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Trajectory Prediction Sensitivity Analysis
Using Monte Carlo Simulations

Julia Rudnyk∗, Joost Ellerbroek†, and Jacco M. Hoekstra‡

Control and Simulation, Faculty of Aerospace Engineering,
Delft University of Technology, Delft, the Netherlands

To facilitate the increasing amount of air traffic, current and futuredecision support tools for
air traffic management require efficient and accurate trajectory predictors. With uncertainty
inherent to almost all inputs of a trajectory predictor, accurate predictions are not a simple task.
In this study, Monte Carlo simulations of a trajectory predictor are performed to estimate the
prediction uncertainty up to 20 minutes look-ahead time and to assess the correlation between
inputs and prediction errors. Selected inputs are aircraft bank angle, constant calibrated
airspeed (CAS) and Mach number speed settings, vertical speed, temporary level-offs, air
temperature, lapse rate, wind, and air traffic control intent. These inputs are provided in the
form of their distribution functions obtained from observed data. Simulations are performed
for heavy, medium and light wake turbulence category (WTC) aircraft. Results indicate that
at 20 minutes look-ahead time, when outliers are not considered, along-track errors can reach
up to 50 nautical miles for heavy and medium WTC and 100 nautical miles for light WTC
aircraft. Cross-track errors aremostly within 3 nautical miles for heavy andmediumWTCand
8 nautical miles for light WTC. Altitude errors can reach up to 25,000 feet. Wind conditions,
vertical speed and CAS/Mach number speed settings are determined to be the most influential
inputs.

I. Nomenclature

a, b, c wind vertical profile function’s coefficients
AE altitude error, f t
ATE along-track error, nmi
b0i, bi regression coefficients
CIw confidence interval width
CTE cross-track error, nmi
eappr relative error of integral approximation
g gravitational acceleration, g = 9.81ms−2

h altitude, f t
hp predicted altitude, f t
ht true altitude, f t
M Mach number
N number of samples
n sample size
p air pressure at the considered altitude, Nm−2

p0 sea level air pressure, p0 = 101325Nm−2

R specific gas constant, R = 287.05287m2K−1s−2

r turn radius, nmi
r2 coefficient of determination
rP Pearson correlation coefficient
rS Spearman correlation coefficient

VT AS true airspeed, kts
VW wind speed, kts
VS vertical speed, f t · min−1

u west-east wind direction (East positive), kts
v north-south wind direction (North positive), kts
w wind direction, deg
X set of function inputs (Xi , X j ,..., Xn)
x horizontal position, Eastern direction, nmi
xp predicted horizontal position, Eastern direction, nmi
xt true horizontal position, Eastern direction, nmi
Y system output, Y = f (X)
y horizontal position, Northern direction, nmi
yp predicted horizontal position, Northern direction, nmi
yt true horizontal position, Northern direction, nmi
zα/2 critical value of z (z-score) for a significance level α
γ adiabatic index of air, γ = 1.4
∆T air temperature offset from ISA, K
µ population mean
λ lapse rate, K · km−1

ρ air density at the considered altitude, kg · m−3

ρ0 sea level air density, ρ0 = 1.225kg · m−3
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SXi sensitivity measure of Y to Xi

T air temperature at the considered altitude, K
TISA ISA air temperature at the considered altitude, K
VCAS calibrated airspeed, kts
VGS ground speed, kts

σ population standard deviation
φ bank angle, deg
ψa aircraft heading, deg
ψg track angle (i.e. course), deg
ψgp predicted track angle (i.e. course), deg

II. Introduction

It is a prevalent forecast that air traffic will grow in coming years [1, 2]. To be able to facilitate this growth, numerous
decision support tools are being developed with the purpose to assist in such tasks as flight planning, air traffic flow

and capacity management, arrival and departure management, conflict detection and resolution, metering, sequencing,
and merging.

All of these tasks require the ability to predict the future positions of aircraft. To facilitate this, a Trajectory
Predictor (TP) provides aircraft positions in three dimensions for a number of time instances into the future. Trajectory
prediction is a complex process which requires information related to aircraft performance, meteorological conditions,
and flight intent, and is performed through the integration of aircraft equations of motion. All information that is
required for the prediction process and can vary per flight (e.g. aircraft type, wind conditions, vertical and/or horizontal
constraints) can be referred to as input parameters or inputs. Information that does not vary per flight (e.g. equations
of motion, gravitational acceleration, Earth radius, coordinate system) is referred to as model and model parameters.
Assuming that model and model parameters are realistic and correct, the accuracy of prediction depends on the accuracy
of the inputs. It occurs often that the availability of particular input values is (temporarily) limited or absent, and that
assumptions have to be made to initiate the prediction process. For instance, for Medium Term Conflict Detection
(MTCD), a prediction is usually made up to 20 minutes look-ahead time. For this, rather large in aviation, time interval
the accurate knowledge of the weather conditions, Air Traffic Control (ATC) instructions and aircraft modes of operation
is crucial. These are often not known and either assumed to have standard values or disregarded. Differences between
reality and assumptions result in prediction errors, which in turn diminish the added value of decision support tools.

An often proposed solution to this problem would be to ensure that inputs are known with high certainty (e.g. by
downlinking some data or computed trajectory from aircraft [3–5]). However, not all inputs can be precisely known in
advance (e.g. weather, ground delays, ATC instructions).

To study the extent of prediction uncertainty induced by uncertain inputs, sensitivity analyses have been performed,
where one input was varied at a time, while the rest were kept constant at their reference values [6–9] (see Table 1 for
a list of common inputs studied in the previous sensitivity studies). This is known as local sensitivity analysis, and
usually, inputs are varied from their reference value either by some fixed ± percentage, the standard deviation, or some
absolute value. Although this approach is fast, simple, and provides an estimation of each input contribution to output
uncertainty, it does not allow to study the combined influence of all inputs and results strongly depend on the chosen
reference values. Another way to study uncertainty is to perform a global sensitivity analysis, where all inputs are varied
at the same time from their probability distribution functions. In this way, a conclusion can be made about individual
and combined contributions of inputs to prediction uncertainty. Casado (2016) developed a framework to estimate
prediction uncertainty using arbitrary Polynomial Chaos Expansion and compared its performance with Monte Carlo
simulations (both are types of a global sensitivity analysis), where the majority of inputs’ distributions was assumed to
be normal [10], whereas in related work [11, 12] some inputs were described with uniform and triangular distributions.
While the simultaneous variation of inputs is representative when modeling trajectories, the assumed distributions may
be not.

The objective of this paper is therefore to address this issue by performing Monte Carlo simulations with distributions
of the inputs obtained from observed data. The simulations were conducted per aircraft wake turbulence category
(WTC) and the selection of TP inputs was based on the conclusions of previous research [6–10, 13–16] about significant
input parameters. Considered inputs included aircraft bank angle, constant calibrated airspeed/Mach number speed
settings, vertical speed, temporary level-offs in the climb and descent phases, air temperature and lapse rate, wind speed
and wind direction, and ATC intent. Prediction uncertainty is estimated as a function of a look-ahead time up to 20
minutes and inputs’ contribution to prediction errors is assessed based on the computed correlation coefficients.
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Table 1 Trajectory predictor inputs studied in previous research

Studied inputs Reference
Wind Gradient Mondoloni [6, 8, 9], Gerretsen [7]
Wind Field Mondoloni [6, 8, 9], Gerretsen [7]
Air Temperature Gerretsen [7], Mondoloni [9]
Weather Forecast Ensembles Casado [10]
Aircraft Mass Mondoloni [6, 8, 9], Gerretsen [7], Casado [10]
Speed Settings Mondoloni [6, 8, 9], Gerretsen [7], Casado [10]
Thrust Settings Gerretsen [7]
Aircraft Performance Mondoloni [8], Casado [10]
Aircraft Configuration Gerretsen [7]
Top of Descent Placement Mondoloni [6, 8, 9], Casado [10]
Temporary Level-off Mondoloni [6, 8, 9]
Vector Instruction from ATC Mondoloni [8]
Aircraft Intent Casado [10]
Initial Conditions Casado [10]

