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Below follows a list of the most frequently used notations in this thesis.

Ari arrival time of shipment r at terminal i
bi the ith breakpoint of time-dependent travel time functions of truck services,
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cstorage
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r delay cost of request r ∈ R per container per hour overdue
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lsq a binary variable equal to 0 if service s is the preceding service of service q,

otherwise 1
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m mode indices
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n iteration indices
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s ∈ Struck with request r ∈ R
N terminals
N1 terminals within the export hinterland network
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t decision epoch indices
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t̄s actual travel time of service s ∈ S
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2
s )

t truck
rs travel time of service s ∈ Struck with request r ∈ R

ts(τ) time-dependent travel time function of truck service s with departure time τ

t−ri arrival time of request r at export and import terminal i ∈ Nexp∪Nimp\{or,dr}
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T length of the planning horizon
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T m the mth time period within a day, T m = [bm,bm+1], m = {1,2, ..., I−1}
Tannounce

r announce time of request r ∈ R
Trelease

r release time of request r ∈ R
Tdue

r due time of request r ∈ R
Tdelay

r delay of request r ∈ Rt ∪ R̄t at destination terminal dr in deterministic models
T̃delay

r delay of request r ∈ Rt ∪ R̄t at destination terminal dr in stochastic models
ur container volume of request r ∈ R
Us free capacity of service s ∈ S
U t

s free capacity of service s ∈ S at decision epoch t
U tk

s free capacity of service s ∈ S at decision epoch t for container type k ∈ K
V vehicles V =V ship∪V barge∪V train∪V truck

V m vehicles with mode m ∈M
wri storage time of request r ∈ Rt ∪ R̄t at terminal i ∈ N in deterministic models
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decision epoch t, 0 otherwise
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rp binary variable; 1 if request r ∈ Rt ∪ R̄t is matched with path p ∈ P, 0 otherwise
ẑγh

rp binary variable; 1 if sample request r ∈ ωγh is matched with path p ∈ P at
decision epoch t, 0 otherwise

zt
rsq binary variable; 1 if request r ∈ Rt ∪ R̄t is matched with service s ∈ S, xrs = 1

and service q ∈ S, xrq = 1, 0 otherwise

CTr container type of request r ∈ R,CTr ∈ K
IRr itinerary of request r ∈ Rt ∪ R̄t consists of matched services
lcm

i loading/unloading cost per container at terminal i ∈ N with mode m ∈M
ltm

i loading/unloading time at terminal i ∈ N with mode m ∈M
LDr lead time of request r ∈ R, LDr = Tdue
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r

MTs mode of service s ∈ S,MTs ∈M
MT

′
v mode of vehicle v ∈V

TAs scheduled arrival time of service s ∈ S\Struck

T̄ As actual arrival time of service s ∈ S\Struck

T̃ As arrival time of service s ∈ S\Struck, T̃ As ∼ N(µ−s ,σ
−
s

2
)

T Drs departure time of truck service s ∈ Struck with request r ∈ Rt ∪ R̄t

T Ds scheduled departure time of service s ∈ S\Struck

T̄ Ds actual departure time of service s ∈ S\Struck

T̃ Ds departure time of service s ∈ S\Struck, T̃ Ds ∼ N(µ+s ,σ
+
s

2
)

T D
′
v departure time of vehicle v ∈V\V truck at its origin terminal

α confidence level
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β traffic congestion coefficients
δ optimization interval
Γ number of scenarios
ωγh sampled requests under scenario γ ∈ {1, ...,Γ} at stage h ∈H
Ωt entire populations of shipment requests after stage t
µs mean of the travel time of service s ∈ S
µ+s mean of the departure time of service s ∈ S
µ−s mean of the arrival time of service s ∈ S
σs standard deviation of the travel time of service s ∈ S
σ+

s standard deviation of the departure time of service s ∈ S
σ−s standard deviation of the arrival time of service s ∈ S
ξ−s preceding service of service s operated by the same vehicle
ξ+s succeeding service of service s operated by the same vehicle
θm

s the slope of the travel time function of truck service s for time period T m

ηm
s the intersection of the travel time function of truck service s ∈ Struck for

time period T m

τrs departure time of truck service s ∈ Struck with request r ∈ R
τ
′
rs normalized departure time of truck service s ∈ Struck with request r ∈ R,

0≤ τ
′
rs ≤ 24

ζk
rs a continuous variable used for linearizing the time-dependent travel time

function of truck service s ∈ Struck, 0≤ ζk
rs ≤ 1

ξm
rs a binary variable used for linearizing the time-dependent travel time

function of truck service s ∈ Struck

Φ set of feasible matches
λ Lagrangian multipliers
ρ penalty parameters



Chapter 1

Introduction

This thesis focuses on dynamic, stochastic, and coordinated approaches for shipment match-
ing in global synchromodal transportation. In this chapter, the research background, the re-
search challenges, the research objectives and questions, the contributions, and the outline
of this thesis are described. This chapter is structured as follows. In Section 1.1, the re-
search background in global container transportation is introduced. Section 1.2 presents the
research challenges. Section 1.3 formulates the research questions and approaches of this
thesis. Finally, the contributions and the outline of this thesis are presented in Section 1.4
and Section 1.5, respectively.

1.1 Research background
Global freight transportation involves the movement of cargoes between inland locations
in different continents by road, rail, air, water or any combination of them [55], as shown
in Figure 1.1. It consists of three segments: hinterland transportation in continent A, in-
tercontinental transportation between continent A and B, and hinterland transportation in
continent B. The handling activities (e.g., unloading, loading) between different modes at
transshipment terminals can be facilitated by using standardized loading units (i.e., contain-
ers) [87]. With the increasing rate of containerization in global trades, efficient global con-
tainer transport planning becomes more and more important in the management of global
supply chains.

Traditionally, global container transportation is organized by multiple stakeholders (e.g.,
inland carriers, ocean carriers) independently without information and resource sharing,
which causes high logistics costs, long delivery delays, and heavy carbon emissions. To
improve the competitiveness in global trade, more and more stakeholders turn to form al-
liances to provide transport services integrally from vertical level as well as horizontal level
[9], namely synchromodal transportation. While horizontal integration refers to the col-
laboration among competing carriers doing similar activities (e.g., transport services with
different modes), vertical integration indicates the collaboration among carriers operating at
different levels of the same transport chain (e.g., the collaboration between an inland rail-
way company and an ocean carrier). The vertical and horizontal integration brings a larger
and more complex global network, as shown in Figure 1.2. Synchromodality is the pro-

1
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Continent A Continent B

Deep-sea ports Intercontinental rail terminals

Maritime transportation

Intercontinental rail transportation

Hinterland transportation Hinterland transportation

Inland barge terminals Inland train terminals Inland locations

Ocean Inland waterwayIntercontinental railway Inland railway Road

Figure 1.1: Topology of global freight transport network.
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Figure 1.2: Map of the integrated global network representing our vision.

vision of efficient, reliable, flexible, and sustainable services through the coordination and
cooperation of stakeholders and the synchronization of operations in integrated networks
driven by information and communication technologies and intelligent transportation sys-
tem technologies [30].

A synchromodal transport system consists of several types of entities that interact with
each other, mainly including shippers, carriers, and network operators [99]. Shippers rep-
resent the entities who are searching for services to transport their shipments. Examples
of shippers include freight forwarders and third party logistics (3PL) companies. Carriers
are the entities that provide transport services for part of the transport chain (e.g., for mar-
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Figure 1.3: Synchromodal matching platform.

itime transportation or inland railway transportation). Carriers could be drayage operators,
railway companies, or shipping lines. In this thesis, we use network operators to represent
the alliances formed by multiple carriers who operate integrated networks. Specifically,
network operators receive shipment requests (including shipments’ origin, destination, re-
lease time, lead time, and volume) from shippers and receive transport services (including
services’ origin, destination, departure time, arrival time, and capacity) from carriers. The
network operators aim to provide integrated transport plans.

With the development of digitalization, increasing companies in logistics industries have
evolved in providing online booking platforms that support real-time decisions, such as Sa-
loodo!, Sjipit, Uber Freight, Quicargo, Maersk. In this thesis, we consider a synchromodal
matching platform owned by a network operator that receives real-time shipment requests
from shippers, and receives real-time travel times of multimodal services from carriers, as
shown in Figure 1.3. The platform aims to provide optimal acceptance and matching deci-
sions in an integrated network. A match between a shipment request and a transport service
represents that the shipment will be transported by the service from the service’s origin to
the service’s destination. The platform combines the matched services into itineraries to
provide integrated transport for shipments. For example, request r4 might be transported by
barge service s2 from origin 2 to terminal 1, and further transported by ship service s1 from
terminal 1 to 5, and finally transported by truck service s4 from terminal 5 to destination 6.

This thesis develops methodologies for synchromodal matching platforms to optimize
the matches between shipment requests with specific time windows and transport services
with specific time schedules considering the trade-off between logistics costs, delays, and
carbon emissions.
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1.2 Research challenges
The synchromodal matching platforms support the efficiency of emerging operational and
business models for transportation and logistics (e.g., City Logistics, Physical Internet, and
Synchromodality) that aim to jointly achieve economic, environmental, and societal objec-
tives [17]. However, due to the existing challenges, operating a synchromodal matching
platform is very complex. The five aspects of challenges are briefly discussed as follows:

RC1. Synchromodal shipment matching with time-dependent travel times

In the literature, the intermodal routing choice (IRC) problem is most similar to the
synchromodal shipment matching (SSM) problem proposed in this thesis. However,
the majority of IRC problems focus on the assignment of modes to commodities.
Therefore, the IRC models are typically developed at the container flow level [49]. In
comparison, the SSM problem focuses on the matches between services with specific
time schedules and shipments with specific time windows. Besides, due to the limited
capacity of transport infrastructures, traffic congestion exists during several times of
a day [90]. Travel speed of transport services is thus affected by traffic conditions,
which results in time-dependent travel times. In synchromodal transportation, ignor-
ing the time-dependent travel times of services might result in suboptimal solutions
or even infeasible transport plans because of the transshipment operations between
different services. However, in the literature, the majority of the models consider-
ing time-dependent travel times are designed for vehicle routing problems [42, 91].
How to design shipment matching with time-dependent travel times in synchromodal
transportation leads to one of the research challenges.

RC2. Real-time shipment requests

The trend towards spot markets and digitalization in container transportation increases
the need for online synchromodal matching platforms. In the literature, most of
the existing studies assume that container shipments are only collected from large
shippers based on long-term contracts. These contractual shipment requests are of-
ten fixed and known over a given planning period. Recently, quite a few studies
[105, 106] have pointed out the trend towards spot markets in container transporta-
tion. Different from the former contracted requests, spot shipment requests arrive
in real-time and require receiving transport solutions as soon as possible. Thanks to
the development of digitalization and advanced information and communication tech-
nologies in logistic industries, information can be collected in real-time, and decisions
can be made online [68]. Nevertheless, these new trends also introduce complexity
in synchromodal transport planning, unveiling the need for decision support systems
adapted to dynamic contexts.

RC3. Spot request uncertainty

The advance of information and communication technologies as well as the growing
amount of available historical data makes it possible to gather stochastic information
of random variables for advanced decision-making in freight transportation [75]. De-
cisions with the consideration of uncertainties have been proved to have better perfor-
mance in many research domains, such as resource allocation problems [109], service
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network design problems [77], and pickup and delivery problems [31]. By incorpo-
rating stochastic information of spot requests into online decision-making processes,
the synchromodal matching platform might hold some capacity for future requests
which are predicted to be more “important.” In this way, decisions made for current
requests might be suboptimal but the global performance over the planning horizon
might be “optimal.” The SSM problem is therefore not only dynamic but also stochas-
tic. The challenge faced by dynamic and stochastic problems is known as the curse
of dimensionality. How to solve dynamic and stochastic shipment matching problem
in synchromodal transportation is another research challenge.

RC4. Travel time uncertainty

The travel times of transport services are quite uncertain in real-world [29]. The rea-
son can be explained by traffic congestion, limited handling capacities of terminals,
and external disruption events (e.g., port closure due to high wind, poor weather such
as fog and wind) [18]. Due to travel time uncertainty and the utilization of multi-
modal services, the matches made for accepted requests might become suboptimal or
even infeasible at transshipment terminals. Thanks to the development in data analyt-
ics, probability distributions of uncertainties are often available to transport systems
[29]. However, while stochastic approaches that incorporating stochastic information
of travel times in decision-making processes have been well investigated in vehicle
routing problems [21, 51] and pickup and delivery problems [56, 83], the stochas-
tic approach for the SSM problem in synchromodal transportation under travel time
uncertainty is still missing.

RC5. Coordinated planning

In the literature, the majority of studies assume a centralized controller that provides
integrated decisions in synchromodal transportation [30]. However, in practice, a
large number of entities are involved in global container transport and they may not
all be willing to give authority to a centralized platform [46]. To deal with this is-
sue, the coordination mechanism among them and incentives to stimulate cooperation
need to be deployed. Under coordinated planning, a synchromodal transport system
will be decomposed into several sub-systems. These sub-systems are optimized sep-
arately under local constraints as well as under the incentives imposed by cooperative
systems to meet the constraints in interconnections. In this way, these local decision
makers cooperate to achieve global optimum. While extensive coordination mecha-
nisms and incentives have been proposed in vehicle routing problems [28], only a few
studies investigated in intermodal transportation [25, 50, 71]. The coordination mech-
anisms for global synchromodal transportation with dynamic and stochastic shipment
matching is still missing.

1.3 Research questions and approaches
The overall research question of this thesis is how to develop methodologies that support
the decision-making processes of synchromodal matching platforms under dynamic,
stochastic, and distributed environments. To address each of the research challenges we
have specific research questions (RQs) for each, presented as follows:
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RQ1. How to model shipment matching with time-dependent travel times in hinterland syn-
chromodal transportation? (RC1)

To address research question RQ1, a mathematical model for synchromodal shipment
matching with time-dependent travel times is developed in Chapter 3.

RQ2. How to deal with real-time shipment requests in hinterland synchromodal transporta-
tion? (RC2)

To address research question RQ2, a dynamic approach and a heuristic algorithm to
deal with real-time shipment requests in hinterland synchromodal transportation are
developed in Chapter 4.

RQ3. How to address spot request uncertainties in hinterland synchromodal shipment match-
ing? (RC3)

To address research question RQ3, a stochastic approach to address spot request un-
certainty in hinterland dynamic shipment matching is proposed in Chapter 5.

RQ4. How to address travel time uncertainties in global synchromodal shipment matching?
(RC4)

To address research question RQ4, a hybrid stochastic approach to address spot re-
quest and travel time uncertainties simultaneously in global synchromodal transporta-
tion is developed in Chapter 6.

RQ5. How to design coordinated mechanisms that facilitate cooperative planning in global
synchromodal transport? (RC5)

To address research question RQ5, distributed approaches to facilitate coordinated
planning in global synchromodal transportation are proposed in Chapter 7.

1.4 Thesis contributions
The main contributions of this dissertation are as follows:

• A mixed integer linear programming model for synchromodal shipment matching
with time-dependent travel times is developed in [39] (see also Chapter 3). The model
formulates binary variables to indicate the matches between specific shipments and
services and applies time-dependent travel time functions for truck services. The
model helps network operators to achieve efficient, effective, and sustainable trans-
port planning.

• A rolling horizon approach is proposed to handle newly arrived shipment requests in
[37] (see also Chapter 4). The implementation of the rolling horizon approach relies
on an optimization algorithm that can generate timely matching decisions at each de-
cision epoch. Thus, a heuristic algorithm is developed to solve the SSM problem.
With the proposed approaches, the use of barges, trains, and trucks can be managed
more effectively taking into account their impact on transport time, costs, and emis-
sions together with different time sensitivities of shipments.
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• A Markov decision process model is proposed to describe the SSM problem in hin-
terland transportation. Due to the curse of dimensionality, a stochastic approach is
proposed to solve the problem under realistic instances in [33] (see also Chapter 5).
The stochastic approach uses a sample average approximation method to approximate
expected objective functions and applies a progressive hedging algorithm to get solu-
tions at each decision epoch of a rolling horizon framework. This approach enables
to consider a large set of scenarios to more accurately represent the stochasticity and
this in turn increases the benefits of incorporating stochastic information in dynamic
decision-making processes.

• A Markov decision process model that integrates acceptance and matching decisions
is proposed to describe the SSM problem with spot request uncertainty and travel
time uncertainty in global transportation. To solve the problem, a hybrid stochastic
approach that integrates a rolling horizon framework, a chance-constrained program-
ming model, and a sample average approximation method with a preprocessing-based
heuristic algorithm is developed in [35] (see also Chapter 6). With the proposed ap-
proach, the global synchromodal matching platform can achieve better performance
in logistics costs, delays, and carbon emissions.

• Three distributed optimization approaches are proposed to deal with interconnecting
constraints between local operators in [34] (see also Chapter 7). Theses approaches
contribute significantly to synchronizing different operations in synchromodal trans-
port chains. In turn, these approaches not only improve the efficiency of operations
within each operator but also help to avoid large delays at destination terminals. Un-
der the proposed coordination schemes, the cooperation among local operators is at
the level of information exchange among local operators and each operator shares
only a limited amount of information with others.

1.5 Thesis outline
Hinterland transportation, as a key component of global transportation, has different time
scales, transport modes, and network topology from intercontinental transportation. In this
thesis, relevant methodologies that support the decision-making processes of synchromodal
matching platforms are developed for hinterland and global transportation, respectively.
Specifically, mathematical models, dynamic and stochastic approaches are discussed for
hinterland synchromodal transportation from a more centralized perspective in Chapters 3,
4, and 5. Then, these methodologies combined with distributed approaches are discussed
for global synchromodal transportation in Chapters 6 and 7. Figure 1.4 presents the outline
of the thesis. The main contents of Chapters 2-8 are as follows:

In Chapter 2, a survey on opportunities and challenges faced by decision makers in
synchromodal transportation is presented.

In Chapter 3, a mixed integer linear programming (MILP) model is developed to de-
scribe the synchromodal shipment matching problem in hinterland transportation. Time-
dependent travel times of truck services have been considered in the MILP model.

To deal with real-time shipment requests, a rolling horizon approach is proposed for
hinterland synchromodal transportation in Chapter 4. The implementation of the RHA relies
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on an optimization algorithm that generates timely solutions at each decision epoch. A
heuristic algorithm is therefore designed to solve the MILP model proposed in Chapter 3.

To investigate the benefits of incorporating stochastic information of spot requests, in
Chapter 5, we propose an anticipatory approach for dynamic shipment matching in hin-
terland synchromodal transportation. Compared with the myopic approach proposed in
Chapter 4, the anticipatory approach proposed in Chapter 5 has better performance in total
costs, delays, and carbon emissions.

In terms of dynamic shipment matching in global synchromodal transportation, in Chap-
ter 6, we develop a hybrid stochastic approach to address spot request and travel time uncer-
tainties integrally. Specifically, the approach consists of a rolling horizon framework that
handles real-time information, a chance-constrained programming model that deals with
travel time uncertainty, a sample average approximation method that addresses spot request
uncertainty, and a preprocessing-based heuristic algorithm that generates timely solutions
at each decision epoch.

Due to the distributed nature of global synchromodal transport systems, the local op-
erators may not all be willing to give authority to a centralized platform. To stimulate
cooperative planning among local operators, three distributed optimization approaches are
developed in Chapter 7.

Chapter 8 states the main conclusions of the thesis and presents recommendations for
future research.



Chapter 2

Survey on synchromodal
transportation

In Chapter 1, this thesis was placed in the literature of synchromodal transport planning. It
was shown that the research on dynamic, stochastic, and coordinated synchromodal ship-
ment matching problems is limited. What’s more, none of the existing studies investigated
the benefits of incorporating stochastic information in dynamic shipment matching under
coordinated synchromodal transport systems. While some studies lie in hinterland synchro-
modal transportation, only a few investigated global synchromodal transportation. This the-
sis aims to contribute to that literature by studying the dynamic, stochastic, and coordinated
shipment matching in global synchromodal transportation.

To define the contribution of this thesis in the literature of synchromodal transportation,
this chapter presents a structured overview of the recent literature. In Section 2.1, the def-
inition of synchromodal transportation and its development are discussed. In Section 2.2,
the critical success factors are illustrated. After that, we analyze the network-wide syn-
chromodal planning problems at strategic, tactical, and operational level, respectively. The
strategic infrastructure network design problem is described in Section 2.3. Section 2.4 an-
alyzes the tactical service network design problem. Operational intermodal routing choice
problem is discussed in Section 2.5. Finally, overall conclusions are provided in Section 2.6.

Parts of this chapter have been published in [38]: “W. Guo, W. Beelaerts van Blokland,
G. Lodewijks. Survey on characteristics and challenges of synchromodal transportation in
global cold chains. In Proceedings of the 8th International Conference on Computational
Logistics, pages 420-434, Southampton, UK, 2017.”

2.1 Introduction

With the increasing volume of containers in global trade, intermodal transportation has been
developed for integrated transport in the last decades [99]. The International Transport
Forum defined intermodal transportation as: multimodal transport of goods, in the same
transport unit by successive modes of transport without handling of goods themselves when
changing modes [43]. Compared with truck transportation, intermodal transportation can

9
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Figure 2.1: A framework of synchromodal transportation.

largely reduce logistics costs and emissions but has less flexibility for disturbances [103].
The capacity sharing of services among different shippers contributes to cost reduction,
and the utilization of barges and trains brings about less emissions. However, in global
container transport, multiple uncertainties might exist during the transportation from origin
to destination. The impact of disturbances (such as service delay and traffic congestion) for
shipments in intermodal transportation is very critical. A dynamic and stochastic intermodal
transport plan is therefore needed. However, current intermodal transport planning models
tend to be static and deterministic, resulting in less flexibility for disturbances [87].

Although intermodality has been discussed for decades, truck transportation still occu-
pies the largest share in hinterland transportation, which causes transport congestion and
environmental pollution. The main reason is that current intermodal transport systems do
not have good performance under dynamic and stochastic environments. According to the
statistics, in 2014 about 75.4% of total freight transportation in European Union countries
were transported via road, around 18% via rail, and 6.6% via inland waterways. The Nether-
lands has better performance, with 56.1%, 4.9%, and 39%, respectively [23]. Recently,
global supply chains are confronted with increasing consumer demands on sustainability
[97]. Sustainability commonly refers to how the needs of the present human generation can
be met without compromising the ability of future generations to meet their needs [112]. In
terms of sustainable transportation, it generally relates to less carbon emissions. Increas-
ing the utilization of barges and trains in hinterland transportation can reduce emissions on
one side. On the other side, the mathematical models become more complex due to the
transshipment operations between different modes [18].

Synchromodal transportation, as an extension of intermodal transportation, is a poten-
tial method for global supply chains to reach better performance, first proposed by Tavasszy
in 2010 [74]. It refers to creating an effective, efficient, and sustainable transport plan for
all shipments by using real-time information [99], as shown in Figure 2.1. Under synchro-
modality, the transport services for shipments can be changed before or during the trans-
portation in case of disturbances. The capacity of barges and trains will be better used in
hinterland transportation for reducing logistics costs and emissions. The main objectives
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Figure 2.2: Synchromodality versus intermodality.
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Figure 2.3: Publication trends of synchromodal transportation.

of synchromodal transportation focus on reducing logistics costs, emissions, and delays in
delivery [62]. Therefore, this new transport concept has benefits for both economy, society,
and environment aspects.

Compared with intermodality, synchromodality has several distinct features, as shown
in Figure 2.2. Firstly, it aims at horizontal collaboration as well as vertical collaboration.
Horizontal collaboration can promote information sharing among different carriers, avoid-
ing vicious competition. Secondly, the mode booking pattern is mode-free booking rather
than mode-fixed booking. Shippers only specify shipments’ origin, destination, time win-
dow, and volume, leaving the choice of transport services to network operators. Thirdly,
instead of planning on corridors, synchromodal transportation refers to network-wide plan-
ning, which includes all the shipments and services involved in the transport network. Most
importantly, it focuses on real-time switching in case of disturbances to guarantee service
efficiency, operational effectiveness, and less environmental impact [95].

As a new concept, limited articles have been published about synchromodal transporta-
tion, especially for global supply chains. By 2016, 77 articles of synchromodal transporta-
tion are found using research databases, such as Web of Science. Nevertheless, this research
area has an increasing trend, as illustrated in Figure 2.3. However, none of them provide an
integral analysis about the characteristics and challenges of synchromodal transportation in
global supply chains. The objective of this chapter is therefore to thoroughly analyze it.
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Table 2.1: Critical success factors of synchromodal transportation.

References Behdani et al. [9] Tavasszy et al. [95] Van Riessen et al. [99] Singh et al. [85] Pfoser et al. [67]
Legal and political issues X X
Physical infrastructure X X
Mind shift X X X
Information technology X X X
Horizontal collaboration X X X X
Service-based pricing strategy X X X
Integrated planning X X X X X
Real-time switching X X X

2.2 Critical success factors
Although synchromodal transportation is a promising idea, it is hard to realize it in practice.
Until now, only several successful pilot studies are known in the Netherlands. Almost all
the case studies that exist in the literature are based on the network of European Gateway
Services, which includes Rotterdam port and at least 20 hinterland terminals in Europe
[99]. Critical success factors analysis is an effective method to identify the key enablers of
synchromodality [67].

According to the literature review, we find that synchromodal transportation mainly
includes eight factors, as shown in Table 2.1. Legal and political issues and physical infras-
tructure investment are decided by governments, such as tax incentives for sustainable logis-
tics and new hub construction. In terms of shippers’ mode booking pattern, the benefits of
synchromodality, like cost receiving and environmentally friendly, can promote customers’
mind shift. Advanced information technology and horizontal collaboration are the founda-
tion, while service-based pricing strategy plays as an incentive. Integrated planning is the
core of synchromodal transportation, which will be further discussed at strategic, tactical,
and operational level respectively. Real-time switching is the key factor which responses to
dynamic events and disturbances. As the first three factors are determined by governments
or high level organizations, next, we focus on the last five factors.

2.2.1 Information technology

Information technology mainly refers to information sharing, track and trace, and commu-
nication technologies [85]. Regarding reefer containers, radio frequency identification is a
critical technology for monitoring environmental data, such as temperature and moisture.
Real-time position of services and container shipments can be attained by using global po-
sitioning systems. Information and communications technology can promote information
sharing and communication among different operators. In summary, advanced information
technology is the foundation of synchromodal transportation in global supply chains.

2.2.2 Horizontal collaboration

Horizontal collaboration is another basic factor in realizing synchromodal transportation. It
refers to the cooperative relationship between actors at the same level, whereas vertical col-
laboration refers to different levels. For example, the relationship among competing carriers
with different modes belongs to horizontal collaboration, while inland carries and ocean car-
ries build vertical collaboration. For switching flexibility among different services, horizon-
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tal collaboration among carriers turns out to be essential. Shippers also establish horizontal
cooperation to achieve lower costs by sharing the capacity of services. The collaboration
contract between them used to be long term, static, and offline. However, due to the dy-
namic characteristic of the global shipment market, dynamic and online contracts become
more suitable. What’s more, considering the private safety of different actors, fully infor-
mation sharing is unpractical. Real-time decisions based on limited information are still
challenging. Distributed optimization is an effective method for promoting collaboration
among stakeholders with coupling constraints [25].

2.2.3 Pricing strategy

In terms of pricing strategy, synchromodal transportation shows distinct characteristics from
intermodal transportation [99]. Intermodality adopts mode-based pricing strategies, price is
determined by the mode used. Mode choice for shipments is decided before the transporta-
tion, thus the price is fixed. With respect to synchromodality, the mode booking pattern
is mode-free booking. The mode choices might be changed before or during transport in
case of disturbances, such as service delay. The mode-based pricing strategy is thus unsuit-
able for synchromodal transportation. The pricing strategy in synchromodal transportation
should be differentiated for different far classes [101]. For the same mode choice, the price
can be different according to the time windows of shipments. Considering the credits of cus-
tomers, different price for different credits is an effective motivation. Based on the above
analysis, we can see that the pricing strategy of synchromodal transportation is still chal-
lenging and thus deserves further research.

2.2.4 Integrated planning

An effective planning model is the core of synchromodal transportation. While intermodal
transportation focuses on one OD pair planning, synchromodal transportation aims at in-
tegrated planning at a network level [9]. Under synchromodality, all the services belong
to different carriers are assumed to be in a large resource pool and all the arriving ship-
ment requests will be allocated simultaneously. Due to the complexity of planning models,
most researches focus on centralized planning of synchromodal transportation. However,
the entities in global supply chains are often geographically distributed. It is thus very dif-
ficult to apply a central coordinator to manage the whole system [25]. Moreover, when the
computation size becomes large enough, a distributed system promotes better computation
performance. To improve operational efficiency, service effectiveness, and reduce environ-
mental impact, the key performance indicators of synchromodal transportation are logistics
cost, delays, and emissions [62]. Therefore, an integrated objective function combining the
logistics cost with delay costs and carbon tax is required for transport planning.

2.2.5 Real-time switching

With the development of information technology, real-time information becomes available
for intermodal operators. Due to the occurrences of dynamic events (e.g., newly arrived
shipment requests) and variety disturbances during transportation (e.g., service delay), real-
time switching is essential for improving service reliability. An integrated planning model
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is the prerequisite of real-time switching [100]. To realize real-time switching, researchers
have proposed different methods, like rolling horizon strategy, model predictive control,
decision tree, and approximate dynamic programming. Under the rolling horizon strategy
[1], shipment requests arrive continuously in different planning horizons. The planning
horizon is rolled forward to include more known information. Decisions are made at the
deadline of the requests. Regarding the model predictive control approach [54], it is an
effective method to obtain an ideal output by controlling the inputs. For instance, to keep
banana’s shelf life, both the container’s temperature and mode choice will be controlled by
the system operators in real-time. As for decision tree [100], it can be used in a decision
support system for instantaneously allocating incoming requests to suitable services, with-
out the requirement of continuous planning updates. Approximate dynamic programming
(ADP) is a framework that contains several methods to modify Bellman’s equation with a
series of components and algorithmic manipulation. It determines the values and policies
of decision making before the execution of the transport plan [76]. As real-time switching
requires short responses of disturbances, the computation efficiency indicates significant
means. Optimization algorithms that can generate timely solutions are essential to realize
real-time switching [99].

2.2.6 Discussions

According to the discussions above, we know that under government support, based on
advanced information technology and horizontal collaboration as well as attractive pricing
strategy, synchromodal transport can be realized in global supply chains by combining real-
time switching with effective planning models. Next, we further analyze the characteristics
and challenges of synchromodal transport planning at the strategic, tactical, and operational
level, respectively.

2.3 Strategic infrastructure network design

The strategic level focuses on long term decisions. The infrastructure network design (IND)
problem in synchromodal transportation refers to investment decisions on hub locations
[87]. Under synchromodal transport, different shippers’ shipments are bundled together in
hubs for large container flow. To reduce total transport costs, the allocation of hubs depends
on the service demands in different areas. The connection between hubs can be a highway,
railway, or waterway.

The IND problem mainly depends on the availability of infrastructure, transport assets,
and the adequacy of cargo flow in a specific corridor [9]. Typically, this problem can be
described by using mixed-integer linear programming models which include both binary
decision variables and continuous decision variables. Binary decision variables are related
to whether the hub is used or not, while continuous decision variables illustrate bundled
flow [2]. The objective of the IND used to be simply focused on cost. As delay in deliveries
deeply affects customer satisfaction degrees, it should be considered as another important
objective. With respect to environmental impact, proper network design maximizes the
utilization of green modes which produce less emissions. Thus, for global supply chains,
the objectives of the IND should include both logistics cost, delays, and emissions.
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2.4 Tactical service network design

The tactical level focuses on middle term decisions. It optimally utilizes the given infras-
tructure by choosing services and associated transportation modes, allocating their capac-
ities to shipments, and planning their itineraries and frequency. Service network design
(SND) is the major problem at the tactical level. It mainly gives decisions on choosing the
transportation services and modes for predicted customer demands, and the frequency and
capacity of each mode on certain corridor [87]. Here, service is characterized by its origin,
destination, and intermediate terminals, its transportation mode, route, time schedules, and
its service capacity. Likewise, a mode is characterized by its loading capacity, speed, and
cost, which means that different services may have the same mode. To improve operational
efficiency, service effectiveness, and environmental sustainability, the objectives of the SND
problem should include logistics cost, delays, and emissions. The availability and capacity
of infrastructure networks or terminals are the primary resource constraints [9].

Regarding global supply chains, transport distance tends to be very long. The modes in
global transportation include ships, trains, barges, and trucks. Different models have differ-
ent characteristics, and therefore need to be considered separately. However, the majority
of studies only consider modes in hinterland transportation instead of global transportation
[77, 102]. Besides, transshipment operations between different modes bring more chances
to the utilization of barges and trains, which result in less emissions and costs. However, it
also takes additional costs and time at transshipment terminals. Thus, transfer and storage
costs and time should be considered in synchromodal SND [87].

In the literature, SND problems can be divided into static and dynamic groups [87]. Van
Riessen et al. [102] proposed a static SND model, demand and travel times are assumed as
static parameters based on expectations. However, a time-varying network is more practical,
because traffic condition normally changes with time, and shipment requests tend to be
arriving in real-time. Li et al. [49] proposed a dynamic SND model in synchromodal
transportation based on a model predictive control approach. However, their work lies in
hinterland transportation. The dynamic SND model for global synchromodal transport is
still missing.

Compared with centralized planning systems, decentralized systems are more practical
for global container transportation. Information sharing is crucial for centralized planning.
However, it is difficult to realize among different entities, especially for stakeholders with
a competitive relationship. Li et al [50] proposed a distributed service network design ap-
proach to support cooperative synchromodal transport planning among multiple local oper-
ators in different and interconnected service networks, however, this approach is applied in
hinterland transport. Distributed optimization for global synchromodal transportation is a
promising future research direction.

In summary, the synchromodal SND problem in global transportation is still challenging
owing to its multi-objective, long-distance, dynamic, and distributed features. To our best
knowledge, only Van Riessen et al. [102], Rivera et al. [77] and Li et al. [50] proposed
SND models for synchromodal transport. But none of them considered the characteris-
tics of global transport. Therefore, there still have lots of research opportunities in global
synchromodal SND.
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2.5 Operational intermodal routing choice problem

The operational level deals with dynamic problems that are not explicitly addressed at the
strategic and tactical levels [87]. At the operational level, the main issue is the determination
of the best choice of services and the best itineraries for newly arrived shipment requests,
which called the intermodal routing choice (IRC) problem in the literature [12]. Although
the SND models have many similarities with the IRC models, there have many differences.
In IRC, demand is actual demand rather than predicted demand, and constraints include
time windows of shipments and service capacity limitations rather than the availability of
infrastructures. While the tactical SND determines routes, frequency, and capacity of ser-
vices, the operational IRC considers the selection of specific transport services for specific
shipments [9].

The objectives of the IRC problem include reducing logistics costs, delays, and car-
bon emissions. This problem thus belongs to a multi-objective planning problem. Multi-
objective planning is more complex than single objective planning. One method is to assign
different weights for different objectives, and then summarizes these objectives as a single
objective [12]. Another method is to solve all the single objectives respectively while others
are assigned as constrains. Pareto optimum solutions can be attained by optimization and
composition method [13].

Typically, the IRC models in the literature are static and deterministic [100]. The plan-
ning horizon used to be one day. These intermodal transport systems assume that all the
information on shipments and services are accessed before the planning horizon [8]. How-
ever, in practice, it is difficult to achieve or predict all the information in advance [9]. Thus,
dynamic and stochastic transport planning models are critical to realize synchromodal trans-
portation [100]. Furthermore, the stakeholders in global container transportation tend to be
distributed worldwide, distributed optimization models are more practical. However, none
of the studies in the literature consider both the aspects of dynamic, stochastic, distributed,
and global networks, as shown in Table 2.2. Therefore, we conclude that efficient synchro-
modal transport planning models at the operational level are still challenging.

2.6 Conclusions

In this chapter, we have analyzed the characteristics and challenges of global synchromodal
transportation. We have discussed the critical success factors at first. We found that in-
formation technology and horizontal collaboration are the foundation factors, and service-
based pricing strategy plays as an incentive. Integrated planning models are essential, and
real-time switching is the most challenging factor.

After that, we have further discussed the planning problems at three different levels.
The strategic infrastructure network design problem refers to hub locations. The tactical
service network design decides mode routes and the frequency of services. The operational
intermodal routing choice problem aims at the selection of transport services for specific
shipments with time windows. While extensive transport planning models have been inves-
tigated in intermodal transportation under static and deterministic environments, the syn-
chromodal transport planning models with dynamic, stochastic, and distributed features are
still missing.
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This thesis addresses the above mentioned gaps in the literature with dynamic, stochas-
tic, and coordinated models. Specifically, in Chapter 3, we develop a shipment match-
ing model with time-dependent travel times in hinterland synchromodal transportation. In
Chapter 4, a rolling horizon approach is proposed to handle real-time shipment requests.
Chapter 5 proposed an anticipatory approach to incorporate stochastic information of spot
requests in online decision-making processes of a hinterland synchromodal matching plat-
form. In Chapter 6, a hybrid stochastic approach is proposed to deal with spot request
and travel time uncertainties integrally in global synchromodal transportation. Finally, in
Chapter 7, we developed three distributed approaches to stimulate cooperative planning in
global synchromodal transportation. Thanks to the developed methodologies, the proposed
synchromodal matching platforms can support decision makers to optimize the matching of
shipments and services considering the trade-off among logistics costs, delays, and carbon
emissions under dynamic, stochastic, and decentralized environments.
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Table 2.2: Articles related to operational synchromodal transport planning.

Articles Network Dynamic events Uncertainties Decentralized
decision-
making

Objectives Transfer Time-
dependent
travel times

Moccia et al.
[63]

Inland Costs X

Behdani et
al. [9]

Inland Costs, delays

Van Riessen
et al. [103]

Inland Costs, delays X

Sun et al.
[93]

Inland Costs, emis-
sions

X

Chapter 3 Inland Costs, emis-
sions, time

X X

Li et al. [49] Inland Container flow,
travel time

Costs X

Mes et al.
[62]

Inland Shipment request Costs, delays,
emissions

X

Van
Heeswijk et
al. [98]

Inland Shipment request Costs, delays,
emissions

X

Qu et al.
[72]

Inland Release time, con-
tainer flow, travel
time

Costs X

Chapter 4
[37]

Inland Shipment request Costs, delays,
emissions

X X

Zuidwijk et
al. [117]

Inland Release time,
travel time

Costs

Hrušovský
et al. [41]

Inland Travel time Costs, delays,
emissions

X

Demir et al.
[18]

Inland Travel time, con-
tainer flow

Costs, delays,
emissions

X

Sun et al.
[92]

Inland Service capacity Costs, delays,
emissions

X X

Van Riessen
et al. [100]

Inland Shipment request Container flow Costs, delays

Rivera et al.
[76]

Inland Shipment request Shipment request Costs

Steadieseifi
[88]

Inland Container flow Container flow Costs

Chapter 5
[33, 36]

Inland Shipment request Shipment request Costs, delays,
emissions

X X

Dong et al.
[20]

Maritime Container flow Costs X

Chang [12] Global Costs, time X
Ayar et al.
[7]

Global Costs X

Meng et al.
[60]

Global Costs X

Liu et al.
[55]

Global Costs X

Tran et al.
[96]

Global Costs, emis-
sions

X

Wei et al.
[111]

Global Costs, time X

Chapter 6
[35]

Global Shipment request,
travel time

Shipment request,
travel time

Costs, delays,
emissions

X

Febbraro et
al. [25]

Inland Shipment request X Costs, delays X

Li et al. [50] Inland Container flow,
travel time

X Costs X

Puttettmann
et al. [71]

Global Container flow X Costs X

Chapter 7 Global Shipment request,
travel time

Travel time X Costs, delays X



Chapter 3

Hinterland sychromodal shipment
matching

In Chapter 2, we have classified eight critical success factors for realizing synchromodal
transportation. Integrated planning, as the core of synchromodality, has been further di-
vided into three levels: strategic, tactical, and operational level. This chapter proposes a
shipment matching model with time-dependent travel times for hinterland synchromodal
transportation at the operational level.

This chapter is structured as follows. Section 3.1 gives a detailed introduction of hin-
terland synchromodal transportation. In Section 3.2, a literature review of the shipment
matching problem is presented. Section 3.3 describes the details of hinterland synchromodal
shipment matching. After that, time-dependent travel times and matching formulations are
presented in Section 3.4. In Section 3.5, we conduct numerical experiments and analyze
experimental results. We discuss the main conclusions in Section 3.6.

Parts of this chapter have been published in [39]: “W. Guo, W. Beelaerts van Blokland,
G. Lodewijks, and R. R. Negenborn. Multi-Commodity Multi-Service Matching Design
for Container Transportation Systems. In Proceedings of the 97th Annual meeting of the
Transportation Research Board, Washington, DC, 2018.”

3.1 Introduction

Hinterland intermodal transportation is the movement of shipments between deep-sea ports
and inland terminals by using barges, trains, trucks, or any combination of them [26]. It
plays an important role in improving the competitiveness of global supply chains. However,
recently, network operators (such as European Gateway Services) face increasing pressure
from road traffic congestion, less flexibility, low reliability, and serious environmental im-
pacts in hinterland transport. As we discussed in Chapter 2, synchromodal transportation
aims at creating an efficient, effective, and sustainable transportation plan for network op-
erators by using the available flexibility. While efficiency refers to the reduction of logistics
costs by improving the utilization of barges and trains, effectiveness guarantees service
quality and sustainable transportation promotes the reduction of carbon emissions.

19
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Figure 3.1: Hinterland synchromodal shipment matching.

Synchromodal transportation is in practice a further optimization of intermodal trans-
portation [62]. It relies on the design of differentiated transportation services, mode-free
booking, horizontal collaboration, integrated planning, and real-time switching [38]. By
mode-free booking, network operators have the flexibility to assign different transportation
services to shippers with differentiated prices. With regard to horizontal collaboration, en-
tities with competitive relationships will cooperate together for a system-wide optimum.
While integrated planning is the core of hinterland synchromodal transportation, real-time
switching guarantees the flexibility of transport plans under dynamic and stochastic envi-
ronments. This chapter focuses on the operational integrated planning design.

We consider a hinterland synchromodal transport system owned by a network operator
that receives shipment requests from shippers and receives transport services from carriers.
Shippers are the entities who are searching for services to transport their shipments, such
as freight forwarders. Carriers are the entities that provide transportation services, such as
barge carriers. We assume network operator as the alliances formed by multiple carriers
that collaborate with each other. Under synchromodality, shippers only specify shipments’
origin, destination, container volume, and time windows, leaving the service choices to the
network operator. Carriers provide service information to the network operator, including
services’ origin, destination, time schedule, capacity, and transport cost. The network oper-
ator aims to provide integrated optimal matches between shipments and services. A match
between a shipment and a service represents that the shipment will be transported by the
service from the service’s origin to the service’s destination. In synchromodal transporta-
tion, a shipment might be matched with multiple services, a service might be matched with
multiple shipments, as shown in Figure 3.1. Here, shipment r4 is matched with train service
s1 and truck service s6; barge service s3 is matched with shipment r2 and r3.

Due to the limited capacity of road networks, traffic congestion exists during several
times of a day [90]. Travel speed of truck services is thus affected by traffic conditions,
which results in time-dependent travel times. In synchromodal transportation, ignoring the
time-dependent travel times of truck services might result in infeasible transportation plans
and suboptimal solutions [92]. The matching of shipments with multimodal services under
time-dependent hinterland networks gives rise to a new problem. In this chapter, we define
this problem as a hinterland synchromodal shipment matching (HSSM) problem.
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Table 3.1: Comparison between ride matching and synchromodal shipment matching.

Ride matching Hinterland synchromodal shipment matching
Supply
Stakeholder Drivers Carriers
Entity Private cars Multimodal services
Capacity Ride limits Container slot limits
Path Flexible Fixed
Time Time window Time schedules
Demand
Stakeholder Passengers Shippers
Entity Riders Shipments
Service time Waiting and transit time Loading/unloading, storage, and transport time
Service quality Detour, travel time, success rate Costs, time, carbon emissions
System
Decision Matching, vehicle route Matching
Objective System-wide optimum System-wide optimum

3.2 Literature review
The studies related to the shipment matching problem can be divided into two groups: ride
matching problem; intermodal routing choice problem.

3.2.1 Ride matching problem

Ride matching systems, which aim to bring together travelers with similar itineraries and
time schedules, provide significant societal and environmental benefits by reducing the num-
ber of cars used for personal travel and improving the utilization of available seat capacity
[1, 4, 58, 64, 89, 105]. The ride-matching problem has many similarities but also differences
with the HSSM problem, as shown in Table 3.1. In terms of the supply side, the stakehold-
ers are drivers in a ride matching system and carriers in a HSSM system. Here, drivers
are individual person who drives private cars, while carriers are individual companies that
operator transport services. Regarding private cars, they drive from origins to destinations
with limited rides and flexible path under fixed time windows. By contrast, multimodal
services transport from its origin to destination with limited capacities and fixed path under
scheduled timetables.

With respect to the demand side, the stakeholders are passengers in a ride matching
system and shippers in a HSSM system. In a ride matching system, passengers propose
requests on rides. The service time consists of waiting time at locations, and transit time
during the trip. The service quality is measured by detours, travel time, and matching suc-
cess rates. By contrast, shippers in a HSSM system propose requests on transport services.
Shipments will get loading/unloading and storage operations at terminals, and transport ser-
vices from origins to destinations. The transport performance is measured by cost savings,
transport time, and carbon emissions.

From the system perspective, the decision of ride matching systems includes matching
decisions and vehicles routing decisions under system-wide optimum objective. For the
HSSM system, the decision only includes matching decisions due to fixed paths of transport
services. The objective of the HSSM is also global optimum.
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Table 3.2: Formulation Characteristics of related articles in synchromodal transportation.

Formulation characteristics
Chang
[12]

Moccia
et al. [63]

Ayar
et al. [7]

Behdani
et al. [9]

van Riessen
et al. [103]

Sun
et al. [93] This chapter

Service pattern Committed services X X X X
Uncommitted services X X X X X X

Shipment integrity Unsplittable X X X X
Splittable X X X

Network state
Time-constant
travel times X X X X X X

Time-dependent
travel times X

Optimization
criterion

Logistics
cost

Transport
cost X X X X X X X

Transfer
cost X X X

Storage
cost X X X X

Carbon emissions X X
Transport time X X

3.2.2 Intermodal routing choice problem

Intermodal routing choice (IRC) problem is developed to select optimal routes to move
shipments from their origins to destinations within specified time windows in an intermodal
transport network [94]. From the perspective of mathematical formulation, the HSSM prob-
lem is very similar to the IRC problems, as shown in Table 3.2.

