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Abstract

Static Analysis is of indispensable value for the robustness of software systems and
the efficiency of developers. Moreover, many modern-day software systems are com-
posed of interacting subsystems written in different programming languages. However,
in most cases no static validation of these interactions is applied.

In this thesis, we identify theCross-Language Static Semantics Problem, which is defined
as ”How to provide a formal and executable specification of the static semantics of inter-
actions between parts of a software system written in different languages?” We investi-
gate current solutions to this problem, and propose criteria towhich an all-encompassing
solution to this problem must adhere.

After that, we present a design pattern for the Statix meta-DSL for static semantics
specification that allows to model loosely coupled, composable type system specifica-
tions. This pattern entails that the semantic concepts of a particular domain are encoded
in an interface specification library, which is integrated in the type system of concrete
languages. This allows controlled but automated composition of type systems. We show
that, under some well-formedness criteria, the system provides correct results.

A runtime, executing composed specifications, is implemented using PIE pipelines
for partial incrementality, and integrated in the command-line interface and Eclipse IDE
platforms, using the Spoofax 3 Framework. This allows using multi-language analysis in
concrete projects.

The design pattern, and the accompanying runtime are validated using two case stud-
ies. These case studies show that the approach is effective, even in a case where there is
an impedance mismatch in the data models of the involved languages.
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Chapter 1

Introduction

Static Analysis is automated analysis of a computer program that is performed without actu-
ally executing the program. Static Analysis comes in many forms, including, but not limited
to, type-checking (Pierce 2002), data-flow analysis (Khedker, Sanyal, and Sathe 2009), auto-
mated program verification (P. Cousot and R. Cousot 1977), automated bug finding and pro-
gram repair (Cadar, Dunbar, and Engler 2008; Long and Rinard 2015), metrics calculation
(Fenton and Bieman 2014) and linting (García-Munoz, García-Valls, and Escribano-Barreno
2016). Static Analysis provides a programmer with feedback about the system he is devel-
oping in early stages of the development cycle. This enables navigation, understanding and
improvement of the system under development quickly. This improves the productivity of
a developer and the quality of the system he is developing. Therefore, static analysis is of
indispensable value to software engineers.

A particular form of static analysis is type checking. Type checking validates that a pro-
gram is well-formed. That is, the type checker validates that each operation (for example an
addition, field access or method call) is applied to runtime values that are consistent with its
definition. Although type systems differ in the guarantees they provide, they are generally
used to prevent type errors or undefined behavior at runtime.

Many contemporary software systems are engineered using multiple languages (Mayer,
Kirsch, and Le 2017). Often, the main logic of the system is written in a General Purpose
Language, which delegates sub-tasks to sub-programs that are written in other languages.
Those secondary languages are chosen because they fit the domain of the sub-task better.
For example, many web-applications use a dedicated query language for data storage and
retrieval. Other reasons to use secondary languages include efficiency and interoperability
with the operating system or legacy software.

Using a software component written in another language is an operation, similar to a
regular method call. However, the type-checker of a language is usually not capable of vali-
dating the well-formedness of such an operation, nor subsequent operations applied on the
returned data. This is caused by the fact that the type systems of the languages are not de-
signed and implemented with possibilities for interoperability.

As a result of this lacuna, systems with multiple languages are more difficult to under-
stand and improve. Moreover, inconsistencies might not be noticed at compile-time, result-
ing in runtime errors, which are often not mapped back to the original source location, and
hard to interpret. This hampers the stability and robustness of the system. A recent sur-
vey conducted by Mayer, Kirsch, and Le (2017) illustrates this problem. Out of a group of
139 professional software developers, with on average 8 years of experience, 92% has en-
countered errors in cross-language linking, while only 25% has tooling available that as-
sists in detecting cross-language linking errors. As a result, ”many indicated avoidance
of multi-language development, cross-language linking, or changing cross-language iden-
tifiers”. Therefore, the role of type systems should be extended to validate interactions in
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1. INTRODUCTION

the system that cross language boundaries as well. The integrity checks a type system pro-
vides should not be confined to the source set of a particular languages within a project, but
should provide comprehensive validation of the complete workspace.

In this thesis, we investigate the requirements on type system design and type checker
implementations that enable reliable integration of type systems of multiple languages. We
analyze several existing partial solutions to this problem, and list their key limitations. Based
on the findings of that survey, we propose four criteria a generic system for multi-language
type checking should adhere to. These criteria guarantee correctness, consistent behavior in
different environments and feasibility.

Statix (Antwerpen, Poulsen, Rouvoet, and Visser 2018) is ameta-DSL for declarative type
system specification. It allows to write typing rules in a style that is close to formal inference
rules. For name resolution, a set of primitives based on the concept of scope graphs (Néron,
Tolmach, Visser, andWachsmuth 2015) is integrated in the language. Moreover, type systems
expressed in Statix are executable, which means that they can be used directly to type-check
concrete programs.

Based the criteria for type system composition, we propose a design pattern for Statix
type system specifications, that enables implementation of composable type systems. We
suggest to abstract the semantic concepts of a particular domain in a specification library,
and use such libraries to model type systems of concrete languages. Type systems that share
such a library can then be composed automatically. This enables flexible integration of the
type systems of multiple languages.

The existing Statix runtime is not capable of creating composed specifications, and verify-
ing their integrity. Neither does it allow to combine analysis results from sources of different
languages. Hence, we implemented a runtime that addresses these concerns. This runtime
accurately manages specification composition and execution in any composition setting.

Currently, Statix does not fully support composition of arbitrary specifications. During
the evaluation, we analyzed the compositional properties of Statix in-depth, and assessed
their impact on type systems designed using the proposed design. Based on this analysis,
we propose adaptions to the language that improve its compositionality. Until then, the
checks that are not performed at compilation time are integrated in the runtime, to ensure
that executed specifications are reliable.

Finally, the proposed design pattern and the implementation of the runtime are validated
with two case studies. These case studies show that the system allows modeling meaningful
interactions between type systems, even when the underlying data models are different.

1.1 Contributions
In this work the following contributions are made:

• We formulate the ‘Cross-Language Static Semantics Problem’, and investigate which key
aspects still require solving.

• We propose a set of criteria that a generic solution to that problem should adhere to.
Full compliance with these criteria will enable fully integrated analysis of systemswrit-
ten in multiple languages.

• We present two case studies illustrating how type systems of multiple languages can
be integrated.

• We propose a design pattern for Statix specifications that allows modeling composable
type systems.

• We present a runtime that executes composed type systems.
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1.2 Thesis Outline
The remainder of this thesis is structured as follows. In chapter 2, we investigate the oppor-
tunities and challenges of multi-language analysis. In chapter 3, we discuss two case studies
that illustrate how type systems can be composed. After that, we introduce the Statix meta-
language, and propose a design pattern that enables composable type system specification.
This design pattern requires an adapted compilation process and execution runtime. We
present an implementation of such a runtime in chapter 5. The resulting system is evaluated
in chapter 6 and compared to other work in chapter 7. Finally, chapter 8 concludes this thesis.
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Chapter 2

Multi-Language Programming
Environment

In this chapter, we introduce theCross-Language Static Semantics Problem,which dealswith
the concern how to define and implement static consistency checking over language bound-
aries. In the first section, we give some background information regarding type systems,
their properties and their evolution. Additionally, we explain why it would be desirable that
type systems validate consistency over language boundaries. In the next section, we sketch
the hypothetical programming environment that would emerge when the introduced prob-
lem would be solved. Subsequently, in section 2.3, we discuss four approaches that have
been taken to solve the problem. Those approaches are: (1) defining a monolithic language
aggregating several sub-languages, (2) extending another type system, (3) using code gen-
eration and (4) implementing an editor plugin. By assessing these approaches, we find a
number of issues that still need to be solved. In the last section, we propose four criteria
that a solution to the Cross-Language Static Semantics Problem must adhere to, based on
the observed issues.

2.1 Problem Statement
A type system is a part of a programming language specification that describes how to ”prove
the absence of certain program behaviors by classifying phrases according to the kinds of
values they compute” (Pierce 2002). It consists of rules that check the ‘consistency’ or ‘well-
formedness’ of a program. Together, these rules ensure that programs that adhere to them
have particular guarantees about their execution behavior. Examples of these guarantees
include: ‘a method which is called always exists’, or ‘references always point to allocated
memory’. Such guarantees rule out undesirable behavior, making programs more robust
and programmers more focused on the actual problem they want to solve.

Further classifications of a type system can be made. In this paragraph, we consider two
characteristics that are particularly relevant for this thesis. Firstly, the validation described
by the type system can be performed at compilation time or at execution time. The former ap-
proach, denoted as ‘statically typed’, prevents execution of a malformed program altogether,
forcing the programmer to solve the type errors before executing it. This guarantees that
actually compiled programs are well-formed with respect to the typing rules. On the other
hand, the latter group, denoted as ‘dynamically typed’, allows execution of (possibly) incon-
sistent programs, but will handle a type-error gracefully at run-time. Hence, dynamically
typed programs are considered less robust, because a type error can occur at any time. Some
languages combine features of both by performing most validations statically, but insert-
ing run-time checks for validations that cannot be performed at compile-time (e.g. checked
downcasting in Java).
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Secondly, when the run-time value of an expression is guaranteed to have the type that
the type system computed, the language is called type-safe (sometimes denoted as ‘strongly
typed’). Other languages have constructs (e.g. unchecked casts or untagged unions) that
allow a run-time value of a particular type to be handled as if it has another type. Again, the
trade-off between those two is stronger guarantees about program robustness versus flexibil-
ity for the programmer.

While there is a long-standing debate about the question whether the guarantees that
static type checking and type safety provide areworth the restrictions they impose (Cartwright
and Fagan 1991; Meijer and Drayton 2004; Siek and Taha 2007), a large group of program-
mers consider static type checking and type safety as valuable, increasing their confidence
in the stability of their program. As will follow from the line of reasoning in the remainder
of this section, we focus on static type-checking of type-safe languages in this thesis.

