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Abstract

Human interaction with a smart speaker involves often distant automatic speech
recognition (ASR). However, ASR is a rather cumbersome task at significantly
high levels of noise. Most of commercial smart speakers in order to achieve high
ASR accuracy they tend to reduce the playback signal once the preset keyword is
detected. In an effort to dispose this function from the smart speaker, in this thesis
a speech enhancement technique is considered in the front-end of the ASR system
aiming at the suppression of the dominant noise component in the degraded speech
signal. Having a priori knowledge on the playback signal renders adaptive filtering
a well-suited speech technique. Therefore, the class of least mean squares (LMS)
algorithms is studied and assessed. Among other techniques of this class the trans-
form domain LMS (TDLMS), due to its inherent signal decorrelation properties,
is shown to achieve the best performance in terms of noise suppression and im-
proved speech intelligibility as well as word error rate. The results of this study
correspond to a set of simulation incorporating real impulse responses measured
in both an anechoic and a reverberant environment.
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1 Introduction

The use of smart audio devices as part of our autonomous assistance has increased
rapidly over the last decade. At the same time, the technology involved in these
devices has been advancing in a fast rate. As a result, smart speakers represent a
massive and growing market with application to various ecosystems. One of the
main functions of a smart loudspeaker is to execute one’s voice command within
the shortest possible period of time. This function is associated with the ability of
the embedded automatic speech recognition (ASR) system to translate a speech
signal into text. The key to a smart speaker’s performance is the voice recognition
technology that is used. Several approaches have been investigated for designing a
robust ASR algorithm. However, ASR has proved to be a rather challenging task
in very low signal-to-noise ratios (SNRs1) [1].
Most of the smart speakers in the market reduce the playback volume once a key-
word has been detected. Although this reduction leads to an increase of the SNR,
it could be rather annoying to the user if the keyword is misdetected. Therefore,
the objective of this work is to support an ASR system with a front-end speech
enhancement framework. The notion behind this approach is that feeding an ASR
algorithm with an enhanced signal, would increase its performance in terms of im-
proved WER. The metric of WER, being the most common performance measure
for speech recognition systems, measures the difference between the transcribed
word sequence and the reference one.

1.1 Thesis Objective

The main focus of this work is on speech enhancement algorithms that operate
independently from the ASR system embedded in the smart speaker. There exist
a great many signal processing techniques aiming at the reduction of both point

1Here, as SNR the ratio of speech power to noise power is defined.
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sources and ambient noise which might degrade a speech signal. Of vital impor-
tance is the fact that the algorithm should operate in real time. This implies
that computational complexity and robustness of the algorithm comprise crucial
factors when designing such a framework. Multi-channel techniques such as beam-
forming and independent component analysis (ICA) have been studied intensely
in the literature and have shown satisfactory performance under certain condi-
tions. Moreover, adaptive filtering has been widely used to suppress the noise in
corrupted speech signals. Being that explicit information on the interfering sig-
nal is used and due to ease of implementation, adaptive filtering is found to be
a reasonable approach for the problem tackled in this work. A certain class of
adaptive filtering algorithms are therefore studied and tested on suppressing the
loudspeaker signal that corrupts the user’s voice command.
Consequently the research question that this thesis poses is the following:
In what ways can an a speech enhancement framework support the front-end of a
smart speaker’s ASR system in extremely low SNR scenarios ?

1.2 Thesis Outline

The outline of the rest of the thesis is given below.
In Chapter 2 the problem formulation is being presented followed by the mathe-
matical model of the investigated setup. Furthermore, Section 2.3 exhibits related
previous work on speech enhancement. In particular, the concepts of beamform-
ing, ICA and adaptive filtering are briefly described. By stating the limitations
of the first two approaches to the proposed setup, strong argumentation follows
making adaptive filtering the best fit for the problem at hand.
In Chapter 3 a certain class of adaptive filtering algorithms is derived and shortly
reviewed. Starting from the same minimization criteria, namely the mean squared
error (MSE), the properties of each algorithm are discussed. The chapter concludes
with a number of simulations that compare the described algorithms.
Chapter 4 demonstrates the results of a Monte Carlo simulation. More explic-
itly, in Section 4.4 the findings of this work are discussed that reflect the plotted
performance metrics.
The thesis concludes in Chapter 5 with the outlook of this work and a set of
recommendations regarding potential future directions.
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2 Preliminaries

This chapter focuses initially on establishing the problem formulation of this thesis
that is subsequently supported by the mathematical model. The state of the art
is moreover reported in the last section of this chapter justifying the selection of
the speech enhancement approach that is elaborated in the next chapters.

2.1 Problem Formulation

The performance of an ASR system is highly dependent on the input SNR which
is a function of the distance from each source to the microphone. In order to
evaluate the expected input SNR, a ballpark example is sketched in Fig. 2.1 that
corresponds to a real-time voice recognition scenario. The scenario is assumed as
such by measuring the sound pressure level (SPL) at the point of interest, which
is defined as

Lp = 10 log10
p2

rms
p2

ref
, (2.1)

where prms is the root mean square value of the signal’s sound pressure and pref is
the reference sound pressure [2]. The sound pressure level is measured in dBSPL.
The correlation of the logarithmic scale with the subjective impression of loudness
by the human ear justifies the fact that dB is chosen as a unit [3]. Moreover, in
order to calculate the signal’s SPL level at a point in r in free field given a point
source at position r0, the attenuation of the acoustic wave’s sound pressure [2] is
considered

p(‖r − r0‖2, ω) = A

‖r − r0‖2
e−jωt, (2.2)

where A is the amplitude of the signal’s sound pressure. In this scenario a single
user is listening to music at 70 dBSPL at distance ds from a smart loudspeaker
in an anechoic environment. While music is playing, the user interacts with the
loudspeaker via a voice command which is set at 70 dBSPL at 1 m in front of him.
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The selected sound pressure level of speech is with respect to the values reported
in [4]. In contrast, the range of the pressure levels that people listen to music is
large, hence an average value was chosen [5].

Figure 2.1: Scenario of a single user interacting with a smart loudspeaker. The dBSPL
of music is considered at the user’s position, whereas the speech level is measured 1 m
in front of the user.

The expected SNR at the microphone is calculated for various distances ds of the
user. In addition, the microphone is considered at two different distances dm, with
respect to the music source. One at 0.1 m and another at 0.2 m. The results are
shown in Table 2.1. Of course, the further the microphone is placed from the
music source, the better input SNR is obtained. However, since a loudspeaker has
variable physical limitations in terms of size it is worth investigating both proposed
distances.

dm

ds 1 m 2 m 3 m 4 m 5 m

0.1 m -21.3 -30.2 -39.3 -42.9 -45.4
0.2 m -15.2 -24.6 -33.1 -37.4 -39.9

Table 2.1: Expected input SNRs in dB for various distances of the talker ds and micro-
phone dm in meters.

2.2 System Model

The conceptual diagram of the problem that this thesis attempts to solve is de-
picted in Fig 2.2. The main elements of this setup are a smart loudspeaker with
an embedded microphone and a target source. The audio (music) signal from
the loudspeaker u(n) comprises the interfering source, whereas the target source
produces a desired speech signal v(n). Both music and speech are convolved with
the room impulse responses (RIRs) hu(n) and hv(n) respectively. Each RIR cor-
responds to the acoustic path from the source to the loudspeaker’s microphone.

4



Finally, the microphone captures the mixed signal

d(n) = v(n) ∗ hv(n) + u(n) ∗ hu(n)
= s(n) + z(n). (2.3)

Provided that the music signal u(n) is available, the goal is to estimate the speech
signal s(n) from d(n) and feed it to the ASR system. If explicit information on
the RIR hu(n) was at hand, speech extraction would be a rather trivial problem
to solve. Since this is not the case, a variety of techniques have been developed
under a speech enhancement framework.

u(n)

+ v(n)
z(n)

hu(n)

s(n)

d(n)
hv(n)

Figure 2.2: Conceptual diagram of the problem. The microphone is capturing the music
z(n) and the speech signal s(n) after being convolved with the acoustic transfer functions
hu and hv respectively.

