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Abstract

The basic equations based on the integral method for solving
compressible, laminar, boundary-layer flows are considered in some detail.
The moment of momentum equation is added to the usual boundary-layer
equations in order to form a complete set of equations. The governing
equations for shock-wave or expansion-wave interactions with the boundary-
layer are reformulated.

The cold-wall similarity model of the interaction of a compressible,
laminar, boundary-layer flow with a corner-expansion wave is investigated
using certain approximations and initial conditions. The results compare
well with other analytical models and with existing experimental data.
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NOTATION

velocity profile parameter

total enthalpy profile parameter

heat transfer coefficient

skin friction coefficient

velocity profile

total enthalpy profile

total enthalpy

characteristic length

Mach number

pressure

Prandtl number

temperature

velocity
velocity
distance
distance
ratio of
boundary
boundary
boundary

Reynolds

along the surface

in the direction normal to the surface
along the surface

normal to the surface

specific heats

layer thickness in (x,y)-plane

layer thickness defined by Eq. 13

layer displacement thickness in (x,y)-plane

number at the corner

coordinate defined by Eq. 11

coordinate defined by Eq. 12

corner turning angle

edge of boundary layer




(0% freestream value

W wall value

c value calculated at the corner
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1. INTRODUCTION

Since the original developments by Karman and Pohlhausen, the
momentum-integral method of solving compressible, laminar, boundary-layer
flows has been studied by many authors and extended to other fields. During
the period 1950~1960, Mbrduchow,l Libby2 and others have made a critical
study of the integral method for a compressible, laminar boundary layer.

In this case, the energy equation is also introduced in the integral form

for heat transfer problems. A review of this work is given in Ref. 2. The
principle of the integral method is as follows. First, the set of partial
differential equations for the boundary layer is reduced to a set of ordinary
differential equations with appropriate form parameters and assumed polynomials
of appropriate degree for the velocity and enthalpy (or temperature) profiles.
Second, the set of ordinary differential equations is integrated along the
surface of body.

For a problem without interactions, the compressible, laminar
boundary-layer equations reduce to two ordinary differential equations of
momentum and energy. However, there are three unknowns: one velocity-
profile parameter, one enthalpy (or temperature)-profile parameter and the
boundary layer thickness. The solutions can be obtained by making some
approximations. Morduchow, Libby,1;2 and others in their group have presented
an approximation using an average-value-parameter concept. The reason is
that the variation of the two parameters (one for the velocity-profile and
the other for the enthalpy profile) along the surface is smooth and not very
large. Another approximation method was developed by Thwaites,3 Cohen and
Reshotko and Chen? from the concept of a combination of the integral method
and similar solutions. Chan® has extended this approximation to the inter-
action of a laminar boundary layer and a shock wave.

Later, Tani6 and other authors’ have added another equation,
the moment of momentum equation, to the usual boundary-layer equations in
order to provide another ordinary differential equation. It is now possible
to solve the three unknowns based on the three equations. Finlayson©;9 has
given a detailed account of this method, which is the so-called method of
weighted residuals. This method can be generalized to the Navier-Stokes
equations.lo In the frame of classical boundary layer flow, some applica-
tions of this method to the interaction problems have been made. However,
so far a detailed study of this method is not available.

The purpose of this report is to provide some details of the
basic equations for the compressible, laminar, boundary-layer flow with or
without interactions. Using some approximations, the cold-wall similarity
model of Sullivan,ll on the interaction of a compressible laminar boundary
layer and a corner-expansion wave is reviewed and extended to the integral
method.

2. BASIC EQUATIONS OF BOUNDARY-LAYER FLOW

The steady, laminar, compressible boundary-layer flow of a
perfect gas over a smooth surface is considered. By taking the x-axis along
the surface of the body and the y-axis perpendicular to it, the equations of
overall continuity, momentum, energy and moment of momentum are written as
follows:



& (ow) + % (o) = 0 (1)

dp
pu%‘—;+pv%‘—;=-§-+%<u%‘; (2)
OH OH 0 u OH 1 o) 0
pu&*‘%vg;-ar[ﬁ6§+“<l'ﬁ> 337(2—>J (3)
dp
puzgl;+puvgl;-=-u——dxe+u%<p%—; )

where, the moment of momentum equation, Eq. 4, is obtained from momentum
equation, Eq. 2, multiplying by u. The Prandtl number, Pr, is assumed
constant.

