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Abstract. Blended wing body (BWB) aircraft has aroused considerable interest as a po-
tential candidate for future large subsonic transport air-vehicles. In this paper, we present
the results of one- and multi-point multi-constrained optimization of a BWB configuration
for minimum total drag. The optimization technique includes a new strateqy for efficient
handling of nonlinear constraints in the framework of Genetic Algorithms, scanning of the
optimization search space by a combination of full Navier-Stokes computations with Re-
duced Order Methods and multilevel parallelization of the whole computational framework.
The assessment of the results shows that the proposed technology allows the design of fea-
sible aerodynamic shapes which possess a low drag at cruise conditions, satisfy a large
number of geometrical and aerodynamic constraints and offer good off-design performance
in markedly different flight conditions.

1 INTRODUCTION

The blended wing body (BWB) aircraft is a tailless design which integrates the wing
and the fuselage. The conceptual advantage of this configuration lies in its lower wetted
area to volume ratio and lower interference drag as compared to the conventional transport
aircraft. A BWB has an additional advantage: lift and payload are much more in line.
This reduces blending moments and therefore structural weight. The concept goes back
to non-conventional flying wing designs originally proposed almost 60 years ago [1]. The
BWB configuration concept is a radical change from the dominant design where a wing
is combined with a cylinder-type fuselage, and the longitudinal stability of the aircraft is
maintained by means of a tail.

In the late 1990s, the BWB aircraft was considered in the US as a potential candi-
date for future large subsonic transport aircraft [2]-[3]. The project involved a number of
industrial and academic establishments, including National Aeronautics and Space Ad-
ministration (NASA). The comprehensive survey of these activities may be found in [4].
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A serious effort was also mounted in Europe to design their version of a BWB config-
uration. Starting in 2002, a European Commission funded a project aimed at the design
and optimization of BWB aircraft [5]. A progressive study of the aerodynamic perfor-
mance for the corresponding BWB configuration may be found in Ref. [6], where a BWB
geometry without fins was considered.

It is the authors’ opinion, that computational fluid dynamics (CFD) and CFD-driven
optimization methods could play a great role in fulfilling the aerodynamic objectives of
the above projects. However, prior to the last few years, CFD driven optimization had
a limited impact on the aircraft design practice especially in the case of complex 3D
aerodynamic shapes similar to BWB.

The reason why the optimization tools are still not being exploited as one would like
in the design process is partially due to the following three reasons. First, only recently
computational simulation has been allowed for relatively accurate drag prediction (within
the accuracy of 2-3 aerodynamic counts) required in engineering practice (see the results
of the 2nd ATAA Drag Prediction Workshop [7]). Second, the industrial optimization of
aerodynamic shapes necessitates high-dimensional search spaces, and a large number of
non-linear constraints are placed upon a desired optimum.

Last but not least, the huge computational volume needed for optimization (and the
corresponding huge computational resources) presents a major obstacle to the incorpora-
tion of CFD based optimization into the core of the industrial aerodynamic design.

The aerodynamic optimization of BWB configurations presents additional difficulties
compared to the optimization of conventional aircraft configurations due to an essential
increase in the number of design variables and to the necessity to comply with a number
of additional aerodynamic constraints coming from the stability considerations.

In Ref. [8] an efficient and robust algorithm for CFD driven optimization of three-
dimensional aerodynamic wings, based on Genetic Algorithms search and full Navier-
Stokes computations, was proposed by the authors’. In this context, the main objective
of this paper is to apply the method [8] to the one- and multi-point multi-constrained
optimization of a BWB configuration for minimum total drag, and to analyze the influence
of the aerodynamic parameters of the problem on the optimal configuration. It was
demonstrated that the optimization method allows the design of feasible aerodynamic
shapes which possess a low drag at cruise conditions, satisfy a large number of geometrical
and aerodynamic constraints and offer good off-design performance in markedly different
flight conditions such as take-off conditions and high Mach zone.

