
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

MSc Thesis report
Incremental Nonlinear Dynamic Inversion controller -
structural vibration coupling
Study of the phenomenon and the existing solutions

Master Thesis
Alessandro Collicelli



 



MSc Thesis report
Incremental Nonlinear Dynamic Inversion
controller - structural vibration coupling

Study of the phenomenon and the existing solutions

by

Alessandro Collicelli

Student number: 5133769
Project duration: March, 2021 – September, 2022
Thesis committee: Prof. Dr. G. C. H. E. de Croon, TU Delft, chair

Dr. Ir. E. J. J. Smeur, TU Delft, supervisor
Ir. T. S. C. Pollack, TU Delft, supervisor
Dr. X. Wang, TU Delft, external examiner

Institution: Delft University of Technology
Profile: Control and Operation
Track: Control and Simulation
Collaborations: MavLab
Place: Faculty of Aerospace Engineering, Delft

Cover Image: Boeing 787 wing flexion test, Source: Wired.com



 



Preface

To the ones who supported me during this Master of Science endeavour: my family, my close and distant
friends, my mentors and to all the people who shared a moment with me, thank you from the bottom of
my heart.

Alessandro Collicelli
Delft, September 29, 2022

ii



 



Contents

Preface ii

1 Introduction 1
1.1 Background information on the thesis project . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research objective and research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Document layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature survey and preliminary analysis 3

3 Scientific paper 62

4 Conclusion 85

References 86

iv



 



1
Introduction

1.1. Background information on the thesis project
The Master Thesis project described in this document is meant to be the final task of the Aerospace Engi-
neering Master of Science degree at Delft Technological University, for the track of Control & Operation,
profile Control & Simulation. This project aims to provide insights on a relevant aerospace engineering
topic or problem via scientific investigation. The tasks to be fulfilled during this Master Thesis project
were to study the interaction between the structural vibrations of a flying vehicle and the flight control
system, to understand the causes of it, and to identify, implement, and tested different solutions to the
coupling of both simulation and flight tests.

In recent years, aerospace structures have become increasingly thin and slender, due to the introduc-
tion of new structural materials and the need to decrease the amount of weight dedicated to the structural
elements (Malisani et. al, 2021, [1]). Aircraft structures have become more flexible and less rigid, thus
structural motions and rigid body motions frequency separation is drastically reduced. Therefore the
structural vibration contribution in the sensor measurements is now comparable to the rigid body motion
one. Consequently, the structural element contribution to the signal fed to the flight control system is
more dominant than for more rigid aircraft (Becker et al., 2014, [2]). This generates an undesired inter-
action between the flight control system and the structural motions that can lead to instability of both
rigid body dynamics and structural dynamics.

Incremental Nonlinear Dynamic Inversion-based flight control systems are controllers that aim to
linearize the system dynamics to allow them to be controlled using classical control theory, are known
for their robustness to model uncertainties and their disturbance rejection capabilities. INDI-based con-
trollers have been implemented and tested on a variety of platforms, among which there is the Ned-
erdrone a tail-sitter drone with vertical take-off and landing capabilities. Due to its slender shape, it
has low-frequency structural modes which interact with the INDI controller on the yaw axis. Therefore,
despite its high robustness and disturbance rejection performances, this flight controller was found to
interact with the structural modes of the vehicle for which it was designed and to lead to unstable or
limit-cycle oscillation behaviors. Hence, the Nederdrone was chosen as a test platform to investigate the
coupling between its structural characteristics and the flight control system designed for its hover flight
phase.

1.2. Research objective and research questions
The research objective is to study different INDI implementations designed to reduce the coupled inter-
action between the controller and the structural modes and to assess their behaviour when implemented
in an aircraft with low frequency, low damping structural eigenmodes. To achieve this objective and to
better define the direction of the research, the following research questions and related sub-questions
were defined:

RQ.1 INDI-based flight control systems have high disturbance rejection performances. What is
INDI controller behaviour when it is designed for rigid body motion stabilization but is applied to
a highly flexible aircraft?

1



1.3. Document layout 2

1.1 How are INDI-based controllers usually improved to avoid coupling with structural modes?

RQ.2 The Nederdrone is a two fixed-wing tailsitter MAV eVTOL (De Wagter et al.2021, [3]), mount-
ing a FCS which has two nested INDI control loops. How can INDI based flight control system be
applied to this vehicle while avoiding structural vibrations excitation due to control input?

2.1 What structural eigenmotions are coupled with the FCS and for what reason it makes the
whole system unstable?
2.2 How can the use of signal filtering for low-frequency dynamics be avoided (or reduced)?
2.3 What are the performances of an "interactionless" INDI flight control system compared
to the ones of a benchmark INDI FCS in terms of the presence of structural vibration and
flight quality (nonlinear dynamic inversion qualities, closed-loop response, and disturbance
rejection)?

1.3. Document layout
This Master Thesis document contains the descriptions of all the various steps taken to execute and
conclude the aforementioned research project.

The literature survey conducted in preparation for the main research activity and the following pre-
liminary analysis study are reported after this introduction. Their goal was to obtain the necessary
theoretical background on structural dynamics, servo-elastic phenomena, and Incremental Nonlinear
Dynamic Inversion controller design before starting the main research activity. The preliminary analy-
sis of the thesis topic was operated on a smaller and more accessible test platform affected by the same
coupled behaviour of the Nederdrone. It was conducted to develop a general understanding of the flight
control system (INDI) - structural vibration interaction and to gather experience on the testing platform
framework and testing procedures. Both the literature survey and the preliminary analysis together
contribute to answering the first research question.

The main research activity is reported and described in the scientific paper, which follows the literary
survey and the preliminary analysis. It contains the main part of the research activity, which is consti-
tuted by the ground vibration test, system identification process with relative validation from flight test
data, implementation of different investigated solutions both in simulation and on the real system, and
performance assessment both in simulation and flight test. In the first paper appendix, a brief derivation
of the INDI is reported, while the second appendix contains a report on the ground vibration test set-up
and results. There, pictures regarding the test setup are reported, and graphs and schemes describing
the structural modes of the Nederdrone are shown. This part of the report aims to answer the second
research question. After the scientific paper, a conclusion chapter closes up this document.
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1

Introduction

This document is the result of a literature survey conducted to acquire knowledge and insight on structural
vibration phenomena and nonlinear dynamic inversion control system, prior to the beginning of the
master thesis project for the attainment of the master’s degree on Control & Simulation profile at Delft
University of Technology. The thesis topic aims at the analysis of the interaction between structural elastic
eigenmotions and nonlinear dynamic inversion based flight control system.

In recent years, aerospace structures have become increasingly thin and slender, due to the introduction
of new structural materials and the need to decrease the amount of weight dedicated to the structural
elements (Malisani et. al, 2021, [14]). Therefore, aircraft structures have become more flexible and less
rigid, increasing the maximum displacement allowed from their undeformed position. Moreover, the
natural frequencies of the structural vibrations have decreased due to the decrease in structural stiffness.
Thus, structural motions and rigid body motions frequency separation is drastically reduced, and therefore
the structural vibration contribution in the sensor measurements is now comparable to the rigid body
motion one. Therefore, the structural element contribution to the signal fed to the flight control system
(FCS) is more dominant than for more rigid aircraft (Becker et al., 2014, [3]). This generates an undesired
interaction between the flight control system and the structural motions that can lead to instability of both
rigid body dynamics and structural dynamics. If the aerospace industry wants to keep this trend going, it
is of key importance to investigate the aforementioned interaction between FCS and structural vibrations.

The thesis project testing platform will be provided by MavLab laboratory as in unmanned air vehicles
experiencing structural vibration - flight control system destructive interaction. The vehicles will be
the Parrot Bebop 2, a commercial quadrotor, and the Nederdrone, a two fixed wings tail-sitter vehicle
developed by MavLab researchers.

Throughout the years, Control & Simulation (C&S) department researchers have studied, developed,
and tested a multitude of nonlinear inversion-based controllers such as in Groondman et al.[11] where
INDI base control system has been designed and tested in flight for a passenger aircraft and in Sieberling
et al.[21], where the standard INDI control loop is improved via the implementation of a predictive signal
to compensate for sampling lag. Moreover, in Wang et al.[30] an INDI based flight control and gust load
alleviation system is designed and tested in simulation for a passenger aircraft. Nonlinear inversion
control strategies have been tested over the years on unmanned air vehicles configurations for example in
Smeur et al.2016 [23] and 2018 [24] where an angular rate and an attitude controller for a Parrot Bebop 2
are designed, showing easiness on implementation and effectiveness in achieving the assigned control
task and robustness in the performances. Another example is the FCS of the Nederdrone as shown by
de Wagter et al.in [6], where an INDI is implemented in cascade to ensure position and attitude angle
tracking. Lately, particular attention has been given to Incremental Nonlinear Dynamic Inversion (INDI)
based controller, due to its proven robustness and disturbance rejection characteristics.

Thus, the literature study and the following master thesis project intend to contribute to the research
on the interaction between incremental nonlinear dynamic inversion flight control systems and structural
vibration motions. The two main contributions will be to provide a better understanding of the phenomena
involved and to investigate possible solutions to this problem.

This document aims to provide a description of the phenomena involved in the structural eigenmotion -
flight control system interaction and to find preliminary answers to some research question in the available
literature.

Thus, the relevant literature regarding different aspects of the aforementioned phenomena is reported
and analysed. The concerning literature space contains fields that are very different from one another,
going from dynamic of continuous bodies to aerodynamic, to flight control system design. Therefore, due to
the broadness of each field, only the subjects of each topic overlapping with other fields relevant to the
analyzed problem will be discussed. For a deeper and more extensive dissertation on every single topic,
the relevant literature is mentioned. Moreover, the case for nonlinear dynamic inversion controller being a
suitable control strategy to effectively cope with the aforementioned destructive interaction will be made.
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The document is structured as follows: in chapter 2, the theoretical background for continuous vibration
modelling is laid out, together with the description of possible coupling effects between flight control
systems and flexible dynamics. Aeroelastic phenomena are included in the coupling effect discussion.
In chapter 3, currently implemented solutions for flight control system - flexible motion interaction
attenuation and aeroelastic phenomena suppression are described. Then, in chapter 4 the description of
two nonlinear dynamic inversion control strategies is provided, together with a discussion on the strengths
and the drawbacks of the aforementioned control techniques. Later, in chapter 5, a preliminary analysis of
the research questions will be carried out both in simulation and with flight test, to investigate the FCS -
structural eigenmotion interaction in the simplified case of the Bebop 2 roll dynamic. The conclusion in
chapter 6 will end the literature study report with a discussion of the literature survey findings.
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2

Structural flexibility in aerospace
structures

In this first chapter, the theoretical background behind the description of structural eigenmodes and
how their presence influences the aircraft motion, and the flight control system performance will be laid
out. Initially, in section 2.1, a general discussion about how to represent the vibration of continuous
bodies will be carried out 2.1.1, together with solution of the relative equations and description of solution
reduction methods for structural modelling 2.1.2. Later in section 2.2, the derived structural modes will be
integrated into the equations of motion of an aircraft and coupled with aerodynamic state space system
to obtain aeroservoelastic aircraft models. Therefore, it will be possible to analyse the aforementioned
aircraft plant and to highlight the critical phenomena related to the presence of flexible body dynamics,
such as flutter and limit cycle oscillation. Finally, phenomena related to the interaction between structural
eigenmodes, unsteady aerodynamic and flight control systems will be discussed.

2.1. Equation of motion for vibration of continuous bodies: deriva-
tion and solution

In order to better explain the derivation of the general description of structural eigenmodes, an auxiliary
example will be used to make the dissertation clearer to the reader. To keep the example simple and short
the longitudinal vibration of a bar will be considered. The equation describing the bending or torsion of a
continuous body can be derived in multiple ways and can assume different forms. In our example, the
variational approach is chosen, and the Hamilton principle is applied to write the equation of motion.
Hamilton principle states that the variation in the total energy of a system is equal to the virtual work
done on the system by non-conservative external forces. Once both the variation of the total energy and
the work of the non-conservative external forces are explicitly defined as well as the boundary conditions,
the equation describing the longitudinal vibration of a bar will be obtained. For a complete and exhaustive
dissertation about the cinematic and the stress-strain relation in the longitudinal bar please refer to Rao
2007 [20].

2.1.1. Equation of motion derivation
Given the relations in equation 2.1, where u(x, t) is the longitudinal displacement, x is the longitudinal
coordinate and σxx(u) is the longitudinal stress. εxx(u) is the longitudinal strain, π is the internal or strain
energy, T is the kinetic energy and W is the virtual work of non-conservative forces. Assuming the bar is
with constant section A(x)= A and homogeneous ρ(x)= ρ.

σxx = E
∂u
∂x

= Eεxx

π= 1
2

∫ l

0
σxxεxx Adx = 1

2

∫ l

0
EA

(
∂u
∂x

)2
dx

T = 1
2

∫ l

0
ρA

(
∂u
∂t

)2
dx

W =
∫ l

0
f (x, t)udx

. (2.1)

The Hamilton principle is outlined in equation 2.2.

δ

∫ t2

t1

(T −π+W)dt = 0 (2.2)
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Substituting equations from 2.1 into 2.2 and operating the due simplifications, the following partial
derivative equations are obtained:

EA
∂2u
∂x2 + f (x, t)= ρA

∂2u
∂t2

EA
∂u
∂x

δu
∣∣∣l

0
= 0

(2.3)

where f (x, t) is the external distributed force that is known. In addition to these equations, the
boundary condition must be defined depending on the structural setup. For a bar cantilever at one end,
x = 0, and free to vibrate on the other end, x = l, then the boundary conditions are:

u(0, t)= 0

σxx = AE
∂u(x, t)
∂x

∣∣∣
x=l

= 0
(2.4)

and the initial condition are:

u(x, t = 0)= u0(x)
∂u
∂t

(x, t = 0)= u̇0(x)
(2.5)

2.1.2. Induction to general eigenvalue problem
To solve equation 2.3, which has the form of an eigenvalue problem, a modal analysis approach will be
adopted. This solution method can solve a class of partial differential equations of the form:

M(X⃗ )
∂2w(X⃗ , t)

∂t2 )+L[w(X⃗ , t)]= f (X⃗ , t)+
s∑

j=1
F j(t)δ(X⃗ − X⃗ j) (2.6)

where X⃗ is spatial coordinate, which varies inside its domain V , that in this case is the volume occupied
by the flexible body. M(X⃗ ) is the mass distribution and w(X⃗ , t) is the displacement on the system which
depend on both the spatial variables and the time. L[w(X⃗ , t)] is the so-called stiffness distribution of the
system and f (X⃗ , t) is the set of distributed forces acting on a system as function of the spatial variable
and time. F j(t) is the j-th concentrated force acting on the point X⃗ = X⃗ j. Generally speaking, L and M
are linear homogeneous differential operators involving derivative with respect to spatial variables but
not with respect to time, up to the orders 2p and 2q respectively where p and q are integers with p > q.
Moreover, the boundary conditions have the form:

A i[w]=λBi[w], i = 1,2, .., p (2.7)

where A i and Bi are linear homogeneous differential operators involving derivatives of w, with respect
to the normal and tangential direction of the boundary, up to the order 2p−1, and λ is a parameter known
as the eigenvalue of the system. In some problems the boundary conditions do not involve eigenvalues in
which case the equation reduces to:

A i[w]= 0, i = 1,2, .., p (2.8)

Referring to our example, it’s easy to see that:

M(X⃗ )=−ρA

L[w(X⃗ , t)]= EA
∂2u
∂x2[

A1(w)
A2(w)

]
=

[
u(0, t)

AE ∂u(x,t)
∂x

∣∣∣
x=l

]
=

[
0
0

]
w(X⃗ , t)= u(x, t)

(2.9)
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where x = l subscript on the partial derivative of the last equation in 2.9 describe the condition in the
boundary x domain V . Obviously, depending on the vibration problem considered, L and M operators are
different. For sake of clarity, below in equations 2.10 and 2.11, examples of L and M for different cases are
given:

M = ρ(x)

L = P
∂2

∂x2

(2.10)

M = I0(x)

L = ∂

∂x

(
GIP

∂

∂x

) (2.11)

where 2.10 refers to the case of a string of mass distribution ρ(x) subjected to a constant tension P and
2.11 refers to the case of torsional vibration of a shaft with G, I0(x) and IP being respectively the shear
modulus, the mass polar moment of inertia of the shaft per unit length and the polar moment of inertia of
the cross-section of the shaft. To solve the general equation 2.6 it is required a two-step procedure, which
first involves the solution of the homogeneous equation, namely setting f (X⃗ , t)+∑s

j=1 F j(t)δ(X⃗ − X⃗ j)= 0,
to obtain the eigenvalues and the corresponding eigenfunctions. Subsequently, the general equation can
be solved. In both steps, the variable separation method is utilized. Thus the solution of the eigenvalue
problem has the form w(X⃗ , t)=W(X⃗ )η(t),

2.1.3. Homogeneous equation solution
In the first step of the solution procedure, also know as variable separation technique [20], equation 2.6
becomes

M(X⃗ )
∂2

∂t2 [w(X⃗ , t)]+L[w(X⃗ , t)]= 0 (2.12)

and the structure of the solution function is chosen to be as in equation 2.13, with an arbitrary time
domain contribution.

w(X⃗ , t)=W(X⃗ )eiωt (2.13)

where W(X⃗ ) is the eigenfunction or shape mode. Substituting 2.13 into 2.12 we obtain

M(X⃗ )
∂2

∂t2 [W(X⃗ )eiωt]+L[W(X⃗ )eiωt]= 0

−ω2M(X⃗ )W(X⃗ )eiωt +L[W(X⃗ )]eiωt = 0

L[W(X⃗ )]=λM[W(X⃗ )]

(2.14)

with λ=ω2 and M[W(X⃗ )]= M(X⃗ )W(X⃗ ). From the second to the third equation in 2.14, all the terms
on the left are divided by eiωt. The last equation from 2.14 turns out to be a set of ordinary differential
equations on the spatial variable, which can be solved knowing the boundary conditions of the homogeneous
problem. Therefore, the solution of the eigenvalue problem yields to an infinite number of eigenvalues
λ1,λ2, ... and their respective eigenfunction or shape modes W1(X⃗ ),W2(X⃗ ), .... The eigenfunction are
orthogonal to one another in the sense of given two distinct shape modes Wm(X⃗ ) and Wn(X⃗ ), then it can be
proved that: ∫

V
M(X⃗ )Wm(X⃗ )Wn(X⃗ )dV = δmn (2.15)

where δmn is the Kronecker delta function described in 2.16.

δmn = 0 m ̸= n
δmn = 1 m = n (2.16)
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Since the just obtained solution comes from a homogeneous problem and the time component has been
dropped, only the shape of the eigenfunctions can be determined uniquely, while the amplitude is arbitrary.
It is worth mentioning that this last property allows the eigenfunction to be normalized in the following
way. With shape of the eigenfunction is meant the value of the component of ω(X⃗ , t) which affect the the
spatial structural displacement, namely W(X⃗ ). Meanwhile, the term that in equation 2.14 is constituted
by eiωt, can be generalized to a η(t) function of time, which describe the amplitude of the structural
displacement throughout a series of instants.∫

V
Wm(X⃗ )L[Wn(X⃗ )]dV =ω2

mδmn =λmδmn (2.17)

Finally, it is worth mentioning that the solution of the eigenvalue problems having the structure as
equation 2.6 benefits from the expansion theorem, which allows the solution function to be expressed as it
follows

w(X⃗ , t)=
∞∑

m=1
Wm(X⃗ )ηm(t) (2.18)

The orthogonality property, the normalization property and the expansion theorem are properties of
the homogeneous problem solution which will later be used to solve the non-homogeneous problem.

2.1.4. Non-homogeneous equation solution
Considering equation 2.6, which describes the equation of motion of a continuous system, or body, under
the excitation of external forces, with the boundary conditions expressed by equation 2.8 and initial
condition depicted as in equation 2.19

w(X⃗ ,0)= h(X⃗ )

∂w(X⃗ ,0)
∂t

= g(X⃗ )
(2.19)

Given that, according to the expansion theorem1, the forced response of the system which solves
the just mentioned problem can be expressed as in equation 2.18,where ηm(t) is the time dependent
generalized coordinate. Then, if the aforementioned equation is inserted in 2.6 the results are

M(X⃗ )
∂2

∂t2

[ ∞∑
m=1

Wm(X⃗ )ηm(t)

]
+L

[ ∞∑
m=1

Wm(X⃗ )ηm(t)

]
= f (X⃗ , t)+

s∑
j=1

F j(t)δ(X⃗ − X⃗ j) (2.20)

which can be rearranged as it follows, with η̈m(t)= d2ηm(t)/dt2

∞∑
m=1

η̈m(t)M(X⃗ )Wm(X⃗ )+
∞∑

m=1
ηm(t)L[Wm(X⃗ )]= f (X⃗ , t)+

s∑
j=1

F j(t)δ(X⃗ − X⃗ j) (2.21)

Now, to continue with the solving procedure and to utilize the orthogonality property, equation 2.21 is
multiplied by Wn(X⃗ ) and integrated over the whole domain V of the rigid body

∞∑
m=1

η̈m(t)
∫

V
Wn(X⃗ )M(X⃗ )Wm(X⃗ )dV +

∞∑
m=1

ηm(t)
∫

V
Wn(X⃗ )L[Wm(X⃗ )]dV =∫

V
Wn(X⃗ ) f (X⃗ , t)dV +

s∑
j=1

∫
V

Wn(X⃗ )F j(t)δ(X⃗ − X⃗ j)dV
(2.22)

By using the orthogonality property1 showed in equation 2.15, the first term of 2.22 under the integral
is equal to one only when m = n. Moreover, according to the normalization1 of the shape mode operated
earlier in 2.17, the second term of 2.22 under the integral is equal to ω2, again only when m = n. Finally
using the property of the Dirac delta, the last term of equation 2.22 is simplified as shown in the below
equation, where 2.22 becomes

η̈m(t)+ω2
mηm(t)=

∫
V

Wm(X⃗ ) f (X⃗ , t)dV +
s∑

j=1
Wm(X⃗ j)F j(t)=Qm(t) m = 1,2, ... (2.23)
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which is an infinite set of second-order ordinary differential equation with respect to the time variable,
where Qm(t) is called the mth generalized force. The solution of equation 2.23 can be expressed as

ηm(t)= 1
ωm

∫ t

0
Qm(τ)sin(ωm(t−τ))dτ+ηm(0)cos(ωmt)+ η̇m(0)

sin(ωmt)
ωmt

(2.24)

where η̇m(0) and ηm(0) can be calculated from the initial condition specified in equation 2.19. It is
clear by looking at 2.24 that the solution function of the eigenvalue problem describing the equation of
motion of a continuous body w(X⃗ , t) has space dependant part in the eigenfunction or shape mode Wm(X⃗ ),
and a time-dependant part in the generalized coordinate ηm(t). Given that the solution of the eigenvalue
problem has the structure specified in 2.24, this means that the time response has an infinite number of
contribution in the frequency domain, each of those contribution associated with an eigenvalue λm =ω2

m.
It is worth mentioning that in the above discussion of continuous body vibration, a damping term,

which could have been considered in the problem description, has been omitted for sake of simplicity. As in
real applications continuous bodies do not oscillate for an infinite time, a viscous damping contribution
can be added on the right-hand side of the equation 2.6 as

− ∂

∂t
C[w(X⃗ , t)] (2.25)

where C[w(X⃗ , t)] must have the same properties of L[w(X⃗ , t)]. When solving the augmented eigenvalue
problem, an extra term will be present in equation 2.23, accounting for a damping contribution in the
time response equation depending on η̇m(t). In a practical situation, the value or structure of the damping
term is not known and it is usually approximated as a linear combination of the operators L and M as
C =α1L+α2M.