With regard to the service pattern, it consists of committed services and uncommitted
services. Most of the researches only consider uncommitted services [7, 9, 93] in which
cost structures are container-based costs, such as 7.54 e per container. For committed
services, the cost structure is service-based cost, such as 300 e per barge. Thus, based
on the economy of scale theory, more shipments sharing one committed service results in
less transport costs distributed to per shipment. Under synchromodality, both committed
services and uncommitted services might exist in hinterland transport networks. Therefore,
this chapter considers both of them in the HSSM model.

In terms of shipment integrity, it can be distinguished as unsplittable shipments and
splittable shipments. Unsplittable shipments indicate that each shipment is not allowed to be
split into several batches. Thus, each shipment will only be assigned to one route. Therefore,
the decision variables are binary variables [7, 63, 93]. Regarding the splittable shipment,
it suggests that one shipment can be split into several batches. Then, these batches can be
assigned to different routes, the total flow of batches equal to the total container volume of a
shipment [9, 12, 103]. Under synchromodality, a match between a shipment and a service is
indicated by a binary variable. Therefore, shipments are assumed unsplittable in the HSSM
model.

The third aspect is network state which refers to time-constant travel times and time-
dependent travel times. Here, time-dependent travel time means that the travel time of
services changes over time. In practice, road traffic conditions change over time. The travel
time of truck services, in turn, changes over time. Therefore, it is necessary to consider
time-dependent travel times. Otherwise, the transport plan received from time-constant
models will be suboptimal or even infeasible in practice. However, none of the IRC models
consider time-dependent travel times.
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Figure 3.2: Examples of committed and uncommitted services.

In terms of optimization criterion, it can be divided into three groups: logistics costs,
carbon emissions, and transport time. Here, logistics cost includes transport cost, transfer
cost, and storage cost. Specifically, transfer cost consists of loading and unloading cost at
terminals [93, 103]. Due to the fixed time schedules of barge and train services, storage
cost is produced when shipments are stored at terminals waiting for departure or transfer
[7, 9, 93]. In addition, transportation contributes to a large part of gas emissions every year.
Recently, carbon tax has been proposed by governments to control carbon emissions in the
transportation sector [93]. In the literature, only Sun et al. [93] considered carbon tax in the
IRC model. Regarding service reliability, only Chang [12] considered transport time as an
objective in the IRC models. However, none of the IRC models considered logistics costs,
carbon emissions, and transport time simultaneously.

3.2.3 Contributions

The contribution of this chapter is twofold. First, we develop a shipment matching model
with time-dependent travel times in hinterland synchromodal transportation taking into ac-
count logistics costs, transport time, and carbon emissions. Second, we conduct extensive
experiments to analyze the sensitivity of parameters.

3.3 Problem description
The HSSM problem defined in this chapter contains two sets of participants. The first set
is shippers that are searching for services to transport their shipments. Shipment r ∈ R
is characterized by container volume ur, origin terminal or and destination terminal dr, the
earliest departure time Trelease

r at origin terminal and the latest arrival time Tdue
r at destination

terminal.
Another set is carriers who provide weekly service schedules to network operators. Ac-

cording to the contracts between network operators and carriers, services can be divided
into two groups:

(1) Committed services. The network operator has long term contracts with carriers
who provide barge or train services for committed capacity. Thus, the network operator
needs to pay fixed costs per service and has no additional costs per used slot. Furthermore,
committed services have fixed time schedules and limited capacities, as shown in Figure 3.2
(a). Specifically, each committed service q ∈ Q is characterized by its departure time T Dq
at origin terminal oq, arrival time TAq at destination terminal dq, capacity Uq, transport cost
cq, transport time tq, transport distance Dq, and carbon emissions eq.
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(2) Uncommitted services. The network operator can use uncommitted capacities of
barge or train services from carriers at a slot cost per TEU (twenty-foot equivalent unit).
Uncommitted barge or train services have fixed time schedules and limited capacities, as
shown in Figure 3.2 (b). Each uncommitted scheduled service s ∈ Sbarge∪Strain is character-
ized by its departure time T Ds at origin terminal os, arrival time TAs at destination terminal
ds, transport cost cs, transport time ts, transport distance Ds, capacity Us, and carbon emis-
sions es. In addition, the network operator can also use uncommitted capacity from truck
companies at slot-based costs. We view each truck service as a fleet of trucks that has flexi-
ble time schedules and unlimited capacity, as shown in Figure 3.2 (c). Thus, a truck service
might have multiple departure times. Each truck service s ∈ Struck is characterized by its
origin terminal os, destination terminal ds, travel time ts, travel cost cs, travel distance Ds,
and carbon emissions es. Due to the existence of traffic congestion at several time periods
within a day, the travel time of truck services is time-dependent.

A match 〈r,s〉 is defined as a combination of shipment r ∈ R and service s ∈ {Q,S}. A
match 〈r,s〉 is feasible only if r and s satisfy spatial, capacity, and time window constraints.
Regarding spatial constraints, each shipment must be matched with a service leaving its
origin node, and a service entering its destination node. In terms of capacity constraints,
for service s ∈ S∪Q, the total volume of shipments that matched with s cannot exceed the
capacity limitations of s. Concerning time window constraints, the departure time of service
s∈ S∪Q in match 〈r,s〉 is later than the arrival time of shipment r plus the loading/unloading
time at terminal os, and the arrival time of service s is earlier than the latest arrival time of
shipment r minus the loading/unloading time at terminal dr.

To achieve efficient, effective, and sustainable synchromodal transport planning, the
objective of the network operator is to minimize logistics costs, transport time, and carbon
emissions. The HSSM problem is thus a multi-objective planning problem.

3.4 Time-dependent matching model

In this section, we establish formulations to express the objective and constraints of the
HSSM. We define N as the set of terminals. Without loss of generality, we assume that the
loading/unloading cost coefficient lc, loading/unloading time lt, and storage cost coefficient
cstorage at each terminal are the same. The carbon tax coefficient is set as cemission. In this
chapter, we assume shipments have hard time window. To ensure customers receive their
shipments as a whole, each shipment can only be matched with one route.

3.4.1 Time-dependent travel times

In practice, road traffic condition changes over time. The travel time of truck services,
in turn, changes over time. Therefore, it is necessary to consider time-dependent travel
times. Thus, a truck service that is matched with different shipments might have different
departure times and in turn, have different travel times. Let T Drs be the departure time
of truck service s ∈ Struck with shipment r ∈ R; let t truck

rs be the travel time of truck service
s∈ Struck with shipment r∈R. We denote ctruck as the travel cost coefficient of truck services.
Althought the travel times are time-dependent, we assume the travel time functions are
known beforehand and deterministic.
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Figure 3.3: Time-dependent speed and travel times.

To describe the time-dependent travel time, we introduce the classical functions pro-
posed by Ichoua et al. [42]. The core idea is that the travel speed changes when the bound-
ary between two consecutive time periods is crossed. The travel time functions follow the
first-in-first-out rule, which ensures that the earlier the truck departure, the earlier the truck
arrival. Figure 3.3 describes a time-dependent speed profile and the corresponding travel
time function of a truck service s. β1 and β2 are traffic congestion coefficients. The travel
time functions are piecewise linear and can be represented by breakpoints. Specifically, we
let T represent the set of time periods within a day. A time period T m ∈ T can be defined by
two consecutive breakpoints. For time period T2 = [a1,a], given the values a1,a, ts,β1ts, we
can calculate the slope θ of the function and the intersection η with the y-axis. Therefore,
ts(τ) = θm

s τ+ηm
s ∀τ ∈ T m. Because of the FIFO property of travel time functions, a later

departure should result in a later arrival, thus, θ≥−1.

3.4.2 Matching model
Let xrs indicate the match between shipment r ∈ R and service s ∈ S∪Q. We denote wrs
as the storage time of match 〈r,s〉 and Ari as the arrival time of shipment r at terminal
i. The objective of the matching model is to minimize total cost and transport time. The
mathematical model is presented as follows:

Minimize
J = J1 + J2 + J3 + J4 +wJ5 (3.1)

where
J1 = ∑

q∈Q
cqlq + ∑

r∈R
∑

s∈Sbarge∪Strain

csurxrs + ∑
r∈R

∑
s∈Struck

ctruckt truck
rs urxrs

J2 = ∑
r∈R

∑
s∈Q∪Sbarge∪Strain

2lcurxrs

J3 = ∑
r∈R

∑
s∈Q∪Sbarge∪Strain

wrscstorageur

J4 = ∑
r∈R

∑
s∈Q∪S

cemissionesurxrs
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J5 = ∑
r∈R

(Ardr −Tdue
r )ur

In the objective function (3.1), J1 represents the total transport cost of shipments R
matching with committed services Q, and uncommitted services S. As the cost structure
of uncommitted services is container-based cost, the transport cost of match 〈r,s〉 depends
on the transport cost coefficient of service s ∈ S and the volume of shipment r. In contrast,
the transport cost structure of committed services is service-based cost, the transport cost
of match 〈r,q〉 depends on the total volume of shipments matched with service q ∈ Q, i.e.
crq =

cq
∑r∈R xrqur

xrqur. Let lq be the binary variable which equals 1 if ∑r∈R xrq > 0. Therefore,

lq ≥ xrq, ∀q ∈ Q,r ∈ R. (3.2)

Since t truck
rs and xrs are both decision variables, to linearize the objective function, we

design T Xrs = t truck
rs xrs. Thus, J1 changes to:

J1 = ∑
q∈Q

cqlq + ∑
r∈R

∑
s∈Sbarge∪Strain

csurxrs + ∑
r∈R

∑
r∈R

ctruckurT Xrs (3.3)

The second term J2 in equation (3.1) denotes the total loading and unloading cost of
shipments R matching with committed services Q, uncommitted barge services Sbarge, and
uncommitted train services Strain. We assume that no loading/unloading cost exists for match
〈r,s〉, ∀r ∈ R, s ∈ Struck.

The third term J3 in equation (3.1) indicates the total storage cost of shipments R match-
ing with services Q, Sbarge and Strain. Specifically, the storage time of match 〈r,s〉 between
shipment r ∈ R and service s ∈ Q∪Sbarge∪Strain equal to the departure time of s minus the
arriving time of r at the origin terminal of s minus the loading time. Thus,

wrs = (T Ds−Aros − lt)xrs, ∀r ∈ R,s ∈ Q∪Sbarge∪Strain. (3.4)

The fourth term J4 of the objective function represents the total carbon emissions of
shipments R matching with services Q and S.

The fifth term J5 represents the total transport time. The transport time of each shipment
is calculated by the arrival time at its destination terminal minus the departure time at its
origin terminal. Here, w represents the weight coefficient of the total transport time.

Regarding the constraints, the matching model is confined by the following three sets of
constraints: spatial constraints, capacity constraints, and time constraints.

• Spatial constraints:

∑
q∈Qor

xrq + ∑
s∈Sor

xrs = 1, ∀r ∈ R, (3.5)

where Qor = {q|oq = or,q ∈ Q},Sor = {s|os = or,s ∈ S}.

∑
q∈Qdr

xrq + ∑
s∈Sdr

xrs = 1, ∀r ∈ R, (3.6)

where Qdr = {q|dq = dr,q ∈ Q},Sdr = {s|ds = dr,s ∈ S}.
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∑
q∈Q+

i

xrq + ∑
s∈S+i

xrs = ∑
q∈Q−i

xrq + ∑
s∈S−i

xrs, ∀r ∈ R, i ∈ N\{or,dr}, (3.7)

where Q+
i = {q|oq = i,q∈Q},S+i = {s|os = i,s∈ S},Q−i = {q|dq = i,q∈Q},S−i = {s|ds =

i,s ∈ S}.
Constraints (3.5-3.7) are imposed to find the feasible matches between shipments and

services based on the spatial information (i.e., origins and destinations). Constraints (3.5)
ensure that only one service carries shipment r leaving origin or. Constraints (3.6) ensure
only one service carries shipment r arriving destination dr. Constraints (3.7) ensure flow
conservation.

• Capacity constraints:

∑
r∈R

xrsur ≤Us, ∀s ∈ Q∪Sbarge∪Strain. (3.8)

Constraints (3.8) ensure that the total volumes of shipments carried by service s ∈ Q∪
Sbarge∪Strain do not exceed the capacity limitation of service s.

• Time constraints:

Aror = Trelease
r , ∀r ∈ R, (3.9)

Ardr ≤ Tdue
r , ∀r ∈ R, (3.10)

(Ari−TAs− lt)xrs = 0, ∀r ∈ R, i ∈ N\{or},s ∈ Q−i ∪S−barge
i ∪S−train

i , (3.11)(
Ari− (Aros + t truck

rs )
)

xrs = 0, ∀r ∈ R, i ∈ N\{or},s ∈ S−truck
i , (3.12)

t truck
rs = ts(Aros), ∀r ∈ R,s ∈ Struck, (3.13)

(T Ds− lt−Ari)xrs ≥ 0, ∀r ∈ R, i ∈ N\{dr},s ∈ Q+
i ∪S+barge

i ∪S+train
i . (3.14)

Constraints (3.9) assume that the arrival time of shipment r at origin terminal is the
earliest departure time. Constraints (3.10) ensure that the arrival time of shipment r at
destination terminal is earlier than the latest arrival time. Constraints (3.11) ensure that the
arrival time of shipment r at terminal i is the arrival time of service s∈Q−i ∪S−barge

i ∪S−train
i

plus unloading time, if shipment r is transported by service s entering terminal i, i∈N\{or}.
Constraints (3.12) ensure that the arrival time of shipment r at terminal i is the sum of arrival
time of shipment r at terminal os, and travel time of truck service s∈ S−truck

i , if shipment r is
transported by truck service s entering terminal i, i ∈ N\{or}. Constraints (3.13) calculate
the travel time of truck service r with shipment r based on the time-dependent travel time
function and the departure time at origin terminal os. Constraints (3.14) ensure that the
arrival time of shipment r at terminal i is earlier than the departure time of service s ∈
Q+

i ∪ S+barge
i ∪ S+train

i minus loading time, if shipment r is transported by service s leaving
terminal i, i ∈ N\{dr}.

3.4.3 Linearization of nonlinear constraints
To improve the computational efficiency, the nonlinear constraints discussed above need to
be linearized. The linearization of nonlinear constraints are presented as follows:
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• Nonlinear constraint (3.4) wrs = (T Ds− lt−Aros)xrs ∀r ∈ R,s ∈ S,wrs ∈ R+,xrs ∈
{0,1}, lt ∈ C,T Ds ∈ C,0 ≤ Ari ≤M under minimum objective can be linearized as
following:

wrs ≥ T Ds−Aros − lt +M(xrs−1), ∀r ∈ R,s ∈ S, (3.15)

where M is a large enough number used for binary constraints.

• Nonlinear constraint (3.11) (Ari−TAs− lt)xrs = 0,∀r ∈ R, i ∈ N\{or},s ∈ S−i ,xrs ∈
{0,1},TAs ∈ C,0≤ Ari ≤M can be linearized as following:

Ari ≤ (TAs + lt)xrs +M(1− xrs), ∀r ∈ R, i ∈ N\{or},s ∈ S−i , (3.16)

Ari ≥ (TAs + lt)xrs +M(xrs−1), ∀r ∈ R, i ∈ N\{or},s ∈ S−i . (3.17)

• Nonlinear constraint (3.12) (Ari−(Aros +t truck
rs ))xrs = 0,∀r∈R, i∈N\{or},s∈ S−truck

i ,
xrs ∈ {0,1},Aros ∈ C, t truck

rs ∈ C,0≤ Ari ≤M can be linearized as following:

Ari ≤ Aros +T Xrs +M(1− xrs), ∀r ∈ R, i ∈ N\{or},s ∈ S−truck
i , (3.18)

Ari ≥ Aros +T Xrs +M(xrs−1), ∀r ∈ R, i ∈ N\{or},s ∈ S−truck
i , (3.19)

T Xrs ≤Mxrs, ∀r ∈ R,s ∈ S−truck
i , (3.20)

T Xrs ≤ t truck
rs +M(1− xrs), ∀r ∈ R,s ∈ S−truck

i , (3.21)

T Xrs ≥ t truck
rs +M(xrs−1), ∀r ∈ R,s ∈ S−truck

i . (3.22)

• Nonlinear constraint (3.14) (T Ds− lt−Ari)xrs ≥ 0,∀r ∈ R, i ∈ N\{dr},s ∈ S+i ,xrs ∈
{0,1}, lt ∈ C,0≤ Ari ≤M can be linearized as following:

Ari ≤ (T Ds− lt)xrs +M(1− xrs), ∀r ∈ R, i ∈ N\{dr},s ∈ S+i . (3.23)

3.5 Numerical experiments

To assess the potential of the matching models, we conduct numerical experiments based on
a port-hinterland network by using CPLEX 12.6.3, on a desktop computer with Intel Core
i5-6500 3.2 GHz processor and 8 GB of RAM.

3.5.1 Hinterland synchromodal transport network

The topology of a hinterland synchromodal transport network is adapted from Li et al. [49],
as shown in Figure 3.4, which includes 6 nodes and 15 arcs.

According to Qu et al. [73] and Li et al. [49], the parameters for different modalities
are shown in Table 3.3. For committed barge and train services, the data of modality, origin,
destination, capacity, departure time, arrival time, transport time, transport cost, transport
distance, and carbon emissions are shown in Table 3.4. For uncommitted barge and train
services, the data of modality, origin, destination, capacity, departure time, arrival time,
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Figure 3.4: Topology of a hinterland synchromodal transport network.

Table 3.3: Parameters used in experiment.

Modality Speed (km/h) Transport cost coefficient (e/TEU-h) Carbon emission coefficient (kg/TEU-km)
Truck 60 30.98 0.8866
Train 35 7.54 0.3146
Barge 15 0.6122 0.2288

Table 3.4: Committed barge and train services.

Service. ID 1 2 3 4 5 6
Modality Barge Barge Train Train Train Train
Origin Rotterdam Rotterdam Rotterdam Rotterdam Rotterdam Rotterdam
Destination Dordrecht Dordrecht Tilburg Tilburg Nijmegen Nijmegen
Capacity (TEU) 200 200 100 100 100 100
Departure time 4 16 4 16 4 16
Arrival time 8 20 8 20 8 20
Transport time (h) 4 4 4 4 4 4
Transport cost (e) 343 343 2111.2 2111.2 2111.2 2111.2
Transport distance(km) 60 60 140 140 140 140
Carbon emissions (kg/TEU) 13.728 13.728 44.044 44.044 44.044 44.044

transport time, transport cost, transport distance, and carbon emissions are shown in Ta-
ble 3.5. For truck services, the data of origin, destination, transport time, transport cost,
transport distance, and carbon emissions are shown in Table 3.6. Loading/unloading cost
and time are assumed to be 11.945 e/TEU and 1 hour for barge and train services. The
storage cost at each terminal is 1 e/TEU-h. The carbon tax of carbon emissions is 8 e/ton.
Regarding the terminal operating hours, we assume all the terminals operate 24 hours ev-
ery day. The planning horizon is assumed to be one day. The capacity of truck services is
assumed to be unlimited.
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Table 3.5: Uncommitted barge and train services.

Service. ID 1 2 3 4 5 6
Modality Barge Train Train Barge Barge Train
Origin Rotterdam Rotterdam Rotterdam Dordrecht Dordrecht Tilburg
Destination Dordrecht Tilburg Nijmegen Nijmegen Venlo Venlo
Capacity (TEU) 30 65 30 37 51 47
Departure time 6 6 9 13 12 17
Arrival time 10 10 13 20 23 20
Transport time (h) 4 4 4 7 11 3
Transport cost (e/TEU) 2.45 30.16 30.16 4.29 6.73 22.62
Transport distance (km) 60 140 140 105 165 105
Carbon emissions (kg/TEU) 13.728 44.044 44.044 24.024 37.752 33.033

Table 3.6: Truck services.

Service. ID 7 8 9 10 11 12
Origin Rotterdam Rotterdam Utrecht Dordrecht Tilburg Nijmegen
Destination Utrecht Dordrecht Nijmegen Tilburg Venlo Venlo
Transport time (h) 2 1 1.5 1 1.5 1
Transport cost (e/TEU) 61.96 30.98 46.47 30.98 46.47 30.98
Transport distance(km) 120 60 90 60 90 60
Carbon emissions (kg/TEU) 106.392 53.196 79.794 53.196 79.794 53.196

Table 3.7: Shipments.

Shipments Origin Destination Volume (TEU) Earliest departure time Latest arrival time
1 Rotterdam Utrecht 12 3 24
2 Rotterdam Utrecht 14 5 24
3 Rotterdam Utrecht 16 7 24
4 Rotterdam Utrecht 18 9 24
5 Rotterdam Dordrecht 14 3 24
6 Rotterdam Dordrecht 17 5 24
7 Rotterdam Dordrecht 18 7 24
8 Rotterdam Dordrecht 19 9 24
9 Rotterdam Tilburg 17 3 24
10 Rotterdam Tilburg 18 5 24
11 Rotterdam Tilburg 19 7 24
12 Rotterdam Tilburg 20 9 24
13 Rotterdam Nijmegen 10 3 24
14 Rotterdam Nijmegen 14 5 24
15 Rotterdam Nijmegen 17 7 24
16 Rotterdam Nijmegen 19 9 24
17 Rotterdam Venlo 13 3 24
18 Rotterdam Venlo 16 5 24
19 Rotterdam Venlo 19 7 24
20 Rotterdam Venlo 20 9 24

The demand data between the Port of Rotterdam and 5 inland terminals are described
in Table 3.7. Each shipment is characterized by its origin terminal, destination terminal,
container volumes, earliest departure time, and latest arrival time. We assume all the infor-
mation of shipments is received in advance.
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Figure 3.5: Matching results of the HSSM model with time-constant travel times.

3.5.2 Matching results analysis

We set traffic congestion coefficients β1 = β2 = 1, weight coefficient w = 0. Based on the
demand and supply data, the matching result of the HSSM model with time-constant travel
times is shown in Figure 3.5. It shows that shipments r1, r2, r3, and r4 are matched with
truck service s7. Shipments r5, r6, r7, and r8 are matched with truck service s8. Shipments
r9 and r10 are matched with uncommitted train service s2. Shipments r11 and r12 are
matched with truck service s8 and s10. Regarding shipments r13, r14, r15, and r16, both of
them are matched with committed train service q6. Shipments r17 and r18 are matched with
uncommitted barge service s1 and s5 by transferring at Dordrecht terminal. Shipments r19
and r20 are matched with committed train service s6 and truck service s12 by transferring
at Nijmegen terminal. From Figure 3.5, we can see that half of the shipments are matched
with truck services due to hard time windows of shipments and fixed time schedules and
capacity limitations of barge and train services.

Figure 3.6 shows that the truck transport cost occupies the largest share in total logistics
costs. The transfer cost is even higher than the barge and train transportation cost, while
storage cost and carbon tax are negligible. The reason is that the storage cost coefficient
and carbon tax coefficient are much lower than the loading/unloading cost coefficient in the
experiment setting.

Sensitivity analysis

To analyze the influence of parameter setting, we varied the values of the loading cost co-
efficient, loading time, storage cost coefficient, and carbon tax coefficient. For network
operators, cost saving is still the primary goal, and modal split belongs to government ob-
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Figure 3.6: Cost distribution of the matching results.
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Figure 3.7: Sensitivity analysis.

jective. We view modal split as a post performance indicator to describe the effects. We
calculate the modal split of intermodal services and truck services as follows:

Modal split of barge and train services=

∑r∈R ∑q∈Q xrqurDq +∑r∈R ∑s∈Sbarge∪Strain xrsurDs

∑r∈R ∑q∈Q xrqurDq +∑r∈R ∑s∈S xrsurDs
,

Modal split of truck services=

∑r∈R ∑s∈Struck xrsurDr

∑r∈R ∑q∈Q xrqurDq +∑r∈R ∑s∈S xrsurDs
.

Figure 3.7 shows that the utilization of barge and train services will decrease with the
increasing of loading cost coefficient. If the loading cost declines, the utilization of barge
and train services will increase. Increasing the loading time, the modal split of barge and
train services rises at first and decreases after reaching a certain point. The reason is that a
tiny increase in the loading time will decrease the storage time which in turn increasing the
utilization of barge and train services.
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Table 3.8: Cost distribution of three different scenarios.

Scenarios Total cost Barge and train
transport cost

Truck transport
cost

Transfer cost Storage cost Carbon tax

Integrated planning 18500 3433 9449 4587 842 189
Sequential planning 20216 1976 14057 3536 430 228
Decentralized planning 19425 3071 11912 3894 335 213
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Figure 3.8: Modal split of three different scenarios.

In terms of the storage cost coefficient, the modal split of barge and train services falls
with the growth of the storage cost coefficient. Because the utilization of barge and train
services produces storage costs at terminals. Regarding the carbon tax coefficient, we can
see that the modal split of barge and train services will increase only when the carbon tax
coefficient is larger than 50 e/ton.

Different scenarios comparison

The hinterland synchromodal shipment matching problem belongs to an operational inte-
grated planning problem. To verify its benefits, this chapter compares it with sequential
planning and decentralized planning. With respect to sequential planning, we assume that
shipments arrive one-by-one, so sequential planning is based on the first-in-first-out algo-
rithm. The capacity of barge and train services will be assigned to shipments arriving earlier
to the system. For decentralized planning, we assume there exist three carriers. Carrier 1
owns all the barge services, carrier 2 has all the train services, and carrier 3 has all the truck
services. Both carriers 1 and 2 collaborate with carrier 3. However, carriers 1 and 2 have a
competitive relationship and thus do not share capacity or change requests with each other.
Here, we assume shipments r1 to r10 are received by carrier 1, and shipments r11 to r20 are
received by carrier 2.

Table 3.8 indicates that integrated planning has the best performance. While sequential
planning focuses on local optimum, integrated planning aims at global optimum, the exper-
iment results demonstrate the value of information in transport planning. Compared with
decentralized planning, the cost savings achieved by integrated planning show the benefits
of horizontal collaboration among carriers in synchromodal transportation.

Figure 3.8 presents the modal split of three different scenarios. The modal split of barge
and train services under integrated planning is the largest. Compared with sequential plan-
ning, decentralized planning has better performance on the modal split of barge and train
services in the designed case.
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Figure 3.9: Matching results of the HSSM model with time-dependent travel times.

3.5.3 Impact of time-dependent travel times

In this section, we aim to investigate the matching results under time-dependent travel times.
We set traffic congestion coefficient β1 = β2 = 2. Breaking points a1 = 5, a = 7, d1 = 15,
d = 19, and e = 24. Figure 3.9 presents the matching result of the matching model with
time-dependent travel times. Compared with Figure 3.5, shipments r7, r8, r11, and r12 are
matched with committed barge service q2 rather than truck service s8 in Figure 3.9. The
reason is that the transport cost of truck service s8 is higher than barge service q2 under
traffic congestion. Shipments r5 and r6 keep original choice, because their departure time
is during the off-peak hour. The results indicate that under the time-varying network, the
matching results of the time-constant matching model become suboptimal.

To evaluate the performance of the matching model with time-dependent travel times
(TD) under different traffic conditions, we generated 6 instances with different traffic con-
gestion coefficient β1, varying from 2 to 4.5. We set a1 = 5,a = 7,b1 = 9,b = c1 = 13,c =
17,d1 = 19,d = 21,e = 24,β2 = 1.5. We use the matching model with time-constant travel
times (TC) as the benchmark. Due to traffic congestion, the matching decisions generated
by the TC model might be infeasible. In this case, shipments might be switched from barge
or train services to truck services, and shipments might be delayed. We assume the cost of
overdue delivery is 50 e/TEU-h.

Figure 3.10 shows that the higher the traffic congestion coefficient, the larger the number
of infeasible matches generated by the TC model. By increasing the traffic congestion
coefficient, the gap between the TC and TD models also increases in terms of total costs.
Therefore, it is shown that the TD model outperforms the TC model when travel times
change during the day in hinterland synchromodal transportation.
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Figure 3.11: Impact of time weight coefficient.

3.5.4 Multi-objective analysis

To analyze the trade-off between transport cost and time, we varied the weight coefficient
w from 0 to 50. Figure 3.11 shows that the modal split of barge and train services decreases
with the rising of the time weight coefficient. Because barge and train services generally
have longer transport time than truck services for the same OD pair. In addition, the right
plot of Figure 3.11 indicates that the changes of transport cost and time have opposite di-
rections. The higher the transport cost, the lower the transport time. For shipments with
perishable characteristics, the transport time is more important, the time weight coefficient
should be set higher.

3.6 Conclusions

This chapter answers research question RQ1 by investigating a hinterland synchromodal
shipment matching problem in which a network operator aims to provide optimal matches
between shipments with specific time windows and multimodal services with time sched-
ules. Due to the existence of road traffic congestion, the travel time of truck services is
time-dependent. To solve the problem, we have proposed a matching model with time-
dependent travel times.
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We have conducted numerical experiments to test the performance of the model. The
experimental results show that the integrated matching model has better performance than
a sequential model and a decentralized model in total costs. Besides, we have tested the im-
pact of different traffic conditions. The matching model with time-dependent travel times
has shown to have better performance than the model with time-constant travel times, and
the gap between these two models increases with the increasing degree of traffic conges-
tion. Regarding the multi-objective function, the experiment result indicates that the weight
coefficient of the total transport time has a high influence on the matching results.

The matching model designed in this chapter assumes that all the requests and ser-
vices are received in advance. However, in practice, the information of requests arrives
dynamically or even in real-time, and the service information might change over time due
to disturbances. Possible future work can be to develop online approaches that handle dy-
namic events and disturbances in synchromodal transport. Chapter 4 in particular, develops
dynamic approaches to handle real-time shipment requests.



Chapter 4

Dynamic shipment matching

In Chapter 3, a static shipment matching model was developed to support operational hinter-
land synchromodal transport planning. The model assumes all the information of shipments
and services are received in advance. However, in practice, shipment requests from spot
markets arrive in real-time. Therefore, dynamic approaches that support online decision-
making processes are required in hinterland synchromodal transportation.

This chapter is structured as follows. In Section 4.1, a dynamic shipment matching
problem in hinterland synchromodal transportation is introduced. We discuss the relevant
literature in Section 4.2. In Section 4.3, we formally describe the dynamic shipment match-
ing problem. In Section 4.4, we explain the implementation of dynamic approaches. In
Section 4.5, we present optimization algorithms. In Section 4.6, we describe the generation
of instances and present the experiment results. Finally, Section 4.7 ends the chapter with
conclusions.

Parts of this chapter have been published in [37]: “W. Guo, B. Atasoy, W. Beelaerts
van Blokland, and R. R. Negenborn. A dynamic shipment matching problem in hinterland
synchromodal transportation. Decision Support Systems, 134, 113289, 2020.”

4.1 Introduction
Hinterland intermodal transportation is the movement of containers between deep-sea ports
and inland terminals by using trucks, trains, barges, or any combination of them [87]. Com-
pared with unimodal transportation, intermodal transportation has the flexibility to use dif-
ferent modes considering the specific characteristics of containers and in turn achieves better
performance in costs, delays, and emissions [18]. However, due to the utilization of multiple
modes, operating an intermodal transportation system is very complex. In intermodal trans-
portation, barge and train services normally follow fixed time schedules and have limited
free capacity [18]. Conversely, truck services are usually not scheduled and have time-
dependent travel times as a result of road traffic congestion [91]. Therefore, constraints
such as time compatibility between different services and capacity limitations of barge and
train services need to be considered in intermodal transport planning.

Synchromodal transportation, as discussed in Chapter 2, is an extension of intermodal
transportation. It refers to transport systems with dynamic updating of planning by incor-

37
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porating real-time information [30]. The trend towards spot markets and digitalization in
hinterland transportation increases the need for such online synchromodal transport sys-
tems. In the literature, most of the existing studies assume that container shipments are only
collected from large shippers based on long-term contracts. These contractual shipment re-
quests are often fixed and known over a given planning period. Recently, quite a few studies
[e.g., 105, 106] have pointed out the trend towards spot markets in container transportation.
Different from the former contracted requests, spot shipment requests arrive in real-time
and require receiving transport solutions as soon as possible. Thanks to the development
of digitalization and advanced information and communication technologies in logistic in-
dustries, information can be collected in real-time, and decisions can be made online [68].
Nevertheless, these new trends also introduce complexity in intermodal transport planning,
unveiling the need for decision support systems adapted to dynamic contexts.

In this chapter, we investigate a dynamic shipment matching (DSM) problem in which
a platform provides online matches between shipment requests and transport services. We
consider an online synchromodal matching platform that receives contractual and spot ship-
ment requests from shippers, and receives transport services from carriers, as shown in
Figure 4.1. Shippers are the entities that are searching for services to transport their ship-
ments. Examples of shippers include freight forwarders and ocean carriers. Carriers are the
entities that provide transport services. Carriers could be truck, train or barge companies.
We consider a network operator as the owner of the platform. A network operator could be
a logistics service provider or an alliance formed by multiple carriers. The recent develop-
ments in information technologies such as cloud computing and Internet of Things allow
real-time information sharing and container tracking, which facilitates the adoption of such
a platform in practice.

The objective of the platform is to minimize the total cost of matching shipment requests
and transport services over a given planning horizon. Due to the capacity limitation of
barge and train services, decisions made for current requests may influence the decisions
for future requests. Therefore, dynamic approaches that create online matching decisions
for current requests are required. In this chapter, we design a rolling horizon approach to
handle dynamically revealed shipment requests and develop a heuristic algorithm to solve
the DSM problem in a computationally efficient way.

4.2 Literature review

Over the past decades, different freight transport concepts have been proposed in the liter-
ature and in the industry: multimodality, intermodality, co-modality, and synchromodality
[30]. Although these concepts are often used interchangeably, there are subtle differences
between these terms: multimodality focuses on the utilization of multiple modes; inter-
modality emphasizes the integration between different modes by using standard loading
units; co-modality aims to have efficient utilization of resources; synchromodality, as an ex-
tension of intermodality, adds dynamic updating of transport plans over a network to benefit
from real-time information [5]. In this section, the studies related to the DSM problem have
been divided into two categories: hinterland intermodal transportation and synchromodality.
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Figure 4.1: Illustration of an online synchromodal matching platform. The platform pro-
vides online matches between shipment requests received from shippers and
transport services received from carriers thanks to the developed rolling hori-
zon approach.

4.2.1 Hinterland intermodal transportation

Hinterland intermodal transportation is the provision of efficient, reliable, and sustainable
services through integrated strategic and tactical planning at a network level. Strategic plan-
ning concerns the design of transportation network topologies, such as direct link, corridor,
or hub-and-spoke [16]. Konings et al. [45] investigate the benefits of a hub-and-spoke net-
work for hinterland transportation in turnaround times, waiting times, and the reliability of
barge services. Containers at a seaport terminal that have different destinations in the hin-
terland would be transported together to the hub and after being regrouped and bundled with
containers originate from other seaport terminals would continue their trip to their inland
destination.

Tactical planning refers to optimally utilizing the given network by choosing transporta-
tion services, allocating their capacity to customer demands, and planning their itineraries
and frequency [87]. Bhattacharya et al. [10] propose a mixed integer programming model
to optimize schedules for an intermodal transport network by taking into account the road
traffic flow estimation. Zuidwijk et al. [117] propose a single period model to allocate
containers to a truck or barge and schedule the barge departure time considering container
release time uncertainty and service transit time uncertainty. Crainic et al. [14] propose a
service network design model to decide the optimal schedules for the services operated by
a fleet of shuttles on the railway network connecting seaport terminals and inland terminals.
Demir et al. [18] investigate a service network design problem with travel time uncertainty
to decide on the routing of containers and the departure time of transport services.
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4.2.2 Synchromodality

While intermodality focuses on offline planning in which all forms of input information are
required in advance and decisions are made before the start of transportation, synchromodal-
ity , as discussed in Chapter 2, emphasizes online planning in which real-time information
about the current state of the transport system can be taken into account in online planning
processes [19]. Specifically, synchromodal transport planning deals with dynamic events
that are not explicitly addressed in intermodal transportation, including the representation
of real-time data, decisions, and system states [16]. The most common dynamic events
are the arrival of new shipment requests, but container flows and travel times are possible
dynamics as well.

In the literature, Fazi et al. [24] develop a decision support system for the optimal al-
location of import containers to a heterogeneous fleet composed of barges and trucks. van
Riessen et al. [100] design a decision tree to derive real-time decision rules for suitable
allocation of containers to services. Rivera et al. [77] propose an algorithm based on ap-
proximate dynamic programming to assign newly arrived containers to either a barge or a
truck. Although the above studies considered the utilization of multiple modes, none of
them take into account the transshipment operations between different services. Research
that models transshipment in synchromodal transportation, such as Li et al. [49] and Qu
et al. [72], are usually designed for container flows. However, in practice, shippers would
like to receive their shipments as a whole. Therefore, in this chapter, we investigate the
DSM problem from shipment requests’ perspective, namely, decisions are designed as bi-
nary variables indicating the allocation of a specific shipment request to a specific service.
Mes et al. [62] propose a greedy approach to select the cheapest services for dynamically
arrived shipment requests but without the consideration of road traffic congestion. Due to
the limited capacity of road infrastructures, traffic congestion exist during several periods
of a day [91]. The variation of road travel times has been well investigated in the literature
and therefore can be incorporated in the online synchromodal matching process.

4.2.3 Contributions

In the literature, the work most similar to our work is Li et al. [49], which proposes a
rolling horizon approach to control container flows in a hinterland intermodal network by
considering time-dependent truck travel times and time-schedules for trains and barges. In
contrast to our work, Li et al. [49] focuses on aggregated container flows instead of specific
shipment requests with time windows, and therefore uses the value of time instead of delay
costs in the objective function to push containers move to their destinations.

The main contributions of this chapter are as follows. First, we propose a rolling horizon
approach to handle newly arrived shipment requests. The implementation of the rolling
horizon approach relies on an optimization algorithm that can generate timely matching
decisions at each decision epoch. In particular, we develop a heuristic algorithm to solve the
DSM problem. Third, we conduct extensive experiments to assess the performance of the
heuristic algorithm in comparison to an exact algorithm, and the performance of the rolling
horizon approach in comparison to a greedy approach from practice. Briefly, we design,
operationalize and validate an online matching platform in the context of synchromodal
transportation.
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4.3 Problem description

Let N be the set of terminals. Without loss of generality, we assume that the loading/unloading
cost coefficient of barges lcbarge, trains lctrain, and trucks lctruck, the loading/unloading time
of barges ltbarge, trains lt train, and trucks lt truck, and the storage cost coefficient cstorage at
different terminals are the same.

Let R be the set of shipment requests. Each shipment request r ∈ R is characterized by
its announce time Tannounce

r (i.e., the time when the platform receives the request), release
time Trelease

r (i.e., the time when the shipment is available for hinterland transportation) at
origin terminal or, due time Tdue

r (i.e., the time that the shipment needs to be delivered) at
destination terminal dr, and container volume ur (i.e., the number of containers). Delay in
delivery is available but with a delay cost coefficient per container per hour overdue cdelay

r .
The lead time of shipment request r is represented as, LDr = Tdue

r −Trelease
r .

Shipment requests can be divided into two groups: contractual requests Rcontract and spot
requests Rspot. For a contractual request r ∈ Rcontract, the network operator has long-term
contracts with shippers. Therefore, the announce time of contractual request r is, Tannounce

r =

0. All the information {or,dr,ur,Trelease
r ,Tdue

r ,cdelay
r } is known in a given planning horizon.

Conversely, for a spot request r ∈ Rspot, the platform receives the request from spot markets
in real-time. The information of the spot request {or,dr,ur,Trelease

r ,Tdue
r ,cdelay

r } is unknown
before its announce time.

Let S be the set of transportation services. According to the type of modes, services
can be divided into two groups: time-scheduled barge and train services, and departure time
flexible truck services.

Barge and train services have limited capacity and fixed time schedules but can help
generating economies of scale. Each barge or train service s ∈ Sbarge∪Strain is characterized
by its origin terminal os, destination terminal ds, free capacity in terms of loading units (i.e.,
containers) Us, departure time (at origin terminal) T Ds, arrival time (at destination terminal)
TAs, transport cost cs, and generation of carbon emissions es.

Truck services have unlimited capacity, flexible departure times, and time-dependent
travel times ts(τ) = θm

s τ+ηm
s ,∀τ ∈ T m, as shown in Figure 4.2. Here, θm

s and ηm
s are the

slope and intersection of the travel time function for truck service s at time period m; τ

represents the departure time of truck services; T represents the set of time periods within
a day; ts is the travel time at non-peak periods; β1 and β2 are traffic congestion coefficients.
Each truck service s ∈ Struck is characterized by its origin os, destination ds, time-dependent
travel time ts(τ), transport cost cs, and generation of carbon emissions es.

As spot shipment requests arrive in real-time, the platform provides online matches be-
tween shipment requests and transport services. A match is defined as a combination of
a shipment and a service, which means the shipment will be transported by the service
from the service’s origin to the service’s destination. Each shipment might be matched with
multiple services, each service might be matched with multiple shipments. An illustra-
tive example of shipment matching in synchromodal transportation is shown in Figure 4.3.
Matching decision 〈r1,s4〉 means shipment r1 will be transported by service s4 from termi-
nal 1 to terminal 5; matching decision 〈r2,s1〉 ,〈r2,s3〉 ,〈r2,s7〉 means shipment r2 will be
transported by service combination [s1,s3,s7] from terminal 1 to terminal 6.

To model this problem, we make the following five assumptions. First, we assume the
platform is centralized and the contracts among carriers, shippers, terminal operators, and
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Figure 4.3: Illustrative example of shipment matching in synchromodal transportation.

the network operator have been made. Therefore, we do not consider fairness, pricing, and
contracting strategies among players. Second, we do not model the accept/reject decisions
and consider only the accepted spot requests by the platform. Third, we assume that ship-
pers require their shipments to be transported as a whole, thus shipments are unsplittable.
Fourth, we assume shippers require to receive matching decisions before the release time of
shipments. Therefore, the response time of request r is ∆Tr = Trelease

r −Tannounce
r . Fifth, we

assume the capacity of truck services is unlimited. Therefore, the synchromodal matching
system always has feasible matches for newly arrived shipment requests. Last, we do not
consider stochasticity of travel times in this chapter. Instead, we use deterministic travel
times for all services, and consider time-dependent travel times for trucks, since the road
traffic patterns have been well investigated in the literature [91].
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4.4 Dynamic approaches

To handle newly arrived shipment requests, we need to design methodologies that can up-
date the decisions based on dynamically revealed information. This chapter proposes a
rolling horizon approach for the DSM problem and uses a greedy approach as the bench-
mark. While the greedy approach makes matching decisions for each newly arrived ship-
ment request and the decisions are fixed once they are made, the rolling horizon approach
makes decisions at fixed time points for all active requests including newly received requests
at the current time interval and the requests received at previous time intervals which have
not expired yet, and the decisions are fixed only when the response for the request cannot
be further postponed, namely, the request will expire before the next decision epoch.

4.4.1 Benchmark: greedy approach

Greedy approach (GA) is a simple, intuitive algorithm that makes fixed decisions at each
step. In practice, a GA is often used for container transport planning [100]. By using the
GA, a shipment request is assigned to the cheapest feasible service at the time of request
arrival. Figure 4.4 presents the flow chart of the GA applied in dynamic shipment matching.
Specifically, the platform provides matches for all the contractual requests received before
the planning horizon. After that, the platform books all the services matched with the con-
tractual requests and updates the free capacity of barges and trains. A dynamic event, that is
the arrival of a spot shipment request before the end of the planning horizon, triggers a new
optimization process. After that, the platform books all the services matched with the spot
shipment request, and updates the free capacity of barges and trains.
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Figure 4.5: Flow chart of the rolling horizon approach.

4.4.2 Rolling horizon approach

Rolling horizon approach (RHA) is a periodic reoptimization approach, which has been
applied in many research fields, such as ride-sharing problems [64] and parcel delivery
problems [6]. Under a RHA, the system is optimized periodically at pre-specified points in
time called optimization times. The length between two consecutive optimization times is
called the optimization interval, δ. The RHA is therefore executed at a given set of time
points {0,δ,2δ, ...,T}. Here, T is the length of the planning horizon.

Under the RHA, plans are made using all known information within a planning horizon,
but decisions are not finalized until necessitated by a deadline. Re-optimizing the system
allows for enhancing the reliability of the system and improving its performance by incor-
porating the latest information. The flow chart of the RHA applied in the DSM problem is
presented in Figure 4.5. At each decision epoch, the system determines the matches for all
active shipments. At time point t, shipment r is active if its announce time is earlier than
t, and its release time is later than t. The matching plan for active shipment r made at time
point t is fixed only if its release time is earlier than t +δ, namely, the shipment request will
expire before the next decision epoch. Thus, the system books all the services matched with
this request, and updates the free capacity of barge and train services.
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4.5 Optimization algorithms

In this section, we present two optimization algorithms to solve the DSM problem: an exact
algorithm and a heuristic algorithm. While the exact algorithm aims to generate optimal
solutions, the heuristic algorithm is designed to generate timely solutions.

4.5.1 Exact algorithm

In this section, we present a mixed integer linear programming model (MILP) for the DSM
problem. The MILP model is solved by an exact algorithm which is the CPLEX solver.
The objective function (4.1) minimizes the total costs for the matching of all shipments
with services. The total costs consist of logistics costs (including transport costs, transfer
costs, and storage costs), delay costs, and carbon tax. We include delay costs to address the
level of services (i.e., delayed deliveries). Considering carbon tax follows the trend towards
sustainability in the transport industry. In the literature, there exist several models for cal-
culating emission charges. However, most of the models require detailed input data (e.g.,
the mass of the vehicle, air, and rolling resistance) which is in many cases not available. As
an alternative, the activity-based method that multiplies the number of containers with the
CO2 emission factor yields better feasibility in transportation practice and has been applied
in many studies [18, 91]. Therefore, this chapter uses the activity-based method to charge
CO2 emissions. We denote cemission as the CO2 emissions-related cost coefficient.

