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Obtaining local reflectivity at two-way travel time by filtering acoustic reflection data
Evert Slob, Lele Zhang and Kees Wapenaar, Delft University of Technology

SUMMARY

A modified implementation of Marchenko redatuming leads to
a filter that removes internal multiples from reflection data. It
produces local reflectivity at two-way travel time. The method
creates new primary reflections resulting from emitted events
that eliminate internal multiples. We call these non-physical
primaries and their presence is a disadvantage. The advantage
is that the filter is model free. We give the 3D filter and demon-
strate with 1D arguments that starting the focusing wavefield
with a unit impulse at zero time, while focusing below the
bottom reflector, is the choice that leads to a model free im-
plementation. The starting impulse generates the reflection
data. Every later emitted pulse eliminates an internal multi-
ple somewhere in the model and helps removing the transmis-
sion amplitude effects in a physical primary. We show that
the amplitude of the non-physical primaries are a product of
three reflections, making them generally smaller than those of
the physical primaries. A 2D modeled shotgather at different
stages of filtering the data shows that the filter works well.

INTRODUCTION
Removal of internal multiples has been addressed with vari-
ous prediction and subtraction schemes with various success
(Weglein et al. , 1997; Jakubowicz, 1998; ten Kroode, 2002;
Berkhout & Verschuur, 2005). Marchenko redatuming started
by focusing a wavefield at a specific subsurface location at
zero time (Broggini et al. , 2012; Wapenaar et al. , 2013). The
reason was that the focusing wavefield had a time-symmetric
duration almost entirely outside the time window of a virtual
Green’s function that has its source location at the focal point.
That Green’s function represents the up- and downgoing com-
ponents of a vertical seismic profile. The upgoing part of this
Green’s function is the reflection response of subsurface below
the focusing depth level to the downgoing part of this Green’s
function. From such reflection responses at all subsurface lo-
cations it is possible to produce a subsurface image without
effects of internal multiples that usually contaminate a seismic
image (Slob et al. , 2014; Behura et al. , 2014; Wapenaar et al.
, 2014). Slob et al. (2014) found that in the upgoing part of a
modified focusing wavefield the local reflection coefficient of
the horizontal reflector at the focusing level is obtained at the
one-way travel time if the initial downgoing part of the focus-
ing wavefield is a unit impulse at negative one-way travel time.
This means that an image can be constructed without comput-
ing the Green’s functions. van der Neut & Wapenaar (2016)
found that in 3D the projection back to a surface point not only
achieves using a unit impulse as initial downgoing modified
focusing wavefield, but also let this new wavefield start at t=0.
This effectively removes the difficulty of estimating the initial
downgoing part of the focusing wavefield and replaces it with
finding a two-way travel time curve in the data.

Here we use that idea and use it to focus just below the bot-
tom reflector.We show how that choice leads to being focused

at every depth level in the model. We then show in 1D how
the projection back to the acquisition surface leads to a mod-
ified Marchenko scheme that can be written as a filter that is
repeatedly applied to the data and all terms are summed. We
show how the filter can be written such that it only consists
of the reflection data itself and a truncation to remove inter-
mediate results at non-positive time. This means that the filter
is model free. We show why this model free filter inherently
produces primary reflections that are undesired, because they
arrive at unknown times and with unknown amplitudes with-
out model information. We also show how these are related to
the elimination of internal multiples. We finally show with a
2D example how the data obtained from this process leads to
a shotgather without multiples, but with non-physical primary
reflections at early times.

OBTAINING LOCAL REFLECTIVITY AT TWO-WAY
TRAVEL TIME
Reflection data measured at a surface can be used to eliminate
all multiples from the data. Hence the reflection data is its
own filter and the filter is model free. The drawback is that, to
eliminate all multiples with a model free filter, the filter gen-
erates primary events at unknown times and with amplitudes
that involve three reflections. We call these the non-physical
primaries. An advantage is that these non-physical primaries
mostly occur at small travel times. These non-physical pri-
mary events are the reflections from the multiple eliminators.
Another advantage is that all the physical primary events are
recovered with the local reflectivity as amplitude, while the
non-physical primaries all consist of a product of three reflec-
tion coefficients. The equation is given by

Rr(x,x′, t)+NPP(x,x′, t) =

(
∞∑

m=0

(R0Θ0R
∗
0 )

mR0

)
(x,x′, t).

