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S U M M A R Y
Direct imaging of simultaneous-source (or blended) data, without the need of deblending,
requires a precise subsurface velocity model. In this paper, we focus on the velocity analysis
of simultaneous-source data using the normal moveout-based velocity picking approach.We
demonstrate that it is possible to obtain a precise velocity model directly from the blended data
in the common-midpoint domain. The similarity-weighted semblance can help us obtain much
better velocity spectrum with higher resolution and higher reliability compared with the tradi-
tional semblance. The similarity-weighted semblance enforces an inherent noise attenuation
solely in the semblance calculation stage, thus it is not sensitive to the intense interference. We
use both simulated synthetic and field data examples to demonstrate the performance of the
similarity-weighted semblance in obtaining reliable subsurface velocity model for direct mi-
gration of simultaneous-source data. The migrated image of blended field data using prestack
Kirchhoff time migration approach based on the picked velocity from the similarity-weighted
semblance is very close to the migrated image of unblended data.
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I N T RO D U C T I O N

Simultaneous-source shooting is a breakthrough in modern seismic
acquisition, which can tremendously increase the acquisition effi-
ciency and improve the data quality (Beasley et al. 1998; Berkhout
2008; Abma & Yan 2009). In blended acquisition, more than one
source is shot simultaneously, regardless of the interference. When
more than one source is involved in acquisition, either a denser
or a wider shot coverage can be obtained for a given constant ac-
quisition period. The ‘wider’ coverage (Fig. 1b) here refers to a
higher acquisition efficiency while the ‘denser’ coverage (Fig. 1a)
refers to a better-sampled seismic data set. The attractive benefits
are compromised by the challenges in dealing with strong inter-
ference from simultaneous sources in the acquired seismic data.
We can either separate the blended sources into individual ones
as if they were acquired independently, which is also called de-
blending (Chen 2014; Gan et al. 2016), or directly migrate the
blended data using newly developed imaging schemes (Tang &
Biondi 2009; Verschuur & Berkhout 2011). Deblending can provide
similar data as the conventional acquisition and thus not require a
change in post-processing and imaging algorithms, but need specific
computationally expensive technique for the pre-processing (Abma
& Yan 2009; Abma 2014). Direct imaging does not require any

pre-processing steps for observed data and thus enjoys the benefit
of high efficiency, but calls for a tremendously different processing
workflow (Xue et al. 2014; Chen et al. 2015c).

Because of many reported success of deblending, more and more
focus is now moved towards the direct imaging of blended data.
However, one of the most important components in the direct imag-
ing of simultaneous-source data is the macro subsurface velocity
model of the targeted area. In this paper, we focus on the velocity
analysis of the simultaneous-source data. We demonstrate that it
is possible to directly apply the common velocity scanning proce-
dures to the blended data in the common-midpoint (CMP) domain.
We also propose to use the newly developed similarity-weighted
semblance (Chen et al. 2015b; Gan et al. 2015a) to perform the
velocity analysis. Both synthetic and field data examples show that
the similarity-weighted semblance can help obtain higher-resolution
and more reliable velocity spectrum than the conventional sem-
blance, especially in the case of simultaneous-source data. The
direct imaging of simultaneous-source data based on the directly
picked velocity is also carried out via the prestack Kirchhoff time
migration (PSKTM) approach. The performance shows that the mi-
grated image from blended data based on the picked velocity from
similarity-weighted semblance is very close to the migrated image
from unblended data.
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Velocity analysis of simultaneous-source data 769

Figure 1. Demonstration of the simultaneous-source geometry. (a) Two-source shooting for denser coverage. (b) Two-source shooting for wider coverage. Red
points denote shot positions for source 1. Green points denote shot positions for source 2. Blue points denote receiver positions. Red and green strings denote
the shooting rays. Arrows denote the shooting directions. Borrowed from Chen et al. (2014b).