2.1.5. Model reduction
In order to utilize the equation obtained above to model the structural eigenmodes of an aircraft to later
base on those the design of a control system, it is necessary to reduce the contributions considered for the
solution of the eigenvalue problem to a finite number. Different approaches can be adopted and below three
of the most common reduction techniques will be described. As first approach, it is possible to just consider
only the first a <∞ terms of the solution. In this case, the considered solution is not to be regarded as
exact but as an approximation

w(X⃗ , t)≈ ŵ(X⃗ , t)=
a∑

m=1
Wm(X⃗ )ηm(t) (2.26)

This coarse reduction neglects all the components for m > a. Therefore, because the eigenvalues are
expressed in the form λ1 <λ2 < ...<λa < ...<λ∞, the high frequency component of the structural vibration
are not taken into account. For this specific model reduction, the choice of the number of considered
components depends on what is the purpose of the model (E.g. Numerical simulation, flight control system
design, flight control system implementation), therefore on the accuracy required to the model and on
the computational power available to execute numerical calculation using the reduced model. It is of key
importance to analyse if the unmodelled frequencies can affect the rest of the model (E.g., aerodynamic
coupling, servo actuator dynamic coupling) on which the structural vibration is integrated. Or in case the
structural eigenmodes are used to design a control system, that the frequency contents of the measured
signals have all the frequencies above

√
λa =ωa filtered out.

The other two model reductions are obtained via theoretical procedures, starting from the integral
formulation of the eigenvalue problem and are namely the Rayleigh-Ritz and the Galerkin method.
These two methods, which are widely popular in the literature and are used for structure numerical
simulations (Avanzini et. al, 2014,[2] and Malisani et. al [14]), differ from the just described ones since they
approximate the solution of the integral formulation of the eigenvalue problem instead of calculating the
close analytical solution and arbitrarily consider a certain amount of eigenfunctions. Therefore, instead of
excluding components, the eigenvalue problem solutions are on purpose approximated to be kept limited
in their number.

1For more information about expansion theorem, orthogonality and normalization of the shape modes please refer to [20], chapter
6 section 5.2 and 5.3
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Rayleigh-Ritz method This method approximates the solution of the eigenvalue problem in the integral
form as w(X⃗ , t)=∑n

i=1 ui(X⃗ )ηi(t), where n is the number of admissible functions ui(X⃗ ). For this reason,
this method is also called the assumed modes method, since the shape modes are assumed to be known. It
is important to highlight that the assumed shape mode must satisfy the geometric boundary condition of
the specific eigenvalue problem. Then, the total kinetic energy T(t) and the total potential energy U(t) of
the flexible body are calculated respectively in equations 2.27 and 2.28.

T(t)= 1
2

∫
V

M(X⃗ )[w((X⃗ , t))]2dV = 1
2

n∑
i=1

n∑
j=1

mi jη̇i(t)η̇ j(t)

mi j = m ji =
∫

V
M(X⃗ )ui(X⃗ )u j(X⃗ )dV

(2.27)

U(t)= 1
2

∫
V

f (X⃗ , t)
[∫

V
g(X⃗ ,ξ) f (ξ, t)dξ

]
dV

f (X⃗ , t)=ω2M(X⃗ )w(X⃗ , t)

U(t)= 1
2
λ̃2

n∑
i=1

n∑
j=1

ki jηi(t)η j(t)

ki j = k ji =
∫

V
M(X⃗ )ui(X⃗ )

[∫
V

g(X⃗ ,ξ)m(ξ)u j(ξ)dξ
]

dV

(2.28)

where λ̃ describes the approximation of ω2, f (X⃗ , t) is the distributed load depending on the spatial and
time coordinates X⃗ and g(X⃗ , ξ⃗) is the flexibility influence function and mi j = m ji and ki j = k ji are a short
nomenclature for the components of the kinetic energy and the potential energy sum respectively. This
last function is a component obtained during the integration operation required to derive the integral
form of the eigenvalue problem or the equation of motions 2. Now that both the kinetic energy and the
potential energy depend only on ni(t) generalized coordinates, with i = 1,2, ..,n <∞, it is possible to use
Lagrange equation for a n-degree conservative system 2.29, which result in 2.30 when substituting 2.27
and 2.28 in 2.29.

d
dt

(
∂T
∂η̇k

)
− ∂T
∂ηk

+ ∂U
∂ηk

= 0 (2.29)

n∑
i=1

mkiη̈i + λ̃2
n∑

i=1
kkiηi = 0 k = 1,2, ...,n (2.30)

If considering harmonic variation of ηi(t) then η̈i =−λ̃ηi, equation 2.30 can be expressed as

λ̃[k]⃗η= [m]⃗η [k]= [ki j] [m]= [mi j] (2.31)

where [ki j] and [mi j] are symmetric matrices and thus equation 2.1.5 can be solved to find the
eigenvalue λ̃ and the corresponding eigenvectors η⃗

Galerkin method In the Galerkin method the integral form of the eigenvalue problem of the continuous

system is considered and is described in equation 2.32. The function φ(X⃗ )=∑n
i=1 ui(X⃗ )ηi =

√
m(X⃗ )W(X⃗ )

is approximated by a linear combination of n comparison functions ui(X⃗ )

W(X⃗ )=λ
∫

V
g(X⃗ , ξ⃗)m(⃗ξ)W (⃗ξ)dV (x⃗i) (2.32)

where W(X⃗ ) is the shape function or eigenfunction. If 2.32 is multiplied in both sides by
√

m(X⃗ ) then
the following equation is obtained:

2For more information about flexibility influence function refer to [20], chapter 5 section 5.5
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φ(X⃗ )=λ
∫

V
K(X⃗ , ξ⃗)φ(⃗ξ)dV (⃗ξ)

K(X⃗ , ξ⃗)= g(X⃗ , ξ⃗)
√

m(X⃗ )
√

m(⃗ξ)

(2.33)

where K(X⃗ , ξ⃗) is the symmetric kernel. When the approximate solution of φ(X⃗ ) = ∑n
i=1 ui(X⃗ )ηi is

inserted into 2.33, the equation does not hold anymore and a residual or error function can be defined as
in equation 2.34, where λ̃ indicates the approximated value of the eigenvalue.

ε(X⃗ )=φ(X⃗ )− λ̃
∫

V
K(X⃗ , ξ⃗)φ(⃗ξ)dV (⃗ξ) (2.34)

Then, to determine the coefficient ηk, n extra constraints are added, each of those having the following
structure, where uk(X⃗ ) are used as weighting functions.∫

v
ϵ(X⃗ )uk(X⃗ )dV (X⃗ ) k = 1,2, ...,n (2.35)

Finally, by substituting 2.34 into 2.35 the result is

n∑
i=1

ηi

∫
V

ui(X⃗ )u j(X⃗ )dV (X⃗ )− λ̃
n∑

i=1
ηi

∫
V

uk

[∫
V

K(X⃗ , ξ⃗)ui (⃗ξ)dV (⃗ξ)
]

dV (X⃗ )= 0 (2.36)

which can be further simplified into 2.38 when defining [k] and [m] as in 2.37

kik = kki =
∫

V
uk(X⃗ )

[∫
V

K(X⃗ , ξ⃗)ui (⃗ξ)dV (⃗ξ)
]

dV (X⃗ )

mik = mki =
∫

V
uk(X⃗ )ui(X⃗ )dV (X⃗ )

(2.37)

λ̃[k]⃗η= [m]⃗η (2.38)

Equation 2.38 is similar to the one obtained for the Rayleigh-Ritz method and can be solved using the
same procedure.
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2.2. Consequences of flexible modes in aircraft structure
Since the purpose of this literature survey is to analyse the interaction between structural eigenmodes,
aerodynamic modes and flight control system, it is necessary to explain how flexible eigenmodes mutually
interact with classical flight control system and unsteady aerodynamic. It comes by itself that a full
review of the aerodynamic theory is out of the scope of this chapter. Thus, only the specific state-
space representation currently used to describe the aforementioned interaction will be presented. First,
the aerodynamic contribution in a rigid body state space for fixed-wing aircraft motion derived by the
linearization of the Newton-Euler equation of motion will be described. Then, an example for the
interaction between longitudinal modes FCS and flexible dynamics will be presented. Later, flexible modes
will be introduced in the plant dynamics, an aeroelastic model will be derived and unstable aeroelastic
effects will be presented.

2.2.1. Rigid aircraft state space derivation
Rigid body aircraft state-space representation is one of the simplest and certainly the most widely used.
It is based on the Newton-Euler equations of motion for an aircraft, as extensively discussed in Moulder
(2013) [16]. The aforementioned equation can be linearized around different trim conditions depending on
the flight state or manoeuvre to be analyzed. In this specific case, the chosen trim condition is the steady,
straight, symmetric flight condition. In the following pages the hypothesis behind this basic state-space
representation is outlined and the most relevant equation will be reported.

Simplifying hypothesis

The assumptions made for the derivation of the rigid aircraft state space are:

• The aircraft is a rigid body
• Vehicle mass and inertial momentum are constant
• The Earth is assumed to be flat and non-rotating
• The body-fixed reference frame is chosen such that Ixy and I yz are zero, thus the Xb −Zb body plane

is a plane of mass symmetry
• The effects of rotating masses are neglected
• There is no wind, therefore V⃗ground = V⃗air

• Thrust vector lies in the symmetry plane and thus it only contributes in the external force on the X b

and Zb and the external moment around the Y b, as shown in figure 2.1

Figure 2.1: Body reference frame representation (Mulder 2013
[16])

Figure 2.2: Stability reference frame representation (Moulder
2013 [16])

Newton-Euler equations of motion are expressed in body reference frame, shown in figure 2.2, for sake
of simplicity as follows
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m ˙⃗V b +mω⃗× V⃗ b = mTb
E g⃗+Fb

ext −→
 m(u̇+ qw− rv)=−W sinθ + X = Fx

m(v̇+ ru− pw)=−W cosθ sinϕ +Y = Fy
m(ẇ+ pv− qu)=−W cosθ cosϕ +Z = Fz

 (2.39)

Iω̇+ ω⃗× Iω⃗= M⃗ext −→
 Ixx ṗ+ (Izz − Ixx)qr− Ixz(ṙ+ pq)= Mx = L

I yy q̇+ (Ixx − Izz)rp− Ixz(p2 − r2)= My = M
Izz ṙ+ (I yy − Ixx)pq− Ixz(ṗ+ rq)= Mz = N

 (2.40)

ϕ̇ = p + q sinϕ tanθ + r cosϕ tanθ
θ̇ = q cosϕ − r sinϕ
ψ̇ = q sinϕ

cosθ + r cosϕ
cosθ

(2.41)

where ω⃗ = [p, q, r]T is the rotation rate of the body reference frame expressed in body coordinates.
[ϕθψ] are the Euler angles and V⃗ = [u, v, w]T is the airflow speed. I is the moment of inertia matrix and m
is the mass of the aircraft. The aerodynamic forces and moments, namely [X , Y , Z, L, M, N], are regarded
as function of the linear and angular velocities and of the control surface deflections δ⃗= [δa, δe, δr, δt]T

and all the time derivatives of the aforementioned quantities. Thus we can restate equation 2.39 as 2.42
and equation 2.40 as 2.43

Fx = fx(W ,θ, X (δ⃗, V⃗ , ω⃗))= g f x(u̇, V⃗ , ω⃗)

Fy = f y(W ,θ, ϕ, Y (δ⃗, V⃗ , ω⃗))= g f y(v̇, V⃗ , ω⃗)

Fz = fz(W ,θ, ϕ, Z(δ⃗, V⃗ , ω⃗))= g f z(ẇ, V⃗ , ω⃗)

(2.42)

Mx = L(δ⃗, V⃗ , ω⃗)= gmx(ω⃗, ˙⃗ω)

My = M(δ⃗, V⃗ , ω⃗)= gmy(ω⃗, ˙⃗ω)

Mz = N(δ⃗, V⃗ , ω⃗)= gmz(ω⃗, ˙⃗ω)

(2.43)

Thus, the state vector is defined as X⃗ = [V⃗ T , ω⃗T , ϕ, θ,ψ]T and the input vector is u⃗ = δ⃗. Then equations
2.43 and 2.42 can be linearized and they become dependent only on ∆X⃗ since the contributions of ∆X⃗0
cancels out due to the definition of steady-state condition. When linearized, the equation of motion can be
decoupled in symmetric and asymmetric motion, due to the consideration that in the linearized system
description, disturbances (forces or moments) laying in the symmetry plane Xb − Zb do not influence
the asymmetric motion. Similarly, disturbances laying outside the symmetry plane do not influence
symmetric motion. Therefore, the aerodynamic is decoupled and two different sub-state-space are obtained
by grouping the Newton-Euler equations as follows: for the symmetric motion equations for Fx, Fz and
My are considered. For the asymmetric motion the remaining Mx, MZ and Fy equation constitute the
asymmetric motion sub-state space. For sake of convenience the stability frame is introduced, the equations
are made non-dimensional and some algebraic manipulation is operated to obtain states which are more
intelligible and which can explicitly show aerodynamic states. Also the kinematic equations 2.41 are
linearized and included in the two sub-state spaces. Below the symmetric aircraft motion 2.44 and the
asymmetric one 2.45 are reported in the classical state space form ˙⃗X = AX⃗ +Bu⃗.

˙̂u
α̇

θ̇
qc̄
V

=


xu xα xθ 0
zu zα zθ zq
0 0 0 V

c̄
mu mα mθ mq




û
α

θ
qc̄
V

+


xδe xδt

zδe zδt

0 0
mδe mδt

[
δe
δt

]
(2.44)


β̇

ϕ̇
ṗb
2V
rb
2V

=


yβ yϕ yp yr
0 0 2 V

b 0
lβ 0 lp lr
nβ 0 np nr




β

ϕ
pb
2V
rb
2V

+


0 yδr

0 0
lδa lδr

nδa nδr

[
δa
δr

]
(2.45)
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Although this state-space representation has been successfully utilized for a very long time and still
accurately represent the rigid body motion of an aircraft flying in a steady, straight and symmetric flight
condition, due to the rigid body assumption, the coupling between aerodynamic and flexible eigenmodes
is not present because the structural modes are not modelled. The consequences of not considering
structural eigenmodes are multiple. Firstly, whatever unstable mode related to the aerodynamic-structure
interaction cannot be stabilized. Moreover, regardless of how stiff the fuselage and wing structures are
or if the structural modes are critically or over-damped by nature, those will still be measured by the
sensors utilized to close the feedback control loop, for the Stability Augmentation System (SAS). This
basically introduces a new dynamic, namely the structural one, on the feedback loop. Generally speaking,
if the natural frequency of the measured bending mode is much higher than the rigid body eigenmotion
frequency then the FCS will filter out the structural mode contribution due to its own low pass filter
characteristics.

If the natural frequency of the structural eigenmodes is close or lower than the cut-off frequency of the
FCS, some interactions can be experienced. For high gain controllers, the flexible mode could enter in a
divergent resonance with the FCS internal dynamics. For high-performance aircraft with high feedback
gain and which are design to be statically unstable in order to achieve higher manoeuvrability, this hidden
interaction could make the whole system unstable. A very detailed description of such a case is developed
and thoroughly discussed by Tewari (2015) in Chapter 5.6.1,[27]. In this example, a SAS for unstable short
period3eigenmotion is designed. The short period mode approximation is used as aircraft model, alongside
an elevator actuator with a second-order dynamic and four structural modes considered to fall within
the bandwidth of the closed-loop control system, which is identified as ωc ≈ 10Hz. The accelerometer
measuring the load factor az is placed behind the centre of gravity of the aircraft. This makes the state
space system a non-minimum phase one. Then a state observer is implemented using a Kalman filter
approach. Finally, the control loop is closed with a linear control law together with a feed-forward gain,
stabilizing the short period eigenmode. The control system is designed to stabilize the short period motion,
while it is completely neglecting the aeroelastic modes. It is shown that before the implementation of the
control loop, only the poles related to short period eigenmotion were on the right-hand plane, while both the
aeroelastic and the actuator poles were stable. However, the neglecting of structural eigenmodes during
the FCS design moved the aeroservoelastic poles to the right side of the imaginary plane. This leads to a
normal acceleration of 15 g being measured after just 0.5 s, while the rigid body short period approximation
model should have a settling time of about 2 s. Is mentioned by Tewari that this very mistake has been
responsible for the crashes of several fighter prototypes, such as Lockheed F-22. Moreover, this kind of
aircraft which has high gain feedback usually has a wide flight envelope which can include regions where
aeroelastic effects become prominent, as will be discussed in the next section.

2.2.2. Aeroelastic phenomena - finite state space representation
When flying at specific flight conditions, the interaction between deformable aircraft structure and
unsteady aerodynamic can lead to self-excited aeroelastic phenomena such as flutter, limit cycle oscillation,
free body oscillation and divergence. These phenomena can be generated by different occurrences, such
as a change of density in the air or a change in flight speed, or by a gust acting as an impulse for a
specific aeroelastic mode. Moreover, those can be oscillatory dynamics with constant amplitude or very low
damping coefficient or can be exponentially divergent motions. In order to describe these phenomena and
eventually to design a control system that can damp down and/or avoid the interaction with those, it is of
key importance to derive a state-space representation.

In the early ’40s, aircraft started to be build using metallic materials, known to have an elastic
behaviour close to the theoretical elastic representation. Moreover, airplanes began to reach speeds
comparable to the sound speed in the air. The combination of fuselages and wings being "long" and "thin"
structures which could elastically bend under the excitation of high inertial and aerodynamic loads and
the capability of generating such loads due to the ability to reach high airspeed generated the first event
of aeroelastic phenomena. Therefore, some early aeroelastic models were developed to describe the time
behaviour of such a structure. The main goal of calculating the time response is to determine which and
where are the boundaries that separate damped structural motion from the divergent one, which will
ultimately lead to a failure in the structure. However, the calculations of the structural time response
coupled with unsteady aerodynamic are highly coupled linear partial derivative equations, which require

3For more detailed information on short period approximation, please refer to Mulder (2013) [16]
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a great number of iterations and computational power to be solved accurately enough. Thus, to model
the aerodynamic is preferred to derive a Laplace domain description and then numerically integrate it to
obtain the time response.

One of the early attempts to describe unsteady aerodynamic phenomena to successively couple those
with structural model to obtain an aeroelastic phenomena mathematical description was carried out
by Theodorsen (Tewari 2015 ), with the analysis of a bi-dimensional wing in an incompressible, two-
dimensional airflow of speed U. The airfoil only has two degrees of freedom: one in the pitch angle θ (angle
between the chord line and the air stream direction) and one in the plunge direction (linear displacement
perpendicularly to the airflow direction). The lift has two contribution in the frequency domain, one due to
the circulatory stream and one due to the non-circulatory stream The second contribution is neglected due
to its smaller magnitude with respect to the circulatory one. Theodorsen related the circulatory lift to the
upwash, w(ik), induced by the wake

ℓ(ik)= ℓc(ik)= C(ik)w(ik) C(ik)=
∫ ∞

1
xp

x2−1
e−ikx dx∫ ∞

1
x+1p
x2−1

e−ikx dx
= H1(k)

H1(k)+H0(k)
(2.46)

where in 2.46 Hx is the Hankel function of the second kind of order x

Figure 2.3: Cinematic of Theodorsen bi-dimensional system analysis (Tewari, 2015 [27])

To obtain the function C(ik), Theodorsen derived first the non-circulatory potential ∆φnc as the flow
potential on a circular surface with a flow source and a flow sink placed diametrically opposed positions in
the surface. Later, Theodorsen defined the circulatory potential ∆φc such as it would cancel the circulatory
contribution. Both the integrals related to the non-circulatory and circulatory potentials were solved by the
used of conformal mapping. "The circulatory pressure difference on the airfoil is derived by accounting for
the fact that the unsteadiness in the velocity potential is caused only by the motion of wake" Tewari 2015
[27]. Regardless this simplification, the circulatory pressure difference formula still contains a difficult
integral to solve, which was approximated by Theodorsen with the left equation in 2.464. From the airfoil
kinematic described in figure 2.3 we can derive the wake equation

w(t)= ż+Uθ+b
( 1

2 −a
)
θ̇ z(t)= z0eikt

w(ik)= ikz0 +
[
U + ikb

( 1
2 −a

)]
θ0 θ(t)= θ0eikt

(2.47)

It is worth to mention that frequency considered is a non-dimensional reduced frequency k =ωb /U.
The Theodorsen function represents the transfer function relating the wake, or angle of attack if α(ik)=
w(ik)/U , and the lift in the frequency domain. Thus, it can be generalized as a linear aerodynamic operator
using analytical continuation. Since the transfer function is considered to have negative poles, the time
response function calculated by the inverse Fourier transform of the Theodorsen function can be expressed
as a Wagner function of the non-dimensional time τ=U t /b

Φ(τ)= 1+ 2
π

∫ ∞

0

C(ik)−1
ik

eikτ dk (2.48)

4For more information about the derivation of the Theodorsen function, please refer to Theodorsen (1935) [28]
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Jones approximation of Wagner function Φ(τ)≈ 1− 0.165 e−0.0455τ+−0.3352 e−0.3τ shows that a series
of exponential decaying function in the adimensional time domain is used (Tewari 2015 [27]). Proceeding
with the analytical continuation process, the frequency variable ik is substituted by the Laplace variable
s = σ + ik. Hence, the Theodorsen function can be expressed in the Laplace domain as

Ca(s)= N(s)
D(s)

= a0 +
N∑

n=1

an s
s + bn

(2.49)

and the Wagner function is approximated as

Φ(τ)≈ a0 +
N∑

n=1
an e−bn τ (2.50)

where the coefficient ax and bx are calculated by curve fitting using a least squared process. The
squared fit error over a set of selected frequencies is the quantity to be minimized with respect to
the numerator coefficients. The just depicted Theodorsen function approximation is the simplest one.
Throughout the years more approximations have been successfully implemented, with an increase in
accuracy. Regardless of the approximation method, the result is a function in Laplace domain built
as a summation of rational functions. Thus, this approximation method is called rational function
approximation (RFA). From a state-space representation point of view, it is easy to translate a series of
rational transfer function into a state-space description.

The aforementioned transient aerodynamic response was developed just for the wing section, while to
obtain a better approximation a three-dimensional wing should be considered. In the ’50s and ’60s, the
Theodorsen function formulation for wing strips was first applied throughout the length of the wing, by
breaking the wing itself into a finite number of chordwise rigid strips. Each strip had the two d.o.f. of the
one in fig 2.3 and was connected to the neighbours strip with a linear and rotational spring. Moreover, the
equations for the system in 2.3 were derived also for flow condition different from the non-compressible
steady airflow condition. Later during the ’70s, the Laplace domain RFA technique was enhanced to
describe the transient response of a three-dimensional lifting surface. Then, a finite state aerodynamic
model for a 3-D wing, still based on exponential series type approximation but combined with a series
approximation of the continuous wing and fuselage structure using a finite number of structural modes
was available. This led to the possibility to calculate a transfer matrix in the Laplace domain G(s), which
relates the structural finite number of states q⃗(s) to the unsteady aerodynamic generalized force vector
Q⃗(s) =G(s) q⃗(s). As an example for the Laplace domain transfer function matrix, here is presented the
calculation technique elaborated by Sevart, Roger et al. with the pole optimization by Tiffany, Adam,
Tewari and Eversman, as reported by Tewari (2015) in [27].