In the 1960s, when the first programming languages that were largely type-safe, such as
ALGOL (Tanenbaum 1978), were designed, projects were usually written in one language.
In those settings, validating project-level consistency is equivalent to checking whether the
program source is well-formed with respect to the typing rules of the language that is used.
However, the software development scene today is rather different. Most industrial projects
implement their business logic in a general-purpose language, but use sub-programswritten
in other languages for secondary tasks. Examples include: query languages, configuration
languages and other programs called using foreign function interfaces. Additionally, con-
temporaryweb standards forceweb application developers towrite their frontends in several
languages: HTML for data representation, CSS for styling and JavaScript for interactivity.

As a natural extension of the single-language project consistency checking by type sys-
tems, one would expect multi-language projects to use some form of cross-language consis-
tency checking mechanism. Yet, with some exceptions (of which a few are discussed in sec-
tion 2.3), this is not uniformly the case. Neither has science developed a principled, language-
independent approach to leverage static analysis to cross-language projects. Therefore, we
introduce the ‘Cross-Language Static Semantics Problem’, which can be defined as:

How to provide a formal and executable specification of the static semantics of
interactions between parts of a software system written in different languages.

This is a new name for an old problem. For example, Hemel, Groenewegen, Kats, and
Visser (2011) write in their abstract:

Modern web application development frameworks provide web application de-
velopers with high-level abstractions to improve their productivity. However,
their support for static verification of applications is limited. Inconsistencies in an
application are often not detected statically, but appear as errors at run-time. The
reports about these errors are often obscure and hard to trace back to the source
of the inconsistency. A major part of this inadequate consistency checking can be
traced back to the lack of linguistic integration of these frameworks. Parts of an
application are defined with separate domain-specific languages, which are not
checked for consistency with the rest of the application.

However, more has been done in this research area. For example, research by Pfeiffer
andWasowski (2012a) shows that cross-language support mechanisms, which include static
checking, navigation and refactoring, are highly beneficial for developer efficiency. This
work, among others (e.g. (Kullbach, Winter, Dahm, and Ebert 1998; Pfeiffer and Wasowski
2011)) show that the Cross-Language Static Semantics Problem is prevalent in contemporary
software development, and well worth solving.
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Figure 2.1: Example of Cross Language Consistency Validation

2.2 Goal
Before specifying precisely what criteria a solution to the Cross-Language Static Semantics
Problem needs to adhere to, we sketch our ideas of a programming environment for which
this problem is solved.

2.2.1 Project-level consistency

Figure 2.2: Current Programming Environment Or-
ganization

Figure 2.3: Envisioned Future Programming Envi-
ronment

Foremost, we have argued that type
systems are used to rule out programs
that are not composed correctly. How-
ever, ‘rule out’ can have two differ-
ent meanings: not compiling a pro-
gram or giving error messages in the
editor. In a multi-language program-
ming environment, we envision both
of these. First, we want the com-
piler to validate composition across
language boundaries for the same rea-
sons as people use static type-safe com-
pilers: increased robustness and pro-
grammer efficiency. Additionally, pro-
grammers should get early feedback
about type errors. A fictional exam-
ple about what that could look like is
given in Figure 2.1. This figure shows
an example of a database query, exe-
cuted from Java code using the JDBC
API. The use of this API is validated
against the table definition that would
be created by the query in Users.sql.
This table definition is resolved by the
import sql.example.Users; statement
at line 5. For the invalid parts of the
query and the processing of its results,
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which involve unresolved names and typemismatches, detailed semantic error messages are
provided.

To enable this level of integration, the general architecture of the programming environ-
ment needs to be reconsidered. In Figure 2.2, the current organization of a programming
environment is shown. Within a project, the sources in a particular language are analyzed
and compiled together, but isolated from the source sets in other projects or other languages.
In Figure 2.3, we visualize how we think it should be organized in the future. The different
IDE services and compilers are collapsed into a single one, performing their tasks integrated
for the complete workspace. Those components are not powered by individual language
definitions anymore, but by a new component, here called Semantics Integration. This thesis
provides a implementation of such a component for the Spoofax 3 framework.

Thus, in short, from the developer perspective, the tools they work with (compiler and
editor) should behave as fully ‘understanding’ the interactions between all the languages
in the system, so that no manual reasoning or testing is necessary to be confident that the
program will give no type or type-conversion related runtime errors.

2.2.2 Beyond consistency checking
The applications of regular static semantics that we want to leverage to multi-language pro-
gramming environments go beyond consistency validation only. Many editor services, such
as reference resolution, rely on static analysis. These use-cases could be leveraged to cross-
language situations as well. For example, in the example in Figure 2.1, consider navigating to
the CREATE TABLE Users statement in Users.sql from the query string in SQLExample.java, or
to one of its column definitions from the ResultSet getter methods. Such options can make
navigation of codebases more efficient, and help programmers in understanding the system
they are working with.

Moreover, automated refactoring possibilities can be made more powerful and precise
when cross-language analysis information is taken into account. Consider these two exam-
ples:

• Renaming: many IDEs provide options to rename code elements, such as methods,
fields and variables. With cross-language name resolution information taken into ac-
count, these renamings can additionally change the references to the renamed element
from sources in other languages. In addition, pairs of names that reference the same
concept fromdifferent languages could be kept in sync. To illustrate those, consider the
SQL example again. When an SQL column is renamed (e.g. last to last_name), cross-
language reference resolution information could be used to update the query string.
Moreover, when the type system is aware that the User entity class (not included in the
figure) corresponds to that table, it can additionally update the field name that corre-
sponds to the column. Such more advanced options make it easier to keep the naming
in a codebase consistent, which makes it easier to understand for a developer.

• Safe deletion: many IDEs validate whether a component/file was not used by another
component when it is deleted. However, it is either the case that the IDE only checks
other files in the same language, or checks all sources in a project based on the occur-
rence of (a part of) the file name. In the former case, the IDEmight not issue a warning
when a file with a component from another language references is deleted, while in
the latter case false positives may arise. Accurate cross-language name binding infor-
mation can improve the accuracy and precision of this service.

Finally, code metrics, like the different variants of coupling (Anwer, Adbellatif, Alshayeb,
and Anjum 2017; Yourdon and Constantine 1979) can be computed more accurately when
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cross-language name bindings are taken into account. It would even be possible to do empir-
ical research about the effects of the usage of multiple languages in a project based on firm
quantitatively substantiated metrics, such as the number of references that cross a language
boundary.

In conclusion, we see that the possibility of jointly analyzing program sources opens up
a new realm of possibilities for improving software robustness and developer efficiency.

2.3 Alternative approaches
Before specifying precisely what criteria our solution must adhere to, we shortly discuss
several alternative approaches that address this problem. For each approach, we identify
some weaknesses, which will guide the derivation of the solution criteria in the next section.

2.3.1 Monolithic Language
The first approach to whole-project validation is integrating all language features that are re-
quired in a particular domain into a single language. This is the approach taken by WebDSL
(Groenewegen, Hemel, Kats, and Visser 2008), which can be seen as ”a web language in-
tegrating a number of sub-languages for different concerns related to the construction of
web applications” (Hemel, Groenewegen, Kats, and Visser 2011). Integrating these sub-
languages enables static verification including ”cross-aspect consistency checking”.

This approach is quite feasible for well-defined domains, such as web applications. How-
ever, it is limited in at least two ways: first, only the concepts that are integrated in the lan-
guage are actually available to the language user. When an application requires encoding a
concept from another domain, the problem is reintroduced. Second, a large software project,
and hence a complicated language project will usually incur more maintenance and distri-
bution overhead than more modularized approaches.

2.3.2 Semantic Extension
Another approach is designing a languagewith a type system that is fully compliant with the
type system of an existing language, including a well-defined foreign function interface to it.
Often, such a language transpiles to the language it took its base type system from, although
it does not need to be a syntactic superset of the source language. Several languages that
transpile to JavaScript, like CoffeeScript and Dart, belong to this category.

A variation of this pattern occurs when the base type system is not provided by a particu-
lar language, but by a runtime platform. This is the case for the JVM language family, which
includes (among others) Java, Scala and Kotlin, and the .NET family, including C#, F# and
Visual Basic.NET. Both platforms include object-oriented, functional and scripting languages,
showing that, on a well-designed platform, a rich variety of languages is possible.

The actual semantic integration that this pattern allows depends on the semantic infor-
mation the target language or platform preserves. When transpiling to JavaScript, no static
validation can be done, because the type system of JavaScript is very weak. On the other
hand, languages such as Kotlin and F# actually provide static type-checking of references to
components written in Java and C#, respectively.

This approach has at least three particular disadvantages: the languages are a priori lim-
ited by the constraints that the source language or platform imposes (especially regarding
their execution). Additionally, this approach cannot be implemented for already existing
languages. Finally, static type-checking of interoperating code may require compromises to
the stronger guarantees of the source language. For example, nullability information is ex-
plicit in Kotlin and F#. However, the runtime platforms they operate with do not handle null
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values explicitly. Hence, the respective compilers or language users need to deal with incom-
ing null values, for example by inserting runtime checks. When using Kotlin, the compiler
inserts runtime assertions when assigning to non-null variables1, while F# leaves nullability
checking up to the user2.

2.3.3 Code Generation
Yet another approach to bridge the gap between languages is by generating the sources of
a language from sources of another language. Approaches to code generation vary a lot; it
can be done by an external source processor, by a plugin to an extensible compiler, macro
expansion (Chang, Knauth, and Greenman 2017), or by a runtime library. Examples that
use code generation include:

• Rust BindGen3 generates Rust sources that access C/C++ libraries.

• Hibernate4 is an Object-relational mapping framework for Java, which generates SQL
queries at runtime, based on annotations given to Java entity classes.

• In the J% Java preprocessor, a type-checked SQL embedding has been implemented
(Karakoidas,Mitropoulos, Louridas, and Spinellis 2015). This preprocessor type-checks
SQL queries with Java code, but allows validation against an existing database schema
as well.