III. Sensitivity Analysis
This section serves as a short introduction to a common approach of sensitivity analysis (local sensitivity analysis)

and to an approach chosen for this study (global sensitivity analysis).
A sensitivity analysis can be performed to determine which inputs of a TP are more significant or influential than

others. In the field of sensitivity analysis, there is a distinction between sensitivity and uncertainty analysis [17, 18]. A
sensitivity analysis allocates uncertainty in the model output(s) to uncertainty in model inputs. Most often, a sensitivity
analysis is performed by measuring sensitivity indices or other measures. An uncertainty analysis is meant to quantify
uncertainty in model output(s) due to uncertainty in model inputs and as a result identify sensitive inputs. Uncertainty
analysis methods are used to sample inputs and propagate their uncertainty through the model, which allows to estimate
sensitivity. Usually, uncertainty and sensitivity analyses are performed together, which often results in calling it
altogether Sensitivity Analysis. Depending on the purpose of the study and the choice of methods, both sensitivity and
uncertainty analysis could be performed or only one of them. In this paper, both uncertainty and sensitivity analyses are
performed and the generalized term of Sensitivity Analysis (SA) will be further used to refer to them. Two types of SA
can be distinguished: local and global. A summary of common approaches to local and global SA is given below.

A. Local Sensitivity Analysis
A local SA uses a one-at-a-time (OAT) sampling approach, where only one input parameter is varied at a time, while

the rest is kept at their reference or nominal values [17, 18]. By changing one parameter at a time, a conclusion can be
made about what inputs contribute to changes in output and to what extent. The biggest limitation of OAT is that it
strongly depends on the reference (nominal) value of each input. For instance, consider a case when aircraft speed
settings are varied, while other inputs are kept at their reference values. When the value of drag is calculated, only speed
variations contribute to the changes in drag. In reality, however, this is not true. Together with changes in speed, the
aircraft mass and atmospheric conditions would also contribute to the magnitude of the drag. The assumption of inputs at
their nominal values might hide interesting results of a combined impact of several inputs and is an oversimplification of
the reality. For a local SA, one could take partial derivatives or change inputs with a certain step around a nominal value.
A derivative-based SA is based on computing a partial derivative of output Y with respect to the ith input Xi (Eq. (1)).

SXi =
∂Y
∂Xi

(1)

While Eq. (1) is a straightforward way of expressing the sensitivity of Y to Xi , the obtained measure of sensitivity is
representative only at the point where it is computed. The latter implies that if one wants to perform a derivative-based
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SA of a non-linear system and obtain an average response ofY to Xi , Eq. (1) must be computed at a set of different points
in the space of Xi . A sensitivity measure in Eq. (1) can be normalized to remove the units by multiplying it by Xi/Y .

Another approach of a local SA is to increase and decrease an input by a standard deviation (±SD) or by a percentage
(e.g. (±5%)) from a nominal value. Then, the output is computed for these local points and compared to the output
obtained at a nominal value.

B. Global Sensitivity Analysis
Usually, a global SA uses all-at-a-time sampling approach where all inputs are varied at the same time from their

distribution functions or entire feasible space [17, 18]. A simultaneous variation of all inputs allows to investigate
the sensitivity of output to each input and a combined impact due to interactions. A common approach to conduct a
global SA is to run Monte Carlo simulations. Monte Carlo method applies sampling, which is a process of randomly
drawing variables form their distribution functions. Usually, Monte Carlo simulations include the following steps: 1)
sample inputs from the distribution functions; 2) compose input vectors containing sampled inputs; 3) run a model
for all input vectors. Using chosen metrics for a model output evaluation, uncertainty analysis can be performed by
computing output distribution and statistics. Then, scatter plots can be used to inspect the sensitivity of output to each
input. Sensitivity measure can be obtained by performing a linear regression or by computing a correlation coefficient
for input Xi and output Y [17]. For a linear regression analysis, Eq. (2) is assumed to describe a linear relationship
between the output and input where coefficients b0i and bi are obtained using least-square computation.

Y = b0i + biXi (2)

1. Correlation Coefficient and Coefficient of Determination
There are two types of correlation coefficients that are frequently used to estimate the relationship between two

variables: Pearson and Spearman correlation coefficients. The Pearson correlation coefficient, rP , measures the linear
relationship between two continuous variables X and Y :

rP =

n∑
i=1
(Xi − X̄)(Yi − Ȳ )√

n∑
i=1
(Xi − X̄)2

√
n∑
i=1
(Yi − Ȳ )2

(3)

Here n is the sample size, {X1, ..., Xn} is the X dataset, {Y1, ...,Yn} is the Y dataset, X̄ and Ȳ are the sample mean of
X and Y datasets, respectively.

The Spearman correlation coefficient, rS , measures the monotonic relationship between two variables. In a
monotonic relationship, the change of two variables does not have to be at a constant rate. The Spearman correlation
coefficient is equal to the Pearson correlation coefficient of the ranked values of the variables. For ranking, the values
are ordered (usually in ascending order) and the index of a value in this ordered list is its rank. When all ranks are
distinct integers, the Spearman correlation coefficient can be computed as follows:

rS = 1 − 6
∑

di2

n(n2 − 1)
(4)

Here di is the difference between the ranks of Xi and Yi .
Both correlation coefficients vary between -1 and +1. 0 implies no correlation, -1 or +1 imply an exact relationship.

Positive correlation means that with an increase of X , Y increases, whereas negative correlation means that with an
increase of X , Y decreases.

To illustrate the difference between the Pearson and Spearman correlation coefficients, Fig. 1 shows the relation
between variables X and Y , where Y = exp(X), and indicates the computed correlation coefficients. The relationship
between X and Y is not perfectly linear (i.e. rP = 0.69), however, it is perfectly monotonic (i.e. rS = 1.00).

Furthermore, a coefficient of determination, r2 = rP2, can be computed, which measures how much variance in
the dependent variable Y is explained by the independent variable X . r2 ranges from 0 to 1 and when multiplied by
100 indicates the percentage of the variance. 0% means no variance in Y can be explained by X and 100% means all
variance in Y can be explained by X .
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Fig. 1 Pearson and Spearman correlation coefficients for X and Y variables, where Y = exp(X).

IV. Study Setup
This section outlines the inputs to Monte Carlo simulations and the source of their distribution functions, describes a

TP used in this study and illustrates the computation of true trajectories and predictions. Furthermore, a technique
to compute prediction errors is presented and an approach to estimate the required number of simulation runs is
demonstrated. Lastly, the importance of a suitable random number generator is addressed.

A. Input Data and Sampling
In this study, all input parameters are assumed to be independent, meaning that each input is sampled from its

distribution function independently from the values of other inputs. Considered inputs include bank angle, constant
calibrated airspeed (CAS) and Mach number speed settings, vertical speed, temporary level-offs in the climb and descent
phases, air temperature and lapse rate, wind speed and wind direction represented by the wind components, and ATC
intent. Here, ATC intent includes direct-to, heading, speed, and climb to instructions. The distribution functions of all
parameters, where applicable per WTC, were determined by Rudnyk et al. (2018) [19]. Additionally, ten flight routes
within Europe and ten aircraft types for each WTC were sampled assuming a uniform distribution.

Although the input distribution functions were obtained from observed data, when sampling from the estimated
distribution functions, values larger/smaller than the maximum/minimum observed values can be sampled. Moreover,
sampled CAS and Mach number could be larger than the maximum operating speed limits (VMO and MMO) of a
particular aircraft type or could result in a speed smaller than the minimum speed (Vmin). Therefore, constraints were
imposed (see Table 2) on some inputs to ensure sensible values.