Minimize

∑
r∈R

∑
s∈S

xrsurcs + ∑
r∈R

∑
i∈N

(
f+ri + f−ri

)
ur + ∑

r∈R
∑
i∈N

wriurcstorage

+ ∑
r∈R

Tdelay
r urcdelay

r

+ ∑
r∈R

∑
s∈S

xrsesurcemission

(4.1)

subject to

∑
s∈S+or

xrs = 1, ∀r ∈ R, (4.2)

∑
s∈S−dr

xrs = 1, ∀r ∈ R, (4.3)

∑
s∈S+i

xrs = ∑
s∈S−i

xrs, ∀r ∈ R, i ∈ N\{or,dr}, (4.4)

∑
r∈R

xrsur ≤Us, ∀s ∈ Sbarge∪Strain, (4.5)

f+ri = ∑
s∈Sbarge

i+

xrslcbarge + ∑
s∈Strain

i+

xrslctrain + ∑
s∈Struck

i+

xrslctruck, ∀r ∈ R, i ∈ N\{dr}, (4.6)

f−ri = ∑
s∈Sbarge

i−

xrslcbarge + ∑
s∈Strain

i−

xrslctrain + ∑
s∈Struck

i−

xrslctruck, ∀r ∈ R, i ∈ N\{or}, (4.7)

Aror = Trelease
r , ∀r ∈ R, (4.8)
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Ari ≤
(

TAs + ltbarge
)

xrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{or},s ∈ Sbarge
i− , (4.9)

Ari ≥
(

TAs + ltbarge
)

xrs +M (xrs−1) , ∀r ∈ R, i ∈ N\{or},s ∈ Sbarge
i− , (4.10)

Ari ≤
(

TAs + lt train
)

xrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{or},s ∈ Strain
i− , (4.11)

Ari ≥
(

TAs + lt train
)

xrs +M (xrs−1) , ∀r ∈ R, i ∈ N\{or},s ∈ Strain
i− , (4.12)

Ari ≤ τrs + t truck
rs + lt truckxrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{or},s ∈ Struck

i− , (4.13)

Ari ≥ τrs + t truck
rs + lt truckxrs +2M (xrs−1) , ∀r ∈ R, i ∈ N\{or},s ∈ Struck

i− , (4.14)

Ari ≤
(

T Ds− ltbarge
)

xrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{dr},s ∈ Sbarge
i+ , (4.15)

Ari ≤
(

T Ds− lt train
)

xrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{dr},s ∈ Strain
i+ , (4.16)

Ari ≤ τrs− lt truckxrs +M (1− xrs) , ∀r ∈ R, i ∈ N\{dr},s ∈ Struck
i+ , (4.17)

τ
′
rs = τrs−24nrs, ∀r ∈ R,s ∈ Struck, (4.18)

τ
′
rs = ∑

k
ζ

k
rsbk, ∀r ∈ R,s ∈ Struck, (4.19)

∑
k

ζ
k
rs = 1, ∀r ∈ R,s ∈ Struck, (4.20)

t truck
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k
ζ

k
rs (θ

m
s bk +η

m
s ) , ∀r ∈ R,s ∈ Struck, (4.21)

∑
m

ξ
m
rs = 1, ∀r ∈ R,s ∈ Struck, (4.22)

ζ
1
rs ≤ ξ

1
rs, ∀r ∈ R,s ∈ Struck, (4.23)

ζ
k
rs ≤ ξ

k−1
rs +ξ

k
rs, ∀r ∈ R,s ∈ Struck,k ∈ {2,3, ...K−1}, (4.24)

ζ
K
rs ≤ ξ

K−1
rs , ∀r ∈ R,s ∈ Struck, (4.25)

wri ≥
(

T Ds− ltbarge
)

xrs−Ari, ∀r ∈ R, i ∈ N\{dr},s ∈ Sbarge
i+ , (4.26)

wri ≥
(

T Ds− lt train
)

xrs−Ari, ∀r ∈ R, i ∈ N\{dr},s ∈ Strain
i+ , (4.27)

wri ≥ τrs− lt truckxrs +M(xrs−1)−Ari, ∀r ∈ R, i ∈ N\{dr},s ∈ Struck
i+ , (4.28)

Tdelay
r ≥ Ardr −Tdue

r , ∀r ∈ R, (4.29)

where f+ri and f−ri are the loading and unloading cost of request r ∈ R at terminal i ∈ N per
container; wri is the storage time of request r at terminal i; Tdelay

r is the delay of request
r at destination terminal dr; M is a large number used for linearizing binary constraints;
τrs represents the departure time of truck service s ∈ Struck with request r ∈ R; τ

′
rs is the

normalized departure time of truck service s with request r, 0 ≤ τ
′
rs ≤ 24; nrs denotes an

integer variable used for normalizing departure time of truck service s with request r; ζk
rs is

a continuous variable used for linearizing the time-dependent travel time function of truck
service s ∈ Struck, 0≤ ζk

rs ≤ 1; ξm
rs is a binary variable used for the linearization.

Constraints (4.2)-(4.4) manage the inflow of shipments at their origin terminal, outflow
at destination terminal, and flow conservation at transshipment terminal. Constraints (4.5)
ensure that the total container volumes of shipments carried by service s ∈ Sbarge ∪ Strain
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do not exceed its free capacity. Constraints (4.6)-(4.7) represent the loading and unloading
cost of request r per container generated at terminal i. Constraints (4.8) assume that the ar-
rival time of request r at origin terminal is the release time. Constraints (4.9)-(4.12) ensure
that the arrival time of request r at terminal i is the arrival time of service s ∈ Sbarge∪Strain

plus unloading time, if request r is transported by service s entering terminal i. Constraints
(4.13)-(4.14) ensure that the arrival time of request r at terminal i is the sum of departure
time of service s ∈ Struck with request r at terminal os, travel time of truck service s, and un-
loading time, if request r is transported by truck service s entering terminal i. In constraints
(4.14), we use 2M instead of M in the right-hand side to make sure the value of Ari will not
be influenced by the constraints when xrs = 0 and τrs = M. Constraints (4.15-4.17) ensure
that the arrival time of request r at terminal i is earlier than the departure time of service
s ∈ S minus loading time, if request r is transported by service s leaving terminal i. Con-
straints (4.18)-(4.25) are imposed to linearize the time-dependent travel time functions of
truck services. Constraints (4.26)-(4.28) ensure that the storage time of request r at terminal
i is the departure time of service s minus the arrival time of request r at terminal i and minus
loading time, if request r is transported by service s leaving terminal i. Constraints (4.29)
are imposed to calculate the late deliveries of request r at destination terminal dr. We do not
penalize earlier deliveries but only late deliveries.

4.5.2 Heuristic algorithm

Due to the computational complexity of the matching problem, the exact algorithm proposed
in Section 4.5.1 cannot generate feasible solutions for realistic instances. Therefore, this
chapter proposes a preprocessing-based heuristic algorithm to reduce the computational
complexity. The algorithm consists of three steps: preprocessing of path generation in which
no request-specific characteristics are taken into account, preprocessing of feasible matches
in which request-specific characteristics (i.e., release time and due time) are considered, and
binary integer programming to generate ‘optimal’ solutions.

Preprocessing of path generation

We define a path as a combination of services. A path p can consist of a single service or
multiple services. For example, a path p consists of a barge service s1 and a truck service
s2, thus, p = [s1,s2]. We define L as the largest number of services in a path. Due to fixed
schedules of barge and train services, some of the service combinations are infeasible. Let
Pl

i j be the set of feasible paths with l services that depart at terminal i ∈ N and arrive at
terminal j ∈ N, l ∈ {1, ...,L}. A path p ∈ Pl

i j is feasible only if all the services in path p =
[s1, ...,sl ] satisfies spatial and time compatibility: for service sn,sn+1 ∈ p,n ∈ {1, ..., l−1},
the destination terminal of service sn should be the same as the origin terminal of service
sn+1; the arrival time of sn plus unloading and loading time at the transshipment terminal
should be earlier than the departure time of service sn+1.

Based on the above principles, feasible paths with maximum L services are generated
by using the offline preprocessing algorithm presented in Algorithm 4.1. The algorithm
starts with determining the feasible paths for each origin-destination pair with just one ser-
vice, and subsequently combines these paths with a single service to create feasible paths
with two services, three services, and so on. For each feasible path, we record the virtual
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Algorithm 4.1 Path generation algorithm.
Input: Set of transportation services S, set of terminals N, the largest number of services in
a path L, index l ∈ {1,2, ...,L}.
Output: Set of feasible paths P = P1 ∪ ...Pl ∪ ...PL, Pl

i j ⊆ Pl represents the set of feasible
paths with l services that depart at node i, and arrive at node j. Auxiliary time points
MT l

p =
[
MT l1

p , ...,MT l(2l)
p

]
.

Initialize: Let P← /0,MT l
p← [0] , l← 1.

1: for node i ∈ N, node j ∈ N do
2: for service s ∈ S do
3: if origin os = i and destination ds = j then
4: p← [s]
5: Pl

i j← Pl
i j ∪{p}

6: MT l
p← AUXILIARYTIMEPOINTS(p)

7: l← l +1
8: while l ≤ L do
9: for node i ∈ N, node j ∈ N do

10: for service s ∈ S do
11: if origin os 6= i and destination ds = j then
12: for feasible path p← [s1, ...,sl−1] ∈ Pl−1

ios
do

13: if TIMECOMPATIBLE1(p,s) = 1 then
14: p

′
= [s1, ...,sl−1,s]

15: Pl
i j← Pl

i j ∪{p
′}

16: MT l
p′
← AUXILIARYTIMEPOINTS(p

′
)

17: l← l +1

departure and arrival time points of all the services in the path by calling the AUXILIARY-
TIMEPOINTS as described in Algorithm 4.2. The virtual departure (arrival) time points of
barge and train services are the departure (arrival) time of these services minus (plus) load-
ing (unloading) time. Instead of determining the departure time of truck services to avoid
traffic congestion, we define the virtual departure time points of truck services as the vir-
tual arrival time points of their previous services to reduce computational complexity. The
time-dependent travel time of truck services is calculated based on the virtual departure time
point plus loading time. To examine whether a path p

′
= [s1, ...,sl−1,s] ∈ Pl

i j is feasible, we
check the time compatibility between path p = [s1, ...,sl−1] ∈ Pl−1

ios
and service s ∈ S−j by

calling the TIMECOMPATIBLE1 as described in Algorithm 4.3.

Preprocessing of feasible matches

A match 〈r, p〉 is defined as a combination of shipment r ∈ R and path p = [s1, ...,sl ], p ∈ P,
which means shipment r will be transported by the services included in path p. The match
〈r, p〉 is feasible only if it satisfies spatial and time compatibility: the origin of shipment r
should be the same as the origin of service s1, the destination of shipment r should be the
same as the destination of service sl ; the release time of shipment r should be earlier than
the virtual departure time point of service s1.
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Algorithm 4.2 AUXILIARYTIMEPOINTS.
Input: Feasible path p = [s1, ...,sl ].
Output: Auxiliary time points MT l

p =
[
MT l1

p , ...,MT l(2n)
p , ...,MT l(2l)

p

]
,n ∈ {1, ..., l}.

Initialize: Let MT l
p← [0] ,n← 1.

1: while n≤ l do
2: if sn ∈ Struck then
3: if n = 1 then
4: MT l(2n−1)

p ← 0
5: else
6: MT l(2n−1)

p ←MT l(2n−2)
p

7: Travel time of truck service sn← calculate the time-dependent travel time function
8: MT l(2n)

p ← MT l(2n−1)
p plus loading time plus travel time of truck service sn plus

unloading time
9: else

10: MT l(2n−1)
p ← departure time of service sn ∈ Sbarge∪Strain minus loading time

11: MT l(2n)
p ← arrival time of service sn ∈ Sbarge∪Strain plus unloading time

12: n← n+1

Algorithm 4.3 TIMECOMPATIBLE1.

Input: node i ∈ N, service s ∈ S\S+i , feasible path p = [s1, ...,sl−1] ∈ Pl−1
ios

.
Output: z, equal to 1 if path p and service s is time compatible, 0 otherwise.
Initialize: Let z← 0.

1: if s ∈ Sbarge∪Strain then
2: if MT 2(l−1)

p ≤ departure time of service s minus loading time then
3: z← 1, return z
4: else
5: z← 1, return z

We define Φ as the set of feasible matches, crp as the cost of matching shipment r with
path p. Algorithm 4.4 is designed to create the feasible matches. For shipment r and path
p = [s1, ...,sl ] ∈ Pl

ordr
, the time compatibility between r and p is checked by calling TIME-

COMPATIBLE2, as presented in Algorithm 4.5. If s1, ...,sn are truck services, the virtual
departure and arrival time points of these truck services need to be updated sequentially.
After the updating, if the virtual arrival time point of sn is less than the virtual departure
time point of service sn+1 ∈ Sbarge ∪ Strain, match 〈r, p〉 is feasible. If s1 is a barge or train
service, and the release time of shipment r is less than the virtual departure time point of
service s1, then match 〈r, p〉 is feasible.

Binary integer programming

Based on the above preprocessing procedures, the objective function is updated to minimize
the total costs for the matching of shipments with feasible paths. Let zrp be a binary decision
variable equal to 1 if shipment r is matched with path p, and 0 otherwise. The mathematical
formulation translates into a binary integer programming (BIP) model:
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Algorithm 4.4 Feasible match generation algorithm.
Input: Set of feasible paths P, set of shipment requests R, the largest number of services in
a path L, index l ∈ {1,2, ...,L}, set of auxiliary time points MT , objective function (4.1).
Output: Set of feasible matches Φ = Φ1∪Φ2...∪Φr...∪ΦR.
Initialize: Let Φ← /0, l← 1.

1: for shipment request r ∈ R do
2: for l ∈ {1,2, ...,L} do
3: for feasible path p = [s1,s2, ...,sl ] ∈ Pl

ordr
do

4: if TIMECOMPATIBLE2(r, p) = 1 then
5: Φr←Φr ∪{p}
6: crp← Calculate the objective function

Algorithm 4.5 TIMECOMPATIBLE2.

Input: shipment request r ∈ R, feasible path p = [s1, ...,sl ] ∈ Pl
ordr

, auxiliary time points

MT l
p =

[
MT l1

p , ...,MT l(2n)
p , ...,MT l(2l)

p

]
,n ∈ {1, ..., l}.

Output: z, equal to 1 if r and p is time compatible, 0 otherwise.
Initialize: Let z← 0,n← 2.

1: if s1 ∈ Struck then
2: update MT l1

p ← release time of shipment request r
3: update travel time of truck service s1← calculate time-dependent travel time function

truck service s1
4: update MT l2

p ← MT l1
p plus loading time plus travel time of truck service s1 plus

unloading time
5: while n≤ l do
6: if sn ∈ Struck then
7: update MT l(2n−1)

p ←MT l(2n−2)
p

8: update travel time of truck service sn ← calculate time-dependent travel time
function truck service sn

9: update MT l(2n)
p ←MT l(2n−1)

p plus loading time plus travel time of truck service
sn plus unloading time

10: else
11: if MT l(2n−2)

p ≤MT l(2n−1)
p then

12: z← 1, return z
13: else
14: return z
15: n← n+1
16: else
17: if release time of shipment request r ≤MT l1

p then
18: z← 1, return z

Minimize
∑
r∈R

∑
p∈Φr

crpzrp (4.30)
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subject to

∑
p∈Φr

zrp = 1, ∀r ∈ R, (4.31)

∑
r∈R

∑
p∈Φrs

zrpur ≤Us, ∀s ∈ Sbarge∪Strain. (4.32)

where Φrs = {p ∈Φr|s ∈ p}.
Constraints (4.31) ensure that only one feasible path will be assigned to each shipment.

Constraints (4.32) ensure that the total volume of shipments assigned to service s ∈ Sbarge∪
Strain does not exceed its free capacity.

4.6 Numerical experiments
In this section, we first evaluate the performance of the optimization algorithms and compare
the GA with the RHA. Then, we investigate the impact of different objective functions and
optimization intervals. All algorithms were implemented in MATLAB R2017a, and all
experiments were performed on a computer with 2.50 GHz Intel Core i5-7200U CPU and 8
GB RAM. CPLEX 12.6.3 was used as an IP solver.

4.6.1 Generation of test instances
In practice, different companies have different network sizes. For example, Combi Termi-
nal Twente (https://www.ctt-twente.nl/en/, accessed: 2020-03-16) provides container trans-
ports from the port of Rotterdam to 3 inland terminals in the Netherlands and Germany
with 7 barges, 3 trains and 40 trucks per week. European Gateway Services (EGS, https:
//www.europeangatewayservices.com/en, accessed: 2020-03-16) offers above 40 trains and
30 barges per week between the Ports of Rotterdam and Antwerp and 11 inland terminals in
the Netherlands, Belgium, Germany, and Austria. Every year, approximately 1000000 TEU
is transported within the EGS network. To show the application of the model, we consider a
hinterland intermodal network in Europe to carry out the numerical experiments, as shown
in Figure 4.6. The network consists of three deep-sea terminals (nodes 1, 2, 3) and seven
inland terminals (nodes 4, 5, 6, 7, 8, 9, 10) which are connected by 116 transport services,
including 49 barges, 33 trains, and 34 trucks. The length of the planning horizon was set to
one week. The coefficients used in the experiments were derived from Riessen et al. [102]
and Li et al. [49], as shown in Table 4.1. Here, the transport cost of services is a linear
function of the transport time t and distance d.

We generated several instances to represent different characteristics of shipments within
the given network. We use EU− n1− n2 to represent an instance with n1 contractual re-
quests and n2 spot requests. The average container volume of contractual requests is 20
TEU, and the average container volume of spot requests is 5 TEU. We set the arrival fre-
quency to 20, 10, 6 and 4 minutes for instances with 400, 800, 1200 and 1600 spot requests,
respectively. Regarding the time-dependent travel times, we set b1 = 0,b2 = 5,b3 = 7,b4 =
9,b5 = 13,b6 = 17,b7 = 19,b8 = 21,b9 = 24,β1 = 2,β2 = 1.5. The detailed information
of services and instances used in this chapter is available at http://doi.org/10.4121/uuid:
512169a0-5a69-43a9-a85b-105dd351cc74.

https://www.ctt-twente.nl/en/
https://www.europeangatewayservices.com/en
https://www.europeangatewayservices.com/en
http://doi.org/10.4121/uuid:512169a0-5a69-43a9-a85b-105dd351cc74
http://doi.org/10.4121/uuid:512169a0-5a69-43a9-a85b-105dd351cc74
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Figure 4.6: The topology of an intermodal network in Europe.

Table 4.1: Experimental setting.

Coefficient Truck Barge Train
Transport cost (e/TEU-km-h) 30.98t+0.2758d 0.6122t+0.0213d 7.54t+0.0635d
Carbon emission (kg/TEU-km) 0.8866 0.2288 0.3146
Loading/unloading cost (e/TEU) 3 18 18
Loading/unloading time (h) 0 1 1
Carbon tax (e/ton) 8 8 8
Storage cost (e/TEU-h) 1 1 1

4.6.2 Performance of the heuristic algorithm

To compare the performance of the heuristic algorithm presented in Section 4.5.2 with the
exact algorithm presented in Section 4.5.1, we generated 8 instances of the DSM problem
with different numbers of shipment requests. In the exact algorithm, we set the large enough
number M to 168. In the heuristic setting, we let the largest number of services in a path L
be 1, 2, 3 and 4, respectively. We use heuristic-L to represent the heuristic algorithm with
setting L. The number of variables (i.e., N.var) and constraints (i.e., N.con) for the instances
under different algorithms is presented in Table 4.2.

We consider two performance indicators: total costs (obj: e) and computation time
(CPU: seconds). The computation time of heuristics includes the time of generating feasible
matches and the time of solving the BIP model. We use ‘gap’ to represent the %gaps in
total costs between different algorithms, which is given by (objective value - benchmark
value)*100/benchmark value. Table 4.3 summarizes the performance for all instances. It
shows that the small instances with up to 30 contractual requests are still solvable by using
the exact algorithm. However, the computation time increases dramatically from 27 to 5647
seconds. In comparison, extending L from 1 to 3, the gaps in total cost between the heuristic
algorithm and the exact algorithm decreases to 0.00%. The computation time of the heuristic
algorithm with a maximum of 3 services in a path (Heuristic-3) is no more than 1 second.
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Table 4.2: Number of variables and constraints for the instances under different algorithms.

Instances Exact algorithm Heuristic-1 Heuristic-2 Heuristic-3 Heuristic-4
N.var N.con N.var N.con N.var N.con N.var N.con N.var N.con

EU-5-0 4185 4221 26 18 54 25 66 25 68 25
EU-10-0 8370 8408 28 24 209 63 684 82 944 82
EU-20-0 16740 16676 84 61 428 85 1125 91 1488 91
EU-30-0 25110 24963 112 66 564 104 1646 105 2235 105
EU-700-0 585900 580996 2504 767 13725 780 36449 781 56777 781
EU-1000-0 837000 829916 3279 1067 18108 1082 49908 1082 79805 1082
EU-1300-0 1088100 1079016 4473 1367 25377 1380 69202 1381 109758 1381
EU-1600-0 1339200 1327942 6032 1667 33742 1680 91020 1681 143859 1681

Table 4.3: Performance of the heuristic algorithm with different L.

Instances Exact algorithm Heuristic-1 Heuristic-2 Heuristic-3 Heuristic-4
obj CPU %gap CPU %gap CPU %gap CPU obj %gap CPU

EU-5-0 4386 27.01 0.00 0.05 0.00 0.15 0.00 0.60 4386 0.00 0.28
EU-10-0 25988 213.06 32.89 0.03 0.00 0.11 0.00 0.45 25988 0.00 0.80
EU-20-0 44198 1704.98 29.56 0.02 0.05 0.13 0.00 0.43 44198 0.00 0.65
EU-30-0 65126 5647.03 28.52 0.02 0.00 0.13 0.00 0.60 65126 0.00 0.94
EU-700-0

Out of memory

17.49 1.37 0.17 8.21 0.00 25.47 1060077 38.43
EU-1000-0 18.37 2.60 0.25 16.46 0.00 45.22 1017669 78.94
EU-1300-0 19.03 6.12 0.42 34.15 0.00 94.62 1042481 158.57
EU-1600-0 18.36 10.55 0.17 63.22 0.00 176.24 1020075 302.41

For instances with above 700 total requests, we cannot obtain feasible solutions with the
exact algorithm. The limitation in these instances is not the computation time but rather the
memory since the size of the problems becomes too large to read. In contrast, all these large
instances can be solved by using the heuristic algorithm with a maximum of 3 services in a
path within 176.24 seconds, and the gaps in total costs between heuristic-3 and heuristic-4
are 0.00%.

4.6.3 Performance of the dynamic approaches
In this section, we aim to compare the performance of two dynamic approaches: the GA
and the RHA. Both of them work with Heuristic-3. We set the length of the optimization
interval under the RHA to 1 hour.

We generated 4 groups of instances with different demand densities represented by the
ratio between demand and supply: EU-100-400 (40%), EU-200-800 (80%), EU-300-1200
(120%), and EU-400-1600 (160%). Here, demand is the total container volumes of ship-
ments, supply is the total free capacity of barge and train services. Each group includes 10
instances with the same ratio between demand and supply. We use the GA as the bench-
mark. Figure 4.7 (a) shows that the RHA has lower total costs in all the groups of instances,
and the reduction in total costs increases with the demand density. The reason is that the
higher the ratio between demand and supply, the competition between shipment requests is
higher. The proposed RHA better allocates limited barge and train capacity to more suitable
shipment requests which might arrive later in the system.

We generated another 4 groups of instances with different degrees of dynamism (DOD).
In this chapter, we define the DOD as the ratio between the number of spot containers
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Figure 4.7: Comparison between the rolling horizon approach and the greedy approach.

and the number of total containers. For instance EU-300-400, its DOD is calculated as
(400∗5)/(300∗20+400∗5) = 25%. The DOD for instance EU-300-400, EU-200-800,
EU-100-1200, EU-0-1600 are therefore 25%, 50%, 75% and 100% respectively. Each group
includes 10 instances with the same DOD. Figure 4.7 (b) shows that the RHA also has better
performance in all the groups of instances compared to the GA, and the improvement is
increasing further with a higher DOD. Interestingly, when the matching system is 100%
dynamic, the variance of the performance of the RHA becomes the largest. The reason
is when the system is fully dynamic, the performance of the reoptimization-based RHA
becomes uncertain.

To investigate the performance of the GA and the RHA under different lead time scenar-
ios, we generated 3 groups of instances with different lead times of spot requests: EU-100-
1200 (24), EU-100-1200 (48), and EU-100-1200 (72). Each group consists of 10 instances
with the same lead time setting. Figure 4.7 (c) shows that the RHA has better performance
than the GA in terms of total costs for all groups of instances and the improvement is larger
for longer lead times. Longer lead times provide more flexibility for the RHA to re-optimize
the decisions as new requests are received and the capacity can be allocated more effectively.

Similarly, we varied the response time of shipment requests from 1 hour to 24 hours
for 3 groups of instances: EU-100-1200 (1), EU-100-1200 (12), and EU-100-1200 (24).
Figure 4.7 (d) shows that the larger the response time, the better the performance of the
RHA is in reducing total costs since it has more time to update decisions for all requests
until their release times.
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Figure 4.8: Impact of the length of the optimization interval.

4.6.4 Effects of objective functions and optimization intervals
Impact of different objective functions

We investigate the impact of different objective functions under instance EU-1000-0. The
utilization of barges and trains is defined as the ratio between the utilized capacity of barge
and train services multiplied by corresponding transport distances and the utilized total ca-
pacity of all services multiplied by corresponding distances. Table 4.4 shows that different
objective functions generate different matching solutions. Comparing case 11 with cases
1 to 10, we observe that the total cost is the lowest when the objective function includes
all elements. When we minimize the transport cost (case 1) or the carbon tax (case 5), the
utilization of barges and trains is favored as they are cheaper and environmental friendlier
than trucks. On the other hand, minimizing the transfer (case 2), storage (case 3) or delay
(case 4) cost favors the utilization of trucks as they are faster in general and have flexible
departure times. Comparing case 11 with cases 6 to 10, we see that the transport cost has the
largest influence on the matching decisions while carbon tax has the smallest impact. How-
ever, it is predictable that the carbon tax coefficient will increase in the near future because
of the increasing environmental issues and the enforced regulations. Under a restrict emis-
sion policy, such as case 14, including the carbon tax in the objective function can greatly
affect the utilization of barges and trains. It is also interesting to observe that there is a clear
trade-off between delay and carbon emissions as it is what is happening in real life.

Impact of the length of the optimization interval

To test the impact of the length of the optimization interval in the RHA, we used 4 instances
with different DOD: EU-300-400 (25%), EU-200-800 (50%), EU-100-1200 (75%) and EU-
0-1600 (100%). For each instance, we vary the length of the optimization interval δ from
0.1 to 10 hours.

We use optimization intervals of 1 hour as the benchmark. Figure 4.8 shows that reduc-
ing h allows the system to react more quickly to new information, which in turn leads to
improved solutions. This is especially the case for instances with a high DOD. However,
excessively reducing δ does not improve the performance of the RHA. It is seen that below 1
hour of optimization intervals does not bring values as expected since the response times are
set as a minimum of 1 hour. Therefore, decision makers can improve the matching quality
by choosing a proper δ-value.
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Table 4.4: Impact of different objective functions.

Case Carbon tax
coefficient
(e/ton)

Objective
function1

(Min.)

Total cost
(e)

OF1 (e) OF2 (e) OF3 (e) OF4 (e) OF5 (e) Delay
(TEU-h)

Carbon
emission
(kg)

Utilization
of barges
and trains
(%)

Utilization
of trucks
(%)

1

8

OF1 4478714 598864 328458 137798 3406214 7379 39170 922429 71.47 28.53
2 OF2 1473382 1411229 47622 0 0 14530 0 1816311 0.00 100.00
3 OF3 1618747 1499961 103374 0 0 15412 0 1926482 0.04 99.96
4 OF4 1617409 1495824 105960 245 0 15379 0 1922413 0.42 99.58
5 OF5 4432293 601621 324498 144863 3353948 7364 40167 920491 72.06 27.94
6 OF2,3,4,5 1473382 1411229 47622 0 0 14530 0 1816311 0.00 100.00
7 OF1,3,4,5 1042644 648402 313266 72066 1112 7799 11 974863 67.96 32.04
8 OF1,2,4,5 1028388 668393 270732 80338 972 7953 10 994084 65.78 34.22
9 OF1,2,3,5 1803565 656501 260772 69829 808619 7844 8624 980454 66.71 33.29
10 OF1,2,3,4 1017693 695156 252702 60783 880 8172 9 1021544 63.76 36.24
11 Total cost 1017675 692118 254448 62114 850 8145 9 1018154 64.05 35.95
12 100 Total cost 1110869 684140 260790 64039 972 100929 10 1009287 64.78 35.22
13 500 Total cost 1507925 658359 284862 72431 1162 491111 12 982222 66.94 33.06
14 1000 Total cost 1995063 643700 298386 78945 8159 965872 88 965872 68.48 31.52
1 OF1: Transport cost; OF2: Transfer cost; OF3: Storage cost; OF4: Delay cost; OF5: Carbon tax; OF2,3,4,5: Transfer cost + Storage cost + Delay cost + Carbon tax; OF1,3,4,5: Transport cost + Storage cost +

Delay cost + Carbon tax; OF1,2,4,5: Transport cost + Transfer cost + Delay cost + Carbon tax; OF1,2,3,5: Transport cost + Transfer cost + Storage cost + Carbon tax; OF1,2,3,4: Transport cost + Transfer cost
+ Storage cost + Delay cost
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4.7 Conclusions
This chapter answers research question RQ2 by introducing an online synchromodal match-
ing problem in which a platform aims to provide optimal matches between shipment re-
quests and transport services. We proposed a rolling horizon approach and a heuristic algo-
rithm to support the online decision-making process. We validated the heuristic algorithm
and the rolling horizon approach on an intermodal network in Europe. The results indicate
that the heuristic algorithm is efficient in large instances of the matching problem, and can
be used under dynamic contexts. The rolling horizon approach has been proved to outper-
form a greedy approach in reducing total costs under various scenarios.

In conclusion, the proposed online matching platform will support decision makers to
optimize the matching of shipments and services considering the trade-off between logis-
tics costs, delays, and carbon emissions thanks to the developed rolling horizon approach.
In other words, with the proposed approach, the use of barges, trains, and trucks can be
managed more effectively taking into account their impact on logistics costs, delays, and
emissions together with different time sensitivities of shipments.

This work can be extended in several directions. During the day, the number of trucks
available to the matching platform is quite dynamic. Therefore, combining the dynamics of
truck services in the synchromodal matching model is a further research direction. Consid-
ering the multiple uncertainties that exist in synchromodal transportation, future research
can be carried out on stochastic and dynamic shipment matching. Chapter 5 in particu-
lar, incorporates the stochastic information of spot requests in online shipment matching
processes. Furthermore, the origins and destinations of containers are usually located in
different countries. Thus, looking into models with an integrated network combining in-
tercontinental and inland transport is a promising research direction. This is the subject of
Chapter 6. Besides, in this chapter, the online matching platform is controlled in a cen-
tralized way. However, in practice, multiple operators are present and they may not all be
willing to give authority to a central platform. The coordination mechanism among them
and incentives to stimulate cooperation are part of future research. This will be investigated
in Chapter 7.





Chapter 5

Dynamic and stochastic shipment
matching

In Chapter 4, a dynamic shipment matching model was developed for hinterland synchro-
modal transportation. In order to investigate the benefits of incorporating stochastic infor-
mation of spot requests in the online shipment matching process, this chapter focuses on
dynamic and stochastic shipment matching in hinterland synchromodal transportation.

This chapter is structured as follows. Section 5.1 introduces the motivations and chal-
lenges faced by network operators in hinterland synchromodal transportation. We briefly
review the relevant literature and specify our contributions in Section 5.2. In Section 5.3,
we describe the dynamic and stochastic shipment matching problem, design the preprocess-
ing procedures, and present the Markov decision process model. In Section 5.4, we design
the rolling horizon framework, the sample average approximation method, and the progres-
sive hedging algorithm. In Section 5.5, we describe the experimental setup, and present the
experimental results. Finally, in Section 5.6, some concluding remarks are provided.

Parts of this chapter have been submitted to a journal: “W. Guo, B. Atasoy, W. Bee-
laerts van Blokland, and R. R. Negenborn. Anticipatory approach for dynamic and stochas-
tic shipment matching in hinterland synchromodal transportation. Submitted to a journal,
2020.”

5.1 Introduction

Hinterland synchromodal transportation is the movement of shipments (i.e., a batch of
containers) between deep-sea ports and inland terminals by trucks, trains, barges, or any
combination of them [87]. Typically, a hinterland synchromodal transportation system is
made up of multiple stakeholders that interact with each other, including network operators,
shippers, carriers, terminal operators, and institutional authorities [17]. Network opera-
tors (e.g., logistics service providers and alliances formed by multiple carriers) control the
synchromodal transport system. Shippers (e.g., manufacturers, ocean carriers, and freight
forwarders) generate the freight transportation demand and outsource transport activities to
network operators. Carriers (e.g., truck, train, and barge companies) provide transporta-
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tion services and supply timely transport capacity to network operators. Terminal operators
handle transshipment operations at terminals. Institutional authorities (e.g., governments
and public administrations) charge tax, give incentives, and regulate transport activities to
network operators, such as the charging of carbon emissions.

As shippers become more time-sensitive that require shipments to be delivered within
tight time windows, trucks are used more often which contributes to road traffic congestion,
transport costs, and carbon emissions [18]. However, due to the increasing environmen-
tal issues and the enforced regulations, companies in the transport industry are required to
control carbon emissions [18]. The main advantage of synchromodal transportation is the
ability to manage different types of shipments considering the trade-off among costs, de-
lays, and emissions [62]. For example, for time-sensitive shipments, network operators can
assign trucks for transportation; but if time available, barges, trains or barge-truck can be
assigned taking into account their impact on logistics costs, time, and emissions.

The growing trend towards digitalization in freight transportation gives rise to dynamic
and stochastic problems in which part or all of the input is unknown and revealed dynam-
ically over a planning horizon, but exploiting stochastic information of random variables
is viable with the help of data analytics [75]. In this chapter, we consider a synchromodal
matching platform owned by network operators (e.g., European Gateway Services) that re-
ceives real-time shipment requests from shippers, receives weekly multimodal services from
carriers, and receives timely transshipment services from terminal operators. The handling
capacity at transshipment terminals is assumed unlimited, while the capacity of transport
services is limited. The platform aims to provide optimal online matches between shipment
requests and multimodal services over a planning horizon under future request uncertainty.
The stochastic information of future requests (i.e., probability distributions) is available
from historical data. We define the optimization problem as a dynamic and stochastic ship-
ment matching (DSSM) problem in hinterland synchromodal transportation.

The complexity of the DSSM problem lies in three aspects. First, the time-space com-
patibility between shipments and services needs to be considered. Second, due to the ca-
pacity limitation of barge and train services, the matching decisions made for current re-
quests will affect the ability to make good matches for future requests. Third, incorporating
stochastic information in online decision-making processes can improve the system’s per-
formance over a planning horizon but increase the computational complexity.

In response to the complexities, we present preprocessing procedures to generate fea-
sible matches between shipments and multimodal services, model the DSSM problem as a
Markov decision process, and propose an anticipatory approach to solve the problem un-
der realistic instances in a reasonable time. The anticipatory approach consists of a rolling
horizon approach to deal with dynamic events that arrive over a planning horizon, a sample
average approximation method to approximate expected objective functions and a progres-
sive hedging algorithm to solve the deterministic formulations at each decision epoch.

5.2 Literature review

In the past decades, because of economic factors and environmental concerns, different
management concepts have appeared in the literature and in the logistics industry: multi-
modal, intermodal, co-modal and synchromodal transportation. While multimodality refers
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to the utilization of multiple modes, intermodality emphasizes the utilization of standard-
ized loading units (i.e., containers), namely the vertical integration of different modes [87].
Co-modality focuses on the optimal and sustainable utilization of different modes on their
own or in combination, namely the horizontal integration of different modes. Synchro-
modality, as an extension of intermodality, focuses on the (real-time) flexibility in planning
when disturbances happen [30]. Compared with multimodal, intermodal, and co-modal,
transportation, synchromodal transportation is the most advanced concept and includes all
the notions [9]. Therefore, in this chapter, we use synchromodal transportation to represent
the utilization of multiple modes, the utilization of standard loading units, the horizontal
and vertical integration of transport services, and the flexibility in planning.

The implementation of synchromodal transportation relies on collaboration among stake-
holders, information technologies, and integrated planning at different decision levels. Typ-
ically, synchromodal transport planning can be divided into three levels: strategic, tacti-
cal, and operational level. While strategic and tactical planning focus on physical network
design (e.g., hub location) and service network design (e.g., service selection, service fre-
quency) in long and medium time horizons, operational planning deals with the optimal
allocation of resources (e.g., services, empty containers, handling equipment) that requires
optimization in dynamic and stochastic environments [30].

In the literature, the majority of the studies [e.g., 7, 12, 63, 103] related to synchromodal
transport planning are conducted in a static and deterministic environment, namely, all the
inputs are known beforehand and decisions do not change once they are set. However, in
practice, there are many sources of uncertainties in synchromodal transportation. With the
growing amount of historical data, the stochastic information about uncertainties is avail-
able. Incorporating stochastic information in decision-making processes has been proven to
have better performance than the corresponding myopic approaches in many fields, such as
vehicle routing problems [3] and dial-a-ride problems [82].

In the field of stochastic synchromodal transport planning, Demir et al. [18] studied
a green intermodal service network design problem with demand and travel time uncer-
tainties. In this study, the origins, destinations, time windows of shipments are known in
advance, but the actual demand (i.e, the number of containers) is uncertain. A sample av-
erage approximation method was proposed to generate robust plans. Hrusovsky et al. [41]
proposed a hybrid approach combining a deterministic model with a simulation model to
investigate an intermodal transportation planning problem with travel time uncertainty. Sun
et al. [90] established a fuzzy chance-constrained mixed integer nonlinear programming
model to describe rail service capacity uncertainty and road traffic congestion. Generally,
stochastic transportation planning problems have a probability distribution of the random
variables and the optimization process is performed before their realization. The transport
plan will not be updated after the realization, thus, it is often referred to as a-priori opti-
mization [75].

The trend towards digitalization in transportation allows gathering real-time informa-
tion and thus dynamic decision making. In synchromodal transportation, some input data
are revealed during the execution of the plan. The most common dynamic events are the
arrival of new shipment requests (also called transport orders), but demands and travel times
are possible dynamics as well. In the literature, Li et al. [49] presented a receding horizon
intermodal container flow control approach to deal with the dynamic transport demands and
dynamic traffic conditions. Mes et al. [62] considered the real-time planning of shipment
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requests under a synchromodal network with the objective to minimize costs, delays, and
carbon emissions. van Heeswijk et al. [98] proposed an online planning algorithm to sched-
ule the transport of less than truckload freight via intermodal networks. Since dynamic
transport planning problems require online decisions, a compromise between reactiveness
and decision quality needs to be found. In addition, the degree of dynamism and the flexibil-
ity of updating decisions in execution have an influence on the choice of methods to respond
to dynamic events.

The advances in information and communication technologies as well as the comput-
ing power allow the incorporation of stochastic information of future events in dynamic
decision-making processes. Approaches for dynamic and stochastic transport planning
problems can be divided into two categories: methods based on preprocessed decisions and
methods based on online decisions. Solution approaches in the first group (preprocessed
decisions) determine the values and policies of decision making before the execution of the
transport plan [75]. Therefore, possible states need to be constructed in advance and evalu-
ated based on possible dynamic events and stochastic information over a planning horizon.
For example, van Riessen [100] designed a decision tree to derive real-time decision rules
for suitable allocation of shipment requests to services. Rivera et al. [76] proposed an al-
gorithm based on approximate dynamic programming to tackle the curse of dimensionality
of a Markov decision process model. The second group (online decisions) focuses on the
computation when a dynamic event occurs. Specifically, decisions are made online with
respect to the current system state and the available stochastic information. SteadieSeifi
[88] proposed a rolling horizon approach to handle dynamic demands. At each iteration of
the rolling horizon framework, the author proposed a scenario-based two-stage stochastic
programming model to incorporate the stochastic information of future demands.

In this chapter, we investigate a dynamic and stochastic shipment matching (DSSM)
problem in hinterland synchromodal transportation at the operational level. The formu-
lation characteristics of the DSSM problem include: (1) real-time shipment requests; (2)
stochastic information of future requests; (3) unsplittable shipments, i.e., a shipment should
be delivered as a whole; (4) soft time windows, i.e., delay in delivery is available but with
a penalty; (5) capacitated and time-scheduled barge and train services; (6) departure time-
flexible truck services with time-dependent travel times; (7) transshipment operations at ter-
minals; (8) minimizing generalized costs which consist of logistics costs, delay costs, and
carbon tax over a planning horizon. The formulation characteristics, solution approaches
and experiment size of related articles are summarized in Table 5.1.
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Table 5.1: Formulation characteristics, solution approaches and experiment size of related articles.

Articles Dynamic
information1

Stochastic
information1

Integrity Time
windows

Barge/train
services 2

Truck
services

Transshipment Objectives3 Methods4 Maximum
instance size5

Demir et al.
[18]

- Demand,
travel times

Splittable Soft Capacitated Flexible X C, D, E SAA I-20-250-5

Hruovsky et
al. [41]

- Travel times Splittable Soft Capacitated Flexible X C, D, E SO I-20-250-20

Sun et al. [90] - Service ca-
pacity

Unsplittable Soft Capacitated Flexible,
time-
dependent

X C,D,E MILP I-12-25-10

Li et al. [49] Demand,
travel times

- Splittable - Capacitated Flexible X C RHA I-6-54-1

Mes et al.
[62]

Shipment
requests

- Unsplittable Soft Capacitated Flexible X C, D, E GA I-6-110-1728

van Heeswijk
et al. [98]

Shipment
requests

- Unsplittable Hard Uncapacitated Flexible X C, D, E CA I-37-110-1006

van Riessen et
al. [100]

Shipment
requests

demand Splittable Soft Capacitated Flexible - C, D DT I-2-4-20

Rivera et al.
[76]

Shipment
requests

Shipment
requests

Splittable Hard Capacitated Flexible - C ADP I-12-29-40

SteadieSeifi
[88]

Demand Demand Splittable Hard Capacitated Scheduled - C RHA,
STSP

I-20-400-200

This chapter Shipment
requests

Shipment
requests

Unsplittable Soft Capacitated Flexible,
time-
dependent

X C, D, E RHA,
SAA,
PHA

I-10-116-1600

1 Information of shipment requests consists of shipments’ origin, destination, container volume (i.e., demand), announce time, release time, and due time
2 All the articles consider time-scheduled barge or train services
3 C: Costs; D: Delays; E: Emissions
4 SAA: Sample average approximation method; SO: Simulation-optimization; HA: Hybrid algorithm; MILP: Mixed integer linear programming; RHA: Rolling horizon approach; GA: Greedy approach;

CA: Consolidation algorithm; DT: Decision trees; ADP: Approximate dynamic programming; STSP: Scenario-based two-stage stochastic programming; PHA: Progressive hedging algorithm
5 Instances follow naming convention of I-a-b-c where a represents the number of terminals, b is the number of services, and c is the number of shipment requests
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Our work has three main contributions to the literature. First, we propose a Markov
decision process model to describe the DSSM problem in hinterland synchromodal trans-
portation. Second, we propose an anticipatory approach to solve the problem under realistic
instances in a reasonable time. The anticipatory approach uses a sample average approxima-
tion method to approximate expected objective functions and applies a progressive hedging
algorithm to get solutions at each decision epoch of a rolling horizon framework. This ap-
proach enables to consider a large set of scenarios (within 1 minute of computation time)
to more accurately represent the stochasticity and this in turn increases the benefits of in-
corporating stochastic information in dynamic decision-making processes. Third, thanks to
the above developed methodologies we propose a platform in which companies can manage
different types of shipments (e.g., time-sensitive shipments) under a synchromodal network
considering the trade-off among costs, delays, and emissions. Such a platform provides
the means for a more efficient, effective and sustainable decision-making framework for
transportation systems.

5.3 Problem description and formulation

In this section, we first describe the DSSM problem, and then design the preprocessing
procedures to reduce the solution space. After that, we present the Markov decision process
model for the problem.

5.3.1 Problem description

We consider an online matching platform that receives real-time shipment requests from
shippers, receives weekly multimodal services from carriers, and receives timely handling
services (i.e., loading and unloading) from terminal operators. Let N be the set of termi-
nals. Without loss of generality, we assume that the loading/unloading cost coefficient of
barge services lcbarge, train services lctrain and truck services lctruck, the loading/unloading
time of barge services ltbarge, train services lt train and truck services lt truck, and the storage
cost coefficient cstorage at different terminals are the same. The CO2 emissions-related cost
coefficient is set as cemission.

Let R be the set of shipment requests. Each shipment request r ∈ R is characterized by
its announce time Tannounce

r (i.e., the time when the platform receives the request), release
time Trelease

r (i.e., the time when the shipment is available for hinterland transportation)
at origin terminal or, due time Tdue

r (i.e., the time that the shipment needs to be deliv-
ered) at destination terminal dr, expiry date Texpire

r (i.e., the time that the matching deci-
sions for request r cannot be further postponed), and container volume ur. Delay in de-
livery is available but with a delay cost coefficient per container per hour overdue cdelay

r .
Request r is unknown before its announce time. However, the probability distributions
{πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πTexpire} of future requests’ origin, destination, volume,
announce time, release time, due time, and expiry date are available from historic data. In
addition, shippers require their shipments to be transported as a whole, and ask to receive
the transport plan before shipments’ release time, namely the expiry date is equal to the
release time, Trelease

r = Texpire
r .
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Let S be the set of multimodal services, all the services are received before the planning
horizon. According to the modalities in hinterland transportation, services can be divided
into two groups:

• Barge and train services. Each barge or train service s ∈ Sbarge∪Strain is characterized by
its departure time T Ds at origin terminal os, arrival time TAs at destination terminal ds,
free capacity Us, transport cost cs and carbon emissions es.