2.2.1 Performance Measures

In order to assess the performance of the speech enhancement framework the nec-
essary criteria need to be established. Depending on the application where speech
needs to be isolated, different criteria are taken into account. At a first stage the
output SNR of the framework is assessed. By denoting ŝ(n) the estimated speech
and s(n) the clean speech signal, the output SNR is calculated

SNRdB = 10 log10
|s(n)|2

|s(n)− ŝ(n)|2 , (2.4)

where |·|2 is the energy of the signal. However, in [6, 7] it is shown that the
time-domain SNR measure does not correlate highly with either intelligibility or
speech quality. Hence, for comparison purposes the intelligibility of the enhanced
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speech signal is calculated. For this task the short time objective intelligibility
STOI measure [8] is considered. In contrast to other intelligibility models, STOI
processes the signal in short frames (386 msec). This has proved to yield results
equivalent to listening experiments [8]. In addition, in [9] among other perfomance
metrics, STOI has shown to be the best predictor of ASR performance. The final
assessment of the suggested framework is evaluated by the metric of word error rate
(WER). For the calculation of WER we used DeepSpeech, an open source speech
recognition algorithm developed by the machine learning group of Mozilla [10].
This speech-to-text engine uses a model trained by machine learning techniques
based on the work described in [11].

2.3 State of the Art

In this section, three speech enhancement approaches are briefly outlined i.e.
beamforming, independent component analysis (ICA) and adaptive filtering. First,
the motivation behind each technique is demonstrated followed by the correspond-
ing assumptions. Finally, the limitations of each technique with respect to our
model and the available information are presented. The proposed speech algo-
rithm for our model is based on adaptive filtering and hence this technique is
regarded here last and is described in greater detail in the following chapter.

2.3.1 Beamforming

Beamforming is a spatial signal processing technique that uses multiple micro-
phones to isolate target sources according to their position in space [12]. The sim-
plest implementation of beamforming is the delay and sum beamformer (DSB).
Supposing a single source is to be isolated, the idea of DSB is to align the out-
put of the microphones by introducing the corresponding propagation delay of
sound from the target source to each microphone. Subsequently, the microphone
signals are summed and by assuming that the interfering signals arrive from var-
ious directions, the noise coefficients are added destructively. This results in the
enhancement of the target signal and the suppression of the surrounding noise.
Assuming that the microphone self-noise is uncorrelated across the microphones,
the variance in the output of the beamformer is reduced by a factor of the number
of the microphones M [13]. The DSB’s major drawback is that the noise field is
not taken into account. This implies that information about the structure and the
direction of the interfering signals is not incorporated into the algorithm.
A widely used beamformer due to its robustness is the minimum variance distor-
tionless response (MVDR) being is a special case of the linear contraint minimum
variance (LCMV) beamformer [13]. As its name suggests, MVDR aims at pre-
serving the magnitude and the phase of the target source while minimizing the
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variance in the output of the beamformer. [14]. Being a spatial filtering technique,
a beamformer’s performance is highly dependent on the amount of knowledge we
have on the location(s) of the speech source(s), the acoustic transfer functions
ATFs from the speech source(s) to the microphone array as well as the second
order statistics of the interfering source(s). However, estimating the ATFs in a
multi-microphone setup is a rather cumbersome task. A significant contribution
to this open problem suggests the use of (relative transfer function (RTF))s instead
which are easier to approximate [15].
The generalized sidelobe canceler (GSC) is another popular family of beamformers
that has been studied extensively. This beamformer consists of two sub-systems,
a fixed beamformer where usually DSB is chosen and an adaptive noise cancelling
section. The second section is fed with an estimate of the noise profile. This
estimate is the product of filtering out the desired signal(s) from the microphone
measurements with a blocking matrix. In order for this setup to perform well, a
good approximation of the RTFs from the desired signal(s) to the sensor array
is required since they are the basis of the blocking matrix. More insight on the
function of the adaptive noise cancelling system is given in the next chapter for it
is the focus of this thesis.
Another set of beamformers that give the best linear solution in the mean squared
sense go by the name of optimal linear multi-channel Wiener filter. It is shown
in [16] that this type of beamformer is basically a concatenation of an MVDR
beamformer and a post-processing single channel Wiener filter. In [17] the effi-
ciency of the optimum linear filter, in terms of trade off of noise reduction and
speech distortion, is extensively studied while different post-filtering techniques at
the output of a beamformer are reported in [18,19]
Although spatial array signal processing is used in numerous speech enhancement
applications nowadays most of the beamforming techniques are unable to produce
satisfying results in low SNRs [20]. More specifically, since the sensor’s position is
relatively close to the music source in our model, it would be rather challenging to
steer the beamformer to the speech source even if exact information of its location
is available. As a result, a beamformer would not be able to capture the desired
spatial information of the setup, thus not producing the desired results.

2.3.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a blind source separation (BSS) tech-
nique widely used to solve the well known cocktail-party problem [21]. While not
used only for speech enhancement purposes, ICA has shown promising results in
blindly separating sources that are mutually uncorrelated. Moreover, even though
ICA is a multi-channel technique, it is mainly based on information-geometry the-
ory rather than array signal processing [22]. In essence, ICA maximizes an objec-
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tive measure of statistical independence among the target sources. The most pop-
ular implementations like Fast-ICA maximize the nongaussianity of the sources,
through kurtosis or negentropy. ICA aims at the extraction of the target sources
having information only on the mixed signals acquired from each sensor [23]. The
desired signals that are obtained through this technique are decorrelated and a
significant reduction in the higher-order statistical dependencies is achieved [22].
This is done by solving a linear model in the time domain of the form

x = A s, (2.5)

where x =
[
x1 x2 . . . xM

]T
consists of the observations captured by the micro-

phones and s =
[
s1 s2 . . . sN

]T
the decorrelated sources. Let A be an M ×N

matrix that mixes the components of interest si, where M is the number of the
microphones and N the number of the extracted signals. By estimating A, fre-
quently referred to as the mixing matrix, its inverse is subsequently computed and
the independent components are obtained. ICA is able to produce desired results
under certain conditions and therefore is governed by the following fundamental
assumptions:

• The sources s are statistically independent.

• At most one source can be assumed that follows a Gaussian distribution.

• Each target signal has zero mean E
{
s
}

= 0 and unit variance E
{
ssT

}
= I.

• The number of the sensors in the setup are at least as many as the sources.

Although the required non-gaussianity of the sources makes ICA a good candidate
for speech and music signals [24], there exist some limitations in the use of this
technique. It has been reported in [25] that the performance is severely affected
when the available recorded signals have very low SNR which is mainly the case of
the studied scenarios in this work. Another proof of the poor performance when
noise is dominant in the measurement is a recent work in speech denoising [26]. In
this study a single-channel ICA in combination with empirical mode decomposition
(EMD) and Wavelet thresholding is used. The evaluation of this method showed
that the attained gain is limited at 7 dB while the lowest input SNR assessed is at
−6 dB. Another drawback of using blind ICA algorithms is that the target signals
are recovered with arbitrary scaling and permutation which limits the performance
of an ASR system [27]. Finally a preventing factor for the use of ICA techniques
is that convergence is not guaranteed [28].
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2.3.3 Adaptive Filtering

