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Abstract 

The basic equations based on the integral method for sOlving 
compressible, laminar, boundary-layer flows are considered in some detail. 
The moment of momentum equation is added to the usual boundary-layer 
equations in order to form a complete set of equations. The governing 
equations for shock-wave or expansion-wave interactions with the boundary­
layer are reformulated. 

The cold-wall similarity model of the interaction of a compressible, 
laminar, boundary-layer flow with a corner-expansion wave is investigated 
using certain approximations and initial conditions. The results compare 
well with other analytical models and with existing experimental data. 
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1. INTRODUCTION 

Since the original developments by Karman and Pohlhausen, the 
momentum-integral method of solving convressible, 1 ami nar , boundary-layer 
flows has been studied by many authors and extended to other fields. During 
the period 195Ü"'1960, Morduchow,l Libby2 and others have made a critical 
study of the integral method for a convressible, laminar boundary layer. 
In this case, the energy equation is also introduced in the integral form 
for heat transfer problems. A review of this work is given in Ref. 2. The 
principle of the integral method is as follows. First, the set of partial 
differential equations -for the boundary layer is reduced to a set of ordinary 
differential equations with appropriate form parameters and assumed polynomials 
of appropriate degree for the velocity and enthalpy (or temperature ) profiles . 
Second, the set of ordinary differential equations is integrated along the 
surface of body. 

For a problem without interactions , the convressible, laminar 
boundary-layer equations reduce to two ordinary differential equations of 
momentum and energy. However, there are three unknowns: one veloci ty­
profile parameter, one enthalpy (or temperature)-profile parameter and the 
boundary layer thickness. The solutions can be ohtained by making some 
approximations. Morduchow, Libby,1,2 and others in their group have presented 
an approximation using an average-value-parameter concept. The reason is 
that the variation of the two parameters (one for the velocity-profile and 
the other for the enthalpy profile) along the surface is smooth and not very 
large. Another ap:Qroximation method was developed by Thwaites, 3 Cohen and 
Reshotk04 and Chan5 from the concept of a combination of the integral method 
and similar solutions. chan5 has extended this approximation to the inter­
action of a laminar boundary layer and a shock wave. 

Later, Tani6 and other authors7 have added another equation, 
the moment of momentum equation, to the usual boundary-layer equations in 
order to provide another ordinary differential equation . Tt is now llossible 
to solve the three unknowns based on the three equations. Finlaysone,9 has 
given a detailed account of this method, which is the so-called method of 
weighted residuals. This method can be generalized to the Navier-Stokes 
equations.10 In the frame of classical boundary layer flow, some applica­
tions of this method to the interaction problems have been made. However, 
so far a detailed study of this method is not available. 

The purpose of this report is to provide some details of the 
basic equations for the convressible, laminar, boundary-layer flow with or 
without interactions . Using some approximations, the cold-wall similari ty 
model of Sullivan,ll on the interaction of a convressible laminar boundary 
layer and a corner-expansion wave is reviewed and extended to the integral 
methode 

2. BASIC EQUATIONS OF BOUNDARY-LAYER FLOW 

The steady, laminar, convressible boundary-layer flow of a 
perfect gas over a smooth surface is considered. By taking tl1e x-axis along 
the surface of the body and the y-axis perpendicular to it, the equations of 
overall continuity, momentum, energy and moment of momentum are written as 
follows: 
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o 0 di (pu) + dy (pv) = 0 (1) 

Ou ou dp e 0 ( Ou ) 
pu Öx + pv dy = - dx + dy 1..1. dy (2) 

OH cm 0 l J..I. OH . ( 1) 0 (U2)J 
pu di + ~v dy = Oy Pr dy + 1..1. 1 - Pr dy '2 

pu
2 ~ + puv ~ = _ u : e + u ~ ( 1..1. ~ ) (4) 

where, the moment of momentum e<luation, E<l. 4, is obtained from momentum 
e<luation, E<l. 2, multip1ying by u. The Prandt1 munber, Pr, is assumed 
constant. 

