent viscosity (left) and pressure coefficient (right) at the leading face of the plate for Mud_23 and 𝑉 = 0.27 m∕s. Viscosity
is in logarithmic scale. Flow is from left to right. The cutting plane is at 𝑧∕𝑇 = −0.5.
Table 7
Input parameter uncertainties in percentage of 𝑅𝑇 from CFD (𝑀 = 12000). The input
parameters are the: speed 𝑉 , plate draught 𝑇 , mud density 𝜌 and Bingham parameters
𝜏𝐵 and 𝜇𝐵 .
𝑉 (m/s) 𝑈𝑃

𝑖𝑛𝑝𝑢𝑡 𝑈𝐹
𝑖𝑛𝑝𝑢𝑡 𝑈𝑇

𝑖𝑛𝑝𝑢𝑡 𝑈𝑃
𝑖𝑛𝑝𝑢𝑡 𝑈𝐹

𝑖𝑛𝑝𝑢𝑡 𝑈𝑇
𝑖𝑛𝑝𝑢𝑡 𝑈𝑃

𝑖𝑛𝑝𝑢𝑡 𝑈𝐹
𝑖𝑛𝑝𝑢𝑡 𝑈𝑇

𝑖𝑛𝑝𝑢𝑡

Mud_10 Mud_17 Mud_23

0.27 2.2 2.1 2.1 2.8 2.7 2.7 4.0 3.8 3.8
0.52 2.3 2.2 2.2 2.7 2.6 2.6 3.5 3.7 3.7
0.77 2.2 2.3 2.3 2.6 2.7 2.6 3.3 3.7 3.5
1.02 2.1 2.5 2.4 2.5 2.8 2.6 3.0 3.7 3.5

with an increase of the standard uncertainty. Note, however, that the
coefficients in Table 6 are calculated for those particular test cases,
therefore different values should be expected for other experimental
conditions. Furthermore, the coefficients can be considered accurate
as long as the resistance of the plate can be well approximated by
the analytical formulas discussed in Section 5. For example, the linear
relation between 𝑅𝑇 and 𝑇 is accurate only for small variations of 𝑇
and, in any case, as long as the shallow water effects remain negligible.

Assuming a Gaussian error distribution, the final expanded input
uncertainties are 𝑈𝑖𝑛𝑝𝑢𝑡 = 2𝑢𝑖𝑛𝑝𝑢𝑡 (95% confidence) and they are reported
in Table 7. The largest 𝑈𝑖𝑛𝑝𝑢𝑡 is found for Mud_23 because the latter has
the highest uncertainty in 𝜏𝐵 (see also Table 2). Furthermore, 𝑈𝑖𝑛𝑝𝑢𝑡
decreases with 𝑉 , which reflects the behaviour of 𝜕𝑅𝑇 ∕𝜕𝜏𝐵 .

4. Comparison of experimental and CFD data

4.1. Modelling error estimation

According to the validation procedure proposed by ASME (ASME
PTC Committee, 2009), the modelling error, 𝛿𝑚𝑜𝑑𝑒𝑙, can be estimated
by comparing two quantities: the (expanded) validation uncertainty,

𝑈𝑣𝑎𝑙 =
√

𝑈2
𝑛𝑢𝑚 + 𝑈2

𝑒𝑥𝑝 + 𝑈2
𝑖𝑛𝑝𝑢𝑡 , (14)

and the comparison error,

𝐸 = 𝑆 −𝐷 , (15)

where 𝑆 is the numerical solution value and 𝐷 is the experimental data.
𝑈 , 𝑈 and 𝑈 are discussed above.
8

𝑛𝑢𝑚 𝑒𝑥𝑝 𝑖𝑛𝑝𝑢𝑡
Table 8
Comparison error, validation uncertainty and modelling errors in percentage of the
experimental data. In some cases the sign of the modelling errors could be determined
and it is reported between parenthesis.
𝑉 (m/s) 𝐸 𝑈𝑣𝑎𝑙 |𝛿𝑚𝑜𝑑𝑒𝑙| ≤ 𝐸 𝑈𝑣𝑎𝑙 |𝛿𝑚𝑜𝑑𝑒𝑙| ≤ 𝐸 𝑈𝑣𝑎𝑙 |𝛿𝑚𝑜𝑑𝑒𝑙| ≤

Mud_10 Mud_17 Mud_23

0.27 9.7 7.6 17.3 (+) 12.3 7.8 20.1 (+) 9.4 9.2 18.5 (+)
0.52 5.6 6.4 12.0 5.8 7.0 12.8 2.6 8.6 11.2
0.77 −0.1 6.8 6.9 −0.2 5.8 6.0 −0.1 6.8 6.9
1.02 −7.1 6.0 13.1 (-) −7.2 6.7 13.9 (-) −5.3 6.6 11.8

𝐸 and 𝑈𝑣𝑎𝑙 define an interval within which 𝛿𝑚𝑜𝑑𝑒𝑙 falls, i.e.

