verification of numerical wave propagation models with field measurements

CREDIZ verification Haringvliet

W 488 part 1c, figures

December 1983
verification of numerical wave propagation models with field measurements

CREDIZ verification Haringvliet

M. W. Dingemans

W 488 part 1c, figures

December 1983
LIST OF FIGURES

1. Map of region
2. Bottom contours 1981 bottom, 500 m mesh, with STROBO
3. Bottom contours 1981 bottom, 500 m mesh, with STROBO
4. Bottom contours 1981 bottom, 250 m mesh, with CREDIZ
5. Corresponding parts of 1981 and 1982 bottom geometries
6. Plots of differences between 1981 and 1982 bottom geometries
7. Bottom contours 1982 bottom, 250 m mesh, with CREDIZ
8. Example of Wavec printout
9. Wa-spectra (16 Oct., 01:00 and 02:00 hours) used in ideal condition
10. Wa-spectra (23-09, 03:00-05:00 MET), the development of a new wave field
11. Wa-spectra, double peaked, 23-09
12. Wa-spectra, triple peaked, 24-09
13. Wa-spectra, swell, 28-10
14. Example of wave data printout
15. Spectrum at WR1, 22-09, 5:50 hours
16. Spectrum at WR4, 22-09, 6:10 hours
17 - 22. Examples of graphical representation of the measurements:
 17. Wind and water level at Ha-1, 13-19 October
 18. Hs, Tp and Hife at Wa, 13-19 October
 19. θs, θife and R at Wa, 13-19 October
 20. s and c at Wa, 13-19 October
 21. Hmo and THI/3 at WR2, 13-19 October
 22. Hmo and THI/3 at WR4, 13-19 October
23. Relation Hrms, Qp for different formulations
24 - 34. 1-D computations for investigating breaking formulation in CREDIZ
 version C-1
35. Wa-spectra for ideal condition
36. CREDIZ computation T17, overview
37. CREDIZ computation T17, bottom contours output region
38. T23, iso-amplitude contours
39. T23, iso-phase lines
40. T24, iso-amplitude contours
41. T24, iso-phase lines
42. T25, iso-amplitude contours
43. T25, iso-phase lines
44. T26, iso-amplitude contours
45. T26, iso-phase lines
46. T23 versus 1-D
47. T25 versus 1-D
48. T26 versus 1-D
49. T26 versus 1-D, γ = 0.60
50. HV-ray, T23 versus T26
51. HV-ray, T23 versus T24
52. HV-ray, T25 versus T26
53a. EE-ray, T26 versus 1-D
53b. HE-ray, T26 versus 1-D
54a. EE-ray, one versus two wave periods
54b. HE-ray, one versus two wave periods
55a. EE-ray, $f_w = 0$ versus $f_w = 0.005$
55b. HE-ray, $f_w = 0$ versus $f_w = 0.005$
56. Bottom contours mouth Haringvliet
57. Energy transport directions in mouth of Haringvliet from T26
58a-g Wa-spectra hindcast
59. WR1-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
60. WR2-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
61. WR3-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
62a,b WR4-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
63a,b WR5-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
64. WR6-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
65. Ha-1-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
66. E-75-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
67. E-75-spectra hindcast \(H_s = H_z, 1/3 \) and \(T_s = TH1/3 \)
68 - 70. \(H_{mo} \) measured and computed for the hindcast
 68. Sensor positions Wa, WR1 and Ha-1
 69. Sensor positions WR2, WR5 and WR6
 70. Sensor positions WR3, WR4 and E-75
71. Measured \(H_{mo} \) at LEG and Euro-3; waterlevel at Ha-1 and G-77
72. T27 (17:00), overview
73. T27, depth contours
74. T27, iso-amplitude contours
75. T27, iso-phase lines
76. T32a (20:00), overview
77. T32a, depth contours
78. T32a, iso-amplitude contours
79. T32a, iso-phase lines
80. T29 (22:00), overview
81. T29, depth contours
82. T29, iso-amplitude contours
83. T29, iso-phase lines
84. T28 (23:00), overview
85. T28, depth contours
86. T28, iso-amplitude contours
87. T28, iso-phase lines
88. T30 (02:00), overview
89. T30, depth contours
90. T30, iso-amplitude contours
91. T30, iso-phase lines
92. T31 (04:00), overview
93. T31, depth contours
94. T31, iso-amplitude contours
95. T31, iso-phase lines
96. 1-D, sensitivity with respect to water level
102. Current field for T15 in bottom region
103. Current field for T15 in output region
104. T22, iso-amplitude contours
105. T10, iso-amplitude contours ($p_v = 1$)
106. T11, iso-amplitude contours ($p_v = 0$)
107. T1-T10, depth contours output region
108. T29a, depth contours
109. T29a, iso-amplitude contours
110. 1-D, HV-ray, $(\alpha, \gamma) = (2, .80)$ versus $(1, .70)$
111. 1-D, HV-ray, $(\alpha, \gamma) = (4.2, .80)$ versus $(1, .60)$
112. 1-D, HV-ray, $(\alpha, \gamma) = (4.2, .80)$ versus $(1, .70)$
113. 1-D, HV-ray, $(\alpha, \gamma) = (1, .80)$ versus $(2, .80)$
114. 1-D, HV-ray, $(\alpha, \gamma) = (1, .70)$ versus $(1, .60)$
115. 1-D, HV-ray, $(\alpha, \gamma) = (1, .80)$ versus $(1, .56)$
116. 1-D, \(\gamma = .56 \), \(f_w = 0 \) versus \(f_w = .01 \), HV-ray