• Truck services. We view each truck service as a fleet of trucks which has flexible departure
times and an unlimited capacity. Thus, a truck service might have multiple departure
times for different shipments. Due to traffic congestion at several time periods throughout
a day, the travel time of truck services is time-dependent [42]. Therefore, each truck
service s ∈ Struck is characterized by its origin terminal os, destination terminal ds, time-
dependent travel time function ts(τ), transport cost cs, and carbon emissions es.

The objective of the platform is to provide optimal online matches in total costs between
shipment requests and multimodal services over a planning horizon T . The total costs con-
sist of transport costs generated by using services, transfer costs and storage costs generated
at transshipment terminals, delay costs caused by delay in delivery, and carbon tax charged
for services’ carbon emissions.

5.3.2 Preprocessing procedures
In this section, we present the preprocessing procedures that aim to reduce the computa-
tional complexity of the DSSM problem by identifying infeasible matches between ship-
ments and services. It consists of two steps: the preprocessing of path generation and the
preprocessing of feasible matches.

• Preprocessing of path generation. We define a path p as a combination of one or more
services in sequence. A path p is feasible if the services inside a combination satisfy
time-spatial compatibility. Specifically, for two consecutive services si,si+1 within path
p, the destination of service si must be the same as the origin of service si+1; the arrival
time of service si must be earlier than the departure time of service si+1 minus loading and
unloading time at transshipment terminal dsi . The set P denotes the collection of feasible
paths.

• Preprocessing of feasible matches. A match 〈r, p〉 means shipment r will be transported
by path p from its origin to its destination. A match between request r ∈ R and path
p = [s1, ...,sl ] ∈ P is feasible if it satisfies time-spatial compatibility:

– Spatial compatibility. The origin terminal of shipment request r should be the same as
the origin of service s1; the destination of request r should be the same as the destination
of service sl .

– Time compatibility. The release time of request r should be earlier than the departure
time of service s1 minus loading time at origin terminal or.

Let Pr be the set of feasible paths for request r, and let crp denote the costs of matching
request r with path p including logistics costs, delay costs and carbon tax. The details of
the preprocessing procedures are presented in Guo et al. [37].
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Figure 5.1: An illustrative example of the DSSM problem.

5.3.3 Illustrative examples

An illustrative example of the DSSM problem is shown in Figure 5.1. At time period 1
(6:00-7:00), the platform receives shipment request r1 with 10 TEU (twenty-foot equivalent
units). Path p1 = [s1,s4] (i.e., train-truck service combination), path p2 = [s2,s5] (i.e., barge-
truck service combination), and path p3 = [s3] (i.e., truck service) are all feasible for request
r1. At time period 2 (7:00-8:00), the system receives request r2 with 8 TEU. Path p2 =
[s2,s5] and path p3 = [s3] are feasible for request r2 while path p1 = [s1,s4] is infeasible
because the departure time of s1 (9:00) minus loading time (1 hour) is earlier than the
release time of request r2 (9:00). The probability information of requests that will arrive
in time period 2 and 3 is available. The platform needs to create matches for request r1 at
time stage 1 (7:00), and create matches for request r2 at time stage 2 (8:00).

An illustrative example of the dynamic and stochastic shipment matching process is
shown in Figure 5.2. The number on the arcs means the cost of matching requests with
services. At time stage 1 (7:00), the platform creates matches for current received request
r1 incorporating the information of predicted future request r2. Path p1 will be assigned
to request r1 instead of path p2 since 70〈r1, p1〉+ 50〈r2, p2〉 < 50〈r1, p2〉+ 100〈r2, p3〉.
At time stage 2, decision for request r2 is made incorporating the information of predicted
future request r3. Here, request r2 is assigned to path p2, since 40〈r2, p2〉+ 50〈r3, p3〉 <
80〈r2, p3〉+ 25〈r3, p2〉. The total cost of matching for request r1 and r2 is 70+ 40 = 110.
In comparison, if only dynamic information is used for decision making (without the infor-
mation of future requests), the platform will assign p2 to request r1 at time stage 1 (local
‘optimal’). Since the free capacity of path p2 has already been assigned to request r1, re-
quest r2 can be only matched with path p3 at time stage 2. Then the total cost of matching
without the utilization of stochastic information is 50+80 = 130 > 110.

5.3.4 Markov decision process model

In this section, we formulate the optimization problem as a Markov decision process (MDP)
model. There are seven fundamental elements in the MDP model: stages, state variables,
exogenous information, decision variables, the transition function, costs, and the objective
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Figure 5.2: An illustrative example of the dynamic and stochastic matching process.

function [70]. A brief summary of these elements is as follows:

• Stages. We define t as the points in time at which decisions are made, t ∈ {0,1, ...,T}.
Therefore, the planning horizon is divided into T consecutive time intervals.

• State variables. The state Ft of the synchromodal matching system contains all the in-
formation that is necessary and sufficient to model the system at decision epoch t. We
distinguish between the initial state F0 and the dynamic state Ft for t > 0. The initial state
contains all the deterministic parameters {R0,S,P,N,crp,T}, initial values of dynamic
parameters U0 =

[
U0

s
]
∀s∈Sbarge∪Strain , and probability distributions of unknown parameters

{πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πTexpire}. The dynamic state Ft contains the informa-
tion that is evolving over time. We define Ft as the set of free capacity of multimodal
services at stage t namely Ft =U t .

• Exogenous information. The exogenous information Wt at stage t consists of all the new
information that first becomes known at stage t. We define Wt =Rt , where Rt = {r|t−1<
Tannounce

r ≤ t} is the set of requests received during time interval (t−1, t], t > 0.

• Decision variables. At stage t, the platform needs to decide the matching decision zt for
shipment requests that are received before t and will expire before t+1, namely ∀r ∈ R̂t =
{r|r ∈ R0...t ,Tannounce

r ≤ t, t <Texpire
r ≤ t+1}. The decisions are restricted by the capacity

of multimodal services at stage t. Let prs be the set of feasible paths for shipment request
r including service s, Prs = {p|p ∈ Pr,s ∈ p}, the total container volumes of shipments
assigned to service s ∈ Sbarge ∪ Strain within paths Prs cannot exceed its free capacity at
stage t. We use the binary variable zt

rp to represent the match between request r ∈ R̂t and
path p ∈ P. The decision zt consists of all the decision variables at stage t as seen in (5.1),
subject to constraints (5.2-5.4), which define the feasible decision space Zt .

zt =
[
zt

rp
]
∀r∈R̂t ,p∈P (5.1)
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subject to

∑
p∈Pr

zt
rp = 1, ∀r ∈ R̂t , (5.2)

∑
r∈R̂t

∑
p∈prs

urzt
rp ≤U t

s , ∀s ∈ Sbarge∪Strain, (5.3)

zt
rp ∈ {0,1}, ∀r ∈ R̂t , p ∈ P. (5.4)

• Transition function. Following decision zt from state Ft with exogenous information
Wt , the system transitions to a new state. We denote the transition function by Ft+1 =
f (Ft ,Wt ,zt). Specifically, the free capacity of service s ∈ Sbarge ∪ Strain at stage t + 1 is
decided by the free capacity of service s at stage t and the matching decisions made for
shipment requests R̂t , as shown in constraints (5.5).

U t+1
s =U t

s − ∑
r∈R̂t

∑
p∈prs

urzt
rp, ∀s ∈ Sbarge∪Strain. (5.5)

• Costs. Based on the state Ft , the exogenous information Wt , and the decision zt , the costs
at stage t can be defined as a function of Ft , Wt and zt , as shown in (5.6).

C(Ft ,Wt ,zt) = ∑
r∈R̂t

∑
p∈Pr

crpzt
rp. (5.6)

• Objective functions. Due to the capacity limitation of multimodal services, decisions
made for current requests will influence the decisions for future requests. Therefore, the
objective of the MDP model is to minimize the expected costs over the planning horizon.
Thus, we write the objective function as follows.

min
z0...T

EF0EW1,...,WT |F0{
T

∑
t=0

Ct(Ft ,Wt ,zt)|F0}. (5.7)

We refer to the objective function in (5.7) as the cumulative formulation. Using Bellman’s
principle of optimality, the optimal costs can be computed through a set of recursive
equations, as seen in (5.8).

P0 Qt(U t , R̂t ,zt) = min
zt ∑

r∈R̂t
∑

p∈Pr

crpzt
rp +EΩt [Qt+1(U t+1, R̂t+1,zt+1)] (5.8)

5.4 Solution approaches
The recursive formulation presented above requires enumerating all states, exogenous in-
formation, and decisions in the future time stages which are known as the three curses of
dimensionality. In this section, we propose an anticipatory approach (AA) to solve the
DSSM problem and use a myopic approach (MA) as a benchmark. Both the AA and the
MA are implemented under a rolling horizon framework. However, the MA is based on
deterministic information only while the AA incorporates stochastic information at each
decision epoch, as shown in Figure 5.3.
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Figure 5.3: Illustration of the myopic approach and the anticipatory approach.

5.4.1 Myopic approach

The MA is known as an efficient periodic re-optimization approach for dynamic problems
[e.g., 6, 64, 108, 114]. The planning horizon is rolled forward to incorporate the dynamically
released information, and the process continuous until the end of the horizon. Under the
MA, the system is optimized periodically at pre-specified points in time called optimization
times (i.e., decision epochs). At decision epoch t, decisions for all active shipment requests
Ŕt are made. Request r is active if it is already announced but not expired yet, formally
Ŕt = {r|r ∈ R0...t ,Tannounce

r ≤ t,Texpire
r > t}. However, the decision for request r ∈ Ŕt is

fixed only if r ∈ R̂t = {r|r ∈ R0...t ,Tannounce
r ≤ t, t < Texpire

r ≤ t +1}, namely the request will
expire before the next decision epoch. The platform will inform shippers the decisions only
if a match is fixed for them. Thus, only the matches fixed at stage t have effects on the free
capacity of service s ∈ Sbarge∪Strain at stage t +1.

Under the MA, the objective function is to minimize the total costs of the current-stage
decisions made for active requests Ŕt . The formulation of the DSSM problem at stage
t ∈ {0,1, ...,T} under the MA is:

P1 min
zt ∑

r∈Ŕt
∑

p∈Pr

crpzt
rp (5.9)

subject to

∑
p∈Pr

zt
rp = 1, ∀r ∈ Ŕt , (5.10)

∑
r∈Ŕt

∑
p∈prs

urzt
rp ≤U t

s , ∀s ∈ Sbarge∪Strain, (5.11)

U t+1
s =U t

s − ∑
r∈R̂t

∑
p∈prs

urzt
rp, ∀s ∈ Sbarge∪Strain, (5.12)

zt
rp ∈ {0,1}, ∀r ∈ Ŕt , p ∈ P. (5.13)

Constraints (5.10) ensure that each request will be matched with one feasible path only.
Constraints (5.11) ensure that the total container volumes of shipments assigned to service
s ∈ Sbarge ∪ Strain does not exceed its free capacity at decision epoch t. Constraints (5.12)
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Algorithm 5.1 Anticipatory approach.
Input: Set of transportation services S = Sbarge ∪Strain ∪Struck, free capacity [U0

s ] for all s ∈ Sbarge ∪
Strain, set of shipment requests R0, the length of planning horizon T , the length of prediction horizon
H, probability distributions {πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πTexpire}, and the number of scenarios
Γ.
Output: Matching decision zt = [zt

rp]∀r∈R̂t ,p∈P
Initialize: Let Rt ← /0 for t > 0, Ŕt ← /0, R̂t ← /0, U t

s ← 0 for t > 0.
1: generate set of feasible paths P← preprocessing of path generation
2: for decision epoch t ∈ {0,1, ...,T} do
3: receive shipment requests Rt

4: update Ŕt ←{r ∈ R0...t |Tannounce
r ≤ t,Texpire

r > t}
5: update R̂t ←{r ∈ R0...t |Tannounce

r ≤ t, t < Texpire
r ≤ t +1}

6: get sample requests for future H time stages {ω1,ω2, ...,ωΓ}← Monte Carlo simulation
7: generate feasible matches for request r ∈ Ŕt ∪ω1∪ ...∪ωΓ← preprocessing of feasible matches
8: get approximate expected objective functions← sample average approximation method
9: obtain matching decision zt ← progressive hedging algorithm

10: update free capacity for service s ∈ Sbarge∪Strain:

U t+1
s ←U t

s − ∑
r∈R̂t

∑
p∈P

urzt
rp

represent that the free capacity of service s∈ Sbarge∪Strain at the next stage is only influenced
by the free capacity of service s at the current stage and the matching decisions made for
requests R̂t which will expire before the next stage.

5.4.2 Anticipatory approach

In this section, we propose the AA to incorporate the stochastic information of future re-
quests at each decision epoch of the rolling horizon framework, in contrast to the MA in
which dynamic decisions are made based on deterministic information only. The imple-
mentation of the AA for a synchromodal matching system is shown in Algorithm 5.1. Be-
fore the planning horizon, the system applies the preprocessing of path generation to get the
set of feasible paths. At each decision epoch of the rolling horizon framework, the system
generates scenarios of future requests by using Monte Carlo simulation, applies the pre-
processing procedure to obtain feasible matches for active requests and sampled requests,
utilizes a sample average approximation method to approximate expected objective func-
tions, and utilizes a progressive hedging algorithm to generate solutions. The state of the
system is updated based on the decisions made for requests R̂t . Then the system is rolled
forward to obtain the decisions for the next stage.

Sample average approximation method

The sample average approximation method is an approach for solving stochastic optimiza-
tion problems by using Monte Carlo simulation. In this technique, the expected objec-
tive function is approximated by a sample average estimate derived from a random sample
[104]. At decision epoch t, a sample {ω1,ω2, ...,ωγ, ...,ωΓ} of Γ scenarios is generated ac-
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cording to probability distributions {πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πTexpire}. Each sce-
nario includes a realization of shipment requests from stage t + 1 to stage t + H, ωγ =
{ωγ(t+1),ωγ(t+2), ...,ωγ(t+H)}. Here, H is the prediction horizon that is just long enough to
obtain good decisions at stage t. The expected cost EΩt in (5.8) is approximated by the sam-
ple average function Γ−1

∑
Γ
γ=1. In addition, Γ−1

∑
Γ
γ=1 is an unbiased estimator of EΩt , and

converges to EΩt with probability 1 as the sample size Γ goes to infinity and the prediction
horizon t +H = T [81]. We define H as the set of predicted time stages at decision epoch t,
H= {t +1, ...,min{t +H,T}},∀t ∈ {0,1, ...,T −1}; H= /0 when t = T . Let ẑγh

rp be the bi-
nary variable which equals to 1 if request r ∈ωγh is matched with path p∈ P under scenario
γ ∈ {1, ..,Γ} at stage h ∈H. The formulation of the DSSM problem at stage t changes to:

P2 min
zt ,ẑt ∑

r∈Ŕt
∑

p∈Pr

crpzt
rp +

1
Γ

Γ

∑
γ=1

∑
h∈H

∑
r∈ωγh

∑
p∈Pr

crpẑγh
rp (5.14)

subject to

∑
p∈Pr

zt
rp = 1, ∀r ∈ Ŕt , (5.15)

∑
p∈Pr

ẑγh
rp = 1, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, (5.16)

∑
r∈Ŕt

∑
p∈prs

urzt
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈prs

ur ẑγh
rp ≤U t

s ,∀γ ∈ {1, ...,Γ},s ∈ Sbarge∪Strain, (5.17)

U t+1
s =U t

s − ∑
r∈R̂t

∑
p∈prs

urzt
rp, ∀s ∈ Sbarge∪Strain, (5.18)

zt
rp ∈ {0,1}, ∀r ∈ Ŕt , p ∈ P, (5.19)

ẑγh
rp ∈ {0,1}, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, p ∈ P. (5.20)

In formulation P2, zt is first-stage decision which does not depend on the scenarios, ẑt

is the second-stage decision which depends on the corresponding scenarios. However, only
[zt

rp]r∈R̂t will be implemented at each decision epoch, [zt
rp]r∈Ŕt\R̂t and ẑt will be released

after the optimization.

Progressive hedging algorithm

Formulation P2 is a large-scale deterministic binary integer program which is non-convex
and highly complex to solve. In this section, we apply the progressive hedging algorithm
(PHA) to solve the formulation. The PHA is first proposed by Rockafellar et al. [79] and
has been implemented in many applications, such as stochastic network design problems
[15] and stochastic resource allocation problems [110]. It is a horizontal decomposition
method which decomposes P2 by scenarios rather than by time stages, and iteratively solves
penalized version of the scenario-based subproblems to gradually enforce implementability
(also called non-anticipativity) [27].

In P2, the condition that the first-stage decision zt must not depend on the realization of
random variables is implicit. In the PHA scheme, we write the non-anticipativity constraints
explicitly. We define ztγ

rp as the binary variable which equals to 1 if request r ∈ Ŕt is matched
with path p ∈ P under scenario γ. Let z̄t be the ‘overall design vector’. The DSSM problem
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is then reformulated as:

P3 min
zt ,ẑt

1
Γ

Γ

∑
γ=1

(
∑

r∈Ŕt
∑

p∈Pr

crpztγ
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈Pr

crpẑγh
rp

)
(5.21)

subject to

∑
p∈Pr

ztγ
rp = 1, ∀γ ∈ {1, ...,Γ},r ∈ Ŕt , (5.22)

∑
p∈Pr

ẑγh
rp = 1, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, (5.23)

∑
r∈Ŕt

∑
p∈prs

urztγ
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈prs

ur ẑγh
rp ≤U t

s ,∀γ ∈ {1, ...,Γ},s ∈ Sbarge∪Strain, (5.24)

ztγ
rp = z̄t

rp, ∀γ ∈ {1, ...,Γ},r ∈ Ŕt , p ∈ Pr, (5.25)

U t+1
s =U t

s − ∑
r∈R̂t

∑
p∈prs

ur z̄t
rp, ∀s ∈ Sbarge∪Strain, (5.26)

ztγ
rp ∈ {0,1}, ∀γ ∈ {1, ...,Γ},r ∈ Ŕt , p ∈ P, (5.27)

ẑγh
rp ∈ {0,1}, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, p ∈ P. (5.28)

Constraints (5.25) are the non-anticipatory constraints which stipulate that in all feasible
solutions, the first-stage decisions are not allowed to depend on scenarios. Therefore, the
newly added variables do not affect the optimal solution, and thus P3 is equivalent to P2.

Following the PHA scheme, we drop off the constant coefficient Γ−1, and move the non-
anticipativity constraints (5.25) into the objective function based on augmented Lagrangian
strategy, which yields the objective function as follows:

P4 min
zt ,ẑt

Γ

∑
γ=1

( ∑
r∈Ŕt

∑
p∈Pr

crpztγ
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈Pr

crpẑγh
rp

+ ∑
r∈Ŕt

∑
p∈Pr

λ
tγ
rp
(
ztγ

rp− z̄t
rp
)
+

1
2 ∑

r∈R̂t
∑

p∈Pr

ρ
tγ
rp
(
ztγ

rp− z̄t
rp
)2
)

(5.29)

subject to Constraints (5.22-5.24, 5.26-5.28).

In formulation P4, [λtγ
rp] are Lagrangian multipliers, [ρtγ

rp] are penalty factors. Given the
binary requirements for variables zt , z̄t , the objective function can be further formulated as:

P5 min
zt ,ẑt

Γ

∑
γ=1

( ∑
r∈Ŕt

∑
p∈Pr

(
crp +λ

tγ
rp +

1
2

ρ
tγ
rp−ρ

tγ
rpz̄t

rp

)
ztγ

rp−λ
tγ
rpz̄tγ

rp +
1
2

ρ
tγ
rpz̄t

rp

+ ∑
h∈H

∑
r∈ωγh

∑
p∈Pr

crpẑγh
rp)

(5.30)

subject to Constraints (5.22-5.24, 5.26-5.28).

For a given overall design z̄t , the relaxed formulation P5 is separable on a scenario
basis. As it contains Γ scenarios, it can be broken down into Γ individual subproblems. An
arbitrary subproblem indexed by γ∈ {1, ...,Γ} by dropping constant terms has the following
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Algorithm 5.2 Progressive hedging algorithm.

1: Initialization. Set iteration number n = 0; maximum iteration number Niteration; La-
grangian multipliers λt = [0]; penalty factors ρt = [0]; overall design vectors z̄t = [0];
assign a small positive number to η and a constant greater than 0 to θ.

2: Optimization. Solve P6 for all γ ∈ {1, ...,Γ}, and obtain the scenario-based solution
ztγ for the nth iteration.

3: Aggregation. Update the overall design value z̄t
rp← b 1

Γ
∑

Γ
γ=1 ztγ

rpe for all r ∈ Ŕt , p ∈ P.
4: Termination criteria. The algorithm stops if either of the following criteria is satisfied:

• ∑
Γ
γ=1 ∑r∈Ŕt ∑p∈P|z

tγ
rp− z̄t

rp| ≤ η.

• n > Niteration.

5: Modification. Update the Lagrangian multiplier λt
rp ← λt

rp + ρt
rp

(
ztγ

rp− z̄t
rp

)
where

ρt
rp = θcrp for all r ∈ Ŕt , p ∈ P.

6: n← n+1, and go to step (2).

form:

P6 min
ztγ,ẑtγ ∑

r∈Ŕt
∑

p∈Pr

(
crp +λ

tγ
rp +

1
2

ρ
tγ
rp−ρ

tγ
rpz̄t

rp

)
ztγ

rp

+ ∑
h∈H

∑
r∈ωγh

∑
p∈Pr

crpẑγh
rp

(5.31)

subject to

∑
p∈Pr

ztγ
rp = 1, ∀r ∈ Ŕt , (5.32)

∑
p∈Pr

ẑγh
rp = 1, ∀h ∈H,r ∈ ω

γh, (5.33)

∑
r∈Ŕt

∑
p∈prs

urztγ
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈prs

ur ẑγh
rp ≤U t

s , ∀s ∈ Sbarge∪Strain, (5.34)

ztγ
rp ∈ {0,1}, ∀r ∈ Ŕt , p ∈ P, (5.35)

ẑγh
rp ∈ {0,1}, ∀h ∈H,r ∈ ω

γh, p ∈ P. (5.36)

Formulation P6 is a scenario-based binary integer program which can be solved by
using commercial solvers within an acceptable computational time, such as CPLEX. For a
given scenario subproblem γ, the Lagrangian multiplier λ

tγ
rp and the penalty parameter ρ

tγ
rp

contribute to penalize the difference in terms of values between the local variable ztγ
rp and

the current overall design z̄t
rp.

The pseudocode of the PHA at decision epoch t ∈{0,1, ...,T} is shown in Algorithm 5.2.
Each iteration of the PHA involves an optimization (Step 2) for scenario-based subproblems,
an aggregation (Step 3) which corresponds to a projection of the individual scenario solu-
tions onto the subspace of non-anticipative policies, a termination criteria (Step 4) to make
sure the algorithm converges to within a tolerance, and a modification (Step 5) to update
multipliers.



74 5 Dynamic and stochastic shipment matching

55

11

77

66

Rail services

Barge services

Inland terminals

Deep-sea terminals

22

33

44

Truck services

Port of Rotterdam

99

88

1010

Node

Terminal

1

Delta

2

Euromax

3

HOME

4

Moerdijk

5

Venlo

6

Duisburg

7

Willebroek

8

Neuss

9

Dortmund

10

Nuremberg

Figure 5.4: The topology of a hinterland synchromodal network in Europe.

Table 5.2: Experimental setting.

Coefficient Truck Barge Train
Transport cost (e/TEU-km) 76.4+1.04d 0.14d 1.53+0.16d
Carbon emission (kg/TEU-km) 0.8866 0.2288 0.3146
Loading/unloading cost (e/TEU) 3 18 18
Loading/unloading time (h) 0 1 1
Carbon tax (e/ton) 8 8 8
Storage cost (e/TEU-h) 1 1 1

5.5 Numerical experiments

In this section, we evaluate the performance of the anticipatory approach (AA) in compar-
ison with the myopic approach (MA) to investigate the benefits of incorporating stochastic
information in dynamic decision-making processes. The approaches are implemented in
MATLAB, and all experiments are executed on 3.70 GHz Intel Xeon processors with 32
GB of RAM. The optimization problems are solved with CPLEX 12.6.3.

5.5.1 Experimental setup

In this chapter, we use a hinterland synchromodal network in Europe for the numerical ex-
periments, which includes 3 deep-sea terminals in the port of Rotterdam (i.e., node 1, 2, and
3) and 7 inland terminals in the Netherlands, Belgium, and Germany (i.e., node 4, 5, 6, 7, 8,
9, and 10), as shown in Figure 5.4. We design one week services of the network including
49 barge services, 33 train services, and 34 truck services. The detailed information of the
services is presented in Appendix 5.A. The coefficients used in the experiments are derived
from van Riessen et al. [102] and Qu et al. [73], as shown in Table 5.2. Here, the transport
cost of services is a linear function of the transport distance d.
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We generate several instances to represent different characteristics of shipment requests
within a given planning horizon. Each shipment request is characterized by its origin, des-
tination, container volume, announce time, release time, expiry date, and due time. We
assume that:

• the origins of shipments are independent and identically distributed among {1,2,3} with
probabilities {0.66,0.2,0.14};

• the destinations are independent and identically distributed among {4,5,6,7,8,9,10}
with probabilities {0.306,0.317,0.153,0.076,0.071,0.034,0.043};

• the container volumes of shipment requests which arrive before the planning horizon (also
called static requests) are drawn independently from a uniform distribution with range
[10,30], the average container volume of static requests UAVE

1 = 20; the container volumes
of dynamic requests are drawn independently from uniform distributions with range [1,9],
the average container volume of dynamic requests UAVE

2 = 5;

• the announce time of static requests is 0, while the frequency of dynamic requests arriving
in the system belongs to Poisson distributions with mean AT AVE;

• the release time of static requests is drawn independently from a uniform distribution with
range [1,120]; the release time of dynamic requests is generated based on its announce
time, Trelease

r = dTannounce
r e+∆T, ∆T belongs to a uniform distribution with range [1,6];

the expiry date is equal to the release time;

• the due time of shipment requests is generated based on its release time and lead time,
Tdue

r =Trelease
r +LDr, the lead time of shipments is independent and identically distributed

among {24,48,72} (unit: hours) with probabilities {0.15,0.6,0.25}. The delay cost co-
efficients of shipments with lead time 24, 48, and 72 hours are 100, 70, and 50 e/h-TEU,
respectively.

We use EU−n1−n2 to represent an instance with n1 static requests and n2 dynamic re-
quests. We set AT AVE to 20, 10, 6, 5, and 4 minutes (i.e., about 0.33, 0.17, 0.1, 0.08, and 0.07
hours per request) for instances EU-300-400, EU-200-800, EU-100-1200, EU-50-1400, and
EU-0-1600, respectively, as shown in Figure 5.5. The length of the planning horizon is set
to one week (i.e., 168 hours) for all the instances. The length of the optimization interval is
set to 1 hour in the MA and the AA.

5.5.2 Evaluation of the AA in comparison with the MA
To evaluate the performance of the AA with respect to the MA, we design 5 instances (EU-
300-400, EU-200-800, EU-100-1200, EU-50-1400, and EU-0-1600) with different degrees
of dynamism: 25%, 50%, 75%, 87.5%, and 100%. We define the degree of dynamism as the
ratio between the number of containers from dynamic requests and the total number of con-

tainers over the planning horizon, namely, degree of dynamism= n2∗UAVE
2

n1∗UAVE
1 +n2∗UAVE

2
. For ex-

ample, the degree of dynamism of instance EU-100-1200 is (1200*5)/(100*20+1200*5)=75%.
At each decision epoch of the AA, a sample is generated randomly based on the probability
distributions presented above. In case of sample instability, for each instance, we replicate
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Figure 5.5: Arrival frequency of instances.

the optimization process 10 times under the AA. We use ‘gaps in total costs’ as the perfor-
mance indicator which is given by (benchmark value - objective value)/benchmark value.
Here, the total cost generated by the MA is the benchmark value, while the total cost gen-
erated by the AA is the objective value. Therefore, the higher the ‘gaps in total costs’, the
better the performance of the AA in reducing total costs.

To test the influence of the degree of dynamism, we set the number of scenarios to 10,
and the length of prediction horizon to 12 hours. Figure 5.6 shows that the AA has better
performance than the MA in all the instances in reducing total costs, and the gap between
the AA and the MA grows with the increasing of the degree of dynamism from 25% to
87.5%. Nevertheless, further increasing the degree of dynamism to 100%, the gap in total
costs stays around 4%.

With regards to the number of scenarios, we set the degree of dynamism to 87.5% (i.e.,
instance EU-50-1400), and the length of prediction horizon to 12 hours. The number of
scenarios is varied from 1 to 30. Figure 5.7 (a) shows that increasing the number of sce-
narios, the gap in total costs between the AA and the MA becomes larger. The reason is
that the larger the number of scenarios, the more accurate the representation of the future.
Moreover, we set the number of scenarios to 10, and vary the length of prediction horizon
from 1 to 24 hours for instance EU-50-1400. Figure 5.7 (b) shows that the length of pre-
diction horizon has high influences on the performance of the AA in reducing total costs.
The longer the prediction horizon, the more stochastic information of future requests will
be considered. The system thus reserves capacities for predicted future requests which are
more ‘valuable’. In turn, the performance of the system over the planning horizon becomes
better.

To understand the differences in the matching process between the MA and the AA,
we analyze the matching results of one instance at every time stage. Here, we use ‘gaps in
cumulated costs’ to represent the differences in cumulated costs at previous stages between
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*Number of scenarios=10; length of prediction horizon=12 

Figure 5.6: Comparison between the AA and the MA under instances with different degrees
of dynamism.

(a) (b)

*Degree of dynamism=87.5%; length of prediction horizon=12 *Degree of dynamism=87.5%; number of scenarios=10 

Figure 5.7: Comparison between the AA and the MA under instances with different number
of scenarios and different length of prediction horizon.

the MA and the AA. The higher the ‘gaps in cumulated costs’, the better the performance
of the AA. We use ‘gaps in cumulated barge and train capacity utilization’ to represent the
differences in cumulated capacity utilization of barge and train services. Figure 5.8 shows
that in earlier stages (before time stage 36), the MA tries to use as much barge and train
capacity as possible, the cumulated cost is lower than the AA. However, in later stages (after
time stage 104), the MA has no barge and train capacity that can be used. In comparison,
the AA holds some capacity of barge and train services for requests arrived in later stages,
the cumulated total cost over the planning horizon is lower than the MA; the cumulated
capacity utilization of barge and train services over the planning horizon is higher than the
MA. It is predictable that the longer the planning horizon, the better the performance of the
AA since it anticipates the future.
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Figure 5.8: Differences in matching process between the MA and the AA.

5.5.3 Performance of the AA under extreme scenarios

In the instances presented so far, we assume the decision maker has the accurate probability
distributions of future requests. Thus, the probability distributions used for sampling re-
quests in the AA are the same as the probability distributions used in generating the above
instances. However, due to uncertainties in demand during special periods (e.g., high infla-
tion rate periods, Valentine’s Day, Black Friday), the demand might be quite lower or higher
than normal periods, namely under the ‘extreme scenarios’.

In this section, we design another 5 instances with lower demand realizations drawn
from a uniform distribution with range [1,3], and another 5 instances with higher demand
realizations drawn from a uniform distribution with range [7,9], as shown in Figure 5.9(a).
For each instance, we replicate the optimization process 10 times to get average solutions.
We set the number of scenarios to 10, and the length of prediction horizon to 12 hours.
Figure 5.9(b) shows that when realizations are quite lower than normal periods, the perfor-
mance of the AA is almost the same as the MA in all the instances and even worse for
instances with 100% degree of dynamism. The reason is that using the AA, the system
will hold some capacity for future requests which actually have lower demand realizations
than predictions. On the other hand, when the demand realizations are higher than normal
periods, the AA still has better performance than the MA for all the instances. Interestingly,
the gap between the AA under different demand realizations grows as the degree of the dy-
namism increases. This is expected since the larger the degree of dynamism, the larger the
differences between the realizations and the predictions.

5.5.4 Performance of the progressive hedging algorithm

The experimental results of the AA presented above are based on the sample average ap-
proximation method to generate ‘optimal solutions’ for instances with a small sample size
and short prediction horizon. Further increasing the number of scenarios or the length of
prediction horizon makes the problem difficult to solve for the instances designed above. In
this section, we test the performance of the AA based on the progressive hedging algorithm
(PHA) for instances with larger sample sizes and longer prediction horizons.
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Figure 5.9: Performance of the AA under extreme scenarios.

Table 5.3: Comparison between the performance of the AA without the PHA and with the
PHA for instance EU-100-1200.

MA AA

Sample size Prediction horizon (h) without the PHA with the PHA
Total costs Ave. CPU (s) Total costs Ave. CPU (s) Total costs Ave. CPU (s)

980743 0.42

10 24 936046 149.29 938995 5.21
10 48

above 1 hour

931501 14.21
10 72 931528 28.40
30 24 936440 4.98
30 48 928084 22.39
30 72 925372 33.79
100 24 936049 7.14
100 48 922322 29.49
100 72 918225 49.53

We set Niteration = 100,θ = 1,η = 0.001 for the PHA. The comparison between the per-
formance of the AA without the PHA and with the PHA for instance EU-100-1200 with
75% degree of dynamism is shown in Table 5.3. We consider two performance indicators:
the total costs (e) and the ave. CPU (s). The ave. CPU of the MA, the AA without the PHA,
and the AA with the PHA is the average computation time per stage over the planning hori-
zon (i.e., 168 time stages). Although the PHA needs to solve a large number of subproblems
at each decision epoch due to the iteration of Lagrangian multipliers, applying the parallel
computing techniques enables to use multiple CPUs to solve the subproblems in a single
iteration of the PHA simultaneously. Table 5.3 shows that when the sample size (i.e., the
number of scenarios) is larger than 10 and the length of prediction horizon is longer than 24
hours, the AA without the PHA cannot obtain any results within 1 hour (the length of the
optimization interval) due to the large scale of the problem. By contrast, the AA with the
PHA can generate better solutions within 1 minute at each decision epoch when the sample
size is 100 and the length of prediction horizon is 72 hours. The total cost reduction of
the AA with the PHA is 17821 e per week (i.e., about 1.90%) in comparison with the AA
without the PHA, and 62518 e per week (i.e., about 6.37%) in comparison with the MA.
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5.6 Conclusions
This chapter answers research question RQ3 by introducing a dynamic and stochastic ship-
ment matching problem in hinterland synchromodal transportation. The problem is dynamic
since some shipment requests arrive in the system in real-time. The problem is stochastic
since the probability distributions of future requests are available from historical data. We
presented a Markov decision process model to describe the problem. Due to the curse of
dimensionality, we developed an anticipatory approach (AA) to solve the problem. The AA
uses a sample average approximation method to approximate expected objective functions
and a progressive hedging algorithm (PHA) to generate solutions at each decision epoch of
a rolling horizon framework.

We validated the performance of the AA in comparison with a myopic approach (MA)
in which dynamic decisions are made based on deterministic information on a hinterland
synchromodal network in Europe. The experimental results indicate that the AA has better
performance than the MA in total cost savings up to 4.5% under different degrees of dy-
namism of the synchromodal matching system when the number of scenarios is set to 10
and the length of prediction horizon is set to 12 hours. Further increasing the number of sce-
narios or the length of prediction horizon has been proven to be able to further increase the
performance of the AA. In addition, we tested the performance of the AA under ‘extreme
scenarios’. The results show that the AA almost has no improvement when realizations are
lower than normal periods as it reserves capacity for future requests which have quite lower
demand realization than predictions, but has better performance when realizations are quite
higher than normal periods. Finally, we evaluated the performance of the AA with the PHA
in comparison to the AA without the PHA. The results show that the AA with the PHA
can obtain better results in total costs within 1 minute when the number of scenarios is 100
and the length of prediction horizon is 72 hours thanks to the parallel computing possibility
of the PHA. Compared with the MA, the AA with the PHA can reduce total costs above
60000 e per week (around 6.5%) for the instance with 75% degree of dynamism of the
synchromodal matching system. In conclusion, the proposed platform provides the means
for a more efficient decision-making framework for transportation systems thanks to the
developed anticipatory approach.

Future research can be conducted under three directions. First, due to the capacity lim-
itation of road infrastructures, the number of trucks is limited in a synchromodal network.
Therefore, the rejection of shipment requests can be considered in online matching pro-
cesses to avoid infeasible solutions. Chapter 6 develops a matching model that integrates
acceptance and matching decisions. Another research direction is to investigate the benefits
of incorporating ad hoc services (i.e., dynamic services). Considering the excess capacity of
services from carriers, the online matching of static requests, dynamic requests, dedicated
services, and ad hoc services gives rise to a new variant of the dynamic shipment matching
problem in synchromodal transportation. Third, due to the existence of traffic congestion
and terminal congestion in synchromodal transportation, travel time of services and trans-
fer time at terminals are usually uncertain. Combining multiple uncertainties in dynamic
shipment matching is a promising research direction. Chapter 6 in particular, simultane-
ously considers spot request and travel time uncertainties in dynamic shipment matching
processes.
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Appendix 5.A
The detailed information of truck, barge, and train services used in Chapter 5 is presented
in Table 5.4-5.6. We assume there exists a truck connection between all the terminals.
The barge and train connections are derived from European Gateway Services (http://www.
europeangatewayservices.com/en/). The distance of services used in Chapter 5 is obtained
from European Gateway Services, InlandLinks (https://www.inlandlinks.eu/en), and Google
maps.

Table 5.4: Truck services in the numerical experiments.

Truck services Origin Destination Travel time (h) Travel cost (e/TEU) Distance (km) Carbon emissions (kg/TEU)
1 Delta Euromax 0.2 92.00 15 13.30
2 Delta HOME 0.5 115.40 37.5 33.25
3 Delta Moerdijk 1.0 154.40 75 66.50
4 Delta Venlo 2.6 279.20 195 172.89
5 Delta Duisburg 3.2 326.00 240 212.78
6 Delta Willebroek 2.0 232.40 150 132.99
7 Delta Neuss 3.5 349.40 262.5 232.73
8 Delta Dortmund 4.0 388.40 300 265.98
9 Delta Nuremberg 9.0 778.40 675 598.46
10 Euromax HOME 0.6 123.20 45 39.90
11 Euromax Moerdijk 1.2 170.00 90 79.79
12 Euromax Venlo 2.8 294.80 210 186.19
13 Euromax Duisburg 3.3 333.80 247.5 219.43
14 Euromax Willebroek 2.2 248.00 165 146.29
15 Euromax Neuss 3.6 357.20 270 239.38
16 Euromax Dortmund 4.2 404.00 315 279.28
17 Euromax Nuremberg 9.5 817.40 712.5 631.70
18 HOME Moerdijk 0.6 123.20 45 39.90
19 HOME Venlo 2.3 255.80 172.5 152.94
20 HOME Duisburg 2.7 287.00 202.5 179.54
21 HOME Willebroek 1.5 193.40 112.5 99.74
22 HOME Neuss 3.0 310.40 225 199.49
23 HOME Dortmund 3.4 341.60 255 226.08
24 HOME Nuremberg 8.8 762.80 660 585.16
25 Moerdijk Venlo 1.8 216.80 135 119.69
26 Moerdijk Duisburg 2.4 263.60 180 159.59
27 Moerdijk Willebroek 1.4 175.20 95 84.23
28 Venlo Duisburg 0.8 138.80 60 53.20
29 Venlo Neuss 0.9 146.60 67.5 59.85
30 Venlo Dortmund 1.5 193.40 112.5 99.74
31 Venlo Nuremberg 6.6 591.20 495 438.87
32 Duisburg Neuss 0.5 115.40 37.5 33.25
33 Duisburg Dortmund 0.9 146.60 67.5 59.85
34 Duisburg Nuremberg 6 544.40 450 398.97

http://www.europeangatewayservices.com/en/
http://www.europeangatewayservices.com/en/
https://www.inlandlinks.eu/en
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Table 5.5: Barge services in the numerical experiments.

Barge
services

Origin Destination Capacity
(TEU)

Departure
time

Arrival
time

Travel
time (h)

Travel cost
(e/TEU)

Distance
(km)

Carbon emis-
sions (kg/TEU)

1 Delta Euromax 160 53 54 1 2.10 15 3.43
2 Delta HOME 160 53 55.5 2.5 5.25 37.5 8.58
3 Delta Moerdijk 160 3 8 5 10.50 75 17.16
4 Delta Moerdijk 160 15 20 5 10.50 75 17.16
5 Delta Moerdijk 160 27 32 5 10.50 75 17.16
6 Delta Moerdijk 160 39 44 5 10.50 75 17.16
7 Delta Moerdijk 160 51 56 5 10.50 75 17.16
8 Delta Moerdijk 160 63 68 5 10.50 75 17.16
9 Delta Moerdijk 160 75 80 5 10.50 75 17.16
10 Delta Moerdijk 160 87 92 5 10.50 75 17.16
11 Delta Moerdijk 160 99 104 5 10.50 75 17.16
12 Delta Moerdijk 160 111 116 5 10.50 75 17.16
13 Delta Moerdijk 160 123 128 5 10.50 75 17.16
14 Delta Moerdijk 160 135 140 5 10.50 75 17.16
15 Delta Moerdijk 160 147 152 5 10.50 75 17.16
16 Delta Moerdijk 160 159 164 5 10.50 75 17.16
17 Delta Venlo 160 12 25 13 27.30 195 44.62
18 Delta Venlo 160 18 31 13 27.30 195 44.62
19 Delta Venlo 160 36 49 13 27.30 195 44.62
20 Delta Venlo 160 42 55 13 27.30 195 44.62
21 Delta Venlo 160 60 73 13 27.30 195 44.62
22 Delta Venlo 160 66 79 13 27.30 195 44.62
23 Delta Venlo 160 90 103 13 27.30 195 44.62
24 Delta Venlo 160 96 109 13 27.30 195 44.62
25 Delta Venlo 160 120 133 13 27.30 195 44.62
26 Delta Duisburg 160 82 98 16 33.60 240 54.91
27 Delta Duisburg 160 102 118 16 33.60 240 54.91
28 Delta Willebroek 160 68 79 11 23.10 165 37.75
29 Delta Willebroek 160 98 109 11 23.10 165 37.75
30 Delta Willebroek 160 146 157 11 23.10 165 37.75
31 Delta Neuss 160 80 97 17 35.70 255 58.34
32 Euromax Moerdijk 160 3 8.5 5.5 11.55 82.5 18.88
33 Euromax Moerdijk 160 51 56.5 5.5 11.55 82.5 18.88
34 Euromax Moerdijk 160 99 104.5 5.5 11.55 82.5 18.88
35 Euromax Venlo 160 27 40.5 13.5 28.35 202.5 46.33
36 Euromax Venlo 160 75 88.5 13.5 28.35 202.5 46.33
37 Euromax Duisburg 160 103 119.5 16.5 34.65 247.5 56.63
38 Euromax Willebroek 160 112 123.5 11.5 24.15 172.5 39.47
39 Euromax Neuss 160 66 83.5 17.5 36.75 262.5 60.06
40 HOME Moerdijk 160 5 8 3 6.30 45 10.30
41 HOME Moerdijk 160 53 56 3 6.30 45 10.30
42 HOME Moerdijk 160 101 104 3 6.30 45 10.30
43 HOME Venlo 160 99 110 11 23.10 165 37.75
44 HOME Venlo 160 126 137 11 23.10 165 37.75
45 HOME Duisburg 160 51 66.5 15.5 32.55 232.5 53.20
46 HOME Willebroek 160 20 30.5 10.5 22.05 157.5 36.04
47 Moerdijk Venlo 160 95 105 10 21.00 150 34.32
48 Moerdijk Duisburg 160 71 83 12 25.20 180 41.18
49 Duisburg Neuss 160 120 122.5 2.5 5.25 37.5 8.58
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Table 5.6: Train services in the numerical experiments.

Train
services

Origin Destination Capacity
(TEU)

Departure
time

Arrival
time

Travel
time (h)

Travel cost
(e/TEU)

Distance
(km)

Carbon emis-
sions (kg/TEU)

1 Delta Venlo 90 16 20 4 30.33 180 56.63
2 Delta Venlo 90 40 44 4 30.33 180 56.63
3 Delta Venlo 90 9 13 4 30.33 180 56.63
4 Delta Venlo 90 33 37 4 30.33 180 56.63
5 Delta Venlo 90 57 61 4 30.33 180 56.63
6 Delta Venlo 90 81 85 4 30.33 180 56.63
7 Delta Venlo 90 105 109 4 30.33 180 56.63
8 Delta Venlo 90 129 133 4 30.33 180 56.63
9 Delta Duisburg 90 41 47 6 44.73 270 84.94
10 Delta Duisburg 90 75 81 6 44.73 270 84.94
11 Delta Duisburg 90 99 105 6 44.73 270 84.94
12 Delta Duisburg 90 113 119 6 44.73 270 84.94
13 Delta Neuss 90 110 115 5 37.53 225 70.79
14 Delta Dortmund 90 88 95 7 51.93 315 99.10
15 Delta Nuremberg 90 51 66 15 109.53 675 212.36
16 Delta Nuremberg 90 99 114 15 109.53 675 212.36
17 Euromax Venlo 90 78 82.5 4.5 33.93 202.5 63.71
18 Euromax Venlo 90 102 106.5 4.5 33.93 202.5 63.71
19 Euromax Duisburg 90 75 81.5 6.5 48.33 292.5 92.02
20 Euromax Duisburg 90 99 105.5 6.5 48.33 292.5 92.02
21 Euromax Neuss 90 77 82.5 5.5 41.13 247.5 77.86
22 Euromax Dortmund 90 78 85.5 7.5 55.53 337.5 106.18
23 Euromax Nuremberg 90 79 94.5 15.5 113.13 697.5 219.43
24 HOME Venlo 90 86 89.5 3.5 26.73 157.5 49.55
25 HOME Duisburg 90 27 32.5 5.5 41.13 247.5 77.86
26 HOME Duisburg 90 75 80.5 5.5 41.13 247.5 77.86
27 Moerdijk Venlo 90 75 78 3 23.13 135 42.47
28 Moerdijk Duisburg 90 77 81 4 30.33 180 56.63
29 Venlo Neuss 90 112 113.5 1.5 12.33 67.5 21.24
30 Venlo Dortmund 90 113 115.5 2.5 19.53 112.5 35.39
31 Venlo Nuremberg 90 114 125 11 80.73 495 155.73
32 Duisburg Dortmund 90 121 122.5 1.5 12.33 67.5 21.24
33 Duisburg Nuremberg 90 122 132 10 73.53 450 141.57





Chapter 6

Dynamic and stochastic global
shipment matching

Hinterland transportation, as a key component of global transportation, has different time
scales, transport modes, and network topology from intercontinental transportation. While
Chapter 3, 4, and 5 have studied matching, dynamic, and stochastic models in hinterland
synchromodal transportation, this chapter focuses on the dynamics and uncertainties in
global synchromodal shipment matching.