(1)
The left-hand side contains the desired primary reflection events
Rr(x,x′, t) with local reflectivity values, and non-physical pri-
maries NPP(x,x′, t). The source is located at x′ and the re-
ceiver at x, both at the acquisition plane D0 at depth level z0.
The right-hand side contains the data R0, two operators and
one truncation. The first operator, including the truncation,
acts on a function p and the result is the causal function q. It
is given by

q(x,x′, t) = (Θ0R
∗
0 p)(x,x′, t)

= Θ0

∫
t ′

∫
D0

R0(x,x0, t ′)p(x0,x′, t + t ′)dx0dt ′. (2)

The truncation is given by Θ0 = (0,1) for (t ≤ 0, t > 0). The
second operator performs a time-convolution and does not re-
quire truncation. It acts on the function q and is given by

(R0q)(x,x′, t) =
∫

t ′

∫
D0

R0(x,x0, t ′)q(x0,x′, t−t ′)dx0dt ′. (3)

In both operators t ′ ∈ R. These operators are defined in anal-
ogy to the ones given in van der Neut & Wapenaar (2016). It
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is important to note that the first term in the right-hand side of
equation 1 is the data and the second requires correlating the
data with itself, truncating the result by keeping only the values
at positive times, and a convolution with the data. Following
terms repeat these operations and all results are summed. In
the following sections we show in two steps how this works in
1D and then give a 2D numerical example.

THE TWO BOUNDARIES PROBLEM
Let us start with the simplest 1D example of a model contain-
ing two reflectors characterised by local reflection coefficients
r0 and r1, located at depth levels z0 and z1, respectively. The
travel time from z0 to z1 is t1. The measured reflection re-
sponse at but just above z0 is then given by

R0(t)= [rδ (t)+r1δ (t−2t1)]
t∗

∞∑
m=0

(−r0r1)
m

δ (t−2mt1), (4)

where
t∗ denotes time-convolution. It can be seen that an op-

erator exists that acts on all primary events. Hence finding the
inverse of this operator provides the desired operator that can
be applied to the reflection response and produces the desired
primary events of local reflectivity. Because the operator in the
right-hand side of equation 4 is an infinite summed sequence
its inverse is known and given by

g+1 (t) = δ (t)+ r0r1δ (t−2t1). (5)

At this point it is important to note that g+1 (t) is closely related
to the focusing wavefield that focuses just below z1 and the
relation is given by

g+1 (t) = f+1 (t)
t∗ δ (t− t1)(1+ r0)(1+ r1), (6)

which is the downgoing focusing wavefield compensated for
the local transmission effects from just above z0 to just below
z1 and delayed such that the initial wavefield starts at t = 0.
This is the direct part of the transmission response just below
z1, or, equivalently, the inverse of f+1d being the direct part of
the downgoing focusing wavefield. This is the unknown part
of the downgoing focusing wavefield and by removing it from
the formulation this unknown is eliminated. Now we only need
to know that it exists. Compensation for transmission effects
was already used by Slob et al. (2014) to show that then the
local reflection coefficient is obtained in the upgoing focusing
wavefield. As shown by van der Neut & Wapenaar (2016) in
3D it is useful to back-project the focusing wavefield to the
acquisition surface, because the amplitude and time curve of
the direct part of transmission response are unknown, but re-
quired to start the Marchenko scheme. We show here that we
only need to focus just below the bottom reflector to obtain all
local reflection coefficients at two-way travel time. By project-
ing the focusing point back to the surface we obtain a function
g+1 (t) that still focuses just below z1, hence the depth infor-
mation is retained in the function g+1 . If we send g+1 , using
equation 5, into the medium instead of only a single impulse
the earth response is

g−1 (t) = R0(t)
t∗ g+1 (t) = R0(t)+ r0r1R0(t−2t1), (7)

