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- SUMMARY -

The term assessment is applied to any process which 

enables us to set rigid bounds to the error or to estimate its 

value. It is shown that upper and lower bounds can be 

assigned whenever the Green' s function of the problem is one-

signed; this is true in many important problems. Another 

method is applicable to step by step solutions of ordinary 

differential equations, linear or non-linear, and depends on 

use of the "index" of the process of integration. Lastly, 

;bhe error in a linear problem can be estimated when an 

approximation to the Grepn' s function is known. 
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1. INTRODUCTION; MEAI-IING OP ASSESSMENT, 

The word assessment is used to cover any process which 
enables us to estimate or delimit. There are two principal kinds 
of assessments of error: 

(a) the fixing of rigid upper and lower bounds 
to the error. 

(b) the estimation, more or less closely, of 
the error. 

ll/hen it is possible to fix rigid bounds to the error these are 
usually rather T/idely separated and the assessment is correspondingly 
crude, but when the bounds are both rigid and close vre have a most 
useful assessment. However, when we have not discovered how to 
set rigid bounds, or when these are insufficiently close, we must 
have recourse to some method of estimation. Such an estimation 
may yield results of ample accuracy for the purposes of applied 
mathematics even when lacking ideal precision. It is to be 
remarked that we exclude strict evaluation of the error from 
consideration since, if this could be done, we should have a method 
of exact solution. An essential requirement is that any method of 
assessment shall be applicable throughout the whole region of 
integration, 

We shall here confine attention to differential equations 
with bo\indary conditions v/hich render the solution unique. No 
attempt at a general treatment will be made, but the following items 
vrxll be discussed: 

(1) Bounds to the errors of ordinary and partial 
differential problems having one-signed Green's 
functions. 

(2) Estimation of the errors of the step by step 
solutions of ordinary differential equations, 
or sets of these, -vvlth one point boundary 
conditions. 

(5) Estimation of the errors of linear problems 
when an approximation to the Green's function 
is known, 

Item (l) is concerned only with linear problems and may appear of very 
limited applicability; in fact it covers some very important problems 
such as Poisson' s equation with fixed boundary values of the unkno-'.-m, 
Item (2) covers non-linear problems, 

2. BOmmS TO THE ERRORS OF FROELEi>/[S HAVING ONE-SIGÎ IED GREEN'S FTOTCTIONS. 

2,1. Outline of the Method, 

lie consider an ordinary or partial linear differential 
equation with boundary conditions of the linear and homogeneous type 
which render the solution unique. We suppose further that the 
Green' s function of the problem is one-signed. 

/ Let 
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Let the differential equation be 

Z^ c/̂ = f .... (2.1,1) 

•where i-A is a linear ordinary or partial differential operator, 
fp is the unknown and f is a given function of the independent 

variable or variables. Also let 

A O- = 1 .... (2.1,2) 

with the same boundary conditions as for 4-' , We shall call O" 
the basic solution, and it is one-signed on account of our assumption 
about thi/ Green's function. Suppose that (u ^ is some approximation 

to <'p which exactly satisfies the boundary conditions and let 

Z\<^a - f = f , .... (2.1,3) 

so ^ is the residual in the differential equation corresponding 
to <p., and is, in. general, a function of the independent v-oriables. 
Let 

£ = absolute maximum value of £ in 
•^ the region of integration 

and ^ = absolute minimum value of (; in 
2 the region of integration. 

Then ( f ~ ̂ i) is everywhere negative or zero and (̂  -'̂ 2) 
everywhere positive or zero in the region. 

For definiteness let the Green's function be everywhere 
positive in the region. Then by equations (2.1,1) - (2.1,3) 

^ ( f - f a -̂  ( 1 Ö- ) = ^ 1 - ( ^• 0 

and consequently 

f - f a ^ 

or "P > 4̂ a " 

Also / \ ( 4^ - Cp + 
1 a 

fi -
f 10-. 

f2 ^ = ^ 2 - ̂  - ° 

and ^^ =?c <p^ - € 2 ^ . 