This chapter is structured as follows. Section 6.1 introduces the motivations and chal-
lenges faced by network operators in global synchromodal transportation. We briefly re-
view the relevant literature and specify our contributions in Section 6.2. In Section 6.3, we
provide a detailed problem description, followed by a Markov decision process model in
Section 6.4 and the hybrid stochastic approach in Section 6.5. In Section 6.6, we present the
experimental results. Finally, the conclusions are given in Section 6.7.

Parts of this chapter have been submitted to a journal: “W. Guo, B. Atasoy, W. Beelaerts
van Blokland, and R. R. Negenborn. Global synchromodal transportation with dynamic and
stochastic shipment matching. Submitted to a journal, 2020.”

6.1 Introduction
Global container transportation is the movement of containers between inland terminals
located in different continents by using ships, barges, trains, trucks or any combination
of them [113]. With the increasing volume of global trade, container transportation be-
comes more and more important in improving the efficiency of global supply chains. As the
fastest-growing cargo segment, global containerized trade reached 152 million twenty-foot
equivalent units (TEUs) in 2018 [97]. Traditionally, global container transportation is orga-
nized by multiple operators. For example, an inland operator in Asia transports containers
from Chongqing Terminal to Shanghai Port; a shipping liner company manages the con-
tainer transport from Shanghai Port to Rotterdam Port; an inland operator in Europe further
transports containers from Rotterdam Port to Duisburg Terminal.
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Figure 6.1: Map of the integrated global network representing our vision.

In the past decade, horizontal collaboration between shipping lines has been very pop-
ular by forming an alliance to improve the utilization of resources and increase service fre-
quency and capacity [46]. Recently, port operators and shipping lines appear to be focusing
more attention on vertical integration by expanding service networks to inland terminals,
such as Maersk and COSCO Shipping Lines [97]. The vertical and horizontal collabora-
tion among players in global container transport brings new challenges to global operators
because of integrated planning in larger and more complex networks, as in Figure 6.1. In
such a global network, we define the global operator as the integrator that collaborates with
inland carriers, ocean carriers, and terminal operators.

Apart from integrated transportation, amodal booking and differentiated fare classes
have also been introduced in container transportation [99]. Amodal booking implies that
shippers do not select modes and routes for their shipments and leave the choices to a
global operator. This increases the flexibility of the global operator to optimize the avail-
able capacities and to react effectively to disruptions by dynamically updating transport
plans [30]. Differentiated fare classes have been proposed as incentives to promote the con-
cept of amodal booking [101]. For each origin-destination (OD) pair, the global operator
offers multiple fare classes to shippers. A fare class is characterized by a specific price,
lead time, and delay cost. Once a booking request associated with a fare class is accepted
by the global operator, the transport plan that assigns specific transport services to accepted
requests needs to be created.

Furthermore, digitalization and online booking platforms enabled by advanced infor-
mation technologies are being increasingly used by the container industry. For example,
Maersk launched an online booking platform called Maersk Spot in 2018 that allows cus-
tomers to check the real-time freight rates, book ship slots online, and track their bookings
[61]. With Maersk Spot, the shipping company can instantly confirm whether to accept
or reject a booking request and react dynamically to disturbances (e.g., service delays) by
adjusting the transport plan.
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Figure 6.2: Illustration of a synchromodal matching platform. The platform provides on-
line acceptance and matching decisions for shipment requests with multimodal
services thanks to the developed hybrid stochastic approach.

The combined trend towards vertical and horizontal collaboration, amodal booking, dif-
ferentiated fare classes, and digitalization gives rise to the concept of synchromodality in
the container industry [99]. Synchromodality aims to reduce logistics costs, delays, and car-
bon emissions while improving the utilization of resources based on real-time information
[30]. However, implementing synchromodality in practice is still challenging from several
aspects, including pricing strategies and collaboration contracts at the strategical level, inte-
grated service network design at the tactic level, and the allocation of resources to demands
under a dynamic and stochastic environment at the operational level [30].

In this chapter, we investigate a dynamic and stochastic global shipment matching prob-
lem (DSGSM) under synchromodality. We consider a platform owned by a global operator
that receives contractual and spot shipment requests from shippers and receives multimodal
services from carriers. While the contractual requests are received before the planning hori-
zon, the spot requests appear in the platform dynamically. The platform creates online
decisions for shipment requests including acceptance and matching decisions in a global
synchromodal network, as shown in Figure 6.2. A match between a request and a service
represents that the request will be transported by the service from the service’s origin to the
service’s destination. Due to spot request uncertainty and service capacity limitations, the
decisions made for current requests might become suboptimal upon receiving new requests.
Due to travel time uncertainty and the utilization of multimodal services, the matches made
for accepted requests might become infeasible at transshipment terminals. The objective
of the platform is to maximize the total profits over a given planning horizon taking into
account logistics costs, delays, and carbon emissions.

Thanks to the development in data analytics, probability distributions of uncertainties
are often available to online platforms. However, while dynamic and stochastic approaches
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have been well investigated in vehicle routing problems [e.g., 75], resource allocation prob-
lems [e.g., 105], and inland container routing problems [e.g., 37], the dynamic and stochas-
tic approach for global synchromodal transport is still missing in the literature. This chapter
contributes to the literature by proposing a hybrid stochastic approach that incorporates
stochastic information in online decision-making processes to solve the DSGSM problem.
Specifically, we propose a rolling horizon framework to handle real-time information on re-
quests and services. Travel time uncertainty is addressed by a chance-constrained program-
ming model and spot request uncertainty is addressed by a sample average approximation
method. Due to the computational complexity, we design a preprocessing-based heuristic
algorithm to generate timely solutions at each decision epoch. Section 6.2.3 outlines the
specific contributions of this chapter in more detail.

6.2 Literature review

The characteristics of the DSGSM problem under synchromodality mainly include: global
synchromodal network consists of inland networks and intercontinental networks; online
planning with acceptance and matching decisions; dynamic information of spot requests and
travel times; stochastic information of spot requests and travel times; profits maximization
over a given planning horizon. Studies related to the DSGSM problem are presented into
two categories: global intermodal transportation; dynamic and stochastic container booking
and routing models.

6.2.1 Global intermodal transportation

Intermodal transportation is the provision of efficient, effective, and sustainable transport
services through integrated planning at a network level [18]. Global intermodal transporta-
tion consists of intercontinental transportation and inland transportation. In intercontinental
transportation, containers are transported from export terminals to import terminals. In
inland transportation, export containers are transported from inland origins to export termi-
nals; import containers are transported from import terminals to inland destinations. While
extensive studies investigated maritime transportation [59] and inland transportation [87] in
the literature, only a few studies investigated global intermodal transportation [46].

Regarding global intermodal transport planning, Erera et al. [22] developed a multi-
commodity network flow model to route loaded containers and reposition empty containers
for global tank container management. Meng et al. [60] developed a global liner shipping
network design model to facilitate multi-type container routing and repositioning. Liu et
al. [55] proposed a holistic approach to solve a global intermodal liner shipping network
design problem that covers both inland transport expenses and seaborne shipping costs.
Tran et al. [96] considered not only the design of an optimal shipping route but also the
inland connections between hinterlands and ports. Yang et al. [113] proposed a bi-level
optimization model to reconstruct the shipping service network between Asia and Europe
by considering the improvement of New Eurasian Land Bridge rail services and Budapest-
Piraeus railway. Wei et al. [111] investigated a container routing problem in a new cross-
border logistics network that connects the maritime network and inland network through
dry ports.
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In the literature, the existing global intermodal transport models assumed that all the
input information is static and deterministic. However, in reality, multiple dynamic events
and uncertainties exist in global intermodal transportation which highly affect the feasi-
bility and profitability of transport plans. Synchromodal transportation, as an evolution of
intermodal transportation, refers to transport systems with dynamically updating of plans
by incorporating dynamic and stochastic information [30].

6.2.2 Dynamic and stochastic container booking and routing models

In container transportation, the dynamic and stochastic models related to the DSGSM prob-
lem mainly include container booking and container routing problems. While the former
considers the acceptance of booking requests to maximize revenue, the latter emphasizes
the decisions on assigning containers or shipments to specific transport services to mini-
mize costs. A shipment is defined as a batch of containers with specific time windows, OD
pairs, and fare classes that must be transported as a whole.

Dynamic and stochastic container booking models

Container booking control, also called slot allocation and capacity control, is one of the
primary research topics in revenue management and is widely adopted by the airline indus-
try [61]. Container booking control aims to maximize revenue in a stochastic environment
by effectively deciding on the acceptance of booking requests. According to the network
structure, studies on container booking control can be divided into two groups: single-leg
level and network level. While the single-leg level models [e.g., 47, 107] consider services
operating on a single corridor, the network level models study services that operate on a
network with the possibility of transshipments [61].

Most network container booking control models study static environments with the main
strategies of booking limits and bid-price. A booking limit represents the maximum number
of containers that should be allocated to a service. For example, Zurheide et al. [118]
proposed a slot allocation model for a liner shipping network to determine the booking
limits for different booking classes (e.g. OD pair, container type, and service segment). van
Riessen et al. [101] investigated a cargo fare class mix problem in an intermodal network
to maximize revenue by determining the booking limits on each fare class. Under a bid-
price strategy, the decision of whether to accept or reject a booking is made based on the
lowest acceptable profit value or the marginal costs for the next unit of capacity. Zurheide
et al. [119] developed a slot allocation model for a liner shipping company to decide the
opportunity cost of a container slot as the bid-price and proved that the bid-price strategy
outperforms the booking limit strategy due to the better utilization of capacity for profitable
requests.

With the development of information technologies and digitalization in the container
industry, researchers and industries have increasingly shifted their attention to dynamic
models [61]. These models can better reflect the online container booking processes and
therefore better manage resource capacity. Bilegan et al. [11] designed a load acceptance
management system for rail container transport planning to dynamically accept requests or
reject them in favor of future requests with potentially higher profit. Wang et al. [109] de-
veloped a probabilistic mixed integer programming optimization model to make acceptance
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decisions with the objective to maximize the expected revenue of a barge carrier over a given
planning horizon. Wang et al. [105] investigated a dynamic resource allocation problem, in
which an intermodal operator attempts to determine the policy that characterizes the opti-
mal quantities of each service product allowed to be sold during each time interval within a
finite selling horizon.

In comparison to the DSGSM problem proposed in this chapter, the above-mentioned
container booking models focus on the acceptance decisions of requests before the transport
process by setting booking limits or bid-price to maximize revenue. However, we take into
account the logistics costs, delays and carbon emissions generated for matching specific
shipments with specific services during the transport process. Besides, our work considers
the dynamic and stochastic information of spot requests and travel times in a global syn-
chromodal network, and re-optimizes the transport plan when disturbances (i.e., infeasible
transshipments) happen.

Dynamic and stochastic container routing models

In the literature, container routing models have been well investigated at the strategic and
tactical levels under a static context [59]. Most of the studies integrate the container routing
decision with other decisions such as empty container repositioning [e.g., 86] and service
network design [e.g., 18, 20]. Recently, with the increasing interest towards synchromodal-
ity, several dynamic container routing models in synchromodal transportation have been
proposed. Li et al. [49] proposed a rolling horizon approach to control and reassign con-
tainer flows in an inland synchromodal freight transport network with dynamic transport
demand and traffic conditions. Qu et al. [72] proposed a mixed-integer programming model
to reschedule services and reroute shipment flows under the framework of synchromodal-
ity when unexpected dynamic events cause deviations from original plans. Guo et al. [37]
investigated a dynamic shipment matching problem in which a platform provides online
matches between shipment requests and transport services in a hinterland network.

The recent developments in information technologies and data analytics have facilitated
the utilization of stochastic information in online decision-making processes [75]. With
regards to dynamic and stochastic container routing problems, van Riessen et al. [100]
proposed a decision tree to instantaneously allocate incoming containers to inland services
by analyzing the solution structure of an optimization model on historical data of transport
demand. Rivera et al. [76] proposed an adaptive approximate dynamic programming algo-
rithm to assign the newly arrived containers to a barge or trucks incorporating the probability
distributions of future requests, to achieve cost minimization over a multi-period horizon.
Guo et al. [36] proposed an anticipatory optimization approach to create online matches
between shipment requests and transport services in an inland synchromodal network by
incorporating the probability distributions of future requests.

Compared with the DSGSM problem proposed in this chapter, the above-mentioned
dynamic and stochastic container routing models focus on the routing/matching decisions
for booking requests to minimize total costs without the consideration of acceptance deci-
sions. Furthermore, none of them consider the dynamic and stochastic shipment requests
and travel times simultaneously. Besides, while the above dynamic and stochastic container
routing models are investigated in inland networks, the DSGSM problem focuses on global
networks.
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6.2.3 Contributions
In summary, the DSGSM problem investigated in this chapter differs from the existing
literature in various ways: (i) we consider a global synchromodal transport network; (ii)
we develop a dynamic and stochastic model that integrates the decisions of acceptance
and matching; (iii) we simultaneously consider the uncertainty in spot requests and travel
times; (iv) we formulate a Markov decision process to model the problem; (v) we de-
velop a hybrid stochastic approach that integrates a rolling horizon framework, a chance-
constrained programming model, and a sample average approximation method together with
a preprocessing-based heuristic algorithm to solve the problem efficiently at each decision
epoch; (vi) we evaluate the performance of our approach in comparison to a deterministic
and a robust approach under a comprehensive set of experiments.

6.3 Problem description
We consider a platform owned by a global operator that receives contractual and spot ship-
ment requests from shippers, and receives ship, barge, train, and truck services from carriers,
as shown in Figure 6.2. We define the global operator as the coordinator that collaborates
with shippers, carriers and terminal operators to provide integrated transport planning in
a global synchromodal network. The global operator does not typically own any of the
transport services used to move a shipment from its origin to its destination or any of the
terminals used for transshipments. Instead, the global operator enters into contracts for
transport services with carriers and loading/unloading and storage operations with terminal
operators. The contract with carriers specifies the services that are available to the global
operator with specific modalities, OD pairs, time schedules, available capacities, and costs.
The global operators combine these services into itineraries to provide integrated transport
for shipments. The global operator publishes the fare classes for each OD pair with spec-
ified freight rates, lead times, and delay costs. Shippers choose the fare classes for their
shipments based on the value and urgency of commodities. After that, they initiate requests
to the platform with specific OD pairs, container volumes, time windows, and fare classes,
and leaves the choices of services to the platform.

6.3.1 Terminals
Let N be the set of terminals. Each terminal i ∈ N is characterized by its loading/unloading
cost lcm

i , loading/unloading time ltm
i with mode m ∈ M = {ship, barge, train, truck}, and

storage cost per container per hour cstorage
i . We assume terminal operators provide unlimited

loading/unloading and storage capacity to the global operator.

6.3.2 Shipment requests
Let R be the set of requests. Each request r ∈ R is characterized by its container type CTr
(i.e., dry or reefer), origin terminal or, destination terminal dr, container volume ur, an-
nounce time Tannounce

r (i.e., the time when the platform receives the request), release time
Trelease

r (i.e., the time when the shipment is available for transport process), and fare class
including freight rate pr, lead time LDr, and delay cost cdelay

r . The due time of request
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r is represented as, Tdue
r = Trelease

r + LDr. Requests R consist of two groups: contrac-
tual requests R0 and spot requests Rt . For a contractual request r ∈ R0, the global oper-
ator has long-term contracts with shippers. Therefore, the announce time of contractual
request r is, Tannounce

r = 0. All the information {CTr,or,dr,ur,Trelease
r ,Tdue

r , pr,c
delay
r } is

known in advance. On a contrary, for a spot request r ∈ Rt , the platform receives the
request from spot markets during time interval (t−1, t]. The information of the spot re-
quest {CTr,or,dr,ur,Trelease

r ,Tdue
r , pr,c

delay
r } is unknown before its announce time Tannounce

r .
However, the probability distributions {πCT ,πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πp,πcdelay} of
spot requests are assumed available to the platform. In addition, shippers require their ship-
ments to be transported as a whole, and ask to receive the transport plan as soon as possible.
Besides, we do not consider cancellation of requests from shippers. The requests accepted
by the platform will not be rejected in the future.

6.3.3 Transport services

Let S be the set of services. Each ship, barge or train service s ∈ Sship ∪ Sbarge ∪ Strain is
characterized by its mode MTs ∈M, origin terminal os, destination terminal ds, free capacity
U tk

s in terms of container type k ∈ K = {dry, reefer} at decision epoch t, total free capacity
U t

s , scheduled departure time T Ds, scheduled arrival time TAs, estimated travel time ts,
travel cost cs, and generation of carbon emissions ek

s for container type k. Let t̄s, T̄ Ds
and T̄ As be the actual travel, departure and arrival time of service s which are unknown
before their realization. We consider ship, barge and train services as line services, namely,
different services with the same mode might be operated by the same vehicle. We define
ξ−s as the preceding service and ξ+s as the succeeding service of service s. We define lsq
equals to 0 if service s is the preceding service of service q, otherwise equals to 1. Each
truck service s∈ Struck is characterized by its origin terminal os, destination terminal ds, free
capacity U tk

s in terms of container type k ∈ K at decision epoch t, total free capacity U t
s ,

estimated travel time ts, travel cost cs, and generation of carbon emissions ek
s for container

type k. Let t̄s be the actual travel time of service s which is unknown before its realization.
Each truck service consists of a fleet of trucks that have flexible departure times. We define
T Drs as a variable that indicates the departure time of service s∈ Struck with shipment r ∈ R.
We assume the platform receives real-time information once a service s ∈ S departs from or
arrives to a terminal.

In practice, travel time uncertainties are quite common resulting from weather condi-
tions and traffic congestions [18]. In this chapter, we assume the travel times [t̃s]∀s∈S are
continuous random variables following normal distributions, and are statistically indepen-
dent. Let t̃s∼N(µs,σ

2
s ), in which µs is the mean travel time between terminal os and terminal

ds, and σs is the corresponding standard deviation. Due to the travel time uncertainties, the
actual departure and arrival time of service s ∈ S are also uncertain. The distribution of the
departure time of service s is based on the distribution of the arrival time of its preceding
service ξ−s ; the distribution of the arrival time of service s is based on the distributions of the
departure and travel time of service s. For vehicle v ∈ V\V truck, we define the itinerary of
vehicle v as the sequence of services that the vehicle operated, and define In

v as the nth ser-
vice of vehicle v. Therefore, the departure time of service s = In

v follows normal distribution
given by:
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s1

s2

s3

s4

s1

s2

s3

s4

r1: {dry (container type), Shanghai (origin terminal), Duisburg (destination terminal), 10 TEU (container 
volume), 8 (announce time), 10 (release time), 970 (due time), 1800 € /TEU (freight rate),   9 €/TEU-h 
(delay cost)};
r2: {dry, Shanghai, Duisburg, 10 TEU, 9, 12, 852, 2400, 12};
r3:{reefer, Shanghai, Duisburg, 10 TEU, 10, 12, 612, 3400, 17};
s1: {ship (mode), Shanghai (origin terminal), Rotterdam (destination terminal), 10 TEU (reefer slots), 20 
(departure time),  750 (arrival time),  1000 € /TEU (transport cost)};
s2: {barge, Rotterdam, Duisburg, 10 TEU, 800, 817, 50};
s3: {train, Chongqing, Duisburg, 10 TEU, 240, 600, 2000};
s4: {truck, Shanghai, Chongqing, 10 TEU, 22, 1800};
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Figure 6.3: Illustrative example of online matching processes under the FCFS strategy.

T̃ Ds ∼ N(T D
′
v + ∑

j∈{1...n−1}
µI j

v
+ ∑

j∈{1...n−1}
2ltMT

′
v

d
I j
v

, ∑
j∈{1...n−1}

σ
2
I j
v
),

where T D
′
v is the departure time of vehicle v from its origin terminal, MT

′
v is the mode of

vehicle v. We denote T̃ Ds∼N(µ+s ,σ
+
s

2
). Similarly, the arrival time of service s= In

v follows
normal distribution given by:

T̃ As ∼ N(T D
′
v + ∑

j∈{1...n}
µI j

v
+ ∑

j∈{1...n−1}
2ltMT

′
v

d
I j
v

, ∑
j∈{1...n}

σ
2
I j
v
).

We denote T̃ As ∼ N(µ−s ,σ
−
s

2
).

6.3.4 Objectives and infeasible transshipments

The objective of the platform is to maximize total profits over the planning horizon T by
dynamically optimizing acceptance and matching decisions over a global synchromodal
network. In practice, the first come first served (FCFS) strategy has been widely adopted in
the container industry [61]. Under such a strategy, decisions are made based on determinis-
tic information only. An illustrative example of online matching processes under the FCFS
strategy is shown in Figure 6.3. At decision epoch t = 8, the platform accepts request r1,
and matches r1 with ship service s1 and barge service s2 which are the cheapest services.
At decision epoch t = 9, the platform accepts request r2, and matches r2 with rail service s3
and truck service s4. At decision epoch t = 10, the platform receives reefer request r3 which
is very profitable. However, the platform has to reject request r3 since no capacity is avail-
able. To make better decisions over the planning horizon, the platform needs to consider the
stochastic information of future requests.
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Figure 6.4: Possible outcomes of travel time uncertainty in global transport.

On the other hand, travel time uncertainty of services in a global synchromodal network
may lead to infeasible transshipments in addition to the commonly studied outcome of late
or early delivery at destinations [e.g., 51, 80]. An illustrative example is shown in Fig-
ure 6.4. A shipment is planned to be transported by a train service from its origin terminal
to port A, by a ship service from port A to port B, and by two barge services from port B
to its destination terminal according to fixed time schedules. The outcomes of travel time
uncertainty in global synchromodal transportation include late delivery at destination ter-
minal under realization 1 which causes delayed costs, early delivery at destination terminal
under realization 2 which causes storage costs, and infeasible transshipment at port B under
realization 3 which requires reoptimization.

6.4 Markov decision process model
In this section, we formulate a Markov decision process (MDP) model for the problem
under study. There are seven fundamental elements in the MDP model: decision epochs,
state variables, exogenous information, decision variables, transition functions, profits, and
objective functions [70]. A brief summary of these elements is as follows:

• Decision epochs. We define t as the points in time at which decisions are made, referred
to as the decision epoch, t ∈ {0,1, ...,T}. Therefore, the planning horizon is divided into
T consecutive time intervals.

• State variables. The state Ft of the global synchromodal matching system contains all
the information that is necessary and sufficient to model the system at decision epoch
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t. We distinguish between the initial state F0 and the dynamic state Ft for t > 0. The
initial state contains all the deterministic sets and parameters {N,R0,V,S,T,cemission},
initial values of dynamic parameters U0 =

[
U0k

s
]
∀s∈S,k∈K , and probability distributions of

random variables
[
T̃ Ds

]
∀s∈S\Struck ,

[
T̃ As

]
∀s∈S\Struck , [t̃s]∀s∈S, {R̃t}∀t∈{1,...T}. The dynamic

state Ft contains the information that is evolving over time, i.e., the set of free capacity of
services at decision epoch t, Ft =U t .

• Exogenous information. The exogenous information Wt consists of all the new in-
formation that first becomes known at decision epoch t. We define Wt = [T̄ Ds]s∈S+t ∪
[T̄ As]s∈S−t ∪Rt ∪ R̄t , where S+t = {s ∈ S|t−1 < T̄ Ds ≤ t} is the set of services departing
their origin terminals during time interval (t−1, t], t > 0; S−t = {s ∈ S|t−1 < T̄ As ≤ t}
is the set of services arriving their destination terminals during time interval (t−1, t],
t > 0; Rt = {r|t− 1 < Tannounce

r ≤ t} is the set of requests received during time interval
(t−1, t], t > 0; R̄t is the set of accepted requests that require reoptimization at deci-
sion epoch t due to infeasible transshipments. An infeasible transshipment happens in
two situations: first, the accepted shipment r just arrived terminal i, the matched service
s ∈ {S+1 ∪ ...∪ S+t |xrs = 1,os = i} has already departed; second, the accepted shipment
r has already arrived terminal i, and the matched service s ∈ {S+t |xrs = 1,os = i} just
departed from terminal i, but the remaining time is not enough for transshipments.

• Decision variables. At decision epoch t, the platform needs to decide on acceptance yt

for requests Rt and matching xt for requests Rt ∪ R̄t . The decisions are restricted by the
time-spatial compatibility between requests and services, and free capacities of services
at decision epoch t. Let yt

r be the binary variable which is 1 if request r ∈ Rt is accepted,
0 otherwise. We use the binary variable xt

rs to represent the match between request r ∈
Rt ∪ R̄t and service s∈ S. The decision vectors yt ,xt consist of all the decisions at decision
epoch t as seen in (6.1-6.2), subject to constraints (6.3-6.21), which define the feasible
decision space.

yt =
[
yt

r
]
∀r∈Rt (6.1)

xt =
[
xt

rs
]
∀r∈Rt∪R̄t ,s∈S (6.2)

subject to

yt
r ≤ ∑

s∈S+or

xt
rs, ∀r ∈ Rt , (6.3)

yt
r ≤ ∑

s∈S−dr

xt
rs, ∀r ∈ Rt , (6.4)

∑
s∈S+or

xt
rs ≤ 1, ∀r ∈ Rt , (6.5)

∑
s∈S−dr

xt
rs ≤ 1, ∀r ∈ Rt , (6.6)

∑
s∈S+or

xt
rs = 1, ∀r ∈ R̄t , (6.7)

∑
s∈S−dr

xt
rs = 1, ∀r ∈ R̄t , (6.8)
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∑
s∈S−or

xt
rs ≤ 0, ∀r ∈ Rt ∪ R̄t , (6.9)

∑
s∈S+dr

xt
rs ≤ 0, ∀r ∈ Rt ∪ R̄t , (6.10)

∑
s∈S−i

xt
rs ≤ 1, ∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr}, (6.11)

∑
s∈S+i

xt
rs ≤ 1, ∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr}, (6.12)

∑
s∈S+i

xt
rs = ∑

s∈S−i

xt
rs, ∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr}, (6.13)

∑
r∈Rt∪R̄t

xt
rsur ≤U t

s , ∀s ∈ S, (6.14)

∑
r∈Rtk∪R̄tk

xt
rsur ≤U tk

s , ∀s ∈ S,k = reefer, (6.15)

Trelease
r + ltMTs

or ≤ T Drs +M(1− xt
rs), ∀r ∈ Rt ∪ R̄t ,s ∈ S+truck

or , (6.16)

Trelease
r + ltMTs

or ≤ T̃ Ds +M(1− xt
rs), ∀r ∈ Rt ∪ R̄t ,s ∈ S+or\S

+truck
or , (6.17)

T̃ As + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq), ∀r ∈ Rt ∪ R̄t ,

i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+i \S

+truck
i ,

(6.18)

T Drs + t̃s + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq), ∀r ∈ Rt ∪ R̄t ,

i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+i \S

+truck
i ,

(6.19)

T̃ As + ltMTs
i + ltMTq

i ≤ T Drq +M(1− xt
rs)+M(1− xt

rq), ∀r ∈ Rt ∪ R̄t ,

i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+truck

i ,
(6.20)

T Drs + t̃s + ltMTs
i + ltMTq

i ≤ T Drq +M(1− xt
rs)+M(1− xt

rq), ∀r ∈ Rt ∪ R̄t ,

i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+truck

i .
(6.21)

Constraints (6.3-6.4) ensure that new request r ∈ Rt will not be accepted by the platform
if there is no matching possibilities. Constraints (6.5-6.6) ensure that at most one ser-
vice transports new request r ∈ Rt departing from its origin or arriving to its destination.
Constraints (6.7-6.8) ensure that reoptimization request r ∈ R̄t must be transported by one
service departing from its origin and by one service arriving to its destination. Constraints
(6.9-6.12) are designed to eliminate subtours. Constraints (6.13) ensure flow conserva-
tion. Constraints (6.14) ensure that the total container volumes of requests matched with
service s do not exceed its free capacity. Constraints (6.15) ensure that the total volumes
of reefer containers matched with service s cannot exceed its free capacity on reefer slots.
In practice, dry containers can use reefer slots, but reefer containers cannot use dry slots.
Constraints (6.16-6.17) ensure that the departure time of service s minus loading time
must be earlier than the release time of request r, if request r will be transported by ser-
vice s depart its origin terminal. Here, M is a large number used for binary constraints.
Constraints (6.18-6.21) ensure that the arrival time of service s ∈ S−i plus loading and
unloading time must be earlier than the departure time of service q ∈ S+i if request r will
be transported by service s entering terminal i and by service q leaving terminal i.
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• Transition function. Following decision xt from state Ft with exogenous information
Wt , the system transitions to a new state. We denote the transition function by Ft+1 =
f (Ft ,Wt ,xt). Specifically, the free capacity of service s ∈ S at stage t + 1 is decided
by the free capacity of service s at decision epoch t, the cancellation of bookings from
reoptimization requests R̄t which includes service s in its planned itinerary IRr, and the
matching decisions made for requests Rt ∪ R̄t , as shown in (6.22-6.23).

U t+1
s =U t

s + ∑
r∈R̄t ,s∈IRr

ur− ∑
r∈Rt∪R̄t

urxt
rs, ∀s ∈ {S|T Ds > t}, (6.22)

U (t+1)k
s =U tk

s + ∑
r∈R̄tk,s∈IRr

ur− ∑
r∈Rtk∪R̄tk

urxt
rs, ∀s ∈ {S|T Ds > t},k = reefer. (6.23)

• Profits. Based on the state Ft , the exogenous information Wt , and the decision [yt ,xt ],
the profits at decision epoch t can be defined as a function of Ft , Wt and [yt ,xt ], as shown
in (6.24). Due to the time gap between the acceptance and the transportation of the same
request, while the freight rate of request r ∈ Rt is charged by the platform at current time
stage, the cost for request r happens in future time stages. Due to the possibility of infea-
sible transshipments, the actual costs generated by accepted requests are also uncertain
and hard to estimate. We use C̃r(Ft ,Wt , [yt ,xt ]) to denote the total costs generated for
request r ∈ Rt .

Pt(Ft ,Wt ,
[
yt ,xt]) = ∑

r∈Rt
pruryt

r− ∑
r∈Rt

C̃r(Ft ,Wt ,
[
yt ,xt]). (6.24)

• Objective functions. Due to future request uncertainty and the capacity limitation of
transport services, decisions made for current requests affect the decisions for future re-
quests. Therefore, the objective of the MDP model is to maximize the expected profits
over the planning horizon given as follows:

max
y1...T ,x0...T

EF0EW1,...,WT |F0{
T

∑
t=0

Pt(Ft ,Wt ,
[
yt ,xt])|F0} (6.25)

We refer to the objective function in (6.25) as the cumulative formulation. Using Bell-
man’s principle of optimality, the optimal profits can be computed through a set of recur-
sive equations, as seen in (6.26).

P0 Qt(Ft ,Wt ,
[
yt ,xt]) = max

yt ,xt ∑
r∈Rt

pruryt
r

− ∑
r∈Rt

E{C̃r(Ft ,Wt ,
[
yt ,xt])}

+EΩt{Qt+1(Ft+1,Wt+1,
[
yt+1,xt+1])},

(6.26)

where E{C̃r} represents the expected total costs generated for request r, EΩt represents
the expected total profits for requests received after decision epoch t, Ωt represents the set
of requests received after t.
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6.5 Hybrid stochastic approach
The recursive formulation (6.26) requires enumerating all states, exogenous information,
and decisions in the future time stages which are known as the three curses of dimension-
ality [70]. In this section, we develop a hybrid stochastic approach (HSA) to solve the
DSGSM problem. Specially, we design a rolling horizon framework (RHF) to update input
parameters and to react to infeasible transshipments; we design a chance-constrained pro-
gramming (CCP) model to set confidence level of chance constraints regarding infeasible
transshipments, and define the approximation of E{C̃r}; we use a sample average approx-
imation (SAA) method to approximate EΩt by sampling requests appeared in prediction
horizon H under Γ scenarios. After that, due to the computational complexity, we design a
preprocessing-based heuristic algorithm (P-HA) to solve the optimization problem at each
decision epoch.

6.5.1 Rolling horizon framework

RHF is known as an efficient periodic reoptimization approach that has been applied in
many fields, such as routing problems [6] and scheduling problems [84]. The RHF can
handle multiple dynamic events that appear in a system simultaneously, which is quite com-
mon in global synchromodal transport. The RHF solves the DSGSM problem iteratively
by updating the input parameters and reacting to infeasible transshipments at each decision
epoch as given by Algorithm 6.1. At decision epoch t ∈ {0, ...,T}, the RHA updates the
new information received during time interval (t−1, t], including requests Rt , actual de-
parture times [T̄ Ds]∀s∈S+t\Struck and arrival times [T̄ As]∀s∈S−t\Struck of ship, barge, and train
services, and actual departure times [T̄ Drs]∀s∈S+t∩Struck and arrival times [T̄ Ars]∀s∈S−t∩Struck

of truck services. Based on the actual arrival and departure times of matched services
{s ∈ S|xrs = 1} of accepted request r ∈ {R0 ∪ ...∪Rt−1|yr = 1}, the RHA checks which
requests need reoptimization due to infeasible transshipments. The platform thus cancels
the capacity bookings on the matched services which depart after decision epoch t for reop-
timization request r ∈ R̄t . The RHA then updates the free capacity regarding dry and reefer
slots of these services. After that, the RHA generates sample requests based on Monte
Carlo Simulation. The optimization model that used in each iteration is developed based
on the CCP (presented in Section 6.5.2) and SAA (presented in Section 6.5.3). The RHA
uses the P-HA (presented in Section 6.5.4) to generate acceptance and matching decisions
based on the input parameters and the optimization model. The platform thus books capac-
ities on the matched services based on the matching decisions. After that, the RHA updates
free capacities of services and itineraries of requests, and calculates the planning profits Pt

based on transport plans and actual profits APt caused in transport processes. At the end of
the planning horizon, the RHA calculates the total planned profit and the total actual profit
generated over planning horizon T .

6.5.2 Chance-constrained programming model

In the literature, different techniques have been developed to deal with travel time uncer-
tainty: deterministic, stochastic, and robust programming [80]. While deterministic pro-
gramming considers average travel times and robust programming considers minimum and
maximum travel times, stochastic programming takes into account the probability distribu-
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Algorithm 6.1 Rolling horizon framework.
Input: Terminals N; contractual requests R0; services S; free capacity

[
U0k

s
]
∀s∈S,k∈K ; length of plan-

ning horizon T ; probability distributions of spot requests and travel times; confidence level α; length
of prediction horizon H, and number of scenarios Γ.
Output: Acceptance decision [yt

r]∀r∈Rt ,t∈{1,...,T}; matching decision [xt
rs]∀r∈Rt∪R̄t ,s∈S,t∈{0,...,T};

itinerary {IRr}r∈R; number of infeasible transshipments Ninfeasible; planned profits [Pt ]t∈{0,...,T}; ac-
tual profits

[
APt]

t∈{0,...,T}.

Initialize: Let Rt ← /0, R̄t ← /0, U t
s ← 0, IRr← /0, Ninfeasible← 0, Pt ← 0, APt ← 0.

1: for decision epoch t ∈ {0,1, ...,T} do
2: receive requests Rt , actual departure time T̄ Ds of service s∈ S+t\Struck, actual arrival time T̄ As

of service s ∈ S−t\Struck, actual departure time T̄ Drs of service s ∈ S+t ∩Struck, and actual arrival
time T̄ Ars of service s ∈ S−t ∩Struck

3: for request r ∈ R0∪ ...∪Rt−1 do
4: if IRr = /0 then
5: go to r = r+1
6: else
7: for terminal i ∈ N do
8: if request r just arrived terminal i, service s ∈ {S+1 ∪ ...∪ S+t |os = i} has already de-

parted; or request r has already arrived terminal i, service s ∈ {S+t |os = i} just departed, but the
time for transshipment operations is not enough then

9: update reoptimization requests R̄t ← R̄t ∪{r}
10: update number of infeasible transshipments Ninfeasible← Ninfeasible +1
11: update free capacity U t

s ←U t
s +ur for s ∈ {IRr|T Ds > t}

12: if CTr = reefer then
13: update free capacity U tk

s ←U tk
s +ur for s ∈ {IRr|T Ds > t},k = reefer

14: generate sample requests← Monte Carlo Simulation
15: get optimization model← CCP+SAA
16: obtain acceptance and matching decision [yt ,xt ]← P-HA
17: update free capacity U t+1

s ←U t
s −∑r∈Rt∪R̄t urxt

rs for s ∈ S

18: update free capacity U (t+1)k
s ←U tk

s −∑r∈Rtk∪R̄tk urxt
rs for s ∈ S,k = reefer

19: update itinerary {IRr} for r ∈ R
20: calculate planned profits Pt and actual profits APt

21: calculate total planned profit and actual profit in planning horizon T

tions of travel times. In general, stochastic programming can be either formulated as a CCP
model or a stochastic programming model with recourse (SPR) [51]. While CCP models
ensure the feasibility of stochastic constraints, SPR models define recourse actions to in-
duce an expected penalty cost on objective functions. Typically, SPR models define a delay
cost for late delivery, a storage cost for early delivery, and a large penalty cost for infea-
sible transshipments without the consideration of reoptimization after disturbances. Since
the extra costs caused by reoptimization procedures at later stages are hard to estimate, we
develop a CCP model to approximate stochastic constraints (6.17-6.21) and to approximate
the expected cost E{C̄r} for request r in model P0. The CCP model does not take into
account the correction costs caused by the reoptimization of requests.

Under CCP, stochastic constraints (6.17-6.21) will hold at least with probability α,
where α is referred to as the confidence level provided as an approximate safety margin
by the platform. A high α means the matches have a low probability causing infeasible
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transshipments. The confidence level α also controls the problems’ tightness and compu-
tational complexity. When α = 0.5, the CCP model becomes a deterministic model; when
α = 1, the CCP model becomes a robust model. The objective is to maximize expected
total profits while ensuring that the probability of feasible transshipments exceed α. The
formulation of the CCP model at decision epoch t is:

P1 Qt(Ft ,Wt ,
[
yt ,xt]) =max

yt ,xt ∑
r∈Rt

pruryt
r−

(
∑

r∈Rt∪R̄t
∑
s∈S

csxt
rsur + ∑

r∈Rt∪R̄t
∑
i∈N

friur

+ ∑
r∈Rt∪R̄t

∑
i∈N

cstorage
i E(w̃ri)ur + ∑

r∈Rt∪R̄t

cdelay
r E(T̃delay

r )ur

+ ∑
k∈K

∑
r∈Rtk∪R̄tk

∑
s∈S

cemissionek
sxt

rsur

)
+EΩt

[
Qt+1(Ft+1,Wt+1,

[
yt+1,xt+1])] .

(6.27)

subject to constraints (6.3-6.16),

P{Trelease
r + ltMTs

or ≤ T̃ Ds +M(1− xt
rs)} ≥ α,∀r ∈ Rt ∪ R̄t ,s ∈ S+or\S

+truck
or , (6.28)

P{T̃ As + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+i \S

+truck
i ,

(6.29)

P{T Drs + t̃s + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+i \S

+truck
i ,

(6.30)

P{T̃ As + ltMTs
i + ltMTq

i ≤ T Drq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+truck

i ,
(6.31)

P{T Drs + t̃s + ltMTs
i + ltMTq

i ≤ T Drq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+truck

i ,
(6.32)

fri = ∑
s∈S+i

xt
rslc

MTs
i , ∀r ∈ Rt ∪ R̄t , i = or, (6.33)

fri = ∑
s∈S−i

xt
rslc

MTs
i , ∀r ∈ Rt ∪ R̄t , i = dr, (6.34)

fri = ∑
s∈S+i

∑
q∈S−i

(
lcMTs

i + lcMTq
i

)
zt

rsqlsq, ∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr}, (6.35)

zt
rsq ≤ xt

rs, ∀r ∈ Rt ∪ R̄t ,s ∈ S,q ∈ S, (6.36)

zt
rsq ≤ xt

rq, ∀r ∈ Rt ∪ R̄t ,s ∈ S,q ∈ S, (6.37)

zt
rsq ≥ xt

rs + xt
rq−1, ∀r ∈ Rt ∪ R̄t ,s ∈ S,q ∈ S, (6.38)

E(w̃ror)≥ E(T̃ Ds)− ltMTs
or −Trelease

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S+or\S

+truck
or , (6.39)

E(w̃ror)≥ T Drs− ltMTs
or −Trelease

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S+truck

or , (6.40)
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E(w̃ri)≥ E(T̃ Dq)−E(T̃ As)− ltMTs
i − ltMTq

i +M(xt
rs−1)+M(xt

rq−1),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+i \S

+truck
i ,

(6.41)

E(w̃ri)≥ E(T̃ Dq)−T Drs−E(t̃s)− ltMTs
i − ltMTq

i +M(xt
rs−1)+M(xt

rq−1),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+i \S

+truck
i ,

(6.42)

E(w̃ri)≥ T Drq−E(T̃ As)− ltMTs
i − ltMTq

i +M(xt
rs−1)+M(xt

rq−1),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+truck

i ,
(6.43)

E(w̃ri)≥ T Drq−T Drs−E(t̃s)− ltMTs
i − ltMTq

i +M(xt
rs−1)+M(xt

rq−1),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+truck

i ,
(6.44)

E(w̃rdr)≥ Tdue
r −E(T̃ As)− ltMTs

dr
+M(xt

rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S−dr
\S−truck

dr
, (6.45)

E(w̃rdr)≥ Tdue
r −T Drs−E(t̃s)− ltMTs

dr
+M(xt

rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S−truck
dr

, (6.46)

E(T̃delay
r )≥ E(T̃ As)+ ltMTs

dr
−Tdue

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S−dr

\S−truck
dr

, (6.47)

E(T̃delay
r )≥ T Drs +E(t̃s)+ ltMTs

dr
−Tdue

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ S−truck

dr
, (6.48)

where fri is the planned loading and unloading cost of request r at terminal i; E(w̃ri) is
the estimated storage time of request r at terminal i; E(T̃delay

r ) is the estimated delay in
delivery of request r at destination terminal dr; P is the probability measure; zt

rsq is a binary
variable which equals to 1 if request r has to transfer between service s and q, 0 otherwise;
E(T̃ Ds) = µ+s , E(T̃ As) = µ−s , E(t̃s) = µs.

The objective function P1 is to maximize the total profits which consist of the planned
profits at decision epoch t including freight rates, travel costs, transfer costs, storage costs,
delay costs and carbon tax, and estimated profits generated after decision epoch t. Con-
straints (6.28-6.32) ensure that the possibility of feasible transshipment at terminals will be
higher than the confidence level α. Constraints (6.33-6.35) calculate the loading costs at
origin terminals, the unloading costs at destination terminals, and the loading and unload-
ing costs at transshipment terminals. Constraints (6.36-6.38) ensure that binary variable zt

rsq
equals to 1 if xt

rs = 1 and xt
rq = 1, 0 otherwise. Constraints (6.39-6.46) calculate the storage

time at origin, transshipment, and destination terminals. Constraints (6.47-6.48) calculate
delay in deliveries at destination terminals. Based on the properties of normal distributions,
constraints (6.28-6.32) can be linearized as:

Trelease
r + ltMTs

or +M(xt
rs−1)−µ+s

σ
+
s

≤ φ
−1(1−α),∀r ∈ Rt ∪ R̄t ,s ∈ S+or\S

+truck
or , (6.49)

ltMTs
i + ltMTq

i +M(xt
rs−1)+M(xt

rq−1)− (µ+q −µ−s )√
(σ+

q )2 +(σ−s )2
≤ φ

−1(1−α),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+i \S

+truck
i ,

(6.50)

T Drs + ltMTs
i + ltMTq

i +M(xt
rs−1)+M(xt

rq−1)− (µ+q −µs)√
(σ+

q )2 +(σs)2
≤ φ

−1(1−α),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+i \S

+truck
i ,

(6.51)
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T Drq− ltMTs
i − ltMTq

i +M(1− xt
rs)+M(1− xt

rq)−µ−s
σ
−
s

≥ φ
−1(α),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−i \S
−truck
i ,q ∈ S+truck

i ,

(6.52)

T Drq−T Drs− ltMTs
i − ltMTq

i +M(1− xt
rs)+M(1− xt

rq)−µs

σs
≥ φ

−1(α),

∀r ∈ Rt ∪ R̄t , i ∈ N\{or,dr},s ∈ S−truck
i ,q ∈ S+truck

i ,

(6.53)

where φ−1(α) is the inverse function of standardized normal distributions.