𝐸 − 𝑈𝑣𝑎𝑙 ≤ 𝛿𝑚𝑜𝑑𝑒𝑙 ≤ 𝐸 + 𝑈𝑣𝑎𝑙 . (16)

When |𝐸| ≫ 𝑈𝑣𝑎𝑙, the modelling error can be directly estimated as
|𝛿𝑚𝑜𝑑𝑒𝑙| ≈ |𝐸|. In all other cases, only the upper and lower bounds of
𝛿𝑚𝑜𝑑𝑒𝑙 can be determined. If more information about the modelling error
is required, the validation uncertainty needs to be reduced.

The estimated 𝛿𝑚𝑜𝑑𝑒𝑙, 𝑈𝑣𝑎𝑙 and 𝐸 using the Bingham model with
large regularisation parameters (𝑀 = 12000) are reported in Table 8
in percentage of the experimental value.

At intermediate speeds 𝐸 is close or within 𝑈𝑣𝑎𝑙, whereas at the
lowest and highest speed 𝐸 tends to exceed 𝑈𝑣𝑎𝑙. In any case, 𝐸 is never
sufficiently larger than 𝑈𝑣𝑎𝑙 to allow a direct estimate of 𝛿𝑚𝑜𝑑𝑒𝑙. In other
words, for all the cases, only the upper bound of the modelling error
could be estimated and, for a few cases, also the sign of the error could
be determined.

The largest upper bounds of the modelling errors are found at the
lowest speed for all three muds, which are also the cases with the
largest 𝐸. The lowest upper bound of the modelling errors is found
for 𝑉 = 0.77 m∕s because 𝐸 is very small for all the three mud
concentrations. At this speed, there is an intersection of the numerical
and experimental data (see Fig. 12).

The two main observations from Fig. 12 are: (i) the variation of
resistance due to the changes of mud rheology is well captured by CFD;
(ii) the slopes of the experimental and CFD curves are visibly different.
The first observation suggests that the Bingham model is suitable, at
least, to study how 𝑅𝑇 changes in response to variations of the mud
concentration. About the second observation, CFD tends to over-predict
𝑅 at low speed and to under-predict it at high speed. This trend
𝑇



Ocean Engineering 258 (2022) 111632S. Lovato et al.

o

Fig. 12. Total resistance of the plate moving through mud as a function of the inflow
velocity. CFD error bars include numerical and input parameter uncertainties. CFD data
were obtained keeping the non-dimensional regularisation parameter at 𝑀 = 12000 (see
also Section 3.5.2).

suggests that 𝐸 will increase in magnitude for speeds outside the range
considered in this work. Some possible causes for this may be the:

- choice of the regularisation parameter
- selected shear rate range for the rheological characterisation of

mud
- poor fitting of the Bingham model to the flow curves at low shear

rates (see e.g. Fig. 3)
- contamination of experimental data by undesired effects

These possible causes are discussed below.

4.2. Effect of the regularisation parameter

It was just shown that the largest discrepancies between experi-
ments and CFD are found at the lowest speed for all the three mud
conditions. Since lower speeds are related to lower shear rates, a
possible explanation for this may be the poor modelling of mud at
low shear rates. Experimental evidence (e.g. Dzuy and Boger (1985),
Ellwood et al. (1990)) suggested that most real fluids do not exhibit an
actual yield stress and that regularised models may better capture the
behaviour of non-Newtonian materials at low shear rates.

In light of this, it is now questioned whether the rheology of
mud may be better described using lower regularisation parameters.
A natural choice could be to determine the regularisation parameter,
𝑚, from the rheological data. Among the many possible choices, three
procedures to determine 𝑚 are considered:

• 𝑀𝑑𝑜𝑤𝑛: 𝑚 is chosen such that the regularised curve will intersect
the first point in the ramp-down flow curve, i.e.