Adaptive filtering is a field of great interest in audio processing due its simplic-
ity and robustness. Strong evidence of that are its numerous applications such
as acoustic echo cancellation (AEC), system identification, channel equalization,
adaptive noise cancellation adaptive noise cancellation (ANC) and many other.
The motivation behind using an adaptive filter for an application can be summa-
rized to the following reasons. First, an adaptive filter does not require the whole
sequence of a signal to carry out the necessary computations. Instead, the output
of the filter is produced with every incoming sample or after a defined chunk of
samples. That makes adaptive filtering well-suited for real time applications since
the processing delay introduced is small. Furthermore, compared to other tech-
niques that process large data sequences, the adaptive filter updates its parameters
whenever a new sample of the input signal arrives thus not being so demanding
in terms of memory usage. Moreover, an adaptive filer is easy to implement both
from a software and hardware perspective [29]. Finally, adaptive filters are supe-
rior to other signal processing techniques in the sense that they can track changes
both in the signal statistics and in the involved environment [30].
The setup of this study (Fig. 2.2) can easily be translated to an ANC problem.
Most ANC systems consist of two inputs and one output. More specifically, the
microphone signal d(n) which contains speech corrupted with the uncorrelated
music signal, comprises the primary input of the system. Another sensor, receives
the reference music signal u(n) which is assumed to be uncorrelated with the speech
signal s(n) but correlated with the noise component of d(n). This secondary
input is also the input of the adaptive filter. The digital filter’s output is then
subtracted from the primary input producing the output of the ANC system. In
fact, the adaptive filter is adjusting its parameters by minimizing cost functions
of the estimated error signal so that its output is as close as possible to the noise
profile of the primary input. In our scenario, the output of the adaptive filter gets
subtracted form the microphone signal yielding to an estimate of the speech signal.
Although, the concept of ANC and its application to our model is going to be ex-
tensively explained in the following chapter, it is essential to argue why adaptive
filtering surpasses beamforming and ICA in solving the problem at hand. First,
as already mentioned the incorporated filter can adapt to the conditions of the
environment which makes it a very powerful technique since most the real systems
are time-varying. Furthermore, in contrast to spatial techniques like beamforming,
no explicit information on the location of the noise or the target source is needed.
Last but not least, adaptive filtering exploits directly the information about the
noise that corrupts the signal of interest. Therefore, since in our model the loud-
speaker signal is available, there is no need in using preprocessing techniques on
the microphone signal to get an estimate of the noise component.
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However, similar to any other speech enhancement technique, adaptive filtering is
governed by certain limitations. The convergence speed, being one of the main
characteristic performance measures of an adaptive algorithm, measures how fast
the filter adapts its coefficients to the desired state. Real time applications such
as ANC require usually fast convergence [29,30]. Adaptive filtering is an iterative
method which implies the existence of a step size that controls the adaptation of
the filter’s parameters. As a result, the choice of the step size has a direct impact on
the convergence speed of the algorithm. Several methods have been implemented
to address this problem by either making the step size time varying [31–34] or by
deriving an optimal step size based on various criteria [35–37]. In addition, the
length of the adaptive filter is another factor that affects the convergence of the
iterative process. For applications where the impulse response of a room needs
to be modeled several hundred of filter taps are required. The longer the filter
is, the slower the convergence of the filter coefficients [38]. In search for an ideal
filter length in AEC applications, recent studies have used different optimization
frameworks [39, 40]. Finally, a certain class of adaptive algorithms based on the
minimization of the mean squared error (MSE) have received a lot of attention due
to their robustness and ease of implementation which reduces the computational
cost. Nonetheless, convergence on this type of algorithms is relatively slow for
colored input signals [41]. Since music and speech are considered as such a great
emphasis is given on techniques that attempt to resolve this issue.
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3 Adaptive Filtering

In this chapter the fundamentals of adaptive filtering are presented. First, a closed
form solution of the Wiener filter is derived while showing that is optimal in the
mean squared sense. Subsequently, the motivation for approximating the Wiener
solution iteratively is given. Translating the problem of this thesis into a noise
cancellation scenario it is proved both mathematically and geometrically that un-
der certain assumptions ANC can be considered a speech enhancement technique.
The family of least mean squares algorithms is next introduced along with their
convergence properties. Finally, a set of simulations highlights the superiority of
the transform domain adaptive filter in terms of convergence speed in the case of
highly correlated input signals like music. Since in the current work the involved
signals are audio signals all the derived equations are real valued.

3.1 Wiener Filter

The scheme of adaptive filtering is demonstrated in Fig. 3.1. The model consists of
an M -tap filter [30] denoted as w(n) =

[
w1(n) w2(n) . . . wM(n)

]T
, the input

of the filter u(n), the desired signal d(n) and finally the error signal e(n) which
controls the adaptation process. By (·)T we refer to the transposed operator.

+
u(n)

d(n)

y(n)
e(n)Adaptive Filter

w(n) −

Figure 3.1: Block diagram of the adaptive filter.
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Several studies using infinite impulse response (IIR) filters in adaptive filtering have
been conducted in [42–44] due to their less complex design, in terms of required
memory and calculations [45]. However, finite impulse response (FIR) filters are
considered in this framework due to their implementation simplicity and their
invulnerability to finite word length effects [46].
Since adaptive filtering is an iterative method, the input vector in every iter-
ation comprises the past M samples of the reference signal u(n), i.e. u(n) =[
u(n) u(n− 1) . . . u(n−M + 1)

]T
. The output of the filter can then be writ-

ten as a linear convolution of the input vector and the filter weights

y(n) =
M∑
k=1

wk(n)u(n− k). (3.1)

The filter taps are updated by minimizing an objective function which in most of
the cases is the mean squared error (MSE)

ξ(n) = E
{
e2(n)} = E

{(
d(n)− y(n)

)2}
= E

{(
d(n)−wT (n)u(n)

)2}
. (3.2)

Assuming that u(n) and d(n) are wide-sense stationary (WSS) processes makes
the filter coefficients time-invariant [30] and the MSE can be written as follows

ξ(n) = E
{
d2(n)

}
− 2wTE

{
d(n)u(n)

}
+ wTE

{
u(n)uT (n)

}
w

= σ2
d − 2wT rdu + wTRuw, (3.3)

where σ2
d is the variance of the desired signal d(n), rdu is the cross-correlation

between the desired and the input signal and Ru is the autocorrelation matrix
of the regressor. Assuming nonsingularity on Ru and setting the gradient of the
MSE to zero gives the optimal weight vector wo, also called the Wiener solution

wo = R−1
u rdu. (3.4)

The minimum MSE is obtained by evaluating the objective function at the optimal
solution wo

ξmin = σ2
d − 2wT

o rdu + wT
o RuR−1

u rdu

= σ2
d −wT

o rdu. (3.5)

Furthermore, an important property of the Wiener Filter is shown by examin-
ing the MSE surface at the optimal solution. The gradient of the error surface
expressed as

∇ξ(n) =
∂E

{
e2(n)

}
∂w

= E

2e(n)∂e(n)
∂w

 = −2E
{
e(n)u(n)

}
(3.6)
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is equal to the zero vector for w = wo yielding to

E
{
e(n)u(n)

}
= 0 (3.7)

This the well-known orthogonality principle [30] which implies that the error and
the input signal are orthogonal to each other and, provided that the processes are
zero-mean, they are also uncorrelated. This fundamental property is established
in the 3.1.1.2 and signifies the assumption that the music and the speech vector
are orthogonal. Moreover, it constitutes the basis for suppressing the noise in an
adaptive noise cancelling scheme, a concept described in the following section.

3.1.1 Adaptive Noise Cancelling

Adaptive noise cancellation (ANC) is one of the most popular applications of
adaptive filtering firstly introduced by Widrow et. al in [47]. The idea behind
ANC is to design a system which will cancel the noise corrupting the signal of
interest. The link between this notion and the objective of this thesis is quite
apparent. The block diagram in Fig. 3.2 shows a speech enhancement framework
using an adaptive noise canceler. A digital filter along with two inputs and a single

u(n) z(n)

y(n)

d(n)

s(n)

e(n)

hu(n)

w(n)
Adaptive Filter

Figure 3.2: Block diagram of an adaptive noise canceler (ANC). The adaptive filter
provides the best linear map of the input music signal u(n) to the music component z(n)
of the microphone signal d(n). The output of the ANC is eventually an approximation
of the speech signal s(n).

output comprise the main elements of an ANC system. Adjusting the system to our
model, let s(n) be the speech signal and u(n) the music signal being played from
the loudspeaker. In addition, let z(n) be the music component that arrives to the
microphone after being convolved with the unknown transfer function hu(n). The
speech signal mixed with this music component constitute the primary input of
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the system, i.e. d(n) = s(n) + z(n). The music signal u(n) provides the secondary
input to the canceller which is also the input of the adaptive filter. The digital filter
adapts its coefficients so that u(n) is mapped to the correlated music component
z(n) of the primary input signal. Ultimately, ANC aims at minimizing the output
of the system e(n) = d(n) − y(n) which in this setup eventually yields to an
estimate of the speech signal. This notion is justified first mathematically and
then geometrically in the following sections.

3.1.1.1 Mathematical Interpretation

In order to prove that the output of the described system is approximating the
speech signal s(n), the following assumptions are made:

(a) s(n), u(n), y(n), z(n) are zero-mean stationary processes.

(b) the speech signal s(n) is uncorrelated with the interfering music component
z(n).

(c) the reference music signal u(n) is correlated with the music component z(n)
of the primary input signal d(n) but uncorrelated with the speech signal s(n).