117. 1-D, \(\gamma = .80 \), \(f_w = 0 \) versus \(f_w = .01 \), HE-ray (WST = 2.25 m)

118. 1-D, \(\gamma = .80 \); \(f_w = 0 \) versus \(f_w = .01 \), HE-ray (WST = 1 m)

119. 1-D, \(\gamma = .80 \); \(f_w = 0 \) versus \(f_w = .01 \), HH-ray

120. 1-D, \(\gamma = .80 \); \(f_w = 0 \) versus \(f_w = .005 \), HV-ray (case of T29)

121. 1-D, \(\gamma = .80 \); \(f_w = 0 \) versus \(f_w = .005 \), HE-ray (case of T29)

122. 1-D, \(f_w = 0 \), \(W = 0 \) versus \(f_w = .005 \), \(W = 14.5 \), HV-ray (case of T29)

123. 1-D, \(f_w = 0 \), \(W = 0 \) versus \(f_w = .005 \), \(W = 14.5 \), HE-ray (case of T29)

124. 1-D, \(f_w = .005 \), \(W = 0 \) versus \(f_w = .005 \), \(W = 14.5 \), HV-ray (case of T29)

125. 1-D, \(f_w = .005 \), \(W = 0 \) versus \(f_w = .005 \), \(W = 14.5 \), HE-ray (case of T29)

126. 1-D, constant wave period \(T = 8.3 \) versus \(T_1 = 8.3 \), \(T_2 = 3.8 \) (case of T29)

127. 1-D, \(T_1 = 8.3 \), \(T_2 = 3.8 \); \(f_w = 0 \), \(W = 0 \) versus \(f_w = .005 \), \(W = 14.5 \), ray HE

128 -130. \(H_{mo} \) measured and computed for the hindcast, CREDIZ versions C-3 and C-1

128. Sensor positions Wa, WR1 and Ha-1

129. Sensor positions WR2, WR5 and WR6

130. Sensor positions WR3, WR4 and E-75

131. Comparison 1-D and T17 (version C-1)

132. Comparison 1-D and T20 (version C-2)

133. Scatter diagram measured and computed wave heights \(H_{mo} \) of the hindcast
Bottom contours 1981 bottom, 500 m mesh, with STROBO