Table 2 Input parameters’ limits

Parameter Units Minimum Maximum
Bank angle degrees 5 35
Mach number - Vmin MMO
CAS knots Vmin VMO
Rate of climb feet per minute 500 4000
Rate of descent feet per minute 500 3000
Temporary level-off seconds 20 500

To facilitate the analysis of the Monte Carlo simulations, each input was sampled only once per flight phase as
indicated by the + symbol in Table 3. In this study, three flight phases are distinguished: climb, cruise and descent.
Whereas for some inputs a single value might be a reasonable assumption (e.g. a lapse rate or a constant CAS/Mach
number speed profile), the majority of the parameters might vary throughout a phase. The air temperature was modeled
using a temperature offset from the standard temperature (i.e. temperature according to ICAO International Standard
Atmosphere (ISA)). Values of the air temperature offset and the lapse rate were the same in all phases of a flight. The
wind speed and the wind direction were modeled with u and v wind components as a function of altitude. The proportion
of flights that received an ATC instruction was as follows: 59.5% received a direct-to instruction; 14.2% had a heading
instruction; 4.3% received a speed instruction; 0.9% were instructed to climb 10 flight levels at 1,000 feet per minute.
21.1% of flights did not receive any ATC instruction. Furthermore, the duration of such ATC instructions as heading
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and speed were sampled from a uniform distribution with a minimum of 30 seconds and maximum of 180 seconds.

Table 3 Inputs sampling per flight phase

Parameter Climb Cruise Descent
Air temperature offset + + +
Lapse rate + + +
Wind + + +
Bank angle + + +
Mach number + + +
CAS + - +
Vertical speed + - +
Temporary level-off + - +
ATC instruction - + -

B. Trajectory Simulator/Predictor
Since both speed settings and vertical speed are sampled from the distribution functions, a trajectory simula-

tor/predictor was developed employing a kinematic approach. The equations of motion used for the flight profile
computation are given in Eq. (5) to Eq. (8). The earth was assumed to be flat, non-rotating and used as an inertial
reference frame. A Cartesian East, North, Up coordinate system was used where the origin of the system coincides with
the first point of a trajectory.

Ûx = VGS sinψg (5)

Ûy = VGS cosψg (6)

Ûh = VS (7)

Ûψg =
VGS

r
(8)

The ground speed VGS and the turn radius r were obtained using Eq. (9) and Eq. (10) respectively. The true airspeed of
an aircraft VT AS was converted from the CAS (Eq. (11)) or the Mach number (Eq. (12)).

VGS =

√
V2
T AS
+ V2

w − 2 · VT ASVw cos(w − ψa) (9)

r =
V2
GS

g · tan φ
(10)

VT AS =

√√
2γ
γ − 1

p
ρ

[(
1 +

p0

p

[(
1 +

γ − 1
2γ

ρ0

p0
V2
CAS

) γ
γ−1

− 1
] ) γ−1

γ

− 1
]

(11)

VT AS = M
√
γ · R · T (12)

The wind speed Vw and the wind direction w were computed from the u and v wind components (Eq. (13) and Eq. (14)
respectively), which were determined as a function of a flight level (FL) x, f (x) = ax2 + bx + c.

Vw =
√

u2 + v2 (13)

w = atan2(−u,−v) (14)
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The air temperature offset ∆T as well as the lapse rate λ were used for the temperature T and pressure p calculations
below the tropopause as follows:

T = T0 + ∆T + λh (15)

p = p0

(
T − ∆T

T0

) −g
λR

(16)

Since temporary level-offs and ATC instructions are procedural parameters, they are not described with equations,
and their execution was triggered by certain events. Provided the vertical flight profile includes a temporary level-off in
the climb and/or descent phase, an aircraft leveled upon reaching the given FL for a time interval sampled from the
temporary level-off duration distribution. The ATC instructions were only given in the cruise phase (one instruction per
flight) as follows. A direct instruction to a certain waypoint was given at a specific location of a route (i.e. all flights
following the same route received the same direct-to instruction). A heading instruction (turn left/right 10, 15 or 20
degrees) was issued to an aircraft after the top of climb for a time interval as sampled from its duration distribution.
After the heading instruction was completed, an aircraft returned to its intended route. Taking into account the MMO,
a speed instruction was given as a Mach number for a time interval as sampled from its duration distribution. An
instruction to climb 10 FLs at 1,000 feet per minute was issued at around the middle of the cruise phase.

C. True Trajectories and Predictions
After inputs were sampled from their distribution functions, N true trajectories were simulated. These true

trajectories resemble the possible real flights. Then, for each true trajectory, predictions were made up to 20 minutes
look-ahead time utilizing a time interval moving window. For every minute of the true trajectory flight time, the
prediction was updated with the correct position and altitude, and trajectory prediction was reinitialized. A one minute
update rate mimics the update of surveillance data. Although, surveillance data are usually updated at a rate of 4 to 12
seconds, a one minute update rate was considered to be sufficient for the purposes of this study.

For both true trajectories and predictions, the same trajectory simulator/predictor was used. For the predictions,
inputs were set according to the common assumptions and BADA aircraft performance model [20]. Table 4 indicates
which setting were chosen for each input. The atmospheric conditions were set to ISA (e.g. ISA temperature and
standard lapse rate). The wind conditions were sampled from the same distribution functions that were used for the true
trajectories (i.e. wind forecast). The bank angle was assumed to be 25 degrees, and the Mach number and CAS speed
settings were extracted from BADA according to the aircraft type. The vertical speed was set to the values somewhat
lower than those used by the present operational TPs. In this case, a compromise was made between the commonly used
values and the median values of the vertical speed distributions estimated from observed data. As often assumed, no
temporary level-offs and ATC instructions were taken into account in these predictions.

Table 4 Inputs’ settings for predictions

Parameter Climb Cruise Descent
Air temperature offset 0 0 0
Lapse rate -6.5 K/km -6.5 K/km -6.5 K/km
Wind forecast forecast forecast
Bank angle 25 deg 25 deg 25 deg
Mach number BADA BADA BADA
CAS BADA - BADA
Vertical speed 2,500 fpm - -1,500 fpm
Temporary level-off - - -
ATC instruction - - -

A simple algorithm was used to reinitialize the predictions at an update. The starting position and altitude were set
to those of the true trajectory, and the prediction was started. In case the starting position was off-route (e.g. direct-to
instruction), the prediction would be performed by rejoining the initial route at the next waypoint downstream.
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While the expected cruise altitude is not reached, the prediction would be done for the climb phase with transitioning
to the cruise phase, where applicable. Once the altitude of the true trajectory equals the cruise altitude, the prediction
would be performed for the cruise phase, with transitioning to the descent phase at the precomputed top of descent,
where applicable. Once the true trajectory is in the descent phase, the prediction is performed for the descent phase.

The reinitialization algorithm does not adjust the prediction inputs according to the states of a true trajectory other
than position, altitude and phase. For instance, if, at the moment of an update, the speed of an aircraft is different from
the one used in the prediction, the speed used for the prediction won’t be updated. Same stands for the vertical speed.
Although this results in a somewhat unrealistic prediction process, it is not expected to have a significant influence on
the overall trends of the prediction errors’ magnitudes.

D. Prediction Errors
For each prediction, three errors were computed for 5, 10, 15 and 20 minutes look-ahead time: along-track error

(ATE), cross-track error (CTE) and altitude error (AE). The ATE and CTE was calculated using Eq. (17) and Eq. (18)
respectively. The AE was computed using Eq. (19).

ATE = (xp − xt ) sinψgp + (yp − yt ) cosψgp (17)

CTE = (xp − xt ) cosψgp − (yp − yt ) sinψgp (18)

AE = hp − ht (19)

These errors were subsequently used to assess the prediction uncertainty with a look-ahead time and to determine
the influence of inputs. The errors were analyzed per flight phase, which was determined by the true trajectory. For
instance, if the errors were computed when the true flight was in the climb phase and the predicted flight was in the
cruise phase, the errors would be attributed to the climb phase. This was done to conform with how inputs are sampled
for the true trajectories, which is per flight phase.