The output of the system can then be written as follows

e(n) = d(n)− y(n) = s(n) + z(n)− y(n). (3.8)

Taking the square and subsequently the expectation on both sides of Eq. (3.8)
gives

E
{
e2(n)

}
= E

{
s2(n)

}
+ E

{(
z(n)− y(n)

)2}
+
���

���
���

���
�:0

2E
{
s(n)

(
z(n)− y(n)

)}
. (3.9)

The term that goes to zero in the above equation relates back to the assumptions
(b) and (c). Therefore minimizing the total output power E

{
e2(n)

}
with respect

to the filter coefficients is equivalent to minimizing E
{(
z(n) − y(n)

)2}
, making

the output of the adaptive filter y(n) the best fit to the captured music signal z(n)
in the least squares sense [47]. The Wiener solution is the optimal least squares
solution of the above minimization problem and when it is attained the output
signal-to-noise ratio is maximized. That implies that E

{(
z(n)− y(n)

)2}
= 0 and

therefore the filter’s output is a replica of the music component z(n). Finally, from
Eq. (3.8) it is obvious that the error e(n) of the ANC system becomes equal to the
speech signal s(n).
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3.1.1.2 Geometrical Interpretation

Here, the result of Eq. (3.7) is demonstrated from a geometrical perspective.
Namely, considering our model, it is shown that the Wiener solution wo sug-
gests that the speech and the music vectors are orthogonal to each other. The

C(U)

d

Uwo

e

Figure 3.3: Orthogonality principle. The optimal least squares solution implies that the
error e is orthogonal to all row vectors of the music matrix U. Assuming speech and
music are uncorrelated, the error vector e corresponds to the speech component s of the
observation vector d.

geometrical illustration of the orthogonality principle is depicted in Fig. 3.3. Let
U =

[
u(n) u(n+ 1) . . . u(n+M − 1)

]T
be the convolution matrix defined by

the sequential vectors of the input signal u(n). In addition, let z = Uwo be
the music component which mixed with speech s define the noisy speech vector
d = s + z. The objective of the minimization problem

min
w

‖d−Uw‖2 (3.10)

is to find the vector w in the column-space C(U) that is closest to the vector d in
the Euclidean norm sense [41]. The solution is of course the projection of d onto
the hyperplane defined by C(U), which implies that the error vector e is orthogonal
to the space spanned by the Uwo vector. Also, it is assumed that

s ∈ N (UT ) and z ∈ C(U),

where N (UT ) is the null-space of UT . As a result, the residual error e is equivalent
to the speech vector s.
Having proved that under certain assumptions the output of the ANC system
is equal to the speech signal, the next focus is on the iterative schemes of the
incorporated adaptive filter. A certain class of algorithms is therefore presented
along with their properties and limitations.
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3.2 Least Mean Squares

In real time applications such as ANC the whole realization of the signals is usually
not available and therefore the closed form solution of Eq. (3.4) cannot be used.
Instead, an iterative scheme is preferred which starts with an initial guess of the
optimal solution. Most of the adaptive schemes are based on the method of steepest
descent [41] which is described by

w(n+ 1) = w(n)− 1
2 µ∇ξ(n) = w(n) + µE

{
e(n)u(n)

}
, (3.11)

where µ is the step size that controls how fast the filter taps converge to the
optimal solution. The steepest descent searches for the minimum of the objective
function ξ(n) in the opposite direction of its gradient. Providing that ξ(n) is a
convex function any minimum attained by this scheme is also a global minimum
of the objective function. The minimization of the MSE depends on the statistics

Figure 3.4: Block diagram of the LMS adaptive filter.

of the involved signals on which little or no information is usually available. As
a result, different approximations of Eq. (3.6) have been investigated which lead
to the development of different methods. The most popular of them uses an
instantaneous estimate and goes by the name of LMS. The LMS block diagramm
is depicted in Fig. 3.4. The input signal of the adaptive filter is processed in a
tapped delay line (TDL) form and thus the update equation of the LMS algorithm
is given by

w(n+ 1) = w(n) + µ e(n) u(n). (3.12)
The LMS algorithm is widely used in many real time applications mainly due to
its low computational complexity and low sensitivity to quantization errors [41].
However, the main challenge of the iterative schemes used in real-time applications
is attaining the solution within few iterations. That implies that the convergence
speed of the algorithm plays a significant role in the selection of the algorithm and
is investigated first for the case of LMS.
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3.2.1 Convergence of the LMS algorithm

The convergence of the LMS algorithm depends highly on the step size µ. By
inspecting the eigenvalues, λk of the auto-correlation matrix Ru, it is proven in [48]
that the filter converges to the Wiener solution if |1− µλk| < 1, for every k. This
is satisfied by choosing the step size according to the following inequality

0 < µ <
2

λmax
, (3.13)

where λmax corresponds to the maximum eigenvalue of Ru. The above inequality
indicates that λmax sets a limit on the learning rate of the algorithm while keeping
the adaptation process stable. On the other hand, the smallest eigenvalue defines
how slow the filter coefficients adapt to the desired values [49]. Especially in highly
colored signals λmin can get close to zero resulting in very slow converging rates. In
addition, non-stationary signals like music and speech present significant changes
in the variance across time [50]. Abrupt changes in the energy of the filter’s input
signal have been dealt with a the normalized LMS algoritm which is introduced in
the following section. The notion of this method is to control the adaption process
with a normalization term that compensates for large variations in the energy of
the input signal.

3.3 Normalized LMS

The NLMS is one of the fundamental algorithms in the LMS family and is of
great interest due to its ability to deal better with slowly varying nonstationary
input signals. The NLMS algorithm is derived from the Gauss-Newton method
where the use of second order statistics reduces the algorithms dependence on
the input power spectrum leading to improvement in the convergence rate of the
algorithm [51]. The Gauss-Newton update scheme for an FIR adaptive filter is
given by

w(n+ 1) = w(n)− 1
2 µ

[
∇2ξ(n)

]−1
∇ξ(n). (3.14)

The difference between the traditional LMS and NLMS lies on the search di-
rection where the latter method incorporates the Hessian of the minimized cost
function. For the case of a stationary input, the Hessian is equal to ∇2ξ(n) =
E
{
u(n)u(n)T

}
= Ru. Therefore by approximating again the gradient with an

instantaneous estimate the update equation becomes

w(n+ 1) = w(n) + µ e(n) R̂−1
u (n) u(n). (3.15)
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Usually an instantaneous approximation of the autocorrelation matrix is chosen
R̂u(n) = ||u(n)||2 which gives the final form of the NLMS update rule

w(n+ 1) = w(n) + µ
u(n)

ε+ ||u(n)||2 e(n), (3.16)

where the additional parameter ε corresponds to a regularization term introduced
to compensate for noise amplification in the case of a very small ||u(n)||. The
inverse autocorrelation matrix acts as a normalization factor that compensates for
the large fluctuations in the input signal. The choice of NLMS is quite intuitive
when dealing with signals like music which are usually governed by large variations
in the power levels.

3.3.1 Convergence of the NLMS algorithm

In addition to the bounds of the step size given in Eq. (3.13) it is shown in [48]
that the LMS algorithm converges in the mean-square if

0 < µ <
2

tr(Ru) , (3.17)

where tr(Ru) is the trace of the input autocorrelation matrix. Furthermore for a
stationary process u(n) it holds

tr(Ru) = Mru(0) = ME
{
u2(n)

}
,

where E
{
|u(n)|2

}
is the power of u(n), and could be estimated using an average

such as
E
{
u2(n)

}
≈ 1
M

M−1∑
k=0

u2(n− k).

As a result the inequality in (3.17) can be written as follows

0 < µ <
2

||u(n)||2 . (3.18)

By rearranging the above inequality, the LMS algorithm can be rewritten incor-
porating the time variant step size µ̃(n) = µ /

(
ε+ ||u(n)||2

)
which if substituted

yields the update equation of the normalized LMS in Eq. (3.16). The step size µ
is now data independent since NLMS converges to the mean square for 0 < µ < 2.
Although NLMS has shown better overall performance in terms of convergence
speed for non-stationary signals, the learning rate of the algorithm is relatively
slow for colored inputs. The class of transform domain adaptive filters (TDAF)
has been developed to resolve this issue and is described in the following section.
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3.4 Transform Domain LMS

The concept of implementing a frequency domain realization of the traditional
LMS adaptive filter, was first introduced by Dentino et. al [52], showing significant
reduction in the computational complexity of the algorithm in terms of number of
multiplications. Furthermore, this work gave rise to other investigations [53], [49]
which proved that a substantial gain in the speed of the algorithm’s adaptation
can also be achieved. Thus, the family of TDAFs consists of two main categories,
one that focuses on numerical efficiency and another focusing on the improvement
of the convergence behavior. Here, the latter category is of interest since the
nature of the input music signal in our framework causes an inherent problem in
the convergence of the adaptive filter.
The performance of certain real-time applications, like ANC is highly dependent
on the convergence speed of the adaptive scheme. In turn, the convergence speed of
the filter coefficients is directly related to the second-order statistics in the input
signal and more specifically to the eigenvalue spread of its covariance matrix,
Ru = E{u(n)uT(n)} [41]. Also encountered as condition number in the literature,
the eigenvalue spread is defined as

κ(Ru) = λmax

λmin
,

where λmax and λmin are the largest and smallest eigenvalues of Ru respectively.
The conditioning of Ru is determined by the value of this quantity. A large
value of the condition number of Ru implies high correlation of the input signal
which results in slow convergence of the adaptive filter. Hence, a pre-whitening
technique is needed that would decompose the colored input signal, in our case
the music signal, into orthogonal components and thereby reduce the eigenvalue
spread. Next, the use of orthogonal transforms as a decorrelating technique is being
introduced and the performance of various transformations is briefly reported.

