Thin glass composites.

Based on a structural efficiency increasing design strategy.

Content

- Research plan – Literature – Design – Verification – Case study – Conclusions –

Research plan

Research question

'How can thin glass and a 3D printed spacer pattern work together to create a stiff and self supporting sandwich panel which increases the structural efficiency of the material?'

Objective

- Explore the possibilities
- Weight reduction of 75%
- Structural efficiency

Literature

Conclusions

Bending Glass

Sandwich panel

• FDM makes results anisotropic

• Thermal expansion coefficient

- 1210 x 660 mm
- 6232 x 2825 mm
- 300 x 150 mmm

- 4 15 5 HR + + = 18 kg
- 2 sheets thin glass = 0.4 kg
- Weight reduction of 75%

- $L_{diag}/65 = max deflection$
- 21,2 mm for the window
- 105,3 mm for the facade

• Edge around panel

- 1 kN/m²
- Profound calculation for case study

- 40000 kN/m²
- Maximum cell size 300 x 250 mm

•
$$0.75 * wa^{2}$$

$$t^{2} * (1.61 \left(\frac{a}{b}\right)^{3} + 1$$

- Even thickness
- 16 mm

Design

Topology

Designs

Designs

	Structural		Additive manufacturing	
	Shear stress	Deflection	Continuous printing	Support
Spaceframe			•••••	
3D-wave cut-off	••••		•••••	
Voronoi	•••••	•••••	••••	••••
Octahedron cut-off	••••		•••••	
Delaunay lattice	••••		•••••	

Topology optimization

• Gradient mapping

4 side supported

2 side supported

4 side supported

2 side supported

Design strategy

• Lloyd's algorithm

Design strategy

Design strategy

Panel generation

- Reference panels
- Gradient mapping panels
- Random Voronoi panels
- Lloyd's algorithm panels
- Lab test specimen

Models

Verification

Set-up

	PETG	Thin Glass
Young's modulus (N/m²)	2,1 *109	7,2 *1010
Poisson's ratio	0.4	0.23
Density (kg/m³)	1280	2530
Tensile strength (N/m²)	/	2,6 *108

Results - Deformation

Lloyd's algorithm

- Research plan – Literature – Design – **Verification** – Case study – Conclusions –

Results - Stresses

Tensile principal stress Random panel

	2 side sup- ported model	2 side sup- ported test panel	4 side sup- ported model	4 side sup- ported test panel	Random divided model	Random divided test panel
Displacement DtXYZ total (mm)	16,6	0,388035	19,12	0,396343	1,74	0,37835
Displacement DtXYZ local (mm)	/	0,408	/	0,392	/	0,383

Result comparison

2 side supported panels

	Structural	Random	%
Seed 2	0,241089	0,252932	- 4,6
Seed 4	0,244250	0,256866	- 4,9
Seed 6	0,247798	0,256753	- 3,5
Seed 8	0,254126	0,244416	+ 4,0
Seed 10	0,247957	0,258246	- 4,0

4 side supported panels

	Structural	Random	%
Seed 2	2,61235	2,73731	-4,6
Seed 4	2,62153	2,76459	- 5,2
Seed 6	2,51816	2,67233	- 5,8
Seed 8	2,57975	2,68654	- 4,0
Seed 10	2,55741	2,68082	- 4,6

Result comparison

2-side supported	Structural	Random	
Average defl.	2,57784	2,70832	

-4,8%

Case study

Production process

Production process

PD Test Lab

Concepts

Facade

Production

Production

2

- Case study - Conclusions -

- Research plan – Literature

Connections - Case study - Conclusions -- Research plan – Literature

Conclusions

Conclusions

'How can thin glass and a 3D printed spacer pattern work together to create a stiff and self supporting sandwich panel which increases the structural efficiency of the material?'

Conclusions

'How can thin glass and a 3D printed spacer pattern work together to create a stiff and self supporting sandwich panel which increases the structural efficiency of the material?'

- Result is one of many solutions
- Gradient mapping increases structural efficiency
- New window weight = 2.7 kg
- 85% weight reduction

Recommendations

Optimizations

Curved panels

More open and light structure
 FDM process

• Fire safety

• Thermal insulation

Thank You