The boundary conditions for the velocity and total enthalpy are:

at y = O: u=v=20
(5)
H = Hw(x)
y = 0 u. = ue(x)
(6)
H= He = constant
By using the boundary condition of Eq. 5, the equation of
continuity, Eq. 1, is integrated with respect to y fromy = 0 toy =1y,
giving:
Y3
ov=-[ & (eway (1)
o

Similarly, Egs. 2 to 4 are integrated with respect to y, from
y =0 toy =0, and using Eqs. 5 to 7, yield the following results:

. due ) dpe du
fpu(u-ue)dy+&—fpudy:-f)&—-tuser (8)
W

o] O

gl

I'C

2| (9)

HJ

%X-Iapu(H-He)dy=-[
(o]
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du 0 dp o) 9 2
d 2 2 e . & du
&’ pu(u-ue)dy+afpudy—-2-dx—fudy—2fp<yy>dy(lo)
o o

(o]

The usual transformations of compressible, boundary-layer
theory are applied:

X
£ =T (11)
y
il P
TS f £ 4y (12)
) e
o
where, L is a characteristic length and
- B3
5 - f e g (13)
5 e
We note that under present transformation, y = O and y = 0, correspond to
N =0 and n =1, respectively.
From the equation of state, p = PRT, and the relation
. due . ipe
e e dE 4t
the following equation can be derived:
dp du
e _ _ e
e GE T " Pe Mi qE (14)

where, Mg is the local Mach number at the edge of boundary layer.

The following notations are defined:

P o= =
u
e
- B
g —He
i
Fl—f f(1 - £) dn
(o]
3

(o}




1
f £f(1 - f2) dn

&
w
]

>2 dn (15)

E1

e 9 Jl<

By using the transformation, Egs. 11 to 13, and the notations
of Eq. 15, the integral forms, Egs. 8 to 10, can be reduced to the follewing

simple forms:
dF F du
AR -] 93
o T de[(l'}'f?)Fl'El'FEE]—R'.Tfle S
dr F du -
BB da iy SNg ] O
*ag—”f-g—ar*u—ear(l'Mi)Fz‘ﬁLSﬁJw )
(18)



where,

(0 T S Wi
4% 0 o0
Rew = "-I;—-' (19)
[e0]
e
= : W W
R = Re°° 5
pu T
e e

By making the assumption of a linear viscosity-temperature
relation,

E.:C*<E_> (20)
Mo N\ Tog
C*=<&>J./2T0o + 8

T, T, * S

216°R for air

0
I

the R value, defined in Eq. 19, becomes

. Yo Po [ Po N2
R=Cu—-— —p—e'> (21)

3. PARAMETER-FORM OF BASIC EQUATIONS AND ITS FUNCTIONS

Morduchow and others have shown that the sixth and seventh poly-
nomials can represent accurately the profiles of velocity and temperature,
respectively, in compressible, laminar boundary-layer flows:

6

2(em) = ) a8 (22)
n=0
7

&(6m) = ) v (0 (23)
n=0




The coefficients of this polynomial of n-th degree can be
determined from the boundary conditions, resulting either from physical
considerations, experimental work or from mathematical considerations, and
the basic equations. Increasing the degree of the polynomial and hence the
nunber of boundary conditions is expected to yield more correct results.
However, increasing the degree does not mean unequivocally a resulting
improvement. Kovacs and Palanczl2,13 have investigated the relation v
between accuracy and the degree of the polynomial in the laminar, non-
Newtonian, boundary-layer flow and have shown that a sixth polynomial is
accurate for the velocity profile. -