𝑚 = − ln
(

1 +
𝜇𝐵 �̇� ′ − 𝜏′

𝜏𝐵

) 1
�̇� ′

, (17)

where the prime symbol indicates the first point in the (ramp-
down) flow curve. Note that 𝜏𝐵 and 𝜇𝐵 do not change as they
are determined from the least-square fitting of the ideal Bingham
model (see also Section 2.3).

• 𝑀𝑢𝑝: 𝑚 is also obtained from Eq. (17) but using the ramp-up
curve.

• 𝑀𝑓𝑖𝑡: the triplet (𝑚, 𝜏𝐵 , 𝜇𝐵) is obtained by least-square fitting of

𝜏 = 𝜏𝐵(1 − 𝑒−𝑚�̇� ) + 𝜇𝐵 �̇� (18)

to the ramp-down curve.
9

Fig. 13. Regularised Bingham model using different regularisation parameters: 𝑀 =
12000, 𝑀𝑑𝑜𝑤𝑛, 𝑀𝑢𝑝 and 𝑀𝑓𝑖𝑡. The flow curves are for Mud_23.

Table 9
Mean values (± standard uncertainty) of the non-dimensional regularisation parameters
btained from the rheological data. The velocity is in SI units.
𝑉 (m/s) 𝑀𝑢𝑝 𝑀𝑑𝑜𝑤𝑛 𝑀𝑓𝑖𝑡

Mud_10 538 ± 5.7% 687 ± 1.3% 236 ± 1.8%
Mud_17 708 ± 1.8% 658 ± 0.3% 224 ± 1.2%
Mud_23 747 ± 13.3% 556 ± 1.1% 191 ± 1.7%

𝑀𝑑𝑜𝑤𝑛 and 𝑀𝑢𝑝 ensure that the regularised Bingham model produces
the same apparent viscosity observed in the first point of the ramp-
down and ramp-up flow curves, respectively. An alternative procedure
similar to 𝑀𝑑𝑜𝑤𝑛 and 𝑀𝑢𝑝 would be to extrapolate the apparent
viscosity to �̇� = 0 and then use the extrapolated value to derive the reg-
ularisation parameter. The latter procedure would be less susceptible to
the noise in the first point of the rheological data.

The Bingham fits obtained using the three procedures above are
illustrated in Fig. 13, whereas the non-dimensional regularisation
parameters are reported in Table 9.

Note that since 𝑚 is now determined from the mud rheology, the
regularisation uncertainty must be estimated as an input parameter
uncertainty,

𝑈𝑟𝑒𝑔 = 𝑘 𝑢𝑟𝑒𝑔 = 𝑘 𝜕𝑅
𝜕𝑚

𝑢𝑚 , (19)

where 𝑅 is the resistance. 𝑢𝑚 is the standard uncertainty for six repeti-
tions (number of mud samples) and 𝑘 = 2.447 with 95% confidence
assuming a Student t-distribution. The derivative in Eq. (19) is un-
known, thus it was approximated with a second-order accurate finite
difference,
𝜕𝑅
𝜕𝑚

≈
𝑅(𝑚 + 𝑢𝑚∕2) − 𝑅(𝑚 − 𝑢𝑚∕2)

𝑢𝑚
, (20)

where the two terms at the numerator were determined from numerical
simulations for each mud condition and speed. For most of the test
cases, we found that the regularisation uncertainties have been reduced
compared to the calculations with 𝑀 = 12000.

The closest fit to the ramp-down curve is obtained with 𝑀𝑓𝑖𝑡,
whereas 𝑀𝑢𝑝 and 𝑀𝑑𝑜𝑤𝑛 tend to over-predict the shear stress in the
low shear rate range (Fig. 13). However, these observations are not
reflected by the accuracy in the force prediction. Fig. 14 shows in fact
that 𝑀𝑓𝑖𝑡 produces by far the worst agreement to experimental data,
whereas 𝑀𝑢𝑝 and 𝑀𝑑𝑜𝑤𝑛 produce fairly good predictions at the lower
speeds. In particular, 𝑀𝑢𝑝 seems to capture very well the trend at low
speeds. At 𝑉 = 0.27 m∕s, the comparison error, 𝐸, reduces to 1.1%,
0.9% and 4.9% for Mud_10, Mud_17 and Mud_23, respectively. Except
for Mud_23, 𝑀 and 𝑀 produce nearly the same results.
𝑑𝑜𝑤𝑛 𝑢𝑝
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Fig. 14. Effect of different regularisation parameters on the CFD predictions of the
plate resistance.