The boundary conditions for the velocity and tota1 enthalpy are: 

at y = 0: 

y = 5 : 

u = v = 0 

H = H (x) 
w 

u = u (x) 
e 

H = H = constant 
e 

By using the boundary condition of E<l' 5, the e<luation of 
continuity, E<l. 1, is integrated with respect to y from y = 0 to y = y, 
giving: 

pv = - JY ~ (pu)dy 

o 

(5) 

(6) 

(7) 

Simi1ar1y, E<ls. 2 to 4 are integrated wi th respect to y, from 
y = 0 to y = 5 , and using E<ls. 5 to 7, yie1d the fo11owing results : 

5 
~ J pu(u-

dp 
5~ -

dx 

o 

5 l .9:....J pU(H - H )dy = - 1:..... ~ J dx e pr oy 
w 

o 

2 

(8) 



2 : e J5U dy _ 2 J 5~ ( ~ ) 2 
dy (10) 

o o o o 

The usual transformations of compressible, boundary-layer 
theory are applied: 

x 
~ = -L 

TJ =} JY 
~ dy 

5 e 
o 

where, L is a characteristic length and 

5 - J P 5 = P dy 
o e 

(11) 

(12) 

(13) 

We note that under present transformation, y = 0 and y = 5, correspond to 
TJ = 0 and TJ = 1, respecti vely • 

From the equation of state, p = PRT, and the relation 

the following equation can be derived: 

dp du 
e2 e 

u~=-P~~ e ds e e ds 

where, Me is the local Mach number at the edge of boundary layer. 

The following notations are defined: 

u 
f =­

ue 
H 

g = He 

F1 = Jlf(l- f) dT} 

o 

3 

(14) 



Jl 2 
F3 = f(l - f ) d~ 

o 

Jl 2 . El = f d~ 

0 

Jl 
P 

E = ~ d~ 
2 P 

0 

E = Jl f3 d~ 
3 -----

0 

E4 = 
Jl p .. 

f p
e d~ 

0 

E = 
5 Jl (~) d~ (15) 

0 

By using the transformation, Eqs. 11 to 13, and the notations 
of Eq. 15, the integral forms, Eqs. 8 to 10, ean be redueed to the following 
simple forms: 

dF 1 F 1 dÀ À dUe 2 r of J 
À df"" + 2" dI + U "'d'r [( 1 - ~) F 1 - El + E~ J = R L dTi w 

e . 
(16) 

(17) 

(18) 

4 

J 



where, 

( 
- 2 

À = Reoo ~) 

puL 
00 00 

(19) Re = ---
00 Jloo 

By making the ass'll1r!Ption of a .1inear viscosity-temperature 
re1ation, 

(20) 

the R va1ue, defined in Eq. 19, becomes 

R = C Uoo P e ( p 00 )2 
u P p e 00 e 

(21) 

3. PARAMETER-FORM OF BASIC EQ,UATIONS AND lTS FUNCTIONS 

Morduchow and others have shown that the sixth and seventh po1y­
nomiaJ.s can represent accurate1y the profiles of velocity and temperature , 
respective1y, in compressib1e, 1aminar moundary-1ayer f1ows: 

6 

f(~,T}) = I an(~)T}n (22) 

n=O 

7 

g(~,T}) I b (OT}n 
n (23) 

n=O ' 
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The coefficients of this polynomial of n-th degree can be 
determined from the boundary conditions, resulting either from physical 
considerations, experimental work or from mathematical considerations, and 
the basic equations. Increasing the degree of the polynomial and hence the 
number of boundary conditions is expeded to yield more correct results • 
However, increasing the degree does not mean unequivocally a resulting 
improvement. Kovacs and Palanczl~,13 have investigated the relation 
between accuracy and the degree of the polynomial in the laminar, non­
Newtonian, boundary-layer flow and have shown that a sixth polynomial is 
accurate for the velocity profile. 

follows: 

relations: 

The boundary conditions , Eqs. 5 and 6, can be writ ten as 

at T} == 0: f == 0 

g == gw 

atT}==l: f == 1 

d2f d3f 
(24) 

df 0 dri == dT}2 
== -- == 

dT}3 

g == 1 

dg d2g d3y 
dTï == dT}2 == dT}3 == 

0 

Substituting Eq. 24 into Eqs. 22 and 23, yields the following 

a == 0 o 

20 - 10a - 4a 1 2 

-45 + 20al + 6a2 

b == o 

36 - 15a - 4a 1 2 

b4 == 35(1 

b5 == -84(1 

b6 == 70(1 

- 20bl - 10b2 

+ 45bl + 20b2 

- 36b - 15b 1 2 

-20(1 

(25) 