G(s)= A0 + A1s+ A2s2 +
N∑

j=1
A j+2

1
s+b j

(2.51)

with A j numerator coefficient matrices. The fitting of G(s) can be carried out with the same procedure
of the RFA, where a fitting error between the Laplace domain transfer function and the aerodynamic
data is defined over an a priori defined set of frequencies. The aerodynamic data are calculated using
the doublet-lattice model, which is an analytically derived solution for the governing equations of lift
distribution and upwash for linearized compressible flows. The linearization process implies that the
aerodynamic data are significant only around the steady-state condition around which the equations
have been linearized. Thus, if an aircraft has a wide flight envelope, multiple Laplace domain transfer
matrices need to be calculated. Then, a minimization is carried out using again a least square method. It
must be highlighted that the number of poles N is arbitrary and that the optimization procedure must be
carried out multiple times to obtain a proper transfer function approximation. On each iteration of the
method, the position of the poles is checked to avoid having poles with almost identical values, which will
eventually result in a non-consistent state-space representation. The whole method can be summarized as
the following procedure:

1. Structural characterization of the aircraft via theoretical calculation or ground vibration test and
following model reduction using approximation methods (e.g. Galerkin method)

4For more detailed information, refer to Tewari 2015 [27], Chapter 3
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2. Calculation of aerodynamic data using "Lifting surface theory"
3. Calculation of the aerodynamic Laplace domain transfer matrix
4. Evaluation of the reached level of accuracy and analysis of poles position
5. If the result does not fit the data well enough, restart from (3)

Now that the interaction between the structural modes and the aerodynamic is characterized, it is
possible to derive a general state-space representation for the aeroservoelastic system. Defining q⃗(s) as
the vector of structural modes generalized coordinates and Q⃗(s), Q⃗c(s) as aerodynamic forces, respectively
due to aerodynamic states and to the deflection of control surfaces, the state space and its components can
be represented as follows

M ¨⃗q + C ˙⃗q + K q⃗ = Q⃗+ Q⃗c

Q⃗ = Ma ¨⃗q + Ca ˙⃗q + Ka q⃗ + Ng x⃗g + Na x⃗a
(2.52)

where M, C, K are the inertia, damping and stiffness matrices for the structural modes, Ma, Ca,
Ka are the generalized aerodynamic inertia, aerodynamic damping, and aerodynamic stiffness matrices,
respectively. In 2.52 the gust state vector x⃗g is mentioned for sake of completeness but it will not be
considered from now on. Finally, x⃗a is the aerodynamic lag state vector. When considering a three-
dimensional wing and the Laplace domain transfer function obtained via data fitting, 2.52 becomes 2.53
when we substitute Q⃗(s)=G(s)q⃗(s), which describes only the lift due to the circulatory and non-circulatory
flow, neglecting the gust dynamics.

(Ms2 + Cs + K)q⃗(s)=
[

A0 + A1s+ A2s2 +
N∑

j=1
A j+2

1
s+b j

]
q⃗(s)+ Q⃗c(s)

G(s)q⃗(s)= Ma ¨⃗q + Ca ˙⃗q + Ka q⃗ + Na x⃗a

(2.53)

[ ˙⃗q
¨⃗q

]
=

[
0 I

−M̄−1K̄ −M̄−1K̄

][
q⃗
q⃗

]
+

[
0

−M̄−1Na

]
x⃗a +

[
0

−M̄−1

]
Q⃗c (2.54)

where the lag state x⃗a has its own dynamic, which takes the structural generalized coordinates as
inputs, as shown in equations 2.55

˙⃗xa = Aa x⃗a +Γa

[
q⃗
q⃗

]
(2.55)

When equations 2.54 and 2.55 are put together, the resulting state space is ˙⃗q
¨⃗q

˙⃗xa

=
 0 I
−M̄−1K̄ −M̄−1C̄

0
−M̄−1Na

Γa Aa

 q⃗
˙⃗q

x⃗a

+
 0
−M̄−1

0

Q⃗c (2.56)

Generally speaking, the values and structure of the matrices Aa, Na and Γa depend on the calculation
method applied to obtain the Laplace domain transfer matrix G(s). By recalling the structure of G(s) from
equation 2.51 the relations in 2.57 come along

M̄ = M−Ma = M− A2

C̄ = C−Ca = C− A1

K̄ = K −Ka = K − A0

Na = [A3, A4, ..., AN ]

(2.57)

Where A3, A4, ... , AN2 are n×n matrices. This leads equation 2.55 express matrices Aa and In as

Aa =


−b1ln 0 0 · · · 0

0 −b2In 0 · · · 0
...

...
...

...
...

0 0 0 · · · −bN In

 Γa =


In
In
...

In

 (2.58)
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It is extremely important to keep in mind that the Laplace domain transfer function calculation is
carried out with frequency data obtained from the linearization of aerodynamic equations around a specific
airflow condition. Therefore, even if the equations are made non-dimensional during the calculations, it is
of key importance to fix quantities such as airspeed, Mach number and air density at the beginning of
the aerodynamic state-space representation process. The control surfaces can be modelled as a dynamic
system, and their dynamics can be included in the state space description. Usually, actuator dynamic is
modelled as second-order systems subjected to external excitation. Extra aerodynamic states can be added
to better describe the mutual effect between the control surface deflection and the other component of the
state space such as structural eigenmodes and unsteady aerodynamic.

When the aeroelastic interactions are considered and modelled as in the previous pages, it is possible
to design SAS which does not inadvertently excite dangerous structural modes, as it can happen in the
example discussed by Tewari (2015) in Chapter 5.6.1 [27] and briefly reported at the end of section 2.2.1.

Moreover, by analysing the just obtained linear representation of an aeroelastic system, lightly damped
or unstable oscillatory eigenmodes related to the flexible or aerodynamic states can be highlighted. As
described by Livne (2018) in [12], current flight conditions, Mach number, altitude, load factor and other
manoeuvre parameters can influence the nature of the experienced aeroelastic phenomena. Flutter and
divergence are two main aeroelastic phenomena related to a linear representation of the aircraft system.
Those can be oscillatory at a constant amplitude, with amplitude meaning the displacement of the structure
from its undeformed configuration, or divergent. Both can lead to violent dynamics generating structural
deformations which can eventually induce structural failures. Via linear aeroelastic analysis, it is possible
to determine the "flutter boundary", which is the airspeed or dynamic pressure value, below which the
flutter phenomenon is stable and damped and above which the same phenomenon is self-sustained, and it
can violently diverge. It is also possible to determine the so-called "flutter region", which is a sub-region
of the flight envelope in which flutter oscillations can be experienced. Moving forward from the linear
phenomena, other aeroelastic effects due to the presence of non-linearity in the system have been recorded
and studied over the years. Nonlinearities are introduced in multiple ways such as excessive structural
deformation which are not accurately described by linear structural theory, presence of shock waves or flow
separation, presence of non-linearity in the actuators (free play for example) or damping nonlinearities
(Livne, 2018 [12]).

The presence of nonlinear phenomena generates additional self-excited oscillation like Limit Cycle
Oscillations. Unlike flutter and divergence, LCOs arise at lower airspeed with respect to linear aeroelastic
phenomena, but the oscillations generated have a limited amplitude, which can be sustained from the
aircraft structure for some time, with the hypothesis of excluding structural failure due to fatigue. LCO
can become flutter phenomena due to an increase in the airspeed or in the dynamic pressure. Moreover,
as described by Dowell et al (2003) in [7], the presence of non-linearities introduce hysteresis behaviour
on the airspeed - LCO amplitude relations. Thus, the airspeed at which LCO starts from a previous
non-oscillatory condition is higher than the airspeed at which LCO are stabilized and damped out.
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3

Survey on structural modes - flight control
systems interaction avoidance techniques

In this chapter, the results of the literary survey conducted on which solutions have been implemented to
counteract the issue generated by the presence of structural eigenmodes will be discussed. The standard
procedure to design a flight control system has been to design a flight control system to stabilize the rigid
body motions and, if necessary, to add a separate control system to damp or cancel flexible aircraft modes.
The goal of this procedure is to reduce the dimension and the complexity of the control task into two
smaller problems. This separation implies that it is possible to separately measure only the rigid body and
the flexible motions. In some cases, the flexible motion is willingly neglected and cancelled out from the
sensor’s measurement signal. In other cases, observers are designed to provide a separate description for
both motions. Lately, the flight control system design has shifted towards an approach that integrates
it with the aerodynamic and structural design of the aircraft (Becker, Caldwell and Vaccaro, 2014) [3].
Thus, the control of the aeroelastic motions must be implemented. This chapter is structured as follows:
first, the implementation of notch filters for flexible mode signal cancellation will be described and both
strengths and flaws will be highlighted. Later, solutions for damping of aeroelastic phenomena will be
discussed. Finally, some significant papers describing control system design for flexible aircraft will be
presented and discussed.

3.1. Notch filters
With the term "Notch Filter" are pointed all those systems that can reduce the magnitude of a signal around
a specific frequency. The implementation of such a filter can reduce the influence of the structural modes
in the acceleration measurements by cancelling the frequency contribution of the flexible eigenmodes. This
solution has been widely implemented to comply with certifying agency specifications, which recommend
attenuation for elastic modes [8]. The goal of the implementation of notch filters is to avoid interactions of
aeroelastic dynamics with the flight control system designed only for rigid body motion stabilization and
control.

Some key points must be highlighted. Firstly, it is worth explicitly mention the underlying hypothesis
behind the use of notch filters. The hypothesis is that the poles of the rigid body motions and of the flexible
eigen motions are separated enough so the filter action does not affect the rigid body motion. Otherwise, the
notch filter would also cancel the frequency contribution of the rigid body dynamics, making it impossible
for the sensors to properly provide an accurate description of the current rigid aircraft states. In short,
if the natural frequencies of the rigid and flexible eigenmodes have values that are too similar to one
another, the notch filter would cancel both out. Secondly, the introduction of such a filter into the feedback
signal will introduce a phase lag in the aforementioned signal. As shown by Wei Xu et al. (2019) in [33], if
the numerator and the denominator of the notch filter transfer function have the same polynomial order,
then the phase shift is reduced in amplitude and experienced only around the frequency cancelled by the
filter if compared to common low pass filter. On the other side, if the denominator of the filter transfer
function has a higher polynomial degree than the numerator, and depending on the transfer function
structure, the lag effect can be significant. Notch filters are used by Mooij (2020) in [15] to compensate for
the effect of flexibility on gyroscope measurement in space launch systems. In this particular case, the first
longitudinal bending mode contribution is removed by the pitch rate measurements. Mooij also mentions
that it is possible to design an adaptive notch filter to counter incomplete or partial knowledge of the
flexible modes [9]. Moreover, it is clear from the graphs in [15] that the notch filter implementation adds
some phase lag in the pitch rate time signal. In [22], Silvestre et al. (2017) show what are the effects of
applying a notch filter to neglect the aeroelastic contribution after the implementation of the close loop of
the SAS, as that is standard practice in the current aeronautical industry. In the paper, it is acknowledged
that the implementation of several notch filters in a single system leads to a decrease in stability margins.
Moreover, the implementation of notch filters requires knowledge of the characteristics of the structural
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bending modes to be filtered out. Regardless of the proven effectiveness of the notch filter solution, most of
the research on flight dynamic and flight control system design is moving away from the use of such a
filter due to the increase in flexibility of more recent aircraft model and the consequent decrease of the
natural frequencies of the firsts structural bending modes, which leads to a smaller separation between
the structural modes frequencies and rigid body frequencies.

3.2. Unstable aeroelastic phenomena - flutter suppression
As already mentioned in 2.2.2, for unstable high-performance aircraft flight control system design stabiliza-
tion of aeroelastic modes must be implemented, since their mission specifically requires a flight envelope
containing a non-negligible flutter region. Dangerous eigen motion can be stabilized either using passive
or active flutter suppression. Inside the passive flutter suppression definition are included techniques
such as structural stiffening and mass distribution management. The implementation of such solutions is
quite unpractical, usually it leads to an increase in the aircraft mass and its adaptation to later changes in
aircraft configuration it is complex and expensive.

Inside the active flutter suppression (AFS) techniques definition are included all the aeroelastic motions
damping solutions requiring actions on the system by the (automatic) controller via actuators. Before
starting the discussion on ASE control technique, it must be mentioned that to perform a feedback control
action on such a system, it is necessary that the actuator dynamics are fast enough to effectively provide
inputs in the aeroelastic system and that the available sensors can measure most of the structural eigen
motions, or at the very least the ones which are required to be suppressed.

3.2.1. Active flutter suppression
After having obtained a state-space representation as in 2.2.2, it is possible to apply known LTI control
techniques to achieve the desired performances. As reported by Livne (2018) in [12], multiple control
law synthesis approaches have been implemented for linear aeroservoelastic flutter suppression, such as
Nyquist, Nichols and Bode compensation methods, linear quadratic regulator/linear quadratic Gaussian
and pole placement. Moreover, also model-free controllers have been implemented based on a linear
aeroservoelastic representation using fuzzy controllers and neural networks.

Due to the need for a control system that is able to stabilize flutter in the entire flight envelope,
adaptive AFS is the most desirable solution. With adaptive, it is depicted a control system that not
only can act with specific control strategies depending on the flight condition but which can also detect
failure and changes in the aeroelastic model and act accordingly. Gain scheduling has been implemented,
showing to be a reliable solution to provide adequate AFS throughout different flight phases, although not
being adequate to respond to failure occurrences. In [27], Tewari (2015) shows that once the linearized
ASE system representation is obtained, it can be stabilized using linear feedback control law together
with a state observer. Then, also optimal control solutions using Hamilton-Jacobi-Bellman equation,
Kalman filters, robust control techniques such as linear quadratic Gaussian with loop transfer recovery
and H2/H∞ and infinite horizon linear optimal control techniques are suitable to stabilize aeroelastic
oscillations (Tewari 2015, [27]). Almost all the aforementioned solutions require the implementation of
a state observer based on the aeroelastic model, thus state estimation plays a key role. Because of the
use of linear aeroelastic model for the control system design, linear state observer is the most common.
Recently, other state observer solutions have also been implemented, such as "Extended State observer"
and "Generalized extended state observer" which can be applied to nonlinear systems and can reject
non-modelled plant dynamic by considering those as disturbances (Radke and Gao, 2006) [19]. Since most
of the aeroservoelastic studies have been carried out on aircraft size flying vehicles, such as experimental
fighter XF-18, space launcher and HALE NASA test vehicle, there has not been lack of space for sensor
placement. Thus, most of the literature about aeroelastic control implicitly assumes that all the structural
and aerodynamic states of the selected aeroelastic model are observable and can be measured. This
condition is not verified in the case of micro air vehicles where space and weight are two major issues and
sensors cannot be easily placed everywhere in the airframe.
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3.3. Examples of flight control system design accounting for aeroe-
lastic effects

Aeroservoelasticity is a complex and extensive topic, which is present in every aspect of flight control
system design, starting from system modelling, moving to the actual design of the FCS and finally to
the sensing and actuation tasks. Due to a large number of possible solution combinations, it is very
challenging to provide a complete and exhaustive dictionary of all the aeroelastic modelling methods,
aeroelastic control strategies and aeroelastic state estimator techniques and is not within the goals of this
document. Therefore, a selection of relevant paper about aeroelastic modelling and control will be briefly
described and discussed. The papers have been selected to describe solutions different from one another to

In [18], Paranjape et al. (2012) model the wings of a a tail-less MAV with flexible articulated wings
as Euler-Bernoulli linear elastic beam being able to twist around the span direction and to bend along
the vertical body direction. The aerodynamic model is derived according to the one developed by Goman
and Khrabrov (Goman et. al 1992, [10]). This aerodynamic model is preferred to the more utilized
Theodorsen aerodynamic approximation because it is simpler to implement, it is constituted by one
ordinary differential equation (ODE), it is nonlinear and it captures hysteresis behaviour of lift coefficient
due to periodic variation on the angle of attack. Finally, this aerodynamic model describes the change in
lift as function of the wingspan coordinate. Moreover, because of the morphing wing, the changes in the
position of the centre of gravity are considered. An interesting observation arises from the analysis of
the first bending and torsion modes natural frequencies. It is shown that the ratio of the first torsional
mode frequency and the first bending mode frequency is proportional to the airspeed to structural Young
modulus ratio.

ωθ

ωξ
∝ V

E
(3.1)

where E is the Young modulus of the wing and V is the airspeed. Thus, depending on the value of the
frequencies ratio, the time scale separation principle con be applied to decouple the two dynamic. Therefore,
the design of control systems for aeroelastic mode stabilization of the first torsional and bending mode can
be executed separately. The flight control system used for these analyses is explicitly mentioned. However,
Paranjape et al. show that taking into account also structural dynamics does not significantly improve
flight performances. Moreover, the rigid body dynamic stability investigated in simulation including
flexible dynamics is not different from the one experienced in simulations where structural modes were
neglected. Finally, Paranjape et al. point out that, generally speaking, "MAVs are usually designed to
fly at relatively slower speeds, and hence it is reasonable to expect that a large degree of flexibility can
be safely introduced without risking aeroelastic instability" In [18], only simulations are executed, thus
sensor placement and eigenmodes identification are not investigated.

On the contrary, in [5], Danowski et al. (2013) designed modal isolation and damping control system
for aeroservoelastic adaptive suppression (MIDAAS), as an alternative to the use of notch filters. The
modal description of the analyzed system is used to stabilize aeroelastic modes while avoiding adverse
control system interactions. In MIDAAS, the mode suppression is carried out one mode at the time, by
calculating the optimal output blending for each mode representation transforming a MIMO system into
a MISO system. Then, a linear quadratic regulator is used to find the optimal blending of the input for
the specific modal damping and the optimal feedback gain. Each modal damping loop is implemented in
parallel with the others, by using the orthogonality property of the modal system description. Moreover,
since MIDAAS is intended to suppress only aeroelastic modes, it can be implemented aside from rigid
body motion SAS, without experiencing any control system adverse interactions. Then MIDAAS is made
adaptive via continuous update of the control gains calculated using LQR. The state-space matrices utilized
in LQR calculations are estimated using subspace identification method (SSID) developed by Miller and
de Callofon. MIDAAS was validated on an F-18C dedicated implementation, showing good results in both
modal damping and subsystem identification. To obtain the necessary measurements, multiple inertial
sensors measuring rotational and linear velocities and linear accelerations were placed in nine different
positions on the aircraft resulting in a total of 81 sensor output. This highlights the key role of having
enough sensor to measure and describe structural eigenmodes.
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In [30], Wang et al. (2019) design a gust load alleviation FCS using incremental nonlinear dynamic
inversion (INDI) for a Cessna Citation aeroelastic model including torsional and bending motions of the
wing. Structural modes shape functions and generalized coordinates are discretized using the Galerkin
method. Unsteady aerodynamic is described through the calculation of lift, moment and drag sectional
coefficients around the elastic axis of the wing, summing up contributions from airfoil motion, control
surface deflections and atmospheric disturbances. Each of those has both circulatory and non-circulatory
contribution. For the circulatory part, the Theodorsen function is utilized. Gust dynamics are modelled
according to Dryden and von Karman spectra. Then, to estimate the required states, a linear Kalman
filter is implemented to capture aerodynamic states, gust states, and rigid and flexible body motions. This
choice is motivated by the assumption that the flight control system keeps the aircraft states around the
equilibrium point, thus linear Kalman filter is regarded as sufficiently accurate. For the controller design,
nonlinear equations for translational, rotational, bending and torsional dynamics are linearized around
the equilibrium point, then the linear system is inverted to calculate the input required to stir the system
towards a reference acceleration value. For both INDI design and Kalman state observer design, a reduced
aeroelastic model comprehensive of 24 states is defined to reduce the computational power required for
the state estimation and control tasks. Then the whole FCS is tested in simulation using a more extensive
model, providing a more accurate description of aerodynamic and structural modes than the one available
for FCS design. The designed controller is effective and it proves that reduced models can be used for
aeroelastic eigenmotion control.

In the last example, in [13] Mohamed et al. (2020) define a longitudinal aircraft model including bending
modes for wing and fuselage. The aeroelastic coupling between rigid body motion, aerodynamic states,
such as angle of attack and pitch rate, and structural mode is defined according to Waszak and Schmidt
model (Waszak and Schmidt, 1986 [32]). The state-space model is expressed in modal form to decouple
dynamics. Then the states are grouped into relevant zr and negligible zd states. zd dynamic transient
behaviour is neglected and reduced to the steady-state value of the transfer function describing the zd to
elevator deflection relation. After some substitutions, relevant state dynamics are obtained as a function
of inputs and of the reduced contribution of the neglected states. Thus the system only consists of relevant
states dynamics. Then a performance criterion to be minimized for the full system is defined as in equation
3.2.

J = 1
2

∫ ∞

0

(
xT Q x + δT

e Rδe

)
dt (3.2)

The same substitutions are carried out to exclude the neglected dynamics. The procedure is carried out
multiple times. For each iteration one extra flexible dynamic, thus two extra flexible states, is included in
the reduced model and the performances of the obtained controller assessed. Flexible states are estimated
using a Luenberger observer12 fit for the state space only considering xr. The reduced model proved to be a
good representation of the full plant when only two structural motions were considered. The two structural
modes are the first torsional mode of the fuselage and the first bending mode of the wing. By substituting
the system matrices in the cost function described in equation 3.2, a gain matrix to be multiplied by the
state for optimal control input is obtained. The control law showed good performance when applied to the
full flexible aircraft model and tested for a tracking task in simulation. "Optimal control law derived for
the reduced order system can be used as a suboptimal control for a flexible aircraft represented by the full
order system" Mohammed 2020 [13].

All the papers mentioned provides a different insights and approaches on different control goals, while
all dealing with the non negligible flexible nature of modern aircraft.

As already said previously, most of the solution proposed in the literature and almost all the ones
mentioned in this chapter have the underlying hypothesis that there is the possibility to measure as many
structural eigenmotion as required from their task or goal. This is indeed a nice hypothesis to use during
research, and it certainly stands when working only with simulation models, but it is find to not hold as
soon as the testing is shifted to real life applications.

2For more information about Luenberger observer, please refer to Radke (2006) [19]
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4

Nonlinear dynamic inversion based
control systems

Nonlinear dynamic inversion (NDI) based flight control systems are model-based control strategies for
nonlinear dynamic systems. The plant model is algebraically manipulated to express the system inputs as
a function of the states and states derivative. From this latter formulation, the input required to obtain a
certain state is calculated and then used as commands for the actual plant input, for example as an aileron
deflection command. By applying the dynamic inversion block before the aircraft model, input-output
linearization is realized and it is possible to design a linear controller for the newly obtained system.
Firstly, the theoretical background for NDI is laid out. Later, it is complemented with the description of
the incremental nonlinear dynamic inversion control technique, which is derived from NDI and it requires
less knowledge of the system. As it will be shown later, INDI control strategy has been widely studied
and applied to different vehicles, as it is simpler in its implementation compared to NDI and more robust
towards model inaccuracies and disturbances. Although INDI controllers have shown to be robust, their
implementation remains confined only at the research level, since at the best knowledge of the author, no
production aircraft is mounting nonlinear dynamic inversion based flight control system. Thus, NDI and
INDI implementation examples are provided and finally a discussion to evaluate performances, strengths
and drawbacks of NDI and INDI will conclude this chapter.

4.1. Theoretical description
NDI and INDI share most of their theoretical background and they only differ from one another in some
final passages. Therefore, firstly the NDI controller derivation is laid out. Then, for the INDI controller,
only the steps that differentiate it from the NDI formulation will be mentioned.

4.1.1. Nonlinear Dynamic Inversion - NDI
1

Given a nonlinear SISO system, which is affine in the input variable u.

˙⃗x = f⃗ (⃗x) + g⃗(⃗x)u
y= h(⃗x)

(4.1)

The relative degree r of the system in equations 4.1 is defined in as the minimum number of time
differentiation required to be operated on the output y to obtain an explicit relation between input u and
output (Van Kampen, de Visser 2020 [29]). For partial and fully controllable system of degree n then the
relation r ≤ n holds. If r < n then there are n − r hidden or internal dynamics. Then, the following change
of coordinates is defined

φ1 (⃗x)= h(⃗x)

φ2 (⃗x)= L f h(⃗x)
...

φr (⃗x)= Lr−1
f h(⃗x)

(4.2)

Where Lm
f h(⃗x) is the mth Lie derivative of h(⃗x), which is defined as in equations 4.3

1For a more in depth and complete derivation and explanation of nonlinear dynamic inversion (NDI) controller, please refer to
Van Kampen and de Visser, 2020 [29]
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L0
f h(⃗x) = h(⃗x)

Lk
f h(⃗x) = L f

[
Lk−1

f h(⃗x)
]
=∇T

[
Lk−1

f h(⃗x)
]

f⃗ (⃗x)

Lg L f h(⃗x) =∇T [
L f h(⃗x)

]
g⃗(⃗x)

(4.3)

It is always possible to add n− r functions φi (⃗x) such as Lgφi (⃗x) = 0 ∀ r+1 É i É n to complete the
coordinate transformation in 4.2 and have a system of the same degree of the initial one.

z⃗ = Φ⃗(⃗x)=



φ1 (⃗x)
...