FIG. 2
Bottom contours 1981 bottom, 500 m mesh, with STROBO

MAASVLAKTE

N

SLUICES

GOEREE

FIG. 3
Bottom contours 1981 bottom, 250 m mesh, with CREDIZ

FIG. 4
Bottom contours 1982 bottom, 250 m mesh, with CREDIZ

MAASVLAKTE

GOEREES

FIG. 7
<table>
<thead>
<tr>
<th>TIME</th>
<th>LFE</th>
<th>FULL RANGE</th>
<th>PEAK</th>
<th>HF</th>
<th>ERROR STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>82-10-14 09:01</td>
<td></td>
<td>4.8 274 37 U</td>
<td>5.3 273 25</td>
<td>283 2</td>
<td>7 0 0 341 0 97 2</td>
</tr>
<tr>
<td>82-10-14 10:01</td>
<td>6</td>
<td>11.8 336 68 U</td>
<td>5.3 273 25</td>
<td>283 2</td>
<td>7 0 0 341 0 97 2</td>
</tr>
<tr>
<td>82-10-14 11:01</td>
<td>12</td>
<td>14.3 223 76</td>
<td>4.1 301 33 U</td>
<td>3.6 300 25</td>
<td>306 1</td>
</tr>
<tr>
<td>82-10-14 12:01</td>
<td>10</td>
<td>12.2 318 52</td>
<td>4 299 40 U</td>
<td>4 291 31</td>
<td>301 3</td>
</tr>
<tr>
<td>82-10-14 13:01</td>
<td></td>
<td>4.7 304 30 U</td>
<td>8.3 299 21</td>
<td>354 9</td>
<td>1 0 0 3 0 1 0 1</td>
</tr>
<tr>
<td>82-10-14 14:01</td>
<td></td>
<td>6.7 303 28 U</td>
<td>7.1 304 24</td>
<td>314 9</td>
<td>1 0 0 3 0 1 0 1</td>
</tr>
<tr>
<td>82-10-14 15:01</td>
<td></td>
<td>6.5 300 29 U</td>
<td>7.7 295 21</td>
<td>336 6</td>
<td>72 0 0 12 5 44 98 19</td>
</tr>
<tr>
<td>82-10-14 16:01</td>
<td></td>
<td>6.5 305 32 U</td>
<td>8.3 301 18</td>
<td>346 5</td>
<td>5 0 0 26 0 0 21 2</td>
</tr>
<tr>
<td>82-10-14 17:01</td>
<td></td>
<td>6.8 304 28 U</td>
<td>7.7 302 24</td>
<td>355 5</td>
<td>20 0 0 42 3 1 43 7</td>
</tr>
<tr>
<td>82-10-14 18:01</td>
<td></td>
<td>6.7 304 30 U</td>
<td>8.3 299 21</td>
<td>354 9</td>
<td>1 0 0 3 0 1 0 1</td>
</tr>
<tr>
<td>82-10-14 19:01</td>
<td></td>
<td>6.7 308 32 U</td>
<td>8.3 308 27</td>
<td>324 8</td>
<td>6 0 0 9 1 0 24 3</td>
</tr>
<tr>
<td>82-10-15 00:01</td>
<td></td>
<td>6.7 311 31 U</td>
<td>8.3 318 29</td>
<td>280 9</td>
<td>2 0 0 11 0 0 4 2</td>
</tr>
<tr>
<td>82-10-15 01:01</td>
<td>6</td>
<td>11.1 318 44</td>
<td>5.3 312 30 U</td>
<td>8.3 308 20</td>
<td>273 5</td>
</tr>
<tr>
<td>82-10-15 02:01</td>
<td>60</td>
<td>11.3 318 37</td>
<td>6.7 312 33</td>
<td>8.3 313 26</td>
<td>267 9</td>
</tr>
<tr>
<td>82-10-15 03:01</td>
<td>54</td>
<td>10.8 326 35</td>
<td>6.6 321 32</td>
<td>8.3 326 23</td>
<td>277 9</td>
</tr>
<tr>
<td>82-10-15 04:01</td>
<td>48</td>
<td>10.8 321 33</td>
<td>8.3 326 22</td>
<td>283 9</td>
<td>2 0 0 0 0 0 12 4</td>
</tr>
<tr>
<td>82-10-15 05:01</td>
<td>44</td>
<td>11.1 318 44</td>
<td>6.3 315 33</td>
<td>7.1 321 23</td>
<td>299 8</td>
</tr>
<tr>
<td>82-10-15 06:01</td>
<td>35</td>
<td>11.3 331 48</td>
<td>6.4 315 28</td>
<td>7.1 315 20</td>
<td>318 9</td>
</tr>
<tr>
<td>82-10-15 07:01</td>
<td>27</td>
<td>11.5 312 52</td>
<td>6.3 315 33</td>
<td>7.7 319 26</td>
<td>325 8</td>
</tr>
<tr>
<td>82-10-15 08:01</td>
<td>27</td>
<td>11.7 323 48</td>
<td>6.3 314 31</td>
<td>8.3 323 24</td>
<td>336 9</td>
</tr>
<tr>
<td>82-10-15 09:01</td>
<td>33</td>
<td>11.4 336 36</td>
<td>6.1 303 30</td>
<td>7.7 308 18</td>
<td>305 1</td>
</tr>
<tr>
<td>82-10-15 10:01</td>
<td></td>
<td>4.8 317 26 U</td>
<td>8.3 321 11</td>
<td>279 1</td>
<td>16 0 0 100 14 7 199 37</td>
</tr>
<tr>
<td>82-10-15 11:01</td>
<td>22</td>