2 STATEMENT OF THE PROBLEM

In the design practice, the parameters of optimization originate from the conceptual
design stage which provides the initial geometry definition and the aerodynamic per-
formance data. The aerodynamic specification includes the prescribed cruise lift, Mach
number, altitude and maximum allowed drag values which will meet the goals of the
aircraft mission (such as range, payload, fuel volume etc).
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The desired optimal geometry is sought from a class of solutions which satisfy different
geometrical, aerodynamic and multidisciplinary constraints (which also originate from the
stage of conceptual design). Specifically, airfoil thickness, pitching moment, C7*** at the
take-off conditions are normally constraint.

The design objective is to develop an aircraft configuration with as low a drag at cruise
conditions as possible which, at the same time, satisfies the above constraints. This
is accomplished through a CFD-based solution of the properly formulated multi-point
constrained optimization problem.

In the problem formulation, the first crucial issue is the choice of the objective function.
We assume that the drag coefficient C of a configuration (at constant reference area) is
a sensitive and reliable indicator of its aerodynamic performance and thus we employ Cp
as the objective function of the considered optimization problem.

The next important issue is the implementation of constraints in the optimization al-
gorithm. Where possible, the constraints should be satisfied accurately (up to machine
accuracy) and directly, while the remaining constraints should be converted into alterna-
tive constraints which can be expressed in terms of drag.

For example, we should satisfy the geometrical constraints and such aerodynamic con-
straints as the prescribed lift coefficient exactly while the requirement of a sufficiently
high C7*** at the take-off conditions should be reformulated in terms of drag at the corre-
sponding flight conditions. This means that instead of maximizing C7***, we minimize C'p
at a fixed C value close to that needed to meet the specified aerodynamic requirements.

Finally in order to ensure the accuracy of optimization we require that for any geometry
feasible from the constraints’ viewpoint, the value of the objective (cost) function remains
exactly equal to the value of the drag coefficient without any penalization.

Based on the above principles, the mathematical formulation of the optimization prob-
lem may be expressed as follows.

The objective of the general multipoint optimization problem is to minimize the weighted
combination C% of drag coefficients at the main design and secondary design points
(flight conditions)

K
Ced =3 wpCp(k)
k=1

where K is the total number of the design points. The specific values of the weight factors
wy, reflect the relative importance of the design points coming from the aerodynamic
practice. The main design point deals with cruise conditions. Secondary design points
are chosen in order to ensure good off-design aerodynamic performance. Specifically, the
following secondary design points may be used: 1) a higher Mach design point (to improve
Mach drag rise behaviour); 2) a higher Cy, design point at the cruise Mach number (to
improve climb behaviour) and 3) a design point corresponding to the take-off conditions.

The solution is sought in the class of wing shapes subject to the following classes of
constraints:
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1) Aerodynamic constraints such as prescribed constant total lift coefficient C; (k) and
minimum allowed pitching moment C},(k):

C(k) = Cr(k), Cu(k) = Cy(k) (1)

Thus we assume that C} (k) and C},(k) are not a function of design variables.

2) Geometrical constraints on the shape of the wing surface in terms of properties of
sectional airfoils at the prescribed wing span locations: relative thickness (¢/c);, relative
local thickness (Ay/c);; at the given chord locations (z/c);; (beam constraints), relative
radius of leading edge (R/c);, trailing edge angle 6;:

(t/c)i = (t/c);, (Ay/c)y > (Ay/e);, (R[c)i > (R/c);, 6;>6; (2)
i=1,.,Nus, j=1,..., Ny(i)

where N, is the total number of sectional airfoils’ subject to optimization, Ny () is the
total number of beam constraints at section 7, and values (t/c);, (Ay/c)j;, 0F, (R/c);,
C} and Cj}, are prescribed parameters of the problem. Though only the above listed
constraints were taken into account in the present work, it is possible (in the framework
of the proposed method) to impose additional geometrical constraints, such as minimum
allowed wing volume.