In general, these approaches can be divided into two categories, based on the sort of code
they generate. First, bindings can be generated from heterogeneous references, as is the case
for Rust BindGen and J%. Conversely, sometimes the bindings are specified, and the code of
the target language is generated instead. This is the approach taken by Hibernate.

Extensible compilers can be used to extend type-checking to cross-language interactions
as well. In this case, no code is generated, but it is verified that the bindings match the code
of the target language. For example the sqlx5 crate extends the Rust compiler to validate
manually written SQL queries at compile-time.

Although this approach is the most powerful of all the approaches discussed in this sec-
tion, four weaknesses can be named. At first, when using code generation, the consistency
of the project relies on the correctness of the source generator. Because such code genera-
tors should be reasonably well tested, and are therefore less likely to introduce errors than
unvalidated manually written code, project consistency will mostly be improved. However,
a code generator does not provide a formal specification of the linguistic integration it in-
troduces, and hence gives no strict guarantees about the consistency of a project. Moreover,
transparency regarding the code that is generated is lost. This may cause confusion to the
developer, especially when error messages are not traced back to the original source code. In
addition to that, the number of features of the target language that can be used is limited by
the features the source generator provides6. Finally, in many cases, editor support is rather
limited.

1https://kotlinlang.org/docs/reference/java-interop.html#null-safety-and-platform-types
2https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/values/null-values
3https://github.com/rust-lang/rust-bindgen
4https://hibernate.org/
5https://github.com/launchbadge/sqlx
6A funny illustration hereof can be found at the Hibernate Formula and Transformer annotations, which reintro-

duce string embeddings of SQL, the very language it abstracts over.
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2.3.4 Editor Plugins

Figure 2.4: SQL String recognition in IntelliJ

Lastly, several IDEs pro-
vide multi-language anal-
ysis. For example, In-
telliLang plugin for Intel-
liJ has a Language Injec-
tion feature7, which of-
fers ”comprehensive code
assistance” for pieces of
code embedded in literals
of other languages. For
example, as can be seen in
Figure 2.4, it recognizes
SQL queries in Java String
literals. Similar features
exist in Eclipse (Nagy and Cleve 2018) and (for C#) in Visual Studio8.

For this approach, there are three prominent deficiencies as well: Firstly, the provided
analysis is not integrated in the compiler pipeline, and is therefore not invoked at build-time.
Secondly, only syntactical analysis of the string embedding is performed. Although most
SQL integrations permit validation against a database scheme, the semantic interactions be-
tween the languages involved (e.g. SQL and Java in this example) are not taken into account.
Thirdly, the detection of the embedding heavily relies on (configurable) heuristics, which
make it prone to mistakes and incompleteness.

2.3.5 Evaluation
Summarizing, it can be seen that several approaches to solve the Cross-Language Static Se-
mantics Problem have been explored in academia as well as in industry. However, each
approach has limitations that prohibit it from fully realizing the goal we sketched in sec-
tion 2.2. Before we make the criteria for a solution more precise, we address some more
intricate problems that all approaches mentioned above share.

Generality. All solutions mentioned in the previous section have one thing in common:
they solve the problem in a particular situation. They offer no conceptual foundation, nor a
language-parametric framework, that can be used for other implementations as well. Such a
framework would be desirable to have uniformity, and to reduce implementation effort.

Mutual Agnosticism. Furthermore, in all current situations except for the Semantic Exten-
sion of a platform, the integrated languages are not mutually agnostic. This causes scalability
issues, because for any pair of languages for which consistency checking is desired, a new
integration must be implemented. Therefore, to integrate n languages, O(n2) composition
implementations are needed. To make cross-language analysis common-place, an approach
that requires only O(n) effort is needed.

Editor/Build Support. In addition to that, the Editor Plugin approach does not provide
build integration, while the Code Generation and Semantic Extension approaches do not (triv-
ially) provide editor support. It is important that analysis in the editor and at compile-time
provides the same results, to increase developer efficiency and reduce confusion. Therefore
we want a approach where one type system specification provides both services.

7https://www.jetbrains.com/help/idea/using-language-injections.html
8https://marketplace.visualstudio.com/items?itemName=PKochubey.VerifyRawSQL
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Additional Component. In the Code Generation and the Editor Plugin approaches, the inte-
gration is not provided by the language specification itself, but rather by a third-party com-
ponent. We think the cross-language capabilities should be included in the language specifi-
cation itself, to foster reusability and uniformity, reduce development effort, and ensure that
the integrations stay up-to-date with the language.

2.4 Solution Criteria
By assessing the desired programming environment, and the advantages and disadvantages
of all current approaches, wederived a set of criteria towhich a solution of theCross-Language
Static Semantics Problem should adhere. These criteria guarantee that the pitfalls discussed
in the previous sections are avoided.

1. Derivability: cross-language type-checking should be derivable directly from the type
system specifications.

2. Editor/Build Support: derived type checking should support both type-checking in a
compiler and in an editor.

3. LooseCoupling: cross-language type-checkingdoes not require a dependency between
type system specifications.

4. Correctness: the type systems of individual languages give correct results in any com-
position setting.

In the following sections, we explain each criterion, and elaborate on how these solve the
aforementioned problems.

2.4.1 Derivability
The Derivability criterion states that cross-language type-checking should not be specified
upon the type system specification of a language, but in it. The type system specification
should be designed for cross-language analysis in the first place. By designing a language
this way, no additional effort needs to be taken to add cross-language analysis to it. Moreover,
the integration with other languages stays up-to-date and has stronger correctness guaran-
tees.

2.4.2 Editor/Build Support
As explained in the previous sections, we want the type-checking in the editor and in the
compiler to be guaranteed to give the same results. When the compiler gives errors that the
editor does not mention, the developer may be notified rather late, which reduces efficiency.
On the other hand, when the editor gives an error the compiler does not emit, either the type-
checking in the compiler is invalid or the editor reports false positives. By deriving both from
the same specification, their outputs are forced to be correct and consistent.

2.4.3 Loose Coupling
Furthermore, a solution to the Cross-Language Static Semantics Problem should not require
type system specifications to depend on each other to do combined analysis. Instead, it
should provide a mechanism through which mutually agnostic type systems can interact.
This approach guarantees O(n) type system development effort, and guarantees language
users that they do not incur the overhead of a type system for a language they do not use.
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2.4.4 Correctness
Finally, the type systems should behave well in all possible use cases. That is: type systems
that are type-safe should remain type-safe in all usage scenarios. The different scenarios for
which this criterion must hold can be categorized in the following three groups:

• Isolation: this situation happens when the language in question is the only language
used in a project. In that case, static analysis should only provide results regarding the
sources in that language.

• Disjoint Analysis: in this situation, the project is implemented in multiple languages,
but no cross-language analysis is desired. In that case the type systems of the different
languages should be guaranteed not to have any accidental interaction, because that
can invalidate analysis results.

• Joined Analysis: in this situation, the type systems of the languages in question do in-
teract. This interaction should be specified unambiguously, and the implementation
should adhere to the specification. Furthermore, the parts of the individual type sys-
tems that are language-specific should be guaranteed not to interact, like in theDisjoint
Analysis environment.

Besides the fact thatCorrectness is needed for a type system to have real value, combinedwith
the Loose Coupling criterion it provides considerable flexibility.

Now that we have defined precise conditions to which a solution of the Cross-Language
Static Semantics Problem should adhere, wepresent our solution for definingmulti-language
type systems in chapter 4, and the implementation of its runtime in chapter 5. But before
that, we explore the problem more precisely by presenting two case studies we performed
in chapter 3.
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Chapter 3

Case Studies Introduction

In this chapter, we introduce the case studies we performed. These case studies serve two
goals. First, they serve as more detailed examples underlining the vision we provided in
chapter 2. Second, we use them as means to validate the implementation of our framework.

The first case study, discussed in section 3.1, is an integration of a syntax definition lan-
guage and a term rewrite language. First, the syntax and semantics of both languages are
discussed independently. After that, the way their distinctive features interact is explained.
In section 3.2, we present the second case study, which integrates a small mod/record lan-
guage with SQL. The structure of this section is similar to that of the first case study: we first
discuss both languages individually, and subsequently present their integration.

Note that this chapter describes the syntax of the languages involved in the case studies,
and gives an informal description of their static semantics. An explanation about the imple-
mentation of these semantics in our framework is given in section 4.3, while an evaluation
is provided in chapter 6. Readers familiar with any of the involved languages are recom-
mended to skim through the sections and the examples about the individual languages, and
only read about the way they integrate.

3.1 Mini-SDF and Mini-Stratego
The first case study we performed was integrating a syntax definition and a rewrite system.
In this sectionwewill first introduce both languages, and then describe how their integration
works. For reference, its full specification is included in Appendix A.

3.1.1 Syntax of Mini-SDF
The first language in this case study is Mini-SDF. Mini-SDF is a small subset of the SDF3
Syntax Definition Formalism (Souza Amorim 2019). SDF3 is a versatile meta-language that
can be used to define context-free grammars. In addition it offers features to add constructor
names, disambiguation, layout constraints and formatting rules (Souza Amorim and Visser
2020). In Mini-SDF, only the features that are required to define context-free grammars with
template productions are included.

Essential to this case study is the fact that a signature can be derived from a context-free
grammar. Such signatures describe the structure of abstract syntax trees, and as such can
be used for validating rewrite systems. Therefore we extracted the features of SDF3 that
contribute to the signature definition, which are sort declarations and template productions
(Vollebregt, Kats, and Visser 2012), into Mini-SDF. The syntax of Mini-SDF is given in Fig-
ure 3.1.
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id ::= Any identifier

lit ::= Any string literal not containing angle brackets

module ::= module id section*

section ::= imports id* | sorts id* | context-free syntax prod*

prod ::= id.id = <term*>

term ::= lit | <sort>

sort ::= id | id* | id+ | id?