The additional boundary conditions for au and bn can be found 
from Eqs. 2 and 3 and their differentiation with respect to y at the wall 
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-

surface, y = O. From Eq. 2 and its differentiation with respect to y, 

(26) 

at Ti = 0, or 
C Pe À dUe 

- - - - ":;-r-- P u ds 2R w e 
(27) 

and 

at 1') = 0, or 

From Eq. 3 and i ts differentiation wi th respect to y, 

o r C 0 J u! I,( l)J ( Of )2 
dT) L Pr dT} = - He L 1 - pr dTi w 

at Ti = 0, or 

and 

2 
u [0 -H: dT} 

Ji( 1 _ ~) ( Of )2 } + Of 0 Ji( 1 _ ~) Of }.l 1 Pr dTi dTi dTi 1 Pr dTi J 

at Ti = 0, or 

(30) 

where 

c = 

7 



We note that if the temperature at the wall is constant along the survace, 
then b o = constant, or 

i n Eq. 30. 

The relationship between al and ~ can be obtained from Eqs. 
25, 27 and 28 as follows : 

(31) 

For the compressible, 1aminar, boundary-layer flow without any 
interaction, Le., Pe = P and Te = T , we have three unknowns, a2 (or al)' 
bl and À, which can be determined from three ordinary differential e qua ti ons , 
Eqs. 16, 17 and 18, since Pe (or ue ) is given in general. However, Eqs. 16, 
17 and 18 are still too complicated in the actual numeri cal calculation • We 
must transfer these equations in terms of three unknowns, a2 (or al), b1 and 
À. 

Af ter some rearrangement, Eqs. 16, 17 and 18 can be wri-tten in 
the following forms: 

where, 

du 
xl = R a - ~ ~ [(1 - if)F - E + E ) 1 u ds e 1 1 2 

e 

OF2 F -- 21 - aa
2 

OF
2 

F22 = ab
l 

8 

(32) 



- À du 
x2 = ~ b - - ~ (1 .. Ii)F 

Pr 1 u ds e 2 

F _ , dF3 
31 - da

2 

dF
3 

F32 = db
l 

e 

The explicit expressions for Fn' En' dFn/da2 and dFnldbl are 
quite complex. Hewever,their analytical expressions can be evaluated without 
difficulty. They are, 

El = ~ + al ~ + a2 ~ 

T 
E

2 
=...2 (G - E ) + E 

T 1 1 e 

9 



Bi = Bil + Bi2 al + Bi3 a2, i = 0,1,2,3 

2 
u 

K =_e_ (1- Pr) 
H e 

10 



where, the numerical values A:i.j' Bij ,Li and Eij are given in Appendix A. 

As seen from Eg. 31, al is a function of a2 and bl; therefore, 
all the explicit functions in Eg. 32, can be calculated in terms of ~ and 
blo 

The solution of the physical problem is then reduced to inte­
grating the set of eguations, Eg. 32, simultaneously, for the three dependent 
variables a2' bl and À with ~ (or x) as the independent variable. 

The heat transfer coefficient is defined by 

where, <Ïw is the rate of heat transfer to the surface of the body: 

and k is the thermal conductivity. 

Using the basic assumption, P~ = Pe ~e' and af ter a trans forma­
tion, we can write 

The skin friction coefficient, Cf is defined as, 

2T 
C = w 

2 f 
Poo u-oo 

where, TW is the shear stress on the surf ace of the body: 

Similarly, the skin friction coefficient can be wri tten in the form, 

d = ~ Me ( T e )3/2~1 
. f Reoo ~ Too BIL 

4. GENERAL EQ,UATIONS FOR INrERACTION PROBLEMS 

Two types of interaction problems will be considered, namely, 
(1) Interaction of a shock wave and a compressible, 1 ami nar , boundary­
layer flow, and (2) Interaction of a compressible, laminar, boundary-layer 
flow and a corner expansion (or compression) wave. No extensive numerical 
calculations are made, but the general eguations are rewritten in the 
context of the present theory. 

11 



For the interaction problem, the pressure and temperature of 
the freestream are qui te different from that at the edge of the boundary 
layer in the region of interaction°, i.e., Pe f Poo and Te f Too • In general, 
we have four unknowns, ~, b l , À and Pe and, therefore, another equation 
must be provided. 

4.1 Interaction of Shock-Wave and Boundary-Layer Flows 

Many papers have been published concerning the interaction 
shock-wave and compressible, boundary-layer flows. A discussion of the 
problem with a comprehensive review is given in Ref. 5. 