The boundary conditions, Egs. 5 and 6, can be written as

follows:
at 1 = 0: f=0
g =8,
atn = 1¢ f=1
(24)
on 8n2 an3
g.= 1
d¢ %
= ——2- = —-3— = O
T 9q on
Substituting Eq. 24 into Egqs. 22 and 23, yields the following
relations:
a =0
(o]
a3 =20 - lOa.l = haz
8, = -45 + 20al + 6a2
as = 36 - lSal < haz
ag = =10 + hal + a, (25)
b= &
b) = 35(1 - gw) - 20132L - 10b, - ub3
b5 = -84(1 - gw) - )45bl + 20b, + 61:;3
bg = 70(1 - gw) & 36b1 « 199, - hb3 ]
b7 = -20(1 - gw) + lObl + hb2 - b3

The additional boundary conditions for a, and by can be found
from Egs. 2 and 3 and their differentiation with respect to y at the wall



surface, y = 0.

at g =0, or
and
atm = 0, or

a

From Eq. 2 and its differentiation with respect to y,

BLCBfJ l[_igldueJ
F R pwueEE—_
Neosd e
2 2F-{DW'L].eCl
_a_?—_[caf - [E%(e_ A e
a'r]2 on R Py o\ e o4

Yo [pe5<p> _a2bl
aE e.on\p,/ |, 3 &,

=&[E
3 68 L Pw Y

From Eq. 3 and its differentiation with respect to y,

atkn =0, or

and

u

H

atm =0, or

where

2

d [ c o 1. % <‘1 }_ of
on [ Prom |~ T H, B on
2

u
_ e 2
b, = Eﬁ; (1 - Pr) a,
c g _1 |,
Pr _—§ B on of

ERCEIICINE 1 C8

b3=27\a (l-Pr)a
6R

BE 8o

)5 ]

(26)

(27)

(28)

(29)

(30)



We note that if the temperature at the wall is constant along the survace,

then b, = constant, or

5 ob

g Sl il
BN
in Eg. 30,

The relationship between a; and a, can be obtained from Egs.
25, 27 and 28 as follows:

al=2-%<12+%> (31)

For the compressible, laminar, boundary-layer flow without any
interaction, i.e., po =P and Tg = T , we have three unknowns, ap (or al),
b1 and A, which can be determined from three ordinary differential e quations,
Egs. 16, 17 and 18, since pe (or ug) is given in general. However, Egs. 16,
17 and 18 are still too complicated in the actual numerical calculation. We
must transfer these equations in terms of three unknowns, ap (or ay), b; and
Na

After some rearrangement, Egs. 16, 17 and 18 can be written in
the following forms:

W e TRDRRL. ST
11 dE 12 dE 2 dE 5
da, ab F
2 1 2 a\
AF s tA T Y T % (32)
M da2 i abl +.f§ an i
31 dk 32 GE 2 datf  °3
where, 5
F =Fl
13 6'55
. =6Fl
12 5bl
du
= A e
By R e [(l‘Mi)Fl'El“LEzl
¢ =BF2
21 ‘65;
< _8F2
22‘61?1'



- R A
*n T8E :L""T
OF
S
31 HQ
F =aF3
32 7 86,
du
- A
x, = 2R K -——E—[(l-Mi)F3—2E3+2Eu] (33)

The explicit expressions for Fp, Ej, aFn/aa.g and. aFn/abl are
quite complex. However, their analytical expressions can be evaluated without
difficulty. They are,

Fp =4, - (&) +a) Ay +a, A)

By = (1 - bo)(AO - BO) - (1ol + b, B, +b3 3)
Fy = A, - Eg
B =4 ta Ay tay A
TO
E, =-T—;(G—El)+El

2
Bz =1L, +3L; & +3L, a +3L3 8,

2 3
+ 6Lua. a, +3L5 a, + L6 ay
2 2 3
+ 3L7a.la2 + 3L8 a, =+ L9 a2
TO
E), =T;[F9-E3]+E3
F9 =A0-F2
E. =E _+E a.2+E a2+2E
5 58 ohL% . T TR 2 ™M

+2E54ala +2E55 i




& A13 + aq A23 + A3 + a, A33

B02) -b

(1 - g,) (A, -

- b, B

- KB
oy MR

i =

32

b

(1 - &)y - Byg) -

A

03 ~ 3L

3-6L)+al-6L

A.02 - 3Ll - 6L2 8, - 6Lu 8,

+
Ay T Ao 8 FA 58,

Byy
>

u
e

H
e

S e
Bi2 a. B

1 a,

33 2

(1 - Pr)

1

B

1

>

2

B

12 L

)

B

) 5, ol P

a2 )

_3L

0,1,

0,1,

10

B

24 Ee

B

o Ppgii b, B

3 - KB

33 3

Py

2 2
7 al a2 - 3L8 al - 3L9 a2

2
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2
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253



where, the numerical values Aij’ Bij’Li and Ej j are given in Appendix A.