6.5.3 Sample average approximation method
In this section, we present the SAA method that approximates the expected profits EΩt gen-
erated after decision epoch t in model P1. At decision epoch t, a sample {ω1, ...,ωγ, ...,ωΓ}
of Γ scenarios is generated according to the probability distributions of shipment requests
{πCT ,πo,πd ,πu,πTannounce ,πTrelease ,πTdue ,πp,πcdelay}. Each scenario includes a prediction of
spot requests arrived between stage t+1 and stage t+H, ωγ = {ωγ(t+1),ωγ(t+2), ...,ωγ(t+H)}.
Here, H is the prediction horizon that is just long enough to obtain good decisions at
decision epoch t. The expected cost EΩt in (6.27) is approximated by the sample aver-
age function Γ−1

∑
Γ
γ=1. Let ŷγh

r be the binary variable which equals to 1 if sample re-

quest r ∈ ωγh is accepted, and x̂γh
rs be the binary variable which equals to 1 if sample re-

quest r ∈ ωγh is matched with service s ∈ S under scenario γ ∈ {1, ..,Γ} at stage h ∈ H =
{t + 1, ...,max{T, t +H}}. We define f̂ri as the loading and unloading cost and Ê(w̃ri) as
the waiting time of sample request r ∈ ωγh at terminal i, Ê(T̃delay

r ) as the delay in delivery
of sample request r. The formulation of the DSGSM problem at decision epoch t changes
to:

P2 Qt(Ft ,Wt ,
[
yt ,xt]) = max

yt ,xt ,ŷt ,x̂t ∑
r∈Rt

pruryt
r−

(
∑

r∈Rt∪R̄t
∑
s∈S

csxt
rsur

+ ∑
r∈Rt∪R̄t

∑
i∈N

friur + ∑
r∈Rt∪R̄t

∑
i∈N

cstorage
i E(w̃ri)ur

+ ∑
r∈Rt∪R̄t

cdelay
r E(T̃delay

r )ur

+ ∑
k∈K

∑
r∈Rtk∪R̄tk

∑
s∈S

cemissionek
sxt

rsur

)

+
1
Γ

Γ

∑
γ=1

∑
h∈H

[
∑

r∈ωγh

prur ŷγh
r −

(
∑

r∈ωγh
∑
s∈S

csx̂γh
rs ur

+ ∑
r∈ωγh

∑
i∈N

f̂riur + ∑
r∈ωγh

∑
i∈N

cstorage
i Ê(w̃ri)ur

+ ∑
r∈ωγh

cdelay
r Ê(T̃delay

r )ur

+ ∑
k∈K

∑
r∈ωγhk

∑
s∈S

cemissionek
s x̂γh

rs ur

)]

(6.54)



6.5 Hybrid stochastic approach 103

subject to constraints (6.3-6.13,6.16,6.33-6.53) for r ∈ Rt ∪ R̄t ∪ωγh, γ ∈ {1, ...,Γ},h ∈H,

∑
r∈Rt∪R̄t

xt
rsur + ∑

h∈H
∑

r∈ωγh

x̂γh
rs ur ≤U t

s , ∀s ∈ S,γ ∈ {1, ...,Γ}, (6.55)

∑
r∈Rtk∪R̄tk

xt
rsur + ∑

h∈H
∑

r∈ωγhk

x̂γh
rs ur ≤U tk

s , ∀s ∈ S,k = reefer,γ ∈ {1, ...,Γ}. (6.56)

Constraints (6.55-6.56) ensure that the total container volumes of new requests, reopti-
mization requests, and sample requests matched with service s do not exceed its free capac-
ity at decision epoch t.

6.5.4 Preprocessing-based heuristic algorithm
Due to the computational complexity, we design the P-HA to solve model P2 at each de-
cision epoch. The P-HA is adapted from the heuristic algorithm designed by Guo et al.
[37] in which travel times are considered deterministic. The P-HA consists of three steps:
preprocessing of feasible paths, preprocessing of feasible matches, and binary integer linear
programming.

Preprocessing of feasible paths

We define a path p as a combination of services in sequence. A path p is feasible only if
the services inside a combination satisfy time-spatial compatibility. Specifically, for two
consecutive services si,si+1 within path p, the destination of service si must be the same as
the origin of service si+1; the arrival time of service si plus unloading time must be earlier
than the departure time of service si+1 minus loading time at transshipment terminal dsi

with confidence level α. We define L as the largest number of services in a path. Let P
denotes the set of feasible paths, and Pl

i j represents the set of feasible paths with l services
that depart from terminal i, and arrive at terminal j.

The pseudocode of preprocessing of feasible paths is shown in Algorithm 6.2. The al-
gorithm starts with determining the feasible paths for each OD pair with just one service,
and subsequently combines these paths with a single service to create feasible paths with
two services, three services, and so on. To examine whether a new path [s1, ...,sl−1,s] ∈ Pl

i j

consisting of feasible path p = [s1, ...,sl−1] ∈ Pl−1
ios

and service s ∈ S−j is feasible, we check
the transshipment feasibility between service sl−1 and service s by using constraints (6.50-
6.53) with xrsl−1 = 1,xrs = 1. After that, we check whether feasible path p∈ P has subtours,
and remove paths with subtours.

Preprocessing of feasible matches

A match between request r ∈ R and path p = [s1, ...,sl ] ∈ P is feasible if it satisfies time-
spatial compatibility. Specifically, the origin terminal of shipment request r should be the
same as the origin of service s1; the destination of request r should be the same as the
destination of service sl . The release time of request r should be earlier than the departure
time of service s1 minus loading time at origin terminal or with confidence level α. We
denote Nmatch as the maximum number of feasible matches. Let Φr be the set of feasible
paths for request r, and crp be the total costs of matching request r with path p including
travel costs, transfer costs, storage costs, delay costs, and carbon tax.
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Algorithm 6.2 Feasible path generation algorithm.
Input: Terminals N, services S, the largest number of services in a path L, index l ∈ {1,2, ...,L}.
Output: Feasible paths {Pl

i j}i∈N, j∈N,l∈{1,...,L}.
Initialize: Let P← /0, l← 1.

1: for terminal i ∈ N, terminal j ∈ N do
2: for service s ∈ S do
3: if origin os = i and destination ds = j then
4: Pl

i j← Pl
i j ∪{[s]}

5: l← l +1
6: while l ≤ L do
7: for terminal i ∈ N, terminal j ∈ N do
8: for service s ∈ S do
9: if origin os 6= i and destination ds = j then

10: for feasible path p = [s1, ...,sl−1] ∈ Pl−1
ios

do
11: if P{feasible transshipment between service sl−1 and s} ≥ α then
12: Pl

i j← Pl
i j ∪{[s1, ...,sl−1,s]}

13: l← l +1
14: for terminal i ∈ N, terminal j ∈ N, index l ∈ {1, ...,L} do
15: for path p ∈ Pl

i j do
16: for service s ∈ p do
17: if ds = i or os = j then
18: Pl

i j← Pl
i j \{p}

19: for service s ∈ p,q ∈ p do
20: if os = oq then
21: Pl

i j← Pl
i j \{p}

Algorithm 6.3 Feasible match generation algorithm.
Input: Feasible paths P, requests R = Rt ∪ R̄t ∪{ωγh}∀γ∈{1,...,Γ},h∈H, the largest number of services
in a path L, the maximum number of feasible matches Nmatch, objective function (6.54).
Output: Feasible matches {Φr}∀r∈R, total costs

[
crp
]
∀r∈R,p∈P.

Initialize: Let Φ← /0, l← 1.
1: for request r ∈ R do
2: for l ∈ {1,2, ...,L} do
3: for feasible path p = [s1,s2, ...,sl ] ∈ Pl

ordr
do

4: if P{feasible transshipment at origin terminal or} ≥ α then
5: Φr←Φr ∪{p}
6: crp← Calculate the objective function

7: if the number of feasible matches in Φr > Nmatch then
8: Φr← the Nmatch cheapest matches in Φr

The pseudocode of preprocessing of feasible matches is shown in Algorithm 6.3. For
request r and path p = [s1, ...,sl ] ∈ Pl

ordr
, the transshipment feasibility between r and p is

checked by using constraints (6.16) and (6.49) with xrs1 = 1. For each request r, if the
number of feasible matches in Φr exceeds Nmatch, Φr will be replaced by the set of Nmatch

cheapest matches.
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Binary integer programming model

Based on the above preprocessing procedures, the objective function is updated to maximize
the total profits for the matching of requests with feasible paths. Let zt

rp be a binary variable

equal to 1 if request r ∈ Rt ∪ R̄t is matched with path p ∈ P, and 0 otherwise. Let ẑγh
rp be

the binary variable equal to 1 if request r ∈ ωγh,γ ∈ {1, ...,Γ},h ∈ H is matched with path
p ∈ P, and 0 otherwise. Model P2 will be translated into a binary integer programming
(BIP) model:

P3 Qt(Ft ,Wt ,
[
yt ,zt]) = max

yt ,zt ,ŷt ,ẑt ∑
r∈Rt

pruryt
r− ∑

r∈Rt∪R̄t
∑

p∈Φr

crpzt
rp

+
1
Γ

Γ

∑
γ=1

∑
h∈H

( ∑
r∈ωγh

prur ŷγh
r − ∑

r∈ωγh
∑

p∈Φr

crpẑγh
rp)

(6.57)

subject to

yt
r ≤ ∑

p∈Φr

zt
rp, ∀r ∈ Rt , (6.58)

∑
p∈Φr

zt
rp ≤ 1, ∀r ∈ Rt , (6.59)

∑
p∈Φr

zt
rp = 1, ∀r ∈ R̄t , (6.60)

ŷγh
r ≤ ∑

p∈Φr

ẑγh
rp, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, (6.61)

∑
p∈Φr

ẑγh
rp ≤ 1, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ ω

γh, (6.62)

∑
r∈Rt∪R̄t

∑
p∈Φrs

urzt
rp + ∑

h∈H
∑

r∈ωγh
∑

p∈Φrs

ur ẑγh
rp ≤U t

s , ∀γ ∈ {1, ...,Γ},s ∈ S, (6.63)

∑
r∈Rtk∪R̄tk

∑
p∈Φrs

urzt
rp + ∑

h∈H
∑

r∈ωγhk
∑

p∈Φrs

ur ẑγh
rp ≤U tk

s , ∀γ ∈ {1, ...,Γ},s ∈ S,k = reefer, (6.64)

yt
r,z

t
rp, ŷ

γh
r , ẑγh

rp ∈ {0,1}, ∀γ ∈ {1, ...,Γ},h ∈H,r ∈ Rt ∪ R̄t ∪ω
γh, p ∈Φ, (6.65)

where Φrs = {p ∈Φr|s ∈ p}.
Constraints (6.58-6.59) ensure that at most one feasible path will be assigned to each

new request r ∈ Rt if r is accepted. Constraints (6.60) ensure that one feasible path will be
assigned to each reoptimization request r ∈ R̄t . Constraints (6.61-6.62) ensure that at most
one feasible path will be assigned to each sample request r∈ωγh if r is accepted. Constraints
(7.58-6.64) ensure that the total container volumes of requests assigned to service s∈ S does
not exceed its free capacity regarding total slots and reefer slots.

6.6 Numerical experiments

In this section, we evaluate the performance of the HSA on the DSGSM problem in com-
parison to a deterministic approach (DA) which does not consider future requests and uses
average travel times (i.e., α = 0.5, H = 0, Γ = 0) and a robust approach (RA) which does
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not consider future requests and considers the maximum and minimum travel times (i.e.,
α = 1, H = 0, Γ = 0). The DA is a risk neutral approach in which decision makers are
indifferent to uncertainties, and the RA is a risk averse approach that seeks sureness. The
performance of the HSA will be tested under the impact of different confidence levels, num-
bers of scenarios, and lengths of the prediction horizon. The approaches are implemented
in MATLAB, and all experiments are executed on 3.70 GHz Intel Xeon processors with 32
GB of RAM. The optimization problems are solved with CPLEX 12.6.3.

Unless otherwise stated, the benchmark values of coefficients are set as follows: plan-
ning horizon (unit: hours) T = 1400; the length of time intervals is one hour; loading cost
(unit: e/TEU) lcship

i = 18, lcbarge
i = 18, lctrain

i = 12, lctruck
i = 12 for i∈N; loading time (unit:

hours) ltship
i = 12, ltbarge

i = 4, lt train
i = 2, lt truck

i = 1 for i ∈ N; storage cost (unit: e/TEU-h)
cstorage

i = 1 for i ∈ N; carbon tax (unit: e/kg) cemission = 0.07; delay cost (unit: e/TEU-h)
cdelay

r = 0.005 ∗ pr for r ∈ R; mean of travel times µs = ts for s ∈ S; standard deviation of
travel times σs = 0.1 ∗ ts for s ∈ S\Struck, σs = 0.5 ∗ ts for s ∈ Struck. Regarding the HSA,
the default settings are as follows: confidence level α = 0.7; prediction horizon H = 10,
number of scenarios Γ = 12; the largest number of services in a path L = 7, the maximum
number of feasible matches for each request Nmatch = 300.

6.6.1 A small network
We first consider a small network G1 to test the impact of different objective functions
and different policies in global synchromodal transport. The topology of network G1 is
shown in Figure 6.5. It consists of two terminals in Europe and three terminals in Asia that
are connected by Suez Canal Route (SCR), Northern Sea Route (NSR), and Eurasia Land
Bridge (ELB). Compared with the SCR, the NSR has a shorter travel time but a higher travel
cost caused by ice-breaking fees [53]. With the implementation of IMO 2020 regulations,
shipping liner companies are required to use low-sulfur fuels on the sea, which in turn
increases about 60% of travel costs in the SCR and the NSR [52]. As an alternative, the ELB
becomes more and more competitive thanks to its shortest travel time. However, without
subsidies from governments, the ELB is still the most expensive route.

We design 18 services for network G1: 8 in Asia, 6 in Europe and 4 connecting Asia and
Europe as presented in Table 6.1. The travel costs are designed under the consideration of
ice-breaking fees in the NSR, IMO 2020 regulations in the SCR and the NSR, and without
subsidies from governments. We consider 6 contractual requests received by the system
before the planning horizon. The detailed request data is shown in Table 6.2. Compared
with reefer shipments (requests 1, 3, 5), dry shipments (requests 2, 4, 6) have longer lead
times, lower freight rates, and lower delay costs. We use G1− n1 − n2 to represent an
instance under network G1 with n1 contractual requests and n2 spot requests.

Effects of objective functions and policies

The effects of objective functions and policies are tested under instance G1-6-0 without spot
requests and travel time uncertainties, i.e., µs = ts,σs = 0, ∀s ∈ S, Rt = /0, ∀t ∈ {1, ...,T}.
Therefore, we set α = 0.5, H = 0, Γ = 0.

The results generated under different objective functions are shown in Table 6.3. Com-
paring case 6 with cases 1 to 5, the total profit is the highest. It means that considering
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Figure 6.5: The topology of global synchromodal network G1.

Table 6.1: Service data of network G1.

Service.
ID

Mode Origin Destination Total
capacity
(TEU)

Reefer
slots
(TEU)

Departure
time

Arrival
time

Travel
time
(h)

Travel
cost
(e)

Carbon
emissions-
dry (kg)

Carbon
emissions-
reefer (kg)

Preceding
service

Succeeding
service

1 barge Chongqing Wuhan 160 50 144 235 91 192 313 940 2
2 barge Wuhan Shanghai 160 50 243 328 85 178 291 874 1
3 barge Shanghai Wuhan 160 50 144 229 85 178 291 874 4
4 barge Wuhan Chongqing 160 50 237 328 91 192 313 940 3
5 train Chongqing Shanghai 90 30 144 181 37 269 526 1578
6 train Shanghai Chongqing 90 30 144 181 37 269 526 1578
7 truck Shanghai Chongqing 200 60 22 1823 1489 4466
8 truck Chongqing Shanghai 200 60 22 1823 1489 4466
9 barge Rotterdam Duisburg 160 30 1010 1027 17 35 57 170
10 barge Duisburg Rotterdam 160 30 750 767 17 35 57 170
11 train Rotterdam Duisburg 90 30 910 917 7 48 92 276
12 train Duisburg Rotterdam 90 30 750 757 7 48 92 276
13 truck Rotterdam Duisburg 200 60 3 334 219 658
14 truck Duisburg Rotterdam 200 60 3 334 219 658
15 ship Shanghai Rotterdam 200 50 350 988 638 1441 2161 6483
16 ship Shanghai Rotterdam 200 50 350 900 550 2240 1631 4894
17 train Chongqing Duisburg 90 30 350 723 373 2007 3517 10551
18 ship Shanghai Rotterdam 200 50 518 1156 638 1441 2161 6483

Table 6.2: Request data of instance G1-6-0.

Requests Container
type

Origin Destination Container
volume (TEU)

Announce
time

Release
time

Lead time
(h)

Freight rate
(e/TEU)

Delay cost
(e/TEU-h)

1 reefer Shanghai Rotterdam 5 0 100 720 4000 20
2 dry Shanghai Rotterdam 5 0 100 840 3500 17.5
3 reefer Wuhan Rotterdam 5 0 100 600 4500 22.5
4 dry Wuhan Rotterdam 5 0 100 960 3000 15
5 reefer Chongqing Duisburg 5 0 100 480 5000 25
6 dry Chongqing Duisburg 5 0 100 1080 2500 12.5

the trade-off among logistics costs, delays, and emissions is very important. While cases 1
to 6 are designed to minimize different costs, case 7 aims to maximize the total profit that
consists of revenue and total costs. Compared with cases 1 to 6, the total profit is significant
higher under case 7. Comparing case 6 and case 7 shows that it may be necessary to reject
the requests that are not profitable.
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Table 6.3: Impact of different objective functions under instance G1-6-0.

Cases Objective
function

Total
profits

Revenue Travel
costs

Transfer
costs

Storage
costs

Delay
costs

Carbon
tax

Number of
rejections

Delay
(TEU-h)

Emission
(kg)

1 Travel costs -67978 112500 48061 2040 6914 113163 10300 0 4945 147146
2 Transfer

costs
-34695 112500 50677 1320 8890 74925 11383 0 3416 162611

3 Storage
costs

-47333 112500 59413 2400 4814 81063 12144 0 3482 173483

4 Delay costs 1590 112500 63648 1560 9317 21439 14947 0 873 213529
5 Carbon tax -67375 112500 72030 2040 8367 89363 8076 0 3773 115366
6 Total costs 4946 112500 63282 2100 5983 21439 14750 0 873 210711
7 Total profits 13107 87500 53249 1980 4743 3364 11057 1 150 157957
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Figure 6.6: The itineraries of requests under different policies.

To investigate the impact of different policies on acceptance and matching decisions,
we design three other scenarios in comparison to benchmark case 7: (i) with subsidies in
the ELB, where the travel cost of service 17 reduces by 50%; (ii) without ice-breaking fee
in the NSR, where the travel cost of service 16 reduces by 1152.24 e; (iii) without IMO
2020 regulations that reduces the costs of services 15, 16, 18 by 60%. Figure 6.6 shows that
the itineraries of requests are quite sensitive to different policies. Global decision makers
need to consider these policies in the light of the potential impacts on the usage of different
transport alternatives and on the generation of logistics costs, delays, and carbon emissions.
Under the benchmark case, request 5 is rejected; requests 1 and 3 with reefer shipments are
assigned to the ELB; requests 2, 4, 6 with dry shipments are assigned to the SCR and the
NSR. With 50% subsidies in the ELB, requests 2, 4 and 6 switch from the SCR and NSR to
the ELB; without ice-breaking fee in the NSR, requests 4 and 6 switch from the SCR to the
NSR; without the IMO 2020 regulations, request 1 switches from the ELB to the NSR.
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Table 6.4: The realization of travel times.

Service. ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Actual travel time 98 99 89 101 40 36 23 21 18 15 7 7 3 4 631 537 384 657
Actual departure time 144 250 144 241 144 144 1010 750 910 750 350 350 350 518
Actual arrival time 242 349 233 342 184 180 1028 765 917 757 981 887 734 1175

(a) Deterministic solutions (Planned profits=13107; actual profits=-438)
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Figure 6.7: Comparison of deterministic, stochastic and robust solutions.

Comparing deterministic, stochastic, and robust approaches

To investigate the differences between solutions generated by the HSA (i.e., α = 0.7), the
DA (i.e., α = 0.5), and the RA (i.e., α = 1), we use instance G1-6-0 with the realization
of travel time uncertainties, as shown in Table 6.4. Under this realization, barge service 2
is delayed, the transfers between barge service 2 and ship service 15 and 16 are therefore
becoming infeasible. Due to travel time uncertainty, the planned profits obtained before the
actual travel time realization are different from the actual profits. Figure 6.7 shows that the
deterministic solutions have the highest planned profits but have the lowest actual profits
due to infeasible transshipments at Shanghai Port for requests 4 and 6. In comparison, the
stochastic solutions have the highest actual profits by rejecting requests 4 and 6 and choos-
ing a train service instead of barge services for request 1. Compared with the deterministic
solutions and the stochastic solutions, the robust solutions are the most conservative solu-
tions with the highest number of rejections and without infeasible transshipments.

6.6.2 A realistic network

In this section, we test the behavior of the methodologies under a realistic network G2 with
8 terminals and 106 services. The topology of network G2 is shown in Figure 6.8. We
generate several instances to represent different characteristics of requests under network
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Figure 6.8: The topology of global synchromodal network G2.

Table 6.5: Probability distributions of spot requests.

Parameters Value Probability
Container type {dry,reefer} {0.9,0.1}
Origin {Shanghai,Zhengzhou,Wuhan,Chongqing} Uniform distribution
Destination {Rotterdam,Duisburg,Neuss,Dortmund} Uniform distribution
Container volume {1,2,...,9} Uniform distribution
∆T 1 {0,1,2,...} Poisson distribution with mean 24 minutes
Announce time Tannounce

r+1 = Tannounce
r +∆T 1

∆T 2 {1,2,...,24} Uniform distribution
Release time Trelease

r = dTannounce
r e+∆T 2

Lead time {480,600,720,840,960,1080}
{0.15,0.15,0.2,0.2,0.15,0.15}Freight rate {5000,4500,4000,3500,3000,2500}

Delay cost {25,22.5,20,17.5,15,12.5}

G2. The probability distributions of spot requests are shown in Table 6.5. We use G2−
n1−n2 to represent an instance under network G2 with n1 contractual requests and n2 spot
requests. The service and request data used in this chapter is available at http://doi.org/10.
4121/uuid:512169a0-5a69-43a9-a85b-105dd351cc74.

Performance of the CCP for travel time uncertainties

In this section, we aim to investigate the performance of the CCP in addressing travel time
uncertainties. The CCP is worked together with the RHF and the P-HA to generate solutions
at each decision epoch without the consideration of stochastic information on spot requests,
namely, Γ = 0, H = 0. The performance of the CCP is tested under the impact of different
confidence levels, delay costs, and travel time deviations.

To investigate the impact of different confidence levels, we use instance G2-150-150
under 20 realizations of travel times. The realizations of travel times are generated based
on Monte Carlo Simulation by sampling their probability distributions with a fixed lower

http://doi.org/10.4121/uuid:512169a0-5a69-43a9-a85b-105dd351cc74
http://doi.org/10.4121/uuid:512169a0-5a69-43a9-a85b-105dd351cc74
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Figure 6.9: The impact of different confidence levels on instance G2-150-150.

bound of 0.9 ∗ ts for s ∈ S. Figure 6.9 shows that with the same confidence level, different
solutions are generated under different realizations of travel times. From Figure 6.9(a), we
can see that on average, the CCP has the best performance in total profits when α = 0.7 and
the worst when α = 1. Figure 6.9(b) shows that in general, the higher the confidence level,
the lower the delays in deliveries. Figure 6.9(c) shows that the higher the confidence level,
the lower the number of infeasible transshipments. When α = 1, the solutions are robust
without infeasible transshipments under all the realizations. Figure 6.9(d) shows that the
higher the confidence level, the higher the number of rejections.

To understand the differences in online decision processes under different confidence
levels, we analyze the solutions generated under travel time realization 14. We denote ‘CPP’
as cumulated planned profits, and ‘CAP’ as the cumulated actual profits. Figure 6.10 shows
that the higher the confidence level, the lower the cumulated planned profits. The reason is
that with a higher confidence level, the system will choose ‘suboptimal’ decisions that have
lower probabilities of infeasible transshipments. After the realization of actual travel times
over the planning horizon, the total actual profits are higher than the total planned profits
with confidence level 0.9 and 1 (which are very conservative), but lower than the planned
profits with confidence level 0.5 and 0.7 (which take risks of infeasible transshipments). In
comparison, the total actual profit is the highest with confidence level 0.9.

To investigate the influence of confidence level on instances with different degrees of
dynamism (DODs), we design the following four instances: G2-225-75, G2-150-150, G2-
75-225, G2-0-300. We define DOD as the ratio between the number of spot requests and the
number of total requests. We use confidence level 0.5 as the benchmark and denote ‘gaps’
as the gaps in total actual profits, i.e., gaps= Total profits(α)−Total profits(0.5)

Total profits(0.5) . Besides, we present
the average results generated under 20 realizations of travel times. Table 6.6 shows that for
all the instances, the CCP has the best performance in total profits with confidence level 0.7.
The robust solutions (with confidence level 1) were worse than the deterministic solutions
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Figure 6.10: Online decision processes with different confidence levels.

Table 6.6: Impact of different confidence level on instances with different DOD.

Instances Degree of
dynamism

Confidence
level

Total profits
(e)

Infeasible
transshipments

Rejections CPU
(seconds)

Gaps (%)

G2-225-75 25%

0.50 1443321 75 4 0.22 0.00
0.70 1469731 45 9 0.18 1.83
0.90 1334829 9 25 0.13 -7.52
1.00 784627 0 59 0.10 -45.64

G2-150-150 50%

0.50 1334025 72 6 0.43 0.00
0.70 1413988 44 11 0.39 5.99
0.90 1253208 8 28 0.32 -6.06
1.00 763565 0 88 0.24 -42.76

G2-75-225 75%

0.50 1328131 77 6 0.69 0.00
0.70 1364769 50 12 0.62 2.76
0.90 1247088 8 31 0.50 -6.10
1.00 861556 0 90 0.41 -35.13

G2-0-300 100%

0.50 1256014 75 20 0.96 0.00
0.70 1276508 52 25 0.86 1.63
0.90 1263179 10 33 0.75 0.57
1.00 848616 0 108 0.58 -32.44

(with confidence level 0.5) in all the instances. With confidence level 0.7, the CCP has the
largest improvements in total profits under instance G2-150-150 with 50% DOD. It is also
interesting to see that for all the instances, the higher the confidence level, the lower the
number of infeasible transshipments and the higher the number of rejections. Furthermore,
the computational complexity decreases with the increasing confidence level.

To test the impact of different delay costs and standard deviations of travel times, we set
α = 0.7 and use average results generated based on 20 realizations of actual travel times.
Let ‘gaps’ be the gaps in total profits between the CCP and the DA (α = 0.5). Table 6.7
shows that increasing the delay cost coefficients, the total profits, delays, and the number of
infeasible transshipments will decrease and the number of rejections will increase in all the
instances. Besides, the performance of the CCP becomes better in improving total profits
with higher delay cost coefficients under all the instances. Interestingly, it is observed that
with different delay cost coefficients, the CCP has the best performance under instances
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Table 6.7: Impact of different delay costs.

Instances Delay cost coefficients
(*benchmark value)

Total profits
(e)

Infeasible
transshipments

Rejections Delay
(TEU-h)

Gaps
(%)

G2-225-75
0.5 1600755 52 5 24648 0.17
1.0 1469731 45 9 14013 1.83
2.0 1251323 42 15 9324 9.52

G2-150-150
0.5 1549203 48 6 29518 1.25
1.0 1413988 44 11 15673 5.99
2.0 1173366 44 13 11243 7.36

G2-75-225
0.5 1541888 53 9 25822 1.32
1.0 1364769 50 12 16247 2.76
2.0 1141062 48 16 11687 5.38

G2-0-300
0.5 1512624 53 13 27338 -1.25
1.0 1276508 52 25 15388 1.63
2.0 1053527 51 31 11254 4.49

Table 6.8: Impact of different standard deviations.

Instances Standard deviation coefficients
(*benchmark value)

Total profits
(e)

Infeasible
transshipments

Rejections Delay
(TEU-h)

Gaps
(%)

G2-225-75
1.0 1469731 45 9 14013 1.83
1.5 1348739 25 19 13834 17.80
2.0 895563 39 26 30761 26.96

G2-150-150
1.0 1413988 44 11 15673 5.99
1.5 1262171 25 21 16735 19.89
2.0 866506 35 28 31336 42.04

G2-75-225
1.0 1364769 50 12 16247 2.76
1.5 1253172 27 25 16953 26.65
2.0 866958 35 33 30925 67.85

G2-0-300
1.0 1276508 52 25 15388 1.63
1.5 1220973 27 30 17437 28.61
2.0 852891 34 37 31538 60.61

with different DODs. On the other hand, Table 6.8 shows that travel time deviations have
a large impact on the performance of the CCP in increasing total profits. The larger the
standard deviation, the better the performance of the CCP in comparison to the DA. This is
reasonable since with higher standard deviations, the variability in travel times is very high
and the estimations are not as accurate. In comparison, instance G2-75-225 has the best
performance in improving the total profits that achieves 67.85% with standard deviations
σs = 0.2∗ ts for s ∈ S\Struck and σs = ts for s ∈ Struck.

Performance of the SAA for spot request uncertainties

In this section, we aim to investigate the performance of the SAA in addressing spot request
uncertainties. The SAA is also worked together with the RHF and the P-HA without the
consideration of stochastic information about travel times, namely, α = 0.5. The perfor-
mance of the SAA is tested under the impact of different numbers of scenarios and lengths
of the prediction horizon. We use the DA (Γ = 0, H = 0) as the benchmark. Let ‘gaps
in total profits’= Total profits(Γ,H)−Total profits(0,0)

Total profits(0,0) . The total profits are the average total profits
generated under 20 realizations of travel times. In case of sample requests instability, we
replicate the optimization process 10 times for all instances. Figure 6.11(a) shows that under
instance G2-150-150, the performance of the SAA in total profits increases as the number
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(a) G2-150-150 (b) Scenarios=10; prediction horizon=12

Figure 6.11: Performance of the sample average approximation method.

of scenarios and the length of the prediction horizon grow up. We set Γ = 10, H = 12.
Figure 6.11(b) shows that the SAA outperforms the DA in all the instances, and the gap
between the SAA and the DA grows with the increasing DOD.

Performance of the HSA for travel time and spot request uncertainties

To investigate the benefits of incorporating the stochastic information of both travel times
and spot requests, we use the HSA which consists of the CCP and SAA together with the
RHF and P-HA. We set α = 0.7, Γ = 10, H = 12 for the HSA and use the DA (α = 0.5,
Γ = 0, H = 0), the CCP (α = 0.7, Γ = 0, H = 0), and the SAA (α = 0.5, Γ = 10, H = 12)
as the benchmarks. We generate the average results under 20 realizations of travel times
and 10 samples of spot requests. Table 6.9 shows that the HSA has better performance in
total profits than the DA in all the instances and than the CCP and SAA in instances with
higher DODs. Furthermore, the number of rejections increases with the increasing DOD
and achieves the highest under instance G2-0-300 which has no contractual requests. This
is reasonable since the system cannot reject contractual requests. Moreover, we observe
that the HSA has the best performance in instance G2-0-300 which has a 100% DOD as
stochastic information pays off when it is highly dynamic. It is also interesting to note that
incorporating the stochastic information of spot requests, the number of rejections increases
in all the instances except in instance G2-0-300. We define ‘gaps in cumulated profits’ as the
gaps between the cumulated profits under the DA and SAA. Figure 6.12 shows that under
the SAA, the system might reject current requests to reserve capacities for sample requests
that are predicted to be more profitable. The higher the DOD, the larger the number of
cumulated rejections and therefore the larger the free capacity at later stages. We observe
that in instance G2-0-300, under the SAA, the system has more capacity to accept requests
that arrive later thanks to the large number of cumulated rejections in earlier stages. Be-
sides, Table 6.9 shows that increasing the confidence level, the computational complexity
will decrease thanks to the chance constraints. However, increasing the number of scenar-
ios and the length of the prediction horizon, the computational complexity will increase
dramatically caused by the increasing size of sample requests.
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Table 6.9: Performance of the hybrid stochastic approach.

Instances α Γ H Total profits
(e)

Infeasible
transshipments

Rejections Delay
(TEU-h)

Emission
(kg)

CPU
(seconds)

Gaps
(%)

G2-225-75

0.5 0 0 1443321 75 4 18026 5768862 0.22 0.00
0.7 0 0 1469731 45 9 14013 5717070 0.18 1.83
0.5 10 12 1476023 71 6 16824 5680165 43.22 2.27
0.7 10 12 1459075 44 14 13531 5632343 38.24 1.09

G2-150-150

0.5 0 0 1334025 72 6 21049 5742178 0.43 0.00
0.7 0 0 1413988 44 11 15673 5637143 0.39 5.99
0.5 10 12 1369395 69 11 19679 5582664 86.58 2.65
0.7 10 12 1424060 43 15 14572 5558380 77.78 6.75

G2-75-225

0.5 0 0 1328131 77 6 21277 5681453 0.69 0.00
0.7 0 0 1364769 50 12 16247 5596631 0.62 2.76
0.5 10 12 1385221 70 12 19842 5527160 334.68 4.30
0.7 10 12 1414896 46 15 15192 5536685 175.26 6.53

G2-0-300

0.5 0 0 1256014 75 20 19734 5408196 0.96 0.00
0.7 0 0 1276508 52 25 15388 5222779 0.86 1.63
0.5 10 12 1391737 70 14 19599 5455597 454.64 10.81
0.7 10 12 1428613 47 16 15018 5486612 186.35 13.74
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Figure 6.12: Differences in matching processes between instances with different DODs.

Performance of the P-HA

The P-HA is based on preprocessing procedures which may lead to suboptimal solutions.
To test the computational performance and solution quality of the P-HA, we use an exact
approach as the benchmark in which optimization model P2 is solved by CPLEX directly.
We denote ‘N.var’ as the number of variables, ‘N.con’ as the number of constraints, ‘Obj’ as
the total profits, and ‘CPU’ as the computation time in seconds. Let α = 0.5, Γ = 0, H = 0.
Table 6.10 shows that the exact approach can only solve the first three small instances within
24 hours. Increasing the largest number of services in a path to 7 and the maximum number
of feasible matches to 300, the P-HA can get optimal solutions for these instances within
183.14 seconds. Under the same setting, the P-HA can generate feasible solutions within
15 minutes for large instances. By using the P-HA, the system has the flexibility to choose
proper L and Nmatch values to achieve the trade-off between computational complexity and
solution quality.
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Table 6.10: Performance of the preprocessing-based heuristic algorithm.

Instances Exact approach P-HA (L=3, Nmatch=100) P-HA (L=7, Nmatch=300)
N.var N.con Obj CPU N.var N.con Obj CPU N.var N.con Obj CPU

G1-6-0 2268 6540 13107 40.44 58 42 12838 0.52 76 46 13107 0.29
G1-10-0 3780 10840 26114 181.36 95 48 25400 0.50 121 52 26114 0.29
G2-1-0 11466 35994 23127 7417.06 45 24 23127 1.23 297 53 23127 183.14
G2-5-0 57330 181852

above 24 hours

303 86 30672 1.22 1501 134 32738 192.64
G2-10-0 114660 362164 532 107 57805 1.30 2996 162 62090 219.75
G2-100-0 1146600 3612428 6581 333 501344 4.29 29576 391 545749 349.85
G2-200-0 2293200 7224988 12918 535 1255557 7.81 58895 592 1331016 503.60
G2-300-0 3439800 10846452 18891 735 1800835 16.33 88389 792 1889476 680.40
G2-400-0 4586400 14439116 26182 936 2195048 26.27 118197 991 2253709 894.98

6.7 Conclusions
This chapter answers research question RQ4 by investigating a dynamic and stochastic
shipment matching problem in global synchromodal transport. The problem is dynamic
since the global synchromodal matching platform receives real-time information on spot
requests and travel times. The problem is stochastic since the uncertainties in requests
and travel times are incorporated. We formulated a Markov decision process to model the
problem. Due to the curse of dimensionality, we developed a hybrid stochastic approach
(HSA) to solve the problem. The HSA uses a chance-constrained programming model to
address travel time uncertainty, a sample average approximation method to address spot
request uncertainty, and a preprocessing-based heuristic algorithm to generate solutions at
each decision epoch of a rolling horizon framework.

We conducted extensive experiments to validate the performance of the HSA in com-
parison to a deterministic approach (DA) in which decisions are made based on estimated
travel times and a robust approach (RA) in which decisions are made based on maximum
and minimum travel times. The experimental results indicate that the performance of the
HSA is highly affected by the settings of the confidence level, the number of scenarios, and
the length of the prediction horizon, and they need to be studied closely for the problem at
hand. In this chapter, the HSA outperforms the DA and RA under various scenarios of the
global synchromodal matching system.

This research can be extended in several promising directions. First, in this chapter, we
considered a centralized platform that provides integrated decisions for global shipments.
However, in practice, a large number of entities are involved in global container transport
and they may not all be willing to give authority to a centralized platform. The coordination
mechanism among them and incentives to stimulate cooperation are part of future research.
This is the subject of Chapter 7. Second, we assumed that the platform publishes fixed fare
classes for container bookings. Future research can consider dynamic pricing strategies for
online platforms to realize the balance between supply and demand.



Chapter 7

Dynamic, stochastic, and
coordinated global shipment
matching

In Chapter 6, a centralized platform is proposed to support global synchromodal transport
planning. However, in practice, multiple operators are present and they may not all be
willing to give authority to a centralized platform. This chapter investigates distributed
optimization approaches that stimulate cooperation among local operators under dynamic
and stochastic environments.

This chapter is structured as follows. Section 7.1 introduces the distributed nature of
global synchromodal transport systems. In Section 7.2, a detailed problem description is
provided. Section 7.3 presents the mathematical formulation of coordinated global syn-
chromodal shipment matching. In Section 7.4, three distributed optimization approaches are
developed to handle interconnecting constraints, followed by a heuristic algorithm design
in Section 7.5. Section 7.6 conducts numerical experiments to investigate the performance
of the proposed approaches. Finally, the conclusions are given in Section 7.7.

Parts of this chapter have been submitted to a journal: “W. Guo, B. Atasoy, W. Beelaerts
van Blokland, and R. R. Negenborn. Distributed approaches for coordinated global syn-
chromodal shipment matching with travel time uncertainty. Submitted to a journal, 2020.”

7.1 Introduction
Global synchromodal transportation, as discussed in Chapter 6, is the provision of efficient,
reliable, flexible, and sustainable services through integrated planning for all the shipments
involved in a global network under the control of a centralized platform [99]. However, in
practice, the operators of a global synchromodal transport system are often geographically
distributed, which makes it very difficult to apply a central controller to manage the whole
system [25]. For example, the hinterland transportation from Chongqing terminal to Shang-
hai Port is managed by China Railway Container Transport, the maritime transportation
from Shanghai port to Rotterdam port is organized by COSCO Shipping Lines, and the hin-
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Deep-sea ports Intercontinental rail terminals

Intercontinental transport network
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Figure 7.1: Topology of a distributed global transport network.

terland transportation from Rotterdam port to Duisburg terminal is controlled by European
Gateway Services. These local operators typically operate in different but interconnected
service areas, as shown in Figure 7.1.

If players are not willing to give authority to a central controller, distributed approaches
are needed to stimulate the cooperation among local operators [65]. Under such approaches,
local operators have independent planning authority in their service networks and cooperate
to achieve a common goal, such as increasing total profits, reducing the number of infea-
sible transshipments at export/import terminals, reducing delays in deliveries at destination
terminals. Therefore, they operate under local constraints as well as under those imposed by
the interconnection among local operators [25]. Thanks to the development of information
and communication technologies and intelligent transport systems, local operators can not
only make online decisions but also exchange information in real-time [50].

In this chapter, we investigate a coordinated global synchromodal shipment matching
problem in which a platform owned by a global operator receives real-time shipment re-
quests from shippers and exchanges relevant information with local operators, as shown
in Figure 7.2. Under such a platform, the global operator acts as an intermediary between
shippers and local operators, to connect transport demand and supply without having di-
rect control over these entities. Specifically, the global operator sends relative information
of shipment requests to local operators and leaves the matching decisions with transport
services to local operators. To stimulate local operators choosing the ‘optimal’ matching
decisions that benefit the common goal, distributed approaches that handle interconnect-
ing constraints need to be designed. After achieving consistency in matching decisions,
the global operator combines the matched services into itineraries to provide an integrated
transport plan for each shipment request. The coordination goal is hereby to maximize the
total profits for accepting and matching shipment requests. The profit gain as a result of the
collaboration needs to be shared among all the stakeholders to guarantee a win-win situation
and fairness [28]. This chapter focuses on the cooperative transport planning problem and
leaves the profit sharing mechanism design to future research.
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Figure 7.2: Business model of coordinated global synchromodal shipment matching.

Although distributed approaches have been applied in many fields, such as Power distri-
bution networks [66], railway traffic management [44], vehicle platoons [116], intermodal
freight transport chains [25], and hinterland synchromodal container flow control [50], it
is still challenging for global synchromodal shipment matching which has different inter-
connecting constraints from above studies. In the literature, the work of Li et al. [50] is
the most similar to this chapter. Li et al. [50] investigated a coordinated model predictive
container flow control problem among multiple hinterland operators in different but inter-
connected service areas. These operators coordinate to reach an agreement on the volumes
of container flows that each operator will hand over to other operators. Different from the
work of Li et al. [50], this chapter focuses on shipment requests that have specific time win-
dows instead of container flows. Therefore, the interconnecting constraints include not only
spatial compatibility but also time compatibility at export/import terminals. Furthermore,
most of the distributed studies assume all the input information are deterministic without
uncertainties. However, in global synchromodal transportation, travel time uncertainty is
quite common resulting from weather conditions and traffic congestion [18]. As discussed
in Chapter 6, ignoring travel time uncertainty in global synchromodal shipment matching
might result in suboptimal or even infeasible solutions. To the best of our knowledge, none
of the existing studies in the literature investigated dynamic, stochastic, and coordinated
synchromodal transport planning problems.

The contributions of this chapter are given as follows: (i) we introduce a dynamic,
stochastic, and coordinated global shipment matching problem; (ii) we develop mathemat-
ical models and interconnecting constraints to describe the problem; (iii) we develop three
distributed approaches combined with a rolling horizon approach and a chance-constrained
programming approach to support dynamic and stochastic coordination among local oper-
ators; (iv) we design a heuristic algorithm to generate timely solutions at each iteration;
(v) we evaluate the performance of the proposed approaches under a comprehensive set of
experiments.
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7.2 Problem description

We consider a coordinated global synchromodal shipment matching problem in which a
global operator and three local operators cooperate to make acceptance and matching deci-
sions for shipment requests. These operators play as agents that can make online decisions
and exchange information in real-time. Each operator employs a rolling horizon framework
[37] to handle real-time shipment requests. The global operator receives requests from
shippers and makes acceptance or rejection decisions for each request. Each local operator
receives part or all of the information of requests from the global operator and receives trans-
port services from local carriers. Based on the local constraints (i.e., capacity limitation,
time-spatial compatibility at transshipment terminals) and the interconnecting constraints
(i.e., time-spatial compatibility at export/import terminals), local operators make matching
decisions at each decision epoch. After achieving consistency in matching decisions, each
local operator books capacity on matched services from local carriers. The global operator
combines the matched services into itineraries for each accepted shipment request.

Let O= {1,2,3} be the set of local operators. Operator 1 is the hinterland operator in the
export continent, operator 2 is the intercontinental operator, and operator 3 is the hinterland
operator in the import continent.

Let N = N1 ∪N2 ∪N3 be the set of terminals. Here, N1 is associated with the export
hinterland network that belongs to operator 1; N2 corresponds to the intercontinental trans-
port network; N3 is the set of terminals in the import hinterland network that belongs to
operator 3. Let Nexp be the set of export terminals, Nexp = N1 ∩N2; let Nimp be the set
of import terminals, Nimp = N2 ∩N3. Let ltm

i be the loading/unloading time with mode
m∈M = {ship, barge, train, truck} at terminal i∈N. We make a common assumption that
the loading/unloading and storage capacity at terminals are unlimited [18].

Let S= S1∪S2∪S3 be the set of transport services. Here, So is the set of services belongs
to operator o. Each service s ∈ So is characterized by its mode MTs ∈M, origin terminal os,
destination terminal ds, free capacity U t

s at decision epoch t, scheduled departure time T Ds,
scheduled arrival time TAs, estimated travel time ts, and travel cost cs. Let t̄s, T̄ Ds and T̄ As
be the actual travel, departure and arrival time of service s which are unknown before their
realization. We consider ship, barge and train services as line services, namely, different
services with the same mode might be operated by the same vehicle. We define lsq equals
to 0 if service s is the preceding service of service q, otherwise equals to 1. We consider
each truck service as a fleet of trucks that have flexible departure times. We define T Drs as
a variable that indicates the departure time of service s ∈ Struck with shipment r ∈ R. Same
as Chapter 6, we assume the travel times [t̃s]∀s∈S are continuous random variables following
normal distributions t̃s ∼N(µs,σ

2
s ). Here, µs is the mean travel time between terminal os and

terminal ds, and σs is the corresponding standard deviation. The departure time of service
s ∈ S\Struck follows normal distribution T̃ Ds ∼ N(µ+s ,σ

+
s

2
). The arrival time of service

s ∈ S\Struck follows normal distribution T̃ As ∼ N(µ−s ,σ
−
s

2
).

Let R be the set of shipment requests. Each request r ∈ R is characterized by its origin
terminal or ∈ N, destination terminal dr ∈ N, container volume ur, announce time Tannounce

r
(i.e., the time when global operator receives the request), release time Trelease

r (i.e., the time
when the shipment is available for transport process), and fare class including freight rate
pr, lead time LDr, and delay cost cdelay

r . The due time of request r is represented as, Tdue
r =

Trelease
r +LDr. Let Rt = {r ∈ R|t− 1 < Tannounce

r ≤ t} be the set of new requests received



7.3 Coordinated global synchromodal shipment matching 121

during time interval (t−1, t]; let R̄t be the set of accepted requests that need reoptimization
at decision epoch t due to infeasible transshipments caused by travel time variations.

While the objective of the global operator is to maximize revenues by accepting requests,
the objectives of local operators are to minimize total costs for matching requests with
services. The coordinated common goal is to maximize the total profits that include total
revenues and total costs.

7.3 Coordinated global synchromodal shipment matching
Same as Chapter 6, we use chance constraints to deal with travel time uncertainties. In
this section, we first present the formulations for the global operator and local operators.
After that, we discuss the interconnecting constraints among multiple operators. Finally, we
present the common goal of coordinated synchromodal global shipment matching.

7.3.1 Mathematical model for the global operator
Let yt

r be the binary variable which equals to 1 if new request r ∈ Rt is accepted at decision
epoch t, 0 otherwise. The objective of the global operator is to maximize total revenues
received from shippers through acceptance decisions, presented as follows:

P0-0 max
yt ∑

r∈Rt
pruryt

r (7.1)

7.3.2 Mathematical model for operator o

Let xt
rs be the binary variable which is 1 if request r ∈ Rt ∪ R̄t is matched with service s ∈ S.