φr (⃗x)
φr+1 (⃗x)

...
φn (⃗x)


(4.4)

When operating the time derivative to z⃗, the time derivative of the first r−1 coordinates are:

żi = φ̇i (⃗x)= ∂φi (⃗x)
∂⃗x

˙⃗x = ∂φi (⃗x)
∂⃗x

[
f⃗ (⃗x)+ g⃗(⃗x)u

]
=

∂Li−1
f h(⃗x)

∂⃗x
f⃗ (⃗x)= Li

f h(⃗x)=φ(⃗x)= zi+1

(4.5)

The rth coordinate time derivative is

żr = φ̇r (⃗x)= ∂φr (⃗x)
∂⃗x

˙⃗x = ∂φr (⃗x)
∂⃗x

[
f⃗ (⃗x)+ g⃗(⃗x)u

]
=

∂Lr−1
f h(⃗x)

∂⃗x
f⃗ (⃗x)+

∂Lr−1
f h(⃗x)

∂⃗x
g⃗(⃗x)u = Lr

f h(⃗x)+LgLr−1
f h(⃗x)u

(4.6)

Finally, the last n− r elements describing the internal dynamics are reported in equation 4.7, with
i ∈ [r+1,n].

żi = L fφi (⃗x)+Lgφi (⃗x)u = qi−r (⃗x) (4.7)

As said before, in the above equation the Lie derivative of qi−r (⃗x) = 0 along g⃗(⃗x) is equal to zero. By
looking at equations 4.4 and 4.5, the canonical form of a SISO system can be recognized. In order to
conclude the coordinate transformation, the dependency of equations 4.4 and 4.5 on x⃗ has to be substituted
with x⃗ = Φ⃗−1 (⃗z), thus equation 4.6 becomes

żr = Lr
f h

[
Φ⃗−1 (⃗z)

]
+ LgLr−1

f h
[
Φ⃗−1 (⃗z)

]
u = a(⃗z) +b(⃗z)u

a(⃗z)= Lr
f h

[
Φ⃗−1 (⃗z)

]
b(⃗z)= LgLr−1

f h
[
Φ⃗−1 (⃗z)

] (4.8)

For the internal dynamics coordinates the substitution is trivial and not useful for the purpose of
control system design and will not be discussed further. Then, from the system formulation expressed
in equation 4.8, the input required to obtain a certain żr given the state vector z⃗ can be described as
u = b−1(zr)[żr −a(⃗z)]. Expressing żr as the desired change of the system behaviour ν, or virtual input, the
final formulation of equation 4.8 is

u = b−1(zr)[ν−a(z)] (4.9)

If we combine the equation 4.9 and equation 4.1 as in figure 4.1, input (ν) output (y) linearization is
obtained. The system behaves like a rth degree integrator and can be stabilized using linear control theory.
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Figure 4.1: Input-output linearization system

It must be noticed that in order to obtain the desired output, the virtual input ν must be expressed as the
rth desired time derivative of the output.

The final system has the same states and outputs as 4.1, but a different input in (⃗ν) and the input-
output relation is linearized. Thus the resulting system can be described as in equation 4.10 (Wang et
al.2019, [31]).

˙⃗η= q⃗(⃗η, ξ⃗)
˙⃗
ξ= Acξ⃗+B c⃗ν

y= Ccξ⃗

(4.10)

Ac, Bc and Cc are the canonical form representation of a chain of r integrators. η⃗ has n− r elements
and ξ⃗ has r elements and those describe namely the non-observable and the observable part of z⃗.

z⃗ = Φ⃗=
[
ξ⃗

η⃗

]
(4.11)

The extension of the just discussed method for MIMO systems requires some prior algebraic manipula-
tions. Given a system as in equation 4.12

˙⃗x = f⃗ (⃗x) + G (⃗x) u⃗

y⃗= h⃗(⃗x)
(4.12)

Where G (⃗x), u⃗ and h⃗(⃗x) are expressed as in equation 4.13 with ℓ being the number of inputs and m the
number of output.

h⃗(⃗x)= [h1 (⃗x),h2 (⃗x), ...,hi (⃗x), ...,hm (⃗x)]T

u⃗ = [
u1 (⃗x),u2 (⃗x), ...,u j (⃗x), ...,uℓ (⃗x)

]T

G (⃗x)= [
g⃗1 (⃗x), g⃗2 (⃗x), ..., g⃗ j (⃗x), ..., g⃗ℓ (⃗x)

] (4.13)

For each output variable, the respective relative degree can be defined as previously done for the SISO
case. Thus, a relative degree vector is defined as r⃗ = [r1, r2, ..., r i, ..., rm]T and a set of coordinates can be
defined to express each inputs in the canonical form. Similar to the SISO case, we can define the rth

i Lie
derivative for the ith output as components of the new coordinate system

φi
r i

(⃗x)= Lr i
f hi (⃗x)

φ̇i
r i

(⃗x)= Lr i
f hi (⃗x)+

m∑
j=1

Lg j L
r i−1
f hi (⃗x)u j

(4.14)

Collecting all νi = φ̇i
r i

into a vector, the vector of the desired change in behaviour for each output is
obtained as in equation 4.15
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ν⃗(⃗x)= Ψ⃗(⃗x)=


φ̇1

r i
(⃗x)

φ̇2
r2

(⃗x)
...

φ̇m
rm (⃗x)

=


Lr i

f h1 (⃗x)
L2

f h2 (⃗x)
...

Lrm
f hm (⃗x)

+


Lg1 Lr1−1

f h1 (⃗x) Lg2 Lr1−1
f h1 (⃗x) · · · LgℓLr−1

f h1 (⃗x)
Lg1 Lr2−1

f h2 (⃗x) Lg2 Lr2−1
f h2 (⃗x) · · · LgℓLr2−1

f h2 (⃗x)
...

...
...

...
Lg1 Lrm−1

f hm(v) Lg2 Lrm−1
f hm (⃗x) · · · LgℓLrm−1

f hm (⃗x)

 u⃗

(4.15)

ν⃗(⃗x)= a⃗(⃗x)+B(⃗x) u⃗ (4.16)

Finally, u⃗ can be expressed as a function of ν⃗ and the states, according to the structure in figure 4.1.
The only difference lies on the linearization block, where now u⃗ = B−1 (⃗x)[⃗ν(⃗x)− a⃗(⃗x)]. As for the SISO case,
the dependency of 4.16 on (⃗x) can be cancelled by applying the corresponding coordinate transformation to
each element of ν⃗.

4.1.2. Incremental Nonlinear Dynamic Inversion - INDI
The theoretical background of INDI is very similar to the NDI one, thus only the main differences will be
highlighted2.

INDI control strategy can be extended also for systems that are not affine in the input variable, but to
better highlight similarities and differences, the analysed system will be considered the same as the one
used before for the NDI theoretical discussion. Starting the discussion from equation 4.16, it is clear that
the NDI linearization is based on the analytical and exact cancellation of the nonlinear terms B(⃗x) and a⃗(⃗x).
When implementing NDI methods, this goal is almost impossible to achieve due to model simplifications
and inaccuracies, computational errors and approximations and non-modelled disturbances. Thus, to
simplify the input-output linearization method and to reduce the dependency of the method to the model
used to design it, the first-order Taylor approximation of equation as reported in 4.17

Ψ⃗≈ Ψ⃗0 + ∂ [a⃗(⃗x)+B(⃗x)]
∂⃗x

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆⃗x+ ∂ [a⃗(⃗x)+B(⃗x)]
∂u⃗

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆u⃗+O (∆⃗x2,∆u⃗2) (4.17)

After due simplifications and terms grouping, equation 4.17 can be expressed as in equation 4.18.
There, the terms related to the state vector derivative and increment is neglected and included in the
calculation error (Wang et al.2019, [31]).

Ψ⃗≈ Ψ⃗0 +B(⃗x0)∆u⃗+ δ⃗(∆⃗x2,∆u⃗2,∆t)

δ⃗(∆⃗x2,∆u⃗2,∆t)= ∂ [a⃗(⃗x)+B(⃗x)]
∂⃗x

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆⃗x+O (∆⃗x2,∆u⃗2) (4.18)

Where Ψ⃗0 is assumed to be measurable, ∆u is the increment to be added to the actuator command, x⃗0
and u⃗0 are the state values and actuator position values at the instant t = t0, which are assumed to be
measurable. B(⃗x0) is the control effectiveness matrix evaluated at the instant t = t0 and δ⃗(∆⃗x2,∆u⃗2, δt)
is the error committed by using the first order Taylor approximation. By making explicit the actuator
command increment in equation 4.18 and defining Ψ⃗= ν⃗

∆u⃗ = B−1 (⃗x0)[⃗ν−Ψ⃗0] (4.19)

Which if substituted in equation 4.18 provides the input-output linearization for the linearized model.
Similarly to the NDI case 4.10, also the INDI linearized plant model can be expressed as in equation 4.20
when applying the same coordinate change as described above in equations 4.2, 4.4 and 4.11

˙⃗η= q⃗(⃗η, ξ⃗)
˙⃗
ξ= Acξ⃗+Bc [⃗ν+ δ⃗(⃗z,∆t, )]

y= Ccξ⃗

(4.20)

2For an exhaustive and complete dissertation please refer to Wang et al.(2019) [31].
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In the actuator command increment calculation equation 4.19, δ⃗ is neglected. It must be kept in mind
that even if the nonlinear plant model is linearized in equation 4.17, the coefficients of the linearization,
only B(⃗x0) in our case, can still show a nonlinear behaviour. Moreover, the total control input is obtained
through the sum of the previous actuator state and the currently calculated increment

u⃗ = u⃗0 +∆u⃗ = u⃗0 +B−1 (⃗x0)[⃗ν− Φ⃗0] (4.21)

It is worth to highlight one key difference between NDI and INDI. The latter relies less on model
information than the former to calculate the control input (or actuator input). INDI only relies on
information about control effectiveness B(⃗x0), while it is assumed that information on plant transient
behaviour can be obtained by sensor measurements. On the contrary, NDI requires the knowledge of the
plant observable dynamics, expressed by the term a⃗(⃗x). The downside of this difference is that INDI relies
more on sensors measurements and it is mainly affected by the sensors sampling frequency, which is
inversely proportional to the linearization error δ⃗. For this reasons, INDI is often classified as sensor-based
control strategy rather than a model base one.

4.2. Implementation examples
Although,both NDI and INDI has been widely studied, only the latter has shown more robustness,
versatility and ease in implementation than the former. INDI control strategies have been developed,
implemented, and successfully tested for a wide range of flying vehicles.

First, some NDI implementation examples will be provided and later different successful implemen-
tations will be briefly described and mentioned, starting from space application, moving to aircraft and
finally to Micro Air Vehicles.

4.2.1. NDI based flight control system implemetation examples
In [17], Papageorgiou (2006) first design an NDI pitch rate controller using a longitudinal aeroelastic

aircraft model. First, a so-called full aeroelastic model is developed to be used in the simulation as
plant model. Later, it is reduced in the number of states and the reduced model is used to derive the
linearization feedback via NDI technique. Finally, a PI controller is designed to stabilize the linearized
plant and the sensor position is optimized to obtain the best measure of the pitch rate and to minimize
the number of flexible modes to be used in the inversion controller. By doing so, only four flexible modes
need to be considered in the reduced model. Then FCS performances are evaluated with respect to
model uncertainties in both aerodynamic coefficients and flexible mode frequencies. The robustness of
the developed control system is verified only for uncertainty on aerodynamic coefficients. A destabilizing
perturbation is found to be related to incorrect modelling of frequencies of the flexible modes. The author
suggests that to remove undesired contributions of flexible modes in the sensors measurements it is
necessary the implementation of a notch filter for frequencies outside the bandwidth of rigid body motion
frequencies.

In another NDI design example, James et al. (2016) [4] propose an attitude controller for a HALE
aircraft, based on NDI input-output linearization nested in a PI control loop using direction cosine matrix.
After the description of the elastic plant model, the NDI loop is developed by using translational and
rotational speed output. Then the responses to a step in the attitudes angle reference are analysed for
different conditions, which include combinations of neglection or consideration of actuator saturation
and full or non-existent knowledge of the flexible states. The results show that, for this specific case and
implementation, actuator saturation introduces relevant oscillations in the time response, and it increases
the states settling time. It must be mentioned that the actuator dynamics are not modelled and it is
assumed that the control surface deflection generates a pure torque on the aircraft. It also must be noticed
that in real applications the actuator dynamics cannot be omitted during the NDI design process. Also,
the neglection of flexible mode contribution increases the settling time, but in a minor way and it does not
introduce any other effects.

As a final NDI based control system example, in [1], Alabsi et al. (2017) develop an NDI controller which
uses frequency domain parameter estimation for control system parameters reconfiguration. In the specific
case, a nonlinear dynamic inversion loop is designed for attitude rate control of a quadcopter. The actuator
contribution to the plant dynamic or the control effectiveness is described through parameters that are
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estimated using a linear regressor model. The model is then transposed in the frequency domain where
both independent and dependant variable are Fourier transformed using recursive Fourier transform.
Once the parameters are estimated, those can be used in the nonlinear dynamic inversion loop.

While not being fully able to deal with unmodelled dynamics and with rotational dynamic parameters
identification, the algorithm showed excellent performances on recognizing reduced actuator effectiveness
or recovering from wrongly initialized control effectiveness parameters. While for NDI both model
parameters and control effectiveness are crucial for a successful implementation, this is not the case for
INDI, where only the description of how inputs affect plant dynamic is relevant.

4.2.2. INDI based flight control system implemetation examples
Moving on to Incremental NDI, in [15], Mooij (2020) compares INDI and "Simple Adaptive control"

performances, as in states deviation from the reference and control effort, with a benchmark PID FCS.
The control task is to design an attitude controller for a flexible launch vehicle. The INDI design presents
two nested linearization loops, the inner one to linearize the dynamic and the outer one to linearize
the kinematics. Moreover, the plant model used to design the INDI controller only includes rigid-body
motions. This choice was made to assess to what extent those flight control systems are affected by the
flexible dynamics and to evaluate different types of measurement signal filtering. Mooij shows through
simulations and consequent FCS performance analysis that INDI control strategy is the least affected
by the unmodelled flexible dynamics. Analysis of the results shows that INDI controllers has better
performances and that it is the least affected by the neglected flexible dynamics.

One of the first to introduce the INDI control technique was Smith (1998) [26], when he defined it as
a "Simplified approach to nonlinear dynamic inversion". In his paper, Smith develops an attitude INDI
controller and performs some test to assess performances and robustness. When analysing the sensor
requirements, Smith claims that the sensors available at the time were accurate enough. However, since
the plant equations used to develop INDI loop do not include flexible modes, care must be put in choosing
the placement of the sensors, to avoid structural motion interference in the measurements. During tests,
the designed controller showed to be robust in presence of non-modelled actuator rates and authority
limits, sensor noise and variation on the model parameter, such as control effectiveness and inertia matrix.

As shown in 4.1.2, sensors sampling frequency plays an important role in the robustness of the INDI
controller. Moreover, in real-life applications, it is unfeasible to remove the measurement delay due to
signal digitalization. Thus, in [21], Sieberling et al. (2010) coupled an INDI controller with a predictive
filter to compensate for sensors sampling delay. The predictive filter is a linear angular acceleration
predictive filter, and its coefficients are calculated based on the INDI controlled closed-loop time response
of the aircraft. In their analysis, an NDI controller an INDI controller and a predictive INDI (PINDI)
are designed for attitude control of T-tail UAV. Then, the performances of those controllers are assessed
via multiple simulations. In each simulation, the reference input is kept constant while parameters
describing the aerodynamic model, centre of gravity, moment of inertia and noise in sensor measurements
are varied. When comparing step response performances, PINDI facing time delay in sensor measurement
achieve the same robustness and time response behaviour of the INDI implementation not subjected to
any measurement delay.

Grondman et al. (2018) [11] designed, implemented and tested a manual attitude control based on INDI
for a CS-25 certified aircraft. The model used to derive the linearization loop is a six degree of freedom rigid
body model. The INDI loop does not include flexible states nor actuator or sensor dynamics. To compensate
for the non-modelled actuator dynamic and saturation, pseudo control hedging technique is implemented
in the outer loop, affecting the calculation of the virtual input of the INDI attitude rate controller given
the pilot command. Both in simulation and real testing, angular acceleration measurements and control
deflection measurements must be synchronized to avoid information mismatches in time. Moreover, for
performance comparison, an NDI linearization loop is developed. Once again INDI proved to be more
robust to model uncertainties, non-modelled effects of actuators, sensors, filters and wind disturbance with
respect to NDI based solution. Moreover, the incremental version provides a better compromise between
robustness, disturbance rejection and command response.
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In [30], Wang et al. (2019) apply INDI based control strategy to regulate rigid body motions, alleviate
the load due to gust presence and the wing root bending moment and suppress elastic modes. As usual, a
first complete model, comprehensive of aerodynamic states, rigid and flexible body states and gust and
turbulence states is developed for simulation purposes. Then the number of flexible states is reduced
obtaining a so-called reduced model. This is necessary to lower the computational power required on
board and to be able to measure all the required structural eigen motions. From the reduced model, rigid
body and flexible accelerations are taken as output to be used for the INDI linearization loop design.
Furthermore, aerodynamic gust and lag states are considered external disturbances and are not included
in the reduced model. Differently from the derivation in 4.1.2 equation 4.17, the derivative with respect to
the states variable is not neglected and it is considered as an additional term in the sum to be multiplied
with the inverse of the control effectiveness matrix. Moreover, since the number of control variables is
less than the number of states considered for the linearization loop, a weighted least-squares method is
used to invert the non-squared control allocation matrix. The outer control loop providing the virtual
input reference is designed to achieve desired forces and torques generation and to damp structural modes,
depending on the nominal flight condition. Then a command-filtered actuator compensator is designed to
deal with actuator saturation and bandwidth. Via simulations, the developed INDI based control system
shown to achieve its task also in presence of model uncertainties, external disturbances, and sudden
system faults. This proves once more the robustness of this control technique when applied to aircraft.

Finally, INDI control strategy has been successfully applied multiple times on Micro Air Vehicles
(MAV). Smeur et al. (2016) [25] implement an attitude controller for an unmanned quadrotor using
INDI loop linearization. Propeller dynamics are included in the plant model used to derive the flight
control system considering the propellers rotational speed as the system input. Rotational accelerations
are calculated via differentiation of attitude rate measurement signal, which must be filtered to avoid
bad acceleration estimation. The chosen filter is a second-order one, with a cut-off frequency of 50 Hz.
After the implementation of INDI feedback loop, the control effectiveness matrix depends only on two
matrices, which can be estimated as adaptive parameters using a least mean squares technique. Multiple
experiments are carried out to test the robustness of the control strategy and the performance of the
parameter recognition algorithm. The controller developed by Smeur et al. provides consistent disturbance
rejection of non-modelled aerodynamic which are extremely complex for MAV. Moreover, the inclusion of
the propeller dynamic allows fast yaw control. The control effectiveness parameter estimation algorithm
is proven to be fast enough to provide online adaptation of the control effectiveness matrix.

In another work from the same authors [24], Smeur et al. (2018) start from the results obtained in [25]
to design and implement a cascade INDI control system for disturbance rejection. An outer INDI loop is
designed to provide attitude and position control. Translational Newton equations of motion are considered.
Linear accelerations are taken as plant output and attitude position and thrust are considered as system
inputs. Then the aforementioned relation is inverted and linearized to provide the desired virtual inputs
for the inner INDI linearization loop. Both inner and outer INDI loops are provided with a classical PID
controller to obtain the desired steady-state and transient performances from the linearized system. The
position controller is then tested under heavy wind condition both indoor, using a fan providing a lateral
airflow of 10 m/s, and outdoor, by being exposed to Dutch wind. Once again, INDI control strategy has
demonstrated to have high robustness and to be minimally affected by measurable external disturbances.
INDI performances in position tracking were compared with a benchmark PID controller. While the
PID controller was subject to a half a meter displacement due to 10 m/s lateral wind disturbance, INDI
controlled MAV experienced only 5 cm displacement.

4.3. Nonlinear dynamic inversion control strategies discussion
After the description of different implementations of NDI and INDI based controller, in this final section,
the characteristics, strength and drawbacks for both control strategy will be outlined.

Both NDI and INDI aim to obtain an input-output linearization of the plant via inversion of the
nonlinear dynamic equations governing the system to be controlled. The use of nonlinear equations
already accounts for very different operating conditions, which would have required the implementation of
gain scheduling if linearized models for different flight conditions would have instead been considered.
After having applied a favourable change of coordinates, the plant governing equations are inverted.
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It must be guaranteed that the control effectiveness matrix is non-singular and invertible, or pseudo-
invertible for non-squared matrices. Because of the equation inversion, the system must be a minimum
phase one, otherwise, during the inversion process the plant zeros having a real positive part introduce
unstable dynamics in the plant. The input-output linearization via plant inversion decouples the dynamics
to be controlled and thus it makes easier and simpler the design of outer stabilization loops.

Both are model-based control strategies, but one relies on the system model more than the other. NDI
is based on the complete analytical cancellation of the plant non-linearity. Thus, the required calculations
include two main terms: one describing the transient behaviour of the system based on the current state
and one which provides information about the input contribution to the system dynamic. The latter
term is also supposed to be invertible. Instead, INDI is based on the inversion of the linearized plant
nonlinear equations. Therefore, only the control effectiveness matrix is calculated and inverted while
the transient behaviour calculation is substituted by appropriate sensor measurements. It follows that
being the computational effort proportional to the complexity and size of the plant model, NDI results
more computationally expensive than the INDI. In NDI implementation the number of parameters to
be identified is larger than the one for INDI. Furthermore, as proved in Alabsi (2017) [1] and Smeur
et al. (2016) [25], control effectiveness parameter identification is more robust than transition matrix
parameters identification, especially when including complex aerodynamic. Moreover, NDI showed low
robustness to the presence of unmodelled dynamics or disturbances, since those are not included in the
plant representation and thus their contribution in sensor measurement will be misinterpreted. On the
other side, INDI directly measures external disturbances and it compensates for those, as seen in Smeur
(2018) [24].

Synchronization of sensor measurement signals and actuator position signal must be ensured, other-
wise, calculations will be executed considering quantities belonging to different instants in time. Actuator
nonlinearity and saturation must be kept in consideration, or better modelled into the control effectiveness
matrix. Otherwise, NDI and INDI would command an actuator position which is not feasible. INDI error
in control input increment is related to the quality of the sensors as it is inversely proportional to the
sensors sampling time. If plant states cannot be directly measured, NDI requires to estimate those states
via a full state observer. Moreover, if the plant model is partially or not known, system identification
techniques must be deployed. On the other side, INDI only requires control effectiveness parameters to be
calculated or estimated.

Once the nonlinear inversion loop is implemented, it can be integrated with other stabilization
techniques to achieve the desired stability performances.

Overall, it can be said that INDI control system design strategy is easier to implement, and generates
controllers which are more robust, more effective in rejecting disturbances than NDI-based ones.
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5

Preliminary analysis experiments and
simulations

Introduction, analysis description and simulations
In this additional chapter added to the literature study report, the analysis of the interaction between flight
control systems and structural vibrations is carried out in both simulation and real experiments. First, a
MATLAB®Simulink®model was developed to investigate the effects of Incremental Nonlinear Dynamic
Inversion (INDI) controller design on different dynamic motions. Secondly, the flight control system -
structural vibration interaction has been investigated in the specific case of the Parrot Bebop 2 stabilized
using the INDI flight controller for stability augmentation purposes. In the following two sections, both
the experiments will be described following the same logical structure. Firstly the description of the
experimental setup and of the background theory will be provided, secondly, the goals of the experiment
will be stated, then the test will be described and, finally, the results will be laid out and analyzed.