E. Number of Runs
To determine how many true trajectories should be simulated, two numbers were calculated: a number of samples,

N , to ensure a small relative error of Monte Carlo sampling and a sample size, n, to ensure statistical significance of the
obtained results. When samples are randomly drawn from the distribution function, this approximates the evaluation of
an integral [21, 22]. The relative error eappr of this approximation can be estimated as in Eq. (20). In this study, the
relative error, eappr , of 0.01 was assumed. Rearranging Eq. (20) to find N results in N = 10, 000 samples.

eappr =
1
√

N
(20)

An accuracy requirement can also be imposed on the future results, which requires the computation of a sample
size [23]. Assuming the resulting outputs are normally distributed, this can be done by specifying a significance level α
and a confidence interval width CIw:

CIw = 2zα/2
σ
√

n
(21)

To compute the sample size n, Eq. (21) can be rearranged as:

n =
(2zα/2σ

CIw

)2
(22)

Equation (22) requires a value of a population standard deviation, σ. Since this value is not known, an assumption
could be made or test simulations could be performed with some sample size (50, 100, 500, etc.) to determine the
value of a sample standard deviation, which could be assumed equal to the population standard deviation. Instead, it is
possible to rewrite Eq. (22) without a population standard deviation by expressing the confidence interval width as a
percentage of the population standard deviation. For instance, when CIw equals 5% of σ, Eq. (22) can be written as:
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n =
(2zα/2σ

0.05σ

)2
=

(2zα/2
0.05

)2
(23)

The sample size was obtained for α = 0.05, which gives a confidence level of 95% and z-score of 1.96. Substituting
this in Eq. (23) results in n = 6, 147 samples. This value means that at least 6,147 samples are necessary to be
95% confident that a sample mean will be within half of the confidence interval width of a population mean (i.e.
µ ± CIw/2 = µ ± 0.025σ).

Based on the obtained values for N and n, the largest one (i.e. 10,000) was chosen as a number of Monte Carlo
simulation runs for each WTC aircraft.

F. Random Number Generator
The Monte Carlo sampling process makes use of pseudorandom numbers, which resemble truly random numbers.

This allows to ensure the repeatability of the simulations’ randomness. Pseudorandom numbers are generated by
a pseudorandom number generator (PRNG) and can be represented as a sequence of uniformly distributed random
numbers on the interval [0, 1) [21]. A PRNG can be provided with a seed, which is a number that initializes the sequence
of resulting generated numbers. When a PRNG is given the same seed over several simulations, it will produce the same
sequence of random numbers in these simulations. A PRNG is characterized by a (sequence) period which determines
how many random numbers can be generated before they start repeating. The generator with a longer period is more
useful. For instance, if a sequence contains 100 random numbers and sampling is done 10,000 times, the same sequence
will be repeated 100 times. This would give the same results as sampling 100 times and does not ensure good sampling.
In this study, Python library numpy was used to sample inputs from their distribution functions. Numpy uses the
Mersenne Twister PRNG, which is a 32-bit random integer generator and has a period of 219937 − 1 [24].

V. Results
Two types of results were obtained in this study as a function of a flight phase for 5, 10, 15 and 20 minutes look-ahead

time: the prediction uncertainty (errors’ distribution) and the correlation between the inputs and the prediction errors.
Results are presented for heavy, medium and light WTC aircraft.

A. Prediction Uncertainty
To assess prediction uncertainty, errors’ distributions are plotted as box plots. For analysis purposes, the box plots

were studied with and without outliers. The former demonstrates the maximum errors and is provided below mainly for
illustrative purposes, whereas the latter allows to investigate the errors’ distribution in a greater detail and focuses on the
most frequent errors.

Figures 2, 3 and 4 present the results for heavy, medium and light WTC aircraft, respectively, with (sub-figures a, b,
c) and without (sub-figures d, e, f ) outliers. As expected, the ATE and CTE grow with a look-ahead time in all phases.
Errors for heavy and medium WTC aircraft are similar in magnitudes and demonstrate comparable trends. For 20
minutes look-ahead time, ATEs are mostly less than 50 nmi and CTEs are less than 3 nmi. Larger ATEs and CTEs occur
in the cruise phase due to ATC instructions and a prolonged wind impact. Whereas the CTE is predominantly centered
at zero, in the climb and descent phases, the ATE median shifts above and below zero, respectively, with an increase of
the look-ahead time. This can be a result of errors’ computation between the points located on the different segments of
a route which bends. Furthermore, consistently different speed settings or wind conditions (e.g. speed settings sampled
for the true flights are consistently lower than speed settings used for the predictions) could also contribute to such
errors’ trends.

The trends of ATEs for light WTC aircraft are similar to those of heavy and medium WTC aircraft; however, the
magnitudes are much larger. At 20 minutes look-ahead time, the errors can reach up to 100 nmi. Most likely, such a
difference is the result of frequently different speed settings sampled for the true flights compared to the speed settings
used for the predictions. This indicates that the distributions used for the speed settings of light WTC aircraft are
considerably inaccurate. The magnitudes of CTEs in the cruise and descent phases (within 8 nmi) are also larger than
those of heavy and medium WTC which is likely to be influenced by the speed settings as well. Additionally, the
computation of errors between the points located on the different segments of a route contributes to large errors.

Whereas the ATE and CTE steadily increase with a look-ahead time, the AE has a different trend. In the climb
phase, the AE has the largest spread at 10 minutes look-ahead time and in the descent phase at 15 minutes for heavy and
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(a) Climb. With outliers (b) Cruise. With outliers (c) Descent. With outliers

(d) Climb. Without outliers (e) Cruise. Without outliers (f) Descent. Without outliers

Fig. 2 Prediction uncertainty with look-ahead time for heavy WTC.

(a) Climb. With outliers (b) Cruise. With outliers (c) Descent. With outliers

(d) Climb. Without outliers (e) Cruise. Without outliers (f) Descent. Without outliers

Fig. 3 Prediction uncertainty with look-ahead time for medium WTC.

medium WTC and at 20 minutes for light WTC aircraft. Starting from 15 minutes look-ahead time in the climb phase,
the AEs are equal to or larger than 0 which is a result of all true trajectories being at the same or lower altitude than
predicted (i.e. most likely predictions reached the cruising altitude). Additionally, for all look-ahead times in the climb
phase, the AE is not centered at zero, which indicates that the choice of the vertical speed settings for the prediction is, in
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(a) Climb. With outliers (b) Cruise. With outliers (c) Descent. With outliers

(d) Climb. Without outliers (e) Cruise. Without outliers (f) Descent. Without outliers

Fig. 4 Prediction uncertainty with look-ahead time for light WTC.

most cases, inaccurate. In the cruise phase, in general, no AEs occur. The AE outliers in the cruise phase occurred when
the true flights were in cruise while the predicted flights were in the climb phase, when the true flights were instructed
by ATC to climb or when the predicted trajectories started descending while the true flights were still in the cruise
phase. In the descent phase, AEs are centered at around zero indicating that the vertical speed used for the predictions in
the descent phase is often correct. Furthermore, for 20 minutes look-ahead time, the errors can reach up to 25,000 feet.

B. Correlation Between Inputs and Prediction Errors
To determine the relationship between the inputs and prediction errors, correlation coefficients, both Pearson

and Spearman, were computed. For this, the next procedure was followed. Firstly, the average error was computed
per flight phase for each true trajectory. Secondly, the computed errors were mapped with the true flights’ inputs.
Thirdly, the obtained input-error pairs were grouped according to the route. Fourthly, the correlation coefficients were
computed for each input-error combination (e.g. vertical speed versus AE) for each route (i.e. route-based correlation
coefficients). This was done to ensure that the route-dependent input-error combinations are discovered (e.g. the impact
of the predominant wind direction on the predominant route direction). Finally, the overall correlation coefficients
were calculated as the average of the absolute values of all route-based correlation coefficients for each input-error
combination. The absolute values were considered to avoid the cancellation of positive and negative values of the
coefficients. No significant difference was detected between the results for Pearson and Spearman correlation, except for
the relationship between the vertical speed and the AE in the descent phase, which is addressed further in this section.
Therefore, the correlation coefficients presented in this section are the Pearson correlation coefficients.