Thus in the present work the total number of considered constraints N, is equal to

N’lUS
Ny =2X K+3% Nyg+ S Nye(i)

i=1
3 OPTIMIZATION METHOD

As a CFD driver of the optimization process the numerical solution of the full Navier-
Stokes equations is used.

The use of a consistently accurate Navier-Stokes solver is a necessary requirement im-
posed upon any accurate optimization of aerodynamic shapes. Note that the optimization
method requires not only the exact evaluations of the objective function (in our case, the
total drag), but also accurate evaluations of additional sensitive aerodynamic character-
istics needed in order to satisfy the aerodynamic constraints.

To do this, the numerical noise must be significantly lower than, for example, the
difference in the values of drag for geometrically close but distinctly different aerodynamic
shapes tested in the process of optimization.

The failure to fulfill the above requirement leads to the incorrect estimation of shapes
in terms of the objective function (regardless of the optimization technique) and thus may
result in the failure of the whole optimization process.

In the present work, numerical solutions of the full Navier-Stokes equations are ob-
tained by means of the multiblock code NES [9]. The numerical method employs struc-
tured point-to-point matched grids and is based on the Essentially Non-Oscillatory (ENO)
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concept with a flux interpolation technique [10] which allows accurate estimation of sen-
sitive aerodynamic characteristics such as lift, pressure drag, friction drag and pitching
moment. The code ensures high accuracy of the Navier-Stokes computations, possesses
high robustness for a wide range of flows and geometrical configurations and thus keeps
the numerical noise to the low level [11].

The present optimization technique [8] is based on the use of Genetic Algorithms (GAs).
As a basic algorithm, a variant of the floating-point GA [12] is used.

In the considered optimization problem, the presence of constraints has a great impact
on the solution. This is due to the fact that the optimal solution does not represent a local
minimum in the conventional sense of the word. Instead, it is located on an intersection
of hypersurfaces of different dimensions, generated by linear and non-linear constraints
[13]. Additionally, the problem of finding such an extremum is essentially complicated by
the fact that these hypersurfaces, which bound the feasible search space, are not known
in advance.

To make the optimum search efficient, we changed the conventional search strategy by
employing search paths through both feasible and infeasible points. To implement the
new strategy, it was proposed to extend the search space by evaluating (in terms of fitness)
the points, which do not satisfy the constraints imposed by the optimization problem. A
needed extension of an objective function may be implemented by means of GAs due to
their basic property: contrary to classical gradient-based optimization methods, GAs are
not confined to only smooth extensions (for more detail see [13]).

One of the main weaknesses of GAs lies in their poor computational efficiency. This
prevents their practical use in the case where the evaluation of the cost function is com-
putationally expensive as it happens in the framework of the full Navier-Stokes model. To
overcome this, we introduce an intermediate “computational agent” - a computational tool
which, on the one hand is based on a very limited number of exact evaluations of objective
function and, on the other hand provides a fast and reasonably accurate computational
feedback in the framework of GAs search.

We construct a computational agent by means of a Reduced-Order Models (ROM)
approach in the form of Local Approximation Method (LAM). With the ROM-LAM
method, the solution functionals which determine a cost function and aerodynamic con-
straints (such as pitching moment, lift and drag coefficients), are approximated by a local
data base. The data base is obtained by solving the full Navier-Stokes equations in a
discrete neighbourhood of a basic point (basic geometry) positioned in the search space.
Note, that for the basic geometry, the design (' is achieved by varying the angle of attack
of the configuration.

So on the one hand, the number of exact estimations of the objective function (full
Navier-Stokes solutions) is proportional to the dimension of the search space. On the
other hand, the computational volume required to provide approximate estimates of the
objective function in the framework of GAs optimum search, is negligible.