5.1. Bebep 2 vibrations generated by flight control system interac-
tion with damper dynamic

As reported by thesis supervisor E.J.J. Smeur, during the flight control system design of the INDI based
attitude controller for micro air vehicles (Smeur et. al, 2016 [23]), the test platform, namely a Parrot Bebop
2, was showing a sustained but not divergent oscillatory behaviour in the roll motion. Further analysis
revealed that such phenomena were due to the presence of a spring-damper connection between the part
of the frame where the sensors and the camera are attached to the part of the frame where the propellers
are attached. Finally, the design choice was either to remove the spring-damper dynamic by fixing the
two parts of the frame to one another or to lower the gains of the roll motion angular rate and position
tracking. From now onward, with the camera frame, it will be pointed to the part of the Bebop 2 drone
containing the frontal camera, the processing unit, battery and the sensor set (namely accelerometers and
gyroscopes). With the motor frame, it will be indicated the lower part of the Bebop 2 where the propeller
support attaches to the main body and where the bottom camera is placed. A series of ground vibration
tests and flight tests have been carried out to analyze vibration phenomena.

5.1.1. Tests description and results

Ground vibration test

In order to retrieve the characteristics of the spring-damper system, the impulse response of the system
was analyzed both in time and frequency domains. The impulse response was obtained by fixing the motor
frame in a horizontal surface, where the measured roll and pitch angle would be null for an unperturbed
condition. Then, to simulate the impulse input, an angular displacement was applied to the camera frame,
followed by the release of the camera frame itself. The transient behaviour of a system to a non-zero initial
condition is mathematically the same as the system impulse response. This test was repeated multiple
times and the time domain data were cut to neglect non-relevant time series. The spring-damper system
parameters, namely the natural frequency and the damping ratio, were calculated via frequency domain
analysis and curve fitting of the time domain transient behaviour to the simulated impulse response of a
second-order dynamic system. Thus, an analytical model is obtained, which has a natural frequency of
12.85 Hz and a damping ratio of 0.125. Its numerical transfer function is reported in 5.1

F(s)= 6585
s2 +22.62s+6585

(5.1)
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The time response of the analytical model and of the Bebop spring-damper system are shown together
in figure 5.1, while the PSD functions of the same systems are displayed in figure 5.2.

Figure 5.1: Time response to impulse input comparison Figure 5.2: PSD function comparison

Flight test

The flight test campaign had two main goals: first to reproduce the vibration motions experienced by
E.J.J. Smeur during the design of the INDI flight control system. Secondly, to analyzed by what elements
of the flight control system implementation this oscillatory behaviour is affected by and how. The INDI
based flight control system is implemented in Paparazzi Autopilot, an open-source flight control system
design framework. All the Paparazzi Autopilot FCS implementations are available in the Paparazzi Git
repository. The flight control system consists of three nested loops: the inner one is the INDI loop for
feedback linearization, the middle one is designed for angular rate tracking and the outer one ensures
attitude angle tracking. It is worth mentioning that the inner INDI loop is not modifiable due to the fact
that its structure and gain depend respectively on the type of dynamic system the controller is applied to
and to the control effectiveness matrix describing the actuators contribution to the system dynamic. The
middle and outer loops contain proportional controllers and can be modified. The flight control system
contains sensor feedback signal filtering, to cancel the sensor measurement noise.

During preliminary tests, feedback signal filters being removed did not generate the vibration in the
drone flight, while the increase of the middle and outer loop gains of the roll dynamic control loop did.
Therefore, different flight tests with different gains on the roll angle and rate control loops were carried
out to study the contribution of the two to the vibration phenomena. It is worth mentioning that while the
gains for the angular position and rate control loop for the pitch and yaw dynamics had the values of 28
and 600 respectively, the same values for the roll control loops were 14 and 170.

The proportional gain for the attitude angle tracking loop is identified with the variable ref_p and
the proportional gain for the angular rate tracking loop is err_p . Therefore, multiple flight tests were
executed with different combinations of ref_p and err_p . For each flight test, measurements from the
accelerometers and gyroscopes were recorded, together with the command signals. The goal of the test was
to assess whether or not a specific ref_p -err_p combination would raise the oscillatory phenomena. Hence,
each flight consisted of take-off, hovering and landing. In the case the vibration was not present, a high
roll angle command would be provided manually to trigger the vibration. Once the data were recorded,
relevant time series would be sampled from the complete flight data time history. This procedure was
implemented to avoid having the contribution of transient behaviour due to manually provided commands.
Once clean time series were obtained, a power spectral density (PSD) analysis was executed for each time
series, and a smoothing filter was applied, which equation is provided in 5.1.1, where Ψ(k) represent the
PSD function.

Ψ(k)smoothed = 0.25 ·Ψ(k−1)+0.5 ·Ψ(k)+0.25 ·Ψ(k+1) (5.2)
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When multiple PSD functions for the same ref_p - err_p gain combination were obtained one single
PSD function was calculated by averaging all the PSD functions available. The sampling rate is 170 Hz and
the sampling time is not uniform throughout the different flight tests. Therefore, the Nyquist frequency
for this test run would be 85 Hz and the frequency resolution would be variable since it depends on the
sampling time. As the final data processing step, the frequency series vector where linearly interpolated
to obtain uniform vectors with a frequency step of ∆ f = 0.1Hz.

In the table below 5.1 is reported which ref_p - err_p gain combination leads to oscillatory behaviour.
To show the effects of gain variation on the system response, the PSD functions calculated are displayed in
the following fashion. Firstly, in figure 5.3 ref_p gain is constant while err_p gain varies from 50 to 600.
Secondly, in figure 5.4 err_p gain is kept constant while ref_p is modified giving the values mentioned in
table 5.1.

\ ref_p
7 14 21 28err_p \

50 - - x x
170 - - x x
400 - - x x
600 - - x x

Table 5.1: Presence of oscillatory behaviour depending on the err_p - ref_p gain values

Figure 5.3: PSD function for constant ref_p and variable err_p compared with the one obtained from GVT
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Figure 5.4: PSD function for constant err_p and variable ref_p compared with the one obtained from GVT

5.1.2. Flight test result analysis and discussion
As already mentioned in the flight test description subsection 5.1.2 and as clearly understandable from
table 5.1, err_p gain does not influence neither trigger the Bebop 2 oscillatory behaviour. On the contrary,
increasing the value of the outer loop gain decrease the overall magnitude of the PSD function, and
therefore also the power contained associated with structural eigenmotion. As it can be noticed in the
graphs in both figure 5.3 and 5.4, around the 19.33 Hz frequency it is always present a spike, which
corresponds to the structural oscillatory behaviour frequency contribution. It is clear from the graphs in
figure 5.4 that the power contained in the structural eigenmotion spike is never comparable with the peak
of the ground vibration test PSD function and it is never above the steady-state value of the GVT PSD
function.

On the contrary, an increase in ref_p value triggers and excites the structural vibration motion. For
ref_p equal to 7 or 14, the spike related to oscillatory behaviour is one decade lower than the peak of
the spring-damper system on the Bebop 2. For higher values of ref_p the contribution of the structural
vibration starts to be comparable to the ground vibration test response and therefore it starts to be
experienced during flights. It can be deduced that the outer loop, namely the attitude tracking loop, high
gain can generates the interaction between the flight control system and the structural dynamic of the
drone. This was to be expected since the flight control system utilized during the flight tests has been
designed assuming the Bebop to be a single rigid body without structural eigenmotion. Thus, the INDI
gain is obtained by the inversion of the control effectiveness matrix which is itself the inverse of the inertia
momentum matrix of the rigid body. As it will be shown later, this lead to a higher INDI gain than the one
obtained when considering the structural dynamic of the drone. Therefore, in the test case, the INDI loop
gain is non-optimally designed and therefore the motion control is affected via the interaction between the
attitude angle tracking control loop and the structural vibration.

5.2. MATLAB®Simulink®model
5.2.1. INDI controller derivation
The MATLAB® Simulink® simulation consist in the implementation of two different controllers for angular
reference tracking. The dynamic system to which these two controllers are applied is one axis, two degrees
of freedom system, describing the roll dynamic of the Parrot Bebop 2 drone. The two controllers are two
different INDI implementations for this task: one considering the system as one rigid body and the other
one considering the system as two rigid bodies connected via a spring-damper system. Both controller
derivations start from the simplification of the Euler rotational equation of motion for a rigid body 5.3, for
one rotation axis dynamic.
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I ¨⃗
θ + ⃗̇θ × I⃗̇θ = ∑

i
M⃗i (5.3)

Moreover, the vector symbol can be dropped θ = θ⃗, since only one rotation axis is considered. In both
cases, aerodynamic forces and gravity contribution to the rotational motion are not considered. Therefore
for the first INDI implementation is based on the equation of the rotation motion of a single rigid body
around one axis 5.4 of inertial momentum Ixx and subjected to a torque acting as control input τ. Due to
the single dimension of the problem, the cross product term can be neglected. Angular acceleration, rate
and position are assumed to be measurable.

Ixx θ̈ = τ (5.4)

By taking the first order expansion of equation 5.4, substituting the zero order contribution with the
measured angular acceleration θ̈m = θ̈(0) and the angular acceleration on the left hand side with the
desired virtual input ν= θ̈ and solving for ∆τ, the control input increment is obtained (Wang et al.2019
[31]), as in equation 5.5.

θ̈ = τ

Ixx

θ̈ ≈ θ̈(0) + ∆τ
Ixx

ν= θ̈m + ∆τ
Ixx

Ixx · (ν− θ̈m)=∆τ

(5.5)

For the second INDI implementation, the Bebop 2 model is considered to be constituted by two rigid
bodies hinged in the same point and connected via a spring-damper system. Two rotational equations
of motions are needed to describe the system, one for each rigid body. The Bebop2 frame is divided into
two frames, the first one is the motor frame and it is the point of attachment of the propellers. Therefore,
the control torque τ is applied to this frame. The second frame, or camera frame, is the one containing
the camera, the processing unit and the measurement equipment such as gyroscopes and accelerometers.
Thus, only the angular position, rate and acceleration of the camera frame are measurable and can be
controlled. The angular position of the motor frame and camera frame are respectively θmotor = α and
θcamera =β. The inertial momentum of the two frames are Imotor = Im and Icamera = Ic. The equations of
motions considered are displayed in 5.6

α̈= 1
Im

[
(β̇− α̇)C+ (β−α)K +τ]

β̈= 1
Ic

[
(α̇− β̇)C+ (α−β)K

] (5.6)

Where K and C are respectively the elastic coefficients and the damping coefficient of the spring-
damper system. It is worth mentioning that in the second equation in 5.6, there is no explicit relation
between the input and the considered output, which in this case is the acceleration of the camera frame β̈.
To obtain an explicit relation between the control input τ and the measurable output β̈ to design the INDI
controller, a change of coordinate can be executed (Wang et. al) [31]. Due to the reduced size of the system,
it is also possible to operate the time derivative of the output as many times as necessary until the explicit
input-output relation is obtained [29]. By deriving the second equation in 5.6 in time and substituting the
first for α̈, the required relation is obtained.

dβ̈
dt

= d
dt

{
1
Ic

[
(α̇− β̇)C+ (α−β)K

]}= 1
Ic

[
(α̈− β̈)C+ (α̇− β̇)K

]
dβ̈
dt

= 1
Ic

{[
1

Im

[
(β̇− α̇)C+ (β−α)K +τ]− 1

Ic

[
(α̇− β̇)C+ (α−β)K

]]
C+ (α̇− β̇)K

}
dβ̈
dt

= 1
Ic

{[
1

Im

[
(β̇− α̇)C+ (β−α)K

]− 1
Ic

[
(α̇− β̇)C+ (α−β)K

]]
C+ (α̇− β̇)K

}
+ C

Im Ic
τ

dβ̈
dt

=Γ(α, α̇,β, β̇)+ C
Im Ic

τ

(5.7)
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Now it is possible to obtain the INDI control input increment executing the same procedure as in
equation 5.5, by carrying out the first order Taylor expansion for d(β̈)/dt from equation 5.7. For the current
analysis, it results in equation 5.8

...
β ≈ ...

β
(0) + ∂Γ(⃗x)

∂⃗xT ∆⃗x+ C
Im Ic

∆τ (5.8)

Where x⃗ = [α, α̇,β, β̇]T is a vector containing the states of the two body system. Differently from
equation 5.5, in 5.8 there is a contribution of Γ(⃗x), which can be neglected (Wang et. al) [31]. Solving
equation 5.8 for ∆τ, substituting the virtual control input to the angular acceleration time derivative
ν= ...

β and the zero order
...
β approximation with the quantity measured on board

...
β m = ...

β
(0), the INDI

control input increment is obtained, as shown in equation 5.9.

ν= ...
β m + C

Im Ic
∆τ

∆τ= C
Im Ic

C
[
ν− ...

β m
] (5.9)

The quantity ∆τ is then added to the last recorded value of the actuator state in order to provide the
actuator command for the next time step. This structure is equivalent to provide positive feedback of the
actuator state and it is indeed clear when displaying how the actuator command is calculated, as shown in
figure 5.5. The positive feedback of the actuator state has relevant consequences for what concerns both
simulation and real-life implementation, which will be discussed later in this chapter when describing the
outcomes of the simulations. To better replicate the real behaviour of the drone, it was decided to separate
the actuator dynamic simulating the actual actuator transient behaviour from the one usually artificially
defined to implement signal synchronization.

For both the INDI controllers, after having designed and implemented the feedback linearization
loops, extra external loops have been designed and implemented to pursue an angular position tracking
task. Both outer control loops, namely angular rate tracking loop and angular position tracking loop, for
both INDI implementations, have been designed to not provide overshoot in time-domain step response.
Moreover, to both feedback linearization INDI loops synchronization has been ensured via applying a low
pass filter to the torque command feedback signal, as shown in figure 5.5, since information synchronization
between actuator position signal and angular acceleration signal must be provided (Grondman et. al, 2018
[11]).

Figure 5.5: Simulink®model detail - Actuator signal synchronization loop

5.2.2. Simulink®dynamic model description
The Simulink®model replicates the one axis rotational dynamic of two rigid bodies hinged at the same
point and connected via a rotational spring and a rotational damper. In one of the bodies, namely the
motor frame, a control input, a torque, is applied, meanwhile, only the second body, namely the camera
frame, angular position, velocity and acceleration are observable. Moreover, a first-order lag dynamic is
introduced to simulate the transient behaviour of the actuator. Finally, a saturation block is added to keep
the simulation closer to the real-life case.
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The Simulink®model is designed to simulate the roll dynamic of a Parrot Bebop 2 drone. Therefore
the natural frequency and the adimensional damping of the system composed by spring, damper and
the camera frame have been estimated via ground test vibration and impulse response curve fitting, as
mentioned in the previous section 5.1. Then, the rotational spring and damper coefficient have been
estimated by assuming that the camera frame has an inertia momentum equal to 45% of the total
inertia momentum of the drone. The total drone inertia momentum is a known parameter from previous
researches carried out at the MavLab. In the following table 5.2, all the Simulink®model parameters are
defined and in figure 5.6 the structure of the model is shown.

Parameter Symbol Value Unit
Total rotational inertia Ixx 1.926 ·10-3 K g ·m2

Motor frame rotational inertia Im 1.045 ·10-2 K g ·m2

Camera frame rotational inertia Ic 8.550 ·10-3 K g ·m2

Elastic coefficient K 6.812 N ·m · rad−1

Damping coefficient C 2.109 ·10-2 N ·m · s
Propeller dynamic natural frequency mc 50.0 rad · s−1

Propeller saturation value — ± 2.388 ·10−2 N ·m
Table 5.2: Dynamic model parameters.

Figure 5.6: Two bodies Simulink®model for Bebop 2 roll dynamic

As already mentioned at the beginning of this subsection, in the above figure 5.6 a saturation block
is added to simulate saturation of the propeller rotational speed on the Bebop 2. The saturation value
is defined for the control torque to provide a maximum angular acceleration of 4πrads−2 = 2 Hzs−1. The
third-order time derivative of the camera frame angle is calculated by applying a discrete-time derivative
to the continuous-time signal β̈. The simulation time step is set to 0.001 s and the chosen solver is ode5.

In order to verify the performance of the one body model based INDI controller and to properly design
the control attitude rate and angle tracking controllers, also the one rigid body model of the Bebop
roll dynamic has been implemented. It is described by the equation of motion in 5.4 and it takes into
account the actuator saturation. The only input to the system is the control torque, which is provided
again considering the actuator dynamic as first-order lag system, with the same cutoff frequency of the
two bodies model mc. The system Simulink®diagram is displayed in figure 5.7 The simulation solver
parameters are the same mentioned before: the time step is 0.001 s and the chosen solver is ode5.

5.2.3. Final control system implementation
Both one body model based and two bodies model based have been designed to fulfil an attitude angle
tracking task, to be stable for both impulse input, or for non zero attitude angle initial conditions, and step
input and to not show any overshoot in the impulse and the step response. With the exception of the INDI
linearization loop gains, all the controller gains values were found via manual tuning of each control loop,
following an inside out loop tuning order.
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Figure 5.7: One body Simulink®for Bebop 2 roll dynamic

Proportional Integral Derivative
INDI loop 1.926 ·10−3 0 0
attitude rate tracking 13 0 0
attitude angle tracking 2.1 0 0

Table 5.3: List of gains for one body model based control system

One rigid body based INDI control system

The one body model based INDI control system consists of three nested loops as it does the attitude
control system described in 5.1.1. The complete structure of the control system is shown in figure 5.8,
where different control loops are marked with different colours. Each of the three loops has a PID block
but only the proportional gain of each block is non-zero. The inner loop, marked in green, is the INDI
linearization loop, which gains calculation is described in 5.7 and correspond to the total roll inertia
momentum Ixx mentioned in table 5.2. The middle loop is ensuring the attitude rate tracking and is
marked in red and the outer and last loop is designed for attitude angle tracking and is marked in blue.
The gains for each loop are reported in table 5.3.

Figure 5.8: One body model based INDI controller

Two rigid body based INDI control system
This control system contains one extra loop with respect to the previous one since the INDI linearization
loop now takes as input the derivative of the angular acceleration. In figure 5.9, the four nested loops are
displayed and marked with different colours.

The attitude angle tracking loop is marked in blue, the attitude rate control loop, the attitude accelera-
tion control loop and the INDI linearization loop are marked in red, green and orange respectively. Each
loop has a PID block which gains are reported in the table below 5.4.
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Figure 5.9: Two bodies model based INDI controller

Proportional Integral Derivative
INDI loop 3.832 ·10−05 0 0
attitude acceleration tracking 25 0 6
attitude rate tracking 22 0 0
attitude angle tracking 2.5 0 0

Table 5.4: List of gains for two body model based control system

5.2.4. Simulation description and outcomes
Both the designed and previously described control systems have been excited with two different inputs as
attitude angle reference signals. The first input is a step signal of the amplitude of 90 ° with the step in
the signal occurring 1 s after the starting instant of the simulation. The second one is an impulse spike
provided at the initial instant of the simulation as a non-zero initial condition for the attitude angles. The
one body model-based controller has been applied also to the one body model described in 5.2.2. Therefore,
the combination of system model and controllers are the following:

Control system Simulink®model
1 One body model based One body
2 One body model based Two bodies
3 Two body model based Two bodies

The systems time responses from all three combinations will be displayed and spectral analysis will
be executed on each time history signal. Consequently, due considerations and discussion will be carried
out concerning key points of the frequency domain analysis. All the figures mentioned in the following
subsection, are reported in appendix A 6.

One rigid body based INDI control system

Both systems response to both input signals are displayed in figures 7, 1, 9, 3, 11 and 5 where φ and its
derivative represent the attitude quantities of the one rigid body Simulink®model, and α, its derivative, β
and its derivative describe the roll angle related quantities of respectively the motor frame and the camera
frame of the two bodies Simulink®model.

As can be noticed in the time domain response graphs zooms in figures 8, 2, 10, 4, 12 and 6, the two
bodies system has an oscillatory component, which increase in magnitude with the increase of the time
derivative order. This characteristic of the system response is better highlighted in the graphs showing
the power spectral density function of the output signals. In the aforementioned graphs, reported in
figures 27, 24, 28, 25, 29 and 26, show a peak in around the 19.33 Hz frequency which is generated by the
interaction between the INDI controller and the structural dynamic. This is supported by the evidence
that the one body Simulink®model to which is applied the analysed controller is not showing this feature,
as displayed in the time and frequency domain figures mentioned above. Moreover, similar results have
been obtained during the flight test described in section 5.1, where the flight control system interaction
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with the structural eigenmotion of the Parrot Bebop 2 generates a frequency contribution component
around 19.33 Hz.

The effects of different gain combinations in the different rate and attitude control loops do not affect
the interaction between the controller itself and the structural eigenmotion, since the interaction is already
excited by the INDI loop itself. The attitude rate control loop contains only proportional gains because
the addition of the integral gain generates a highly damped low-frequency oscillation which increases the
settling time of the angular position time response to a step input. Also, the derivative gain in the rate
control loop is set to zero because it does not bring any beneficial contribution to the system performance.
Similarly, in the attitude PID controllers both the integral and the derivative gains are set to zero. The
presence of the integral gain introduces overshoot in the time domain response of the system, while the
derivative gain introduces a highly damped low-frequency oscillation which increases the step response
settling time.

One rigid body based INDI control system combined with signal filtering

In order to not excite the structural modes at the frequency of 19.33 Hz as the above-described
flight control system does, a notch filter has been implemented in the simulation, using the relative
MATLAB®Simulink®block. The transfer function of the filter is reported in equation 5.10 and its Bode
plot is shown in figure 5.10.

F(s)= s2 +2gξωc +ω2
c

s2 +2ξωc +ω2
c

(5.10)

Where ωc = 19.33Hz is the working frequency of the filter, g = 0.001 is the filter signal attenuation
at the working frequency and ξ = 0.25 is a damping parameter that determines the width of the filter
negative spike. The Bode plot in figure 5.10 represent the filter described in equation 5.10 with the above
mentioned numerical parameters.

Figure 5.10: Notch filter Bode plot

When the filter is place anywhere in the INDI inner control loop (marked in green in figure 5.8),
the system response to an impulse first peak in the PSD frequency content get shifted to the frequency
of 15.4 Hz, as shown in the PSD function plots for accelerations and rates in figures 5.11 and 5.12.
Regardless of the notch filter placement in the INDI loop, it could be placed either before or after both the
synchronization loop or the INDI proportional controller, the system response would be the same. When
the notch filter is applied to the outer loops signal or to other feedback signals, attitude rate or attitude
position, it shows no effects on the system response.

In the above graphs, the x-axis represents the frequency in Hz while the y-axis represents the []/Hz,
where [] is the measuring unit of the analysed quantity.
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Figure 5.11: Angular acceleration PSD function for impulse
response - first filter configuration

Figure 5.12: Angular rate PSD function for impulse response -
first filter configuration

Then, to suppress the new peak, another notch filer, with the same structure as the first one but
with a working frequency of 15.4 Hz is placed after the rate controller. The placement of the second filter
appeared useless since the newly found frequency contribution is present in both the acceleration feedback
and in the acceleration reference signal (which is calculated in the rate controller). Therefore, another
notch filter with a ωc = 15.4Hz was placed in the acceleration feedback signal. The PSD analysis of the
system with the three notch filters response to an impulse is shown in figures 5.13 and 5.14. For sake of
brevity, only the attitude rates and acceleration graphs are shown.

Figure 5.13: Angular acceleration PSD function for impulse
response - second filter configuration

Figure 5.14: Angular rate PSD function for impulse response -
second filter configuration

In the above graphs, the x-axis represents the frequency in Hz while the y-axis represents the []/Hz,
where [] is the measuring unit of the analysed quantity.

From the graphs can be deduced the peak has just been moved once more to a lower frequency.
Therefore, the use of notch filters for frequency content cancellation has not been successful in this case.
One of the possible causes can be that no open-loop analysis has been carried to assess which are the open
loop major frequency domain contributors.