As an example, Fig. 5 visualizes the relationship between the inputs and the ATE in the cruise phase for 20 minutes
look-ahead time. The data are plotted as a two-dimensional histogram, where the black color represents the highest
frequency of data points. The red line shows the correlation between the input and the error, and the correlation
coefficient value is indicated at the top of each plot. The ATC instruction 0 stands for no ATC instructions, D for the
direct-to, H for the heading, S for the speed and VS for the vertical speed instructions. Due to a discrete nature of ATC
instructions, the correlation coefficient cannot be determined for this input under this study setup. A different approach
to ATC intent modeling is required for a successful estimation of the correlation coefficients.

Since the correlation coefficients are obtained as the average over all routes, the correlation between the errors and
the inputs may be stronger or weaker for different routes. For instance, the correlation between the vertical speed and
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Fig. 5 Correlation between inputs and along-track error (ATE) in the cruise phase for 20 minutes look-ahead
time.

the AE is strong for all routes, whereas the correlation between the wind and the ATE depends on the wind and route
predominant directions.

There are no strict rules for deciding which magnitude of a correlation coefficient should be considered as a
minimum value for concluding on the presence of a linear relationship between two variables. Moreover, the acceptable
magnitudes may differ based on the field of study. In this study, five ranges of correlation coefficient’s magnitudes were
distinguished as indicated in Table 5. The correlation coefficients whose absolute value is equal to or greater than 0.23
(i.e. stronger than very weak) were considered in this study as those that show a minimum linear relationship between
the input and the error. The value of 0.23 was chosen based on the minimum value of the error variance considered to
be of interest in this study, which is 5% (i.e. r2 = 0.232 = 0.0529 ≈ 0.05). Therefore, only inputs that contribute to at
least 5% of the prediction errors’ variance are of interest.

Table 5 Ranges of correlation coefficients’ strength

Coefficient absolute value Relationship strength
0.00 - 0.19 very weak
0.20 - 0.39 weak
0.40 - 0.59 moderate
0.60 - 0.79 strong
0.90 - 1.00 very strong

Tables 6, 7 and 8 show the overall correlation coefficients for heavy, medium and light WTC aircraft, respectively.
These coefficients are provided for 11 inputs (LVL stands for temporary level-off and VS for vertical speed) and 3
prediction errors as a function of a flight phase and a look-ahead time. Since presented coefficients are average values
over all routes, the color coding is used to indicate whether the route-based correlation coefficients are positive, negative
or mixed. The red color indicates the negative correlation; the green color is the positive correlation, and the yellow
color indicates the mixed correlation (both positive and negative). In Tables 6, 7 and 8 only the color-marked coefficients
are of interest (i.e. their absolute value is ≥0.23). In the following subsections, the input-error correlations with a
look-ahead time are analyzed for each error separately.

1. Along-Track Error
The ATE is correlated with the wind in all phases for all look-ahead times and all three WTCs. The strength of the

relationship is between weak and strong for heavy and medium WTC aircraft and between weak and moderate for light
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Table 6 Correlation coefficients for heavy WTC aircraft

Heavy WTC 5 minutes look-ahead time 10 minutes look-ahead time
Climb Cruise Descent Climb Cruise Descent

Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.09 0.02 0.02 0.05 0.02 0.03 0.08 0.04 0.02 0.08 0.02 0.03 0.04 0.02 0.03 0.06 0.03 0.04
Lapse rate 0.06 0.03 0.02 0.16 0.03 0.03 0.09 0.04 0.02 0.05 0.03 0.03 0.15 0.03 0.04 0.11 0.06 0.03
U wind 0.36 0.06 0.03 0.31 0.05 0.09 0.32 0.11 0.04 0.32 0.05 0.03 0.32 0.06 0.11 0.31 0.12 0.07
V wind 0.62 0.05 0.03 0.77 0.10 0.16 0.74 0.29 0.07 0.55 0.06 0.03 0.77 0.12 0.22 0.74 0.28 0.22
Bank angle 0.03 0.03 0.03 0.06 0.02 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.06 0.03 0.04 0.02 0.03 0.02
ATC 0.00 0.00 0.00 0.04 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.03 0.00 0.00 0.00
Mach number 0.05 0.02 0.03 0.22 0.04 0.03 0.09 0.04 0.03 0.03 0.03 0.03 0.21 0.06 0.04 0.08 0.04 0.03
CAS 0.47 0.04 0.03 0.00 0.00 0.00 0.36 0.15 0.03 0.45 0.05 0.03 0.00 0.00 0.00 0.32 0.14 0.09
VS 0.34 0.17 0.97 0.00 0.00 0.00 0.27 0.18 0.94 0.51 0.15 0.96 0.00 0.00 0.00 0.26 0.14 0.73
LVL FL 0.02 0.04 0.07 0.00 0.00 0.00 0.03 0.03 0.11 0.03 0.04 0.05 0.00 0.00 0.00 0.03 0.03 0.12
LVL duration 0.03 0.04 0.13 0.00 0.00 0.00 0.06 0.04 0.21 0.03 0.04 0.11 0.00 0.00 0.00 0.04 0.05 0.17
Heavy WTC 15 minutes look-ahead time 20 minutes look-ahead time

Climb Cruise Descent Climb Cruise Descent
Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.09 0.03 0.03 0.05 0.03 0.03 0.06 0.03 0.06 0.09 0.03 0.02 0.05 0.03 0.03 0.06 0.03 0.06
Lapse rate 0.05 0.05 0.02 0.16 0.04 0.05 0.11 0.04 0.06 0.05 0.04 0.04 0.16 0.04 0.05 0.13 0.04 0.08
U wind 0.33 0.04 0.03 0.33 0.07 0.12 0.31 0.10 0.19 0.35 0.07 0.02 0.33 0.07 0.14 0.31 0.09 0.24
V wind 0.57 0.10 0.04 0.78 0.14 0.26 0.76 0.25 0.43 0.61 0.10 0.04 0.78 0.16 0.29 0.77 0.22 0.54
Bank angle 0.02 0.03 0.02 0.06 0.02 0.04 0.02 0.03 0.02 0.03 0.03 0.04 0.05 0.03 0.04 0.02 0.02 0.03
ATC 0.00 0.00 0.00 0.04 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.06 0.04 0.00 0.00 0.00
Mach number 0.04 0.03 0.03 0.21 0.06 0.06 0.08 0.03 0.04 0.05 0.04 0.05 0.20 0.06 0.07 0.08 0.03 0.03
CAS 0.47 0.08 0.04 0.00 0.00 0.00 0.25 0.09 0.16 0.49 0.11 0.04 0.00 0.00 0.00 0.18 0.06 0.18
VS 0.46 0.19 0.95 0.00 0.00 0.00 0.14 0.09 0.17 0.35 0.24 0.94 0.00 0.00 0.00 0.06 0.10 0.45
LVL FL 0.07 0.05 0.04 0.00 0.00 0.00 0.03 0.03 0.10 0.09 0.06 0.05 0.00 0.00 0.00 0.02 0.04 0.05
LVL duration 0.06 0.05 0.04 0.00 0.00 0.00 0.02 0.05 0.05 0.10 0.05 0.05 0.00 0.00 0.00 0.04 0.05 0.07

WTC aircraft. The latter might be a result of another input influencing or weakening the wind effect. Furthermore,
the strength of the correlation does not significantly change with an increase of the look-ahead time. The v wind
component has a stronger correlation with the ATE than the u wind component. Since the v wind component represents
the North-South wind direction, it would have a larger impact on the ATE if the predominant direction of the flights’
routes was also North-South. The correlation coefficients are mixed (i.e. positive and negative), since they highly
depend on the wind and route predominant directions.

