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Abstract. After the thermal renovation of a dwelling, there exists a gap between the 

actual and predicted energy performance. One of the reasons contributing to this gap is 

the poor assumptions of building thermal characteristics during the prediction stage. 

Nowadays, smart meters for gas and electricity, and home automation systems are 

becoming increasingly prominent in dwellings. Hence, there is potential to use the on-

board monitored data from these sources to estimate the thermal characteristics of the 

actual dwellings. If it was possible to measure everything in a dwelling, then the 

estimation of these characteristics would become easy. However, the amount of data 

from the dwellings is limited. Hence with the available data, assumptions have to be 

made to estimate characteristics reflective of the actual dwelling. Therefore, this study 

investigates the impact these assumptions have on the estimated characteristics. First, a 

simple equation requiring minimum data is formulated to represent the heat dynamics 

in a building. Then, the characteristics are determined for one Dutch dwelling for the 

following conditions: 1. Different measurement periods, 2. Different time granularities, 

3. With total (space heating + domestic hot water) and decomposed (only space heating) 

gas consumption data,  4. With different representations of indoor air temperature, and  

5. Using electricity data to account for internal heat gains. In general, the estimated 

characteristics deviated for all the conditions. And thus, this study establishes the 

importance of well-chosen on-board monitored data. 

1. Introduction  

Renovation of residential buildings to become energy efficient and carbon neutral is the topic 

of the day in Europe. This paper addresses the specific case of Dutch dwellings. And, since most 

Dutch houses use gas for space heating, there is a more pressing need for this transition. The 

initial phase of a renovation project includes the energy performance prediction of a proposed 

retrofit option. Often, during this prediction, the values defining the thermal characteristics of the 

actual house are poorly assumed. This poor assumption leads to energy performance prediction 

that is far from reality. Thus, even after renovation, dwellings do not meet their intended targets 

[1–3]. This is often reflected in dissatisfied occupants (e.g., higher pay-back times), and at macro 

level, unattainable policy targets. 

The question then is, how to determine the actual characteristics of houses? The direct way to 

determine them is through measurements: heat flow meter method [4], blower door test [5], 

PRISM (Princeton Score Keeping Method) [6], QUB (Quick U- value of Building) [7] and co-
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heating test [8]. But these measurement methods suffer limitations such as the need for special 

measurement equipment, cost, longer measurement durations and the limited number of 

characteristics each method can estimate. These measurements are also intrusive, thereby 

burdening the occupants. Thus, a method which uses easy-to-collect data from smart meters and 

home automation systems of functioning houses, and then finds its way back to determine the 

actual characteristics of these dwellings is the next best solution. Rasooli & Itard (2020) and EBC 

Annex 71 contributed to developing such methods [9,10]. The method by Rasooli & Itard (2020) 

will be used in this paper and further expanded for studying the on-board monitored data. 

Previously, studies used different models to determine these thermal characteristics [10–12]. 

However, most of these studies used simulated data or involved unoccupied experimental 

buildings where the measurement conditions were controllable. Unlike data from experimental 

buildings, data from actual houses or on-board monitored data (e.g., indoor air temperature) 

comes with uncertainties because of the occupant interaction. Also, since it is impossible to 

measure everything in an occupied house, assumptions have to be made. And these assumptions 

have an impact on the estimated characteristics. These uncertainties in estimated parameters due 

to assumptions related to the on-board monitored data were pointed out by Rasooli & Itard (2020) 

but were not sufficiently studied. Studying these uncertainties is necessary to apply this method 

systematically in dwellings. 

Therefore, this paper aims to study the impacts on the estimated thermal characteristics while 

using on-board monitored data from one occupied house. The deviations in the results are studied 

for the following conditions: 1. using data from different periods, 2. using data of different time 

granularities, 3. with and without separating total gas data into gas consumed for Space Heating 

(SH) and Domestic Hot Water (DHW), 4. using different indoor air temperature assumptions and, 

5. using electricity data to account for internal heat gains. 