Figure 3.1: Syntax definition for Mini-SDF

A Mini-SDF module can contain three kinds of sections:

• Sort declarations declare (non-)terminal symbols.

• Context-free Syntax declarations declare productions. Each production consists of a sort
name and a constructor name on the left-hand side, and a series of symbols on the
right-hand side. A symbol can either some text literal (any sequence of characters not
containing angle brackets or whitespace), or a reference to a non-terminal symbol, pos-
sibly decorated with a postfix arity operator (?, ˚ or +), enclosed in angle brackets.

• Imports make the sort and constructor declarations of the imported module visible in
the importing module.

Note that Mini-SDF is not a complete syntax formalism, because it lacks features to de-
scribe lexical syntax and layout. However, it offers all features that are needed to derive a
signature for an abstract syntax, and therefore it suffices for our purpose.

In Figure 3.2a, an example Mini-SDF module is shown. The syntax definition in this
module, called arith, describes a left-factored grammar for arithmetic expressions.

(a) Example Mini-SDF syntax definition

S = t Start, Expr, Term, Fact, Lit u

Σ = t Module : Expr Ñ Start
Plus : Term ˆ Expr Ñ Expr
Term : Term Ñ Expr
Times : Fact ˆ Term Ñ Term
Factor : Fact Ñ Term
Bracket : Expr Ñ Fact

Lit : Lit Ñ Fact u

(b) Extracted Signature

Figure 3.2: Syntax Example
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Figure 3.3: Shadowing Figure 3.4: Double Import

To illustrate the extraction of signatures from a grammar, the multi-sorted signature
(S,Σ) that would be extracted is shown in Figure 3.2b. In this figure, it is visible that ev-
ery sort declaration translates directly into a sort in the derived signature. Similarly, for each
production, a named constructor for its output sort is created. The parameter types of these
constructors are the references to the sorts within the angled brackets, such as <Expr>. Lit-
erals and layout in the productions, such as the arithmetic operators and the brackets, are
not present in the constructors, because they do not contribute to the abstract structure of
a program. Finally, the Lit sort, which represents literals has no constructors, because it is
lexical by nature, and lexical syntax is omitted from the Mini-SDF specification.

3.1.2 Semantics of Mini-SDF
In this section, wedescribe the static semantics of theMini-SDF language. In short, the follow-
ing constraints hold: sort names are unique, but constructor names can only be overloaded
by arity. Regarding visiblity: every sort that is referenced must be visible, but forward refer-
ences within amodule are allowed. Importedmodules must exist, and imports are transitive.
In the remainder of the section, we will elaborate on these in more detail.

Unique Sorts First of all, sort symbols should be unique. This prevents accidental merg-
ing of two different syntactic categories, when they would both be imported in a different
module. There are several patterns in which this constraint can be violated. These patterns
include: declaring the same sort in the same module (Figure 3.5), shadowing an imported
sort (Figure 3.3) and importing a sort from two different modules (Figure 3.4). On the other
hand, it is allowed to import a particular sort via multiple paths, as Figure 3.6 demonstrates.

Figure 3.5: Double Sort name Figure 3.6: Diamond import
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Figure 3.7: Duplicate Constructor name

Figure 3.8: Constructor Overloading

Figure 3.9: Undeclared Sort

Figure 3.10: Forward Reference

Figure 3.11: Unresolved Import

Unique Constructors. For
constructors, the same con-
straints as for sorts hold: du-
plicate declarations are not al-
lowed, even not for different
sorts (Figure 3.7). However,
even when the constructors
have a different number of
arguments, overloading is al-
lowed (Figure 3.8). The ra-
tionale behind this behavior
is that it is always possible to
derive syntactically what in-
stance of the constructor was
meant to be used.

Transitive Imports. Further,
imports are transitive inMini-
SDF (which is shown in Fig-
ure 3.6 as well). This be-
haviour has two reasons. First
of all, the uniqueness checks
in the previous paragraph
are only correct and useful
when the occurrences they
check for are transitively visi-
ble. Secondly, when imports
are not transitive, situations
where a constructor is visible,
but its sort is hidden could
occur. This would compli-
cate type-checking of Mini-
Stratego patterns (which we
explain in subsection 3.1.4).

SortReferences. Moreover,
sorts that are referenced in
productionsmust be declared.
In order to validate that, they
should be imported in the
module that references them.
When a referenced sort is not
visible, an error is given (Fig-
ure 3.9).

Reference Direction. Fifth,
there is no notion of declara-
tion order within a module. Therefore it is possible to reference sorts that are declared later
in a file, as Figure 3.10 shows.
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id ::= Any identifier

module ::= module id section*

section ::= imports id* | signature sig* | rules rule*

sig ::= sorts id* | constructors cons*

cons ::= id : id | id : sort ˚...˚ sort -> id

sort ::= id | id˚ | id+ | id?

rule ::= id : pattern -> pattern with?

pattern ::= id | id(pattern, ... , pattern) | [pattern, ... , pattern] | <id> pattern

with ::= with strat

strat ::= id := pattern | strat; strat

Figure 3.12: Syntax definition for Mini-STR

Modules. Lastly, modules are globally visible. There is no notion of nested modules. On
top of that, modules that are referenced in an imports statement have to exist, as shown in
Figure 3.11.

3.1.3 Syntax of Mini-Stratego

The second language that is incorporated in this case study isMini-Stratego (Mini-STR). This
language, which is a small subset of the Stratego/XT language (Bravenboer, Kalleberg, Ver-
maas, and Visser 2008), encodes rewrite rules for program transformation. Rewrite rules
are encoded as rules that match a pattern, and subsequently build a term that might pos-
sibly be different than the input term. The syntax of Mini-STR is shown in Figure 3.12. In
Figure 3.13, a Mini-STR example program is shown. This program encodes a signature for
plus-expressions and brackets, and two rewrite rules that simplify the left- and right-hand
side of a plus-expression, respectively.

Figure 3.13: Mini-STR Example

Just as in Mini-SDF, a Mini-STR
module consists of three types of sec-
tions. First, the signatures section
declares the signatures of the data
that is transformed by the rewrite
rules. It can contain sorts subsec-
tions, which declared sort symbols,
and constructors subsections, which
declares constructors. Constructor
declarations can have two forms: a
nullary constructor is declared by its
name, and the sort it belongs to. Non-
nullary constructors are declared by
listing their argument sorts, separated by an asterisk, followed by an arrow and the name
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of the sort it belongs to. A sort is a reference to a sort symbol, that can be decorated by an
postfix arity operator.

Second, a Mini-STR module contain rules sections, which define rewrite rules. A rule
has a name, a match pattern, a build pattern and an optional with clause. The match pat-
terns define the set of ASTs this rule should be applied to, while the build pattern specifies
the output of the rewrite operation. A pattern can either be a variable, a constructor with a
number of sub-patterns as arguments, a fixed-size list with sub-patterns as its elements, or a
pattern transformed by another transformation rule. Finally, the optional with clause defines
a series of sub-transformations, whose output terms are assigned to variables. The assign-
ment operations in the with-clauses are executed sequentially, after matching the input, but
before building the output.

Finally, the imports sectionmakes the sorts, constructors and rules of an importedmodule
visible in the importing module.

3.1.4 Semantics of Mini-STR
In this section, we will explain the semantics of Mini-STR. First, the constraints of Mini-SDF
(as explained in subsection 3.1.2) naturally extend to, and actually hold for Mini-STR. How-
ever, in Mini-SDF, the constraints regarding visibility were only defined for sorts, because
only sorts can be referenced. In Mini-STR, it is possible to reference constructors and other
rules by name as well, and therefore the visibility and uniqueness constraints now hold for
constructors and rules as well.

Patterns Match patterns aswell as build patterns should bewell-formedwith respect to the
signature. For constructors that means that a constructor with the same name and arity of

Figure 3.14: Matching a list Figure 3.15: Building a list
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the pattern should be visible, and the argument patterns should have the sort that is expected
in that position. For example, the Bracket(Lit(a)) pattern would be invalid with respect to
the signature provided in Figure 3.13, because the sort of Lit/1 is Term, but the Bracket/1
constructor expects a term of sort Expr as its argument.

Figure 3.16: Pass list by variable

The validation of variables differs be-
tween match and build patterns. In match
patterns, the variable is declared in the
scope of the rule with the sort that is ex-
pected there. It is not possible to match on
the same variable twice. When a variable is
referenced in a build pattern, it should be de-
clared with the sort that is expected at that
position.

An interesting situation arises when
type-checking lists. Lists in patterns corre-
spond to positions in constructors that are
decorated with an operator, where an op-
tional operator (?) is interpreted as a list
with zero or one element. However, a partic-
ular list pattern canmap tomultiple of those.
For example, the pattern [Lit(v)] canmatch
any of Lit?, Lit* and Lit+. In Mini-STR,
we give errors on matches that cannot occur
according to the type of the list, as can be
seen in Figure 3.14, and we prevent building
lists that do not adhere to the type of the list
that is expected at that position. These val-
idations are implemented for variables that
have a list type as well, as can be seen in Fig-
ure 3.16.

Finally, a transformation can be called on
a sub-term. Such a pattern is well-formed when its input pattern is well-formed, and has the
same sort as the transformation input. The resulting sort is the output sort of the transfor-
mation.

Figure 3.17: Rewrite rules

Rewrite Rules. A rewrite rule is a
transformation of a term to another
term. In Mini-STR, a rule is validated
by checking that both the match pat-
tern and the build pattern are well-
formed. The type of the rule is the pair
of the input type and the output type.

As an example, consider the sys-
tem in Figure 3.17. The system
in that example will remove all un-
necessary brackets in an expression.
The first rule (simplify-term) will do
that for terms with sort Term, while
simplify-expr does that for expres-
sions. The first simplify-term instance
(on line 13) serves as a base case: it
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matches on literals, but returns them unchanged. The rule on line 14 matches on all terms
that have the form Bracket(Term(t)) (t can be any term with sort Term), and recursively re-
moves all brackets on its content.