<td>12.3 331 57</td>
<td>8.3 317 26 U</td>
<td>8.3 321 11</td>
<td>279 1</td>
</tr>
<tr>
<td>82-10-15 12:01</td>
<td></td>
<td>4.8 317 26 U</td>
<td>8.3 321 11</td>
<td>279 1</td>
<td>16 0 0 100 14 7 199 37</td>
</tr>
<tr>
<td>Datum</td>
<td>Tijd</td>
<td>Lengte</td>
<td>Breedte</td>
<td>Hoogte</td>
<td>Tafel</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>13-10-1982</td>
<td>07150</td>
<td>16.5</td>
<td>5.2</td>
<td>3.67</td>
<td>149</td>
</tr>
<tr>
<td>09120</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10150</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12120</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13150</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15120</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16150</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18120</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19150</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21120</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22150</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-10-1982</td>
<td>00120</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01150</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03120</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04150</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06120</td>
<td>5.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09120</td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12120</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13150</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15120</td>
<td>2.5</td>
<td>5.8</td>
<td>31</td>
<td>201</td>
<td>195</td>
</tr>
<tr>
<td>16150</td>
<td>13.5</td>
<td>5.4</td>
<td>150</td>
<td>222</td>
<td>215</td>
</tr>
<tr>
<td>18120</td>
<td>16.3</td>
<td>5.5</td>
<td>196</td>
<td>212</td>
<td>201</td>
</tr>
<tr>
<td>19150</td>
<td>16.6</td>
<td>5.5</td>
<td>175</td>
<td>219</td>
<td>258</td>
</tr>
<tr>
<td>21120</td>
<td>16.7</td>
<td>5.9</td>
<td>170</td>
<td>275</td>
<td>254</td>
</tr>
<tr>
<td>22150</td>
<td>16.4</td>
<td>6.9</td>
<td>170</td>
<td>274</td>
<td>261</td>
</tr>
<tr>
<td>15-10-1982</td>
<td>00120</td>
<td>16.6</td>
<td>7.5</td>
<td>181</td>
<td>402</td>
</tr>
<tr>
<td>01150</td>
<td>16.7</td>
<td>7.1</td>
<td>179</td>
<td>319</td>
<td>256</td>
</tr>
<tr>
<td>03120</td>
<td>17.1</td>
<td>6.4</td>
<td>183</td>
<td>281</td>
<td>272</td>
</tr>
<tr>
<td>04150</td>
<td>16.9</td>
<td>5.5</td>
<td>184</td>
<td>257</td>
<td>241</td>
</tr>
<tr>
<td>06120</td>
<td>17.1</td>
<td>5.4</td>
<td>180</td>
<td>231</td>
<td>217</td>
</tr>
<tr>
<td>07150</td>
<td>17.0</td>
<td>5.4</td>
<td>193</td>
<td>227</td>
<td>210</td>
</tr>
<tr>
<td>09120</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10150</td>
<td>16.8</td>
<td>5.9</td>
<td>206</td>
<td>268</td>
<td>233</td>
</tr>
<tr>
<td>12120</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13150</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15120</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16150</td>
<td>16.4</td>
<td>5.0</td>
<td>299</td>
<td>171</td>
<td>147</td>
</tr>
<tr>
<td>18120</td>
<td>17.0</td>
<td>4.8</td>
<td>269</td>
<td>132</td>
<td>122</td>
</tr>
</tbody>
</table>