Fig. 15. Highlighted in magenta are the cells where �̇� ≥ 300 𝑠−1 for Mud_23 near the
leading and bottom edge of the plate. 𝑉 = 1.02 m∕s (left); 𝑉 = 0.27 m∕s (right). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

In conclusion, although the fit using 𝑀𝑓𝑖𝑡 appears closer the mud
flow curves, it gives by far the worst numerical prediction. On the
other hand, determining the regularisation parameter based on the
first points in the flow curves seems to give good agreement with
experimental data at low speed. However, the discrepancies become
larger at the higher speeds.

4.3. Effect of the shear rate range for the rheology characterisation

Despite the improvements observed at low speeds when the reg-
ularisation parameter is determined from the mud rheology, the
discrepancies at high speed remain large (even larger than the case with
𝑀 = 12000). Since higher speeds are related to higher shear rates, a
possible explanation may be sought in the shear rate range considered
for the rheological experiments.

Fig. 15 highlights the fluid regions where the shear rate is above 300
𝑠−1, the latter being the maximum shear rate reached in the rheological
measurements. These regions are located near the plate edges, where
the fluid experiences strong accelerations. As expected, the case at the
higher speed has larger fluid regions with �̇� ≥ 300 𝑠−1. It is possible
that fitting the Bingham model to the flow curve up to 300 𝑠−1 is
insufficient to accurately predict the force at high speeds (shear rates).
Since rheological data for �̇� > 300 𝑠−1 are not available, the Bingham
parameters corresponding to flow curves with higher �̇� have been
obtained by extrapolation. Basically, the Bingham parameters were
10
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Fig. 16. Bingham yield stresses, 𝜏𝐵 , obtained using different shear rate intervals having
�̇�𝑚𝑎𝑥 as maximum (open circles); linear fitting of 𝜏𝐵 values for �̇�𝑚𝑎𝑥 ≤ 300 𝑠−1 (dashed
lines); extrapolated 𝜏𝐵 for �̇�𝑚𝑎𝑥 = 400 𝑠−1 (filled squares).

Fig. 17. Effect of the maximum shear rate in the rheology characterisation on the CFD
predictions of the plate resistance.

obtained by varying the maximum shear rate,2 �̇�𝑚𝑎𝑥, between 200 and
300 𝑠−1. Then, the Bingham parameters were linearly3 extrapolated up
to �̇�𝑚𝑎𝑥 = 400𝑠−1, as illustrated in Fig. 16 for 𝜏𝐵 . It was observed that
𝜏𝐵 increases with �̇�𝑚𝑎𝑥, whereas 𝜇𝐵 decreases (not shown).

Numerical simulations were performed for the case 𝑀𝑢𝑝 as an exam-
ple, which was observed to produce good agreement with experiments
at low speed but larger discrepancies at high speed (see Section 4.2).
Note that the values of 𝑀𝑢𝑝 are not the same as in Table 9 because the
Bingham parameters have changed.

Fig. 17 shows that increasing �̇�𝑚𝑎𝑥 seems to slightly improve the
agreement with experimental data. This is because higher �̇�𝑚𝑎𝑥 gives
higher 𝜏𝐵 , which shifts up the CFD data. However, the slopes of the
CFD curves are still visibly different from the experimental ones. This
is because the slopes of the CFD curves are related to 𝜇𝐵 , but the latter
has a rather small influence on the resistance (see also Table 6).

In conclusion, while increasing the maximum shear rate in the
rheological tests leads to slightly better agreement with experimental
data, it does not explain the discrepancies at the higher speeds.

4.4. Effect of using a more complex rheological model

Can the CFD predictions become more accurate by simply improving
the fit of the rheological model to the flow curves? We showed that

2 The interval used for the Bingham fitting is [�̇�𝑚𝑎𝑥 -100𝑠−1, �̇�𝑚𝑎𝑥]
3 It is implicitly assumed that the ramp-down curve will continue up to

̇ = 400𝑠−1 without major changes.
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Fig. 18. Comparison of the Bingham and Tscheuschner models for one (ramp-down)
flow curve of Mud_23.

Table 10
Mean values (± standard uncertainty) of the Tscheuschner parameters.

