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Abstract. Modeling of scalar transport is an essential point in the simulation of non-
premixed turbulent combustion. The fuel and oxidizer streams are, in general, modeled
with an equation for the mixture fraction Z. This mixture fraction is a bounded function,
i.e. it can never become large than one or smaller than zero. Symmetric central differ-
encing schemes will, in general, produce values larger than one or smaller than zero if
the cell Peclet (or cell Reynolds) number is large. Asymmetric (upwind) schemes can be
tuned in such a way that the over/under shoot is absent. However, these upwind schemes
will always generate a certain amount of numerical diffusion which will interfere with the
diffusion given by a turbulence model or sub-grid model. From a modeling point of view
numerical diffusion should be minimized. In this paper we propose an accurate numerical
method with very low numerical dissipation which can be used for scalar transport and
for the compressible Navier-Stokes equations. A drawback of the method is that it is not
strictly monotonic.

1 Introduction

In modern simulation methods of non premixed turbulent combustion, like for instance
Large Eddy Simulation (LES) the turbulent mixing is modeled with a sub-grid model.
This model must represent the effects that take place on scales smaller than the smallest
scale which can be handled by the numerics. In general these models have a dissipative
character and in its most simple form these models only alter the viscosity of the flow
locally, i.e. eddy viscosity models [8].

Most numerical models also introduce a certain amount of dissipation. The amount
of numerical dissipation strongly depends on the type of scheme. Low order central
schemes have in general a higher numerical dissipation than high order schemes. Central
(symmetric) schemes have in general less dissipation than upwind (asymmetric) schemes.
In an actual Large Eddy Simulation the dissipation is always a combination of dissipation
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given by the sub-grid model and by the numerics of the LES model. This makes the
validation of a sub-grid model complicated because dissipative effects can be contributed
to the numerics or the sub-grid model. For the proper validation of the sub-grid model
numerical dissipation should be minimized.

In the literature many low dissipative methods are reported, using high order finite
differences, compact finite differences and orthogonal polynomials, see for instance Lele
(1992), Chu & Fan (1998). The disadvantage of these schemes is that they in general are
not very stable. Recently, Boersma (2005), proposed a staggered variant of the scheme
compact finite difference scheme as developed by Lele (1992). This new scheme is sta-
ble because it has certain symmetry properties, see for instance Verstappen & Veldman
(2003). In this paper we will explore the possibility of this scheme for scalar transport in
combustion simulations.

Large eddy equations and numerical method

The important length scales in turbulent combustion are in general related to the flame
thickness. The flame thickness is related to molecular properties of the fuel and is in gen-
eral of order 10−4 meter. Even with the most powerful supercomputers direct numerical
simulation of turbulent combustion in a realistic domain is not feasible. Therefore, any
realistic prediction of turbulent combustion should come from a Large Eddy Simulation
(LES).

The equations for a Large Eddy Simulation (LES) are obtained from the full Navier-
Stokes equations by applying a spatial filter of the following form

φ(x, t) =
∫

V
φ(x, t)G(x− x′)dx′

where φ is a flow variable, x is a vector, V is the volume of the fluid, and G a filter
kernel. The exact form of G is not important at this stage. In compressible flows often
an additional filter or averaging step is performed, the so-called Favre averaging. This
averaging is not necessary and it therefore not used in the present paper.

The LES filtered equation for conservation of mass reads:

∂ρ

∂t
+

∂

∂xi

ρ ui = −
∂

∂xi

(ρui − ρ ui)
︸ ︷︷ ︸

SGS

(1)

In which ρ is the fluids density and ui the velocity vector. The last term in the equation
above is due to the LES filtering, the so-called sub-grid contribution. In a Favre averaged
form of the LES equations the subgrid term would be absent in equation (1).

The equation for conservation of momentum reads:

∂ρ ui

∂t
+

∂

∂xj
[ρ ui uj + p] =

∂

∂xj
τij −

∂

∂xj
(ρuiuj − ρ ui uj)
︸ ︷︷ ︸

SGS

−
∂

∂t
(ρui − ρ ui)
︸ ︷︷ ︸

SGS

(2)
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In which p is the LES filtered pressure and τ ij is the LES filtered viscous stress tensor.
Here we will consider Newtonian flows only and the components of the stress tensor can
be written as:

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

−
2

3

∂uk

∂xk

)

Where µ is the dynamic viscosity of the fluid. Which is in the present study assumed
to be constant. The governing equation for the total energy E which is the sum of the
internal energy ρCvT and the kinetic energy ρuiui/2 reads:

∂E

∂t
+

∂

∂xj

(uj + p)E =
∂

∂xi

κ
∂T

∂xi

+
∂

∂xj

uiτ ij + hfω −
∂

∂xj

(ujE + ujp − uj E − ujp)
︸ ︷︷ ︸

SGS

(3)

In which E = ρCvT + ρuiui/2 is the total energy, κ the (constant) thermal diffusion
coefficient, ω a source due to the chemical reaction and hf the formation enthalpy of a
chemical reaction. The thermodynamic quantities P , ρ and T are related to each other
by the equation of state for an ideal gas

P = ρRT

where R is the gas constant.
The transport of the chemical species is derived from a mixture fraction Z. The

equation for Z is

∂ρ Z

∂t
+

∂

∂xj

ρ uj Z =
∂

∂xi

κj
∂Z

∂xi

−
∂

∂xj

(ρuiZ − ρ uiZ) (4)

where κj is the diffusion coefficient of the chemical mixture.
All the variables in the equations given above are made non-dimensional using the

ambient speed of sound c∞ as reference velocity scale, the ambient density ρ∞ as reference
density, ρ∞c2

∞ as reference pressure, and c2
∞/Cp as reference temperature. The resulting

non-dimensional numbers are the Reynolds, Prandtl, Schmidt and Mach numbers.
The subgrid terms can be modeled in many different ways. Most models use a variant

of the gradient hypothesis, i.e. a Smagorinsky type model

ρuiuj − ρ ui uj = ρ(Cs∆)2|Sij|Sij

where Cs is the so-called Smagorinsky constant, Sij the strain rate in the flow, and ∆
the filter width of the LES filter. In some version of the model the Smagorinsky constant
is fixed, usually with a value of Cs ≈ 0.1 in other implementations, the value of Cs is
calculated from the flow field itself, the so-called dynamic Smagorinsky model. For the
equations for conservation of mass, energy and mixture fraction a similar model can be
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derived1. The filter width is in general related to the mesh spacing. If we use second
order numerics it is logical to assume that subgrid effects given by the LES model are of
the same order of the truncation error of the numerical scheme. To minimize the effects
of the truncation error we need a discritization with a order which is sufficiently higher
than 2.

2 Numerical method

In this section we will briefly describe the numerical method. The equations are dis-
cretized on a staggered non-uniform grid in physical space. For the calculation of the
derivative of a certain function f on this non-uniform grid the function f is mapped on a
uniform grid with help of the following transformation

∂f

∂x
=

∂f

∂X

dX

dx
→

∂f

∂x

(

dX

dx

)−1

=
∂f

∂X
(5)

Where x is the coordinate on the non-uniform mesh and X the coordinate on the uniform
mesh. A known analytical function is used for X so that the dX/dx can be calculated
exactly. The restriction on the transformation given by equation (5) is that dX/dx should
not become zero inside the computational domain.

We have chosen for a staggered grid in which the scalar variables are located in the
center of the cell and vector quantities on the cell faces. This is illustrated in Figure 1.
where we show a grid cell in 2D. The actual discretization is of course performed in three
dimensions. The arrangement of the variables is similar to the one used by Harlow and
Welch [3] in their classical paper. The staggered arrangement of course leads to some
additional work. For instance, if we want to calculate ∂ρu/∂x in equation (1) we first
have to interpolate the density, which is a scalar and therefore located at the cell center,
to the face of the cell. With the interpolated value of the density we can form the product
ρu. Subsequently we can calculate the derivate ∂ρu/∂x at the cell face and interpolate
the result to the center of the cell or we can try to evaluate the derivative directly at
the center of the cell using information on the faces. The latter is what we will do in
the present study. The equations are integrated in time with a standard fourth order
Runga-Kutta method.

1For conservation of mass we can use a model of the form

subgrid = (Cρ∆)2
∂ρ

∂xi

∂ui

∂xi

For conservation of energy

subgrid = ρ(CT ∆)2
∂T

∂xi

∂ui

∂xi

and for the mixture fraction

subgrid = ρ(CZ∆)2
∂Z

∂xi

∂ui

∂xi
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Figure 1: A two dimensional cell of the computational grid. The actual discretization is performed in
three dimensions.
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Figure 2: The distribution of the grid points.