Let To
r be the delay of request r at its destination terminal dr ∈ No. Let t−ri and t+ri be the

arrival and departure time of request r at terminal i ∈ Nexp ∪Nimp\{or,dr}. The objective
of each local operator is to minimize total costs which consists of transportation costs and
delay costs. The formulation for operator o is presented as follows:

P0-o min
xt ∑

r∈Rt∪R̄t
∑

s∈So
csxt

rsur + ∑
r∈Rt∪R̄t

cdelay
r To

r ur (7.2)

subject to

∑
s∈So−

i

xt
rs ≤ 1, ∀r ∈ Rt ∪ R̄t , i ∈ No\{or}, (7.3)

∑
s∈So+

i

xt
rs ≤ 1, ∀r ∈ Rt ∪ R̄t , i ∈ No\{dr}, (7.4)

∑
s∈So−

or

xt
rs ≤ 0, ∀r ∈ Rt ∪ R̄t , (7.5)

∑
s∈So+

dr

xt
rs ≤ 0, ∀r ∈ Rt ∪ R̄t , (7.6)

∑
s∈So+

i

xt
rs = ∑

s∈So−
i

xt
rs, ∀r ∈ Rt ∪ R̄t , i ∈ No\{{or},{dr},Nexp,Nimp}, (7.7)
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∑
r∈Rt∪R̄t

xt
rsur ≤U t

s , ∀s ∈ So, (7.8)

Trelease
r + ltMTs

or ≤ T Drs +M(1− xt
rs), ∀r ∈ Rt ∪ R̄t ,s ∈ So+truck

or , (7.9)

P{Trelease
r + ltMTs

or ≤ T̃ Ds +M(1− xt
rs)} ≥ α, ∀r ∈ Rt ∪ R̄t ,s ∈ So+

or \S
o+truck
or , (7.10)

P{T̃ As + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−
i \S

o−truck
i ,q ∈ So+

i \S
o+truck
i , lsq = 1,

(7.11)

P{T Drs + t̃s + ltMTs
i + ltMTq

i ≤ T̃ Dq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−truck
i ,q ∈ So+

i \S
o+truck
i ,

(7.12)

P{T̃ As + ltMTs
i + ltMTq

i ≤ T Drq +M(1− xt
rs)+M(1− xt

rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−
i \S

o−truck
i ,q ∈ So+truck

i ,
(7.13)

P{T Drs + t̃s + ltMTs
i ≤ T Drq +M(1− xt

rs)+M(1− xt
rq)} ≥ α,

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−truck
i ,q ∈ So+truck

i ,
(7.14)

To
r ≥ T̃ As + ltMTs

dr
−Tdue

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ Sk−

dr
\Sk−truck

dr
, (7.15)

To
r ≥ T Drs + ts + ltMTs

dr
−Tdue

r +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,s ∈ Sk−truck

dr
, (7.16)

t−ri ≥ µ−s +φ
−1(α)σ−s + ltMTs

i +M(xt
rs−1), ∀r ∈ Rt ∪ R̄t ,

i ∈ Nexp∪Nimp\{or,dr},s ∈ So−
i \S

o−truck
i ,

(7.17)

t−ri ≥ T Drs +µs +φ
−1(α)σs + ltMTs

i +M(xt
rs−1),∀r ∈ Rt ∪ R̄t ,

i ∈ Nexp∪Nimp\{or,dr},s ∈ So−truck
i ,

(7.18)

t+ri ≤ µ+q −φ
−1(α)σ+

q − ltMTq
i +M(1− xt

rq), ∀r ∈ Rt ∪ R̄t ,

i ∈ Nexp∪Nimp\{or,dr},q ∈ So+
i \S

o+truck
i ,

(7.19)

t+ti ≤ T Drq− ltMTq
i +M(1− xt

rq), ∀r ∈ Rt ∪ R̄t , i ∈ Nexp∪Nimp\{or,dr},

q ∈ So+truck
i .

(7.20)

Constraints (7.3-7.6) eliminate subtours. Constraints (7.7) ensure flow conservation at
transshipment terminals. Constraints (7.8) represent capacity limitations. Constraints (7.9-
7.14) ensure that the probability of feasible transshipments at terminals will be higher than
confidence level α. Constraints (7.15-7.16) calculate delay in deliveries of request r at
destination terminal. Constraints (7.17-7.18) calculate the arrival time at export and import
terminals. Constraints (7.19-7.20) calculate the depart time at export and import terminals.

The linearization of probability constraints (7.10-7.14) are presented as follows:

Trelease
r + ltMTs

or +M(xt
rs−1)−µ+s

σ
+
s

≤ φ
−1(1−α),∀r ∈ Rt ∪ R̄t ,s ∈ So+

or \S
o+truck
or , (7.21)

ltMTs
i + ltMTq

i +M(xt
rs−1)+M(xt

rq−1)− (µ+q −µ−s )√
(σ+

q )2 +(σ−s )2
≤ φ

−1(1−α),

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−
i \S

o−truck
i ,q ∈ So+

i \S
o+truck
i , lsq = 1

(7.22)
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T Drs + ltMTs
i + ltMTq

i +M(xt
rs−1)+M(xt

rq−1)− (µ+q −µs)√
(σ+

q )2 +(σs)2
≤ φ

−1(1−α),

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−truck
i ,q ∈ So+

i \S
o+truck
i ,

(7.23)

T Drq− ltMTs
i − ltMTq

i +M(1− xt
rs)+M(1− xt

rq)−µ−s
σ
−
s

≥ φ
−1(α),

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−
i \S

o−truck
i ,q ∈ So+truck

i ,

(7.24)

T Drq−T Drs− ltMTs
i − ltMTq

i +M(1− xt
rs)+M(1− xt

rq)−µs

σs
≥ φ

−1(α),

∀r ∈ Rt ∪ R̄t , i ∈ No\{or,dr},s ∈ So−truck
i ,q ∈ So+truck

i .

(7.25)

where φ−1(α) is the inverse function of standardized normal distribution, φ−1(α)=−φ−1(1−
α), φ−1(0.5) = 0.

7.3.3 Interconnecting constraints

To ensure the feasibility of transport plan for each shipment, following interconnecting con-
straints must be met:

yt
r ≤ ∑

s∈S1+
or

xt
rs + ∑

s∈S2+
or

xt
rs + ∑

s∈S3+
or

xt
rs, ∀r ∈ Rt , (7.26)

yt
r ≤ ∑

s∈S1−
dr

xt
rs + ∑

s∈S2−
dr

xt
rs + ∑

s∈S3−
dr

xt
rs, ∀r ∈ Rt , (7.27)

∑
s∈S1+

or

xt
rs + ∑

s∈S2+
or

xt
rs + ∑

s∈S3+
or

xt
rs = 1, ∀r ∈ R̄t , (7.28)

∑
s∈S1−

dr

xt
rs + ∑

s∈S2−
dr

xt
rs + ∑

s∈S3−
dr

xt
rs = 1, ∀r ∈ R̄t , (7.29)

∑
s∈S1−

i

xt
rs + ∑

s∈S2−
i

xt
rs = ∑

s∈S1+
i

xt
rs + ∑

s∈S2+
i

xt
rs, ∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, (7.30)

∑
s∈S2−

i

xt
rs + ∑

s∈S3−
i

xt
rs = ∑

s∈S2+
i

xt
rs + ∑

s∈S3+
i

xt
rs, ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}, (7.31)

t−ri ≤ t+ri , ∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, (7.32)

t−ri ≤ t+ri , ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}. (7.33)

Constraints (7.26-7.27) ensure that new request r ∈ Rt will be accepted by global oper-
ator only if there have services depart from its origin terminal or and services arrive to its
destination terminal dr. Constraints (7.28-7.29) ensure that reoptimization request r ∈ R̄t

will be transported by one service departing from its origin terminal or and by one service
arriving to its destination terminal dr. Constraints (7.30-7.31) ensure flow conservation at
import and export terminal for request r ∈ Rt ∪ R̄t . Constraints (7.32)-(7.33) ensure the ar-
rival time at export and import terminals will be earlier than the departure time for each
request r ∈ Rt ∪ R̄t .
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7.3.4 Coordinated global synchromodal shipment matching

The coordinated common goal is to maximize total profits which consists of revenues re-
ceived from shippers, transport costs paid to carriers, and delay costs paid to shippers. The
formulation of coordinated global synchromodal shipment matching at decision epoch t is
presented as follows:

P0 Z0 = max
yt ,xt ∑

r∈Rt
pruryt

r− ∑
o∈{1,2,3}

(
∑

r∈Rt∪R̄t
∑

s∈So
csxt

rsur + ∑
r∈Rt∪R̄t

cdelay
r To

r ur

)
(7.34)

subject to local constraints (7.3-7.9,7.15-7.25) for o ∈ {1,2,3}, and interconnecting con-
straints (7.26-7.33).

Since matching decisions are made by local operators independently with local informa-
tion, model P0 cannot be solved directly. To ensure the decisions made by local operators
meet interconnecting constraints, distributed approaches are required.

7.4 Distributed approaches

We develop three distributed approaches: Lagrangian relaxation method (LR), Augmented
Lagrangian relaxation method (ALR), and alternating direction method of multipliers algo-
rithm (ADMM). The main idea of these distributed approaches is to relax interconnecting
constraints by bringing them into the objective function Z0 with associated Lagrangian
multipliers [65]. In this way, the original problem can be decomposed into four subprob-
lems that relate to each operator. At each iteration, the global operator creates acceptance
decisions based on the relaxed model and receives matching decisions from three local op-
erators. If the interconnecting constraints cannot be met, the Lagrangian multipliers will
be updated based on the proposed approaches. The process will be repeated until achiev-
ing a consistency on interconnecting constraints. The main difference among these three
distributed approaches is the way to relax the original problem.

7.4.1 Lagrangian relaxation method

The LR approach is a relaxation method which penalizes violations of interconnecting con-
straints using a Lagrange multiplier, which imposes a cost on violations [48]. These added
costs are used instead of the strict interconnecting constraints in the optimization. Specif-
ically, we introduce Lagrangian multipliers λ1r, λ2r, λ3r, λ4r, λ5ri, λ6ri, λ7ri, λ8ri to du-
alize interconnecting constraints (7.26), (7.27), (7.28), (7.29), (7.30), (7.31), (7.32), (7.33),
respectively. Here, λ1r, λ2r, λ7ri, λ8ri are positive values. The multipliers λ1r and λ3r
can be interpreted as the prices paid to local operators for departing shipments from origin
terminals. The multipliers λ2r and λ4r can be interpreted as the costs paid for delivering
shipments to destination terminals. The multipliers λ5ri and λ6ri play as the penalty costs
charged from local operators due to the violation of spatial compatibility at export/import
terminals. The multipliers λ7ri and λ8ri play as the penalty costs charged from local opera-
tors due to the violation of time compatibility at export/import terminals. The formulation
of the relaxed model is presented as follows:
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P1 Z1 =max
yt ,xt ∑

r∈Rt
pruryt
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xt
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λ6ri
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xt
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(7.35)

subject to Constraints (7.3-7.9,7.15-7.25) for o ∈ {1,2,3}.
Model P1 is easy to be decomposed into following four operator-based subproblems:

• LR-based model for global operator.

P1-0 max
yt ∑

r∈Rt
pruryt

r− ∑
r∈Rt

λ1ryt
r− ∑

r∈Rt
λ2ryt

r (7.36)

• LR-based model for operator 1.
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i∈Nexp\{or ,dr}
λ7rit−ri

(7.37)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 1.
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• LR-based model for operator 2.
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(7.38)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 2.

• LR-based model for operator 3.
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(7.39)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 3.

We assume (y∗,x∗) as the optimal solution of the original problem P0, (y∗∗,x∗∗) as the
optimal solution of dual problem P1. However, the optimal solution of the dual problem
might be infeasible to the original problem. Therefore, we transform the infeasible solution
to a feasible solution by setting yr = 0, [xrs] = [0] for request r, and define (y,x) as the
transformed feasible solution of the original problem. Based on the properties of Lagrangian
relaxation, we can get Z0(y,x) ≤ Z0(y∗,x∗) ≤ Z1(y∗,x∗) ≤ Z1(y∗∗,x∗∗). We define LB =
Z0(y,x) as the lower bound of the original problem, and define UB = Z1(y∗∗,x∗∗) as the
upper bound of the original problem. In convex problems, when UB = LB, the obtained
solution is the optimal solution to the original problem. Due to the existence of binary
variables, the original problem is not convex. Therefore, we can not prove the optimality
of the solution when UB = LB for the original problem. However, this solution will be the
best solution that we can find under the LR approach. Therefore, the objective of the LR is
to find the optimum Lagrangian multipliers that satisfy UB = LB.

Since the dual problem P1 is not differentiable everywhere due to the existence of bi-
nary variables, a standard subgradient method is used to update the Lagrangian multipliers,
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shown as follows:

λ1n+1
r = max{0,λ1n
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λ3n+1
r = λ3n

r +ρ3n
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xt
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λ5n+1
ri = λ5n

ri +ρ5n
r

 ∑
s∈S1−

i

xt
rs + ∑

s∈S2−
i

xt
rs− ∑

s∈S1+
i

xt
rs− ∑

s∈S2+
i

xt
rs

 ,

∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr},

(7.44)

λ6n+1
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i
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i
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 ,
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(7.45)

λ7n+1
ri = max{0.0001,λ7n

ri +ρ7n
ri(t
−
ri − t+ri )}, ∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, (7.46)

λ8n+1
ri = max{0.00015,λ8n

ri +ρ8n
ri(t
−
ri − t+ri )}, ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}, (7.47)

where the superscript n is the iteration index used in the dual updating process; ρn is the
step size at iteration n. To mitigate the issues of slow convergence, early stopping, and
possible traps in local optimality, the step size parameters are updated as following strategy:
ρn+1 = θ1 ∗ρn if λn+1 > λn; ρn+1 = θ2 ∗ρn if λn+1 < λn; θ1 > 1, 0 < θ2 < 1; ρmin is the
minimum value of ρ; ρmax is the maximum value. Regarding the minimum value of λ7ri
and λ8r j, the reason we give different positive values is to avoid the traps in generating
the same infeasible departure/arrival times at export/import terminals by model P1-2 when
s ∈ S2,xrs = 1, os = i, ds = j.

The solution framework of the LR approach is presented in Algorithm 7.1. At the mod-
ification step, in addition to the updating procedure of Lagrangian multipliers, we set lower
bounds of departure time of truck service s with shipment r and lower bounds of departure
time at export and import terminals. These lower bounds are updated based on infeasible
solutions received at the current iteration. In this way, time variables can avoid the infea-
sible loop that when the Lagrangian multiplier is a positive value, the minimum value is
always chosen as departure times; when the Lagrangian multiplier is a negative value, the
maximum value is always chosen as departure times.

7.4.2 Augmented Lagrangian relaxation method

In this section, we develop the ALR method to deal with interconnecting constraints (7.32)
and (7.33). The ALR method was first proposed by Hestenes [40] and Powell [69] to elimi-
nate the duality gap between the equality constrained problem and its Lagrangian dual prob-
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Algorithm 7.1 LR-based solution framework.

1: Initialization. Set iteration number n = 0; maximum iteration number Niteration; La-
grangian multipliers λn = [0]; positive parameters ρ0; assign small positive numbers
to θ1, θ2, ξ1, ξ2, a1, a2; lower bounds of departure times of service s ∈ S3+truck

[lbrs] = [0]; lower bound of departure time at export and import terminals [lbri] = [0];
number of infeasible transshipments [NInf] = [0];

2: Optimization. Solve P1-0 - P1-3 in parallel, and obtain solution [yt
r], [x

t
rs], [Tr], [t+ri ],

and [t−ri ] for the nth iteration.
3: Modification. Update the Lagrangian multiplier λn+1 based on equations (7.40-7.47);

update the lower bounds for departure time of truck services lbrs for r ∈ Rt ∪ R̄t ,s ∈
S3+truck

i : lbrs = t−ri + ltMTs
i ; for r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, if t+ri < t−ri , NInf

ri = NInf +1;
if NInf > a1, update lower bounds of departure time at export terminal: lbri = t+ri +1. If
t+ri < t−ri for r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}, NInf

ri = NInf +1; if NInf > a2, lbri = t+ri +1.
4: Calculation. Calculate lower bound LB: for r ∈ Rt ∪ R̄t , if yt

r, [x
t
rs] are infeasible solu-

tions, reject request r, yt
r ← 0, [xt

rs]← [0]; calculate upper bound UB: the Lagrangian
objective function.

5: Termination. Terminate if either of the following criteria is satisfied:

• |λn+1−λn| ≤ ξ1;

• |UB−LB|/UB≤ ξ2;

• n > Niteration.

6: n← n+1, and go to step (2).

lem. This method was later extended by Rockafellar [78] to deal with inequality constraints.
Similar to the LR approach, the ALR approach relaxes the interconnecting constraints by
adding a linear penalty term to the objective function Z0. The difference is that the ALR
approach adds an additional quadratic terms to mimic a Lagrangian multiplier [57]. We
use Q(yt ,xt ,λ1,λ2,λ3,λ4,λ5,λ6) to represent the relaxed objective function including in-
terconnecting constraints (7.26-7.31). The ALR-based model is defined as:

P2 Z2 =max
yt ,xt

Q(yt ,xt ,λ1,λ2,λ3,λ4,λ5,λ6)
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λ8ri∆tri− ∑
r∈Rt∪R̄t

∑
i∈Nimp\{or ,dr}

ρ8ri

2
∆t2

ri

(7.48)

where ∆tri = max{0, t−ri − t+ri }, ρ is a penalty parameter.
The quadratic term in the ALR formulation is non-separable which preventing us from

decomposing the dual problem to local operator-related subproblems. Therefore, we intro-
duce a parallel scheme to approximate it. The parallel scheme applies the auxiliary problem
principle to decouple the quadratic terms, as shown in model P2-0-P2-3:

• ALR-based model for global operator: P2-0 = P1-0.
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• ALR-based model for operator 1.
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(7.49)

subject to Constraints (7.3-7.9,7.15-7.25) for o= 1, where ∆t1ri =max{0, t−ri −t+(n−1)
ri }.

• ALR-based model for operator 2.
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(7.50)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 2, where ∆t21ri = max{0, t−(n−1)
ri −

t+ri }, ∆t22ri = max{0, t−ri − t+(n−1)
ri }.
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• ALR-based model for operator 3.
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(7.51)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 3, where ∆t3 = max{0, t−(n−1)
ri −

t+ri }.

To find the optimum Lagrangian multipliers, we apply the same subgradient method
to update Lagrangian multipliers λ1 to λ6, shown in equations (7.40-7.45). Lagrangian
multipliers λ7 and λ8 are iteratively updated by

λ7n+1
ri = λ7n

ri +ρ7n
ri∆tri,∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, (7.52)

λ8n+1
ri = λ8n

ri +ρ8n
ri∆tri, ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}, (7.53)

where ∆tri = max{0, t−ri − t+ri }.
The solution framework of the ALR approach is shown in Algorithm 7.2 The ALR

framework is similar to the LR framework, except the optimization model and Lagrangian
multipliers updating equations.

7.4.3 Alternating directing method of multipliers

In this section, we develop the ADMM method to handle interconnecting constraints (7.32)-
(7.33). The ADMM method is a variant of the ALR method that uses partial updates for the
dual variables [115]. The relaxed model is the same as the ALR model, namely P3 = P2.
Under the ADMM, operator-related problems are optimized in serial, as shown in model
P3-0-P3-3.

• ADMM-based model for global operator: P3-0 = P1-0
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Algorithm 7.2 ALR-based solution framework.

1: Initialization. Set iteration number n = 0; maximum iteration number Niteration; La-
grangian multipliers λn = [0]; positive parameters ρ0 and b0; assign small positive num-
bers to θ1, θ2, ξ1, ξ2, a1, a2; lower bounds of departure times of service s ∈ S3+truck

[lbrs] = [0]; lower bound of departure time at export and import terminals [lbri] = [0];
number of infeasible transshipment [NInf] = [0];

2: Optimization. Solve P2-0 - P2-3 in parallel, and obtain solution [yt
r], [x

t
rs], [Tr], [t+ri ],

and [t−ri ] for the nth iteration.
3: Modification. Update the Lagrangian multiplier λn+1 based on equations (7.40-7.45),

(7.52-7.53); update the lower bounds for departure time of truck services lbrs for r ∈
Rt ∪ R̄t ,s ∈ S3+truck

i : lbrs = t−ri + ltMTs
i ; for r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, if t+ri < t−ri ,

NInf
ri = NInf +1; if NInf > a1, update lower bounds of departure time at export terminal:

lbri = t+ri +1. If t+ri < t−ri for r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}, NInf
ri = NInf +1; if NInf > a2,

lbri = t+ri +1.
4: Calculation. Calculate lower bound LB: for r ∈ Rt ∪ R̄t , if yt

r, [x
t
rs] are infeasible solu-

tions, reject request r, yt
r ← 0, [xt

rs]← [0]; calculate upper bound UB: the Lagrangian
objective function.

5: Termination. Terminate if either of the following criteria is satisfied:

• |λn+1−λn| ≤ ξ1;

• |UB−LB|/UB≤ ξ2;

• n > Niteration.

6: n← n+1, and go to step (2).

• ADMM-based model for operator 1.
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(7.54)

subject to Constraints (7.3-7.9,7.15-7.25) for o= 1, where ∆t1ri =max{0, t−ri −t+(n−1)
ri }.
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• ADMM-based model for operator 2.
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(7.55)

subject to Constraints (7.3-7.9,7.15-7.25) for o = 2, where ∆t21ri = max{0, t−(n)ri −
t+ri }, ∆t22ri = max{0, t−ri − t+(n−1)

ri }.

• ADMM-based model for operator 3.
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(7.56)

subject to constraints (7.3-7.9,7.15-7.25) for o = 3, where ∆t3 = max{0, t−(n)ri − t+ri }.

The Lagrangian multipliers are updated by using equations (7.40-7.45), (7.52-7.53).

The solution framework of the ADMM approach is very similar to the ALR approach,
except the optimization models P3-1-P3-3 are solved in serial.
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7.5 Preprocessing-based heuristic algorithm

Due to the computational complexity of the optimization models discussed above, in this
section, we present a preprocessing-based heuristic algorithm to generate timely solutions
at each iteration. The algorithm is adapted from the work of Guo et al. [35]. Different from
[35], the heuristic designed in this chapter aims to find the set of feasible paths within each
local network instead of global paths. It mainly consists of three steps: preprocessing of
feasible paths; preprocessing of feasible matches; path-based mathematical models.

Preprocessing of feasible paths. We define a path p as a combination of one or more
services in sequence. A path p is feasible if the services inside a combination satisfy time-
spatial compatibility. Specifically, for two consecutive services si,si+1 within path p, the
destination of service si must be the same as the origin of service si+1; the arrival time of
service si must be earlier than the departure time of service si+1 minus loading and unloading
time and travel time variations at transshipment terminal dsi . Let L be the maximum number
of services within a path. The set P = {P1,P2,P3} denotes the collection of feasible paths,
and Pi denotes the set of feasible paths in the local network of operator i.

Preprocessing of feasible matches. A match 〈r, p〉 means shipment r will be transported
by path p from its origin to destination. A match between request r ∈ R and path p =
[s1, ...,sl ]∈ P is feasible if it satisfies time compatibility: the release time of request r should
be earlier than the departure time of service s1 minus loading time and travel time variations
at origin terminal os1 . Let Φo

r be the set of feasible paths within network o for request r, and
let cp denote the transport costs of path p. Let T Drp denote the departure time of request
r with path p; let TArp be the arrival time of request r with path p; let trp be the transport
time of request r with path p.

Mathematical model. Based on the above preprocessing procedures, the objective func-
tion is updated to maximize the total profits for the acceptance and matching of requests
with feasible paths. We denote zt

rp as a binary variable which is 1 if request r ∈ Rt ∪ R̄t is
matched with path p ∈ P = {P1,P2,P3}, and 0 otherwise. Model P0 changes to:
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r ur

)
(7.57)

subject to for o ∈ {1,2,3},

∑
r∈R

∑
p∈Φo

rs

urzt
rp ≤U t

s , ∀s ∈ So, (7.58)

To
r ≥ TArp−Tdue

r +M(zt
rp−1), ∀r ∈ Rt ∪ R̄t , p ∈ {Po|dp = dr}, (7.59)

To
r ≥ t+ri + trp−Tdue

r +M(zt
rp−1), ∀r ∈ Rt ∪ R̄t , p ∈ {Potruck|op = i,dp = dr}, (7.60)

t−ri ≥ TArp +M(zt
rp−1),∀r ∈ Rt ∪ R̄t , i ∈ Nexp∪Nimp\{or,dr}, p ∈ {Po|dp = i}, (7.61)

t+ri ≤ T Drp +M(1− zt
rp),∀r ∈ Rt ∪ R̄t , i ∈ Nexp∪Nimp\{or,dr}, p ∈ {Po|op = i}, (7.62)

where Φrs = {p ∈Φr|s ∈ p}, Potruck = {p = [s1, ...,sL] ∈ Po|MTs1 = truck}.
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Interconnecting constraints change to:
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rp, ∀r ∈ Rt , (7.63)
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∑
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∑
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rp, ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr} (7.68)

t−ri ≤ t+ri , ∀r ∈ Rt ∪ R̄t , i ∈ Nexp\{or,dr}, (7.69)

t−ri ≤ t+ri , ∀r ∈ Rt ∪ R̄t , i ∈ Nimp\{or,dr}. (7.70)

These interconnecting constraints will be relaxed based on the same distributed ap-
proach. Here, we only present the relaxed objective function under the LR method as
follows:
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(7.71)

subject to Constraints (7.58-7.62) for o ∈ {1,2,3}.
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Figure 7.3: Topology of a global synchromodal network.

7.6 Numerical experiments

We evaluate the performance of the proposed three distributed approaches (i.e., LR, ALR,
and ADMM) in comparison to the centralized approach (CA) proposed in Chapter 6. The
approaches are implemented in MATLAB, and all experiments are executed on 3.70 GHz
Intel Xeon processors with 32 GB of RAM. The optimization problems are solved with
CPLEX 12.6.3.

We use a global synchromodal network which includes three subnetworks: a hinterland
network in Asia, an intercontinental network connecting Asia and Europe, and a hinterland
network in Europe, as shown in Figure 7.3. The Asian network includes one deep-sea port
(i.e., Shanghai port) and three inland terminals (i.e., Zhengzhou, Wuhan, Chongqing); the
European network includes one deep-sea port (i.e., Rotterdam port) and three inland termi-
nals (i.e, Duisburg, Neuss, and Dortmund). The intercontinental network connects Asia and
Europe by three routes: Northern Sea Route, Eurasia Land Bridge, and Suez Canal Route.
We design 40 services of the Asian network, 52 services of the European network, and 14
services of the intercontinental network. The detailed data of services is presented in Ap-
pendix 7.A. At each terminal, the loading/unloading times (unit: hours) are set as follows:
ltship

i = 12, ltbarge
i = 4, lt train

i = 2, lt truck
i = 1 for i ∈ N.

We generate several instances to represent different characteristics of shipment requests.
We use G-n1-n2 to represent an instance with n1 static requests and n2 dynamic requests
under the given distributed global network.

Unless otherwise stated, the benchmark values of coordination parameters are set as
follows: [ρ1] = [ρ2] = [ρ3] = [ρ4] = [ρ5] = [ρ6] = [2500], [ρ7] = [ρ8] = [0.001], [b7] =
[b8] = [0.003], [ρ1min] = [ρ2min] = [ρ3min] = [ρ4min] = [ρ5min] = [ρ6min] = 10, [ρ7min] =
[ρ8min] = [0.0001], [ρ7max] = [ρ8max] = [0.01], θ1= 1, θ2= 0.5, ξ1= 0.003, ξ2= 0, a1= 0,
a2 = 10, Niteration = 1000; the benchmark scenario is set as static and deterministic, namely
Rt ∪ R̄t = /0 for t > 0, σs = 0 for s ∈ S, α = 0.5; M = 1400.
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Table 7.1: Demand data G-5-0.

Requests Origin Destination Container vol-
ume (TEU)

Announce
time

Release
time

Due
time

Delay cost
(e/TEU-h)

Freight rate
(e/TEU)

1 Chongqing Rotterdam 9 0 89 569 25 5000
2 Wuhan Dortmund 9 0 23 1103 12.5 2500
3 Zhengzhou Dortmund 2 0 60 1140 12.5 2500
4 Chongqing Neuss 1 0 119 1199 12.5 2500
5 Chongqing Neuss 4 0 92 692 22.5 4500
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Figure 7.4: Evolution of lower and upper bounds of instance G-5-0 under the LR approach.

7.6.1 Coordination process illustration
To analyze the coordination process of the LR approach, we design a small instance G-5-0.
The data of requests in instance G-5-0 is shown in Table 7.1.

Figure 7.4 shows the evolution of the lower and the upper bound of the objective function
in P0 under the LR approach. It is easy to see that since all the initial Lagrangian multipliers
are set as 0, the gap between the upper and lower bounds in the early is relatively large.
However, it reduces rather quickly. At iteration 27, the upper bound equals the lower bound,
which means the optimal solution under the LR approach has been found for instance G-5-0.
The evolution of requests’ itineraries is shown in Appendix 7.A.

Regarding interconnecting constraints, we choose request 3 to analyze the coordination
process. Figure 7.5 (a) shows that at initial iteration, when the Lagrangian multiplier λ13
is 0, the global operator chooses to accept request 3, local operators do not arrange any
services to transport request 3 leaving its origin terminal. Thus, conflicts happen between
global and local operators. At iteration 2, the global operator increases the value of λ13 to
2500. With this incentive, local operators arrange a service to transport request r leaving its
origin terminal. Thereafter, the decisions made by the global operator and local operators
always keep consistent. Therefore, the global operator does not increase the price of λ13
anymore. Similarly, Figure 7.5 (b) shows that after five iterations, the decision made by
the global operator and local operators achieve consistency. The global operator chooses
to accept request 3, local operators arrange a service to deliver request 3 to its destination
terminal.
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Figure 7.5: Coordination process of Lagrangian multipliers (λ13 and λ23, left side) and in-
terconnecting variables (acceptance decision y3, outflow at the origin terminal,
and inflow at destination terminal, right side) of request 3 under the LR.

Figure 7.6(a) shows the evolution of the Lagrangian multiplier λ5 and the differences
between the value of inflow and outflow for request 3 at the export terminal. It is interesting
to note that when the value of inflow is higher than the value of outflow at the current itera-
tion, the global operator increases the value of Lagrangian multiplier λ5 at the next iteration;
when the value of inflow is lower than the value of outflow out at the current iteration, the
global operator decreases the values of Lagrangian multiplier λ5 at the next iteration. It is
also worth to note that the updates of Lagrangian multipliers become smaller as the itera-
tions advance since the value of penalty parameter ρ5 decreases when λ5n+1 > λ5n. After
18 iterations, the value of inflow and outflow at Shanghai port achieves consistency. The
similar trend is shown in Figure 7.6 (b). The consistency of inflow and outflow at the import
terminal achieves at iteration 23.

Figure 7.7 (a) shows the evolution of Lagrangian multiplier λ7 and the differences be-
tween the departure and arrival time at the export terminal. We notice that the value of
Lagrangian multiplier λ7 will be increased only when the value of the departure time is
higher than the value of the arrival time at Shanghai port. After 19 iterations, the consis-
tency on time compatibility at the export terminal is realized. Similarly, the consistency on
time compatibility at the import terminal is achieved after 23 iterations.

Compare Figure 7.5, Figure 7.6, and Figure 7.7, it is interest to find that the value of
decision variables is not only influenced by corresponding Lagrangian multipliers but also
affected by other variables. That is the reason why when the value of the Lagrangian multi-
plier stays the same, the value of corresponding decision variables might still change.
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Table 7.2: Sensitivity analysis of penalty parameters under the LR approach.

Cases ρ1 ρ2 ρ5 ρ6 ρ7 ρ8 Number of iterations Total profits (e) Rejection
1 1000 1000 1000 1000 0.001 0.001 62 46293.04 0
2 2000 2000 2000 2000 0.001 0.001 34 46293.04 0
3 2500 2500 2500 2500 0.001 0.001 27 46293.04 0
4 3000 3000 3000 3000 0.001 0.001 100 44856.80 1
5 4000 4000 4000 4000 0.001 0.001 100 44856.80 1
6 2500 2500 2500 2500 0.000001 0.000001 25 46293.04 0
7 2500 2500 2500 2500 0.00001 0.00001 25 46293.04 0
8 2500 2500 2500 2500 0.0001 0.0001 27 46293.04 0
9 2500 2500 2500 2500 0.001 0.001 27 46293.04 0
10 2500 2500 2500 2500 0.01 0.01 31 46293.04 0

7.6.2 Sensitivity analysis of penalty parameters

To analyze the sensitivity of penalty parameters under the LR approach, we vary the value
of ρ1, ρ2, ρ5, and ρ6 from 1000 to 4000 and vary the value of ρ7 and ρ8 from 0.000001
to 0.01 under instance G-5-0. We set the maximum number of iterations to 100. Table 7.2
shows that increasing the value of penalty parameters ρ1, ρ2, ρ5, and ρ6 from 1000 to 2500,
the number of iterations decreases from 62 to 27. However, further increasing their values,
the performance of the LR approach becomes worse even with rejections due to infeasible
solutions. On the other hand, increasing the value of penalty parameters ρ7 and ρ8 from
0.000001 to 0.01, the number of iterations increases from 25 to 31. Table 7.2 shows that the
spatial penalty parameters are more sensitive than the time penalty parameters.

7.6.3 Comparison between the LR, the ALR, and the ADMM approach

To compare the performance of the LR, the ALR, and the ADMM approach, we use four
instances: G-5-0, G-10-0, G-20-0, G-30-0. The solutions generated by the CA are the
optimal solutions to model P0. We consider two performance indicators: total profits (unit:
e) and computation time (unit: seconds). While the CPU of the CA is the time of solving
the centralized model (see Chapter 6), the CPU of the LR and the ALR is the summation of
the maximum CPU generated by local operators at each iteration, the CPU of the ADMM
is the summation of all the CPUs generated by local operators at each iteration since the
optimization models of operator 1, 2, and 3 are implemented in serial instead of parallel.

Table 7.3 shows that for all the instances, the ADMM has the worst performance in total
profits and computation time, the ALR can generate solutions that with higher profits than
the LR but mostly with a higher CPU. The reason is that the ALR model P2 is a mixed
integer quadratic model while the LR model P1 is a mixed integer linear programming
model. Specifically, for instance G-5-0, the LR, the ALR, and the ADMM can both obtain
optimal solutions. Compared with the ALR and the ADMM, the LR has the lowest number
of iterations and the lowest computation time. For instance G-10-0 and G-20-0, the ALR
generates higher profits than the LR but with higher CPUs. For instance G-30-0, while the
ADMM converges at iteration 607, both the LR and the ALR cannot achieve convergence
until the maximum number of iterations. However, the profits generated by the LR and the
ALR are still higher than the profits generated by the ADMM. This further proves the theory
that when the problem is non-convex, the solution obtained at the convergent point under
distributed approaches might be suboptimal.
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Table 7.3: Comparison between the LR, the ALR, and the ADMM approach.

Instances CA LR ALR ADMM
Profits CPU (s) Iterations Profits CPU (s) Iterations Profits CPU (s) Iterations Profits CPU (s)

G-5-0 46293.04 31.18 27 46293.04 122.96 28 46293.04 142.08 46 46293.04 240.62
G-10-0 84437.12 102.70 79 82821.51 1188.16 136 84437.12 2170.25 200 82412.82 3645.18
G-20-0 165582.77 2943.28 331 158676.63 61890.08 302 162564.93 78070.61 1000* 131389.17 330686.12
G-30-0 247182.02 4574.51 1000* 231232.04 843611.26 1000* 232302.54 825054.60 607 208874.02 646286.00
* The maximum number of iterations is 1000
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Figure 7.8: Evolution of lower and upper bounds under the LR, the ALR, and the ADMM.

From Table 7.3, we can see that the CPU of the LR, the ALR, and the ADMM increases
dramatically with the increasing size of instances. It is therefore very difficult to apply
these distributed approaches under dynamic scenarios that require getting solutions within
a quite short time. One way to reduce the CPUs of the distributed approaches is to relax the
termination criteria. Figure 7.8 shows that the upper and lower bounds converge very fast
at the beginning of iterations, after a certain rounds of communication, the changes become
quite small before the final convergence. Therefore, we can terminate the optimization when
the gaps between the lower bound and upper bound achieve a certain level. For example,
for instance G-30-0, we set termination criteria ξ2 = 0.1. Figure 7.9 shows that the LR and
the ALR can obtain the same profits as the results presented in Table 7.3 but with a lower
CPU. However, the CPUs are still quite high which are unacceptable for dynamic scenarios.
A heuristic algorithm that can generate timely solutions is required.

7.6.4 Performance of the preprocessing-based heuristic algorithm

We use the same instances presented above to test the performance of the preprocessing-
based heuristic algorithm. About the heuristic, we set the maximum number of services in a
path to 1 (LR-heuristic-1) and 2 (LR-heuristic-2), respectively. The results generated by the
heuristics are compared with the results generated by the exact approach (i.e., solving model
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Figure 7.9: Gaps between the lower and upper bounds under the proposed approach.

Table 7.4: Performance of the preprocessing-based heuristic algorithm.

Instances LR-exact LR-heuristic-2 LR-heuristic-1
Iterations Total profits CPU (s) Iterations Total profits CPU (s) Iterations Total profits CPU (s)

G-5-0 27 46293.04 122.96 41 46293.04 27.02 22 42589.93 0.82
G-10-0 79 82821.51 1188.16 85 82821.51 182.49 34 79118.40 3.47
G-20-0 331 158676.63 61890.08 143 154113.57 3528.13 141 150893.92 18.63
G-30-0 1000* 231232.04 843611.26 121 232302.54 10452.45 103 230775.99 42.95
* The maximum number of iterations is 1000

P1 directly by using CPLEX) under the LR framework. Table 7.4 shows that for instance
G-5-0 and G-10-0, LR-heuristic-2 can generate the same profits as LR-exact but with a quite
lower CPU. For instance G-20-0, the performance of LR-heuristic-2 in profits is a bit lower
than LR-exact, but the CPU reduces from 61890 to 3528 seconds. It is interesting to note
that for instance G-30-0, LR-heuristic-2 has better performance than LR-exact not only in
the CPU but also in the total profits. The reason is that for instance G-30-0, LR-exact cannot
converge within the maximum number of iterations (i.e., 1000). Therefore, the solution
generated by LR-exact is not the best solution under the LR framework. However, LR-
heuristic-2 converges at iteration 121 and finds the best solution. Interestingly, the profits
generated by LR-heuristic-2 is the same as the profits generated by the ALR presented in
Table 7.3.

We notice that for instance with above 30 requests, the CPU under the LR-heuristic-2
is higher than 1 hour. To further reduce the computation time, we reduce the maximum
number of services in a path L from 2 to 1. Table 7.4 shows that under LR-heuristic-1, all
the instances can be solved within 1 min. The gaps between LR-exact and LR-heuristic-1
are within 8%. The experiment results show that with the proposed heuristic algorithm,
decision-makers have the flexibility to choose proper L values to achieve the trade-off be-
tween computational complexity and solution quality.
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Table 7.5: Performance of the LR under instance G-0-300.

Approaches Confidence
level

Planned
profits

Actual
profits

Rejection Infeasible
transshipments

Delay CPU (s) Gaps1 Gaps2

CA-heuristic

0.5 2420045 1868594 13 106 10823 7
0.7 2205024 1879882 26 106 5825 6
0.75 2053775 1857981 27 25 7053 6
0.9 1882434 1808298 42 0 3282 4

LR-heuristic

0.5 2053228 1771023 42 46 8376 12 -15.16% -5.22%
0.7 1971107 1813868 45 47 5809 15 -10.61% -3.51%
0.75 1934313 1827904 49 28 5138 15 -5.82% -1.62%
0.9 1824334 1784273 61 5 3394 12 -3.09% -1.33%

7.6.5 Dynamic and stochastic scenarios

Based on the proposed heuristic algorithm, we further test the performance of the LR ap-
proach under dynamic and stochastic scenarios. We set the mean of travel times µs = ts
for s ∈ S; standard deviation of travel times σs = 0.1 ∗ ts for s ∈ S\Struck, σs = 0.5 ∗ ts for
s∈ Struck. The actual departure, arrival, and travel times under five realizations are presented
in Appendix 7.A. We set the planning horizon (unit: hours) T = 1400, the length of time
intervals to one hour. Regarding the heuristic, we set the largest number of services in a
path for static requests to 1 and for dynamic requests to 2.

Due to travel time variations, the planned profits might be different from the actual prof-
its for each instance. We consider two indicators: gaps1 representing the gaps between the
planned profits generated by the CA-heuristic (see Chapter 6) and the LR-heuristic; gaps2
representing the gaps between the actual profits generated by the CA-heuristic and the LR-
heuristic. Table 7.5 shows that the gaps in actual profits between the LR-heuristic and the
CA-heuristic are within 5%. The higher the confidence level, the lower the gaps between
these two approaches. It is also interesting to observe that increasing the confidence level,
the number of rejections will increase, and the number of infeasible transshipments gener-
ally decreases. While the CA-heuristic has the best performance when α = 0.7, the LR-
heuristic has the best performance when α = 0.75.

To analyze the relationship between the confidence level and the characteristics of in-
stances, we use four instances with different degrees of dynamism: G-225-75, G-150-150,
G-75-225, and G-0-300. In practice, since the static requests are received before the plan-
ning horizon, the required computation time is not as strict as dynamic requests. However,
considering the time limitation of simulation for this work, we set the maximum number
of services in a path to 1 for static requests and 2 for dynamic requests. Table 7.6 shows
that the LR-heuristic has the best performance in actual profits when α = 0.75 for instances
with a higher degree of dynamism. For each instance, the planned profits decrease with
the increase of the confidence level. The reason is that with a higher confidence level, the
system will choose ’suboptimal’ decisions that have a lower possibility of infeasible trans-
shipments. It is also interesting to note that for each instance, the higher the confidence
level, the large the number of rejections. The number of infeasible transshipments shows
the opposite trend. Besides, we observe that under the confidence level, in general, in-
creasing the degree of dynamism of instances, the number of rejections will reduce and the
number of infeasible transshipments will grow. The computation time also typically rises
with the increase of degree of dynamism.
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Table 7.6: Comparison between instances with different degrees of dynamism.

Instance Degree of Confidence LR-heuristic
dynamism level Planned

profits
Actual
profits

Rejection Infeasible
transshipments

Delay CPU (s)

G-225-75 25%

0.5 1875293 1674542 60 27 5462 10
0.7 1678736 1571433 80 18 3303 11
0.75 1598911 1476257 89 10 3173 11
0.9 1489710 1402580 97 3 3190 10
0.9999 1201142 1116293 125 1 3124 11

G-150-150 50%

0.5 2002916 1776948 45 39 6635 15
0.7 1880998 1779845 53 25 4270 16
0.75 1866351 1801584 55 12 3750 11
0.9 1756861 1673247 65 4 4116 9
0.9999 1308564 1221987 111 2 3350 9

G-75-225 75%

0.5 2081806 1843619 40 43 7563 15
0.7 1956186 1835534 44 28 5466 15
0.75 1950500 1866161 49 15 4553 27
0.9 1847305 1747697 59 9 4449 25
0.9999 1254534 1234626 109 4 3061 17

G-0-300 100%

0.5 2053228 1835628 42 42 7177 12
0.7 1968135 1846296 45 34 5458 27
0.75 1931342 1863937 49 20 4460 26
0.9 1824334 1772727 61 7 3702 25
0.9999 1264306 1234570 110 1 2625 16

7.7 Conclusions
This chapter answers research question RQ5 by developing and evaluating a dynamic,
stochastic, and coordinated shipment matching problem in global synchromodal transporta-
tion. Three distributed approaches were developed to stimulate the coordination between
a global operator and three local operators. The differences among the Lagrangian relax-
ation method (LR), the augmented Lagrangian relaxation method (ALR), and the alternating
direction method of multipliers (ADMM) lie in the relaxed objective functions and the iter-
ation process. While the optimization models under the LR and the ALR are implemented
in parallel, the optimization runs in serial under the ADMM. Due to the computational com-
plexity, a preprocessing-based heuristic algorithm was designed to generate timely solutions
at each iteration.

We used four instances to compare the performance of these three approaches in total
profits and computation time. The experiment results showed that on average, the ALR
has the best performance in total profits, the LR has the best performance in computation
time, and the ADMM has the worst performance in both. However, the computation times
generated by the distributed approaches were unacceptable under dynamic and stochastic
scenarios. We used the same instances to test the performance of the designed heuristic
algorithm. The experiment results showed that with the proposed heuristic, all the instances
can be solved within 1 min, and the gaps between the exact solutions and heuristic solu-
tions are within 8%. After that, we used a dynamic and stochastic instance to investigate
the performance of the LR combined with the heuristic algorithm. The experiment results
showed that the gaps between the profits generated by the centralized approach and the
LR are within 5%. Finally, we investigated the relationship between the confidence level
and the degree of dynamism of instances under the LR framework. The experiment results
showed that the LR approach has the best performance when the confidence level is 0.75
for instances with a higher degree of dynamism.
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In conclusion, with the proposed distributed approaches, global transport planning that
requires coordination among different operators and synchronization in operations to achieve
a common goal (e.g., increasing total profits) can be realized; with the proposed heuristic,
decision makers can decide on the trade-off between solution quality and computational
efficiency.

Our future research will focus on the following three major aspects: (1) investigating
the performance of the LR, the ALR and the ADMM under larger networks; (2) designing
profit distribution mechanisms that ensure the fairness among stakeholders; (3) considering
the collaboration among operators in the same level of the global transport chain, such as
the collaboration between a barge carrier and a truck company in hinterland transportation.

Appendix 7.A

Table 7.7: Service data of the export hinterland network.