As seen from Eq. 31, a3 is a function of a2 and bjy; therefore,
all the explicit functions in Eg. 32, can be calculated in terms of ap and
b1.

The solution of the physical problem is then reduced to inte-
grating the set of equations, Egq. 32, simultaneously, for the three dependent
variables ap, by and A with € (or x) as the independent variable.

The heat transfer coefficient is defined by
- &,

B e (@u - HW)

C

where, dw is the rate of heat transfer to the surface of the body:

i = - k or
&y = 5y
W
and k is the thermal conductivity.

Using the basic assumption, Pu = Pg Mg, and after a transforma-
tion, we can write

2T
W

where, Ty is the shear stress on the surface of the body:

i “auJ
W Sy |,
Similarly, the skin friction coefficient can be written in the form,
¢ =_2_£e_<T_e>3/231_

4. GENERAL EQUATIONS FOR INTERACTION PROBLEMS

Two types of interaction problems will be considered, namely,
(1) Interaction of a shock wave and a compressible, laminar, boundary-
layer flow, and (2) Interaction of a compressible, laminar, boundary-layer
flow and a corner expansion (or compression) wave. No extensive numerical
calculations are made, but the general equations are rewritten in the
context of the present theory.

1L




For the interaction problem, the pressure and temperature of
the freestream are quite different from that at the edge of the boundary
layer in the region of interaction, i.e., pe 74 Poo and Ty 74 Tee In general,
we have four unknowns, ap, by, A and Pe and, therefore, another equation
must be provided.

4,1 Interaction of Shock-Wave and Boundary-Layer Flows

Many papers have been published concerning the interaction
shock-wave and compressible, boundary-layer flows. A discussion of the
problem with a comprehensive review is given in Ref. 5.

The boundary-layer thickness 0% can be written in this form:

0= F), 9) (35)

fl[pe u]
T » = - = | ay
Y . P u,

Differentiating Eq. 35, we obtain the following relation:

ORTIC L O LI

If the effective body is slender, the pressure at the edge of the
boundary layer is accurately given by the hypersonic, small-disturbance
solution for oblique shocks. For example, the tangent-wedge relation is used
as the solution for the external, inviscid flow because of its simplicity and
the explicit relation between the local pressure and the local flow inclination.
The relation between the local pressure and the growth rate of the boundary
layer thickness, 0%, is given by,

where,

@_—_}_[ 2 1/2 E)_e._l>x E+7_'l -l/?og
dx M, Wy + 1) Peo P Vv w

Pe
=®<p_,M°°:7,O‘W> (37)
(%)

where, Oy is the local geometric slope.

From Eqs. 36 and 37, and the definition of A, the following
equation is obtained:

da. d.b F)-l i\
MRy g * Mgt g mAEe R o (38)

12



where, dF),/dé given in © is written in the form,

th da dbl
T FulT”ueT

The explicit expressions of Fhl and th can be evaluated as
follows:

_0
T
e
(39)
%o
T

where,

E., = - 5= — (40)
Equations 32 and 38 can be written in the following simple form:

da2 dbl
ii1dE "Wt 13d§ 114"E< > (k1)

where, i =1, 2, 3 and 4, and

1) AF

il i1
Wio=AFsp
b
Wiz =5
s
W) = - A== —=—  (i=1,2,3)
Pe Y M
e
W = 2

13



i 2
zZ, -—(l-Me)Fl-E + E

X 2

N
]

2
2 (1 - M) Ty

- (1 -M?7 3
Zg (1 - M7) Fg - 2E; + 2F) (42)

Equation 41 is the basic equation for the interaction of shock-
wave and the boundary-layer flows.