To overcome the approximate nature of the search, the search is simultaneously per-
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Case No. C; | M | w Cyy

CaseBWB_1 | 041 | 0.85 | 1.0 |-0.300
CaseBWB_2 | 041 | 0.85| 1.0 |-0.075
CaseBWB_3 | 0.41 | 0.85 | 0.70 | -0.075
0.41 | 0.87 | 0.25 | -0.100
1.63 | 0.20 | 0.05 | -0.330
CaseBWB_4 | 0.41 | 0.85 | 0.95 | -0.075
1.63 | 0.20 | 0.05 | -0.330

Table 1: Blended wing body aircraft. Optimization conditions and constraints.

formed on a number of embedded search domains, and the set of thus obtained optimal
shapes are verified through full Navier-Stokes evaluations.

Besides, in order to ensure the global character of the search, it is necessary to overcome
the local nature of the above approximation. For this purpose it is suggested to perform
iterations in such a way that in each iteration, the result of optimization serves as the
initial point for the next iteration step (further referred to as optimization step). The
specific algorithm is described in Ref. [8].

Additionally, multilevel parallelization of the whole optimization framework allows one
to make use of the computational power supplied by massively parallel processors and
thus to essentially improve the computational efficiency (for more detail see [14]).

4 DISCUSSION OF RESULTS

In this section we present the results of one- and multi-point drag minimization of a
blended wing body aircraft configuration without the influence of trailing-edge devices.
The initial (tailless) geometry of the aircraft was proposed within the European Commis-
sion funded project Ref. [5] and may be found in Ref. [6].

The main design point was Cy, = 0.41, M = 0.85 (as in [6]). The secondary design
points were chosen at M = 0.87 (high Mach cruise conditions) and at M = 0.2 (take-off
conditions). The design Reynolds number Re was equal to 5.41 - 10° (assuming that the
characteristic length in the Reynolds number definition is equal to 1m). The geometrical
constraints were imposed on thickness ((t/c); = (t/c)?), leading edge radius ((R/c); =
(R/c)%) and trailing edge angle (0 = 6) as well as two local thickness constraints per
section. An additional (aerodynamic) constraint was placed upon the pitching moment.

The design conditions and constraints are summarized in Table 1, while the results of
optimization are given in Table 2. The corresponding optimal shapes are designated by
CaseBW B_1 to CaseBW B_4.

For the transonic BWB aircraft configuration, NES provides accurate asymptotically
converged estimates of aerodynamic coefficients with the fine level grids containing 209 x
57 x 41 computational points in the streamwise, spanwise and normal to surface direction,
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respectively.

Unfortunately, such computations, though feasible for a single optimization, are too
heavy to be used in the industrial framework. To overcome this limitation, we used the
invariance of the hierarchy of objective function values on the medium and fine grids
Ref. [8]. It is feasible if the grid coarsening preserves the hierarchy of fitness function
values on the search space (that is, the relation of order is invariant with respect to grid
coarsening). This means that the objective function @, defined on a coarse grid can be
used for solution of the optimization problem, if for every pair of points z, zo belonging
to the search space, the relation of order between the values of an objective function Q).
on a coarse grid implies the same order relation for the objective function ¢); defined on
a fine grid. For 2D optimization, the feasibility of the above approach was confirmed in
Ref. [13].

It appeared that the two times coarser in each direction (105 x 29 x 21 ) grids satisfy
the invariance conditions. This allowed us to use meshes with such a resolution for
optimization purposes.

One single-point optimization requires an overnight run on the above cluster while a
typical three-point optimization which includes one main design point and two secondary
design points, may take as much as 1.5-2 days.

Note, that though the CFD computations employed in the optimization stream were
based on the medium grid resolution, all the aerodynamic data listed below were obtained
on the fine grid.

4.1 One-point optimization

Before discussing the obtained results we compare the present results with other pub-
lished results. The considered BWB aircraft configuration was the subject of a previous
optimization within a European project [5]. The results of this single-point optimization
at the main cruise conditions (C7, = 0.41, M = 0.85) were reported in [6]. In [6] the op-
timization with a gradient method, was based on the solution of the Euler equations and
the corresponding adjoint equations, while the final optimal shape was verified through
the solution of the full Navier-Stokes equations.