Mud case 𝜏0 (Pa) 𝑚 (s) 𝜇1 (Pa s) 𝜇2 (Pa s𝑛) 𝑛

Mud_10 3.61 0.433 0.0146 3.97 0.103
Mud_17 8.07 0.372 0.0249 5.48 0.112
Mud_23 12.06 0.322 0.0295 6.34 0.118

𝑀𝑓𝑖𝑡 gives the closest fit to the ramp-down curve while producing the
orst resistance prediction. This is now further investigated using the

egularised Tscheuschner rheological model (Mezger, 2020), which can
e adjusted to be a virtually perfect fit of the ramp-down flow curves
Fig. 18). This model was originally developed for chocolate and it pro-
ides a somewhat mixed behaviour of Bingham and Herschel–Bulkley
luids. For simple shear flows, the model reads

= 𝜏0
(

1 − 𝑒−𝑚�̇�
)

+ 𝜇1�̇� + 𝜇2�̇�
𝑛 , (21)

here 𝜇1 and 𝜇2 determine the slope of Eq. (21) at high and low shear
ates, respectively. The quintuplet (𝑚, 𝜏0, 𝜇1, 𝜇2, 𝑛) was obtained by

least squares fitting of Eq. (21) to the ramp-down curve of the six mud
samples, and the mean values (reported in Table 10) were fed to the
CFD solver.

In spite of its excellent fit to the flow curves, the Tscheuschner
model produces strong underestimations of the resistance (Fig. 19),
especially at low speed. At the higher speed, the Tscheuschner model
tends to produce the same results as the Bingham model with 𝑀𝑢𝑝.
The maximum and minimum comparison errors among all cases are
respectively 13% and 25%. The reasons for the poor predictions of the
Tscheuschner model despite being an excellent fit of the ramp-down
flow curves are not clear. However two possible explanations are given.

First, the protocol used for the rheological experiments may not be
accurate enough at low shear rates. Thus, capturing the ramp-down
flow curve down to the lowest value of �̇� may give worse numerical
predictions simply because of inaccuracies in the flow curves. Second,
a possible reason can be the thixotropy of mud. Although the mud
was heavily mixed prior the experiments, a partial structural recovery
has certainly occurred during the tests, thus the ramp-down may not
be a very accurate representation of the flow behaviour of mud, in
particular at low speeds/shear rates. Using thixotropic models may help
in this regard. On the other hand, the Bingham model, which fits the
ramp-down flow curve only in the higher shear rate range, seems to be
somewhat between the ramp-up and ramp-down curves (see Fig. 13),
which may be an acceptable compromise for high-shear flows.
11
Fig. 19. Total resistance using the Bingham and Tscheuschner model. The
Tscheuschner uncertainty bars are set to 5% as a reference.

Fig. 20. Schematic representation of the mechanism responsible for the possible
increased rotations of the plate at the higher speeds.

4.5. Effect of non-zero angles of attack

Another possible explanation for the discrepancies at high speed
could be sought in the experimental data rather than in the rheological
model.

The alignment of the plate with the flow direction is one of the main
challenges when performing towing experiments. While the increase
in resistance due to small misalignments may be negligible with low
velocities, it could become substantial at higher speeds. In fact, increas-
ing the angle of attack mainly increases the pressure resistance, which
is proportional to 𝑉 2. In turn, stronger pressure disturbance can also
increase the wave resistance. Furthermore, for the present experiments,
the load cell was attached to the plate at about 1∕3𝐿 from the leading
edge (Fig. 20). But the centre of pressure for flat plates is approximately
at 1∕4𝐿 from the leading edge, meaning that an initially small angle of
attack could have been amplified at higher speeds. The magnitude of
this amplification depends upon the rigidity of the mechanical system
formed by the plate and the load cell.

Unfortunately, the angle of attack is not known, thus correcting
experimental data for this effect is not possible. Nevertheless, the effect
of the plate rotation can be modelled numerically to verify whether the
trend of the experimental data can be better captured.

Calculations were thus performed after applying a grid deformation
(rotation around the z-axis). Since the rotation of the plate can increase
the wave resistance, calculations were performed including the free
surface, with the same settings as in Section 3.1. Obviously, since the
problem is no longer symmetrical, calculations were performed on the
full domain instead of half, as shown in Fig. 21.

It is remarked that the uncertainties in the CFD data are no
longer known both because the input uncertainties cannot be simply
determined from analytical formulas (as was done in Section 3.6)
and because performing a grid/regularisation refinement study for

these computations was deemed outside of the scope of the present
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Fig. 21. Simulated mud free surface for Mud_10 at V=1.02 (left) and 0.52 m/s (right).
Both simulations are with an angle of attack of 3 degrees and 𝑀 = 12000. Flow is from
left to right.