4.2 Interaction of Corner-Expansion Wave and Boundary-Layer Flows

For the interaction of a boundary-layer and a corner-expansion

(or compression) wave, Eq. 41 is still applicable except that db%/ax is
replaced by, Lol

O% -1 ( ab*
g'_-x._zta‘n[i(ﬁw+tan ‘a-x—>c-e}=® ()-I-S)

where, ¢, is the corner turning angle of the surface body, (+)-sign denotes
an expansion corner, and (-)-sign for compression corner, tan-1 (d0%/ax).
denotes the inclination angle of the boundary-layer thickness at the corner,
and 6 is the Prandtl-Meyer deflection angle,

o [T [w (/TR /1) - (VT /)]
+ tan~t /Mboz-l-'tan-l /Meg-l (4k4)

The main task now is to find the initial values of ap, by, A and
Pe at the corner. Due to upstream-influence effects, the flat-plate solutions
at the corner can not be correctly taken as the initial conditions for the
downstream-interaction region. This task will be attempted in a future

research paper. A simple example for finding the initial conditions is given
in Chapter 5.

14



5. COLD-WALL SIMILARITY MODEL OF INTERACTION OF CORNER-EXPANSION WAVE AND
BOUNDARY-LAYER FLOWS

5.1 General Considerations

The numerical complexities involved in the solution of the
interaction of a hypersonic, laminar boundary layer and a corner-expansion or
corner-compression wave (described in Chapter 4) necessitate reliable approxi-
mation schemes. Previous authors have approached this problem in different
ways.10,11,1% A simple method has been presented by Sullivanll based on the
cold-wall similarity model. It was assumed that flat-plate solutions can be
applied in the interaction region and that the integration of the total
enthalpy profiles yields a constant value. The latter is due to the cold-
wall assumption. The cold-wall similarity model is self consistent since
the calculations confirm the basic assumption and it can be regarded as a
first approximation to a complete solution.

In this chapter, we point out that the simple results of the
cold-wall similarity model can be obtained and improved directly from the
integral method.

5.2 Basic Assumptions and Equations

Self-gimilarity exists only if pe @ xR. If self-similarity
exists, the velocity profile, expressed by Eq. 22 is independent of £, or

6

£(n) =>: a, M

n=0

From Eq. 27, we note that ap is very small when the velocity
Ug is very large, thus,

a. =0 (45)

and, from Eq. 31,
a, ~2 (46)

The velocity profile then becomes,

6

f=2q- 5nh + 677 - 2n (47)

Similarly, the parameter b) of g, expressed by Eq. 23, can be obtained as
follows:

31 151
= _ﬁ(l'gw)'9oo9K
g it : T 321
PrA_ " 2ho2k

b 5]



2

by = 0 (48)

where

A, = 36036/985

The cold-wall assumption has been discussed by Sullivan. The
cold-wall-similarity concept should be applicable over a wider range of gy.
If dap/dt and dby/dé are very small (from the similarity solution of Eq. L7,
we have dap/dt = O and from Eq. 48, we know ab1/dé =~ 0), then daFy/d€ =~ 0.
From Eq. 36, we obtain the following approximate result:

a h Ny e N
E€<i> F_J_;dé<L_> (49)
The solution of the physical problem is then reduced to find two

unknowns, Pe/Pe and 0/L (or A). From Eq. 41 with i =1, dap/d€ = dby/d€ = 0,
we obtain the following momentum equation:

d Pe” <_§§j> # Méz d 5 =
EE<E0>=7\[(1-Me2)Fl-El+E2] LWF1E<E>_ 2R-‘

(50)

The explicit functions can be evaluated by substituting Eqs. 47
and 48 and we have,

F, = 985/9009
B = 5450/9009
E, = TO/Te (¢ - El) + By
TO/Te (g - El) o
G =R s ] % 3/28 B, 3 b2/u2
To/Te =1+ 7y-1/2 Még (51)

The initial conditions for pe/Pe and 6/L (or A) at the corner
can be calculated by the following three methods:

Method 1: By assuming that the upstream-influence effects for locally hyper-
sonic flow and for small turning angles can be neglected, the initial conditions
are obtained from the solutions of the flat-plate, boundary-layer equations

just upstream of the corner and are given as follows:

16



At the corner,

-
i (52)
B iy 19_
15 Re,,

This assﬁnption has been applied by Sullivan in his calculations.