As the aforementioned example shows, multiple rules with the same name can occur.
However, in that case it is checked that all the instances of the rule have the same input and
output sorts. This check enables the validation of patternswith sub-transformations, without
introducing the complication of type-dependent name resolution on transformations that are
open for extension. On line 18 of Figure 3.18, such an error is shown.

Figure 3.18: Errors in rewrite rules

Finally, the first rule shows
a with-clause. This clause
consists of a sequence of
build patterns that are bound
to an identifier. This clause
is executed sequentially af-
ter the match-pattern, but be-
fore the build pattern. This
means that variables in a
build pattern can reference to
variables from the input pat-
tern and to variables bound
earlier in the sequence, but
not to the destination vari-
able of the pattern, to vari-
ables that are yet to be build,
or to variables in the build
pattern of the rule output.
Conversely, variables in the
build pattern can reference to
identifiers bound in the with-
clause, as the references to l'
and r' show. Examples of er-
roneous binding patterns can
be seen in Figure 3.18.

3.1.5 Integration of Mini-SDF and Mini-STR
Now that we have introduced both languages, we describe how their integration works. The
core idea is to validate rewrite rules against the signatures that are provided by a syntax
definition, instead of a signature provided by a signatures section.

In order to implement that, an import in aMini-STRmodule can now resolve toMini-SDF
modules as well as to other Mini-STR modules. When a Mini-SDF module is imported, the
sorts and constructors extracted from the syntax definition become visible in the Mini-STR
module.

An example of what that could look like is depicted in Figure 3.19. At the right-hand side,
we see the rewrite system that was introduced earlier. However, instead of a signatures
section, there is an imports arith statement. This statements makes the signature of the
grammar on the left visible. These signatures are then used to validate the rewrite system.

The constraints on sort and constructor visibility work the same for Mini-SDF modules
imported in Mini-STR as they worked in the individual languages: Both sort symbols and
constructor symbols with a particular arity should be defined uniquely. Figure 3.20 shows
two Mini-SDF and two Mini-STR modules with a diamond import structure. The errors in
join.str show that a duplicate import of a sort S2 declared in both a Mini-SDF and a Mini-
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Figure 3.19: Mini-STR integration with Mini-SDF

Figure 3.20: Name resolution from Mini-STR to Mini-SDF

STR module gives an error. Neither is shadowing a constructor imported from Mini-SDF in
a Mini-STR module allowed.

Figure 3.21: Error on invalid import

Finally, Figure 3.21 shows
that an error is emitted when
a Mini-SDF module imports a
Mini-STR module. The rea-
son for this behavior is that
there would be no way to gen-
erate a parser from a signa-
ture imported from a Mini-
STR module, and neither do
rewrite rules have any mean-
ing in Mini-SDF.

3.2 Mod and Mini-SQL
In this section, we consider a more complicated case study: the integration of Mini-SQL and
Mod, which is a language with expressions, records, functions andmodules. This case study
is more complicated than the previous one in two ways:

• For Mod we will adapt an existing type system implementation, where we aim to min-
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imize the number of modifications to the existing specification.

• While Mini-SDF and Mini-STR operate over the same data model, the underlying data
models of Mod and SQL are rather different.

This section has a similar structure as the section about Mini-STR and Mini-SDF: first both
languages are introduced, and then their integration is described.

3.2.1 Syntax of Mod
The first language that is a part of this case study isMod. This is an already existing language
that is used to experiment with the Statix meta-language. Among its features are:

• Arithmetic and boolean expressions.

• Single-argument functions.

• Sequential, parallel and recursive let-bindings.

• Record types. Its members can be accessed using qualified names or a with-expression.

• Modules which can be nested. Its members can be accessed by importing or by quali-
fied names.

For this case study, we extended the language with string literals. In order to understand the
examples, a partial syntax specification for Mod is provided in Figure 3.22. In particular, it
contains most of the syntax related to record type and expressions.

id ::= Any identifier

program ::= decl*

decl ::= $ expr | def bind | record id { fdecl , ... , fdecl }

expr ::= ... | id | id { bind , ... , bind } | expr.id | with expr do expr | expr expr

bind ::= id = expr

type ::= Int | Bool | String | type -> type | id

fdecl ::= id : type

Figure 3.22: Partial Syntax definition for Mod

In Mod, a program is a sequence of definitions and expressions. A top-level definition
can be a value bound to an identifier or a record type definition. A record type is bound
to a type identifier, and contains the name-type pairs of all its fields. The first displayed
production for an expression is a reference to a variable, which must be defined earlier using
a def declaration. The second production initializes a record with the type that is bound to
the given identifier, by providing bindings for each field. Subsequently, the . operator can be
used to access a field. Additionally, a with-expression brings all the variables in a record in
scope as top-level definitions, so that they can be accessed without qualifying. Finally, using
a juxtaposition of two expressions, a function can be applied to a value.
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Figure 3.23: Example Mod program

An example of a programusingmost of these
constructs is shown in Figure 3.23. In this exam-
ple, lines one to three declare a record type with
one field with name i and type Int. At lines five
and seven, two recordswith that type are created.
The initialization expression for the field at line
seven contains an example of qualified access to
the field i of a1. At line nine, a with-construct is
used to access the field i of a2.

3.2.2 Semantics of Mod

Figure 3.24: Mod program with errors

Just as with the syntax definition, we
will only provide the semantics of the
mod language that are related to vari-
ables and records. Examples of all the
typing features that are discussed in
this section can be seen in Figure 3.24.

First, forward references are al-
lowed, as can be seen by the reference
to a2 at line one, and the references to
the record type A at lines three to nine.
Assignments and references should re-
solve, and have the correct type. For ex-
ample, at line three, the assignment of
a boolean value to an integer field and
the reference of an integer field at a po-
sition where a boolean value is expected are invalid.

Second, the initialization of fields should be correct. The correctness conditions are:

• A field may not be initialized twice. This is demonstrated by the errors on the i fields
at line five

• Fields that are not declared may not be initialized. This is shows by the error on the
initialization of field c at line five.

• All fields that are declared must be initialized. Therefore, the expression at line seven
causes an error.

This behaviour is slightly adapted in the integration of the languages, as will be explained in
subsection 3.2.5.

Finally, variable names should be unique. This holds for top-level definitions as well as
for field declarations. A violation of this rule is the redeclaration of the variable a3 at line nine.
Moreover, referenced variable must exist, as can be seen by the reference to the non-existing
variable n at line nine.

3.2.3 Syntax of Mini-SQL
The second language incorporated in this case study is Mini-SQL: a subset of the SQL data
definition and query language. The syntax of this language is shown in Figure 3.25.

In this language, it is possible to create tables and define stored procedures that perform
select queries on these tables. Members of a table are columns, which have a name, data
type and possibly some constraints. These column constraints can forbid NULL values, or
mark a column as primary key. The data type is either integer, date or varchar, which is
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id ::= Any identifier

num ::= Any integer literal

str ::= Any string literal

program ::= statement+

statement ::= CREATE TABLE id (columndef+, tconstraint*);
| CREATE PROCEDURE id paramdecl* AS select GO;

columndef ::= id type cconstraint*

type ::= INTEGER | VARCHAR | VARCHAR(num) | DATE

cconstraint ::= PRIMARY KEY | NOT NULL

tconstraint ::= CONSTRAINT id PRIMARY KEY (id)
| CONSTRAINT id FOREIGN KEY (id) REFERENCES id(id)

paramdecl ::= @id type

select ::= SELECT projection FROM tablespec (WHERE condition)?

projection ::= * | (columnref (AS id)?)*

columnref ::= id | id.id

tablespec ::= id (AS id)? | tablespec JOIN tablespec ON condition

condition ::= condition AND condition | condition OR condition | value = value
| value <> value | value < value | value > value | value IS NOT? NULL

value ::= str | num | @id | columnref | CONVERT(type, value)

Figure 3.25: Syntax definition for Mini-SQL

the SQL variant of a string. The varchar type can have an optional maximum length, which
has a default value of 80. The primary key constraint can alternatively be specified after the
column definitions, as a constraint on a table. Another table-level constraint is the foreign
key constraint, which declares that a particular column is a reference to another table.

Stored procedures are defined by a create procedure statement. A procedure can take
arguments, which are declared by name – type pairs. A procedure consists of a select state-
ment, of which the result set is returned. The from clause specifies the tables to query. A table
can optionally be aliased by adding an as clause. On top of that, a table can be joined with
another table. The projection clause determines the columns that will be included in the re-
sult set of the query. Similar to tables, columns can be renamed, using the as clause. Finally,
the result can be filtered with a condition specified in the where clause. Such a condition can
be a comparison of two values, or a conjunction or a disjunction of multiple conditions. A
value is a literal, or a reference to a column or procedure argument. Furthermore, the convert
function can be used to convert values to another type.
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Figure 3.26: Mini-SQL program

Finally Figure 3.26 shows an example program in Mini-SQL as it could have existed in a
web-application. Both tables contain three columns, with the various types that are included
in Mini-SQL. The email column is the only column where null values are allowed. In the
Users table, the primary key constraint is declared as a column constraint, while in the Logins
table the constraint is declared as a table constraint at line 11. Furthermore, the foreign key
constraint at line 12 indicates that the user column references a record in the Users tablewhen
its value matches with the user_id value of a record in the Users table.

3.2.4 Semantics of Mini-SQL

Figure 3.27: Duplicate columns

The type system of Mini-SQL contains ver-
satile set of static consistency validations. In
this section, we will explain these valida-
tions.

Existence. Firstly, references to tables and
columns in constraints should resolve. When
either a table or a column does not resolve, a
static error is given, as shown in Figure 3.28.
Line six in this figure shows that forward
references, in this case to the Users table,
are allowed. Similar constraints hold for
references to tables, columns and variables
in select statements. However, the evalu-
ation order of a select statement needs to
be considered carefully to decide if an orig-
inal name, or an alias should be used. First,
the table selections and renames in the from
clause are executed, after that the join con-
ditions and where clause, and finally the column selection and renaming. For this reason, the
conditions need to reference tables by their new name, as seen at line 19, while the columns
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Figure 3.28: Mini-SQL resolution errors

must be referenced by their old name, as shown by the reference to L.timestamp at line 23.
Furthermore, errors are given when columns or variables cannot be found, as displayed by
the references to U.emailaddress, @user and logindate on line 19 and 22.