Finally 

fa- ^1 ̂  ^ f ^ "Pa- ^2 ̂ - ....(2.1,i..) 

/If 
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If the Green's function were everywhere negative we should have 

- f ef^. C^cr. ....(2.1,5) 
/a '2 

These inequalities call for two remarks:-

(a) Provided that v" and C Q are small, a 

rough approximation to Q" will usually give 
sufficient information about the errors in *^, 

(b) A large but highly localised error in cP 
^ a 

or its derivatives, will yield numerically 
large values for one or both of £ ̂ , £ 
and will greatly widen the bounds in the 
inequalities. It is therefore important 
to avoid such large local errors when the 
present method of assessment is used. 

2,2. Errors in the Basic Solution, 

Let CT be an approximation to Ct and 

/>, ACT 1 =Y-| 
) 

(2.2,1) 

Also l e t YT J •y\ be the absolute maximum and absolute minimum 

values, respect ive ly , of r i . Then 

A ( (J - O-^ + -n i f 5 ' ) = ^ i - ' Y ) ^ 0 

and A, C cr - CT, + Tl o (T ) = a T 2 C r ^ = -> 2̂ 

Hence if the Green's function is positive 

O', _ cr̂  

1 *c 0. 

1 + r\ 
a" ^ 

'h '•^T2 
but i f the Green's function i s neg;ative 

a • • 9 \ ^e i- f ^J 

cr, a 

1 + "*"} 

01 a . . . . ( 2 . 2 , 3 ) 

t' 2 / l 

2 .3 . Oases where the Boundary Conditions are Not Homogeneous, 

When the boundary conditions are l inea r but not homogeneous 
we can reduce the problem to one \7ith homogeneous conditions as 
follows. Let /3 be a convenient function which s a t i s f i e s the 
boundary - condit ions. Then 

>= f-^ . . . . ( 2 . 3 , 1 ) 

/satisfies ... 
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satisfies linear and homogeneous boundary conditions and 

^ -^= f - A ƒ3 .... (2.3,2) 

•vdiere the function on the right hand side of the equation is known, 

2,1+, An Important Case where the Green' s Function 
is One-Signed. 

By way of example we shall show that the Green's function 
for Poisson's equation is negative, the region of integration being 
the space interior to a closed svirface B upon which the solution 
is to vanish, 

Let the differential equation to be solved be 

Vĉ )= \b .... (2.4,1) 

where \l/ is everyshere positive within B and Cp is sero on B . 

Then either C^ is everywhere negative within B or it is positive 
at some point P within B. If it is positive at P it must be 
also positive everywhere within a closed surface C surrounding P 
and vanish on C ; moreover C is entirely mthin B or coincides 
Vidth it vvholly or partly and ^p is therefore everywhere positive 
within C , Apply Green's theorem to the space within G , 

A 2 

V J 

ihÉ] + cp \J cp I dxdydz 

= 0 , . . . (2.i^,2) 

where iL-L is the rate of change of <f^ along the inward drawn 

è y 
noimal to C and d^ is the element of the surface of C . But 
according to our hypothesis the integrand is ev-..:rywhere positive 
within C and the integral cannot vanish. Accordingly ^ cannot 
be positive anywhere within B , and, since '^j^ is an arbitrary 
positive function, it follows that the Green's function is always 
negative. The same theorem is true in two dimensions. 

This proposition was applied by the writer some years ago 
to delimit the errors in approximate solutions of special problems in 
the theory of elasticity 1,2, in place of the basic function O' 
the Prandtl torsional stress function "̂J-? was used; this satisfies 
the two-dimensional equation; 

\ 7 ^ TJJ- + 2 = 0 .... (2.!K,3) 

and vanishes on the closed boundary, so 

it' = - 2 o- .... (2.if,4) 

It was shown to be possible to place very close bounds to the errors 
in approximations to ^Jj itself l»^ and to a stress function arising 
in the St, Venant theory of flexure ^. 