M E T H O D

Blended acquisition and direct imaging

For a constant-receiver survey, the simultaneous-source data can be
expressed as

d = �m, (1)

where d is the blended data, � is the blending operator, and m
is the unblended data. The formulation of � has been introduced
in Mahdad (2012) in detail. When considered in time domain, the
� corresponds to blending different shot records onto one receiver
record (node) according to the shot schedules of different shots. The
Born modelling from seismic reflectivity to the primary reflections
can be expressed as

m = Lr, (2)

where r denotes the subsurface reflectivity model and L denotes the
Born modelling operator. One way to remove the effects caused by
the blending operator � is first solving eq. (1) and then solving eq.
(2), which is referred to as ‘deblending’. The general deblending
framework can be summarized as (Chen et al. 2014a, 2015a)

mn+1 = S(mn + λ�∗(d − �mn)), (3)

where S is called the shaping operator, which is used to constrain
the current model, and λ is the step size of the updated misfit. �∗

denotes the adjoint of �. mn denotes the deblended data after nth
iteration.

Another way for dealing with the simultaneous-source data is to
solve the following equation for r directly, which is known as direct
imaging of blended data,

d = Fr, (4)

where F = �L.
Eq. (4) can be best solved using a least-squares (LS) based migra-

tion approach. More robust LS solvers involve adding constraints of
structural coherency when inverting r, either in a pre-conditioned
LS formulation (Dai & Schuster 2011; Chen et al. 2015c) or in
a shaping-regularized LS iterative framework (Fomel 2007b; Xue
et al. 2014).

Because of the great success of deblending reported in the liter-
ature (Abma et al. 2010; Mahdad et al. 2011; Beasley et al. 2012;
Li et al. 2013; Chen 2015; Gan et al. 2015b; Zu et al. 2015) in
the recent years, more and more focus is currently moving towards
the direct imaging of blended data, which can be more efficient
and can illuminate the surface better (Verschuur & Berkhout 2011;
Berkhout et al. 2012). It is worth mentioning that the deblending step
for the massive blended data requires large computational resources
(mainly for the parallel processing of a huge number of common
receiver gathers) and a long processing period because of the thou-
sands of iterations used for each common receiver gather. If the
direct imaging can obtain a good result, we can obtain a big saving
in both computational resources and processing period. However,
a key aspect for the success of direct imaging is the macro veloc-
ity model of subsurface. Either tomography based velocity analysis
or Born-approximation wave-equation based velocity inversion, re-
quires an initial acceptable velocity model from the very noisy
blended data (Fig. 9a shows an example). In the next section, we
will introduce a way for obtaining high-resolution and high-fidelity
velocity spectrum from blended data, using the recently developed
similarity-weighted semblance.

Velocity analysis of blended data using
similarity-weighted semblance

The conventional semblance is defined by Neidell & Taner (1971)
as

C[i] =

i+M∑
j=i−M

(
N−1∑
k=0

s[ j, k]

)2

N
i+M∑

j=i−M

N−1∑
k=0

s2[ j, k]

, (5)

where i and j are time sample indices, C[i] denotes the conventional
semblance for time index i, 2M + 1 is the length of the smoothing
window along the time axis, and s[j, k] is the trace amplitude at time
index j and trace number k of the normal moveout-corrected CMP
gather.
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770 S. Gan et al.

Figure 2. A brief comparison between the similarity-weighted semblance and the conventional semblance. Left: simple synthetic data. Middle: semblance
map using the conventional semblance. Right: semblance map using the similarity-weighted semblance.

The weighted semblance introduced in Chen et al. (2015b) can
be summarized as

W [i] =

i+M∑
j=i−M

(
N−1∑
k=0

s[ j, k]w[ j, k]

)2

i+M∑
j=i−M

(
N−1∑
k=0

s2[ j, k]
N−1∑
k=0

w2[ j, k]

) , (6)

where W[i] denotes the weighted semblance, w[j, k] denotes the
weighting function for time index j and trace number k.

There have existed several weighting criteria, such as the AB sem-
blance (Fomel 2009), offset-prior semblance (Luo & Hale 2012),
and the similarity-weighted semblance (Chen et al. 2015b). As the
similarity-weighted semblance can improve the resolution of veloc-
ity spectrum greatly, and has the possibility to subtract noise effect,
we choose the local similarity (Fomel 2007a) to weight different
traces:

w[ j, k] = L(s[ j, k], r [ j]), (7)

where L(x, y) denotes the local similarity between traces x and y,
r[j] denotes the jth time point for a selected reference trace r. In
this paper, the reference trace is chosen as the stacked trace using
a conventional stacking technique. Fig. 2 shows a demonstration
of the velocity spectrum calculated using the similarity-weighted
semblance compared with the velocity spectrum calculated using
the traditional semblance. The left panel in Fig. 2 shows a simple
synthetic data with four hyperbolic events. The middle and right
panels show the velocity spectrum calculated using the traditional
and the proposed semblance, respectively. It is obvious that the
similarity-weighted semblance is of high resolution.