3.4.1 Orthogonal Transforms

The Karhunen Loéve transform (KLT) is an optimal orthogonalizing technique in
terms of signal decorrelation. Let qi be the eigenvector associated with the i-th
eigenvalue of the input correlation matrix Ru. The transformed elements after
applying the KLT would be of the form

xi(n) = qTi u(n), i = 0, . . . ,M − 1.

As mentioned in section 3.3, the Hessian in the Gauss-Newton’s recursion corre-
sponds to the autocorrelation maix of the input signal u(n). Since the eigen-
vectors are orthogonal to each other by construction, the transformed vector
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x(n) =
[
x0(n) x1(n) . . . xM−1(n)

]T
becomes uncorrelated and its autocorre-

lation matrix would be of the form

Rx = E
{
x(n)xT (n)

}
=


λ0

. . .
λM−1

 ,
where λi are the eigenvalues of Rx. However, since the KLT transformation is
signal dependent, its computational complexity is a prohibiting factor in real-time
applications such as ANC. Instead a sub-optimal transform is often chosen. It is
worth mentioning that the recursive least squares (RLS) is a class of algorithms
that attain near optimal performance [54]. These algorithms use a time-varying
estimate of Ru to whiten the regressor. The inversion of this estimate though
is rather expensive and hence RLS algorithms are not preferred in time-critical
applications although their performance might be superior to the conventional
LMS.
The need of a computationally efficient orthogonal transform led to the develop-
ment of the transform domain LMS (TDLMS) based on fixed unitary orthogonal
transforms. Among others, the discrete Fourier transform (DFT) and the discrete
cosine transform (DCT) were evaluated first by Narayan in [53]. It was shown
that the DCT achieves a significant reduction of the condition number of the in-
put autocorrelation matrix which in turn improves the convergence speed of the
adaptive filter. Moreover, DCT is a real-valued transform which makes it compu-
tationally more efficient to use when dealing with real-valued signals, such as audio
signals [55]. In addition, in [56] the use of the Walsh-Hadamard transform (WHT),
the discrete Hartley transform (DHT) and the powers-of-2 transform (PO2) trans-
form were tested alongside the DCT, where again the latter outperformed the rest
by significantly reducing the eigenvalue spread of the input correlation matrix. As
a result, the DCT is considered and evaluated in this work.

3.4.2 Orthogonalization and Power Normalization

The TDLMS adaptive scheme is shown in Fig. 3.5. Compared to the traditional
LMS, TDLMS involves two additional operations, both applied to the input signal.
First, the orthogonalization of the regressor is carried out, followed by a power
normalization step. At the first stage, a unitary matrix T is applied to the M past
input samples of the input u(n) =

[
u(n) u(n− 1) . . . u(n−M + 1)

]T
. The

transformation matrix T is a square M×M fixed matrix consisting of orthonormal
vectors, where M is the filter length. The transformed vector x(n) is then defined
as

x(n) =
[
x1(n) x2(n) . . . xM(n)

]T
= T u(n) (3.19)
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Figure 3.5: Block diagram of the transform domain LMS adaptive filter.

and the adaptive weight vector as

w(n) =
[
w1(n) w2(n) . . . wM(n)

]T
. (3.20)

Hence, the output of the adaptive filter and the instantaneous error are given by

y(n) = w(n)Tx(n) = w(n)TT u(n) (3.21)

and
e(n) = d(n)− y(n). (3.22)

Finally, the weight update equation is described by

w(n+ 1) = w(n) + µ e(n) Λ−2 T u(n). (3.23)

The inverse of matrix Λ2 accounts for the power normalization step of the al-
gorithm. Since every filter coefficient is adapted independently there exists a
corresponding normalization factor on the diagonal matrix

Λ2 = diag
[
σ2

0 σ2
1 . . . σ2

M−1

]T
(3.24)

where
σ2
i = E

{
|xi(n)|2

}
. (3.25)

The power of every independent component is usually approximated by an expo-
nential weighted average [49,54] of past samples

σ2
i (n) = ασ2

i (n− 1) + |xi(n)|2, 0 < α < 1. (3.26)

Similar to the notion of NLMS in section 3.3, the energy might be insufficient
in a time-varying signal like speech and music. This leads to ill-conditioning of
the technique [54]. Since it is not trivial to predict the inactive periods of audio
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signals and pause the adaptation, a small positive constant is added to each of the
diagonal elements of Λ2

Λ̂2 = Λ2 + εI. (3.27)
Next the convergence properties of TDLMS are elaborated followed by a geomet-
rical interpretation of the algorithm which will give a better understanding of the
algorithm’s principles.

3.4.3 Convergence properties of the TDLMS algorithm

Recalling that the LMS algorithm minimizes the MSE, it is useful to take a geo-
metrical approach to analyze the convergence behavior of the adaptive filter. Thus,
in this section more insight is obtained starting with following expression of the
MSE surface

ξ(z) = E
{
|e(n)|2

}
= ξmin + zTRuz, (3.28)

where ξmin is the mean square error evaluated at the Wiener solution wopt and
z = w − wopt. From Eq. (3.19) it can be shown that Rx = T RuTT . Hence, we
can write

ξ(z) = E
{
|e(n)|2

}
= ξmin + zT

[
T RuTT

]
z. (3.29)

At this point, it is of significant importance to state that the application of a
unitary matrix T to the input vector is not sufficient to uncorrelate the signal.
The input vector’s transformation translates to a rotation of the contour lines of
the MSE. Therefore, since the error surface is not modified there is no change in
the convergence rate of the adaptation. This argument will be better established
in a simple example further on in this section.
The power normalization of each independent component is carried out on the next
stage, which in fact has the same effect as pre-whitening the input signal. In the
case of a colored input signal, this is reflected to the conversion of the geometry
of the error surface from hyperellipsoids into hyperspheres. Of course, when the
filter’s input is white Gaussian noise no improvement on the convergence speed of
the algorithm is expected since all frequency bins have equal power. That means
that all the points along each contour line of the MSE surface are equidistant
from the optimal solution. By letting z = Λ−1z̃ the error surface after the power
normalization step of TDLMS is described by

ξ(z̃) = E
{
|e(n)|2

}
= ξmin + z̃T

[
Λ−1T RuTTΛ−1

]
z̃. (3.30)

3.4.3.1 Geometrical Interpretation

A geometrical respresentation of the described algorithm is given next for a simple
two-tap filter example. Let the autocorrelation a matrix of a colored input signal
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be the following

Ru =
[
1.0 0.9
0.9 1.0

]
. (3.31)

Figure 3.6: The contour lines of the MSE surface.

The 3d-surface of the mean square error described by Eq. 3.28 is depicted in
Fig. 3.6. One of the fundamental assumptions in adaptive filtering is that Ru is a
positive definite matrix which is the reason why the contour lines have this hyper-
elliptic shape. The length of the hyperellipses’ semiaxes are in fact proportional
to the eigenvalues of Ru. Hence in this case, the bigger the ratio between the
maximum and the minimum length, the slower the convergence of the adaptive
filter is expected. Applying a unitary transformation matrix T to the input would
align the error surface with the principle coordinates of the system. The result of
this transformation with an arbitrary matrix is depicted in Fig. 3.7a. Finally, the
last step of the method is performed which consists of the power normalization of
the transformed signal. The effect of this operation is shown in Fig. 3.7b.
Note that the contour lines are not completely spherical as suggested earlier in
this section and this traces back to the suboptimal transformation matrix that has
been used for this example. Since T is fixed and data independent, it fails from
making the autocorrelation matrix diagonal and thus the signal is still partially
correlated. This is also the case when using fixed transforms like the DFT and
the DCT. Most of these transforms are represented by non-ideal band-pass filters
which results in spectral leakage [49].
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(a) (b)

Figure 3.7: The contour lines of the MSE surface after orthogonalizations and normaliza-
tion. Note that the (a) orthogonalization step aims at the alignment of the hyperellipses
with the coordinate axes, whereas (b) power normalization achieves partial decorrelation
of the input signal by making the contours more spherical.