The boundary-layer thickness 5* can be written in this form: 

(35) 

where, 

Differentiating Eq. 35, we obtain the following relation: 

d (5) 1 d (5*) 1 (5) dF4 
dI L = F4 dI L - F4 L ar (36) 

If the effective body is slender, the pressure at the edge of the 
boundary layer is accurately given by the hypersonic, small-disturbance 
solution for oblique shocks. For eXaJl!>le, the tangent-wedge relation is used 
as the solution for the external, inviscid flow because of its simplicity and 
the explicit relation between the local pressure and the local flow inclination. 
The relation between the local pressure and the growth rate of the boundary 
layer thickness, 5*, is given by, 

_1 [ 2 Jl/2(Pe 
- ~ :r(:r + 1) Poo 

where, OW is the local geometrie slope. 

From Eqs. 36 and 37, and the definition of À, the following 
equation is obtained: 

12 
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where, dF4/ ds gi ven in El is written in the form, 

follows: 

where, 

dF4 da2 db
l 

~ = F4l ~ + F42 ~ 

The explicit expressions of F4l and F42 ean be evaluated as 

T 
F4l = TO 

(Gll - Ell ) - Fll 
e 

T 
F42 = TO 

(G12 - E12 ) - F12 e 

(40) 

Equations 32 and 38 ean be written in the following simple form: 

where, i = 1, 2, 3 and 4, and 

Wi2 = À Fi2 

Fi 
wi3 = 2""" 

z. 
J. 

M
2 

"! e 

13 

(41) 

(i = 1,2,3) 



W1 = R al 

R 
- W2 =-b pr 1 

W
3 

= 2R E5 

W4 
= ,JRe f... e 

00 

Zl = (1 M 2) F1 - El + E2 e 

Z2 = (1 M 2) F2 ' e 

(42) 

Equation 41 is the basic equation for the interaction of shock­
wave and the beundary-layer flows. 

4.2 Interaction of Corner-Expansion Wave and Boundary-Layer Flows 

Fer the interaction of a boundary-layer and a corner-expansion 
(or compression) wave, Eq. 41 is still applicable except that d5*/dx is 
replaced l:;)y, 

~* = tan [ ± ~w + tan-
1 

( ~* 2 -e J = e (43) 

where, ~w is the corner turning angle of the surface body, (+)-sign denotes 
an expansien corner, and (-)-sign for compression corner, tan-1 (d5*/dx)c 
denotes ' the inclination angle of the boundary-layer thickness at the corner, 
and e is the Prandtl-Meyer deflectien angle, 

e '= I '1 + 1 [ tan -1 ( I r - 1 I ~ 2 
'1-1 '1+1 e 

'1 - 1 
'1 + 1 

(44) 

The main task now is to find the initial values of a2, bl' À and 
Pe at the corner. Due to upstream-influence effects , the flat-plate solutions 
at the cerner can not be correctly taken as the initial conditions for the 
downstream-interaction region. This task will be attempted in a future 
research paper. A simple example for finding the initial conditions is given 
in Chapt er 5. 

14 



5. COLD-WALL SIMILARITY MODEL OF INTERACTION OF CORNER-EXPANSION WAVE AND 
BOUNDARY-LAYER FLOWS 

5.1 General Considerations 

The numerical complexities involved in the solution of the 
interaction of a hypersonic, laminar poundary layer and a corner-expansion or 
corner-compression wave (described in Chapter 4) necessi tate reliable approxi­
mation schemes. Previous authors have approached this problem in different 
ways.lO,11,14 A simple method has been presented by Sullivanll based on the 
cold-wall . similari ty model. Tt was assumed that flat-plate solutions can be 
applied in the interaction region and that the integration of ·the total 
enthalpy profiles yields a constant value. The latter is due to the cold­
wall assumption. The cold-wall similarity model is self consistent since 
the calculations confirm the basic ass~tion and i t can be regarded as a 
first approximation to a complete solution. 