2. Data Description 

2.1. Dwelling description 

The dwelling is an apartment located in the Netherlands. The apartment is occupied by a middle -

aged man who is in the apartment all throughout the day, every day. The apartment itself is 72m2 

and has four rooms in total. There are neighbours on the west and east sides. The apartment has 

a north and a south façade. The building has a construction year of 2014 and belongs to the energy 

label A. The apartment uses a combination condensing boiler with a nominal efficiency of 0.9 for 

heating. During the measurement period, the thermostat was maintained at 21 oC and the occupant 

never changed the thermostat settings. It is also important to note, the occupant showered on ly 

few times a week, lasting 10 minutes. The ventilation system of the house is mechanical 

ventilation system maintained at medium stand. In addition, the occupant used windows and doors 

to ventilate all rooms except the bathroom. 

2.2. Description of the data used for the study 

Table 1. Data used for estimating the thermal characteristics 

Data Source Logging Interval 

Indoor air temperature- all rooms In-situ sensor 5 minutes 

Relative Humidity- bathroom In- situ sensor 5 minutes 

Cumulative gas consumption Smart meter 1 hour 

Cumulative electricity consumption Smart meter 10 seconds 

Outdoor air temperature KNMI  1 hour 

Global solar radiation KNMI 1 hour 
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Table 1 describes the data used for this study. Data measured from June 2017 to June 2018 is used. 

For additional information on the on-board monitored data refer [9]. For information on how the 

measurements were made refer [13]. 

The cumulative gas consumption (m3) was converted into hourly heating energy consumption 

(Wh) by subtracting consecutive absolute values and multiplying by a calorific value of 35.17 

MJ/m3, along with the unit conversion. Similarly, consecutive values of cumulative electricity 

consumption were subtracted and further averaged for hourly consumption. The longer gaps of 

missing data (>5 hours) were ignored and not used in the analysis. The shorter gaps were filled 

using interpolation. The indoor air temperature and relative humidity were also averaged at hourly 

intervals. The indoor air temperature was calibrated according to [9]. There were no missing 

sensor data. Finally, the outdoor measurements were obtained by averaging data from the two 

closest KNMI stations (Koninklijk Nederlands Meteorologisch Instituut: Royal Dutch 

Meteorological Institute). All the data cleaning and processing were done using python 

programming. 

3. Methodology 

3.1. Deriving the thermal characteristics of the building  

The first step is to derive the thermal characteristics of the building. If the entire house is assumed 

to be a single zone, then the heat interactions in the house are represented in the form of the 

following equation based on the law of energy conservation,  

[q̇storage] =  [q̇H] + [q̇sol] + [q̇int] + [q̇vent] + [q̇inf] + [q̇trans] (1) 

In essence, the heat stored [q̇storage] in the house, is equal to the heat input [q̇H] from the 

heating system into the house, the heat gains due to solar radiation [q̇sol], the internal heat gains 
[q̇int] due to the presence of occupants and usage of appliances, light, etc., heat exchange due to 

infiltration [q̇inf] through cracks and crevices in the house, ventilation [q̇vent] and through the 

building envelope[q̇trans]. 
Equation 1 can be further expanded into equation 2, 

Ceq ⌈
∂Tin

∂t
⌉ =  η. [Q̇H] + S0. Awindows. [Q̇sol] + [Q̇int] + ρcV̇vent(Tout −  Tin) 

+ρcV̇inf(Tout −  Tin) + ∑ UA

4

i=1

 (Tout −  Tin) 

(2) 

Tin and Tout are the indoor and outdoor temperatures in Kelvin respectively, ρ is the density, c 

is the specific heat capacity and V̇ is the volume. Q̇H is the energy flux used for heating the 

building in Watts. Q̇sol is global solar radiation in W/m2.  Tin, Tout, Q̇H and Q̇sol are the measured 

data. For the purpose of calculation, equation 2 can be rewritten as,  

Ceq ⌈
∂Tin

∂t
⌉ =  η. [Q̇H] + S0. Awindows. [Q̇sol] + S1 + HLC. (Tout −  Tin) (3) 