Aantal Registraties : 38 Totaal : 38 Waarvan : 31 Registraties Niet Verwerkt
GOLVEN-38 Nr. 24: EENZIJDIG VERMOGENSDICHTHEIDSSPECTRUM met 70%-betrouwb. grenzen.
Stnr. : 63
Datum: 820922 550
Rd : 17min
Hs/s : 126 cm Ws: 150cm
Ws : 310grd Ws : 7m/s
Mm : 1191cm2 Av : 20
AFDELING HELLEVOETSLUIS

WR1

\[H_m = 138 \text{ cm} \]
GOLVEN-38 Nr. 25: EENZIJDIG VERMOGENSDICHTHEIDSSPECTRUM met 70%-betrouwb. grenzen.
Stnr.: 66
Datum: 820922 610
Rd : 19min
Hl/a : 50 cm Wsl: 135cm
Wdr : 310grd Ws : 7m/s
Mq : 176cm2 Av : 22
AFDELING HELLEVOETSLUIS

WR 4

\[H_{m0} = 53 \text{ cm} \]
SPREIDING IN GOLFRICHTING (STRAFREQUENTIE ENERGIE)
rijkswaterstaat
directe waterhuishouding en waterbeweging
district kust en zee — ordering kust en zee

mond kicking Crediz
Golfparameters Hm₀ en H₁

FIG. 21
Figuur 22
$Q_b = \left(\frac{H_{rms} / H_m - C_b}{1 - C_b} \right)^2 ; H_{rms} = H / \sqrt{2}$

B & J: $O_b = \exp \left[-\frac{1 - Q_b}{b^2} \right] ; b = H_{rms} / H_m$

FIG. 23
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEF W0488
COMPARISON QB FORMULATION AFTER B&J(1978) AND CREDIZ

DELFT HYDRAULICS LABORATORY

RUN H01
DELTAX=50
ALFA=1.0
GAMMA=0.8

M1882
FIG. 24
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIELT W0488
COMP. QB&HB&PV FORMULATION AFTER B&J(1978) AND CREDIZ
DELFT HYDRAULICS LABORATORY

W 488 FIG. 25
ENERGY DECAY (NO SET-UP) IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEF W0488
COMPARISON QB FORMULATION AFTER B&J(1978) AND CREDIZ
DELFT HYDRAULICS LABORATORY

RUN HV04 DELTAX=50
ALFA=1.0 GAMMA=0.8

M1882 FIG. 26
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIEF W0488
FORMULATION AFTER B&J (1978) AND CREDIZ

DELFT HYDRAULICS LABORATORY

RUN HV04-1 DELTAX=50
ALFA=1.0 GAMMA=0.8 T=8 S

W 488 FIG. 28
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET WO488
FORMULATION AFTER B&J(1978) AND CREDIZ

Delft Hydraulics Laboratory
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIET WO488
FORMULATION AFTER B&J (1978) AND CREDIZ (28-03-83)

DELFt HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIET W0488
FORMULATION AFTER B & J (1978) AND CREDIZ (28-03-83)

DELTAX = 50
ALFA = 1.0, GAMMA = 0.8, T = 8 s

DELFt HYDRAULICS LABORATORY

W 488 FIG. 31
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
FORMULATION AFTER B&J (1978) AND CREDIZ (28-03-83)
DELFT HYDRAULICS LABORATORY

RUN HV08B-1 DELTAX=50
ALFA=1.0, GAMMA=0.8, T=8 S

W 488 FIG. 32
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIET W0488: HM WITHOUT PV FORMULATION AFTER B&J (1978) AND CREDIZ (28-03-83)

DELFT HYDRAULICS LABORATORY

W 488 FIG. 33
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ (28-03-83): HM WITH AND WITHOUT PV