Method 2: For a large turning-angle case, the initial value of 6/L can be
obtained simply from the geometry at the edge of the boundary layer (see
Fig. 1):

- Hlon

[1 +tan ¢ tan 28] (53)

‘where,

¢

w -1 ( 46
M”?+W1<EJ
There is no evidence that the upstream effect on‘pe/p°° is
significant in hypersonic flow. From the experimental results (Ref. 16) it
appears that pe/p°° does approach unity, as expected. Consequently, it is
assumed that at the corner, ‘

Method 3: Some initial arbitrary values of pe/Pe and O/L are assumed and
Eqs. 49 and 50 are integrated when the results are close to the experimental
results, then the matched values are used as the initial conditions. However,
although this method can be made to fit the experimental data very well, the
calculated initial values are still questionable owing te the assumption of
cold-wall similarity in the theory. Since the initial conditions feor peﬁgn
and 5/L at the corner are dependent on the freestream conditions, especially
Mach number, no unique parameter can be obtained, as for example, in the case
of finding the atom-atem cross-sectign constant from a match of experimental
data with shock-structure analysis.l

We also note that the flow inclination before and after the cerner
is assumed to have the 'same value. The effect of this assumption is negligible
in the actual calculations, as the value of tan-1(db%/dx). is very small com-
pared with ¢4. For example, the flow inclination angle is about 1* for
Reg = 2 X 1o¥.

W The effect of using different values for the initial condition
of /L on the d/df (pe/Pe) can be seen from Eq. 50. Since Ao (6/1)2, there-
fore, the calculated absolute values of d/df (pe/Pe ) Using Methed 1 are
larger than from Method 2. This means that the pe/Ps value calculated by
Method 1 is smaller than from Method 2. However, the difference is actually
small for small turning angle. For example, if ¢y = 5%, then,

¥t




=1Ed

Method 1 ~ 1 .OO’-‘-

Method 2

% (52

5.3 Comparison With Other Theories and Experimental Results

A special example is computed in order to show the difference
between the present method and Sullivan's method: g, = 0.2, ¢, = 5% Reg =
1.644 x 105, M, = 10 and Pr = 1. The initial conditions are calculated by
Method 1, as in Sullivan's paper.ll The displacement-thickness ratio downstream
of the corner and the pressure ratio are shown in Fig. 2 where the results
based on Sullivan's modelll without the simple-wave assumption are also given.
It is seen from Fig. 2 that a small change of the displacement-thickness ratio
results in a significant change in the pressure ratio. The main difference is
due to the assumption made in Sullivan's method, that is,

AN
-
F“ ~_T:° (G B El)c (55)

where, (G - El)c is calculated at the corner, based on the assumption of hyper-
sonic flow. A small change in F), from Egs. 55 and 51, can result in a signifi-
cant change in pe/pm, as seen from Fig. 2. The corresponding heat-transfer and
skin-friction coefficients are shown in Fig. 3, for comparison.

Koziak and Sullivanl6 have obtained some experimental data for
the following conditions: M, = 6.5, g, = 0.22, Ree = 8 x 10” and ¢, = 5°.
In Fig. 4, the displacement thickness ratio and the density ratio are compared
with their experimental measurements and with other theoretical resultslO with
Pr = 0.7. It is shown that the present calculations with initial conditions
calculated by Methods 1 and 2 agree very well with the experimental data. The
corresponding pressure ratio and Mach number at the edge of boundary layer
are shown in Fig. 5. One can note that the present results are close to the
results of LolO obtained from a more complex model. The experimental datal6
shows that there is no evidence that an upstream effect is significant for
the present conditions and the initial pressure ratio at the corner appears
to be unity. In the model of Lo,lo with the upstream effect taken into
account, the initial pressure ratio is obtained from the perturbation of the
upstream pressure value in order to have stability in the calculations.