Ceq is the thermal capacitance, which is a characteristic of a building to store heat.  It is a 

summation of the heat storing capacitance of all building components like walls, indoor air, 

furniture, etc. η is the nominal efficiency of the boiler. S0 is a characteristic that represents the 

average fraction of radiation that enters the building. U is the thermal transmittance of each 

building envelope component (exterior walls, roof, glazing, floor) and, A is the corresponding 

area of these components. The inverse of U is resistance R, the ability of the building envelope 

to resist heat exchange to the surrounding. The UA value is a characteristic of the building which 

determines the rate of heat exchange through the building envelope when a temperature  difference 
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exists between the indoor and outdoor air. It can be seen in equation (2) that the heat exchange 

due to infiltration, ventilation and transmission is driven by the temperature difference. Hence, a 

global equivalent parameter called the heat loss coefficient (HLC) is introduced [10]. Also, a term 

S1 is introduced which accounts for other effects in the building including internal heat gains 
[q̇int].  

Thus Ceq, HLC, S0 and  S1 are the thermal characteristics to be estimated using the measured 

data. And equation 3 is the simplest representation of the heat dynamics in a building requiring 

minimum data. 

3.2. The general framework 

The general approach to this study follows the method by Rasooli and Itard (2020). The first step 

is to obtain the data required for the model. The next step is setting up the inverse model, where 

the inputs and outputs to the system are known, and then the parameters are estimated. The 

parameters are estimated by minimizing the root mean square error (RMSE) between the predicted 

and actual outputs. Bringing back equation 3, the inverse model is thus represented as in figure1: 

 

Figure 1. The figure illustrates the inverse model of estimating parameters where the inputs and the 

outputs to the model are known 

The prediction function is therefore formulated as: 

Tin,pred
t = (η. Q̇H

t + S0. Awindows. Q̇sol
t + S1 + HLC. Tout

t +
Ceq

3600
. Tin

t−1) /(HLC + Ceq) (4) 

Since the objective is to reduce the RMSE between the actual and predicted indoor air 

temperature, the objective function is represented as, 

RMSE = √
1

n
∑ ((η. Q̇H

t + S0. Awindows. Q̇sol
t + S1 + HLC. Tout

t +
Ceq

3600
. Tin

t−1) . (HLC + Ceq)
−1

−Tin,actual
t

)

n

i=1

2

 (5) 

This optimisation problem is then solved using differential evolutionary algorithm from the 

SciPy library. The SciPy library is a free and open source library provided by python. The final 

boundary constraints were set to: HLC ∈ [10,300], C_eq  ∈ [1e5,1e9], S_0 ∈ [0,1], S_1 ∈ [0,5000]. 

The boundaries were decided after running the simulations several times from broader to tighter 

constraints. They were also based on the possible ranges of physical properties obtained from [9]. 

3.3. Testing for deviations 

The next step is to test for deviations based on different conditions. The deviations in the estimated 

parameters are studied for the following conditions: 

1. Using data from different periods: Entire year, summer, winter, winter months, winter weeks, 

winter days. The winter month of December is not considered in this study because of a 

large gap of missing data. January and March were the most windy months among the 

periods considered in this study. Summer months did not have space heating gas 

consumption and temperature difference between the indoor and outdoor air was relatively 

small. 
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2. Using data of different time granularities: Hourly, daily, weekly. For example, for daily data, 

the hourly data is averaged to daily data. And this data is used in the simulation as if only daily 

data is available for the simulations.  

3. Using gas consumed data with and without separating gas consumed for space heating and 

domestic hot water. Decomposition of gas data was done using the method explained by 

Rasooli & Itard (2020). First, the gas data corresponding to the frequent heating up of the boiler 

to maintain constant temperature and frequent domestic hot water (DHW) usage are removed. 