The comparison of the results in Ref. [6] with those obtained by the present method
(one-point optimization CaseBW B_1) is as follows. In Ref. [6], the reduction of 26
aerodynamic counts was achieved (out of the initial 285.5 counts). The corresponding
optimization by the present method yielded the reduction of 52.5 counts (out of the
initial 247 counts).

In order to obtain a better assessment of the optimization results, it is worthwhile to
analyze the aerodynamic behaviour of the baseline BWB configuration (taken from [6]).
A CFD analysis (performed by the code NES [9]) at transonic flight conditions provides
evidence to strong shocks on most of the aircraft upper surface (see Fig. 1).

The computation at C, = 0.41, M = 0.85 yields 247 counts. At this flight point, the
theoretical induced drag (taking into account the difference between the wetted and the
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Case Cp (counts) Cp (counts) cmav

at M = 0.85, C; = 0.41 | at M = 0.87, Cr, = 0.41 | at M = 0.20
Baseline 247.0 287.0 1.63
CaseBW B_1 194.5 207.4 1.51
CaseBW B_2 196.4 213.4 1.47
CaseBWB_3 196.7 202.5 1.76
CaseBW B_4 196.6 216.6 1.67

Table 2: Blended wing body aircraft. Optimization results.

reference wing areas) is estimated to be about 75 counts. On the other hand, the zero lift
total drag for the same configuration, for a purely subsonic flow at M = 0.60, is equal to
115 counts. Thus the baseline configuration possesses a fair amount of wave drag which
gives a good promise that a proper shape optimization should result in a significant drag
reduction. This conclusion may be also confirmed by the computation at C, = 0.41,
M = 0.60 where the total drag is equal to 190.6 counts, which complies with the previous
wave drag estimate at the main design point (above 50 counts).

The first optimization case labeled as Case BW B_1, is a single-point optimization with
unconstrained pitching moment. The total drag of the optimal configuration amounts to
194.5 counts (compared to the initial 247.0 counts) with the pitching moment Cy, =
—0.300 compared to the baseline Cj; = —0.075. The comparison of sectional pressure
distributions for the baseline shape (Fig. 1) with the optimized ones for M = 0.85 (Fig.
2) shows that the original strong shock was virtually eliminated by the optimization.
This resulted in a total drag level close to the above estimated low bound (about 191
aerodynamic counts). Note, that the shock elimination phenomenon is not pointwise:
this trend is also clearly observed at a higher Mach value M = 0.87.

The analysis of the iterative optimization stream (see Fig. 3) demonstrates that the
main means of drag minimization is related to the build up of a highly cusped trailing
edge shape. Note, that this trend is widely used in practical aerodynamic design.

At the same time, though the optimization (CaseBW B_1) was highly successful in
terms of drag reduction, the corresponding C; value appeared unacceptable due to stabil-
ity considerations. This necessitated another one-point optimization (labeled Case BW B_2)
at the conditions of Clase BW B_1 with an additional constraint imposed on the pitching
moment in order to keep it to the original level. The results of the optimization were as
follows. The total drag was reduced to 196.4 counts, while the pitching moment of the
optimal aircraft configuration was exactly equal to the original one (Cy, = —0.075).

The analysis of the achieved results allows one to draw the following conclusions. First,
the drag penalty due to the limitation of pitching moment amounted to only 1.9 counts.
Second, though both optimal configurations yield very close total drag values, the cor-
responding shapes are markedly different (see Fig. 4). This may be explained in the
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following way. In order to comply with the constraint on the pitching moment, an essen-
tially higher loading of the leading edge region of the aircraft (compared to the uncon-
strained optimization Case BW B_1) should be achieved. This means that in this case, the
drag minimization can not be accomplished by the same aerodynamic design techniques
which were successfully used by the optimizer in Case BW B_1. Indeed, as it can be seen
from Fig. 4, the present optimization method discovered new aerodynamic resources and
formed a drooped leading edge shape, which is another well known design feature.