In this chapter, w~ point out that the simple results of the 
cold-wall similari ty model can be obtained and improved directly from the 
integral methode 

5.2 Basic Ass~tions and E~uàtions 

Self-similarity exists only if Pe ex xn. If self-similarity 
exists, the velocity profile, expressed by E~. 22 is independent of S, or 

6 

f(T}) = I 
n=O 

a T}n 
n 

From E~. 27, we note that a2 is very small when the velo city 
ue is very large, thus, 

and, from E~. 31, 

The velo city profile then becomes, 

a R: 0 
2 (45) 

(46) 

Similarly, the parameter bI of g, expressed by E~. 23, can be obtained as 
follows: 

31 ) 151 
= 252 (1 - ~ - 9009 K 

bI 1 821 
Pri\ + 24024 

o 

15 



where 

b = 0 
3 

À = 36036/985 o 

(48) 

The colà-wall assumption has been discussed by Sullivan. The 
cold-wall-similarity concept should be applicable over a wider range of gw' 
If da2/ds and dbl/ds are very small (from the similarity solution of Eq. 47, 
we have da2/ds = 0 and from Eq. 48, we know abl/ds ~ 0), then dF4/ds ~ O. 
From Eq. 36, we obtain the following approximate result: 

The solution of the physical problem is then reduced to find two 
unknowns, Pe/Poo and 5/1 (or À) • . From Eq. 41 with i = 1, da2/ds = dbl/ds = 0, 
we obtain the following momentum equation: 

l ~À Reoo F 1 ~ ( ~) - 2R J 
( 50) 

The explicit functions can be evaluated by substituting Eqs. 47 
and 48 and we have, 

Fl 985/9009 

El = 5450/9009 

E2 = To/Te (G El) + El 

F4 To/Te (G El) - F 1 

G = 1/2 (1 + gw) + 3/28 bl + b2/42 

T /T 
2 

(51) 1 + r-l/2 M o e e 

The initial conditions for Pe/Poo and 5/1 (or À) at the corner 
can be calculated by the following three methods: 

Method 1: By assuming that the upstream-influence effects for locally hyper­
sonic flow and for small turning angles can be neglected, the initial conditions 
are obtained from the solutions of the flat-plate, boundary-layer equations 
just upstream of the corner and are given as follows: 

16 



At the corner, 

= 1 

-5 
L =(i.~ 

(52) 

Tms assUlllPtion has been applied by Sullivan in his calculations. 

Methed 2: For a , large turning-angle case, the initial value of 5/L can be 
ebtained simply frem t1:).e ' geemetry at the edge of the beundary ' layer (see 
Fig. 1): 

where, 

t '" I ::m [1+ tan q,w t<!n Aa] (53) 

!::.e ~ ifJw + ta~-l ( d5* '\ 
, 2 i dx ~ 

There is ne evidence that the upsitream, e,ffect on -Pe/Pco is 
significant in hypersonic flow. From the experimental results, (Ref. l€i) it 
appears that Pe/poo does appreach unity, as expec'te<?-. Cen~equently, it is 
assumed that at the corner, 

Method 3: Some initial arbitrary values of Pe/Pr» and 5/L are assumed and 
Eqs. , 4~ and 50 are integrated when the results are close to the eX]lerimental 
results " th en the matched values are used as the initial condi tiens. Hewever, 
altheugh this metho<i can be made to fit the eX]lerimental data very well, the 
c.a.1.cuJ..ated initial values are still questionable ewing te the assUlllPtion of 
celd:wall ,similarity in the theery. Since the initial conditiens fer Pe/"Poo 
and 5/L at the corner are dependent en the frees tream cOl'lditiens, especially 
Mach number, ne unique -parameter can be obtained, as for example, in the case 
ef findingthe atem-atem cress-secti~n censtant frem a match of experiment al 
data with sheck-struc't;ure analysis .1 -

We also note that the flow inclinatien befere ~d af ter the corner 
is assumed to have the :same ' valiue. The effect of this assUlllPtion is negligible 
in the actuall calculations, as the value of tan- l (d5*/dx)c is very ,small cem­
-pared with ifJw• For example, the flow inclinatien angle is about 1- for 
Resx, :;: 2 x 10). 