Fig. 22. Resistance of the plate moving through mud. CFD data are obtained with
an angle of attack of 3 degrees and including the effect of the free surface. CFD
uncertainties are relative to the analogous double-body calculations with zero angle
of attack.

study. As reference, the uncertainties from the analogous double-body
calculations with zero angle of attack are shown.4

Although the actual angle of attack is unknown, an angle between 1
and 5 degrees appears to be reasonable choice since, with larger angles,
the deflection would have likely been detected during the experiments,
even by the naked eye. In light of this, the effect of an angle of attack
of 3 degrees on the resistance is illustrated in Fig. 22 for the cases 𝑀𝑢𝑝
and 𝑀 = 12000. Interestingly, the trend of the experimental data is
now well predicted by CFD. In particular, 𝑀𝑢𝑝 almost duplicates the
experimental data, whereas the ideal Bingham model (𝑀 = 12000)
captures the trend of the experimental data but it visibly over estimates
the resistance.

It is thus inferred that experimental data at the highest speeds are
likely contaminated by a rotation of the plate. This also suggests that
lower regularisation parameters (e.g. 𝑀𝑢𝑝) produce better prediction
than the ideal Bingham model, which tends to over-estimate the total
resistance.

The difference in the predictions between 𝑀𝑢𝑝 (low regularisation
parameter) and 𝑀 = 12000 (very high regularisation parameter) is
mainly due to the pressure component. In particular, this appears
to be related to the larger viscosity in the low deformation regions

4 The actual uncertainties are likely larger than those of the double-body
calculations because of the additional discretisation errors produced by the
volume-fraction equation.
12
(i.e where the regularisation is activated), as for example at the rear
stagnation point (Fig. 23, left panel). For 𝑀 = 12000, such high
viscosity leads to higher pressure on the right surface (pressure side)
and to lower pressure on the left surface (suction side) compared to
𝑀𝑢𝑝 (Fig. 23, right panel). Similar observations were also made above
when analysing the regularisation uncertainty.

4.6. Final remarks on the regularisation parameter and proposed rule of
thumb

We recall that the general rule when using regularisation methods
is to use the highest possible regularisation parameter in order to
mimic the ideal model as closely as possible. This approach, however,
can lead not only to larger discrepancies with experimental data (see
Section 4.2) but also to numerical difficulties, such as stagnating or
even diverging residuals in the iterative solver.

It was shown that these issues can be mitigated by using lower
regularisation parameters based on the first point in the flow curves.
Although this procedure is purely empirical and no physical explana-
tions were provided, a general rule of thumb could be devised. In fact,
for all the mud conditions considered in this work, the non-dimensional
regularisation parameters obtained from the first point in either the
ramp-up (𝑀𝑢𝑝) or ramp-down (𝑀𝑑𝑜𝑤𝑛) were between 538 and 747. A
reasonable rule of thumb to choose the regularisation parameter is thus
𝑀 = 𝑚𝜏𝐵∕𝜇𝐵 ≈ 800. This means that the mud apparent viscosity in low-
deformation regions is about 800 times the viscosity of mud in the high
shear rate regions (e.g. boundary layers). Further research is needed
to verify the applicability of such an empirical approach to other test
cases.

5. Comparison of CFD data with analytical formulas

The frictional component of the total resistance, 𝑅𝐹 , originates from
the shear stress acting on the side surfaces of the plate. These surfaces
can be approximated as flat plates. A friction coefficient for laminar
Bingham flows over flat plates was derived by Chhabra and Richardson
(2008) using a third degree polynomial approximation for the velocity
profile:

𝐶𝑅𝐹 ≡
𝑅𝐹

1∕2𝜌𝑉 2𝑆
= 1.292

√

𝑅𝑒
+ 𝐵𝑛 , (22)

where 𝑅𝑒 = 𝜌𝑉 𝐿∕𝜇𝐵 is the Reynolds number and 𝐵𝑛 = 𝜏𝐵∕(1∕2𝜌𝑉 2)
is the Bingham number. 𝑆 is the surface of the flat plate that, for the
present work, is 2𝐿𝑇 . Eq. (22) is identical to its Newtonian counterpart
when 𝐵𝑛 = 0. Therefore, we propose a slightly different version that
reduces to the well-known Blasius formula when 𝐵𝑛 = 0, i.e.