Two rigid body based INDI control system

System responses to both impulse and step input show no visible oscillations in the roll angle time
series data of both bodies, neither do they in the frequency domain analysis. The PSD function of both
α and β impulse response, displayed in figure 35, resemble a second order low pass filter and no spikes
are present in those functions. For what concerns α̇ and β̇, α̈ and β̈ time responses to both input, which
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are shown in figures 20, 15, 17 and 17, even if some high frequency oscillations are present, those are not
relevant in magnitude for the drone dynamic. As can be seen in the power spectral density function of the
aforementioned variables in figures 34, 31, 35 and 32 never exceed the steady state PSD function value.
Therefore, the designed controller avoid interacting with the structural dynamics of the drone, allowing
higher gains in outer loops and faster settling time to the provided reference. From the PSD function
graphs it can be noticed that the two bodies model based INDI controller does not trigger the structural
vibration in the two bodies Simulink®model, in contrast with the one body model based which does.

It is interesting to notice in figures 18 and 14 how the actuator reach its saturation point almost
immediately and the angular accelerations of both bodies settle to the value of ±2 Hzs−1.

The PID controllers for the attitude and rate control only consist in the proportional component because
adding integral gains at the configuration described in table 5.4, add overshoot in the time domain response.
Moreover, adding the derivative component of the PID triggers the interaction between the structural
dynamic and the control system. On the contrary, the controller for the angular acceleration control loop
has the derivative contribution of the PID. Indeed would have been possible to design another controller
containing only proportional gains, but its performances in terms of transient response quickness would
be worse than the one from the implemented controller. In the specific case and for the roll angle tracking
task, the settling time of the controller containing only proportional gains would be three times higher
than the controller containing a derivative gain on the angular acceleration control loop.

Additional remarks

During the design of the two INDI based controllers, some non-expected behaviours have been encoun-
tered which investigation led to this final remark paragraph.

During the design of the inner INDI loop for the one body model based controller, an initial stability
issue was present and temporary solved by applying a gain µ = 0.125 to the actuator command signal
provided by the controller. Further investigations showed that the synchronization loop indeed acts as an
integrator for the ∆u signal while keeping track of the actual actuator position. However, at the same
time, it provides an additional loop gain related to the actuator characteristics. Given an actuator whose
dynamic can be approximated by a first-order lag system with a cut-off frequency of ωc = ω̄. The related
transfer function would be F(s)= ω̄/(s+ ω̄). As reported in figure 5.5, the transfer function of the positive
feedback would be L(s)= 1/(1−F(s)). Therefore, the value of L(s) would be as reported in equation 5.11.

L(s) = 1
1−F(s)

= 1
1− ω̄

s+ω̄
= s+ ω̄

sω̄
(5.11)

This transfer function is a pure lag - lead filter with a |L(s)| Ê 1 gain for every frequency contribution
to the input signal. As matter of fact, the gain is higher for frequencies closer to zero and smaller and
close to 1 for frequencies Ê ω̄. This increase the loop gain, decreasing the phase margin at low frequency.

Another key remark rose during the integration of the saturation block on the Simulink®model design.
While divergent oscillations of the states are not countered by a system with no limits on the control
input, those are limited and converted from divergent oscillations to periodic ones when actuators have
saturation limits. When a system has a divergent oscillatory dynamic, the amplitude of the oscillation
keeps increasing, while its frequency remains constant. Therefore, when a saturation block is applied to
such a signal, the result is a squared wave which does necessarily makes the system response diverge.

It also must be mentioned that in the INDI based control system designed for the two bodies model, the
state to be controlled is directly observable and its dynamic includes the structural eigenmotion. Therefore,
the oscillatory contribution is not to be discarded, otherwise, the control task will not be achieved. On
the contrary, in more common applications, drones are provided with one set of gyroscopes that measures
different contributions from many structural eigenmotion. Therefore, when the state to be controlled is not
directly observable, a change in the state space representation base must be applied to better implement
the INDI control system design procedure described in 4.

5.3. Preliminary analysis conclusion
During the preliminary analysis projects, the interaction between INDI based flight control systems and
structural dynamics in drones have been studied in depth.
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Firstly, ground vibration tests for system characterization and flight tests for phenomena analysis have
been executed. From the frequency domain analysis of flight, tests emerged that indeed the aforementioned
interaction is present, but the specific implementation can be avoided by decreasing the attitude angle
tracking loop proportional gain. Moreover, it was shown that the inner attitude rate controller has little to
no influence on the structural vibration recorded during the tests.

Secondly, two different notch filters were implemented and integrated into the control system with
the goal to damp specific frequency components. The effect of the aforementioned filters was to lower the
frequency of the lightly damped structural eigenmotion.

Finally, two dynamic systems simulating the roll dynamic of a Parrot Bebop 2 were implemented
in Simulink®, one considering the to be simulated system as constituted by one rigid body and one
considering the Bebop two roll dynamic as a system composed of two rigid bodies hinged in the same point
and connected via a spring-damper system. Two different INDI controllers were implemented, one meant
to control the angular position of the one body dynamic model and the other meant to fulfil the same task
but for the two bodies model. Then, each controller is applied to the respective system. Moreover, the
one body dynamic controller is also applied to the two bodies dynamic model to simulate the flight test
mentioned above.

From the spectral analysis of the dynamic system - control system couples emerge that on one side,
structural dynamics are lightly excited when the control system is applied to the designated system. On
the other hand, when the control system developed for the one body model is applied to the two bodies
model, the structural dynamic is excited and contributes to the system response with self-sustained
oscillations.
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6

Conclusion

The literature survey touched on different subjects such as structural dynamics, aerodynamic and nonlinear
control system design. First, the derivation of the analytical equations describing the vibrations of
continuous bodies and their reduction in a state-space like-form was presented. It was followed by the
description of the structural integrity implication and rigid motion stability when flexible eigenmodes
interact with flight control systems and unsteady aerodynamics. This interaction can lead to both unstable
rigid body dynamics and to divergent structural vibration which eventually generates structure failures.
Later, current methods for avoiding FCS - flexible motions interaction and for flexible mode stabilization
were presented. Finally, a nonlinear dynamic inversion-based flight control system theoretical description
was provided, followed by a review of successful NDI and INDI controller implementations, to end with a
discussion regarding both control strategies characteristics. All the different research fields have been
studied in-depth, providing a solid and extensive theoretical background for the execution of the incoming
master thesis project.

The literature survey has highlighted some key aspects and trends of the recent academic research
about flight control systems and aeroservoelasticity. Due to the introduction of new materials and the
need of saving weight on aircraft, the structure of aeroplanes has become slenderer and thinner (Malisani
et al., 2021 [14]; Silvestre et al., 2017 [22]). This has led to an overlapping of rigid body motion frequencies
and structural eigenmodes frequency which does not allow flight control system designers to neglect or
filter out aeroelastic or vibration phenomena.

Similar phenomena can be experienced also in smaller air vehicles such as Parrot Bebop 2 as previously
shown in chapter 5, and the Nederdrone (de Wagter et al., 2021, [6]) Therefore, MAVs are a perfect
testbed for innovative aircraft design and flight control system design ideas due to them being cheap
and not imposing any limit on the possible configurations. Thus, research on interactions between
aeroelastic phenomena and flight control systems can be carried out on a MAV vehicle without losing
generality or relevance. In addition, due to the high customization level and the easiness and quickness
on apply modifications on different subsystems of the air vehicle, the research process is subjected to an
enhancement in its progress rate, allowing the researcher to be more effective in his or her work.

Moreover, while executing the literature survey, some research questions partially found an answer.
It was proved by Mooij (2020) [15] and Groondman (2018) [11] that INDI controller can be applied to
flexible aircraft when structural dynamics are not present in the plant model utilized to design the flight
control system. Furthermore, it is shown that structural dynamics can be considered in the INDI FCS
design and an appropriate virtual input can be given to reach the control objective (Wang, 2019 [30]).
Moreover, in the work by Wang et al. (2019) [30], the wing stiffness was reduced by 80% showing that
phugoid motion-related poles are moved to the right half complex plane, introducing instability. Thus, a
rough estimation of how the stability of an INDI controlled plant is affected by structure characteristics is
provided. Clearly, this is only a qualitative result and which heavily depends on the plant model itself and
it differs for each aircraft configuration.

It was found in many papers ([13], [30] ) that it is always possible to reduce the structural model
in terms of the number of solutions of the partial derivative differential equation considered for the
structural vibration description. Most of the time the choice is driven by the impossibility to place as many
accelerometers as required to capture the behaviour of all the desired flexible motions. Other times the
reduction is operated to keep the computational effort bounded. Generally speaking, the more bending
functions are considered in the PDE solution, the higher is the associated frequency of the last contribution
considered. Therefore, for high-frequency bending modes, the implementation of a notch filter is still a
viable solution, which does not drastically affect the flight control system performances for high cut-off
frequency. However, in the aforementioned case, high-frequency bending modes should not interact with
rigid body flight control systems due to the high separation in frequency content.
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As reported in 3.2.1, the implementation of notch filters, or more in general of signal filtering, is always
discouraged due to the phase lag those introduce on the feedback loop.

Finally, once again Wang et al. (2019) [30] show that INDI control systems can include structural
flexible dynamics in the model used to design the controller. Therefore, by showing solid robustness
qualities and effectiveness in the assigned task of providing gust load alleviation, INDI proves itself to be
a good candidate to provide a reduction of the structural motion interaction with flight control systems via
the integration of elastic modes in the controller design.

The preliminary analysis studies have also provided some useful insight into the research questions.
In chapter 5 is showed how a properly designed INDI based flight control system can avoid interacting
with structural eigenmotions. Meanwhile, they also showed what are the consequences of the application
of a non optimally designed INDI control system to a non strictly related system and how to mitigate such
consequences, with the lowering of the outer control loop gains, therefore providing initial answers for
subquestions 1.2 and 2.2. The simulation tests showed how it is a better practice to include the structural
model of the drone into the INDI implementation rather than apply filters lately.

Additionally, it allowed to already experience what kind of implementation and test issues will be likely
to encounter later on in the thesis project during the phases of development, design and implementation of
the flight control system.
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Appendix A:
MATLAB®Simulink®simulation graphs

Time domain responses
All the time domain responses graphs has time [s] as variable on the x-axis and [deg], [Hz] or [Hz2] on
the y-axis, respectively for the attitude angle, angular rate and angular acceleration variables.

One body model based INDI controller - step response

Figure 1: Angular acceleration response to step input time
history

Figure 2: Angular acceleration response to step input time
history - detail

Figure 3: Angular rate response to step input time history Figure 4: Angular rate response to step input time history - detail
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Figure 5: Angular position response to step input time history Figure 6: Angular position response to step input time history -
detail

One body model based INDI controller - impulse response

Figure 7: Angular acceleration response to step input time
history

Figure 8: Angular acceleration response to step input time
history - detail

Figure 9: Angular rate response to step input time history Figure 10: Angular rate response to impulse input time history -
detail
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Figure 11: Angular position response to impulse input time
history

Figure 12: Angular position response to impulse input time
history - detail

Two bodies model based INDI controller - step response

Figure 13: Angular acceleration response to step input time
history

Figure 14: Angular acceleration response to step input time
history - detail

Figure 15: Angular rate response to step input time history Figure 16: Angular rate response to step input time history -
detail
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Figure 17: Angular position response to step input time history

Two bodies model based INDI controller - impulse response
All the time domain responses graphs has time [Hz] as variable on the x-axis and [rad2/hz], [rad2/s] or
[rad2/s3] on the y-axis, respectively for the attitude angle, angular rate and angular acceleration variables.

Figure 18: Angular acceleration response to impulse input time
history

Figure 19: Angular acceleration response to impulse input time
history - detail

Figure 20: Angular rate response to impulse input time history Figure 21: Angular rate response to impulse input time history -
detail
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Figure 22: Angular position response to impulse input time
history

Figure 23: Angular position response to impulse input time
history - detail

Frequency domain responses
One body model based INDI controller - step response

Figure 24: Angular acceleration response to step input PSD
function Figure 25: Angular rate response to step input PSD function

Figure 26: Angular position response to step input PSD function
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One body model based INDI controller - impulse response

Figure 27: Angular acceleration response to impulse input PSD
function Figure 28: Angular rate response to impulse input PSD function

Figure 29: Angular position response to impulse input PSD
function
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Two bodies model based INDI controller - step response

Figure 30: Angular acceleration response to step input PSD
function Figure 31: Angular rate response to step input PSD function

Figure 32: Angular position response to step input PSD function
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Two bodies model based INDI controller - impulse response

Figure 33: Angular acceleration response to impulse input PSD
function Figure 34: Angular rate response to impulse input PSD function

Figure 35: Angular position response to impulse input PSD
function
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Abstract—Incremental Nonlinear Dynamics Inversion
(INDI) flight controllers are sensor-based control systems,
that are robust towards model uncertainty and with good
disturbance rejection characteristics. These controllers
show coupling effects in structural modes when imple-
mented in specific flying vehicles with low-frequency
structural motions. This paper investigates different INDI
implementations, standard INDI, hybrid INDI, and notch
filter placement in the INDI loop via simulation and
flight tests on the Nederdrone. System identification of
the structural characteristics of the vehicle and the
system’s yaw dynamics are executed via ground vibra-
tion and hover flight tests. Closed-loop behaviour of the
INDI inner-loop, disturbance rejection performance, and
outer loop step-tracking performance was assessed with
dedicated flight tests. The investigated INDI solutions
show similar disturbance rejection and outer-loop step-
tracking performance, while the hybrid INDI solution
performs a better nonlinear dynamic inversion.

Index Terms—INDI, complementary filter, unmanned
vehicle, flight control system structural motion coupling

I. INTRODUCTION

In recent years, aerospace structures have become in-
creasingly thin and slender, due to the introduction of
new structural materials and the need to decrease the
amount of weight dedicated to the structural elements [1].
Consequently, the structural properties of these aircraft
change, moving the natural frequency of structural modes
closer to the rigid body ones, into the bandwidth of flight
controllers. Therefore, the structural element contribution
to the signal fed to the flight control laws is more dom-
inant than for more rigid aircraft [2]. This generates an
undesired interaction between the flight control system
and the structural motions that can lead to instability of
both the controlled system [3].

Common solutions are to apply a low-pass filter to
the feedback signal or to apply a notch filter to the
controller command, to suppress the contribution of the
structural modes which makes the whole system unstable
[4, 5]. However, when the structural dynamics’ bandwidth

overlaps the rigid body motion’s one, the filtering solution
will affect the controller performance by damping the
magnitude and increasing the lag of the feedback signal
also over the rigid body motion frequency range. Some
approaches deal with this issue by taking into account the
effects of the structural modes in the system dynamics
and the sensors’ measurements and designing a multi-
objective controller which can both properly control the
rigid body dynamic while damping the structural modes
[6]. The availability of multiple accelerometers and gyro-
scope units to obtain an estimation of the structural modes
states (observably of the states), and sufficient actuator
bandwidth to operate on the structural modes’ states are
the underlying hypothesis of this solution.

Incremental non-linear dynamics inversion (INDI) is
a sensor-based control system design technique, which
linearizes a system’s non-linear dynamics to enable the
use of linear control design methods. The calculation of
the variation of the system input is based on the inversion
of the first-order approximation of the dynamics equa-
tions and knowledge of the effectiveness of the actuator
is required. INDI controllers have proven to have good
disturbance rejection characteristics [7, 8] and to be robust
to model mismatches [6, 9].

Nevertheless, INDI based flight controller has been
found to be unstable when implemented in basic form
for the Nederdrone [10], an unmanned and electrical tail-
sitter drone with vertical take-off and landing capabilities
Figure 1. During hover flight, the aircraft shows self-
sustained oscillations in the yaw axis when heavy filtering
is not applied. Therefore, it is chosen as a test platform
to investigate the interaction between the INDI control
system and structural dynamics. In this paper, the inter-
action between different INDI-based flight controllers and
the structural modes of the Nederdrone are investigated,
such as conventional INDI [10], hybrid INDI [11], notch
filter application on the system input [5] and Kalman filter
for angular acceleration estimation. The goal is to find a
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Fig. 1. The chosen test platform, the Nederdrone

solution that minimizes the filtering of the sensor signal,
while still achieving good performance.

The structure of the paper is as follows. First, the char-
acteristics of the test platform are outlined in section II, to-
gether with the INDI controller developed in [10]. Section
III describes the system identification processes required
to set up a simulation environment for the dynamics of
interest and to develop the investigated solutions. After,
the design choices of the different INDI solutions are laid
out in section IV, followed by the description of the results
of the performance investigation via simulation and flight
test in section V. After the conclusion, appendix A provides
a theoretical background to the INDI-based control system
and in appendix B extra information regarding the ground
vibration test setup and results are reported.

II. NEDERDRONE DESCRIPTION, LIMITATION AND INDI
DESIGN

A. Vehicle description

The Nederdrone is a tail sitter and unmanned flying ve-
hicle with two wings, as shown in Figure 1, capable of ver-
tical take-off and landing. It has twelve propellers, three
for each semi-wing, eight control surfaces, one aileron,
and one flap for each semi-wing. The propellers can be
modeled as first-order systems with a cut-off frequency
of 18 rad/s. The servos moving the control surfaces are
assumed to behave as a first-order model with a cut-off
frequency of 50 rad/s and a rate limitation of 63.7 rad/s
1[12]. The wings are connected to the fuselage, which is
an empty foam cylinder that houses the batteries, the
autopilot, and other hardware. The autopilot has three
built-in accelerometers and three built-in gyroscopes, one
for each control axes. This sensor setup is designed to
measure the behavior of the rigid body motion of the
aircraft, and it is not suitable for structural modes state
observation, due to the lack of sensors measuring along the
same axis. Limited actuator bandwidth and limited system
observability make the application of an active vibration
suppression strategy impossible without modification to
the system.

1Servo actuator specifications, https://www.servocity.com/
hs-5086wp-servo

Two carbon fiber rods connect two half-wings, while
the front wing is connected to the back wing with four
extra carbon fiber rods. The placement of these structural
elements can be represented as an empty cylinder or a
cylindrical thin shell.

Therefore, the torsional rigidity of the fuselage results is
low, and it is an indicator of the presence of low-frequency
torsional mode on the fuselage.

B. Inner INDI loop flight controller design

The Nederdrone control architecture for both au-
tonomous and piloted flight is thoroughly described by De
Wagter et al.[10], and it is based on two nested INDI-based
control loops. For the current purpose, only the attitude
control loop coupled with the linear acceleration control
along the vertical axis of the body reference frame of the
vehicle zB, is considered. The dynamics equations used
for the design are the Euler equations for the rotational
dynamics of a rigid body and the Newton equation applied
along the vertical axis of the body reference frame of the
vehicle zB (1).

˙⃗x =
[ ˙⃗ω

z̈B

]
=

I−1 ·
(
−ω⃗× Iω⃗+ M⃗ext

)
− g

cosφcosθ +FzB /m

=

f⃗ (⃗x)+G


up
uq
ur
uT

= f⃗ (⃗x)+Gu⃗

(1)

Where ω⃗ = [p, q, r]T is the vector of the rotational rates
along the xB, yB and yB body axes, f⃗ (⃗x) is nonlinear
functions describing the contribution of the states to their
own dynamic and G is the control effectiveness of the
control inputs u⃗ = [up, uq, ur, uT ]T . M⃗ext and FzB are the
torques and the force generated with the propellers and
the control surfaces. By applying the INDI design process
for this system, (1) is linearized in (2) and the INDI control
law is obtained in (3).

˙⃗x = ˙⃗x0 + ∂ f⃗ (⃗x0)
x⃗ ∆⃗x+ ∂G(⃗x0,t0 )⃗u

u⃗ ∆u⃗

= ˙⃗x0 + A(⃗x0)∆⃗x+G∆u⃗
(2)

ν= ṙ = ṙ0 + g1∆ur + g2∆u̇r =

ṙ0 + (g1 + g2)∆ur − g2z−1∆ur

(3)

The term ˙⃗x0 is assumed to be measurable, ˙⃗x is substituted
by ν⃗, which is the reference value for each element of ˙⃗x
and it is provided by external loops.

The term A(⃗x0)∆⃗x which describes the effect that a
change in the state value has on the state itself, is
commonly considered to have a slower and a smaller effect
on the body dynamic than the actuator contribution. For
very small time intervals the change in input is much
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Fig. 2. Angular acceleration INDI control loop

faster than the change in state [13] and in the INDI
design practice this is commonly known as the time scale
separation principle [9]. Therefore, the A(⃗x0)∆⃗x term is
neglected.

The control effectiveness matrix G is constant and
diagonal, so that each element of the input vector acts on
one axis, making the four control axes independent from
one another. Since the phenomenon of interest manifests
itself in the yaw rotation dynamics only this axis is
considered from now on. The control effectiveness matrix
element related to the yaw control input accounts also for
the inertial effect due to the change in rotational speed
of the propeller. This contribution is proportional to the
derivative of the angular rate of the propellers which is
proportional to the propeller command ur for the yaw axis.
The angular acceleration of the propeller is calculated
using a discrete approximation of the derivative in the
z domain since the propeller command is by nature a
discrete signal. When including that contribution to (2)
and considering only the yaw axis we obtain (3). When
solving (3) for the control input, (4) is obtained, where

∆ur = (g1 + g2)−1(ν− ṙ0 + g2z−1) (4)

The yaw angular acceleration ṙ0 is calculated from
discrete differentiation of the gyroscope signal and it is
later filtered with a second-order Butterworth low pass
filter, with a cut-off frequency of 0.5 Hz. This low cut-off
frequency aims to avoid the structural modes polluting the
rigid body yaw angular acceleration measurement.

The variation to be applied to the previous control input
is calculated in (4), and it is added to the previous control
input before being fed as a command to the actuators.
The control input’s variation is limited to half of the
maximum absolute value of the actuator’s command. It is
important to guarantee the synchronization between the
control command and the actuator position and to avoid
actuator saturation [13]. The control command calculated
in the previous time step is filtered with the actuator
dynamics transfer function before being added to the
control input increment calculated in the current time
step. The actuators’ dynamic is modeled as the same
first-order system that represents the propeller dynamic

described in II-A. The same Butterworth filter applied to
the angular acceleration measurement signal is applied
to the control command calculated in the previous step, to
ensure synchronization between the angular acceleration
measurement and the control input signal. The angular
acceleration INDI controller is shown in Figure 2, includ-
ing the actuator synchronization loop (ASL). The ASL loop
described above is shown in Figure 2 but circumscribed to
the inner loop, where A(z) is the actuator dynamic trans-
fer function, and H(z) is the Butterworth filter transfer
function.

The reference for the angular acceleration signal ν is
provided by the outer proportional attitude rate control
loop. The angular rate is obtained from the gyroscope
measurement and it is filtered with a second-order But-
terworth low-pass filter with a cut-off frequency of 4 Hz
(H(s) in Figure 3).

It is worth mentioning that the cut-off frequencies of the
Butterworth filters for the angular accelerations and rates
on the roll and pitch axes are respectively 5 Hz and 20 Hz.
The reduction in filter cut-off frequency was implemented
to avoid the interaction between the controller and the
low-frequency structural modes.

The yaw rate reference is provided by the heading angle
control loop, which is again a proportional control loop. The
yaw angle is obtained from GPS information during open-
air flights and using a system that tracks the movement
of markers applied to the drone during indoor flights. The
structure of the yaw attitude controller is shown in Figure
3

C. Control signal allocation

The control inputs in u⃗ are fed to every single actuator
with a specific control allocation strategy. Since the control
system is implemented in Paparazzi Autopilot [14] frame-
work, some quantities are expressed in pprz units, which
are integer numbers used for actuator control. During a
hovering maneuver the control surfaces act only on the
pitch and yaw motion, thus the actuator command is
defined as in Σi = 2∗ (C i

Σquq +C i
Σrur), bounded between

-6000 and 6000 pprz. C i
Σq and C i

Σr are control allocation
constants defined for each actuator which ensures coher-
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Fig. 3. Yaw axis controller structure

ence between the actuator’s contribution to the system
dynamics and the control command.

The propeller command is calculated as follows: first,
the roll command up, pitch command uq, and thrust com-
mand uT are used to obtain an initial propeller command
P−

j (5). Then the yaw command is added to the initial
propeller command and the overflow of the total command
for each propeller is calculated (6). The maximum overflow
value O is used to obtain the yaw authority urχ (7), which
is used to bound the value of the yaw command, obtaining
a bounded yaw command ub

r . ’boundAbs(x, y)’ is a function
that returns x if x ∈ [−y, y], returns −y if x < −y and
y if x > y. Finally, the bounded yaw command is added
to the initial propeller command calculated using only
pitch, roll, and throttle command contribution and sent to
each propeller to be executed. C j

Πp
, C j

Πq
, C j

Πr
and C j

ΠT
are

control allocation constants ensuring coherence between
the torque or force generated by the actuator and the
control inputs.