Uniqueness. Secondly, names should resolve uniquely. Table names and procedure names
must be globally unique, and column names, constraint names, parameter names and aliases
should be unique within the scope of the table or procedure, respectively. This issue is par-
ticularly prevalent when a table is included multiple times in a result set, as demonstrated
in Figure 3.27. In that case, an unqualified reference to a column can resolve to both of the
result sets, and is therefore ambiguous. In such cases, a qualified reference must be used, as
shown by the N1.num reference in the join condition.

Constraints. The type system of Mini-SQL validates whether a table has exactly one pri-
mary key. When no primary key is present, a warning on the table definition is issued. When
there are multiple primary keys, errors on the primary key constraint declarations are given.
Examples of these messages are shown in Figure 3.29.
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Figure 3.29: Mini-SQL Primary Key errors

Additionally, Mini-SQL enforces that foreign key constraints are well-formed. Foreign
keys are valid when the referencing column, and the referenced table and column exist, and
have the same type. In the case of two varchar columns referencing each other, the referenc-
ing column must be at least as big as the referenced column. Finally, the referenced column
must be the primary key of the table.

Condition Typing. Furthermore, the expressions in the join condition and the where clause
should be well typed. These well-typedness conditions entail that only two values of the
same type can be compared. When it is needed to compare values of different types, they
must be explicitly converted using the convert function. However, when the input and the
target type of a call to convert are equal, a warning is given. In the same way, a warning is
given when is null or is not null is checked for a column with a not null constraint, or a
literal.

Result Set Type. A select statement returns a Result set, which can be seen as an anony-
mous tablewithout constraints. The projection clause determines the columns that it includes.
In Mini-SQL, it is not possible to access it directly, but we will see how result sets work in the
next section.

3.2.5 Integration of Mod and Mini-SQL

Figure 3.30: Mod – Mini-SQL example

Now that we explained how the lan-
guages in this case study are defined,
we will explain their integration. This
integration contains two parts: using
table definitions to create records, and
calling stored procedures as if they
were defined as functions. In the sub-
sequent sections, we will discuss both
integrations.

Record Creation. Firstly, it is possible
to create a record using a reference to a
table declaration, rather than a record
type definition. Columns of the ta-
ble definition are interpreted as record
fields. An example of such a program
is shown in Figure 3.30.
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Figure 3.31: Record initialization errors

Figure 3.32: Record in Foreign Key field

Similar to regular record initialization expressions, an error is given, as demonstrated by
the errors on the id and text fields. Moreover, when an unknown column is initialized, an
error is given as well, as shown by the qid field. However, there is a slight relaxation of these
conditions: it is allowed to omit values of columns without a not null constraint. This is
shown by the fact no title field is initialized in Figure 3.31, but no error is emitted for that.

Because the types of Mod and SQL do not fully align, some type mapping is needed.
We have already seen the first example: mapping tables to records. Furthermore, both lan-
guages have an integer type, which therefore requires no special attention. To properly han-
dle varchar types in Mod, and vice versa, we introduced string literals and types. The length
constraint on varchar values is ignored in the mapping, because, in imperative languages, it
is not possible to track string length in every situation. Finally, to handle date types in Mod,
we introduced a built-in record type with name Date, and one field: epoch : Int. Initializa-
tion of such a field is demonstrated at lines five to seven of Figure 3.31.

Finally, columns with a foreign key constraint are handled in a special way. Instead of
being initialized with the data type of the column, such a field must be initialized with a
record of the type of the referenced table. For example, consider the program in Figure 3.32.
Here, the author column is a reference to the Authors table, and hence it is initialized with a
record of type Authors.

Procedure Calls. Secondly, it is possible to call stored procedures, defined in Mini-SQL,
with the function application syntax of Mod. For example, Figure 3.33 shows a procedure
that returns all the quotes of a particular author. In the Mod program at the right, this pro-
cedure is called, and part of its result is compared to the previously created record.

To make type-checking procedure calls work, some additional types must be mapped.
First, an SQL procedure can take multiple arguments, while a Mod function can only take
one. Therefore the procedure types must be curried before using them in a Mod context.
This translation has the effect that procedures without parameters behave as values in Mod.
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Figure 3.33: Procedure invocation

Figure 3.34: Procedure without Parameters

Figure 3.35: Procedure Date Parameter

Figure 3.36: Mod – SQL: Procedure Foreign Key return
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For example, in Figure 3.34, the allQuotes procedure can be referenced as a value at line nine
of the Mod program.

Furthermore, there is no trivial way to represent SQL result sets in Mod, because Mod
does not have built-in lists or other collection types. Therefore, we represent a result set as
a record type. This type has two fields: hd for a result instance, and tl for the tail of the
list, which contains the remaining results. Thus, the expression tl.hd at line ten should be
interpreted as accessing the second element of the result set.

Moreover, the Date typewe defined earlier is fully compatible with procedure parameters
and return values as well. In Figure 3.35, there is a procedure that has a date parameter. Such
a procedure can be called just by providing it a record with type Date. In the same way, the
epoch field can be read from a value returned by a query.

Finally, when a column with a foreign key constraint are returned, its type is just the
data type with which the column is declared, not a record representation of the table row it
references. An example of this behavior is shown in Figure 3.36. The reason for this behavior
is that standard SQL Semantics do not guarantee that all the fields of the referenced record
are included in the result set. Hence, the fictional runtime would not be able to build this
record without imposing new semantics on the query.

In conclusion, we have presented two case studies in which two languages are semanti-
cally integrated. These case studies show that, even for two rather different languages, it is
still to define meaningful static semantics. However, we have not formalized the static se-
mantics yet. An approach to do that in a modular fashion is therefore presented in chapter 4.
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Chapter 4

Multi-Language Type System
Definition in Statix

This chapter explains how to design composable type systems in Statix (Antwerpen, Poulsen,
Rouvoet, and Visser 2018) that adhere to the criteria specified in chapter 2. First, we will
introduce the Statixmeta-language in section 4.1. Readers that already have some experience
with Statix might want to skip this section. After that, we explain a design pattern that uses
Statix to define composable type systems in section 4.2. Finally, in section 4.3 we validate this
pattern by explaining how we used it to define the type systems of the case study languages
we introduced in chapter 3.

4.1 Introduction to Statix
Statix (Antwerpen, Poulsen, Rouvoet, and Visser 2018) is a specification language with pre-
cisely defined declarative and operational semantics. Type systems are expressed in a nota-
tion that is close to formal inference rules. Name resolution is expressed using scope graphs
(Néron, Tolmach, Visser, andWachsmuth 2015), whichprovide a powerful, language-agnostic
approach to encode name binding patterns. To execute specifications, a constraint solving
approach is applied. In this section, we provide the background knowledge about Statix
that is required to understand the approach introduced in section 4.2 and the examples. In
this section, we focus on the declarative interpretation of Statix. Some relevant operational as-
pects will be discussed in chapter 5, where appropriate. For a more in-depth discussion on
the operational semantics of Statix, readers are referred to the work of Rouvoet, Antwerpen,
Poulsen, Krebbers, and Visser (2020).

4.1.1 Typing Rules in Statix
Type systems in Statix are specified using inference rules. Typing rules are generally writ-
ten as a proposition under a bar (the conclusion) and a series of propositions above the bar
(the premises). Such rules indicate that one can infer that the conclusion holds when all the
premises hold. Usually, a typing judgment (which is a possible proposition) is written as
Γ $ t : T , where t is a term from an AST, T is the type of this term, and Γ is a set of assump-
tions. In this thesis, when the assumptions are not relevant for a particular rule, the Γ symbol
is omitted, but assumed to be implicitly threaded to all premises. Assuming the reader is fa-
miliar with such typing judgments, we will introduce the notation that Statix provides. As
a running example, we use the small expression language in Figure 4.1

We must declare the signature of this syntax in Statix as well. This can be done with the
same notation as in Mini-STR, which was introduced in subsection 3.1.3. For the grammar
shown in Figure 4.1, a signature is provided in Figure 4.2.
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exp ::= int | str | id | exp + exp | exp < exp
| let id = exp in exp | if exp then exp else exp

Type ::= Int | String | Bool

Figure 4.1: Expression language grammar

signature
sorts Exp constructors

Int : int -> Exp
Str : string -> Exp
Id : string -> Exp
Plus : Exp * Exp -> Exp
Lt : Exp * Exp -> Exp
Let : string * Exp * Exp -> Exp
If : Exp * Exp * Exp -> Exp

sorts TYPE constructors
INT : TYPE
STR : TYPE
BOOL : TYPE

Figure 4.2: Expression signature

Moreover, we must explicitly declare the signature of typing predicates. In this exam-
ple, we have only one functional predicate, shown in Figure 4.31. This rule has the type
Exp -> TYPE, which can be read as a regular function type: it computes a TYPE for an Exp.

rules
typeOfExp: Exp -> TYPE

Figure 4.3: Rule signature

As a first example, consider the typing
rule in Figure 4.4, which states that for any
integer literal, it can immediately be de-
rived that its type is Int, because there are
no premises. Its Statix counterpart on the
right encodes the same constraint: when
typeOfExp is validated for an Int(_) literal, it is assigned the type INT(), without validating
any premise.

T-Int $ int : Int typeOfExp(Int(_)) = INT().

Figure 4.4: Integer typing

However, most of the typing rules have premises that need to be satisfied before its con-
clusion holds. As an example, consider the rule to type plus-expressions in Figure 4.5. This
rule states that a plus-expression has type Int if both its arguments have type Int. In Statix,
these premises can be encoded with the :- operator, which corresponds to the inference bar
of regular typing rules. In the right part of the figure, an equivalent rule is given in Statix
notation. This rule indicates that the type of a Plus expression is Int, provided that its left
and right argument have type Int.