The effects of the initial values of the boundary-layer displace-
ment-thickness at the corner are shown to be small in Figs. 4 and 5 for a turning
angle ¢y = 5°. However, Method 2, which provides for better agreement with =
experiment, should be used for larger turning angles.

5.4 Discussions .
The present analysis of the cold-wall similarity model gives
some physical insight into the problem. The advantages of this method are:

(i) the calculation is simpler than the method of Sullivanll and is always
stable, and (ii) the agreement with experimental data for the present analysis
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is even better than the complex model of Lo.lO One can quickly obtain

numerical results to compare with experimental data. Finally, the present
method complements that of Sullivan, in some ways and is in surprisingly
better agreement with experiment than the other methods.

6. CONCLUSIONS

The present report considered in some detail the basic equations
based on the integral method for solving compressible, laminar, boundary-layer
flows. Even though no extensive numerical calculations were made, the present
method may be applied to other problems, such as shock-wave or expansion-wave
interactions with the boundary layer, boundary-layer separation problems,
and heat-transfer problems.

Using some approximations, the cold-wall similarity model of
Sullivan, on the interaction of a compressible, laminar, boundary-layer flow
with a corner-expansion wave, can be obtained from the present analysis.
Three advantages over Sullivan's method are: (i) the calculation is simpler,
(ii) the analysis gives some physical insight into the problem, and (iii) with
the initial conditions provided by Method 2, the present analysis agrees very
well with the experimental data. Additional calculations for the interaction
of a corner-expansion wave with the boundary-layer flow and separation in
heat-transfer problems are under way. The results will be compared with
existing exact numerical calculations and experimental data where possible.
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APPENDIX A: NUMERICAL FACTORS OF FUNCTIONS Ai*’ Bi" Li and Ei'
J J

J

Substituting Egs. 22 and 23 into the relations for Fl and FE’

yields,
i e Bl T el T
¥oo= (1 - bo)(Ao - BO) - (bl B, + b, B, * b3 133) (4.1)
where, 6
A, =§z A(j) a
i n n
n=1
6
B. =Z 5(3) 4 (A.2)
J n n
=1
and J = 0, 1, 2 and 3. The A£J) and BgJ) are given by
(o) _ _1
An n+1
A1) _ 20 45 36 10
n n+4 n+5 n+6 n+7
(2) 1 10 20 15 L
Ah n+2 n+h * n+5 n+6 * n+7
(3) 1 Yoo 6 ) 1
B CSF 3 n+h M~ 5 n+6 to T 7
g(0) _ 35 _ 8 70 _ 20
n n+5 n+6 n+7 n+d
(1) _ 1 __ 20 45 36 10
n n+2 n+5 n+6 n+7 n+d
(). a1 10 20 15 L
v 3 n+5 e AL e o +8
(3) 1 L 6 I 1
o v B el oo (4.3)




From Eqs. A.2 and 3k, Ay

j and Bij are given by the following

expressions:
Ay = 20A§j) - MSAéj) + 36A5 lOA 9)
Ay, = A:(Lj) - 1089) 4+ 20a{3) - 15A + 4ald)
Nyg ? Aéj) 3 hAéj) £ 6A£j) AEJ) b A
By, = 203§j) . M5B£j) + 36B§j) . lOBéj)

- ptd) ()
By, = BY - 108 +

J3

where, j = 0, 1, 2 and 3.