= r0δ (t)+ r1δ (t−2t1). (8)

Equation 7 tells us that the new focusing function gives a re-
sponse that is equal to the data plus a weighted and delayed
version of the data. Equation 8 tells us that g−1 = Rr(t). When
all we have is the measured reflection data the problem is of
course that we don’t know g+1 , but Marchenko theory tells us
how to get it from the data. If we send in g−1 (−t) we obtain

g+1 (−t) = R0(t)
t∗ g−1 (−t)+T (t + t1), (9)

in which the last term in the right-hand side is a modified trans-
mission response time advanced by the one-way travel time.
This equation contains a correlation that we can reverse in time
according to

g+1 (t) = R0(−t)
t∗ g−1 (t)+T (−(t + t1)), (10)

It can now be seen that here the truncation needs to be per-
formed at t = 0 because T (−(t + t1)) = 0 only for t > 0. This
has the consequence that the initial impulse in g+1 cannot be re-
covered from these equations. The advantage is that we know
it is an impulse and we can write g+1 (t) = δ (t)+ g+1m(t) with
the coda g+1m(t)= 0 for t ≤ 0. Hence we can rewrite these equa-
tions as

g−1 (t) = R0(t)
t∗
(
δ (t)+g+1m(t)

)
, (11)

g+1m(t) = Θ0R0(−t)
t∗ g−1 (t), (12)

Substituting the expression for g+1m of equation 12 in 11 gives[
1−R0(t)

t∗Θ0

(
R0(−t)

t∗
)]

g−1 (t) = R0(t), (13)

where it should be noted that in this case Rr(t) = g−1 . The so-
lution of this equation is the the 1D version of equation 1. In
this simplest example there is only one multiple to be elimi-
nated. The downgoing event that eliminates the multiple has a
reflection that arrives at the arrival time of the second primary
reflection such that it corrects for the two-way transmission
effects and no non-physical primary reflection events exist.

THE N BOUNDARIES PROBLEM
We show here that equation 13 is valid for a layered model
with an arbitrary number of reflectors. To show this we first
add two more reflecting boundaries to demonstrate the effect of
eliminating multiples as a general principle. We keep the two
reflectors and introduce two deeper reflectors at depth levels
z3 and z4 with local reflection coefficients r3 and r4 and one-
way travel times t2 and t3 as shown in Figure 1. We focus just
below the bottom reflector at z4 and use the same equations

g−1 (t) = R0(t)
t∗
(
δ (t)+g+1m(t)

)
, (14)

g+1m(t) = R0(−t)
t∗ g−1 (t)+T (−(t + t1 + t2 + t3))−δ (t), (15)

where the time-reversed time-advanced modified transmission
response of the whole medium is T (−(t+t1+t2+t3)) and it is
again zero for t > 0. By truncating all events at and before t = 0
in equation 15 and substituting the result in equation 14 we find
equation 13, but it now includes non-physical primaries[
1−R0(t)

t∗Θ0

(
R0(−t)

t∗
)]

(Rr(t)+NPP(t)) = R0(t). (16)
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Figure 1: The down- (black numbers) and upgoing (red num-
bers) events in a medium with four reflectors; direct (soiid
lines) and non-physical (dashed lines) primaries; depths and
one-way travel times are indicated.

Table 1: Event numbers with amplitudes in down- and upgoing
events and their arrival times

event g+1 g−1 time
1 1 r0 δ (t)
2 r2r3 r0r2r3 δ (t−2t3)
3 r0r1 r1 δ (t−2t1)
4 r0r1r2r3 r1r2r3 δ (t−2(t1 + t3))
5 r1r2 r0r1r2 δ (t−2t2)
6 r1r3 r0r1r3 δ (t−2(t2 + t3))
7 r0r2 r2 δ (t−2(t1 + t2))
8 r0r3 r3 δ (t−2(t1 + t2 + t3))

Let us have a closer look at this medium with four reflectors.
Figure 1 shows all final events numbered 1 to 8. The red num-
bers correspond to g−1 (t) = Rr(t)+NPP(t) and the black num-
bers correspond to g+1 (t) that generated them. Because g+1m(t)
in equation 14 was expressed in terms of g−1 (t) with the aid of
equation 15 it is not visible in equation 16, but of course these
events are implicitly used. Table 1 shows the amplitudes of all
events and their arrival times.