P−
j = C j

Πp
up + C j

Πq
uq + C j

ΠT
uT (5)

O = max j(P−
j + C j

Πr
ur −Λ) (6)

ur χ = |ur|−O

ub
r = boundAbs(ur,urχ)

(7)

P j = P−
j +C j

Πr
ub

r (8)

where Λ maximum allowed command value.

III. SYSTEM IDENTIFICATION OF THE NEDERDRONE YAW

DYNAMICS

To gain knowledge of the structural properties of the
Nederdrone and to obtain dynamic models that replicate
the vehicle’s yaw dynamic, ground vibration test and flight
test were executed.

A. Ground vibration test
The Nederdrone is hung on a structure by a rope, to

simulate the hover condition and not affect the rigid body
modes, at least around the yaw axis. The excitation to
the structure is provided via a modal exciter or shaker

(2025E, ICP, PCB Piezotronics, Inc.), which is connected
to the aircraft structure with a rod. The force provided
to the structure is measured using a load cell or force
sensor (288D01, ICP, PCB Piezotronics) mounted at the
end of a rod connected to the shaker and glued to
the drone structure. The contact point is on a wing, to
excite both symmetrical and asymmetrical bending and
torsional modes. The displacement of the structure is
measured using a laser scanning vibrometer camera (PSV-
500 Scanning Vibrometer, Polytec). The test setup scheme
is provided in Figure 4

The laser vibrometer camera can sense the displace-
ment out of the geometrical plane defined by the drone’s
wings. Both the excitation instrument and the measure-
ment instrument are connected to and controlled by the
data acquisition computer, which is used to calibrate the
camera, define the points in which measure the vehicle
displacement from the equilibrium position and generate
the input signal to provide to the Nederdrone’s structure
via the shaker. A chirp input complemented with white
noise is applied to the structure. Using the data acquisi-
tion software, a local reference frame is defined based on
co-planar points laying on the X-Y body plane of the drone,
the measurement points grid is built and the coordinates
of all the points are automatically calculated.

The software executes multiple measurement runs and
averaged the data across 10 measurement runs to obtain
the best estimation of the frequency domain behavior of
each measurement point. Each measurement run lasts
16 s and the structure displacement is measured with a
sampling rate of 500 Hz. At the end of the measuring
process, each measurement point has an associated exper-
imental transfer function. The data acquired during the
ground vibration test are processed using Siemens Testlab
Structure Modal Analysis software. The frequency domain
data for each measurement point is blended together to
perform a modal analysis of the vehicle’s structure. The
frequency interval upper bound for the estimation process
is imposed at 35 Hz, while the lower bound is the one
imposed by the sampling time of each data acquisition
which is 16 s.
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Fig. 4. Scheme of ground vibration test set up

A maximum limit of potential structural modes is pro-
vided as input to the software to avoid the identifica-
tion of irrelevant modes. Then Siemens TestLab software
provides the first guess for structural modes, then the
operator has to choose the relevant ones so the software
can iterate over those to provide the estimation of the
structural mode. Then, a correlation analysis between the
estimated modes is carried out, to ensure that the same
mode is not identified as two very similar modes. If that is
the case, the identification routine is executed once more
being careful to not include modes that are too similar
from the first guessed modes list.

Once a set of uncorrelated modes is obtained, the yaw
dynamics-related modes are chosen with the aid of a
graphic tool showing the deformation that each mode
would generate in the structure. Therefore, knowing the
position of the gyroscope measuring unit, two motions
were found to be affecting the yaw angular acceleration
measurement: the first torsional mode of the fuselage at
a frequency of 3.75 Hz and the second torsional mode of
the fuselage coupled with the bending mode of the wings
at a frequency of 9.1 Hz. The shapes of these two modes
are shown in Figure 29 and 30 from the appendix.

B. Flight test

The Nederdrone is conducted to a hover flight condition,
then the computer-generated input is substituted for the
controller output for the yaw axis, simulating an open-loop
system behavior for the yaw axis. The computer-generated
yaw axis control signal and the gyroscope measurement
of the yaw rate are recorded and saved for subsequent
data processing. The time-domain inputs provided during
different tests are chirp input and doublet input. A list of
the relevant flight test input is provided in Table I.

C. Actuator modelling

The propeller input to the dynamic system in the simu-
lation must replicate two features: the dynamic behavior
of the propeller and the yaw authority restriction on the
yaw axis provided by the control signal allocation II-C. The
propeller dynamic behavior is known and it is modeled
by filtering the control signal with a first-order low-pass
filter with a cut-off frequency of 18 rad/s−1. When simu-
lating only the yaw dynamics, the control signal quantities
necessary to perform a correct control signal allocation
are not available, since only the yaw axis controller is

TABLE I
LIST OF INPUT PROVIDED DURING FLIGHT TEST

Test # Input type Ts [s] Frequency interval [Hz]
1 Chirp 17 1 - 4
2 Chirp 17 1 - 20
3 Chirp 17 1 - 20
4 Chirp 15 8 - 15
5 Doublet 4 -
6 Doublet 2 -
7 Doublet 2 -
8 Chirp 17 1 - 16
9 Chirp 12 1 - 16

simulated while the control allocation algorithm uses as
input the roll, pitch, yaw, and thrust command. Thus, the
control allocation effect is modeled as a limitation on the
maximum and minimum values that ur can assume. The
two boundary values are set to -1100 and 1100 and are
obtained from the post-flight calculation of the ub

r value
over time during a hover-flight.

To model the control surfaces contribution, three char-
acteristics must be replicated: the control signal alloca-
tion, the dynamic behavior of the servo, and its rate
limit. The control allocation is defined in simulation as
uΣ = boundAbs(2∗ur,6000), which is the same definition
provided in II-C when assuming uq = 0. This assumption
is an approximation but it holds during hover flight
and it is proven to be valid also by flight test data. To
include both the dynamic behavior and the servo rate
limit, the frequency domain equation of the servo’s dy-
namic δ̇Σ = −τactδΣ + τactuΣ is implemented as a set of
Simulink®blocks. The quantity δ̇Σ is limited to the interval
[-400, 400] deg ·s−1 with a saturation block, to account for
the servo rate limit. The implementation model is shown
in Figure 5.

Fig. 5. Structure of control surface dynamic and rate limit implementa-
tion

The signal servo command is calculated by converting
ur from pprz unit to degrees, which is obtained through
multiplication with the scaling constant 37.2/6000.

D. Full model for simulation purpose

This model aims to provide a high-fidelity representa-
tion of the yaw dynamics of the Nederdrone, including
both the rigid body and the structural dynamics within
a specific frequency band. This frequency interval should
contain the poles/eigenvalues related to the rigid body
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motions and to the structural dynamics which cause the
instability.

The chosen model structure is a two inputs one out-
put Multi Input Single Output (MISO) transfer function
model. The inputs are chosen to be the total propeller
contribution and the total control surfaces contribution to
the yaw dynamics. These two contributions are calculated
by processing the logged yaw control signal with the
actuator modeling processes described in III-C. The system
output is the yaw angular acceleration and it is obtained
starting from the angular rate measurement provided by
the autopilot onboard gyroscopes. The gyroscope signal is
first filtered using a second-order Butterworth filter with
a cutoff frequency of 15 Hz. Then, the Butterworth filter
output is differentiated using one step backward finite
differences, to obtain the yaw angular acceleration.

Then, the flight test data outlined in III-B are used as
data set to perform a frequency domain transfer function
identification. A built-in algorithm from MATLAB®System
Identification Toolbox called ’esttf.m’ is used for the trans-
fer function identification process. The inputs to the algo-
rithm are the Fourier transform of the input and output
signals, the frequency interval of interest, and the number
of poles the algorithm has to assume for the current
transfer function estimation. This algorithm first operates
a bilinear mapping transforming the frequency domain to
the unity disk and then it operates consecutive iterations
aiming to solve a nonlinear optimization problem [15]. The
nonlinear least-squares loss function is reported in (9),
where ωk is the kth frequency coordinate, D(ωk) is the
denominator of the MIMO transfer function and Ni(ωk) is
the numerator of the transfer function from the ith input
and the output. ui(ωk) is the Fourier transform of the ith

input signal, y(ωk) is the Fourier transform of the output
signal and W(ωk) is a frequency dependent weight which
is defined as a pass-band filter over the [0.01, 20] Hz
frequency interval. n f is the number of frequency points
and nu is the number of inputs of the system.

minimize
D,Ni

n f∑
k=1

∣∣∣∣∣W (ωk)
D (ωk)

(
D (ωk) y (ωk)−

nu∑
i=1

Ni (ωk)ui (ωk)

)∣∣∣∣∣
2

(9)
Then numerator and denominator parameters are ad-

justed via linear refinement and the bilinear transfor-
mation executed at the beginning of the identification
procedure is reverted to obtain the identified transfer
functions.

Two accuracy estimation metrics are defined to assess
the quality of the estimation. The first one is provided
by the estimation routine report, and according to the
function documentation is defined as in (10), and from now
on it will be mentioned as self metric.

Fit%= 100
(
1− |ṙmeasured − ṙmodel |2

|ṙmeasured − ṙmeasured |2

)
(10)

TABLE II
LIST OF FULL MODEL ESTIMATION RUN

Poles # Self metric Tischler metric ∗103

6 -38.24 1.061
7 -13.62 0.731
8 -31.12 0.968
9 62.68 0.726

10 -72.44 1.616

Where ṙmeasured is the Fourier transform of the measured
system output data and ṙmodel is the calculated Fourier
transform of the estimated model output given measured
input. The self metric is a value between −∞ and 100,
being 100 when the output of the estimated model is
exactly equal to the one measured during the experiment
and it is zero when the output of the estimated model is
the average of the measured output data.

The second metric used is taken from Tischler and Ram-
ple [16] and it is based on the comparison of the magnitude
and phase of the estimated transfer function weighted
on the coherence of the experimental frequency domain
data. This metric will be called from now onwards the
Tischler metric. The Tischler metric (JT ) (11) is reported
for completeness.

JT = 20
n

∑n
i=1 Wγ(ωi)[Wg (|He( jωi)|− |Hm( jωi)|)2 +

Wp (∠He( jωi)−∠He( jωi))2]
(11)

Where n is the number of frequency points, He( jωi)
is the value of the estimated transfer function at the
frequency point ω = ωi and Hm( jωi) is the value of the
system transfer function obtained from experimental data
at the same frequency ωi. The values of the module and
phase weights are Wg = 1 and Wp = 1.745 ·10−2. The value
of the frequency point Wγ(ωi) is reported in (12), where
γxy(ωi) is the value of the coherence function calculated
from experimental data. All the weight values are taken
from Tischler and Remple [16].

Wγ(ωi)=
[
1.58

(
1− e−γ

2
xy

)]2
(12)

The Tischler metric is a cost function that scores zero
when the bode plot of the estimated transfer function and
the experimentally calculated one are the same, and which
increases in its value with the increase in differences
between the two aforementioned transfer functions.

Different estimations are run with a different pole
number as an input and for each one of those the two
accuracy metrics’ value is calculated. In Table II all the
estimation runs are reported together with the respective
number of poles provided as an input and the accuracy
metrics scores.

It is interesting to notice how identifications constrained
to an even number of poles converge to a system with
lower scores in the similarity metric than odd poles esti-
mations. The system identification is executed only for the
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yaw axis, which in the hovering condition is a combination
of one aerodynamic mode (first order system) and multiple
structural modes (second order systems). Therefore, the
order of the resulting system is odd, which requires an
odd number of poles to be described. The bode plot and the
poles zeros map of the estimated transfer functions with
the best accuracy metrics scores are reported in Figure 6
and Figure 7.

Fig. 6. Bode plot of the estimated MISO system

The obtained model is validated for two different con-
ditions: time-domain open-loop response and frequency
domain analysis of the system response in the closed
loop. As shown in Figure 8 and Figure 9, the angular
acceleration measured during a flight where the bounded
yaw axis instability is happening is compared with the
angular acceleration calculated using the estimated yaw
dynamics model and the actuator command measured
during the same flight.

Then, the estimated MISO system is integrated into

Fig. 7. Poles zeros map of the estimated MISO system

Fig. 8. Measured vs estimated angular acceleration for unstable flight
condition

Fig. 9. Measured vs estimated angular acceleration for unstable flight
condition - detail

a Simulink model which replicates the controller archi-
tecture for the Nederdrone yaw dynamics. The Simulink
model includes the INDI inner loop and the proportional
outer loops for rate and attitude tracking and the actu-
ator dynamics with respective non-linear and saturation
behavior. Then a linear analysis of the Simulink model is
performed using MATLAB linearization routine for both
stable and unstable controller configuration. The differ-
ence between the two conditions lies in the values of the
low pass filter applied to the feedback signals for both
attitude rate and acceleration and the values are reported
in Table III.

For the stable configuration, the linearized model has no
poles on the right-hand side of the complex plane. Instead,
for the unstable configuration, the linearized model has a
couple of unstable complex conjugate poles with a natural
frequency of 52.8 rads−1 = 8.4 Hz. The pole-zero maps for
both conditions are shown in Figures 10 and 11. When
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TABLE III
CUT-OFF FREQUENCIES FOR FILTERS APPLIED TO FEEDBACK SIGNALS

IN DIFFERENT CONDITIONS

Condition Rate ωc f [Hz] Acceleration ωc f [Hz]
Stable 4 0.5

Unstable 5 20

Fig. 10. Pole-zeros map for the stable controller configuration

analyzing the power spectral density function of the in-
flight measured angular acceleration in Figure 12, it is
clear by the peak at 9.68 Hz Hertz that the measured
instability and the Simulink model’s unstable pole match
relatively close in frequency.

E. Rigid body model for angular acceleration estimation

This model represents the rigid body rotational yaw
dynamics of the Nederdrone and it aims to provide a
real-time prediction of the yaw angular acceleration of
the vehicle while running on the onboard computer. The
model has been derived from the Euler rotation equation

Fig. 11. Pole-zeros map for the unstable controller configuration

Fig. 12. Power Spectral Density function of the measured angular
acceleration during unstable behaviour

of motions for the yaw axis (13). The term related to the
roll and pitch rates is assumed to be negligible, leaving
the yaw angular acceleration depending only on external
torques contribution, which is reported in (14).

Irr ṙ =−(Iqq − Ipp)pq+Mext
r → Irr ṙ = Mext

r (13)

D(r) is a torque generated by the aerodynamic drag due
to the yaw rate, τDp (ωp) is generated by the aerodynamic
drag acting on the propeller, τIp (ω̇p) is the torque due
to the change in the propeller angular rate and τs(δs)
is generated by the control surface deflection. The afore-
mentioned quantities are modeled as in (15) and the final
formulation of the external torques Mext

r is provide in (16).

Mext
r = D(r) + τDp (ωp) + τIp (ω̇p) + τs(δs) (14)

D(r)≈ CDw r|r| τDp (ωp)≈ ĈτDp
ωp ≈ CτDp

ub
r

τs(δs)≈ Cτsδs τIp (ω̇p)≈ ĈτI p
ω̇p ≈ CτI p

u̇b
r

(15)

Mext
r = CDw r|r|+CτDp

ωp +CτI p
ω̇p +Cτsδs (16)

Therefore, by inserting (16) in (13) and solving for ṙ, the
rigid body model for the yaw dynamics is obtained. The
model linearly combines the input vector

[
r|r|,ωp, ω̇p, δs

]
,

weighting each contribution with a scalar coefficient. The
rigid body model can be reformulated as in (17), where the
inertia term Irr has been included in the coefficients.

ṙ = [CDw ,CτDp
,CτI p

,Cτs ] ·


r|r|,
ub

r ,
u̇b

r ,
δs

≜ C⃗


r|r|,
ub

r ,
u̇b

r ,
δs

 (17)

The coefficient vector C⃗ is estimated using a least-
square approach. Given the linear system structure in
(18), where Y and A are as described in (19) and (20).

Y = AC⃗ (18)
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Y =


ṙexp1
ṙexp2

...
ṙexp n

 (19)

A =


[r|r|, ub

r , u̇b
r , δs]exp1

[r|r|, ub
r , u̇b

r , δs]exp2
...

[r|r|, ub
r , u̇b

r , δs]exp n

 (20)

The data set utilized is a reduced version of the one
used for the full model identification, using only the test
numbers 1, 5, 6, and 7, to use flight test data which
should not be much affected by the structural modes.
The estimated coefficients are reported in Table IV. The
same estimation is carried out without considering the
contribution of the propeller command and the obtained
coefficient is reported in Table IV. The RMSE value for
the estimated coefficients is 79.06.

TABLE IV
LEAST-SQUARE MODEL COEFFICIENT VALUES

C⃗ [ −3.28 ·10−2, −6.23 ·10−3, 3.61 ·10−3, 4.934]
C⃗ with ub

r = 0 [−3.21 ·10−2, 0, 3.68 ·10−3, 4.65]

The comparison between the two estimated models for
two different inputs (chirp and doublet) with respective
components is shown in Figure 13 and Figure 14.

Fig. 13. Acceleration estimation via least squared estimated model for
chirp input

IV. CONTROL LAW DESIGN

The controller design must take into account the con-
straints due to the vehicle design. The actuator band-
width is limited to 50 rad/s, the available sensors do
not allow for structural state estimation and the current
control allocation architecture does not allow independent

Fig. 14. Acceleration estimation via least squared estimated model for
doublet input

control of single actuators. Therefore, the design of an
active vibration suppression controller is not feasible with
the current hardware. The only solution left is angular
acceleration feedback-signal processing, filtering, or signal
manipulation.

A. Hybrid INDI

A Hybrid INDI controller aims to mitigate the mea-
surement delays in the angular acceleration feedback
signal, by fusing the sensor’s signal with a system model
[11]. The angular acceleration signals fusion is operated
via complementary filtering, a sensor fusion technique
that weights the contribution of different sensors to state
estimation. This sensor fusion technique is largely used
for attitude estimation where MARG (Magnetic Angular
Rate and Gravity) unit attitude estimation is combined
with attitude position estimated by quaternions using the
angular rate measured by the gyro unit to update the
quaternion attitude estimation [17, 18]. However, it has
also been used for angular acceleration estimation for
flight control as proposed by Jiali et. al. in [19].

As described by Mahoney [20], frequency domain com-
plementary filters provide a means to fuse noisy mea-
surement or estimation of the same signal which has
complementary spectral characteristics. To obtain the com-
plementary filter, two filters LP(s) and HP(s) are defined
as follows. LP(s) is a low pass filter with a unity gain and a
cut-off frequency that defines the border between the high
frequency and low-frequency interval. In this case, LP(s) is
a second-order Butterworth filter with a cut-off frequency
of 3.5 Hz which was determined during the flight test.
HP(s) must satisfy the equation HP(s) = 1 − LP(s) which
makes H(s) an high pass filter of the same order of the low
pass filter. The complementary filter output is obtained as
in (21), where m1 and m2 are the two signal to be fused.

m̂(s)= m1(s)LP(s) + m2(s)HP(s) (21)
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In our case, the two signals are the angular accelera-
tion measurement obtained from gyroscope measurement
differentiation and angular acceleration estimation from
an onboard system model. The angular acceleration mea-
surement is fed to the low-pass filter while the angular
acceleration estimation obtained by the model described in
III-E is fed to the high-pass filter. Then, the fused angular
acceleration signal is fed back to the INDI controller.
Therefore, for the low-frequency interval, the controller
still relies on sensor information, while for high-frequency
information it relies on angular acceleration estimated
using a rigid body model and which therefore is not
affected by structural modes contributions.

For this specific design, a modification in the INDI
synchronization loop is required. In the complementary
filter, the delay in the feedback signal generated by the
low-pass filter is compensated by the high-pass filter
contribution. Therefore, the low-pass filter in the feedback
of the actuator synchronization loop must be removed to
avoid the actuator command having a lag with respect to
the angular acceleration signal.

B. Notch filter

The use of notch filters to not excite structural motions
has been used extensively in the aerospace industry [2, 4].
In this case, the notch filter NF(s) is placed in the actu-
ator synchronization loop after the current yaw command
calculation, as shown in Figure 15.

Fig. 15. Synchronization loop for the notch filter solution

The central frequency and the bandwidth of the notch
filter are set respectively to 9.1 Hz, which is the natural
frequency of the dominant fuselage torsional mode, and
to 5 Hz. The Butterworth low-pass filter is kept both
in the actuator synchronization loop and in the angular
acceleration feedback loop, while the cut-off frequencies
are set to 5 Hz. The removal of the low pass filter
from the acceleration feedback loop is not possible due
to the increase of the angular acceleration signal noise
power with the increase in frequency. This is due to the
differentiation of the gyroscope measurement, which acts
as a discrete-time derivative operation.

V. SIMULATION AND FLIGHT TEST RESULT

The two solutions proposed in sec. IV and the solution
already implemented on the vehicle and described in II-B
are modeled in a Simulink®environment and implemented

in the Paparazzi Autopilot framework for their perfor-
mance to be investigated.

For the flight tests, the angular acceleration is calcu-
lated via discrete differentiation of the yaw rate measure-
ment followed by a signal filtering with a second-order
Butterworth low-pass filter with a 15 Hz cut-off frequency.
This is done to prevent the growth of the noise’s power
with the increase of frequency in the angular acceleration
measurement due to the discrete differentiation operation.

For all the tests investigating frequency domain behav-
ior, at least three time-domain measurements are executed
for each test type and each solution. Then, after obtaining
the frequency domain data, the ones belonging to the same
test type and the same investigated solution are used to
obtain an averaged frequency-domain behavior.

A. Investigated quantities
The different INDI loops are investigated under the

following aspects:
1) Stability
2) INDI closed-loop behavior and transfer function
3) Reference tracking performance for outer control

loops
4) Disturbance rejection capabilities
The stability of the inner-loop controller is assessed

in a simulation environment via open-loop and closed-
loop analyses of the different INDI solutions via model
linearization and during flight tests via manual flight.
Since the aircraft model used in the simulation is the one
obtained in III-E, due to the frequency interval over which
the flight tests excited the aircraft’s dynamic, the model
is considered to be valid between 1 Hz and 15 Hz.

The INDI closed-loop behavior is investigated by adding
a chirp signal to the angular acceleration reference signal
during a hovering maneuver. The chirp frequency sweep
starts at 0.5 Hz and stops at 15 Hz. The closed-loop
transfer function is calculated using the Fast Fourier
Transform of the INDI loop input and output signals.
The goal of the INDI-based controller is to linearize the
input-output relation, meaning with a perfect nonlinear
dynamic inversion the closed-loop can be represented by
a unity gain transfer function. Therefore, the adherence
of the different closed loops to the ideal behavior is
discussed. The inversion residual, which is the difference
between the system angular acceleration and the angular
acceleration reference, is calculated and its frequency
content is analyzed. The inversion residual is defined as
resINDI (ω)= ν( jω)− ṙm( jω), with ṙm( jω)= CL( jω) · ṙre f (ω)
where CL( jω) is the inner INDI closed-loop transfer func-
tion. This results in the resINDI (ω) = (1 − CL(ω))ν(ω).
Therefore, the closer the closed-loop transfer function is
to the unity gain, the lower the value of the auto power
spectral density function (PSD) of the inversion residual
in the frequency interval of interest.