It is worth mentioning that, the selection of the reference trace
needs several iterations in practice. It is obvious that the similarity-
weighted semblance is calculated with an inherent denoising ability.
The noise attenuation involved in the similarity-weighted semblance
is much similar to that used in Liu et al. (2009) for attenuating ran-
dom noise in the stacking process. Because of intense interference
existing in the simultaneous-source data, conventional semblance
will decrease the resolution because of the corruption by the blend-
ing interference. However, the beauty of the similarity-weighted
semblance is that it enforces an inherent noise attenuation solely in
the semblance calculation stage, without any extra process specifi-
cally designed for noise attenuation. The key element that enables
the anti-noise ability of the similarity-weighted semblance is the
local similarity based weights. In the next part, we will review the
basic theory of the local similarity.

Local similarity

A common way to measure the similarity between two signals is to
calculate the global correlation coefficient:

γ =

N∑
i=1

a(i)b(i)

√√√√ N∑
i=1

a2(i)
N∑

i=1

b2(i)

, (8)

where γ is the global correlation coefficient, N denotes the number
of samples of the signals a and b. In order to calculate the similarity
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Velocity analysis of simultaneous-source data 771

Figure 3. Local similarity for 1-D signal. (a,b) The same trace with different level of noise. (c) Calculated local similarity.

between two signals locally, one can use the localized correlation
coefficient:

γm(t) =

t+m/2∑
i=t−m/2

a(i)b(i)

√√√√ t+m/2∑
i=t−m/2

a2(i)
t+m/2∑

i=t−m/2

b2(i)

, (9)

where γ m(t) denotes the local correlation coefficient, m is the local
window size.

Fomel (2007a) designed an elegant way to calculate the local
similarity:

γ (t) =
√

γ1(t)γ2(t), (10)

γ1(t) = arg min
γ1(t)

(∑
t

(a(t) − γ1(t)b(t)) + R(γ1(t))

)
, (11)

γ2(t) = arg min
γ2(t)

(∑
t

(b(t) − γ2(t)a(t)) + R(γ2(t))

)
. (12)

Eq. (10) represents that the local similarity can be expressed as the
product of two vectors that are the solutions of two minimization

problems. R is a regularization operator for constraining γ 1 and
γ 2. R can be chosen as a local triangular smoother to enforce the
smoothness of vectors γ 1 and γ 2, and then eqs (11) and (12) can be
solved using the shaping regularization (Fomel 2007b):

γ1 = [λ2
1I + S(BT B − λ2

1I)]−1SBT a, (13)

γ2 = [λ2
2I + S(AT A − λ2

2I)]−1SAT b, (14)

where A is a diagonal operator composed from the elements of a:
A = diag(a) and B is a diagonal operator composed from the ele-
ments of b: B = diag(b). S is a smoothing operator, and λ1 and λ2

are two parameters controlling the physical dimensionality and en-
abling fast convergence when inversion is implemented iteratively.
These two parameters can be chosen as the LS norms of A and B
(Fomel 2007a).

The local similarity algorithm can be used for the calculation of
signals of any dimension. For 1-D signals, the meanings of eqs (13)
and (14) are intuitive. For 2-D or higher-dimensional signals, each
signal is first reshaped into a 1-D signal and then follows eqs (13)
and (14) to calculate the local similarity vector. The smoothing
operator is applied to the 2-D or multi-dimensional form of the
original signal to enforce the smoothness in any dimension. Figs 3
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Figure 4. Local similarity for 2-D signal. (a,b) The same flattened gather with different level of noise. (c) Calculated local similarity.

and 4 show demonstrations for both 1-D and 2-D signals. Figs 3(a)
and (b) show the same trace with different level of noise. Fig. 3(c)
shows the calculated local similarity for the 1-D signal. Figs 4(a)
and (b) show the same flattened gather with different level of noise.
Fig. 4(c) shows the calculated local similarity for the 2-D signal.
From the two examples, we can conclude that the local similarity
can effectively obtain smooth and reasonable measurements for both
1-D and 2-D signals. The peaks in the calculated local similarity
indicate the position of useful wavelets correctly.