𝐶 ′
𝑅𝐹 = 1.328

√

𝑅𝑒
+ 𝐵𝑛 . (23)

The comparison of Eq. (23) with CFD data is plotted in Fig. 24. At
the lower speeds, the agreement is excellent, with an average difference
of about 2% relative to CFD. On the other hand, the agreement seems
to deteriorate at higher speeds. In particular, the numerical predictions
appear to decrease with speed, which may be surprising. However,
this can be explained by the presence of a recirculation region near
the leading edge (Fig. 25). In this region, the velocity is relatively
low, leading to lower shear rate (and consequently shear stress) at the
wall. As expected, we found that the recirculation region is larger for
Mud_10, which is the least viscous mud.

For the case of a ship moving through mud, Eq. (23) shows that (for
laminar mud flow) the increase in frictional resistance due to the yield
stress is well approximated by 𝜏𝐵𝑆𝑚𝑢𝑑 , where 𝑆𝑚𝑢𝑑 is the surface area of
the hull in contact with mud. In case of turbulent flow, however, direct
numerical simulation on pipe flows (Rudman and Blackburn, 2006;
Singh et al., 2017) showed that a drag reduction is actually expected
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Fig. 23. Contour diagram at the rear part of the plate with an angle of attack of 3 degrees. Apparent viscosity (left); hydrodynamic pressure coefficient (right). The cutting plane
is at 𝑧∕𝑇 = −0.5 (𝑇 is the plate’s draught) and the test case is Mud_23, 𝑉 = 1.02 m∕s.
Fig. 24. Comparison of the frictional resistance obtained with Eq. (23) and CFD using
large regularisation parameters (𝑀 = 12000).

Fig. 25. Contour diagram of velocity (left) and shear rate (right) near the leading edge
for Mud_10 (𝑀 = 12000). Lowest speed (top); highest speed (bottom). Shear rate is in
logarithmic scale.
13
with increasing yield stress. In this case, 𝜏𝐵𝑆𝑚𝑢𝑑 can still be used as an
upper bound.

The pressure component, 𝑅𝑃 , originates from the pressure differ-
ence acting on the front and rear faces of the plate. For Newtonian
fluids it may be reasonable to simply use the stagnation pressure
applied over the front surface. However, the yield stress influences the
pressure significantly, thus this is a too crude approximation.

A possible alternative would be to use the formula proposed
by Nirmalkar et al. (2013) for the pressure resistance coefficient, 𝐶𝑅𝑃 ,
based on CFD simulations of the Bingham laminar flow over a square
cylinder:

𝐶𝑅𝑃 ≡
𝑅𝑃

1∕2𝜌𝑉 2𝑆𝑓
= 27

𝑅𝑒∗
, (24)

where 𝑆𝑓 = 𝑡𝑇 is the projected frontal area of the cylinder, 𝑅𝑒∗ =
𝑅𝑒∕(1 + 𝐵𝑛 ∗) is the modified Reynolds number and 𝐵𝑛∗ = 𝜏𝐵𝐿∕(𝜇𝐵𝑉 )
is the canonical Bingham number. The conditions of the present work,
however, differ from those in Nirmalkar et al. (2013). First, Eq. (24)
was derived for 0.1 < 𝑅𝑒 < 40, whereas for our test cases 7500 < 𝑅𝑒 <
56000. Second, the plate has an aspect ratio of about 66.7 instead of 1.

It was thus decided to use instead the following cubic relation in
logarithmic scale:

log10 (𝐶𝑅𝑃 ) = log10 (𝑘1) + 𝑘2 log10 𝑅𝑒∗ + 𝑘3(log10 𝑅𝑒∗)2

+𝑘4(log10 𝑅𝑒∗)3 ,
(25)

where 𝑘1 = 41.58, 𝑘2 = −1.132, 𝑘3 = 0.1148 and 𝑘4 = 0.0313 are the
fitting parameters obtained by least-square fitting of Eq. (25) to the
present CFD data (𝑀 = 12000) for 𝐶𝑅𝑃 . Eq. (25) corresponds, in linear
scale, to

𝐶𝑅𝑃 = 𝑘1𝑅𝑒
𝑘2+𝑘3 log10 𝑅𝑒∗+𝑘4(log10 𝑅𝑒∗)2
∗ . (26)

Fig. 26 shows that Eq. (26) is an excellent fit of the CFD data, with a
maximum difference of 0.42%. Furthermore, while Eq. (24) may still be
acceptably accurate for low 𝑅𝑒∗ (low speed, high mud concentration),
it is not adequate at higher 𝑅𝑒∗, where the simple stagnation pressure
applied to the front face of the plate (𝐶𝑅𝑃 = 1) appears to be closer to
CFD data.