The correlation between the ATE and the vertical speed is present in the climb and descent phases of heavy and
medium WTC aircraft and in the climb phase of light WTC aircraft. In the climb phase, a fast climbing aircraft reaches
a higher true airspeed sooner than a slow climbing aircraft, which contributes to the ATE. For heavy and medium
WTC aircraft, the correlation is between weak and moderate in the climb phase and weak in the descent phases. The
correlation is weak for light WTC. In the descent phase, the correlation reduces with the look-ahead time, most likely
due to a stronger influence of the wind conditions. The difference between the results for heavy and medium and light
WTC aircraft might be the result of another input influencing or weakening the effect of the vertical speed. Furthermore,
the correlation is negative, which signifies that the higher vertical speed results in the decrease of the ATE (i.e. negative
ATE).

The results for both medium and heavy WTC aircraft show a correlation between the speed settings and the ATE. In
the climb and descent phases, the ATE is correlated with the CAS, whereas in the cruise phase with the Mach number
(for medium WTC). The correlation is mostly moderate in the climb phase and its strength slightly increases with the
look-ahead time, whereas in the descent phase, the correlation is weak and its strength decreases with the look-ahead
time. This implies that in the climb phase, the CAS contributes to the determination of the top of climb, while in
the descent phase, the CAS has less impact on the top of descent determination (compared to the wind effect). In
the cruise phase of medium WTC, the Mach number has a weak correlation with the ATE for all look-ahead times.
Furthermore, speed settings are negatively correlated with the ATE, which means that the increase of the speed results
in the negative ATEs (i.e. predicted position is behind the true position). Surprisingly, the results for light WTC aircraft
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Table 7 Correlation coefficients for medium WTC aircraft

Medium WTC 5 minutes look-ahead time 10 minutes look-ahead time
Climb Cruise Descent Climb Cruise Descent

Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.09 0.03 0.03 0.05 0.03 0.02 0.07 0.03 0.03 0.09 0.02 0.03 0.05 0.03 0.02 0.06 0.02 0.04
Lapse rate 0.04 0.03 0.03 0.13 0.04 0.01 0.06 0.04 0.02 0.03 0.03 0.03 0.14 0.04 0.02 0.07 0.04 0.03
U wind 0.39 0.04 0.03 0.34 0.05 0.10 0.33 0.14 0.03 0.37 0.03 0.03 0.34 0.05 0.11 0.32 0.13 0.09
V wind 0.66 0.05 0.02 0.79 0.10 0.17 0.75 0.32 0.06 0.60 0.06 0.02 0.79 0.13 0.22 0.75 0.32 0.21
Bank angle 0.03 0.02 0.03 0.03 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.02 0.03 0.01 0.03
ATC 0.00 0.00 0.00 0.03 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.04 0.00 0.00 0.00
Mach number 0.03 0.03 0.02 0.28 0.04 0.03 0.09 0.04 0.03 0.03 0.03 0.03 0.27 0.05 0.05 0.09 0.04 0.02
CAS 0.38 0.04 0.03 0.00 0.00 0.00 0.35 0.15 0.03 0.37 0.03 0.03 0.00 0.00 0.00 0.30 0.10 0.07
VS 0.36 0.15 0.96 0.00 0.00 0.00 0.26 0.18 0.94 0.51 0.14 0.94 0.00 0.00 0.00 0.29 0.14 0.73
LVL FL 0.02 0.03 0.12 0.00 0.00 0.00 0.04 0.03 0.13 0.02 0.03 0.09 0.00 0.00 0.00 0.05 0.03 0.14
LVL dur 0.03 0.02 0.18 0.00 0.00 0.00 0.05 0.04 0.21 0.03 0.04 0.16 0.00 0.00 0.00 0.05 0.03 0.18
Medium WTC 15 minutes look-ahead time 20 minutes look-ahead time

Climb Cruise Descent Climb Cruise Descent
Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.09 0.03 0.03 0.05 0.02 0.03 0.05 0.03 0.05 0.10 0.05 0.05 0.06 0.02 0.03 0.05 0.03 0.05
Lapse rate 0.04 0.04 0.02 0.13 0.04 0.03 0.09 0.03 0.04 0.05 0.03 0.04 0.13 0.04 0.03 0.11 0.05 0.05
U wind 0.38 0.06 0.04 0.35 0.07 0.13 0.31 0.14 0.18 0.38 0.10 0.03 0.35 0.07 0.14 0.32 0.11 0.23
V wind 0.63 0.09 0.03 0.80 0.15 0.27 0.78 0.29 0.41 0.67 0.17 0.04 0.81 0.17 0.29 0.79 0.27 0.53
Bank angle 0.03 0.04 0.04 0.03 0.03 0.02 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.03 0.02 0.04 0.02 0.04
ATC 0.00 0.00 0.00 0.03 0.05 0.05 0.03 0.02 0.02 0.00 0.00 0.00 0.03 0.04 0.06 0.00 0.00 0.00
Mach number 0.03 0.02 0.03 0.26 0.05 0.06 0.08 0.03 0.03 0.05 0.03 0.03 0.26 0.05 0.08 0.07 0.03 0.03
CAS 0.40 0.05 0.03 0.00 0.00 0.00 0.24 0.08 0.13 0.42 0.10 0.03 0.00 0.00 0.00 0.17 0.06 0.15
VS 0.43 0.19 0.92 0.00 0.00 0.00 0.19 0.11 0.21 0.33 0.21 0.93 0.00 0.00 0.00 0.07 0.10 0.40
LVL FL 0.11 0.03 0.05 0.00 0.00 0.00 0.05 0.02 0.10 0.12 0.06 0.05 0.00 0.00 0.00 0.03 0.02 0.04
LVL duration 0.10 0.04 0.04 0.00 0.00 0.00 0.03 0.02 0.07 0.14 0.06 0.03 0.00 0.00 0.00 0.01 0.03 0.05

do not show any correlation between the speed settings and the ATE. Most likely, this is the result of using inaccurate
speed input distributions (i.e. speeds are too high) for the chosen light WTC aircraft types. In this case, according to the
algorithm employed for the true flights’ simulations, speeds that are larger than the VMO/MMO of a given aircraft type
are replaced with the VMO/MMO. This would result in too many flights having maximum speeds and could impact the
correlation between the speed and the ATE.

2. Cross-Track Error
The correlation between the vertical speed and the CTE is detected in the climb phase at 20 minutes look-ahead

time for heavy and light WTC aircraft. The mixed correlation (both negative and positive) is weak for heavy WTC and
moderate for light WTC aircraft. The vertical speed contributes to the CTE indirectly. It induces the ATE, which in turn
contributes to the CTE. The difference in the result for all three WTCs might be due to other inputs’ influence on the
relationship between the vertical speed and the CTE.

The results show a weak correlation between the wind (v wind component) and the CTE in the descent phase of all
three WTCs. The correlation is mixed and it slightly decreases with the look-ahead time. Since aircraft, usually, correct
for the wind to stay on course, wind does not directly contribute to the CTE, but via the ATE, similar to the effect of the
vertical speed.