DELFT HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIELT WD488
COMPARISON CREDIZ AND 1-D PROGRAMMES

DELFT HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ AND 1-D PROGRAMMES
DELFT HYDRAULICS LABORATORY

RUN HV18A-26 DELTAX=50
ALFA=1.0, GAMMA=0.7, T=7 S

W 488 FIG. 48
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ AND 1-D PROGRAMMES

DELFT HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEI W0488
COMPARISON CREDIZ COMPUTATIONS

DELFT HYDRAULICS LABORATORY W 488 FIG. 50

CREDIZ. T23
CREDIZ. T26
MEASURED <HRMS>

X (M)
-1000 -2000 -3000 -4000 -5000 -6000 -7000 -8000 -9000

Y (M)
0 1.0 1.5

-1600 -1200 -800 -400 0 4 8 12 16

ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ COMPUTATIONS

DELFT HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ COMPUTATIONS

DELFT HYDRAULICS LABORATORY
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIEF W0488: RAY HE
COMPARISON CREDIZ WITH 1-D

DELFT HYDRAULICS LABORATORY

RUN HE39-26 DELTAX=50
ALFA=1.0 GAMMA=-.7 T=7 S

W 488 FIG. 53b
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVELT WO488: RAY HE SENSITIVITY STUDY T2=4.7 S, FW = .005

DELTAX=50
ALFA=1.0, GAMMA=.7, T=7 S

DELT HYDRAULICS LABORATORY
W 488 FIG. 54 b
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLJET W0488
SENSITIVITY STUDY

DELFT HYDRAULICS LABORATORY

RUN EE39-26 DELTAX=50
ALFA=1.0 GAMA=7.7 T=7 S

W 488 FIG.55 a
FIG. 58 e
FIG. 62 a
WAVEC

WR 1

Ha-1

14 October 1982

15 October 1982

WAVE HEIGHT: • measured
x calculated (version C-3)

rijkswaterstaat
directie waterhuishouding en waterbeweging
district kust en zee - afdeling hellevoetsluis

CREDISZ VERIFICATION HARINGVLIEKT
Hindcast 14/15 October 1982

sensors WAVEC, WR1, Ha-1

get. gec. gez. akk.

W 488

FIG. 68
WAVE HEIGHT: • measured
 x calculated (version C-3)

rijkswaterstaat
directie waterhuishouding en waterbeweging
district kust en zee – afdeling hellevetsluis

CREDIZ VERIFICATION HARINGVLIEGT
Hindcast 14/15 October 1982

get. sensors WR2, WR5, WR6
gec. gez W 488
gez. akk.

FIG. 6.9
WAVE HEIGHT: • measured x calculated (version C-3)

rijkswaterstaat
directie waterhuishouding en waterbeweging
district kust en zee - afdeling hellevoetsluis

CREDIZ VERIFICATION HARINGVLIET
Hindcast 14/15 October 1982

sensors WR3, WR4, E-75

W 488

FIG. 70
RIJKSWATERSTAAT
DIRECTIE WATERHUISHOUDE H E N W A T E R B E W E G I N G
DISTRICT KUST EN ZEE - AFDING HELLEVOETSLUIS
CREDIZ VERIFICATION HARINGVLIET
Hindcast 14/15 October 1982

LEG

EURO-3

G-77

* measured wave height
* mean water level

14 October 1982 - 15 October 1982

Sensors LEG, EURO-3, G-77

W 488

FIG. 71
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEI W0488
SENSITIVITY STUDY FW=.005

DELFT HYDRAULICS LABORATORY

RUN HY188-26 DELTAX=50
T=7 S. GAMMA=.70

W 488 FIG. 96
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIEI T W0488
SENSITIVITY STUDY FW=.005

DELTAX=50
I=7 S. GAMMA=.70

DELTFT HYDRAULICS LABORATORY W 488 FIG. 98
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIEI W0488
SENSITIVITY STUDY FW=0.005

DELFt HYDRAULICS LABORATORY W 488 FIG.100
Current vectors in bottom region at timestep 480
Current vectors in output region at timestep 480