Then, the gas data corresponding to the relative humidity spikes in the bathroom are removed. 

These spikes correspond to the DHW used for showering. Finally, the remaining gas data is the 

gas consumed for space heating (SH). 

4. Assuming different indoor temperature: Average of temperature in all rooms (Tin,avg), floor 

area based average temperature (Tin, fa) of the rooms, volume based average temperature (Tin, vol) 

of the rooms, temperature of the room (Tin, r) where the thermostat was placed. 

5. Accounting for internal heat gains using electricity data: 0% of the electricity data, 25% of 

the electricity data (0.25El), 50% of the electricity data (0.5El), 75% percent of the electricity 

data,  100% of the electricity data (1El). To suit this condition, equation 3 was reformulated to 

accommodate electricity data, 

Ceq ⌈
∂Tin

∂t
⌉ =  η. [Q̇H] + S0. Awindows. [Q̇sol] + S1,elec + S1 + HLC. (Tout −  Tin) (6) 

4. Results and Discussions 

The estimated parameters are presented in Tables 2, 3, 4 and 5. They are represented by the 

different conditions explained in the previous section. For easy interpretation, HLC estimates for 

all periods and granularities are presented. For the other characteristics only year and winter 

periods are shown. It is important to note, for week and day periods, table 1 shows the respective 

averages over the whole duration of January to March. On average, the RMSE remained around 

0.4 with winter periods showing the lowest RMSE. This remained the same for all conditions 

except when a single room temperature was used to represent the indoor air temperature. The 

RMSE average then increased to 0.5.  

Table 2. Estimated HLC for the different conditions explained in section 3.3 
HLC in WK-1 

Period Granularities SH+DHW, 

Tin,avg 

SH,  

Tin,avg 

SH,  

Tin, fa 

SH,  

Tin, vol 

SH 

Tin, r 

SH,  

Tin,avg, 

0.25El 

SH,  

Tin,avg, 

0.50El 

SH,  

Tin,avg, 

0.75El 

SH,  

Tin,avg, 

1El 

One year 

2017-2018 

Hourly  79 72 71 71 75 76 80 83 87 

Daily 79 72 71 71 74 76 80 83 87 

Weekly 80 73 71 71 75 77 80 84 88 

Winter 

Jan- feb 

2018 

Hourly 151 160 153 152 139 158 159 160 161 

Daily  164 167 158 159 133 165 167 167 170 

Weekly 162 173 164 163 127 174 175 175 176 

Jan, 2018 
Hourly 140 145 138 139 126 145 149 146 148 

Daily 293 299 298 298 126 297 299 299 297 

Feb, 2018 
Hourly 171 171 166 167 143 173 173 171 172 

Daily 171 172 152 148 143 172 173 174 173 

Mar, 2018 
Hourly 59 50 49 49 131 53 59 63 66 

Daily 288 286 296 275 131 289 299 291 296 

Week 

Jan-Mar 

Hourly 149 153 146 147 139 154 155 158 159 

Daily 191 187 205 205 210 188 188 189 190 

Day 

Jan-Mar 

Hourly 176 168 171 170 169 170 172 173 176 

Summer 

Aug- Sep 

2017 

Hourly 94 61 71 78 68 89 96 101 108 

Daily 298 263 251 261 264 294 295 291 294 
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The estimated HLC’s were found to be consistently good during the Jan-Feb winter, the month 

of February and the year period. This was because the estimates were consistent across the 

different time granularities. The results for the other periods were inconsistent for differ ent time 

granularities. And, these periods included summer and the windy months.  

On comparing the HLC estimated using total and space heating gas consumption data, it is 

evident that the former yielded HLC values lower than the latter. The unaccounted energy use 

due to DHW are therefore reflected by higher S1 values. Overall, the deviation between these two 

conditions is not much. This is because of the single occupancy and the infrequent showering by 

the occupant. However, it cannot be assumed that this would be negligible in other households. 