The only input that directly contributes to the CTE is the ATC intent. Such instructions as direct-to and heading
deviate aircraft from the route, which results in the CTE and induces the ATE. Unfortunately, in this study, the ATC
instructions were modeled in a way that does not allow to determine their linear relationship with errors. As an example,
Fig. 6 shows the CTE in the cruise phase for 20 minutes look-ahead time. The ATC instruction 0 stands for no ATC
instructions, D for the direct-to, H for the heading, S for the speed and VS for the vertical speed instructions. In each plot,
the data points are separated into two clouds and its clear that direct-to instructions cause large CTEs. The relationship
between the CTE and the ATC instructions is non-linear and cannot be characterized by a correlation coefficient.
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Table 8 Correlation coefficients for light WTC aircraft

Light WTC 5 minutes look-ahead time 10 minutes look-ahead time
Climb Cruise Descent Climb Cruise Descent

Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.05 0.03 0.02 0.03 0.02 0.02 0.04 0.04 0.03 0.05 0.02 0.01 0.03 0.02 0.02 0.03 0.02 0.04
Lapse rate 0.03 0.03 0.02 0.06 0.04 0.03 0.04 0.04 0.02 0.03 0.02 0.02 0.06 0.04 0.02 0.04 0.03 0.03
U wind 0.29 0.06 0.03 0.21 0.07 0.07 0.23 0.16 0.03 0.28 0.07 0.03 0.21 0.09 0.08 0.22 0.16 0.09
V wind 0.47 0.09 0.02 0.48 0.14 0.16 0.47 0.32 0.06 0.46 0.12 0.02 0.48 0.18 0.18 0.48 0.32 0.17
Bank angle 0.02 0.03 0.02 0.02 0.03 0.03 0.02 0.03 0.04 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.04
ATC 0.00 0.00 0.00 0.04 0.08 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.07 0.07 0.00 0.00 0.00
Mach number 0.02 0.02 0.02 0.06 0.04 0.02 0.04 0.04 0.03 0.02 0.02 0.02 0.06 0.03 0.03 0.03 0.04 0.03
CAS 0.07 0.03 0.04 0.00 0.00 0.00 0.06 0.05 0.03 0.07 0.04 0.03 0.00 0.00 0.00 0.05 0.05 0.04
VS 0.14 0.15 0.96 0.00 0.00 0.00 0.09 0.13 0.94 0.25 0.19 0.94 0.00 0.00 0.00 0.12 0.11 0.72
LVL FL 0.04 0.03 0.11 0.00 0.00 0.00 0.02 0.03 0.10 0.04 0.04 0.07 0.00 0.00 0.00 0.02 0.02 0.12
LVL duration 0.04 0.03 0.19 0.00 0.00 0.00 0.04 0.04 0.20 0.06 0.04 0.17 0.00 0.00 0.00 0.04 0.03 0.14
Light WTC 15 minutes look-ahead time 20 minutes look-ahead time

Climb Cruise Descent Climb Cruise Descent
Input\Error ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE ATE CTE AE
Temperature 0.05 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.05 0.05 0.03 0.01 0.03 0.02 0.02 0.03 0.01 0.04
Lapse rate 0.03 0.02 0.02 0.06 0.04 0.03 0.05 0.04 0.04 0.03 0.02 0.03 0.06 0.04 0.03 0.05 0.04 0.03
U wind 0.28 0.07 0.03 0.22 0.10 0.08 0.22 0.15 0.13 0.27 0.08 0.04 0.22 0.10 0.09 0.21 0.13 0.14
V wind 0.46 0.12 0.03 0.49 0.21 0.20 0.48 0.31 0.27 0.46 0.13 0.03 0.49 0.22 0.21 0.49 0.28 0.30
Bank angle 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.03 0.02 0.03 0.02 0.03 0.03 0.02
ATC 0.00 0.00 0.00 0.03 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.09 0.00 0.00 0.00
Mach number 0.02 0.03 0.02 0.06 0.03 0.03 0.03 0.05 0.03 0.02 0.03 0.03 0.06 0.04 0.03 0.04 0.04 0.03
CAS 0.07 0.04 0.04 0.00 0.00 0.00 0.04 0.03 0.03 0.06 0.03 0.04 0.00 0.00 0.00 0.04 0.04 0.04
VS 0.27 0.19 0.93 0.00 0.00 0.00 0.10 0.10 0.32 0.20 0.32 0.94 0.00 0.00 0.00 0.07 0.08 0.44
LVL FL 0.05 0.03 0.04 0.00 0.00 0.00 0.02 0.02 0.10 0.04 0.03 0.04 0.00 0.00 0.00 0.02 0.03 0.07
LVL duration 0.04 0.04 0.09 0.00 0.00 0.00 0.03 0.03 0.06 0.03 0.02 0.04 0.00 0.00 0.00 0.03 0.04 0.08

Fig. 6 Cross-track error (CTE) in the cruise phase for 20 minutes look-ahead time.

3. Altitude Error
The AE is very strongly correlated with the vertical speed in the climb phase at all look-ahead times of all three

WTCs. The correlation is negative and indicates that with an increase of the vertical speed, the AE becomes more
negative (i.e. predicted altitude is below the true altitude). In the descent phase, the correlation between the vertical
speed and the AE decreases with the look-ahead time and the correlation changes from negative towards positive as
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illustrated in Fig. 7. With an increase of the look-ahead time, the relationship between the vertical speed and the AE
becomes more non-linear and cannot be correctly described with a correlation coefficient. This also resulted in the
differences of about 0.1 between the Pearson and Spearman correlation coefficients (Spearman coefficients were lower).

(a) 5 minutes (b) 10 minutes (c) 15 minutes (d) 20 minutes

Fig. 7 Correlation between the vertical speed (VS) and the altitude error (AE) in the descent phase at 5, 10, 15
and 20 minutes look-ahead time.

In Fig. 7 each sub-figure shows two clouds of data points: one is displaying a linear relationship between the vertical
speed and the AE and decreases in size with the look-ahead time, whereas the other is a sparse cloud which increases
with the look-ahead time. At 5 minutes look-ahead time, a higher rate of descent results in a positive AE (i.e. prediction
is above the true altitude) and, with an increase of the look-ahead time, the errors for higher descent rates become also
negative, which is not an intuitive phenomenon. Data analysis showed that such a relationship between the AE and the
vertical speed with an increase of the look-ahead time in the descent phase is the result of the different top of descent
locations of the true and predicted trajectories.

Although all look-ahead times include the transition from the cruise to the descent phase (i.e. top of descent), its
effect on the AE intensifies with an increase of the look-ahead time. At a high descent rate (e.g. 2,500 to 3,000 feet per
minute), the descent phase might take less than 15 minutes (depending on the cruising flight level). As a result, many
errors at 15 and 20 minutes look-ahead time were obtained at the beginning of the true flight descent phase, while the
predicted trajectory could have already been in the middle of the descent phase. Furthermore, the top of descent is
strongly influenced by the wind, which means that the AE is a result of a combined effect of the vertical speed and the
wind conditions. Additionally, the relationship between the AE and the lower descent rates is mostly linear, as expected.

The wind is correlated with the AE in the cruise phase of heavy and medium WTC aircraft and in the descent phase
of all three WTCs. No correlation was detected in the climb phase. In the cruise and descent phases, the correlation is
present at 15 and 20 minutes look-ahead time and its strength slightly increases with the look-ahead time. This is due to
the top of descent location, which is strongly determined by the wind conditions. The error in the top of descent location
(i.e. difference between the prediction and the true top of descent) introduces AE in the cruise and descent phases. The
v wind component has a stronger correlation with the AE than the u wind component, similar to the results for the ATE.

C. Error Variance
The variance of the prediction errors can be attributed to inputs by computing the coefficient of determination r2

from the correlation coefficients and is further presented for each flight phase separately.

1. Climb Phase
On average, 87% of the ATE variance can be explained in the climb phase of heavy and medium WTC aircraft. The

wind conditions contribute to about 50%, whereas the vertical speed and the CAS to around 18% and 19% respectively.
Only about 32% of the ATE variance can be explained for light WTC aircraft. 29% are attributed to the wind conditions
and 3% to the vertical speed. 89% of the AE variance can be attributed to the vertical speed, whereas the CTE variance
is unexplained.
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2. Cruise Phase
In the cruise phase of heavy WTC aircraft, 70% of the ATE variance can be explained by the wind conditions. For

medium WTC aircraft, about 82% of the ATE variance is explained. 75% is attributed to the wind conditions and 7% to
the Mach number speed settings. Only 23%, attributed to the wind conditions, of the ATE variance can be explained for
light WTC aircraft. Essentially no variance of the CTE and the AE can be explained in the cruise phase.