2.1 The derivative

In the governing equations (1)-(4) and the mapping, equation (5) only first order deriva-
tives appear. So we only have to consider a formula for the first derivative. The first
derivative will always be evaluated on a staggered uniform grid as is shown in Figure 2.
If the variables are known at points i + 1/2, i + 3/2.. we can use the following formula to
calculate the derivatives at the points i, i + 1, ...

a(f ′
i+1 + f ′

i−1) + f ′
i =

b

∆X
(fi+1/2 − fi−1/2) +

c

∆X
(fi+3/2 − fi−3/2) +

d

∆X
(fi+5/2 − fi−5/2) +

e

∆X
(fi+7/2 − fi−7/2) (6)

In which f ′
i is derivative of f with respect to X in point i and ∆X is the (uniform) grid

spacing. The coefficients in the equation above are obtained by Taylor expansions around
grid point i. With the five coefficients a, b, c, d and e in equation (6) we can obtain an
10th order accurate formulation. The values for a, b, c, d and e for this 10th order scheme
are (obtained with the Maple Software package):

a = 49/190, b = 12985/14592, c = 78841/364800, d = −343/72960, e = 129/851200
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This formula can only be used far away from the boundaries. Closer to the boundaries we
have to make the stencil smaller, i.e. e = 0. The coefficients for the resulting 8th order
scheme read:

a = 25/118, b = 2675/2832, c = 925/5664, d = −16/28320, e = 0

Even closer to the boundary we have to use the 6th and 4th order formulation

a = 9/62, b = 63/62, c = 17/186, d = 0, e = 0, O(∆X6)

a = 1/22, b = 12/11, c = 0, d = 0, e = 0, O(∆X4)

At the boundary itself we use a one sided 3rd order accurate formulation

f ′
i + 23f ′

i+1 =
1

∆X

(

−25fi+1/2 + 26fi+3/2 − fi+5/2

)

The approximations above lead to a tridiagonal system with can be inverted easily and
efficiently.

In the derivation of equation (6) we assumed that the variable was known in between
the points i and i+1. In the case that the variables are known on the nodes i and that we
want to know the derivative at point i + 1/2 we can use the same formula but we have to
shift the data over half a grid cell and we have to solve for n− 1 instead of n grid points.

2.2 Interpolation and extrapolation

Apart from the relation for the first derivative we need also an interpolation procedure
to interpolate variables from the locations i to locations i + 1/2 and visa-versa. This
should preferably be done with a method which has the same formal accuracy as the
method which is used to obtain the derivatives. Here we consider the following compact
interpolation rule

fi + a(fi+1 + fi−1) = b(fi+1/2 + fi−1/2) + c(fi3/2 + fi−3/2) +

d(fi+5/2 + fi−5/2) + e(fi+7/2 + fi−7/2) (7)

In the interior we require again 10th order accuracy resulting in the following values for
the coefficients a, b, c, d and e (again obtained with the Maple Software package):

a = 7/18, b = 1225/1536, c = 49/512, d = −7/1536, e = 1/4608

Closer to the boundaries the stencil has to be made smaller, i.e. e = 0:

a = 5/14, b = 25/32, c = 5/64, d = −1/448, e = 0, O(∆X 8)

Even closer to the boundary we have to use 6th an 4th order schemes, i.e.

a = 3/10, b = 3/4, c = 1/20, d = 0, e = 0, O(∆X6)
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a = 1/6, b = 2/3, O(∆X4)

At the boundary we use again a one sided 3rd order accurate formulation (actually this
is an extrapolation instead of an interpolation):

fi = 15/8fi+1/2 − 5/4fi+3/2 + 3/8fi+5/2

The formulas above results in a tridiagonal system which can be inverted easily. Again
we can use the same rule to interpolate from points fi to points fi+1/2 by shifting the data
over half a grid cell and evaluating for n − 1 instead of n points.

The mapping, given by equation (6) takes care of the effect of the non-uniform grid
on the derivatives. For the function f itself we can not use such a mapping. Formally
we could construct an interpolation rule for non-uniform grids. In which the difference
in grid-spacings between points i, i − 1 and i, i + 1 are taken into account. However, in
the literature it is shown, see e.g. [7], that which such a non-uniform interpolation the
kinetic energy ρuiui/2 is not conserved numerically. [7] shows that only with a uniform
(symmetric) interpolation kinetic energy is conserved. Conservation of kinetic energy is
a good start for a stable numerical solution.

Therefore, we use the interpolation rule (7) also on non-uniform grids. Formally, this
will reduce the local truncation error of the scheme. However, this is the only way to
strictly satisfy conservation of kinetic energy on a computational grid, see e.g. [7].