4.2 Multi-point optimization

From the pointwise optimization view, the results achieved in Case BW B_2, are quite
successful, because at the design conditions, the drag was reduced by 50.6 counts (coming
close to the theoretical minimum) while keeping all the constraints (including that of the
pitching moment) to the required level. However, the final decision on the feasibility of
an optimal shape, should be made only upon the configuration testing at off-design con-
ditions. Specifically, at least three following off-design characteristics should be checked.
First, the drag behaviour at higher-than-cruise lift conditions (at the cruise Mach value).
Second, the quality of Mach drag divergence at the considered cruise C;, = 0.41. And
finally, the value of C7"** at the take-off conditions should be tested.

With this end in view, the optimal BWB aircraft configuration (CaseBW B_2) was
analyzed. The results show that the drag behaviour at higher C7, (the first test) is quite
satisfactory: at C, = 0.444, only 2-3 wave drag counts are added. As for the above second
and third off-design conditions, the following analysis demonstrates that there is room for
improvement. Specifically, at M = 0.87, C, = 0.41 about 17 counts of wave drag were
added compared to M = 0.85, while C7** at M = 0.2 was equal to 1.47 (compared to
C™® = 1.63 for the initial baseline BWB configuration).

In this connection the following multi-point optimizations were carried out: Case BW B_3,
which includes the main design point and two secondary design points at high Mach and
at take-off conditions, and C'lase BW B_4, which combines the main design point and the
take-off design point (see Table 1).

Let us consider the results of the three-point optimization. At the main flight con-
ditions, the optimal shape yielded 196.7 counts which is rather close to the theoretical
minimum (see the above discussion). The surface pressure distribution on the upper sur-
face of the optimal configuration is compared with this of the baseline geometry in Figs.
5-6. It can be assessed that the optimization considerably changed the configuration
loading by removing the strong shocks present in the flow over the original aircraft shape.

The off-design performance at higher than cruise lift coefficients (at M = 0.85) is
satisfactory: for example, the drag value at C;, = 0.45 is equal to 214.0 counts which
means that the additional wave drag (compared to the cruise C, = 0.41) is only about
2-3 aerodynamic counts.

As for the two-point optimization (CaseBW B_4), the results were as follows: CT%®
increased to 1.671 (thus removing the drawback of Case BW B_2 at the take-off conditions)
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while the total drag at the main design point was equal to 196.6 counts (in fact, preserving
the gain in drag value achieved in Case BW B_2).

At the same time, the drag value at M = 0.87 was even higher than in the one-point
optimization of CaseBW B_2 (216.6 counts compared to 213.4 counts), thus indicating
the need for a three-point optimization.

The next important issue is the aerodynamic performance of the optimal shape at high
Mach values. As it was already mentioned above, the one- and two-point optimizations
resulted in approximately the same value of Cp at M = 0.87 - about 215.0 counts.
The three-point optimization (in which higher than cruise Mach flight conditions are
additionally taken into account), allows to improve the Mach drag rise characteristics of
the BWB aircraft. Specifically, the total drag value at C, = 0.41, M = 0.87 became
202.5 counts (a reduction of 12.5 counts compared with the previous optimizations). The
analysis of the corresponding pressure distributions (see Figs. 7-8 ) shows that the main
mechanism which allowed to reach a significant drag reduction, consists in the successful
shock wave destruction.

Alongside surface aerodynamic characteristics, an important source of aerodynamic
data needed for the analysis of flow structures, are off-body iso-Mach contours. The
corresponding sectional Mach distributions over the baseline configuration and the optimal
one (CaseBW B_3) for the free-stream M = 0.85 are given in Figs. 9 - 10.

Already at the symmetry plane, the baseline configuration is characterized by the
presence of a supersonic zone which has a tendency to produce the shock wave in the
vicinity of 70% of the chord. Contrary to this, the symmetry plane flow over the optimal
configuration is subsonic, and the sectional loading is shifted in the leading edge direction.