Next comes the deviations caused due to indoor air temperature assumptions. Since it is a 

single floor house with the same height, the estimated parameters are almost the same when floor 

area based average and volume-based average indoor air temperature representations are 

considered. On the other hand, when the  indoor air temperature is represented by the temperature 

of a single room (T in,r), the estimated parameters are different. Especially the HLC (T in,r) values 

during the longer winter periods remain closer. This verifies that the thermostat was placed in 

this particular room. The heating system is activated based on this room temperature. This can be 

further verified by comparing the results of using average temperature (T in,avg) of all rooms with 

results obtained using T in,r. In general, Tin,avg yielded higher HLC’s meaning that there were rooms 

with higher temperatures than the room with the thermostat. The heat contribution to these rooms 

are reflected by higher S1values for Tin,avg. 

Finally, the results obtained by including electricity data to account for internal heat gains are 

compared. It is more logical to compare the condition (SH, T in,avg) with (SH, T in,avg, 0.25El), (SH, 

Tin,avg, 0.50El), (SH, T in,avg, 0.75El) and (SH, T in,avg, 1El). It can be observed that all parameters 

except S1 remain more or less the same for all the conditions. As the amount of electricity data 

included in the equation increased, the values of S1 decreased accordingly. 

Table 3. Estimated Ceq for the different conditions 

Ceq in JK-1 

Period Granularities SH+DHW, 

Tin,avg 

SH,  

Tin,avg 

SH,  

Tin, fa 

SH,  

Tin, vol 

SH 

Tin, r 

SH,  

Tin,avg, 

0.25El 

SH,  

Tin,avg, 

0.50El 

SH,  

Tin,avg, 

0.75El 

SH,  

Tin,avg, 

1El 

One year 

2017-2018 

Hourly  3.3e8 3.4e8 3.5e8 3.5e8 3.2e8 3.3e8 3.2e8 3.1e8 2.9e8 

Daily 1.4e7 1.4e7 1.5e7 1.5e7 1.3e7 1.4e7 1.3e7 1.3e7 1.2e7 

Weekly 2.0e6 2.2e6 2.3e6 2.2e6 2.1e6 2.1e6 2.0e6 2.0e6 1.9e6 

Winter 

Jan- feb 

2018 

Hourly 1.7e8 2.0e8 1.8e8 1.8e8 1.5e8 2.0e8 2.0e8 2.0e8 2.0e8 

Daily  2.1e7 2.6e7 2.8e7 2.6e7 3.0e7 2.8e7 2.6e7 2.7e7 2.7e7 

Weekly 4.1e6 4.8e6 5.0e6 5.2e6 7.6e6 4.7e6 4.7e6 4.7e6 4.7e6 

Feb, 2018 
Hourly 2.0e8 1.9e8 1.7e8 1.7e8 1.2e8 1.9e8 1.9e8 1.9e8 2.0e8 

Daily 2.3e7 2.4e7 1.9e7 1.9e7 1.3e7 2.5e7 2.6e7 2.6e7 2.6e7 

 

Table 3 shows the details of the thermal capacitance values (C eq). They are the highest for the 

hourly granularities, and for lower granularities, daily and weekly, the values decrease 

substantially.This is in line with [9]. Thus, the building response time is in the order of days and 

at lower granularities this dynamic effect cannot be captured. 

The values of So (see table 4) remain the same across all conditions. In some periods and 

granularities So leans towards the constraints. The constraints are logical, in the sense, the fraction 

of irradiation entering the house should lie between 0 and 1. Then one possible uncertainty could 

be because of using global solar irradiation instead of the actual irradiation based on orientation.   