_ The effect of using different values for the initial condition 
ef 5/L en the d/dS (Pe/Poo) can be seen from Eq. 50. ' Since À a (Ö/L)2, there­
fere, t~e calculated abselute values ef d/ds (Pe/P

i 
) using Methed 1 are 

larger than frem Method 2. This means , that the pe P~ value calculated by 
Method 1 is smaller than from Method 2. However, the difference is actually 
small for ' small turning angle. For example, if ifJw ;= 5°, then, 

17 



Ih (~)IMethOd 1 

Ih ( ~: ) IMethod 2 

~ 1.004 

5.3 C.omparison With Other Theories and Experimental Results 

A special example is computed in order to show the difference 
between the present method and Sullivan's method: gw = 0.2, rpw = 5°, Re(Xl = 
1.644 x 105 , l<bo = 10 and Pr = 1. The ini tial conditions are calculated by 
Method 1, as in Sullivan's paper. ll The displacement-thickness ratio downstream 
of the corner and the pressure ratio are shown in Fig. 2 where the results 
based on Sullivan' s modelll without the simple-wave assumption are also given. 
It is seen from Fig. 2 that a small change of the displacement-thickness ratio 
results in a significant change in the pressure ratio. The main difference is 
due to the assumption made in Sullivan's method, that is, 

T 
F4 ~ T: (G - El)c (55) 

where, (G - El)c is calculated at the corner, based on the assumption of hyper­
sonic flow. A small change in F4, from Eqs. 55 and 51, can result in a signifi­
cant change in Pe/Pr;m as seen from Fig. 2. The corresponding heat- transfer and 
skin-friction coefficients are shown in Fig. 3, for comparison. 

Koziak and Sullivan16 have obtained some experimental data for 
the following conditions: Mb = 6.5, gw = 0.22, Reoo = 8 x 105 and rpw = 5°. 
In Fig. 4, -the displacement thickness ratio and the density ratio are compared 
with their experimental measurements and with other theoretical results lO with 
Pr = 0.7. It is shown that the present calculations with initial conditions 
calculated by Methods 1 and 2 agree very well with the experimental data. The 
corresponding pressure ratio and Mach number at the edge of boundary layer 
are shown in Fig. 5. One can note that the present results are close to the 
results of LolO obtained from a more complex model. The experimental data16 
shows that there is no evidence that an upstream effect is significant for 
the present conditions and ·the initial pressure ratio at the corner appears 
to be unity. In the model of Lo,lO with the upstream effect taken into 
account, the initial pressure ratio is obtained from the perturbation of the 
upstream pressure value in order to have stability in the calculations. 

The effects of the initial values of the boundary-layer displace­
ment-thickness at the corner are shown to be small in Figs. 4 and 5 for a turning 
angle rpw = 5°. However, Method 2, which provides for better agreement with 
experiment, should be used for larger turning angles. 

5.4 Discussions 

The present analysis of the cold-wall similari ty model gi yes 
some physical insight into the problem. The advantages of this method are: 
(i) the calculation is simpler than the method of Sullivanll and is always 
stable, and (ii) the agreement with experimental data for the present analysis 
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is even better than the complex model of 10.
10 One can quickly obtain 

numerical results to compare with experimental data. Finally, the present 
method complements that of Sullivan, in some ways and is in surprisingly 
better agreement wi th experiment than the other methods. 

6. CONCLUSIONS 

The present report considered in some detail the basic equations 
based on the integral method for solving compressible, laminar, boundary-layer 
flows. Even though no extensive numerical calculations were made, the present 
method may be applied to other problems, such as shock-wave or expansion-wave 
interactions wi th the boundary layer, boundary-layer separation problems, 
and heat-transfer problems. 

Using some approximations, the cold-wall similarity model af 
Sullivan, on the interaction of a compressible, 1 ami nar , boundary-layer flow 
with a corner-expansion wave, can be obtained from the present analysis. 
Three advantages over Sullivan's method are: (i) the calculation is simpler, 
(ii) the analysis gives some physical insight into the problem, and (iii) wi th 
the initial conditions provided by Method 2, the present analysis agrees very 
well with the experimental data. Additional calculations for the interaction 
of a corner-expansion wave with the boundary-layer flow and s eparation in 
heat-transfer problems are under way. The results will be compared with 
existing exact numerical calculations and experimental data where possible. 
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APPENDIX A: NUMERICAL FACTORS OF FUNCTIONS A .. , B .. , L. and E .. 
J.J-J.J-l; J.J 

yields, 
Subs tituting Eqs. 22 and 23 in to the relations for F 1 and F 2' 