1 cm $\equiv 1 \text{ m s}^{-1}$
T 11 PV = 0

FIG. 106
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEI W488
SENSITIVITY STUDY

DELFT HYDRAULICS LABORATORY

RUN HV188-26 DELTAX=50
T=7 S. FW=0.005

W 488 FIG. 112
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEF W0488
COMPARISON ALFA = 1 AND ALFA = 2
DELFT HYDRAULICS LABORATORY

RUN HV18B-19 DELTAX=50
GAMMA=.80,FW = .01,T=7 S

W 488 FIG. 113
ENERGY DECRY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
SENSITIVITY STUDY
RUN HY188-26 DELTAX=50
T=7 S. FW=0.005
DELFT HYDRAULICS LABORATORY W 488 FIG. 114
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ (28-03-83)

DELTAX=50
ALFA=1.0, PV=0, T=8 S

DELTFT HYDRAULICS LABORATORY
W 488 FIG. 115
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET WO488
COMPARISON CREDIZ (28-03-83)
DELFT HYDRAULICS LABORATORY W 488 FIG. 116
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEF 00488: RAY TO PILE E
COMPARISON CREDIZ (28-03-83)

DELFT HYDRAULICS LABORATORY
W 488 FIG. 117
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGWIJET W0488: RAY TO PILE E
COMPARISON CREDIZ (28-03-83)

DELFT HYDRAULICS LABORATORY

\[\text{GAMMA} = 0.80, \text{FW} = 0 \]
\[\text{GAMMA} = 0.80, \text{FW} = .01 \]
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ (28-03-83), RAY HH

DELFT HYDRAULICS LABORATORY

W 488 FIG. 119
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEF W0488
SENSITIVITY STUDY

DELFT HYDRAULICS LABORATORY
RUN HE39-T29 DELTAX=50
T=8.3 S
W 488 FIG.121
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CREDIZ VERIFICATION HARINGVLEET W0488
SENSITIVITY STUDY

DELFT HYDRAULICS LABORATORY

\[\begin{align*}
FW = 0.005, \quad &W = 14.5 \\
FW = 0.0, \quad &W = 0 \\
\text{MEASURED} \quad &<HRMS>
\end{align*} \]
ENERGY DECAY AND SET-UP IN RANDOM WAVES

CRED12 VERIFICATION HARINGVELT W0488; RAY HE
SENSITIVITY STUDY

DELTAX=50
T=8.3, FW=.005, W=14.5

DELT HYDRAULICS LABORATORY

W 488 FIG. 126
WAVEC

WR 1

Ha-1

14 October 1982 → 15 October 1982

WAVE HEIGHT:
• measured
× calculated (version C-3)
△ calculated (version C-1)

rijkswaterstaat
directie waterhuishouding en waterbeweging
district kust en zee – afdeling hellevetsluis

CREDIZ VERIFICATION HARINGVLIET
Hindcast 14/15 October 1982

sensors WAVEC, WR1, Ha-1

get
gec
gez

W 488

akk.

FIG. 128

A1 nr. 83-7923
A1 nr. 83-7931
WAVE HEIGHT:
- measured
- calculated (version C-3)
- calculated (version C-1)

rijkswaterstaat
directie waterhuishouding en waterbeweging
district kust en zee – afdeling hellevoetsluis

CREDIZ VERIFICATION HARINGVLIJT
Hindcast 14/15 October 1982

sensors WR3, WR4, E-75

get
gec
gez
akk.

W 488

FIG. 130
version C-1

ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIET W0488
COMPARISON CREDIZ AND 1-D PROGRAMMES
DELFT HYDRAULICS LABORATORY

RUN HV18A-17 DELTAX=50
ALFA=2.0, GAMMA=0.8, T=7
ENERGY DECAY AND SET-UP IN RANDOM WAVES
CREDIZ VERIFICATION HARINGVLIEKT W0488
COMPARISON CREDIZ AND 1-D PROGRAMMES
DELFT HYDRAULICS LABORATORY

RUN HV18B-20 DELTAX=50
ALFA=2.0 GAMMA=0.8 T=7 S

W 488 FIG. 132