The second test is a reference tracking task, where the
drone has to follow a specific computer-generated heading
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Fig. 16. Ideal model diagram

reference. Two different reference signals are defined: a
chirp signal with power between 0.5 Hz and 15 Hz with
an amplitude of 5° and doublet signal lasting 10 s with an
amplitude of 30°. The goal is to assess the impact that
each solution has on the total yaw axis control structure,
both from a time and frequency domain perspective. The
frequency domain behaviour is investigated by calculating
the transfer function which relates the heading reference
signal to the measured heading angle. The calculation
procedure of the transfer function is the same as the
closed-loop analysis, with the difference that no filtering is
applied to the signals. Moreover, the results are compared
to the ideal response, with the ideal model being the
representation of the heading signal tracking dynamics if
all the components of the system, including the controller
and the aircraft dynamics, would have perfect behavior.
The ideal model transfer function is reported in (22). The
model is derived from the scheme in Figure 16, where the
proportional gains Kσ=6 Kr=20 and the actuator transfer
function A(s) are the ones defined in II. The nonlinear
dynamic inversion is assumed to be perfect, leaving only
the actuator dynamics as a system component [9] and no
signal filtering is required.

FIM(s)= 2160
s3 +180s2 +360 s+2160

(22)

The third and final test is a disturbance rejection test.
To execute a repeatable test, the disturbance is generated
by applying an offset to the ur signal sent to the control
surfaces. The system’s disturbance response is analyzed in
terms of saturation of the propeller yaw command, time
to reject the disturbance, and acceleration overshoot.

B. Simulation results

The stability analysis in the simulation shows that only
the standard INDI and the hybrid INDI are stable, while
the notch filter solution is not. The integration of the
notch filter in the INDI loop is not beneficial and induced
instabilities at a different frequency with respect to the
one mentioned in II-B and III-E. Different combinations
of notch frequency and notch bandwidth are investigated,
both in simulation and during flight tests, but none of
the ones tested provided a stable solution. The poles of
the INDI inner-loop of the notch filter solution Simulink
model are shown in Figure 17 and the frequency content
of the angular acceleration measured during the flight test
executed using the notch filter solution is shown in Figure
18.

Fig. 17. Pole-zero map of INDI closed loop augmented with notch filter
Simulink model

Fig. 18. Frequency content of angular acceleration signal during notch
filter solution flight test

There are multiple causes for the instability of the notch
filter solution. One can be found in the extra lag the notch
filter introduces on the actuator command signal for the
yaw dynamics ur before the notch frequency. Moreover,
the open loop transfer function has a magnitude above 0
dB after the notch frequency where the phase margin is
negative. The open-loop transfer function phase margin of
the same solution without the notch filter is not enough
to compensate for the additional delay, obtaining an open-
loop transfer function with a negative phase margin,
which leads to an unstable closed-loop system, as shown
in Figure 19.

Therefore, the notch filter solution does not achieve the
goal of enhancing the INDI-based flight control system for
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Fig. 19. Open loop transfer function for INDI loop with and without
notch filter

Fig. 20. INDI-inner loop transfer function from simulation and flight
test data

this drone, despite being one of the benchmark solutions
in the aerospace industry. The performance of this solution
was not further investigated since stability is not achieved.

C. Flight test results

The closed-loop transfer functions estimated in the flight
test (solid line) and obtained by simulation model lin-
earization (dashed line) are shown in Figure 20.

In the magnitude plot (top), it is clear that the hybrid
INDI solution has a lower magnitude over the frequency
interval dominated by the structural modes [3 - 15] Hz.
This is valid for the data from both simulation and flight
tests. Moreover, the magnitude of the hybrid INDI solution
is closer to the 0 dB line than the other solution, making
it the closest solution to the ideal unity gain behavior.
In the phase plot, the behavior of the two solutions is

almost identical, aside from a small portion of the validity
bandwidth (1 - 2.5 Hz), where the standard INDI solution
provides less phase lag.

The considerations outlined above are summarized in
Figure 21, where the power spectral density function of
the inversion residual is displayed. It is clear that for
most of the interval of interest the hybrid INDI solution
has a lower power, which indicates a better inversion
performance and lower power over the controller band-
width for the angular acceleration control loop. A better
inversion performance from the frequency domain point
of view means that the signal at specific frequencies is
followed with more precision, or with a smaller error,
using the complementary filter-based solution instead of
the standard INDI solution. This metric provides a more
compact outline of how close to the unity gain is the closed-
loop transfer function since it incorporates the magnitude
and phase mismatches between the pseudo control signal
and the measured acceleration. Therefore, the closer the
closed-loop transfer function is to the unity gain, the lower
the value of the auto PSD of the inversion residual.

Fig. 21. Flight test inversion residual comparison

Figures 22 and Figure 23 show the behaviour of both
solution during the heading tracking task. The first figure
shows the frequency domain behaviour, where it is clear
that both the implemented INDI solutions are not match-
ing the ideal system’s behaviour. Specifically, they show a
significant lag compared to the ideal system, as it is clear
from Figure 23, representing the time domain behaviour.

This is mainly due to the low-pass filtering of the yaw
angular rate and the restriction in the yaw command
authority operated during the real-time control allocation.
The control allocation strategy reduces the magnitude of
yaw command ur executed by the propellers, reducing its
effectiveness and decreasing the gain of the closed-loop
transfer function.

The small difference in the time and frequency domain
behavior between the two investigated solutions suggests
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Fig. 22. Frequency domain comparison of yaw/heading angle controller
and ideal model

that the way they affect the behavior of the outer control
loop is not much different. Moreover, the outcome of this
flight test does not allow us to identify the better solution
among the investigated ones.

Fig. 23. Time domain comparison of yaw/heading angle controller and
ideal model

Finally, the disturbance rejection test results for the
standard INDI solution and the hybrid INDI solution are
respectively shown in Figure 24 and Figure 25. In each
figure, two different sets of quantities are shown: the first
set is constituted by the pseudo-control signal, the feed-
back signal, and the measured angular acceleration signal.
The second set includes the disturbance command, the
yaw angular acceleration command calculated by the INDI
controller, and the command received from the propeller
and the control surfaces. The areas of the graphs with

a green background mark the time intervals when the
disturbance is active.

In this test, there are some points of interest worth
mentioning: the feedback signal behavior during and after
the disturbance, which is the main difference between the
two solutions. The control distribution of the disturbance
rejection effort between the propellers and the control
surfaces, and quickness in recovering the disturbance
effect.

The disturbance is provided with the control surfaces
and it is expected that, after the controller action, the
control surfaces’ position is closer to zero, while the
propeller contribution increases to compensate for the
disturbance in the opposite direction. Both the investi-
gated solutions present the expected time-domain behavior
for what concerns the actuator command quantities. In
the upper graph of each figure, an increase in angular
acceleration is expected after the activation of the dis-
turbance, followed by a rapid drop of the same quantity
due to the controller action. Moreover, once the controller
compensates for the disturbance, the angular acceleration
feedback signal should settle again around the zero value.

The standard solution is the fastest to compensate for
the effects of the change in presence of the disturbance.
Since the angular acceleration feedback signal is very
slow in following the change in acceleration, the difference
between the pseudo control and the feedback signal grows
rapidly and the disturbance is quickly compensated. The
hybrid INDI solution is slower than the standard solution
since the feedback signal remains more adherent to the
pseudo control signal, keeping the angular acceleration
error to a lower magnitude and therefore the magnitude
of the yaw axis actuator command ur lower.

The hybrid INDI solution shows to have slightly better
performance than the current solution implemented on the
Nederdrone concerning the closed-loop performance and
the accuracy of the nonlinear inversion. For what con-
cerns attitude angle tracking and disturbance rejection,
the performance of the two aforementioned solutions are
comparable and no clear improvement from the standard
INDI solution can be pointed out. The notch filter solution
did not manage to stabilize the system.

VI. CONCLUSIONS

This paper investigated the interaction of an INDI-
based flight control system with the structural dynamics
of a slender and light unmanned flying vehicle, which
affected the yaw dynamics during the hover maneuver.
The different investigated versions of the INDI control
loop take into account the limitations of the drone in
terms of real-time state estimation capabilities, actuator
bandwidth, and the current solution implemented in the
drone. The first solution is based on a complementary filter
and it is designed to provide the benefit of sensor-based
and model-based control systems. A notch filter-based
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Fig. 24. Time domain behaviour for standard INDI solution disturbance test

Fig. 25. Time domain behaviour for hybrid INDI solution disturbance test
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solution was developed to be compared to the current and
the first INDI solutions.

A simulation model and controller parameters were de-
rived from different tests, namely flight tests and ground
vibration tests. Afterwards, the three investigated solu-
tions were implemented for both the simulation environ-
ment and the real drone to determine each solution’s
stability property and performance. The INDI closed-loop
performance, the nonlinear dynamic inversion accuracy,
the effect on the total yaw controller structure, and the
disturbance rejection performance of each solution were
assessed.

The hybrid INDI solution brings some improvement
to the currently standard INDI solution such as lower
excitation of the structural modes and an increase to the
cut-off frequency of the angular acceleration low-pass filter
by almost half a decade, due to the lead in phase provided
by the high-frequency component of the complementary
filter. Rejection of unmodeled disturbances is successfully
obtained by both stable solutions. The "high-frequency"
contribution of the structural modes that made the sole
sensor-based solution unstable for high low-pass filter cut-
off frequency is compensated by the assumed rigid body
model "high-frequency".

Therefore, from the results obtained in the flight test,
we can say that the hybrid-INDI solution is a valid
alternative to the benchmark solution. Moreover, even
though the hybrid version of the INDI controller requires
the identification of a dynamic model, the chosen model is
very simple and does not require high accuracy, since the
controller is only partially dependent on it. Furthermore,
the high-frequency component of the measured angular
acceleration, which contains structural mode contribution,
is substituted by the assumed behaviour of the rigid body
mode only. Thus, the controller based on the hybrid-INDI
not only is not reacting to the low power contribution
of the structural modes at high frequency but is instead
contributing to the pseudo-control signal tracking by the
rigid body mode. Overall, the proposed solution brings
some improvement to the standard INDI solution but it
does not distance itself from it in terms of performance.

Interesting continuations for this research could be
the identification of a more accurate system model to
calculate the rigid body’s angular acceleration to be fed to
the high-pass filter of the complementary filter, for what
concerns the system identification field. Different angular
acceleration estimation techniques could be implemented
to generate a more accurate signal to feedback to the
controller. Finally, active structural vibration suppression
using an INDI-based controller could be considered a
research topic after solving the actuator authority issues.
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APPENDIX A
INCREMENTAL NONLINEAR DYNAMICS INVERSION

DERIVATION

Nonlinear dynamics inversion flight control system de-
sign strategies aim to linearize nonlinear dynamics to later
design a linear controller to obtain the desired system
behaviour. This goal is reached by calculating the required
input to give to the system to obtain the desired output
by inverting the system’s dynamics equations. Incremental
nonlinear dynamics inversion belongs to this family of con-
trollers but is regarded as a sensor-based control strategy
since it gathers the system’s state knowledge with sensor
measurements. Given a nonlinear SISO system, where
f⃗ (⃗x), g⃗(⃗x) and h(⃗x) are arbitrary nonlinear functions.

˙⃗x = f⃗ (⃗x) + g⃗(⃗x)u
y= h(⃗x)

(23)

The relative degree r of the system in (23) is defined
as the minimum number of time differentiation required
to be operated on the output y to obtain an explicit
relation between input u and output. For partial and fully
controllable system of degree n, the relation r ≤ n holds.
If r < n then there are n − r hidden or internal dynamics.
Then, the following change of coordinates is defined

φ1 (⃗x)= h(⃗x)

φ2 (⃗x)= L f h(⃗x)
...

φr (⃗x)= Lr−1
f h(⃗x)

(24)

Where Lm
f h(⃗x) is the mth Lie derivative of h(⃗x), which

is defined as in (25)

L0
f h(⃗x) = h(⃗x)

Lk
f h(⃗x) = L f

[
Lk−1

f h(⃗x)
]
=∇T

[
Lk−1

f h(⃗x)
]

f⃗ (⃗x)

Lg L f h(⃗x) =∇T [
L f h(⃗x)

]
g⃗(⃗x)

(25)

It is always possible to add n− r functions φi (⃗x) such
as Lgφi (⃗x) = 0 ∀ r+1 É i É n to complete the coordinate
transformation in (24) and have a system of the same
degree of the initial one.

z⃗ = Φ⃗(⃗x)=



φ1 (⃗x)
...

φr (⃗x)
φr+1 (⃗x)

...
φn (⃗x)


(26)

When operating the time derivative to z⃗, the time
derivative of the first r−1 coordinates are:
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żi = φ̇i (⃗x)= ∂φi (⃗x)
∂⃗x

˙⃗x = ∂φi (⃗x)
∂⃗x

[
f⃗ (⃗x)+ g⃗(⃗x)u

]
=

∂Li−1
f h(⃗x)

∂⃗x
f⃗ (⃗x)= Li

f h(⃗x)=φ(⃗x)= zi+1

(27)

The rth coordinate time derivative is:

żr = φ̇r (⃗x)= ∂φr (⃗x)
∂⃗x

˙⃗x = ∂φr (⃗x)
∂⃗x

[
f⃗ (⃗x)+ g⃗(⃗x)u

]
=

∂Lr−1
f h(⃗x)

∂⃗x
f⃗ (⃗x)+

∂Lr−1
f h(⃗x)

∂⃗x
g⃗(⃗x)u =

Lr
f h(⃗x)+LgLr−1

f h(⃗x)u

(28)

Finally, the last n− r elements describing the internal
dynamics are reported in (29), with i ∈ [r+1,n].

żi = L fφi (⃗x)+Lgφi (⃗x)u = qi−r (⃗x) (29)

As said before, in the above equation the Lie derivative
of qi−r (⃗x) = 0 along g⃗(⃗x) is equal to zero. In order to
conclude the coordinate transformation, the dependency
of (26) and (27) on x⃗ has to be substituted with x⃗ = Φ⃗−1 (⃗z),
thus (28) becomes

żr = Lr
f h

[
Φ⃗−1 (⃗z)

]
+ LgLr−1

f h
[
Φ⃗−1 (⃗z)

]
u = a(⃗z) +b(⃗z)u

a(⃗z)= Lr
f h

[
Φ⃗−1 (⃗z)

]
b(⃗z)= LgLr−1

f h
[
Φ⃗−1 (⃗z)

]
(30)

For the internal dynamics coordinates the substitution
is trivial and not useful for control system design and will
not be discussed further. The system dynamics described
in (30), is linearized around the current system state and
input values z = z0 and u = u0 using a first-order Taylor
approximation. Then the zero-order term ż(0)

r is assumed
to be known from sensor measurements and the first order
term related to the system’s state change is neglected
according to the time-scale separation principle [9].

żr ≈ ż(0)
r + ∂ [a⃗(⃗z)+b(⃗z)]

∂⃗z

∣∣∣∣ z⃗=⃗z0
u=u0

∆z⃗+ ∂ [a⃗(⃗z)+B(⃗z)]
∂u

∣∣∣∣ z⃗=⃗z0
u=u0

∆u

+O (∆z⃗2,∆u2)
(31)

żr ≈ ż(0)
r + ∂ [a⃗(⃗z)+B(⃗z)]

∂u

∣∣∣∣ z⃗=⃗z0
u=u0

∆u+δ(∆z⃗2,∆u2,∆t)

The INDI controller is designed by solving (31) for ∆u
and substituting the state derivative żr = ν with the

desired state derivative value ν. The obtained control law
is reported in (32).

∆u = B−1
[
ν− ż(0)

r

]
B = ∂[a⃗(⃗z)+B(⃗z)]

∂u

∣∣∣∣ z⃗=⃗z0
u=u0

∆u (32)

Equation (32) calculates the value of the increment to
apply to each current actuator state value. Therefore, a
measurement or an estimation of the current actuator
position is necessary to provide the correct input to the
actuators and to avoid their saturation [13]. To fulfill this
requirement, an actuator synchronization loop is usually
implemented and placed between the INDI controller
and the actuator. Moreover, since the state derivative
measurement is used, it is also necessary to make sure
the commanded actuator position and the measured state
derivative belong to the same time instant. Therefore,
possible low pass filters applied to the measurement signal
must be applied to the actuator signal too, to ensure time
synchronization.

This control strategy can be easily extended to MIMO
systems. Starting from the equivalent of (23) and aug-
menting the number of inputs and outputs

˙⃗x = f⃗ (⃗x) + G (⃗x) u⃗

y⃗= h⃗(⃗x)
(33)

Where G (⃗x), u⃗ and h⃗(⃗x) are expressed as in (34) with ℓ

being the number of inputs and m the number of outputs.

h⃗(⃗x)= [h1 (⃗x),h2 (⃗x), ...,hi (⃗x), ...,hm (⃗x)]T

u⃗ =[
u1 (⃗x),u2 (⃗x), ...,u j (⃗x), ...,uℓ (⃗x)

]T

G (⃗x)=[
g⃗1 (⃗x), g⃗2 (⃗x), ..., g⃗ j (⃗x), ..., g⃗ℓ (⃗x)

] (34)

For each output variable, the respective relative de-
gree can be defined as previously done for the SISO
case. Thus, a relative degree vector is defined as r⃗ =
[r1, r2, ..., r i, ..., rm]T and a set of coordinates can be defined
to express each inputs in the canonical form. Similar to
the SISO case, we can define the rth

i Lie derivative for the
ith output as components of the new coordinate system

φi
r i

(⃗x)= Lr i
f hi (⃗x)

φ̇i
r i

(⃗x)= Lr i
f hi (⃗x)+

m∑
j=1

Lg j L
r i−1
f hi (⃗x)u j

(35)

Collecting all νi = φ̇i
r i

into the vector Ψ⃗(⃗x), the vector
of the desired change in behaviour for each output is
obtained as in (36)

ν⃗(⃗x)= Ψ⃗(⃗x)=


φ̇1

r i
(⃗x)

φ̇2
r2

(⃗x)
...

φ̇m
rm (⃗x)

=


Lr i

f h1 (⃗x)
L2

f h2 (⃗x)
...

Lrm
f hm (⃗x)

+ (36)
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Lg1 Lr1−1

f h1 (⃗x) Lg2 Lr1−1
f h1 (⃗x) · · · LgℓLr−1

f h1 (⃗x)
Lg1 Lr2−1

f h2 (⃗x) Lg2 Lr2−1
f h2 (⃗x) · · · LgℓLr2−1

f h2 (⃗x)
...

...
...

...
Lg1 Lrm−1

f hm(v) Lg2 Lrm−1
f hm (⃗x) · · · LgℓLrm−1

f hm (⃗x)

 u⃗

Ψ⃗(⃗x)= a⃗(⃗x)+B(⃗x) u⃗ (37)

Thus, to simplify the input-output linearization method
and to reduce the dependency of the method on the model
used to design it, the first-order Taylor approximation of
the equation as reported in (38).

Ψ⃗≈ Ψ⃗0 + ∂ [a⃗(⃗x)+B(⃗x)]
∂⃗x

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆⃗x+ ∂ [a⃗(⃗x)+B(⃗x)]
∂u⃗

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆u⃗+

+O (∆⃗x2,∆u⃗2)
(38)

After due simplifications and terms grouping, (38) can
be expressed as in (39). There, the terms related to the
state vector derivative and increment are neglected and
included in the calculation error (Wang et al.2019, [21]).

Ψ⃗≈ Ψ⃗0 +B(⃗x0)∆u⃗+ δ⃗(∆⃗x2,∆u⃗2,∆t)

δ⃗(∆⃗x2,∆u⃗2,∆t)= ∂ [a⃗(⃗x)+B(⃗x)]
∂⃗x

∣∣∣∣ x⃗=⃗x0
u⃗=u⃗0

∆⃗x+O (∆⃗x2,∆u⃗2)

(39)

Where Ψ⃗0 is assumed to be measurable, ∆u is the
increment to be added to the actuator command, x⃗0 and
u⃗0 are the state values and actuator position values at the
instant t = t0, which are assumed to be measurable. B(⃗x0)
is the control effectiveness matrix evaluated at the instant
t = t0 and δ⃗(∆⃗x2,∆u⃗2, δt) is the error committed by using
the first order Taylor approximation. By making explicit
the actuator command increment in (39) and defining
Ψ⃗= ν⃗

∆u⃗ = B−1 (⃗x0)[⃗ν−Ψ⃗0] (40)

Which if substituted in (39) provides the input-output
linearization for the linearized model. In the actuator com-
mand increment calculation (40), δ⃗ is neglected. It must
be kept in mind that even if the nonlinear plant model
is linearized in (38), the coefficients of the linearization,
only B(⃗x0) in our case, can still show a nonlinear behavior.
Moreover, the total control input is obtained through the
sum of the previous actuator state and the currently
calculated increment

u⃗ = u⃗0 +∆u⃗ = u⃗0 +B−1 (⃗x0)[⃗ν− Φ⃗0] (41)

From (40) it is also clear that the elements of the vector
ν⃗ can be assigned with independent values, allowing the
decoupling of the control axis. This property is obtained
by the inversion of the control effectiveness matrix.

APPENDIX B
GROUND VIBRATION TEST SET UP

The ground vibration test setup was the one shown in
Figure 27 and schematically described in the paper. The
drone was hanged with a rope to a solid structure and
connected to the shaker and the impedance head using
hot glue, as reporter in Figure 26.

Before executing each vibration test, the grid of mea-
surement point is defined from the data acquisition soft-
ware, and and example is provided in Figure 28

After the data acquisition and data analysis procedures,
different structural modes were identified. However, the
relevant ones were only two, which shapes are reported
in Figures 29 and 30. In both Figures there is an area
highlighted in green which indicates the position of the
autopilot device which contains the gyroscope unit.

Finally, the correlation between all the structural modes
was calculated and the values are reported in table V.
The columns The column and row marked as Mode 3
correspond to the mode shape in Figure 30 and the column
and row marked as Mode 3 correspond to the mode shape
in Figure 30
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Fig. 26. Shaker and impedance head connection to the Nederdrone
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Fig. 27. Ground vibration test setup

Fig. 28. Grid of measurement points
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Fig. 29. First torsional mode of the fuselage

Fig. 30. Second torsional mode of the fuselage coupled with wing bending and torsion
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4
Conclusion

As mentioned in the introduction, a slander and light airframe leads to the presence of low-frequency
structural eigenmotions, which might be coupled with the flight controller dynamic, leading to limited
self-sustained, or worse unstable, oscillations. This Thesis project focused on the case where the flight
controller and the testing platform were an INDI-based flight controller and the Nederdrone, a vertical
take-off and landing drone. The goal of the research was to investigate the behaviour and performances
of different INDI implementations when integrated into an aircraft with low-frequency structural modes
by answering the two research questions stated in the introduction 1.

Flight controllers’ unstable interaction with aircraft structural modes is a well-known and studied
phenomenon, which was thoroughly explored in the literary survey. The major findings were that over-
looking the presence of low-frequency structural modes during the flight controller design process can
lead to a servo-elastic coupling for different classes of controllers among which also INDI-based con-
trollers are present. The coupling usually leads to structural damages or failures or limit-cycle oscil-
lations. Different approaches are taken to neutralize this phenomenon: sensor measurements’ signal
filtering or the adoption of flight controllers that can both regulate the rigid body dynamics while damp-
ing the structural ones being the most common. INDI-based flight controllers have been successfully
designed and utilized in both approaches, obtaining satisfactory results. In the preliminary analysis
of the investigated problem, it was recorded how both heavy signal filtering and reduction of the INDI
gain reduce and almost cancel the coupling phenomena. After the literature study and the preliminary
analysis, the first research question was thoroughly investigated.

During the research it was found that the fuselage’s torsional modes contribution to the angular accel-
eration measurement led to negative gain and phase margins, determining the instability of the system.
The different INDI implementations investigated as possible solutions for this issue were all focused on
feedback signal processing, due to the non-feasibility of an active vibration suppressing solutions. Specif-
ically, three different signal filters were applied to the angular acceleration signal: a second-order But-
terworth low-pass filter, a complementary filter providing a model-based high-frequency component, and
a notch filter. All the filters were implemented both in a simulation environment and the real aircraft,
but only the low-pass filter and the complementary filter were found to be stable and it was possible to
assess their performance. While the complementary filter solution showed to perform better nonlinear
dynamic inversion and to be faster in rejecting disturbances, there was almost no difference in how the
two signal processing solutions affected the behaviour of the outer control loop. Therefore it was proved
that for the Nederdrone, both standard and hybrid INDI are viable and equally effective options. These
findings answer fully to the second research question concluding the research activity initially designed
for this master thesis project.
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