3 Advection test

In this section we will show some results of a simple advection test. The numerics
given above are used to discretize the following equation:

∂Z

∂t
− ui

∂Z

∂xi
= 0, ui = (1, 1, 0) (8)

At time t = 0 the initial condition of Z is given by the following relation:

Z(xi, t) =
1

2

[

1 − tanh
(

5

2
(r − 2)

)]

, r =
√

[(x − 4)2 + (y + 1)2 + z] (9)

We have integrated equation (8) from t = 0 to = 4 on three strongly nonuniform grids with
483, 963 and 1283 points. The coarse grid with 483 points is shown in Figure 3 (later we
will use the same grid for some jet calculations). The initial conditions, given by equation
(9) are between 0 and 1. Equation (8) has no source term so if the numerical resolution
would be sufficiently fine the final solution should also have values in between 0 and 1,
i.e. a pure translation of the initial condition. In Figures 4a and 4b we show the initial
and final distribution of Z on the course and on the fine grid. Obviously the fine grid
result is much better. However, considering the low number of grid points for the course
grid case, the result is acceptable. In table 1 we have listed the minimum and maximum
values of the mixture fraction when it reaches its final position. Results are included for
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Figure 3: The computational grid with the initial and final location of the profile of the mixture fraction
Z

order 483 963 1283

6th -0.069 , + 1.181 -0.051, + 1.071 -0.038,+1.042
8th -0.076 , + 1.141 -0,045, + 1.048 -0.029,+1.028
10th -0.081 , + 1.105 -0.042, + 1.039 -0.017,+1.022
12th -0.081 , + 1.101 -0.036, + 1.037 -0.011,+1.015
exact 0 , +1 0, +1 0, +1

Table 1: The minimum and maximum value of Z at time t = 4 for three different mesh sizes and four
different orders of the spatial discretization.

three different grid size and 4 different orders of the numerical method. Increasing the
order of the scheme or the number of grid points gives better results. Note that the main
cost of the scheme is associated with inverting the matrix system. Therefore, increasing
the order from 6th to 12th order does not significantly increase the CPU time.

4 Results for a simple jet flow

In this section we will show some results obtained from the solution of the Large Eddy
equations, for the case of a round jet. The Reynolds number of the jet based on jet nozzle
quantities is equal to 4,000 and the Mach number based on nozzle conditions is equal to
0.7. The grid consists of 128×96×96 points in the streamwize and crossstream directions
respectively. The values of the constants in the subgrid model are all set to 0.08. It should
be noted that no significant difference in the results was observed for zero values of the
coefficients. This is probably due to the rather low Reynolds number of the flow.

In Figure 5 we show the contours of the fluid vorticity and the computational grid. The
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Figure 4: The initial and final position of the mixture fraction Z. Top figure, course mesh with 483

points, bottom figure fine mesh with 1283 grid points.
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Figure 5: The magnitude of the vorticity vector in a round turbulent jet with a Reynolds number of 4,000
and a Mach number of 0.7

jet is entering the fluid domain with a laminar velocity profile as given by Michalke [6]
a few diameters downstream of the jet nozzle the Kelvin-Helmholtz type of instabilities
start to developed, eventually leading to a fully three dimensional flow far downstream of
the jet nozzle. In Figure 6 we show the density obtained from the Large Eddy Simulations.
Due to turbulent dissipation in the shear-layer the jet is slightly heated and as a result
the density in the jet is a bit smaller than the ambient density. In Figure 7 we show the
mixture fraction Z in the turbulent jet. The mixture fraction is bounded between 0 and
1.

5 Conclusion

In this paper we have presented a high order staggered compact finite difference
method. In the interior of the domain this method has a very high order of accuracy,
up to 12. The advantage of this method over standard compact finite difference meth-
ods is its increased numerical stability. For scalar transport the method is not strictly
monotonic, i.e. small negative values of the scalars can occur, due to a too low numer-
ical resolution. The standard approach would be to use a scheme with a flux limiter,
for instance the well known scheme by van Leer [4]. The disadvantage of these schemes
that they add a lot of dissipation in areas with sharp gradients. The turbulence model
is also adding dissipation to the system. With the present approach only the dissipation
provided by the turbulence model is sufficient.
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Figure 6: The density distribution in a round turbulent jet with a Reynolds number of 4,000 and a Mach
number of 0.7.
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Figure 7: The mixture fraction Z in a round turbulent jet.
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