1Alternatively, a predicate can be declared in a signature constraints section. Although this is more
idiomatic, it seems not to be used anywhere. Joining established practice, declarations in the rules section are
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T-Plus $ e1 : Int $ e2 : Int
$ e1 + e2 : Int

typeOfExp(Plus(e1, e2)) = INT() :-
typeOfExp(e1) == INT(),
typeOfExp(e2) == INT().

Figure 4.5: Plus typing

This figure introduces two more constraint expressions that Statix provides. First, the ==
operator validates syntactical equality of terms. Second, the , operator denotes constraint
conjunction.

Next, we consider the less-than operator from our expression language. We want this
operator to type-check on any argument type, provided that the arguments on the left-hand
side and on the right-hand side have the same type. An example of such a rule is provided at
the left of Figure 4.6. In its Statix counterpart, we see that a new variable T is introduced with
the {T} notation. In Statix, any meta-variable that is not part of the head of a rule must be
introduced in this way. This variable represents the type the left and the right sub-expression
have. By using a single variable, we encode that these types should be equal.

T-Lt $ e1 : T $ e2 : T

$ e1 ă e2 : Bool

typeOfExp(Lt(e1, e2)) = BOOL() :- {T}
typeOfExp(e1) == T,
typeOfExp(e2) == T.

Figure 4.6: Less-than typing

A slightly more complicated example is provided by the typing rule for if-then-else ex-
pressions, shown in Figure 4.7. In addition to checking that both branches have the same
type, this type is returned as the type of the complete expression as well.

T-If $ c : Bool $ e1 : T $ e2 : T

$ if c then e1 else e2 : T

typeOfExp(If(c, e1, e2)) = T :-
typeOfExp(c) == BOOL(),
typeOfExp(e1) == T,
typeOfExp(e2) == T.

Figure 4.7: If-then-else typing

In this rule, we see that the type of the condition should be Bool, and the types of the
expression in the then-branch should be equal to the type of the else-branch. On top of that,
the type that those expressions have is returned by the predicate.

Finally, there are representatives of the J and K constraints in Statix, which are shown
in Figure 4.8. The true constraint, which unconditionally succeeds, is shown at the left side.
This constraint can equivalently be written as top()., because having a premise that always
holds is equivalent to having no premise at all. Similarly, the false constraint, which uncon-
ditionally fails, is shown at the right side of the figure.

top() :- true.
bottom(msg) :-
false
| error $[Error: [msg]] @msg.

Figure 4.8: Top and Bottom constraints

used throughout this thesis, including its case studies.
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Additionally, the last line of the bottom constraint shows another Statix feature: the pos-
sibility to provide custom error messages to a constraint. When a constraint with a custom
error message template fails, the Statix runtime will create an error message from the tem-
plate. This template is a text literal in which variables can be inserted by wrapping them in
square brackets, such as the [msg] part. The position of the message is determined by the last
part of the message specification: a term preceded with an @ symbol, which is assumed to be
a node in the AST that is type-checked.

4.1.2 Introduction to Scope Graphs
Until now, we have discussed the typing rules that are independent of the outer context. That
is, the type of the expressions discussed so far can be decided by traversing the subtree of
its AST node. However, it is not possible to type variables and let-expressions in this way,
because let-expressions need to pass the type of the newly introduced variable down to their
subtrees, and variables need to lookup their type.

In traditional approaches, there is a set of assumptions Γ, sometimes denoted as ‘envi-
ronment’, which consists of identifier – type pairs (denoted as x : T ). These assumptions are
passed down with the typing judgment. Using these assumptions, variable bindings can be
introduced and queried. Typing rules for let-expressions and variables that use this principle
are depicted in Figure 4.9. The rule for let expressions extends the environment with a bind-
ing for the introduced variable, which are looked up by the T-Var rule. Therefore, variables
can only be typed if its identifier is introduced earlier by a let-expression.

T-Let Γ $ i : Tx Γ, x : Tx $ e : T

Γ $ let x = i in e : T
T-Var x : T P Γ

Γ $ x : T

Figure 4.9: Let and Var typing

However, Statix takes a different approach. Name binding patterns are encoded using
scope graphs (Antwerpen, Poulsen, Rouvoet, and Visser 2018; Antwerpen, Néron, Tolmach,
Visser, andWachsmuth 2016; Néron, Tolmach, Visser, andWachsmuth 2015). In this section,
we give a high-level introduction to scope graphs. For an in-depth, formal treatment of the
semantics of scope graphs in Statix, we refer to the work of Antwerpen, Poulsen, Rouvoet,
and Visser (2018).

Scope graphs consist of three components:

• Scopes represent ”a region in a program that behaves uniformly with respect to name
resolution”. These scopes are modeled as nodes in the graph. In text, we denote them
with a sharp (e.g. #1). Its graph representation is shown in Figure 4.10a.

• Labeled, directed edgesmodel visibility relations between scopes. For example, #1 P #2
indicates that the graph contains an edge from #1 to #2 with label P. Its graph repre-
sentation can be seen in Figure 4.10b.

• Declarations model a datum under a relation symbol in a scope. Its textual notation
is #1 rel d, meaning datum d is declared in scope #1 under relation rel. Its pictorial
equivalent is shown in Figure 4.10c. Note that in the pictures, we often use a colon,
instead of a bracketed pair, to make the notation less cluttered. For example, instead of
#1 rel (x, INT), we write #1 rel x : INT.

• In Statix, it is possible to pass around scopes, just as regular data terms. This is used to
model user-defined composite data types, such as records, modules or classes. The
scope contains declarations for the members of the types. The textual notation for
scopes in terms is MOD(#1) #1, meaning that the #1 in MOD(#1) refers to scope #1.
In a picture, we denote associated scopes as displayed in Figure 4.10d.
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1

(a) Scope

1 2P

(b) Edge

1 x : INT()rel

(c) Data

1MOD(#1)

(d) Association

1x rel

(e) Query

Figure 4.10: Scope Graph notation

Finally, information can be retrieved from a scope graph using queries. A query from a
scope traverses the scope graph to find datums thatmatch its conditions. A query has several
parameters:

• The relation to query. Only datums declared under this relation will be returned by
the query.

• Path well-formedness condition: a regular expression of labels that specifies which
paths arewell-formed. Only datums that are reached through a pathwhose edge labels
are in the language described by the regular expression are included in the query result.

• A match predicate, taking a single datum as input. Only datums that satisfy this pred-
icate will be included in the query result. Its default value is true, meaning that all
datums under the specified relation that satisfy the path well-formedness condition
are returned.

• Result comparison parameters:

– A strict partial order on paths, described by less-than relations on labels. This
relation defines a prefix-order on paths.

– A ‘shadow’ predicate, which takes two datums as input. Its default value is false,
meaning that no shadowing is performed.

When the result set contains multiple datums, and it holds for a datum d that there
exists another datum d1 which path is strictly smaller that d, and the shadow predicate
holds, then d is removed from the result set.

The result of a query is a list of path – datum tuples. In scope graphs, we depict queries as
shown in Figure 4.10e. The value in the box represents an equality predicate with respect to
that value, and the name on the arrow is the queried relation. Usually we do not depict the
other parameters. These should be clear from the text, or even irrelevant at all. Especially
shadowing is not widely used in this thesis.

To get a better understanding of scope graphs, we consider a small program in our ex-
pression language, shown in Figure 4.11. This example consists of two let-expressions, which
introduce two variables, x and y, which are added in the inner expression. Its corresponding
scope graph is shown on the right side.

In this scope graph, scope #1 corresponds to the global scope, scope #2 to the in expres-
sion of the outer let (lines two and three), and scope #3 corresponds to the in expression of
the inner let (line three). The outer let introduces the variable x with type INT() in scope
#2. That ensures that all expressions in scope #2 and its subscopes can see this variable. The
same holds for the y variable in the inner let expression. In the graph, variable references,
with their resolution paths are shown as well, with the correspondence between references
and queries indicated by colors.
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let x = 3 in
let y = x + 2 in

x + y

1

2

3

x : INT()

y : INT()

P

P

var

var

x var

x var

y

var

Figure 4.11: Reference resolution in scope graphs

signature
relations

var: string -> TYPE

name-resolution
labels P

rules
typeOfExp : scope * Exp -> TYPE

Figure 4.12: Relations and Labels

Now, we discuss how these rules can be
encoded in Statix. Because of the versatility
of the scope graph model, these rules tend
to be slightly more complicated. First, we
must declare the relations and labels we use
in our specification. In Figure 4.12, we de-
clare a relation var, which maps identifiers
to their types, and a label P. In this specifi-
cation, #1 P #2 should be interpreted as
”scope #2 is a lexical parent of #1”. Further-
more, we adapt the typeOfExp predicate to ac-
cept a scope parameter, which represents the scope in which the expression is typed.

typeOfExp(s, Let(x, i, b)) = T :- {Tx s_body}
typeOfExp(s, i) == Tx,
new s_body, s_body -P-> s,
!var[x, Tx] in s_body,
typeOfExp(s_body, b) == T.

Figure 4.13: Let typing rule

Having provided these signatures, we
show the Statix rule for let-expressions in
Figure 4.13. Firstly, there is a new s parame-
ter, which corresponds to the scope inwhich
this expression is evaluated. At line 2, the
type of the variable initialization expression
is bound to the variable Tx. Then, at line 3,
a new scope is introduced with the new key-
word. The s_body -P-> s constraint should
be read as #sbody P #s. It indicates that s_body has an edge with label P to s. At line, 4,
the variable is declared in newly introduced scope by the !var[x, Tx] in s_body constraint,
which represents #sbody var (x : Tx). Finally, the type of the let body is evaluated in the
newly introduced scope. The type of the body is then returned by the predicate as type of
the complete expression.

typeOfExp(s, Var(x)) = T :-
query var

filter P*
and { x' :- x == x' }
min $ < P
and true
in s |-> [(_, (_, T))].