Big = ng) - thj) + asﬁj)

2onfd) - 158(9) + 15()

- hBéj) + Béj)

The numerical results of Eq. A.4 are given in the following

table, Table Al,

(A.4)

TABLE Al
. Aij
M, 1 2 3
0 0.571428 0.714285 x 107+ 0.952375 x 10°°
L 0.471504 0.248179 x 107t 0.393236 x 1072
2 0.248911 x 107+ 0.850946 x 1072 0.111353 x 102
3 0.39322k4 x 1072 0.112551 x 1072 0.155032 x 1075




TABLE Al - CONTINUED

B
1J

i 1 2 3

ik
i

0.433787 0.172367 x 10~ 0.281143 x
0.436628 x 107+ 0.123383 x 10° 0.168580 x 10
0.114415 x 10'l 0.265729 x 10'2 0.385940 x
0.188750 x 1o'2 0.378430 x 10'3 X

(C5 F0 00 08 Sl o)

0.558L496

From Eq. 22, f can be rewritten as,
£f=Jy+J) a +J, 8, (8.5)

where,

P

2on3 = usn“ + 361° - 1on6

oy
1l

3 6

n - 10M° + EOnh - 15115 + Ln

oy
I

R AL

oy
|

E3, defined in Eq. 15, is calculated as follows:

2
E3 = LO + 3Ll al + 3L2 al + 3L3 ay

a, + 3L_ o, £ + L6 al3

2 2
+ 3L,7 a, a, +3Lga, + L9 a23 (A.6)

where,

0

LO =
1
T =

i J,~ g, dn= 0.0139592

il
L[\ Jo an . = ‘ehlgres
2
0

0

1o lJ 7.2 an= 0.254502 x 102
5T ek Mo
0

A=3



L. & lJ2J d = 0.2331 1o‘2
3 o o 2 71 o . 97 X
0
% -3
L), =f JO Jl Iy = 0.383891 x 10
0
L lJ 1508 —0588166x10-u
AT gt 2 P
0
;) 3 4
Lg =f Jl dn = 0.11376 x 10
0
L, = lJ J % a = 0.203184 10'“
;i § A MY b .
0
1 5 -
Lg = le 5 dn = 0.149506 x 10
0
¥y 5
L9 =f J2 dn = 0.283514 x 10~
0
The value of Of/On can be found to be,
%§=No+a 1\T1+a21\12
where,
. = 601]2 - 1800~ + 18011l+ - 60115
N, =1 - 3000 + 80n - 750 + 2l
N, =29 - 12112 - 2lm3 - :aonl+ + 6715
Therefore, E5 is given by,
g 2 2 2
E5 = ESO -+ E5l al + E52 a2-- 53 al + 2]1."51+ a.l
where,
1,
E50 =f NO dn = 1.55843
0

+ 2E

(A.7)

(A.8)

(4.9)




0.173159

0.288601 x 10'2
-0.170995
1

0.194805 x 10~

-0.129870 x 107+

(A.10)
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FIG. 1 GEOMETRY OF THE EDGE OF THE BOUNDARY LAYER AT THE CORNER.

AC = CD IS THE INITTAL VALUE OF ©/L BEFORE TURNING THE

STREAMLINE,
* WITH CG.

AD IS PARALLEL TO EF WHICH MAKES ¢W/2 ANGLE
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FIG. 2 VARIATIONS OF THE DISPLACEMENT-THICKNESS RATIO, 5%/6%, AND THE PRESSURE
RATIO, pe/p,, WITH DISTANCE RATIO, x/L, FOR THE CASE OF gy = 0.2,
$w = 5° Re, = 1.644 x 10°, M_ = 10 and Pr = 1.
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FIG. 3 VARIATIONS OF THE HEAT-TRANSFER AND SKIN-FRICTION COEFFICIENTS WITH THE
DISTANCE RATIO FROM THE CORNER, THE INITTAL CONDITIONS ARE GIVEN IN FIG. 2.
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FIG. 4 VARIATIONS OF THE DISPLACEMENT-THICKNESS RATIO, 6%/56%X, AND THE DENSITY
RATIO, p/P,, WITH THE DISTANCE RATIO, xéa*g, FROM THE CORNER FOR THE
CASE OF gy = 0.22, ¢y = 59, Re_ = =48 ‘%10 M, = 6.5 AND Pr = 0.7.
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FIG. 5 VARIATIONS OF THE PRESSURE RATIO, pe/p ,» AND THE MACH NUMBER AT THE EDGE

OF BOUNDARY LAYER, M., WITH THE DISTANCE RATTO, x/@c, FROM THE CORNER.
THE INITIAL CONDITIONS ARE GIVEN IN FIG. 4.
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