3. Descent Phase
About 79% of the ATE variance can be explained in the descent phase of heavy and medium WTC aircraft. On

average, 67% is attributed to the wind conditions, 5% to the vertical speed and 7% to the CAS. Only around 23% of
the ATE variance can be explained for light WTC aircraft, which is attributed to the wind conditions. Around 8%
of the CTE variance is explained by the wind conditions for all three WTCs. On average, 51% of the AE variance
can be explained in the descent phase, where about 41% is attributed to the vertical speed and about 10% to the wind
conditions.

VI. Discussion
This section discusses how general the obtained results are and what are the possible sources of the differences

between the results obtained for heavy, medium and light WTC aircraft. Furthermore, the difficulty of determining the
correlation between the ATC intent and the prediction errors is addressed as well as how the employed method for
errors’ computation might affect the results. Finally, the similarities between the results of the previous studies and this
study are outlined.

A. Results Generalization
The results obtained in this study are considered to be generic in terms of the estimated ranges of the prediction

errors with look-ahead time and the identified influential inputs. The trajectory simulator/predictor used in this study
is comparable with a typical TP. The main difference between this study trajectory simulator/predictor and a typical
operational TP is how the vertical speed is obtained. In this study, it is sampled from a distribution function, whereas
the majority of operational TPs derive the vertical speed from the equations of a point-mass model.

The obtained results for the AE are influenced by the choice of the vertical speed settings used for predictions. When
a different value of the vertical speed is used for predictions, it reflects on the AE distribution (i.e. for a box plot the
location of the median is shifted) and on the strength of its correlation with the AE in the descent phase. The latter is
not very meaningful since the relationship between the vertical speed and the AE in the descent phase becomes more
non-linear with an increase of the look-ahead time. Furthermore, the change of the vertical speed settings also affects
the strength of the correlation between the vertical speed and the ATE and the correlation between the AE and other
inputs (e.g. temporary level-offs).

Additionally, there is a relationship between the wind and flight route predominant directions. When the majority of
the routes is mostly perpendicular to the predominant wind direction, the correlation between the wind and the ATE
would be weaker compared to when the majority of the routes is aligned with the predominant wind direction. In this
study, routes were chosen to have different directions with respect to the predominant wind direction. Therefore, it is not
expected that a larger number of routes would significantly influence the strength of the correlation between the wind
conditions and ATEs.

Based on the above-mentioned aspects of the correlation between the prediction errors and such inputs as vertical
speed and wind conditions, inputs could be additionally classified as weak and strong. For instance, the vertical speed is
a strong input since it is correlated with the AE regardless of the flight route. The wind conditions, on the other hand, is
a weak input since the correlation between the wind and the ATE is conditional on the wind and route predominant
directions.

B. Wake Turbulence Category
The results for heavy and medium WTC aircraft are similar in both trends and magnitudes. The results for light

WTC aircraft, however, are significantly different from the heavy and medium WTC in both, trends and magnitudes.
Most likely, these differences are the result of the inaccurate speed input distributions for light WTC aircraft. In many
cases, the sampled speeds were too large for a given aircraft type and had to be replaced with the maximum operating
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speed. This could have influenced the resultant ATEs and most likely diminished the correlation between the speed
settings and the ATE.

C. ATC Intent
Although, according to the correlation coefficients in this study, the ATC instructions were not correlated with any

prediction errors, this does not reflect the reality. In this study, the ATC instructions were modeled in a way that did not
allow to determine meaningful values of the correlation coefficients. Nonetheless, it is logical to conclude that the
majority of the large CTEs in the cruise phase is the result of the ATC intent. Furthermore, ATC instructions also have
an effect on the ATE (i.e. through the CTE) and on the AE (i.e. through the ATE).

D. Error Computation
The employed method for horizontal error (ATE and CTE) calculation can sometimes result in very large incorrect

magnitudes of errors when two compared points are located on the different segments of a route with turns. The method
takes into account the direction of the route segment where the predicted position is located, but it does not take into
account the actual along-track distance between the predicted and true positions. Therefore, the errors are computed
with respect to the segment where the predicted position is located.

E. Relation to Results of Previous Research
The results obtained in this study on the importance of the TPs inputs correspond to the conclusions made in

previous research. Barring the effect of the ATC intent, the vertical speed settings (usually as a function of the aircraft
mass and thrust settings), the wind conditions and the CAS and Mach number speed settings were determined to be the
most influential inputs. The rest of the studied inputs did not show much correlation with the prediction errors.

VII. Conclusion
This paper estimated the prediction uncertainty up to 20 minutes look ahead-time and the correlation between the

TP inputs and the prediction errors for heavy, medium and light WTC aircraft. For each WTC, 10,000 Monte Carlo
simulation runs were performed employing a TP based on a kinematic approach where inputs were sampled from their
distribution functions obtained from the observed real data. Studied inputs included the bank angle settings, the speed
settings (CAS and Mach number), the vertical speed settings, the temporary level-offs in the climb and descent phases,
the air temperature, the lapse rate, the wind and the ATC intent. Three prediction errors, namely ATE, CTE and AE,
were computed for 5, 10, 15 and 20 minutes look-ahead time.

All three errors tend to increase with the look-ahead time. When outliers are not considered, at 20 minutes look-ahead
time, the ATE can reach up to 50 nmi for heavy and medium WTC aircraft and up to 100 nmi for light WTC aircraft.
The CTE is mostly less than 3 nmi for heavy and medium WTC aircraft and 8 nmi for light WTC aircraft. Furthermore,
the AE may be as large as 25,000 feet. The difference between the results for light and heavy and medium WTC is,
most likely, the result of the inaccurate speed input distribution for light WTC aircraft. Based on these values of the
prediction errors, a conclusion can be made that it is not worthwhile to employ the decision support tools that operate in
the time interval up to 20 minutes look-ahead time (e.g. MTCD) until the prediction accuracy is significantly improved.

Out of all studied input parameters, only three inputs, namely the wind, the vertical speed and the speed settings,
showed a correlation with the prediction errors. On average, 65% and 25% of the ATE variance can be attributed to the
wind for heavy and medium and light WTC aircraft, respectively. The wind conditions explain about 8% of the CTE
variance and 10% of the AE variance in the descent phase. The vertical speed is mainly correlated with the AE in the
climb and descent phases. It explains 89% of the AE variance in the climb phase and about 41% in the descent phase.
The vertical speed explains 18% and 5% of the ATE variance in the climb and descent phase, respectively, of heavy and
medium WTC aircraft. It explains 3% of the ATE variance in the climb phase of light WTC aircraft. The CAS explains
around 19% and 7% of the ATE variance in the climb and descent phase, respectively, of heavy and medium WTC
aircraft. The Mach number speed settings is attributed to 7% of the ATE variance in the cruise phase of the medium
WTC aircraft.

Although the ATC instructions significantly contribute to the CTE and ATE in the cruise phase, their correlation
could not be determined under this study setup. A different approach to the modeling of ATC intent is required for a
successful correlation estimation. Whereas for an individual trajectory prediction the accuracy of all inputs is important,
when studying the prediction accuracy in a generalized form, the effect of many inputs is diminished by the parameters

18



that are more influential. Therefore, the improvement of the less influential inputs is likely to be insufficient to improve
the overall prediction accuracy.

It has been identified that the choice of the vertical speed settings used for predictions influences the prediction errors’
distribution and the strength of the correlation between some inputs and errors. Future research could be conducted
where simulations are performed with different input settings used for predictions. The TP model could be improved to
include the vertical speed variation with altitude. Additionally, an adaptive prediction algorithm, where all observed
aircraft states are taken into account for prediction reinitialization, is expected to result in a decrease of some prediction
errors. Furthermore, the non-linear relationships between the inputs and the errors could be investigated as well as the
combined effect of several inputs on the prediction errors.
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