3.5 Simulations

The performance of the described algorithms are assessed in a simulated environ-
ment considering an ANC scenario. The noise signal is convolved with an arbi-
trarily initialized 50-tap IR and is mixed subsequently with a 6 sec speech signal
sampled at 16 kHz. The adaptive filter and the unknown system are assumed to
have the same length. The SNR of the noisy speech signal is set at 0 dB. Since all
of the investigated algorithms approximate the Wiener solution wo in the steady
state, the convergence speed of the filter’s adaptation will be the main performance
criterion. More specifically, the mean squared deviation (MSD) of the adaptive
filter is plotted with respect to every iteration. This metric of MSD measures
the average difference between the adaptive filter and the optimal solution, i.e.
E
{
‖w(n)−wo‖2

}
[38].

However, the MSD cannot be measured in practice and therefore as wo the initial-
ized 50-tap IR is considered in this framework and the MSD is calculated as the
average 1

M

∑M
i=1

(
wi(n) − wo,i

)2
, where wi(n) is the i-th coefficient at iteration n

and M is the number of the filter coefficients, in this case M = 50.
Ultimately, the output SNR is evaluated for both investigated scenarios for a set
of very low SNRs. Recalling from section 3.1.1, due to the orthogonality principle
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the error signal of the adaptive filter (see Fig. 3.2) gives an approximation of the
speech signal. Therefore the output SNR is computed as follows

SNRo = 10 log10

∑L
n=k s

2(n)∑L
n=k

(
s(n)− e(n)

)2 , (3.32)

where L − k is the time interval where speech is present. Nonetheless, the error
signal is formed during the filter’s adaptation which implies that in case of slow
convergence the filter might not have reached the steady mode of operation. In
Fig. 3.8a the transient and steady state regions of the filter’s learning curve are
demonstrated. In a real ANC scenario used for command recognition the adapta-
tion of the filter is expected to have started much sooner than the speech segment
is incorporated in the system. Obviously, the output SNR is highly dependent
on the position of the speech signal within noise. Therefore, in the simulations
in order to avoid the early transient state of the filter’s adaptation, the speech
segment is mixed with the late part of the noise. An example of a speech segment
mixed with different regions of noise is illustrated in Fig. 3.8b.

(a) Operation regions of the adaptive flter
learning curve.

(b) Speech segment mixed with three differ-
ent parts of the noise signal.

Figure 3.8: Speech and music mixing configuration. The steepness and length of the
transient state shown in (a) are the main characteristics of the adaptive filter’s conver-
gence. To avoid the early transient phase of the filter speech is assumed in positions 2
or 3 as depicted in (b).

In the first experiment, the LMS and NLMS algorithms are compared considering
white Gaussian noise in the adaptive filter’s input with variance σ2

u = 0.01. The
filter coefficients for LMS and NLMS are updated according to Eq. (3.12) and
(3.16) respectively. For comparison purposes the step size of both LMS and NLMS
algorithms has been set to µ = 0.01. In Fig. 3.9a the MSD of the compared
methods is demonstrated where it is clear that NLMS outruns LMS in terms of
convergence speed. Moreover, both algorithms when they operate in the steady
state mode they have comparable performance, an observation that is expected
since both algorithms approximate the Wiener solution.
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(a) Convergence of LMS and NLMS for white Gaussian noise. Note that for
the same fixed step size µ = 0.01 NLMS converges faster than LMS.
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(b) Convergence of LMS and NLMS for brownian noise (random walk noise).
Note the significant improvement in the convergence speed of TDLMS com-
pared to the other two methods.

Figure 3.9: Mean squared deviation (MSD) for both investigated experiments. The
MSD measures the average difference between the adaptive filter w(n) and the optimal
Wiener solution wo, i.e. E

{
‖w(n)−wo‖2

}
.

In the second experiment, the case of having colored noise in the input of the
adaptive filter is investigated. More specifically, Brownian noise (red noise) is
generated, described by the first-order autoregressive process

u(n) = 0.85u(n− 1) + δ(n),

where δ(n) is white Gaussian noise of variance σ2
δ = 0.16. Here, in addition to LMS
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and NLMS, the algorithm of TDLMS is tested. The filter in the latter method
adjusts its coefficients according to Eq. (3.23). Moreover, a DCT matrix is applied
to the input signal u(n) given by

TDCT(i, j) =
√

2
N
Ki cos

 π
N

(
j + 1

2

)
i

 i, j = 0, . . . ,M − 1

with Ki = 1 /
√

2 for i = 0 and 1 otherwise [53]. Regarding the power normal-
ization, which comprises the second stage of TDLMS, an estimate of the power of
every component is considered using the exponential weighted average described
in Eq. (3.23). The forgetting factor of this weighted average was set to α = 0.999.
The MSD of the compared algorithms for this experiment is demonstrated in
Fig. 3.9b. It is clear that the TDLMS algorithm outperforms the rest of the al-
gorithms in terms of convergence rate. The dependence of LMS convergence on
the conditioning of the input autocorrelation matrix Ru was described earlier in
Eq. (3.13). Furthermore, in Fig. 3.10 the eigenvalues of Ru are plotted before and
after applying the DCT followed by the power normalization. The plot indicates
the significant reduction in the eigenvalue spread κ(Ru), which in fact here drops
from 141 to 2. In addition, Fig. 3.11 depicts the autocorrelation matrix before and
after the transformation of the input signal. The non-zero elements around the
diagonal of Ru, depicted in Fig. 3.11a, point out that Brownian noise is correlated.
On the other hand, Fig. 3.11b confirms the efficiency of TDLMS in diagonalizing
Ru and normalizing the power across the independent components of the input.

0 10 20 30 40 50
n

10 4

10 3

10 2

10 1

100

n/
m

ax

Original Input
Input after DCT and Power Normalization

Figure 3.10: Eigenvalues of the the input autocorrelation matrix. Note that the ra-
tio between the largest and the smallest eigenvalue has dropped significantly after the
application of DCT and power normalization (κ(R) : 141→ 2).
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Figure 3.11: Autocorrelation matrix R of Brownian noise (a) before and (b) after the
DCT and power normalization. The non-zero elements around the diagonal of R indicate
correlation of the noise which is eliminated in (b).

Finally, in Fig. 3.12 the output SNR is plotted for a set of low input SNRs. The
values of this set were chosen in correspondence to the expected input SNRs re-
ported in the Table 2.1 of the previous chapter. For the case of white Gaussian
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(a) Comparison of LMS and NLMS for white
Gaussian noise.
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(b) Comparison of NLMS and TDLMS for Brow-
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Figure 3.12: Output SNR regarding both investigated experiments.

noise (Fig. 3.12a) we observe that LMS and NLMS produce similar results since in
both cases the filter reaches the steady state in comparable time instances. How-
ever, the correlated Brownian noise causes the NLMS adaptive filter to converge
much slower justifying its degraded performance compared to the TDLMS digital
filter (Fig. 3.12b).
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4 Results

In this chapter the results from a Monte Carlo simulation are demonstrated re-
garding the performance of the NLMS and TDLMS algorithms described in the
previous chapter. In particular, the performance metrics that have been used
to evaluate the aforementioned techniques are the output SNR of the ANC sys-
tem, STOI as an objective measure of speech intelligibility and WER which was
computed after feeding the enhanced signals to a machine learning based ASR
algorithm.

4.1 Simulation set-up

The speech signals used in the Monte Carlo simulation are part of the GRID [57]
database. More specifically, 24 speech segments were selected corresponding to
4 female and 4 male speakers. Each of these segments were mixed with 6 sec of
music as shown in Fig. 4.1. The music database consists of 5 tracks of different
genre normalized with respect to their loudness level. Both speech and music
signals were downsampled to 16 kHz. The speech segment in every case is mixed
deliberately with the late part of the music segment in order to avoid the transient
state of the adaptive filter’s convergence. For more details on the filter states the
reader is referred to Section 3.5.