/3 
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3. A METHOD FOR ESTIMTING THE ERRORS IN STEP BY STEP SOLUTIONS 

OF SETS OF ORDINARY DIFFERENTIJU:. EQUATIONS. 

3.1. Outline of the Method. 

Briefly, the method is based on the idea of extrapolation 
towards the lim.it of the step by step solution corresponding to a 
vanishingly small interval. Suppose that the independent variable 
is _t , the range of integration a to b , and n the number of 
equal intervals used in the step by step process. Then, provided 
that the process is completely regular and the boundary values of the 
unknowns ejre all given for a (say), we may assume that the error in 
the value of the dependent variable Xp can be expanded in the series 

i^ (t) := n"'' ( pQ + Ci n"^ + ^2 ̂ '^ + ®*°- ) •••• (̂ •̂ '̂ ) 

provided also that n is not too small. The number k is 
characteristic of the particular process used and is called its index. 
Now when the interval is sufficiently small we may as a first 
approximation retain only the first or dominant term in the expansion 
and \wite 

^^(t) = e^ n'^. ,,., (3.1,2) 

Since k will be knovm it becomes possible to calculate '^^ , when the 
approximate solution has been obtained for two values of n , Thus 
we shall have 

x^(t) = x^i(t) + 6o njk = x^2^t) + êo rq 

where x •,(t), x p(t) are the approximations to x^(t) with n^ and 

np intervals respectively. The last equations yield 

G = !k2l!LLf£ii^ ....(3.1,3) 
° -k -k 

"l • ^2 

and a first approximation to the error is obtained. With 3 values 
of n we can similarly calculate £"0 ^^^ ^ ''̂"̂^ obtain a next 

approximation, and so on, 

The method Just described occurred to the writer after 
noticing that the error in the stop by step solution of a differential equation 
given by the process of Euler (of index unity) was almost exactly 
halved when the number of intervals was doubled. After a general 
account 3 of the method had been prepared and circulated to the 
Aeronautical Research Council it was pointed out by R.A. Fairthorne 
that the same method had been proposed earlier by L. P. Richardson ̂ >-^ 
who gave it as an example of what he called " the deferred approach 
to the liirdt". The practical value of the method, which is applicable 
to non-linear equations, has been demonstrated by a number of examples. 
It may be noted that the index varies from 1 in the original and 
relatively crude process given by Euler in the eighteenth century to 4 
in the process of Runge and Kutta °, The various methods arc briefly 
reviewed in the writer's paper 5, 

/ When .,». 

http://lim.it
file:///wite


When the method just described is applied an estimate should 
first be made of the number of steps needed to provide the desired 
accuracy. Then a first calculation should be made v/ith say lialf this 
number of steps. A comparison of the results obtained mth the two 
numbers of steps allows the error to be assessed and partially 
corrected. If need be, a still larger number of intervals must 
finally be used. 

3.2 Extension of the Method to Partial Differential Equations. 

The- method just described can sometimes be applied to 
partial differential problems. It is essential that a perfectly 
regular process be used and that an index should exist. When this 
is so, the error can be assessed as before when the results for two 
similar lattices are knovm. It may even be possible to dispense 
with this condition of similarity, 

4. ESTIIvIATION OF THE ERRORS IN APFROIJMI'jn: SOLUTIONS OF LII'IEim 
PROBLEMS M-LEN AN APPROXIMATION TO THE GREEN'S FUNCTION 
IS m&m. 

We shall suppose that we have aii' approximation if' to 

the solution of (2.3,2) which satisfies the linear and homogeneous 
boundary conditions exactly and gives a residual 

( = f - A ( afa + /3 ) (4,1) 

Then, if there is an approximation G to the Green's function 

appropriate to the homogeneous boundary conditions, we may derive an 
approximation to the error of deficiency in '"\4̂ ^ at any point by 

forming the corresponding integral of the product x: G.̂  throughout 

the region. 
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