Some meaning was given to the values of S1 (see table 5)  in the above discussions. However 

to provide an accurate meaning to this parameter, further models must be developed that accounts 

for occupant behaviour.  
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Table 4. Estimated So for the different conditions 

So 

Period Granularities SH+DHW, 

Tin,avg 

SH,  

Tin,avg 

SH,  

Tin, fa 

SH,  

Tin, vol 

SH 

Tin, r 

SH,  

Tin,avg, 

0.25El 

SH,  

Tin,avg, 

0.50El 

SH,  

Tin,avg, 

0.75El 

SH,  

Tin,avg, 

1El 

One year 

2017-2018 

Hourly  0.20 0.22 0.22 0.22 0.21 0.21 0.20 0.20 0.19 

Daily 0.21 0.22 0.22 0.22 0.21 0.22 0.21 0.20 0.20 

Weekly 0.22 0.23 0.23 0.23 0.22 0.22 0.21 0.21 0.20 

Winter 

Jan- feb 

2018 

Hourly 0.83 0.84 0.82 0.81 0.79 0.83 0.83 0.82 0.83 

Daily  1 1 1 1 1 1 1 1 1 

Weekly 1 1 1 1 1 1 1 1 1 

Feb, 2018 
Hourly 0.71 0.67 0.68 0.68 0.68 0.67 0.67 0.65 0.65 

Daily 0.15 0.07 0.13 0.13 0.28 0.05 0.03 0.03 0 

 

Table 5. Estimated S1 for the different conditions  
S1 in W 

Period Granularities SH+DHW, 

Tin,avg 

SH,  

Tin,avg 

SH,  

Tin, fa 

SH,  

Tin, vol 

SH 

Tin, r 

SH,  

Tin,avg, 

0.25El 

SH,  

Tin,avg, 

0.50El 

SH,  

Tin,avg, 

0.75El 

SH,  

Tin,avg, 

1El 

One year 

2017-2018 

Hourly  1.4 0.16 0.51 0.22 0 0.81 0.15 0 0 

Daily 0.03 0.44 0.09 0.24 0 0.46 0.87 0.13 0.54 

Weekly 0.3 0.002 0 0.24 0.34 0 0.15 0 0.11 

Winter 

Jan- feb 

2018 

Hourly 796 1058 1013 1005 682 978 939 884 843 

Daily  928 1094 1013 1038 554 1002 985 918 908 

Weekly 924 1250 1173 1152 582 1197 1148 1094 1049 

Feb, 2018 
Hourly 1312 1454 1396 1415 844 1412 1366 1271 1223 

Daily 1959 2182 1773 1699 792 2134 2111 2061 2016 

5. Conclusion 

This paper addressed the impacts of on-board monitored data assumptions on the estimated 

characteristics . The characteristics were determined for the following conditions: 1. Different 

measurement periods, 2. Different time granularities, 3. With total and space heating gas consumption 

data,  4. With different representations of indoor air temperature and,  5. Using electricity data to account 

for internal heat gains. Finally, the results were presented, and the deviations analysed. The main 

conclusions and recommendations are as follows:  

1. The inconsistencies of HLC estimates can be improved by separating the variable (infiltration 

and ventilation) and the stationary (UA value) components. Wind velocity models to account 

for infiltration can be a possible first step. 

2. The Ceq values have very large magnitudes. This is a drawkback of using a simple equation to 

represent the heat dynamics of a building. Breaking up this component into smaller bits like 

Cwalls, Cair, etc. can increase the accuracy of estimation. 

3. The parameters So and S1 should be further researched. The inclusion of additional models could 

improve these estimated parameters. For example, occupant behaviour models and models that 

calculate the amount of irradiation entering the house based on orientation. 

4. Moving stepwise from simple to complex models can improve the accuracy of the estimates. 

Further, validation of the estimated characteristics is important to advance such parameter 

estimation methods. 

5. Finally, it can be expected that the deviations presented in this study can vary when different 

dwellings and households are used. Hence, this study should be further extended to more 

dwellings. 
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