Moving outboard, we note that at z = 13.0m (Fig. 9), the above trend for the baseline
configuration has been realized in a strong shock at approximately 55% of the chord
length. As this takes place, the height of the corresponding supersonic bell grows and
achieves about 35 — 40% of the local chord length. For the optimal configuration (see
Fig. 10), the situation is completely different and the shock wave is absent. Though the
supersonic bell is also present, the transition of the supersonic flow to the subsonic one
occurs in a smooth way. Additionally, similar to the symmetry plane, we observe the shift
of the sectional loading in the leading edge direction.

In order to better assess the advantages of different optimization cases, it is interesting
to compare the overall aerodynamic performance of the optimized shapes with that of the
original aircraft configuration. The natural way to do this is to present drag polars at the
design free-stream Mach numbers M = 0.85 and M = 0.87, the Mach drag rise curve at
the design C, = 0.41 and Cp, vs. angle of attack curve at M = 0.20.

The analysis of drag polars at the main design point (Fig. 11) allows to draw the fol-
lowing conclusions. In all the considered optimization cases, the optimized configurations
demonstrate a significant improvement to the original shape in the whole range of lift
coefficients. It is important to note that in the wide vicinity of the design lift coefficient,
all the polars are very close to each other.

10
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At a higher free-stream Mach number, corresponding to a secondary design point at
M = 0.87, the above mentioned superiority (in terms of drag) of the optimized configu-
rations over the baseline one, is retained for a wide range of C}, values (see Fig. 12). At
the same time, contrary to M = 0.85, the three-point optimization Case BW B_3 has a
clear advantage.

Let us turn our attention to the analysis of Mach drag rise curves at C, = 0.41
(Fig. 13). Already the original (baseline) shape possesses reasonably good drag rise
characteristics: the total drag value is kept practically constant up to M = 0.80 with the
Mach drag divergence point located close to M = 0.82. Nevertheless, the optimization
enables one to both decrease the constant level of drag at subsonic and low transonic
Mach numbers and to essentially shift the Mach drag divergence point to a higher Mach
zone. As this takes place, the value of the Mach drag divergence point for the one- and
two-point optimizations is about M = 0.855 while for the three-point optimization this
value is as high as M = 0.87.

Summing up the analysis of results for high transonic free-stream Mach numbers, it
may be concluded that the superiority of the three-point optimization is clearly evident.
The final conclusions concerning the feasibility of the optimal shape, may be drawn only
upon the aerodynamic performance analysis at the take-off conditions. The corresponding
data may be found in Fig. 14, where C, vs. angle of attack curves at M = 0.20 are shown.

It can be observed that the values of C7"** for the optimizations Case BW B_1 and
CaseBW B_2, where the take-off requirements were not included into the optimization
goals, were lower than that of the baseline configuration. In turn, where the take-off
conditions are taken into account, the corresponding optimizations (CaseBW B_3 and
CaseBW B_4) produced shapes which visibly improved the baseline C7"*® characteristics.

Finally, based on the above detailed aerodynamic analysis in a wide range of flight
conditions, it may be concluded that the three-point optimization possesses the best
overall aerodynamic performance.

Let us analyze the connection between the achieved aerodynamic performance of the
aircraft and the corresponding optimal shapes. Specifically, it is interesting to reveal the
mechanism of drag minimization in terms of geometrical trends in aircraft shape.

First of all one can see that the optimal shapes, obtained in different optimization
conditions, are markedly different. Contrary to this, the corresponding total drag values
at the main design point are very close to each other. This leads to a simple but very
important conclusion: the considered optimization problem is ill-posed. More exactly,
this means that small changes in the resulting total drag value may produce significant
changes in the corresponding shapes. Practically, essentially different geometrical shapes
may yield the same drag value in the small vicinity of the minimum drag. Summing up,
it may be concluded: the drag minimization problem has no unique solution.