Figure 4.1: Monte Carlo simulation setup. 24 speech segments were mixed with music
segments of different genre (classical, rock, jazz, pop).
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The impulse responses (IRs) that the speech and the music signals have been
convolved with, correspond to real measurements carried out in both an anechoic
and a reverberant environment. The reverberant room’s volume is 62 m3 and has
a reverberation time T60 = 0.3 sec. In the case of the reverberant environment the
speech source was considered at five different distances ds with respect to the music
source, namely 150, 200, 300, 400 and 500 cm. On the other hand, due to lack of
space in the anechoic environment, it was possible to measure IRs considering the
talker up to ds = 300 cm away from the loudspeaker. In both environments the
loudspeaker microphone was placed at a distance of dm = 20 cm from the music
source.
The setup for recording individual IRs was the following. The music and the
speech source were represented by two loudspeakers. An additional microphone
placed at 1 m in front of the speech source captured individual sweeps generated
by each source. For every IR, 4 sweeps2 were generated and were subsequently
averaged. The pressure level of each sweep was considered at 70 dBSPL on average
(see Fig. 2.1) across the frequency range.
The IRs were recorded at a sampling rate of 48 kHz and were subsequently resam-
pled at 16 kHz. They were then truncated to the noise floor of the IR measured in
the reverberant room considering the speech source at ds = 150 cm.
The algorithms were implemented and evaluated in a Python 3.6 environment. The
fundamental parameters of the adaptive filters were determined as follows: The
length M of the filter was set to 500. The regularization parameter that accounts
for numerical issues in the normalization factor of both NLMS and TDLMS was
set to ε = 0.001. The forgetting factor of the exponential weighted average in
TDLMS was chosen to be α = 0.999. Being that the step size controls the learning
rate of the adaptive filter in both algorithms, its value has a great impact on the
final results. However, optimizing for its value is out of the scope of this work.
Therefore, the value that yields the maximum output SNR was chosen as the step
size in this evaluation. This was accomplished by performing a linear search in
every iteration of the Monte Carlo simulation.
In Fig. 4.2 the step size of both algorithms is plotted. It can be observed that as
the SNR drops, both the step size of NLMS and TDLMS increases. However, we
see that in NLMS the step size varies significantly as a function of the input SNR.
In addition, by taking a look at the standard deviation, it can be seen that the
step size of TDLMS lies in a much smaller interval compared to NLMS for each
set of Monte Carlo simulation. This indicates that TDLMS offers a better control
of the step size parameter that plays a significant role in the filter’s convergence.

2As sweep, a sinusoidal signal that sweeps usually through the entire frequency range of 20 - 20,000Hz
is considered.
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(a) Anechoic chamber.
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Figure 4.2: The mean and standard deviation of the step size for NLMS and TDLMS
with respect to the input SNR. Note that TDLMS has a significantly smaller standard
deviation suggesting more consistent results.
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4.2 Performance metrics

In this section the performance metrics considered for the proposed algorithms are
defined. Note that all metrics are plotted over the mean values of the input SNRs
which correspond to different talker positions as denoted on the top axis of every
graph. Let the signal captured by the microphone be d(n) = s(n) + z(n) where
s(n) is the clean speech signal and z(n) is the music signal. Then, the input SNR
is defined as

SNRi = 10 log10

∑L
n=k s

2(n)∑L
n=k z

2(n)
. (4.1)

In the above equation, it is assumed that L−k is the discrete time interval within
d(n) where speech is present.

4.2.1 Signal-to-Noise Ratio (SNR)

The first performance metric that was computed was the output SNR of the ANC
system and is plotted with respect to the input SNR at the microphone. Moreover,
since the residual noise in the enhanced signal cannot be measured, the output SNR
is calculated as follows

SNRo = 10 log10

∑L
n=k s

2(n)∑L
n=k

(
s(n)− ŝ(n)

)2 , (4.2)

where ŝ(n) is the estimated speech signal that coincides with the error signal of
the adaptive filter (see Fig. 3.2) as proved in Section 3.1.1.

4.2.2 Short Time Objective Intelligibility (STOI)

As an objective speech intelligibility measurement, STOI was used. It is impor-
tant to state at this point that STOI does not follow a linear relationship with
respect to speech intelligibility. In other words, the improvement in the intelli-
gibility of speech in the interval [0.6, 0.8] is significantly larger compared to the
interval [0.8, 1.0]. More insight about the correlation between subjective speech
intelligbility and the metric of STOI can be found in [58].

4.2.3 Word Error Rate (WER)

Ultimately, since the proposed framework aims at supporting the front end of a
speech recogniser, the word error rate (WER) is calculated

WER = S +D + I

N
%, (4.3)

32



where S is the number of substitutions, D the number of deletions, and I, the
number of insertions in the hypothesis sentence corresponding to the extracted
speech. N is the number of the words in the reference sentence. Both the hy-
pothesis and reference sentences were obtained through the speech-to-text engine,
DeepSpeech. A deep learning approach was used in the development of this open
source ASR implementation.

4.3 Monte Carlo results

In this section, the results of the Monte Carlo simulation are presented. The per-
formance of NLMS and TDLMS is assessed regarding their effectiveness in sup-
pressing the interfering music signal in significantly low input SNRs. In addition,
the performance of the two methods is compared for all three performance metrics
introduced in the previous section. Each performance metric is illustrated as a
function of the input SNR. As the top axis of every graph indicates, the values
of the input SNR correspond to different distances of the speech source from the
music source. In addition, the plots below show the results of each metric in both
the anechoic chamber and the reverberant room.
In Fig. 4.3 the output SNR is illustrated for both NLMS and TDLMS. It is obvious
that both NLMS and TDLMS succeed in suppressing significantly the music signal
that corrupts speech. In general, as the input SNR increases the output SNR
also increases in a linear manner. It can also be observed that the output SNR
is comparable in both the anechoic and the reverberant room when considering
the talker at distances close to the microphone. Specifically, for the talker at a
distance of 150 cm from the music source, the output gain is approximatively 24 dB
in both environments. However, it can be seen that as the talker moves away
from the noise source, the input SNR drops considerably faster in the anechoic
chamber in comparison to the reverberant room and consequently so does the
output SNR. Further details on the effect of reverberation in the input SNR are
given in Section 4.4.
The error bars in Fig. 4.4 depict the the mean and standard deviation of the metric
STOI regarding the intelligibility of the enhanced signals. Overall, the results of
TDLMS for both the anechoic and the reverberant environment indicate that the
enhanced speech is intelligible even at very low input SNRs. Moreover, it can be
observed that the results in NLMS show a larger standard deviation than TDLMS.
This implies that more consistent results are obtained using the latter method.
Finally, in Fig. 4.5 the results on the WER are depicted as function of the input
SNRs which again correspond to the different talker positions in each environment.
In general, it is seen that for the whole range of input SNRs investigated, the WER
is 100 % which implies that the speech recognizer fails completely in predicting
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Figure 4.3: Output SNR for (a) the anechoic chamber and (b) the reverberant room.
Note the large gain in the SNR for both NLMS and TDLMS. TDLMS clearly outper-
forms NLMS due to its faster convergence.
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Figure 4.4: The mean and standard deviation of STOI for (a) the anechoic chamber and
(b) the reverberant room. STOI measures objective intellibility on a scale from 0 to 1.
Note that even for very low SNRs, TDLMS attains on average high STOI scores in both
tested environments.
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Figure 4.5: The mean and standard deviation of WER for (a) the anechoic chamber and
(b) the reverberant room. The mean and standard deviation of WER regarding clean
speech after being convolved with the corresponding IR (light grey), noisy speech as it is
captured by the microphone (dark grey), the enhanced speech using NLMS (blue) and
the enhanced speech using TDLMS (orange).
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the words in the reference sentence. As a general remark, it should be noted
that the overall performance of both speech enhancement algorithms is poor. In
addition, it is also observed that the WER results of the clean speech are not
satisfactory either, as one would expect (on average 60 % for the anechoic chamber
and 70 % for the reverberant room). This suggests that in general the results of the
calculated WER are heavily dependent on the speech recognizer used. More insight
on this observation is given in the discussion section that follows. Nonetheless, the
performance of TDLMS is considerably higher to that of NLMS.

4.4 Discussion

This section focuses on pointing out the findings and learnings of this work. More-
over, the performance of both NLMS and TDLMS is summarized for both the
anechoic chamber and the reverberant room in the Tables 4.1 and 4.2 respectively.
First of all, it is observed that the values regarding the prior investigation on the
expected input SNRs shown in Table 2.1, seem to agree with the input SNRs
resulting from the measurements in the anechoic chamber. On the other hand, in
the reverberant room, it can be seen that the SNR is dropping at a slower rate
with increasing distance of the talker. That occurs mainly due to the reverberation
which is absent in the anechoic chamber. In other words, the energy decay in the
reverberant room is longer compared to an anechoic environment. In particular,
the reverberant tail from the speech source IR has a great contribution to the
energy of the corresponding signal. Therefore higher SNRs are attained in the
reverberant room compared to the anechoic chamber.
By inspecting the output SNRs of both the NLMS and TDLMS algorithms the
gain that is achieved is considerably large and as the input SNR decreases it gets
larger. This due to the fact that the adaptive filter in an ANC scenario aims at
finding the best linear mapping of its output and the observed signal. In very low
input SNRs the music component is quite dominant compared to the speech signal.
As a consequence, the adaptive filter manages to produce an output significantly
close to the music profile of the microphone signal. The better the estimation of
the music component the larger is its suppression leading to high output SNRs.
Furthermore, the STOI results seem to present the same trend as the output
SNR. In particular, as the output SNR inreases so does the score of STOI. Of
great interest, however, is the fact that even for extremely low SNRs, namely
−30 dB, the enhanced signals using TDLMS have a STOI score above 0.8. It is
also observed that the standard deviation of both methods grows as the input
SNR drops. This suggests that the precision of the results increases when moving
towards higher SNRs.
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NLMS TDLMS

ds SNRi
SNRo STOI WER SNRo STOI WER

150 cm -13.5 4.4 0.85 90.2% 11.2 0.93 74.5%

200 cm -22.3 1.5 0.79 92.6% 8.5 0.90 79.2%

300 cm -32.7 -1.4 0.70 95.4% 4.5 0.85 84.4%

Table 4.1: Overall comparison of NLMS and TDLMS regarding the simulation in the
anechoic chamber. The microphone loudspeaker is considered at distance dm = 0.2 m
from the music source and the talker at ds.