The total resistance obtained combining Eqs. (23) and (26) agrees
well with CFD data (see Fig. 27), with larger discrepancies at higher
speeds stemming from the frictional component. In conclusion, the
analytical formulas provide reasonably good estimates of 𝑅 , with
𝑇
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Fig. 26. Pressure resistance coefficients versus the modified Reynolds number (top)
nd pressure resistance versus speed (bottom).

Fig. 27. Comparison of the total resistance predicted by analytical formulas and CFD
data.

average and maximum difference of 3.6% and 12.4%, respectively,
relative to CFD.

Finally, since the trend of the CFD data is reasonably well cap-
tured, Eqs. (23) and (26) have been used to determine the sensitivity
14

coefficients for the input parameter uncertainties (see Section 3.6).
6. Conclusions

We have investigated the accuracy of the Bingham model for CFD
applications concerned with marine vessels sailing through fluid mud.
As a simplified case, the laminar flow over a plate was considered in
order to primarily investigate the influence of the mud properties on
the frictional part of the resistance.

The comparison with experimental data showed that the ideal Bing-
ham model (𝑀 = 12000) well captures the relative increase of the
resistance due to the increase of mud concentration. On the other hand,
at low speed (i.e. low shear), the ideal Bingham model tends to over-
predict the resistance. Better predictions at low speed were achieved
by using lower regularisation parameters (500 < 𝑀 < 800), determined
from the first points in the mud flow curves.

It was observed that the Tscheuschner model, which is a virtually
perfect fit of the ramp-down flow curves of mud, produced strong
under-predictions of the resistance, especially at low speed. The reasons
might be the thixotropy of mud and possible inaccuracies of the rheo-
logical protocol at low shear rates. The main message is that improving
the fit of the ramp-down curve does not necessarily lead to better
numerical predictions of the plate resistance. In this regard, further
research is needed to investigate whether thixotropic models would
improve the numerical predictions.

In addition, it was observed that the computed forces can be fairly
well approximated by simple analytical formulas. This allowed to
quantify the influence on the resistance of each input parameter.

We found convincing indications that experimental data at high
speed have been affected by unwanted non-zero angles of attack of the
plate. When an angle of attack of 3 degrees was included in the CFD
calculations, the trend of the experimental data was very well captured.
Therefore, the experimental results need to be interpreted with due cau-
tion. Further work is recommended to provide new experimental data
with higher rigidity and a better alignment of the plate. Nonetheless,
the following observations were made:

• The ideal Bingham model (𝑀 = 12000) tends to over-predict the
experimental data, with an average and maximum comparison
error of 13 and 19%, respectively. Nevertheless, the model ap-
pears suitable, at least, to investigate how the resistance changes
in response to changes in the mud properties.

• Using lower regularisation parameters (500 < 𝑀 < 800) produces
better predictions, with comparison errors that are within or close
to the validation uncertainties. A possible rule of thumb to select
the regularisation parameter could thus be 𝑀 ≈ 800.

The generalisation of these results is subject to a number of limita-
ions related to the mud. First, towing tank experiments were conducted
n dilutions of the natural mud collected in the harbour area. However,
iluted and natural mud can exhibit different rheological characteris-
ics (Shakeel et al., 2020c). Second, this study was limited to three mud
onditions, thus our findings cannot be extrapolated to all types of mud.
uture studies with other mud conditions would be interesting.

As the flow was assumed to be laminar, it can be argued that
his study is valid for the case of a ship moving very slowly through
ud (e.g. while docking). However, in the turbulent regime, the non-
ewtonian effects would reduce, thus the choice of the rheological
odel would become even less important. In other words, if the Bing-
am model is deemed suitable for the present work, it will be most
ikely suitable also for turbulent flows, provided that the rheological
nalysis is carried out with an appropriate shear rate range (Singh et al.,
016). In the context of a ship moving through mud, the shear rate
an range from zero in undisturbed fluid regions to ∼ 104 s−1 in the

turbulent boundary layer. How to reliably characterise the rheology of
mud in such a wide range of shear rates remains, however, an open
question.

Lastly, since a ship moving above (i.e. not through) a mud layer
can still experience a significant increase of resistance due to the mud–
water undulation, it would be worthwhile to investigate the accuracy

of the Bingham model also for these types of scenarios.
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