E X A M P L E S

The first example is a synthetic example. Fig. 5 shows the unblended
and blended data in the CMP domain. The blending fold is very high
and thus the blended data is very noisy. It should be mentioned that
before the processing, we need to apply the domain transformation,
which transforms the data from shot domain to midpoint domain.
The domain transformation corresponds to the following transfor-
mation relation:

m = 1

2
(s + r),

h = 1

2
(s − r), (15)

where m and h denote the midpoint and offset locations, s and r
denote the source and receiver locations. Here, we leave out the
domain transformation (Chen et al. 2014b) between common shot
point (CSP) domain and CMP domain, and just show the data in
the CMP domain. Fig. 6 shows the comparison of the velocity spec-

trum using conventional semblance and similarity-weighted sem-
blance. As we know the exact velocity of this synthetic example,
we can compare the velocity spectrum with the true velocity in
order to judge the performance of different semblance approaches.
As we can see from the comparison, the similarity-weighted sem-
blance can obtain obviously higher resolution and more reliable
spectrum. The black strings on the top of the spectrum maps de-
note the true velocity. The two frame boxes highlight two regions
of obvious difference. From the two highlighted frame boxes, it is
much clearer that the similarity-weighted semblance can get more
reliable result.

The second example is a field data example with multiples. Fig. 7
shows the unblended and blended data in the CMP domain. Fig. 8
shows a comparison between different velocity spectrum for both
unblended and blended data. Because in this case, we do not have
the true velocity model, we can only use the spectrum of unblended
data as a reference. The left and middle left figures in Fig. 8 cor-
respond to the velocity spectrum of unblended data using conven-
tional semblance and similarity-weighted semblance, respectively.
The middle right and right figures in Fig. 8 correspond to the ve-
locity spectrum of blended data using conventional semblance and
similarity-weighted semblance, respectively. In this case, we also
have the spectrum of multiples. It is obvious that the similarity-
weighted semblance can obtain higher resolution for both unblended
and blended data. Comparing the middle right and right figures, we
can conclude that the similarity-weighted semblance can be more
reliable for velocity picking.

The third example is a numerically blended field data example in
the case of high blending ratio (the interference is very strong). The
numerically blended data is shown in Fig. 9(a). Because of the strong
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Velocity analysis of simultaneous-source data 773

Figure 5. Synthetic data example. Left: unblended CMP gather. Right: blended CMP gather.

Figure 6. Left: velocity spectrum of blended data using the conventional semblance. Right: velocity spectrum of blended data using the high-resolution
semblance.
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Figure 7. Field data example. Left: unblended CMP gather. Right: blended CMP gather.

Figure 8. Left: velocity spectrum of unblended data using conventional semblance. Middle left: velocity spectrum of unblended data using the high-resolution
semblance. Middle right: velocity spectrum of blended data using the conventional semblance. Right: velocity spectrum of blended data using the high-resolution
semblance.
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Velocity analysis of simultaneous-source data 775

Figure 9. (a) Blended CMP gather with strong blending interference. (b) Velocity spectrum using the conventional semblance. (c) Velocity spectrum using the
high-resolution semblance.

Figure 10. Gulf of Mexico data example. (a) Unblended field data. (b) Numerically simulated field data.

blended interference, it is hard to detect the useful reflections. In this
example, the conventional semblance cannot obtain an acceptable
velocity spectrum, as shown in Fig. 9(b). The peaks in the velocity
spectrum map are nearly smeared in the background noise. However,
we can still obtain well-behaved velocity peaks, using the proposed
high-resolution similarity-weighted semblance, which distinguish

themselves with the background noise. The peaks can be picked
either manually or automatically.

The fourth example is a numerically blended pre-stack field data.
Figs 10(a) and (b) show the unblended and blended data that have
been sorted from CSP gathers to CMP gathers. This example is used
to simulate the independent marine-streamer simultaneous shooting
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Figure 11. Comparison of velocity spectrum. (a) Velocity analysis of unblended data using the traditional approach. (b) Velocity analysis of blended data using
the traditional approach. (c) Velocity analysis of blended data using the proposed approach.