Service.
ID

Mode Origin Destination Capacity
(TEU)

Scheduled
departure
time

Scheduled
arrival
time

Transport
time (h)

Distance
(km)

Transport
cost
(e/TEU)

Preceding
service

Succeeding
service

1 Barge Chongqing Wuhan 160 72.0 163.3 91.3 1370 191.80 2
2 Barge Wuhan Shanghai 160 171.3 256.3 84.9 1274 178.36 1
3 Barge Chongqing Wuhan 160 144.0 235.3 91.3 1370 191.80 4
4 Barge Wuhan Shanghai 160 243.3 328.3 84.9 1274 178.36 3
5 Barge Shanghai Wuhan 160 72.0 156.9 84.9 1274 178.36 6
6 Barge Wuhan Chongqing 160 164.9 256.3 91.3 1370 191.80 5
7 Barge Shanghai Wuhan 160 144.0 228.9 84.9 1274 178.36 8
8 Barge Wuhan Chongqing 160 236.9 328.3 91.3 1370 191.80 7
9 Train Chongqing Shanghai 90 51.0 88.2 37.2 1672 269.05
10 Train Chongqing Shanghai 90 219.0 256.2 37.2 1672 269.05
11 Train Shanghai Chongqing 90 51.0 88.2 37.2 1672 269.05
12 Train Shanghai Chongqing 90 219.0 256.2 37.2 1672 269.05
13 Train Wuhan Shanghai 90 99.0 117.0 18.0 811 131.29
14 Train Wuhan Shanghai 90 267.0 285.0 18.0 811 131.29
15 Train Shanghai Wuhan 90 99.0 117.0 18.0 811 131.29
16 Train Shanghai Wuhan 90 267.0 285.0 18.0 811 131.29
17 Train Zhengzhou Shanghai 90 51.0 72.9 21.9 986 159.29
18 Train Zhengzhou Shanghai 90 219.0 240.9 21.9 986 159.29
19 Train Shanghai Zhengzhou 90 51.0 72.9 21.9 986 159.29
20 Train Shanghai Zhengzhou 90 219.0 240.9 21.9 986 159.29
21 Train Chongqing Wuhan 90 74.0 94.0 20.0 900 145.53
22 Train Chongqing Wuhan 90 242.0 262.0 20.0 900 145.53
23 Train Wuhan Chongqing 90 123.0 143.0 20.0 900 145.53
24 Train Wuhan Chongqing 90 291.0 311.0 20.0 900 145.53
25 Train Chongqing Zhengzhou 90 15.0 45.8 30.8 1385 223.13
26 Train Chongqing Zhengzhou 90 183.0 213.8 30.8 1385 223.13
27 Train Zhengzhou Chongqing 90 79.0 109.8 30.8 1385 223.13
28 Train Zhengzhou Chongqing 90 247.0 277.8 30.8 1385 223.13
29 Truck Shanghai Zhengzhou 1000 12.7 954 1068.56
30 Truck Shanghai Wuhan 1000 11.2 839 948.96
31 Truck Shanghai Chongqing 1000 22.4 1679 1822.56
32 Truck Zhengzhou Shanghai 1000 12.7 954 1068.56
33 Truck Zhengzhou Wuhan 1000 6.8 510 606.80
34 Truck Zhengzhou Chongqing 1000 16.0 1200 1324.40
35 Truck Wuhan Shanghai 1000 11.2 839 948.96
36 Truck Wuhan Zhengzhou 1000 6.8 510 606.80
37 Truck Wuhan Chongqing 1000 11.7 878 989.52
38 Truck Chongqing Shanghai 1000 22.4 1679 1822.56
39 Truck Chongqing Zhengzhou 1000 16.0 1200 1324.40
40 Truck Chongqing Wuhan 1000 11.7 878 989.52



Table 7.8: Service data of the interconnected network.

Service.
ID

Mode Origin Destination Capacity
(TEU)

Scheduled
departure
time

Scheduled
arrival
time

Transport
time (h)

Distance
(km)

Transport
cost
(e/TEU)

Preceding
service

Succeeding
service

41 Barge Rotterdam Duisburg 160 775 791.5 16.5 247.5 34.65 42
42 Barge Duisburg Neuss 160 799.5 802 2.5 37.5 5.25 41
43 Barge Rotterdam Duisburg 160 871 887.5 16.5 247.5 34.65 44
44 Barge Duisburg Neuss 160 895.5 898 2.5 37.5 5.25 43
45 Barge Rotterdam Duisburg 160 943 959.5 16.5 247.5 34.65 46
46 Barge Duisburg Neuss 160 967.5 970 2.5 37.5 5.25 45
47 Barge Rotterdam Duisburg 160 1039 1055.5 16.5 247.5 34.65 48
48 Barge Duisburg Neuss 160 1063.5 1066 2.5 37.5 5.25 47
49 Barge Neuss Duisburg 160 496 498.5 2.5 37.5 5.25 50
50 Barge Duisburg Rotterdam 160 506.5 523 16.5 247.5 34.65 49
51 Barge Neuss Duisburg 160 592 594.5 2.5 37.5 5.25 52
52 Barge Duisburg Rotterdam 160 602.5 619 16.5 247.5 34.65 51
53 Barge Neuss Duisburg 160 664 666.5 2.5 37.5 5.25 54
54 Barge Duisburg Rotterdam 160 674.5 691 16.5 247.5 34.65 53
55 Barge Neuss Duisburg 160 760 762.5 2.5 37.5 5.25 56
56 Barge Duisburg Rotterdam 160 770.5 787 16.5 247.5 34.65 55
57 Train Rotterdam Duisburg 90 720.0 726.5 6.5 292.5 48.33
58 Train Rotterdam Duisburg 90 816.0 822.5 6.5 292.5 48.33
59 Train Rotterdam Duisburg 90 888.0 894.5 6.5 292.5 48.33
60 Train Rotterdam Duisburg 90 984.0 990.5 6.5 292.5 48.33
61 Train Duisburg Rotterdam 90 454.0 460.5 6.5 292.5 48.33
62 Train Duisburg Rotterdam 90 574.0 580.5 6.5 292.5 48.33
63 Train Duisburg Rotterdam 90 694.0 700.5 6.5 292.5 48.33
64 Train Duisburg Rotterdam 90 814.0 820.5 6.5 292.5 48.33
65 Train Rotterdam Neuss 90 775.0 780.5 5.5 247.5 41.13
66 Train Rotterdam Neuss 90 871.0 876.5 5.5 247.5 41.13
67 Train Rotterdam Neuss 90 943.0 948.5 5.5 247.5 41.13
68 Train Rotterdam Neuss 90 1039.0 1044.5 5.5 247.5 41.13
69 Train Neuss Rotterdam 90 376.0 381.5 5.5 247.5 41.13
70 Train Neuss Rotterdam 90 544.0 549.5 5.5 247.5 41.13
71 Train Neuss Rotterdam 90 712.0 717.5 5.5 247.5 41.13
72 Train Neuss Rotterdam 90 880.0 885.5 5.5 247.5 41.13
73 Train Duisburg Dortmund 90 429.0 429.8 0.8 37.5 7.53
74 Train Duisburg Dortmund 90 597.0 597.8 0.8 37.5 7.53
75 Train Duisburg Dortmund 90 765.0 765.8 0.8 37.5 7.53
76 Train Duisburg Dortmund 90 933.0 933.8 0.8 37.5 7.53
77 Train Dortmund Duisburg 90 430.0 430.8 0.8 37.5 7.53
78 Train Dortmund Duisburg 90 598.0 598.8 0.8 37.5 7.53
79 Train Dortmund Duisburg 90 766.0 766.8 0.8 37.5 7.53
80 Train Dortmund Duisburg 90 934.0 934.8 0.8 37.5 7.53
81 Truck Rotterdam Duisburg 1000 3.3 247.5 333.80
82 Truck Rotterdam Neuss 1000 3.6 270 357.20
83 Truck Rotterdam Dortmund 1000 4.2 315 404.00
84 Truck Duisburg Rotterdam 1000 3.3 247.5 333.80
85 Truck Duisburg Neuss 1000 0.5 37.5 115.40
86 Truck Duisburg Dortmund 1000 0.9 67.5 146.60
87 Truck Neuss Rotterdam 1000 3.6 270 357.20
88 Truck Neuss Duisburg 1000 0.5 37.5 115.40
89 Truck Neuss Dortmund 1000 1.0 76.1 155.54
90 Truck Dortmund Rotterdam 1000 4.2 315 404.00
91 Truck Dortmund Duisburg 1000 0.9 67.5 146.60
92 Truck Dortmund Neuss 1000 0.5 37.5 115.40

Table 7.9: Service data of the import hinterland network.

Service.
ID

Mode Origin Destination Capacity
(TEU)

Scheduled
departure
time

Scheduled
arrival
time

Transport
time (h)

Distance
(km)

Transport
cost
(e/TEU)

Preceding
service

Succeeding
service

93 Ship Shanghai Rotterdam 200 111 749 638 18890.40 1441.34
94 Ship Shanghai Rotterdam 200 183 821 638 18890.40 1441.34
95 Ship Shanghai Rotterdam 200 279 917 638 18890.40 1441.34
96 Ship Shanghai Rotterdam 200 351 989 638 18890.40 1441.34
97 Ship Shanghai Rotterdam 200 351 901 550 14260.40 2240.31
98 Ship Shanghai Rotterdam 1000 423 1061 638 18890.40 1441.34
99 Train Chongqing Duisburg 90 56 429 373 11179 2006.63
100 Train Chongqing Duisburg 90 104 477 373 11179 2006.63
101 Train Chongqing Duisburg 90 152 525 373 11179 2006.63
102 Train Chongqing Duisburg 90 200 573 373 11179 2006.63
103 Train Chongqing Duisburg 90 248 621 373 11179 2006.63
104 Train Chongqing Duisburg 90 296 669 373 11179 2006.63
105 Train Chongqing Duisburg 90 344 717 373 11179 2006.63
106 Train Chongqing Duisburg 90 392 765 373 11179 2006.63
107 Ship Shanghai Rotterdam 1000 600 1238 638 18890.40 1441.34



Table 7.10: Actual departure, arrival, and travel times of the export hinterland network.

Services Realization 1 Realization 2 Realization 3 Realization 4 Realization 5
Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

1 72.00 160.08 88.08 72.00 174.81 102.81 72.00 158.62 86.62 72.00 172.32 100.32 72.00 177.18 105.18
2 168.08 249.23 81.15 182.81 275.12 92.30 166.62 250.67 84.06 180.32 266.21 85.89 185.18 278.05 92.87
3 144.00 253.62 109.62 144.00 229.25 85.25 144.00 235.68 91.68 144.00 237.13 93.13 144.00 249.27 105.27
4 261.62 350.68 89.05 237.25 330.30 93.05 243.68 323.64 79.96 245.13 331.79 86.66 257.27 340.66 83.39
5 72.00 166.20 94.20 72.00 151.94 79.94 72.00 163.32 91.32 72.00 164.74 92.74 72.00 157.29 85.29
6 174.20 267.95 93.74 159.94 246.16 86.22 171.32 262.43 91.11 172.74 261.24 88.50 165.29 260.97 95.68
7 144.00 234.59 90.59 144.00 225.58 81.58 144.00 221.54 77.54 144.00 231.66 87.66 144.00 230.40 86.40
8 242.59 327.66 85.07 233.58 316.86 83.28 229.54 322.10 92.55 239.66 323.69 84.02 238.40 350.88 112.48
9 51.00 89.40 38.40 51.00 88.13 37.13 51.00 87.45 36.45 51.00 91.95 40.95 51.00 88.41 37.41
10 219.00 256.19 37.19 219.00 254.78 35.78 219.00 256.51 37.51 219.00 254.32 35.32 219.00 256.67 37.67
11 51.00 89.82 38.82 51.00 87.19 36.19 51.00 85.92 34.92 51.00 87.12 36.12 51.00 87.08 36.08
12 219.00 252.50 33.50 219.00 257.75 38.75 219.00 256.75 37.75 219.00 254.19 35.19 219.00 257.60 38.60
13 99.00 116.42 17.42 99.00 118.31 19.31 99.00 118.50 19.50 99.00 115.47 16.47 99.00 118.02 19.02
14 267.00 287.11 20.11 267.00 285.76 18.76 267.00 286.91 19.91 267.00 283.97 16.97 267.00 286.01 19.01
15 99.00 119.64 20.64 99.00 115.40 16.40 99.00 117.09 18.09 99.00 118.17 19.17 99.00 118.14 19.14
16 267.00 285.71 18.71 267.00 286.54 19.54 267.00 285.25 18.25 267.00 284.89 17.89 267.00 286.83 19.83
17 51.00 73.23 22.23 51.00 74.20 23.20 51.00 73.64 22.64 51.00 76.09 25.09 51.00 71.22 20.22
18 219.00 242.96 23.96 219.00 241.44 22.44 219.00 241.33 22.33 219.00 241.39 22.39 219.00 242.14 23.14
19 51.00 71.76 20.76 51.00 77.70 26.70 51.00 76.22 25.22 51.00 74.59 23.59 51.00 74.24 23.24
20 219.00 242.27 23.27 219.00 246.50 27.50 219.00 241.08 22.08 219.00 240.57 21.57 219.00 239.94 20.94
21 74.00 93.96 19.96 74.00 96.86 22.86 74.00 97.50 23.50 74.00 96.30 22.30 74.00 93.95 19.95
22 242.00 263.38 21.38 242.00 263.01 21.01 242.00 261.86 19.86 242.00 262.86 20.86 242.00 260.37 18.37
23 123.00 143.97 20.97 123.00 144.88 21.88 123.00 142.37 19.37 123.00 146.26 23.26 123.00 143.78 20.78
24 291.00 310.00 19.00 291.00 312.77 21.77 291.00 312.25 21.25 291.00 309.58 18.58 291.00 310.32 19.32
25 15.00 47.44 32.44 15.00 45.48 30.48 15.00 45.53 30.53 15.00 45.51 30.51 15.00 51.68 36.68
26 183.00 211.49 28.49 183.00 221.49 38.49 183.00 215.46 32.46 183.00 218.09 35.09 183.00 215.21 32.21
27 79.00 110.75 31.75 79.00 107.15 28.15 79.00 107.26 28.26 79.00 108.75 29.75 79.00 108.84 29.84
28 247.00 280.05 33.05 247.00 277.01 30.01 247.00 282.73 35.73 247.00 277.11 30.11 247.00 275.54 28.54
29 15.40 18.97 18.08 14.83 14.15
30 14.52 10.85 13.35 11.98 12.49
31 24.09 23.37 27.04 30.02 31.15
32 12.90 12.73 11.62 22.10 15.30
33 10.22 11.73 11.09 6.28 6.56
34 17.38 25.08 15.57 27.16 25.68
35 14.02 14.18 19.10 13.90 11.57
36 6.18 9.51 13.91 12.85 7.90
37 21.04 11.10 12.63 15.04 19.03
38 32.58 21.70 27.49 23.32 27.53
39 25.43 15.23 17.77 15.79 24.53
40 18.43 26.98 12.09 18.51 18.38



Table 7.11: Actual departure, arrival, and travel times of the import hinterland network.

Services Realization 1 Realization 2 Realization 3 Realization 4 Realization 5
Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

41 775.00 791.08 16.08 775.00 792.16 17.16 775.00 790.61 15.61 775.00 791.34 16.34 775.00 792.55 17.55
42 799.08 801.90 2.81 800.16 802.45 2.29 798.61 801.11 2.50 799.34 802.09 2.75 800.55 803.72 3.17
43 871.00 886.66 15.66 871.00 886.89 15.89 871.00 888.59 17.59 871.00 888.53 17.53 871.00 886.11 15.11
44 894.66 897.65 2.99 894.89 897.58 2.70 896.59 899.30 2.72 896.53 899.06 2.53 894.11 896.68 2.57
45 943.00 959.97 16.97 943.00 960.33 17.33 943.00 958.74 15.74 943.00 960.23 17.23 943.00 958.75 15.75
46 967.97 970.33 2.36 968.33 971.04 2.71 966.74 969.17 2.43 968.23 970.50 2.28 966.75 969.37 2.62
47 1039.00 1055.26 16.26 1039.00 1058.83 19.83 1039.00 1057.72 18.72 1039.00 1056.37 17.37 1039.00 1055.63 16.63
48 1063.26 1065.89 2.63 1066.83 1069.36 2.54 1065.72 1068.31 2.59 1064.37 1067.28 2.92 1063.63 1066.35 2.71
49 496.00 498.27 2.27 496.00 498.36 2.36 496.00 498.35 2.35 496.00 498.81 2.81 496.00 498.41 2.41
50 506.27 525.09 18.82 506.36 522.35 16.00 506.35 521.64 15.29 506.81 523.87 17.06 506.41 521.54 15.12
51 592.00 594.73 2.73 592.00 594.34 2.34 592.00 594.40 2.40 592.00 594.62 2.62 592.00 594.58 2.58
52 602.73 618.58 15.85 602.34 617.80 15.46 602.40 620.45 18.05 602.62 619.09 16.47 602.58 621.21 18.63
53 664.00 666.48 2.48 664.00 666.37 2.37 664.00 666.54 2.54 664.00 666.25 2.25 664.00 666.81 2.81
54 674.48 691.42 16.94 674.37 690.11 15.74 674.54 690.21 15.67 674.25 689.59 15.33 674.81 691.74 16.92
55 760.00 762.70 2.70 760.00 762.53 2.53 760.00 762.66 2.66 760.00 762.28 2.28 760.00 762.35 2.35
56 770.70 786.34 15.63 770.53 787.33 16.80 770.66 788.21 17.55 770.28 786.01 15.73 770.35 788.15 17.81
57 720.00 725.99 5.99 720.00 726.83 6.83 720.00 726.35 6.35 720.00 727.16 7.16 720.00 726.75 6.75
58 816.00 822.95 6.95 816.00 822.52 6.52 816.00 823.96 7.96 816.00 823.19 7.19 816.00 822.13 6.13
59 888.00 895.08 7.08 888.00 894.22 6.22 888.00 894.75 6.75 888.00 895.40 7.40 888.00 894.34 6.34
60 984.00 990.20 6.20 984.00 990.44 6.44 984.00 989.97 5.97 984.00 990.90 6.90 984.00 990.55 6.55
61 454.00 460.80 6.80 454.00 460.14 6.14 454.00 460.29 6.29 454.00 461.29 7.29 454.00 460.00 6.00
62 574.00 580.42 6.42 574.00 580.87 6.87 574.00 581.19 7.19 574.00 580.54 6.54 574.00 580.06 6.06
63 694.00 700.56 6.56 694.00 701.25 7.25 694.00 700.27 6.27 694.00 701.29 7.29 694.00 700.32 6.32
64 814.00 820.53 6.53 814.00 820.01 6.01 814.00 820.89 6.89 814.00 820.07 6.07 814.00 820.13 6.13
65 775.00 780.00 5.00 775.00 780.44 5.44 775.00 780.43 5.43 775.00 781.07 6.07 775.00 781.26 6.26
66 871.00 875.98 4.98 871.00 876.21 5.21 871.00 876.49 5.49 871.00 876.99 5.99 871.00 876.63 5.63
67 943.00 948.58 5.58 943.00 948.37 5.37 943.00 948.33 5.33 943.00 948.25 5.25 943.00 948.82 5.82
68 1039.00 1044.72 5.72 1039.00 1044.33 5.33 1039.00 1044.31 5.31 1039.00 1044.03 5.03 1039.00 1045.69 6.69
69 376.00 381.84 5.84 376.00 382.41 6.41 376.00 381.45 5.45 376.00 381.33 5.33 376.00 381.30 5.30
70 544.00 549.03 5.03 544.00 550.03 6.03 544.00 549.92 5.92 544.00 549.38 5.38 544.00 549.34 5.34
71 712.00 718.14 6.14 712.00 717.05 5.05 712.00 718.05 6.05 712.00 717.57 5.57 712.00 717.76 5.76
72 880.00 885.37 5.37 880.00 886.19 6.19 880.00 885.10 5.10 880.00 885.35 5.35 880.00 885.23 5.23
73 429.00 429.79 0.79 429.00 429.88 0.88 429.00 429.82 0.82 429.00 429.87 0.87 429.00 429.77 0.77
74 597.00 597.91 0.91 597.00 597.75 0.75 597.00 597.80 0.80 597.00 597.82 0.82 597.00 597.89 0.89
75 765.00 765.82 0.82 765.00 765.92 0.92 765.00 765.76 0.76 765.00 765.80 0.80 765.00 765.97 0.97
76 933.00 933.84 0.84 933.00 933.85 0.85 933.00 933.96 0.96 933.00 933.82 0.82 933.00 933.94 0.94
77 430.00 430.87 0.87 430.00 430.98 0.98 430.00 430.85 0.85 430.00 430.78 0.78 430.00 430.89 0.89
78 598.00 598.77 0.77 598.00 598.77 0.77 598.00 598.83 0.83 598.00 598.79 0.79 598.00 598.80 0.80
79 766.00 766.85 0.85 766.00 766.86 0.86 766.00 767.00 1.00 766.00 766.85 0.85 766.00 767.02 1.02
80 934.00 934.87 0.87 934.00 934.83 0.83 934.00 934.86 0.86 934.00 934.86 0.86 934.00 934.90 0.90
81 4.49 3.31 3.28 4.42 6.60
82 4.66 3.57 4.06 3.28 5.36
83 5.89 4.87 8.07 5.57 5.00
84 5.45 3.54 5.06 3.98 5.83
85 0.59 0.63 0.71 0.67 0.51
86 1.26 1.29 1.49 1.43 0.95
87 5.70 3.61 4.31 4.78 4.81
88 0.55 0.92 0.55 1.01 0.45
89 1.15 1.85 1.47 0.98 1.66
90 4.81 4.41 4.49 6.54 5.66
91 1.64 0.87 1.43 2.21 1.54
92 0.48 0.53 0.49 0.54 0.79

Table 7.12: Actual departure, arrival, and travel times of the intercontinental network.

Services Realization 1 Realization 2 Realization 3 Realization 4 Realization 5
Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

Actual
departure
time

Actual
arrival
time

Actual
travel
time

93 111.00 821.76 710.76 111.00 835.94 724.94 111.00 768.07 657.07 111.00 712.19 601.19 111.00 806.09 695.09
94 183.00 858.45 675.45 183.00 807.47 624.47 183.00 873.27 690.27 183.00 881.84 698.84 183.00 876.43 693.43
95 279.00 943.15 664.15 279.00 954.33 675.33 279.00 945.87 666.87 279.00 882.69 603.69 279.00 892.04 613.04
96 351.00 1006.73 655.73 351.00 962.88 611.88 351.00 1046.19 695.19 351.00 999.58 648.58 351.00 1031.00 680.00
97 351.00 912.85 561.85 351.00 915.81 564.81 351.00 903.99 552.99 351.00 887.56 536.56 351.00 949.43 598.43
98 399.00 1071.58 672.58 399.00 1036.03 637.03 399.00 1034.97 635.97 399.00 1081.84 682.84 399.00 1100.90 701.90
99 56.00 446.26 390.26 56.00 455.34 399.34 56.00 458.88 402.88 56.00 528.40 472.40 56.00 406.83 350.83
100 104.00 520.65 416.65 104.00 506.44 402.44 104.00 465.49 361.49 104.00 472.78 368.78 104.00 506.60 402.60
101 152.00 534.76 382.76 152.00 514.97 362.97 152.00 597.18 445.18 152.00 490.81 338.81 152.00 551.94 399.94
102 200.00 540.51 340.51 200.00 574.60 374.60 200.00 607.79 407.79 200.00 552.52 352.52 200.00 604.43 404.43
103 248.00 587.82 339.82 248.00 623.91 375.91 248.00 630.62 382.62 248.00 600.69 352.69 248.00 588.09 340.09
104 296.00 728.04 432.04 296.00 669.17 373.17 296.00 654.96 358.96 296.00 645.45 349.45 296.00 699.62 403.62
105 344.00 700.64 356.64 344.00 750.96 406.96 344.00 726.02 382.02 344.00 795.81 451.81 344.00 731.31 387.31
106 392.00 734.69 342.69 392.00 787.90 395.90 392.00 802.09 410.09 392.00 765.30 373.30 392.00 791.57 399.57



Table 7.13: Evolution of requests’ itineraries of instance G-5-0 under the LR approach.

Iteration Itinerary 1 Itinerary 2 Itinerary 3 Itinerary 4 Itinerary 5
1 [] [] [] [] []
2 [10,50] [13,76] [18,76] [10,101,48] [10,85]
3 [] [23,47] [27,47] 93 47
4 [10,50] 76 [93,76] [10,47,48] [10,85]
5 [] [13,76] [18,76] [47,48] [94,85]
6 [10,50] [23,76] [18,100,43,76] [10,101,48] [10,100,82]
7 [] [43,76] [27,93,76] 94 [10,85]
8 [10,50] [13,76] [18,93,76] [47,48] [93,85]
9 100 [23,47] [18,98,43,76] [47,48] [10,100,85]
10 50 76 [18,94,43,76] [10,48] [93,85]
11 [10,100,50] [13,76] [18,95,43,76] [93,101,47] [10,100,82]
12 [100,50] [23,93,76] [18,95,43,76] [10,48] 82
13 [100,50] [13,43,76] [18,95,43,76] [93,48] [10,82]
14 [100,50] [13,93,43,76] [18,95,43,76] [10,47,48] [93,82]
15 [100,50] [13,98,43,76] [18,95,43,76] [47,48] [10,100,85]
16 [100,50] [13,94,43,76] [18,43,76] [10,48] [10,93,85]
17 [100,50] [13,94,43,76] [27,95,43,76] [10,93,101,47,48] 85
18 [100,50] [13,94,43,76] [18,95,43,76] 48 [10,100,85]
19 [100,50] [13,94,43,76] [18,95,43,76] [94,47,48] [94,85]
20 [100,50] [13,94,43,76] [18,95,43,76] [10,47,48] [10,100,85]
21 [100,50] [13,94,43,76] [18,95,59,76] [10,94,48] [94,85]
22 [100,50] [13,94,43,76] [18,95,76] [10,101,47,48] [10,85]
23 [100,50] [13,94,43,76] [18,95,47,86] [95,47,48] [10,100,85]
24 [100,50] [13,94,43,76] [18,95,47,86] [10,95,47,48] [94,85]
25 [100,50] [13,94,43,76] [18,95,47,86] [10,95,47,48] 85
26 [100,50] [13,94,43,76] [18,95,47,86] [10,95,47,48] [10,100,85]
27 [100,50] [13,94,43,76] [18,95,47,86] [10,95,47,48] [100,85]



Chapter 8

Conclusions and future research

This thesis is dedicated to developing methodologies that support the decision-making pro-
cesses of synchromodal matching platforms under dynamic, stochastic, and distributed en-
vironments, so that the transport plans become more efficient, effective, reliable, flexible,
and sustainable. This chapter presents the main conclusions and gives the future research
directions.

8.1 Conclusions

The main research question proposed in this thesis is: “How to develop methodologies
that support the decision-making processes of synchromodal matching platforms under
dynamic, stochastic, and distributed environments?”. Under this main question, five sub-
questions were defined which are answered through Chapters 3-7. The answers to these
questions are summarized as follows:

• How to model shipment matching with time-dependent travel times in hinterland syn-
chromodal transportation?

In Chapter 3, a mixed integer linear programming model was developed for hinter-
land synchromodal shipment matching with time-dependent travel times. The model
formulates binary variables to represent the matches between shipment requests and
transport services, introduces time-dependent travel time functions for truck services,
and assigns different weights for different objectives to represent multi-objective
functions. Thanks to the developed model, shipment requests with different time
windows can be matched with transport services with different modes and time sched-
ules considering the influences on logistics costs, emissions, and transportation time.
Compared with a time-constant model, the time-dependent model shows to have total
cost savings from 0.38% to 2.81% when the traffic congestion coefficient increases
from 2 to 4.5.

• How to deal with real-time shipment requests in hinterland synchromodal transporta-
tion?

149
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In Chapter 4, a rolling horizon approach was developed to handle real-time shipment
requests in hinterland synchromodal transportation. Under this approach, decisions
are made at fixed time points for all active requests including newly received requests
at the current time interval and the requests received at previous time intervals which
have not expired yet. The decisions are fixed only when the response for the request
cannot be further postponed. Due to the computational complexity of the optimiza-
tion model, a heuristic algorithm was designed to generate timely solutions at each
decision epoch. The algorithm transforms the optimization model to a binary integer
programming model by generating feasible paths and matches. The experiment re-
sults demonstrate the solution accuracy and computational efficiency of the heuristic
algorithm in comparison to an exact algorithm. The proposed rolling horizon ap-
proach outperforms a greedy approach from practice in total costs up to 4% under
various scenarios of the synchromodal matching platform. Thanks to the proposed
methodologies, decision makers can provide online matches for real-time shipment
requests considering the trade-off between logistics costs, delays, and emissions.

• How to address spot request uncertainties in hinterland synchromodal shipment match-
ing?

In Chapter 5, an anticipatory approach was developed to handle spot request uncer-
tainty in dynamic shipment matching processes by incorporating stochastic informa-
tion of random variables. Due to the curse of dimensionality, this approach uses a
sample average approximation method to approximate expected objective functions
and a progressive hedging algorithm to generate solutions at each decision epoch of
a rolling horizon framework. Under the sample average approximation method, the
expected objective function is approximated by a sample average estimate derived
from a random sample. Under the progressive hedging algorithm, the optimization
model is decomposed into scenario-based subproblems which are iteratively solved in
parallel until meeting the non-anticipativity constraints. With the proposed approach,
decision makers can consider a large set of scenarios to more accurately represent
the stochasticity of future requests and in turn achieves better performance in total
costs. Compared with a myopic approach, the anticipatory approach is shown to have
total cost savings up to 6.5% under various scenarios of the synchromodal matching
platform.

• How to address travel time uncertainties in global synchromodal shipment matching?

In Chapter 6, a hybrid stochastic approach is developed to solve spot request and
travel time uncertainties simultaneously in global synchromodal transportation. This
approach integrates a rolling horizon framework that handles real-time shipment re-
quests, a sample average approximation method that addresses spot request uncer-
tainty, a chance-constrained programming (CCP) model that addresses travel time
uncertainty, and a preprocessing-based heuristic algorithm that generates timely so-
lutions at each decision epoch. The CCP model addresses travel time uncertainty
by ensuring the feasibility of stochastic constraints to be at a certain level, called
confidence level. A high confidence level means the matching decisions have a low
probability causing infeasible transshipments but the decisions might be suboptimal
at the current stage. Compared with a deterministic approach, the hybrid stochastic
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approach shows to have better performance in total profits with minimum 1.09%, av-
erage 7.03%, maximum 13.74% under various scenarios of the global synchromodal
transport system. Besides, with the proposed approach, decision makers have the flex-
ibility to choose the trade-off between total profits, the number of request rejections,
and the number of infeasible transshipments.

• How to design coordinated mechanisms that facilitate cooperative planning in global
synchromodal transport?

In Chapter 7, three distributed approaches are proposed to stimulate the coopera-
tion between a global operator and three local operators in global synchromodal
transportation, including the Lagrangian relaxation method (LR), the augmented La-
grangian relaxation method (ALR), and the alternated direction method of multipli-
ers (ADMM). The distributed approaches relax the interconnecting constraints which
connect the independent operators by bringing them into the objective function of
the original problem with associated Lagrangian multipliers. In this way, the original
problem can be decomposed into operator-related subproblems. These subproblems
are solved iteratively until achieving consistency in interconnecting constraints. Dif-
ferent distributed approach applies different iteration processes. The experiment re-
sults show that on average, the ALR has the best performance in total profits, the LR
has the best performance in computation time, and the ADMM has the worst perfor-
mance in both. Due to the computational complexity of the optimization problems, a
heuristic algorithm is designed to generate timely solutions at each iteration. The ex-
periment requests show that instances that require above 24 hours to be solved under
an exact algorithm can be solved within 1 min under the heuristic algorithm. Briefly,
with the proposed distributed approaches, global transport planning that requires co-
ordination among local operators can be realized; with the proposed heuristic, deci-
sion makers have the flexibility to choose the trade-off between solution quality and
computational efficiency.

8.2 Managerial insights

From the theoretical perspective, this thesis contributes to the Operations Research disci-
pline by developing advanced methodologies in the field of synchromodal transportation.
From a practical perspective, this thesis provides managerial insights for managers and
policy-makers to improve practice operations. The main managerial insights are listed as
follows:

• Companies running on networks with heavy traffic congestion are highly recom-
mended to use the time-dependent model developed in Chapter 3 to reduce costs and
infeasible transshipments;

• Companies running on a larger percentage of spot requests are expected to benefit
more from the rolling horizon approach proposed in Chapter 4 by effectively man-
aging the utilization of barges, trains, and trucks with the consideration of the time-
sensitivity of shipments;
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• Thanks to the developed anticipatory approach in Chapter 5, companies running on
instances with a higher degree of dynamism are expected to benefit more from the
stochastic information of future requests;

• Companies that have spot requests and travel time uncertainties simultaneously are
highly recommended to adopt the hybrid stochastic approach designed in Chapter 6
to achieve better performance in total profits, infeasible transshipments, and delays;

• With the developed distributed approaches in Chapter 7, companies that running on
local networks can achieve a global goal by sharing limited information.

8.3 Future research directions

In this section, several future research directions are given as follows:

• This thesis tested the performance of the proposed dynamic, stochastic, and coordi-
nated approaches in a European hinterland network with 10 terminals and a Eurasia
global network with 4 terminals in each continent. Future research should further test
the performance of the proposed approaches in larger and more complex networks.

• In this thesis, we considered truck services as a fleet of trucks that have flexible de-
parture times but fixed routes. Future models should consider flexible routes of truck
services to increase their flexibility, and in turn reduce empty miles and traffic con-
gestion. On the other hand, this thesis considers that all the services are known in
advance and based on fixed contracts. However, in practice, the number of trucks
available to the system is quite dynamic considering the excess capacity of services
from other systems. Investigating the benefits of incorporating ad hoc truck services
in synchromodal shipment matching is an interest research direction.

• In this thesis, we used the same stochastic information of random variables in the
whole optimization processes. To better describe the random variables under the cur-
rent context, learning algorithms that learn from real-time information and adapt dis-
tributions over time deserve further research. On the other hand, this thesis adopts a
rolling horizon framework to implement the optimization process based on real-time
information at each decision epoch. With the help of learning algorithms, decision
makers can learn from past decisions and give priorities to different services for dif-
ferent requests. In this way, decision makers can provide faster and better decisions
for newly received requests based on their characteristics.

• In this thesis, we considered the cooperation among operators in different levels of
the global transport chain, namely vertical collaboration. The collaboration is based
on limited information exchange among operators. Carriers located in the same sub-
network are assumed under the control of a central operator. However, in practice, the
carriers might not all be willing to give authority to a central operator. The coopera-
tion among carriers in the same level of the supply chain is different from the vertical
collaboration. The coordination mechanism might be not only information exchange
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but also request exchange and capacity exchange. How to design horizontal cooper-
ation among operators in global synchromodal transportation is a promising research
area.

• To attract shippers towards mode-free booking, dynamic pricing strategies that set
different prices to the same route with different services considering the dynamics in
demand and supply are essential. While dynamic pricing strategies have been well
adopted in the airline industry, these techniques have not yet been well adopted in
the container transport industry [61]. The reason is that decision-makers under the
current container transport system do not have the ability to publish real-time prices.
However, under the proposed synchromodal matching platforms, shippers can request
container booking online, and decisions can be made in real-time. Dynamic pricing
strategies for synchromodal transportation become possible and necessary.

• To ensure the win-win situation and fairness, an important aspect of cooperative plan-
ning is to share the profit gain among all the stakeholders. In the literature, the ma-
jority of the studies in cooperative transportation use sharing methods based on co-
operative game theory [32], such as Shapley values and proportional methods. How-
ever, different problems might have different characteristics and different forms of
cooperation, and the definition of fairness might also be different. How to design a
proper profit sharing mechanism for coordinated global synchromodal transportation
is a promising research direction. On the other hand, considering the dynamic and
stochastic nature of the global synchromodal transport planning problem in practice,
the contribution from each entity to the cooperation may also change over time with
uncertainties. Hence, it is also interesting to investigate how to share profits based on
dynamic and stochastic games and contracts.
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Samenvatting

Met het toenemende volume containers in de wereldhandel wordt het belangrijker om het
transport van containers efficient te plannen. Om de concurrerendheid in wereldwijde lo-
gistieke ketens te verbeteren werken betrokken partijen samen, zowel op hetzelfde niveau
als op verschillende niveaus: het zogenaamde synchromodale transport. Synchromodaliteit
is het gebruik van efficiente, effectieve en duurzame transportplannen voor alle transportbe-
wegingen in een geı̈ntegreerd netwerk, met behulp van geavanceerde informatietechnologie.
Het besluitvormingsproces in een synchromodaal transportsysteem is evenwel erg complex.
1. Er moet rekening worden gehouden met variabele reistijden door congestie in het verkeer.
2. Er is een dynamische aanpak nodig die real-time rekening houdt nieuwe transportvraag in
het netwerk. 3. De vraag van de spotmarkt is niet van te voren bekend. 4. Tot nu toe wordt
in wereldwijde synchromodale transportnetwerken geen rekening gehouden met onzeker-
heid in reistijden. 5. Er zijn op dit moment nog steeds geen methoden die de samenwerking
bevorderen tussen de verschillende betrokken partijen in het wereldwijde containertrans-
port.

In dit proefschrift worden de hiervoor genoemde uitdagingen aangepakt met dynamis-
che, stochastische en gecoordineerde modellen. In het bijzonder is onderzoek gedaan naar
de volgende vijf onderwerpen:

• Synchromodale transportplanning met variabele reistijden (Hoofdstuk 3)

De planning van het synchromodale achterlandtransport is onderzocht aan de hand
van een netwerkoperator die probeert een optimale balans te vinden tussen trans-
portopdrachten met harde tijdvensters en mutimodaal transportaanbod met tijdven-
sters, waarbij rekening wordt gehouden met congestie in het wegverkeer. Voor de
oplossing van het probleem wordt een matching model met variabele reistijden gefor-
muleerd. Het experiment laat zien dat het matching model met variable reistijden
lagere totale kosten geeft dan een model met constante reistijden, in het bijzonder in
scenarios met veel congestie.

• Dynamische transportplanning (Hoofdstuk 4)

Er is een online synchromodaal planningsprobleem onderzocht waarin een overleg-
platform probeert om een optimale afstemming te vinden tussen real-time vraag naar
transport en multimodaal aanbod. Er wordt een benadering met een glijdende hori-
zon voorgesteld om nieuwe vraag naar transport te verwerken. Er is een heuristische
algoritme ontwikkeld om voor elke tijdstap een oplossing te genereren. De resultaten
van het experiment tonen de nauwkeurigheid van de oplossing en de efficientie van
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de berekeningen met het heuristische algoritme in vergelijking met een exact algo-
ritme. Het voorgestelde algoritme met een glijdende horizon geeft veel lagere totale
kosten dan de greedy methode uit de praktijk, onder verschillende scenarios voor het
synchromodale platform. Met de voorgestelde methode kunnen binnenvaartschepen,
treinen en trucks efficienter worden ingezet, rekening houdend met de invloed op
logistieke kosten, vertragingen en emissies en de tijdsvensters van de transportop-
drachten.

• Dynamische en stochastische transportplanning (Hoofdstuk 5)

Er is een dynamisch en stochastisch transportplanningsprobleem onderzocht met onzek-
erheid in de toekomstige vraag. Voor de oplossing van het probleem wordt een an-
ticiperende aanpak voorgesteld waarbij gebruik wordt gemaakt van een benadering
van de waarde van de objectfunctie en een progressief hedge-algoritme om voor elk
tijdstap over een glijdende horizon een oplossing te genereren. Er zijn uitgebreide nu-
merieke experimenten uitgevoerd om deze aanpak te evalueren. In vergelijking met
een korte termijn aanpak geeft de anticiperende aanpak in de bestudeerde situaties
een kostenbesparing tot 6.5%. De resultaten van de experimenten laten ook zien dat
het belangrijk is om stochastische informatie mee te nemen in het beslissingsproces
van het overlegplatform voor de planning van het synchromodale transport naar het
achterland.

• Dynamische en stochastische wereldwijde transportplanning (Hoofdstuk 6)

Er is een dynamisch en stochastisch wereldwijd transportplanningprobleem bestudeerd,
met incidentele vraag (spotmarkt) en onzekerheid in transporttijden. Voor de oploss-
ing van het probleem is een hybride stochastische benadering ontwikkeld, bestaande
uit een glijdende horizon voor de verwerking van real-time informatie, een chance-
constrained programmeringsmodel voor de verwerking van onzekerheid in de trans-
porttijden, een benadering van de vraag van de sportmarkt en een heuristisch prepro-
cessing algoritme dat steeds voor elke tijdstap een oplossing genereert. De experi-
mentele resultaten laten zien dat de resultaten van de hybride stochastische methode
sterk worden beinvloed door het betrouwbaarheidsniveau, het aantal scenarios en de
lengte van de horizon. Met een gedetailleerde analyse van deze parameters presteert
de hybride stochastische methode veel beter dan een deterministische methode onder
verschillende scenarios voor het overlegplatform.

• Dynamische, stochastische en gecoordineerde wereldwijde transportplanning (Hoofd-
stuk 7)

In dit onderdeel wordt voor wereldwijd synchromodaal transport een dynamische,
stochastische en gecoordineerde planning geintroduceerd. Er worden drie benaderin-
gen ontwikkeld voor de behandeling van relaties tussen een globale operator en drie
locale operators: de Lagrange relaxatiemethode, de verbeterde Lagrange relaxatiemeth-
ode en de alternating direction methode met multiplicatoren. In verband met de com-
plexiteit van de berekeningen in de optimaliseringsmodellen is voor het genereren
van oplossingen in elke iteratie een heuristisch preprocessing algoritme ontworpen.
De experimentele resultaten laten zien dat met de voorgestelde gedistribueerde be-
naderingen een oplossing kan worden gevonden voor transportplanningsproblemen
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waarin coordinatie tussen verschillende operatoren nodig is voor het bereiken van een
gemeenschappelijk doel. Daarbij kan middels de ontworpen heuristiek een afweg-
ing worden gemaakt tussen de kwaliteit van de oplossing en de efficientie van de
berekeningen.

Samenvattend: In dit proefschrift worden methoden ontwikkeld voor ondersteuning van
beslissingen van overlegplatforms voor de planning van synchromodaal transport onder dy-
namische, stochastische en gedistribueerde omstandigheden. Doel is betere transportplan-
nen met lagere logistieke kosten, minder vertragingen en minder CO2-emissies.





Summary

With the increasing volumes of containers in global trade, efficient global container trans-
port planning becomes more and more important. To improve the competitiveness in global
supply chains, stakeholders turn to collaborate with each other at vertical as well as hor-
izontal level, namely synchromodal transportation. Synchromodality is the provision of
efficient, effective, and sustainable transport plans for all the shipments involved in an
integrated network driven by advanced information technologies. However, the decision-
making processes of a global synchromodal transport system is very complex. First, time-
dependent travel times caused by traffic congestion need to be considered. Second, a dy-
namic approach that handles real-time shipment requests in a synchromodal network is
required. Third, spot requests received from spot markets are unknown in advance. Fourth,
travel time uncertainty is not handled yet for global synchromodal transport networks. Fifth,
distributed approaches that stimulate cooperation among multiple stakeholders involved in
global container transportation are still missing.

This thesis addresses the above-mentioned challenges with dynamic, stochastic, and
coordinated models. Specifically, the following five topics have been studied:

• Synchromodal shipment matching with time-dependent travel times (Chapter 3)

A hinterland synchromodal shipment matching problem is investigated where a net-
work operator aims to provide optimal matches between shipments with hard time
windows and multimodal services with time schedules considering the existence of
road traffic congestion. A matching model with time-dependent travel times is for-
mulated to solve the problem. The experiment results show that the matching model
with time-dependent travel times has better performance than the model with time-
constant travel times in total costs, especially under heavily congested scenarios.

• Dynamic shipment matching (Chapter 4)

An online synchromodal matching problem is investigated where a platform aims to
provide optimal matches between real-time shipment requests and multimodal ser-
vices. A rolling horizon approach is proposed to handle newly arrived shipment
requests. A heuristic algorithm is developed to generate timely solutions at each
decision epoch. The experiment results demonstrate the solution accuracy and com-
putational efficiency of the heuristic algorithm in comparison to an exact algorithm.
The proposed rolling horizon approach outperforms a greedy approach from practice
in total costs under various scenarios of the synchromodal matching platform. With
the proposed approaches, the use of barges, trains, and trucks can be managed more
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effectively taking into account their impact on logistics cost, delays, and emissions
together with different time sensitivities of shipments.

• Dynamic and stochastic shipment matching (Chapter 5)

A dynamic and stochastic shipment matching problem is investigated under future re-
quest uncertainty. An anticipatory approach is proposed to solve the problem which
uses a sample average approximation method to approximate expected objective func-
tions and a progressive hedging algorithm to generate solutions at each decision epoch
of a rolling horizon framework. Extensive numerical experiments have been con-
ducted to verify the performance of the approach. Compared with a myopic approach,
the anticipatory approach is shown to have total cost savings up to 6.5% under the
designed instances. The experimental results highlight the benefits of incorporating
stochastic information in online decision-making processes of the hinterland synchro-
modal matching platform.

• Dynamic and stochastic global shipment matching (Chapter 6)

A dynamic and stochastic global shipment matching problem is investigated under
spot request and travel time uncertainties. To solve the problem, a hybrid stochas-
tic approach is developed which consists of a rolling horizon framework that han-
dles real-time information, a chance-constrained programming model that deals with
travel time uncertainty, a sample average approximation method that addresses spot
request uncertainty, and a preprocessing-based heuristic algorithm that generates timely
solutions at each decision epoch. The experimental results indicate that the perfor-
mance of the hybrid stochastic approach is highly affected by the confidence level, the
number of scenarios, and the length of the prediction horizon. With a detailed anal-
ysis of these parameters, the hybrid stochastic approach outperforms a deterministic
approach and a robust approach under various scenarios of the global synchromodal
matching platform.

• Dynamic, stochastic, and coordinated global shipment matching (Chapter 7)

This topic introduces a dynamic, stochastic, and coordinated shipment matching prob-
lem in global synchromodal transportation. Three distributed approaches are devel-
oped to handle interconnecting constraints between a global operator and three local
operators, including the Lagrangian relaxation method, the augmented Lagrangian
relaxation method, and the alternating direction method of multipliers. Due to the
computation complexity of the optimization models, a preprocessing-based heuristic
algorithm is designed to generate timely solutions at each iteration. The experiment
results show that with the proposed distributed approaches, global transport planning
that requires coordination among different operators to achieve a common goal can
be realized; with the designed heuristic, decision makers can decide on the trade-off
between solution quality and computational efficiency.

In short, this thesis develops methodologies to support decision-making processes of
synchromodal matching platforms under dynamic, stochastic, and distributed environments,
aiming at achieving a better performance of transport plans in logistics costs, delays, and
carbon emissions.
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