(A.l) 

where, 

n=l 

6 

B. =L B (j) a 
J n n 

(A.2) 

n=l 

and j = 0, 1, 2 and 3. The A (j) and B(j) are given by 
n n 

A (0) 1 = n n + 1 

Cl) 20 45 + 36 10 
A = n + 4 - n + 5 n + 6 - n + 7 n 

A (2) 1 10 + 20 15 + 4 =--- n + 4 n + 6 n n + 2 n + 5 n + 7 

A(3) 1 4 4- 6 4 + 1 = n + 4 n n + 3 n + 5 n+6 n+7 

B(O) =...lL_ 84 + 70 20 
n n + 5 n+6 n+7 n + 8 

B(l) 1 20 + 45 36 + 10 =-- - n + 6 n + 8 n n + 2 n + 5 n + 7 

B(2) 1 10 
+ 

20 15 + 4 
n n + 3 n + 5 n + 6 n + 7 n + 8 

B(3) 1 4 
+ 

6 4 + 1 
n =!ï+4- n + 5 n + 6 - n + 7 n + 8 (A.3) 

A-l 



expressiElns: 
From Eqs. A.2 and 34, Ai' and B .. are given by the following 

J 1J . 

A
j2 

= ~j) - 10~j) + 20At j ) - 15A~j) + 4~j) 
l 

Aj3 = ~j) - 4~j) + 6Atj) - 4~j) + A~j) 

B = B(j) - 10B(j) + 20B
4
(j) - 15B(j) + 4B(j) 

j2 1 3 5 6 

(A.4) 

where, j = 0, 1, 2 and 3. 

The numerical results of Eq. A.4 are given in the following 
table, Table Al, 

TABLE Al 

A
ij 

~ 1 2 3 

0 0.571428 0.714285 x 10-1 0.952375 x. l0 -2 

1 0.471504 0.248179 x 10-1 0.393236 x 10-2 

2 0.248911 x 10-1 0.850946 x 10-2 0.111353 x 10-2 

3 0.393224 x 10-2 ,0.112551 x 10 -2 0.155032 x 10-3 

A-2 



~ 
0 

1 

2 

3 

where, 

where, 

TABLE Al - CONTINUED 

B .. 
~J 

1 2 

0.433787 0.172367 x 10-1 

0.436628 x 10-1 0.123383 x 10-1 

0.114415 x 10-1 0.265729 x 10-2 

0.188750 x 10-2 0.378430 x 10-3 

From Eq. 22, f can be rewritten as, 

23456 
J 2 = ~ - 4~ + 6~ - 4~ + ~ 

3 

0.281143 x 10-2 

0.168580 x 10-2 

0.385940 x 10-3 

0.558496 x 10-4 

(A.5) 

E3' defined in Eq. 15, is calculated as fol1ows: 

(A.6) 

0.419722 

0.0139592 

A-3 



where, 

I
1 

2 L3 = JO J 2 dl} = 0.233197 x 10-2 

0 

L4=I1JOJ1J2dl} = 0.383891 x 10-3 

0 

I
1 

2 L5 = JO J2 dl} = 0.588166 x 10-4 

0 

L6 = I ~J13 dl} = 0.11376 x 10-2 

0 

I
1 

2 L7 = J1 J 2 dl} = 0.203184 x 10-4 

0 

J1 2 L8 = J 1 J2 dl} = 0.149506 x 10-3 

0 

L = I 1 J 3 dl} 
9 2 

= 0.283514 x 10-5 

0 

The value of' Of'/Ol} ean be f'ound to be, 

NO = 60T}2 - 180Tj3 + 180T}4 - 60l}5 

N
1 

= 1 - 30T}2 + 80T}3 - 75Tj4 + 24Tj5 

Theref'ore, E5 is given by, 

where, 

= 1.55843 

A-4 

(A.7) 

(A.8) 



J 1 2 
E52 = N2 dTj 

o 

E53 = J 1NO N1 dTj . 

o 

E54 = J 1 N1 N2 dTj 

o 

E55 = J 1NO N2 dTj 

o 

= 0.173159 

0.288601 x 10-2 

= -0.170995 

8 -1 = -0.129 70 x 10 (A.10) 

A-5 
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y' 

E_ ---

AC=CD 

/19 AS ~w/z + tan-
I
( dd

81t
) 

x C 

FIG. 1 GEOMErRY OF TRE EDGE OF THE BOUNDARY LAYER AT THE CORNER. 
AC = CD IS THE INITIAL VALUE OF 5/L BEFORE TURNING THE 
STREAMLINE. AD IS PARALLEL TO EF WHICR MAKES cp /2 ANGLE 
WITR CG. W 
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