(IMSSS) acquisition (Chen et al. 2014b). The blending interference
is so strong that the useful reflections are nearly smeared in the
noise. Fig. 11(a) shows the velocity spectrum of the unblended
data using the traditional semblance. Fig. 11(b) shows the veloc-
ity spectrum of the blended data using the traditional semblance.
Fig. 11(c) shows the velocity spectrum of the blended data using
the proposed high-resolution semblance. It is obvious that the tradi-
tional semblance can obtain good performance for clean unblended
data. However, the traditional semblance cannot obtain a reason-
able velocity spectrum for the blended data. Because of the strong
blending interference, the traditional semblance cannot generate en-
ergy peaks in the spectrum that can be easily picked. Fortunately,
the high-resolution similarity-weighted semblance can help obtain
much focused peaks in the velocity spectrum that can be picked.
With the automatically picked velocity (Fomel 2009) from the ve-
locity spectrum shown in Fig. 11, we can obtain their corresponding
migration results. Here, it is worth giving a brief introduction about
the automatic velocity picking algorithm. Although the automatic
velocity picking problem was mentioned by several researchers in
the literature (Adler & Brandwood 1999; Sarkar & Baumel 2000;
Harlan 2001; Arnaud et al. 2004), we use the approach proposed

in Fomel (2009). The main principle of the approach is to solve the
following eikonal equation(
∂T

∂v

)2

+ 1

α2

(
∂T

∂t

)2

= e−2w(t,v), (16)

where T is the traveltime, w(t, v) corresponds to the semblance
spectrum, and α denotes a scaling parameter. After obtaining a
finite-difference solution of eq. (16), we can extract the picking
trajectory v(t) by tracking backward along the traveltime gradient
direction.

The migrated profiles using the PSKTM algorithm for different
cases are shown in Fig. 12. Fig. 12(a) shows the migrated pro-
file for unblended data using the traditional semblance method.
Figs 12(b) and (c) show the migrated profiles for blended data using
the traditional semblance and the proposed high-resolution sem-
blance, respectively. In this example, we can consider Fig. 12(a)
as the true answer, and judge the performance of different ap-
proaches by comparing the migrated results with Fig. 12(a).
We can observe huge difference between Figs 12(a) and (b).
However, Figs 12(a) and (c) are more similar. We can confirm
this observation by zooming a part from the original migrated
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Velocity analysis of simultaneous-source data 777

Figure 12. Comparison of migration results. (a) PSKTM of unblended data using the traditional picked velocities. (b) PSKTM of blended data using the
traditional approach. (c) PSKTM of blended data using the proposed approach.

profiles. Fig. 13 shows the zoomed sections that correspond to the
frame boxes shown in Fig. 12. It is more obvious that Figs 13(a)
and (c) show very similar reflections, while Fig. 13(b) is much
different from the other two cases. The erroneous reflections in
Fig. 13(b) indicate erroneous picked velocities using the traditional
semblance.

C O N C LU S I O N

We have demonstrated that it is possible to use normal moveout-
based velocity analysis approach to obtain an acceptable veloc-
ity model from the very noisy simultaneous-source data. The
similarity-weighted semblance can obtain a better velocity spectrum
than the conventional semblance, with higher resolution and relia-
bility. When the blending interference is so strong that the seismic
reflections cannot be observed, the similarity-weighted semblance
can still show plausible energy peaks in the velocity spectrum, and
the peaks can be picked easily. We use both simulated synthetic and
field data examples to show the potential of the similarity-weighted
semblance in velocity analysis of simultaneous-source data. We

also compare the migrated images of unblended field data and nu-
merically blended field data using different picked velocities. The
migrated image of blended data using the picked velocity from the
similarity-weighted semblance is very close to the migrated image
of unblended data, which shows great potential that the separation
of simultaneous sources is no longer necessary.
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Figure 13. Comparison of zoomed migration results. (a) PSKTM of unblended data using the traditional approach. (b) PSKTM of blended data using the
traditional approach. (c) PSKTM of blended data using the proposed approach.
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