Two important conclusions can be drawn based on observa-
tions from this result. The first observation is that events 1
and 3 were already found when we focused just below z1 when
there were only two boundaries, events 5 and 7 are added when
we would have focused just below z2 in case there were three
boundaries, and events 2, 4, 6 and 8 belong to focusing just be-
low z3. From this observation we can conclude that when we
focus just below the bottom reflector we focus at every depth
level. The second observation is that if the first order multiple
is eliminated, all multiples are eliminated. All multiples start
with one extra bounce and this has to be included in the down-
going wavefield. We conclude that all non-physical primaries
consist of a product of three reflection coefficients, whereas
the amplitude of each physical primary is the local reflection
coefficient of the reflector where it originates from.

Equation 16 is the general expression that can be used for a
medium with N reflecting boundaries and the two conclusions
above hold for any layered medium. The number of retrieved

events from a medium with N reflectors is 2N−1 of which there
are N desired primary events and all the others are undesired
events. These are also all primary events but they are generated
by downgoing waves at unknown times for which reason we
call them non-physical primaries. These non-physical primary
events can be eliminated from the data by introducing time-
truncations after both correlation and convolution and both at
zero-time and at time t at which time we want to find Rr(t). De-
tails for this procedure can be found in Zhang & Slob (2017).

NUMERICAL EXAMPLES
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Figure 2: (a) Velocity model, (b) density model.

For the 2D numerical example we use the model of Wapenaar
et al. (2014). The acoustic velocities and densities in the dif-
ferent layers in the model are depicted in Figure 2. It con-
sists of a layered model with generally increasing velocities
and variable densities with a smooth syncline, below which
one interface shows a dip in the right-hand side of the model.
We have computed surface reflection data with a 20 Hz Ricker
wavelet as the source signature. The central shotgather is shown
in Figure 3. Reflection responses for all shots are used as data
and for the operators in equation 1. After one iteration (m=1 in
equation 1) all events that reflect from the multiple eliminators
are already constructed, but not yet with the correct amplitude.
The following iterations improve the amplitudes and reduce
the strength of the multiples. After 20 iterations the shotgather
does not contain any multiples and instead contains primary re-
flections from the multiple eliminators. All physical primaries
are preserved but their amplitudes are now the local reflectiv-
ity. This can be seen in Figure 4 where the result after the first
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iteration is shown in Figure 4a and the result after 20 iterations
in Figure 4b. All events visible in Figure 4b are also visible
in 4a. By comparing Figures 3 and 4b we can see the strong
imprint of the syncline in the modeled shotgather. This would
make it hard to determine an accurate velocity model and ob-
tain a high-quality image. A velocity model can be more easily
made for the first second from the reflection data and after 1s
from the retrieved primary reflection data. We suggest that
with the improved velocity model a high-quality image can be
obtained from the retrieved primaries data.
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Figure 3: The shotgather with source in the middle of the
model.

CONCLUSIONS
We have given the equation for retrieving primary reflections
from reflection data. The operator is the reflection data it-
self. One iteration involves a spatial integration and time-
correlation, time truncation at t = 0 and a spatial integration
and time-convolution. After one iteration all primary events
already exist, but not yet with the correct amplitude and the
multiples have been reduced but not completely. Following it-
erations modify the amplitudes of the primaries and eliminate
all internal multiples. We have shown how this works with
1D arguments that only require the essential time-correlation,
time truncation and time-convolution. We have demonstrated
the effectiveness of the scheme with a 2D numerical example
from the literature. The retrieved primary reflection data is a
better starting point for velocity analysis than the data itself.
We suggested that with an improved velocity model a high-
quality image of the target area can be made with the retrieved
primary reflection data.
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Figure 4: Retrieved primaries after one (a) and 20 (b) itera-
tions.