NLMS TDLMS

ds SNRi
SNRo STOI WER SNRo STOI WER

150 cm -13.0 4.6 0.83 93.6% 11.3 0.93 77.3%

200 cm -19.6 2.3 0.79 92.3% 9.5 0.91 80.6%

300 cm -24.2 0.7 0.76 95.1% 8.5 0.90 82.3%

400 cm -27.1 0.1 0.72 94.4 % 7.0 0.87 83.9%

500 cm -30.4 -1.0 0.71 98.4% 5.6 0.86 87.5%

Table 4.2: Overall comparison of NLMS and TDLMS regarding the simulation in the
reverberant room. The microphone loudspeaker is considered at distance dm = 0.2 m
from the music source dm = 0.2 m and the talker at ds.

Ultimately, the WER results seem rather discouraging at first for both tested adap-
tive schemes. Since the WER even for the clean speech signals were unsatisfactory
a closer look was taken on the transcripted raw speech segments of the database.
It was observed that the implementation of the ASR DeepSpeech tends to make
meaningful sentences out of the input sequences. It can be therefore concluded,

38



being that the GRID database consists of speech segments with certain structure
but meaningless content, the ASR system fails to produce desirable results. More-
over, the fact that DeepSpeech is a context-based ASR implementation is justified
by the results demonstrated in Table 4.3.

example 1 example 2

reference : lay white in P five now lay blue with U five please

clean speech : a white in tea five now lably with you five please

enhanced speech (NLMS) : palywye five -

enhanced speech (TDLMS) : lay one in a pet five now i mean with you find

Table 4.3: DeepSpeech trasnscription results.
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5 Conclusions

5.1 Outlook

Speech enhancement is a signal processing technique that has been addressed from
many different perspectives as seen in the literature. The problem that was posed
in this thesis is the isolation of a voice command corrupted with a music signal
played by a smart loudspeaker. The incentive behind this notion is to support the
speech recognition system of the loudspeaker with a speech enhancement frame-
work. In other words, this works aims at achieving low WERs at the output of
the ASR system without having to reduce the volume of the music played when
the user interacts with the smart speaker. Undoubtedly, the main challenge of this
work is the suppression of the interfering music signal considering significantly low
SNRs.
One of the primary investigations of this work was to determine the expected
SNRs in the loudspeaker microphone. Thus, a ball-park scenario was examined
where the talker and the loudspeaker sensor where considered in different positions
in the free field. The results of this investigation came to an agreement with an
experiment conducted in an anechoic chamber. In contrast, the experiment in
the reverberant room resulted in higher SNRs owing at a great extent to the
reverberant component of the speech signal.
Eventually, the concept of adaptive filtering seemed to fit best this study and more
explicitly the scheme of ANC. In prinicple, ANC is a technique for cancelling the
noise within an observation by solving the least squares problem iteratively. The
methods that were studied and evaluated belong to the LMS family where the
MSE is minimized. Such algorithms have proved to be favorable candidates for
real time application due to their low computational complexity and robustness
against quantization errors.
Among other methods, the traditional LMS, the normalized LMS (NLMS) and the
transform domain LMS (TDLMS) were studied. The traditional LMS and NLMS,
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being derived from the gradient descent and the Newton method respectively, suf-
fer from slow convergence when the input signal is highly colored. This problem
is tackled by TDLMS by introducing two stages to the traditional LMS update
scheme. Specifically, the input signal undergoes at first an orthogonal transforma-
tion which is followed by the normalization of every transformed component. In
practice, as shown in Section 3.4 these two steps aim to make the contour lines of
the MSE surface circular which is equivalent to whitening the input signal. Major
role on the performance of TDLMS plays the orthogonal transform used. KLT is
the optimal transform in terms of energy compaction. Since though KLT is data
dependent and thus computationally expensive, for a real time application, fixed
transforms are preferred instead. Amongst other linear transformations DCT has
shown to have the closest to the KLT decorrelation properties and therefore it was
considered in the evaluation of this framework.
To assess the effectiveness of the adaptive filtering algorithms in suppressing col-
ored noise within a corrupted speech signal, a set of Monte Carlo simulations was
conducted. Real IRs measurements were made both in an anechoic chamber and
in a revereberant room. Although both NLMS and TDLMS managed to suppress
significantly the music signal the latter technique produced superior and more con-
sistent results especially in extremely low SNRs as demonstrated in Section 4.3.
Overall, it can be concluded that providing the interfering signal is available, adap-
tive filtering proved to be particularly effective in suppressing the music that
corrupts the speech signal. Finally, due to its convergence properties, TDLMS
outperforms NLMS as all of the evaluated metrics have shown.

5.2 Future Work

To conclude, the work of this thesis can be considered the beginning of further
investigation in the field of colored noise cancellation. The following research
directions are therefore proposed.
Since the recommended speech enhancement framework comprises a pre-processing
stage in the front-end of a speech recogniser a benchmark on different ASR sys-
tems would be more indicative on the performance of TDLMS in terms of WER.
Undoubtedly, it was also observed that the absent structure of the sentences used
in the Mont Carlo simulation had a great effect on the WER. Therefore, it is
expected that using a database with structured speech and syntax would produce
improved results. x
In the investigated scenario, as noise only the music signal played from the loud-
speaker is considered. That implies that the output SNR in the proposed frame-
work is bounded by the potential environmental noise that might exist. Hence, it
is suggested that noise reduction from different sources is also considered in the

41



framework either as prior information in the reference input of the adaptive filter
or as a post processing technique. Undoubtedly, it should be highlighted that in
any case, the computational complexity should be taken into account for that the
framework should operate in real time.
Secondly, more loudspeakers can be considered in the current setup which entails
that spatial information can be incorporated in the system. Providing that the
relative positions of the music sources are also known, beamforming can be used
leading in more effective noise reduction.
The convergence of adaptive algorithms depends on a number of factors. The
parameter that controls how fast the adaptive scheme reaches the solution is the
step size. In this work, a fixed step size that corresponds to the maximum SNR at
the output of the ANC system is used. Since the value of the step size can vary
considerably, incorporating a time-varying step size like the ones derived in [59,60]
would assist the adaptive algorithm in achieving even faster convergence rates.
Finally, the unitary transform in TDLMS plays a crucial role in decorrelating the
input signal. It has been observed that the use of DCT results in a significant
reduction in the condition number of the input autocorrelation matrix. Thus, an
adaptive signal-dependent unitary transform may present a better performance
although at the expense of higher computational requirements.
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A Acronyms

SNR signal-to-noise ratio

WER word error rate

STOI short time objective intelligibility

ASR automatic speech recognition

SPL sound pressure level

ANC adaptive noise cancellation

ATF acoustic transfer function

RTF relative transfer function

WSS wide-sense stationary

BSS blind source separation

ICA independent component analysis

LMS least mean squares

NLMS normalized least mean squares

TDAF transform domain adaptive filters

TDLMS transform domain least mean squares

RLS recursive least squares

DCT discrete cosine transform

KLT Karhunen Loéve transform
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WHT Walsh-Hadamard transform

PO2 powers-of-2 transform

DHT discrete Hartley transform

FIR finite impulse response

TDL tapped delay line

IIR infinite impulse response

MSE mean squared error

MSD mean squared deviation

DSB delay and sum beamformer

MVDR minimum variance distortionless response

LCMV linear contraint minimum variance

GSC generalized sidelobe canceler

DFT discrete Fourier transform

MVDR minimum variance distortionless response
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