Mathematically, the ill-posedness of a problem complicates the issue. Practically, the
solution of such a problem may produce shapes infeasible from the engineering viewpoint.
For example, the optimization may yield an unproducible shape with too small a leading
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edge radius or a shape which may be practically constructed but is aerodynamically
unacceptable due to flight instability.

To remove the above obstacle, we should improve the well-posedness of the problem.
In our case, one of the natural and very efficient ways to do this, is to diminish the
dimensions of the search space and thus to exclude from consideration the shapes infeasible
from the engineering viewpoint. This may be accomplished by introducing numerous
geometrical and aerodynamic constraints into the problem. The required constraints can
be naturally derived from the multidisciplinary considerations such as flight stability,
material requirements and so on.

The presented results show that the imposition of constraints allows one to reach the
stated practical goal: to obtain minimum drag configurations and, at the same time, to
avoid infeasible shapes. In particular, the optimal shape of Case BW B_3 yields the drag
value close to the theoretical minimum and complies with the main design requirements
coming from the multidisciplinary considerations.

5 CONCLUSIONS

The multiconstrained optimization of a Blended Wing Body configuration for minimum
total drag has been considered. The important features of the optimization technology
included a new strategy for efficient handling of nonlinear constraints in the framework
of Genetic Algorithms, scanning of the optimization search space by a combination of full
Navier-Stokes computations with the ROM method, and a multilevel parallelization of
the whole computational framework which efficiently makes use of computational power
supplied by massively parallel processors. The analysis of a large body of results demon-
strates that the developed optimization technique allows for finding the solutions with
the performance close to that of the total optimum. The designed shapes which satisfy
a large number of aerodynamic and geometrical constraints, are aerodynamically feasi-
ble, yield essential aerodynamic improvement to the initial geometry at the main design
point alongside good off-design performance. By means of the three-point optimization,
we respectively achieved 20% and 29% reduction in drag in the main and a higher Mach
secondary design points, while keeping C7*** at the take-off conditions to the required
level.
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Figure 1: BWB baseline configuration. Streamwise pressure distribution at section z = 13.0m. M = 0.85,
Cr =041.
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Figure 2: BWB configuration. One-point optimization: CaseBW B_1. Streamwise pressure distribution
at section z = 13.0m. M = 0.85, C, = 0.41.
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Figure 3: BWB configuration. One-point optimization: Case BW B_1. Shape of section at z = 17.5m for
different optimization steps.
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Figure 4: BWB configuration. One-point optimizations. Shape of section at z = 23.5m. CaseBWB_1
vs. Case BW B_2.
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Figure 5: BWB baseline configuration. Pressure distributi(-;n on the aircraft surface at M = 0.85,

i
s

Figure 6: BWB configuration. Multipoint optimization: CaseBW B_3. Pressure distribution on the
aircraft surface at M = 0.85, C, = 0.41.
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Figure 7: BWB baseline configuration. Pressure distri
Cr = 0.41.

Figure 8: BWB configuration. Multipoint optimization: CaseBW B_3. Pressure distribution on the
aircraft surface at M = 0.87, C, = 0.41.
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Figure 9: BWB baseline configuration at M = 0.85, C, = 0.41. Mach distribution at section z = 13.0m

'/

Figure 10: BWB configuration. Multipoint optimization (CaseBW B_3) at M = 0.85, C, = 0.41. Mach
distribution at section z = 13.0m
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BWB Configuration. Drag Polars at M=0.85
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Figure 11: BWB aircraft. Drag polars at M = 0.85. Baseline vs. optimal ones.

BWB Configuration. Drag Polars at M=0.87
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Figure 12: BWB aircraft. Drag polars at M = 0.87. Baseline vs. optimal ones.
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BWB Configuration. Mach drag divergence at CL=0.41
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Figure 13: BWB aircraft. Mach drag divergence at cruise lift coefficient C, = 0.41.

BWB Configuration. CL vs. alpha at M=0.20
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Figure 14: BWB aircraft. Lift coefficient Cy, vs angle of attack at take-off conditions (M = 0.20).
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