Figure 4.14: Var typing

Finally, the typing rule of a variable reference is shown
in Figure 4.14. The type of a variable is looked up using
a query. At line 2, we see that the queried relation is var,
which corresponds to the declarations that aremade in the
rule for let expressions. Second, the pathwell-formedness
predicate is P*, which indicates that a reference may re-
solve to a declaration in the scope in which the query
started, or any parent scope. Third, the { x' :- x == x' }
parameter is an anonymous predicate, which is evaluated
for every variable declaration x' that the query encounters.
It is satisfied when it has a variable name that is equal to
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the reference x. This condition ensures that a variable only resolve to declarations with the
same name. For example, when we would leave it out, the reference x in Figure 4.11 would
resolve to the y declaration, which is obviously incorrect. Fourth, the min $ < P query param-
eter defines a path order. Here, the $ symbol represents the end of a path. Therefore, $ < P
indicates shorter paths are preferred over longer paths, which corresponds to the regular
notion of shadowing. Fifth, the true part indicate that all results shadow each other. This is
correct, because the data well-formedness predicate already ensures that all results have the
same name. Together, the last two parameters ensure that only the closest declaration of a
particular name is included in the query result. Finally, the in s term indicates that scope
s is the scope the resolution must start from. A Statix query returns a list of path – datum
pairs, where a datum is an n-ary tuple containing the arguments to the relation. The pat-
tern the query result is matched to indicates that a single result (one outer tuple in the list)
is expected. The first position of this tuple, which is the path, is ignored using a wildcard.
Similarly, we ignore the name of the declaration using the wildcard in the inner tuple. Even-
tually, we match the type of the declaration that is returned by the query with the T variable.
This variable is then returned as the result of the rule.

4.1.3 Modules
The last Statix feature we discuss here aremodules. Until now, we have only shown fragments
of Statix specifications. In reality, these specifications must be organized in modules. A part
of the Statix specification for the expression language we used so far is shown in Figure 4.15.

module type

signature
sorts TYPE constructors

INT : TYPE

module exp
imports type

signature
sorts Exp

rules
typeOfExp: scope * Exp -> TYPE

module arith
imports type
imports exp

signature
constructors
Int : int -> Exp
Plus : Exp * Exp -> Exp

rules
typeOfExp(_, Int(_)) = INT().
typeOfExp(s, Plus(e1, e2)) = INT() :-
typeOfExp(s, e1) == INT(),
typeOfExp(s, e2) == INT().

Figure 4.15: Statix modules

In this figure, we see three modules: type, exp and arith. The exp module imports the type
using an import statement. Similarly, the arith module imports both other modules. Import-
ing makes all declarations from the imported module visible. Moreover, the extensions to
the Exp sort and typeOfExp rules in the arithmodule show that sorts and constraints can be ex-
tended. When executing a specification, the runtime will resolve modules, and combine the
partial specifications each module provides into a complete specification. This specification
can then be used to type-check actual programs.

4.1.4 Type-checking complete Programs
Using these constraints, complete type system specifications for a wide variety of languages
can be expressed. Moreover, these specifications can also be executed for a particular pro-
gram. In order to ensure that the solver knows how to use a specification to type-check a

39



4. MULTI-LANGUAGE TYPE SYSTEM DEFINITION IN STATIX

project2, two special predicates must be provided. First, a projectOk: scope predicate must
be present. This predicate, which is most often used to declare built-in types, is validated
once for a project. Second, a fileOk: scope * Start predicate must be declared. This predi-
cate is instantiated once for every file in the project, in order to ensure that all source files are
well-typed. In Figure 4.16, the constraint set that represents this behavior is shown.

new s,
projectOk(s),
fileOk(s, file1),
fileOk(s, file2),
...
fileOk(s, fileN),

Figure 4.16: Project Type-checking

Worthmentioning is that the same scope
is passed to all the predicates. In this way,
the type-checker for every file can declare
its top-level definitions in the global scope.
Since queries of other files can resolve to
this same global scope, these declarations
become reachable by type-checkers of other
files as well. This enables name resolution
queries to cross file boundaries.

4.1.5 Summary
In summary, Statix allows modular encoding of formal and declarative type-checking rules.
In order to model context-sensitive constraints, such as name resolution, scope graphs are
used. In such graphs, scopes are modeled as nodes, in which declarations can be added. Us-
ing labeled edges and highly customizable queries, a broad range of name binding patterns
can be encoded.

Now that we gave a short introduction to type system specification in Statix, we will
show how the Statix features we explained so far can be leveraged to define composable,
interoperating type systems.

4.2 Defining Composable Type Systems in Statix
In this section, we introduce the Shared Concept Interface (SCI) pattern, which is a design
pattern for Statix specifications that can be used to define mutually agnostic, composable
type systems. This design pattern is based on the property that queries in scope graphs need
not be aware of the reason why their results are present in the scope graph. That is, scope
graph declarations and queries are loosely coupled. Hence parts of a Statix specification that
relate to each other at runtime, can be agnostic at compile time.

In short, this design pattern assumes that analysis for multiple languages is executed in the
same global scope. When that is the case, a language can expose its declarations in the shared
global scope, which makes them reachable by queries from other languages. To ensure that
the relations and terms of different languages match, those are extracted in interface modules,
which should be used in the specifications of the individual languages. In the remainder of
this section, we explain the role of the interface module and the way languages interoperate
with it.

4.2.1 Interface Module
First, the semantic concepts that should be shared with other type systems are encoded in a
separate Statix interface modules. These concepts include:

• Sort and constructor declarations for the data terms that can be communicated.

• Relations that can be used to expose this data.
2In this thesis, we restrict to multi-file analysis only.
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• The labels that manage the visibility of declarations.

Labels should be included in the interface as well, because Statix uses qualified names for
labels internally. When labels would be defined in the individual languages, a language can-
not define a path regex that queries the part of the scope graph defined by another language,
because it can not reference its labels.

As an example of such a sharedmodule, consider the interface of the integration between
Mini-SDF and Mini-STR in Figure 4.17. This interface encodes a representation of sorts and
constructors by respectively the SORT and CONS declarations, and their corresponding construc-
tors. A SORT corresponds to a sort declaration. A TYPE is a sort with a multiplicity. The CONS
constructor has three arguments. The first argument is the sort for which this constructor is
a production. The second argument represents the arity of the constructor. Making the arity
explicit makes queries to a constructor declaration easier. The third argument represents the
types of the arguments that need to be supplied to this constructor. The sort and cons rela-
tions allow declaring actual instances in a scope graph. Finally, the P and I labels (for lexical
parent and import, respectively) can be used to encode a resolution policy.

module abstract-signature

signature
sorts SORT constructors

SORT : string -> SORT

sorts TYPE constructors
SINGLE : SORT -> TYPE
OPT : SORT -> TYPE
ITER : SORT -> TYPE
STAR : SORT -> TYPE

sorts CONS constructors
CONS : SORT * int * list(TYPE) -> CONS

relations
sort: string -> SORT
cons: string -> CONS

name-resolution
labels P I

Figure 4.17: Abstract signature interface (summarized). The complete interface is included
in section A.1

4.2.2 Language Module
After having established an interface, a language implementer can use this interface to ex-
pose definitions his language can share, and query for definitions that might be declared by
another specification implementing the interface. For example, consider the code from the
Mini-SDF specification in Figure 4.18 and Figure 4.19.

4.2.3 Conventions
Usage of this design pattern relies on strict adherence to particular conventions by the users
of the interface. In this section, we discuss two groups conventions that accompany an inter-
face: the usage of relations and the usage of labels (i.e. maintaining a particular structure in
the scope graph).
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sortOk: scope * SortDecl
sortOk(s, SortDecl(n)) :-

!sort[n, SORT(n)] in s.

Figure 4.18: Interface usage (decla-
ration)

typeOfSortTerm : scope * SortTerm -> TYPE
typeOfSortTerm(s, Ref(SortRef(n))) = SINGLE(S) :- {S}
query sort

filter P* I*
and { n' :- n == n' }
min $ < P, $ < I, P < I and true
in s |-> [(_, (_, S))].

Figure 4.19: Interface usage (resolution)

Relation usage. When multiple languages are using this module to define queries, the re-
sults of these queries can resolve to declarations made by another language. However, such
interfaces should be used in a correct way. When invalid data is provided in a declaration,
a different language may interpret it incorrectly, or is not able to use it at all, breaking the
interoperability.

To encourage proper use of the interface, we recommend to provide predicates for declar-
ing and querying the relations in the interface. As an example, consider an excerpt from the
integration between Mini-SDF and Mini-STR in Figure 4.20, that encode how to declare and
query constructors.

rules
declareSort: scope * string
resolveSort: scope * string -> SORT

declareSort(s, n) :-
!sort[n, SORT(n)] in s.

resolveSort(s, n) = S :-
query sort

filter P* I*
and { n' :- n == n' }
min $ < P, $ < I, P < I and false
in s |-> [(_, (_, S)) | _].

Figure 4.20: Examples of wrapper predicates

Besides encouraging correct use of the interface, these wrapper interfaces can increase
evolvability as well. For example, this interface does not encode the uniqueness constraints
on sorts and constructors yet. Imagine that the language designer wants to implement these
constraints in the interface, to ensure that any user of the interface can safely assume these
constraints hold. He adapts the interface with the changes depicted in Figure 4.21.

Now, all type systems that manually created instances of the SORT constructor are broken,
because the constructor signature changed. However, the signature of the predicates did not
change, and hence all specifications that used the declareSort predicate do not need adaption,
or even recompilation. Unfortunately, Statix has no features to hide constructors or relations
to enforce this pattern, whichwould allow interface designers to carefully expose an interface
to the type systems implementing it.

Label usage. The second convention that must be adhered to by the language designers is
about the structure of the scope graph. As an example, imagine a situation where a language
implementer needs an intermediate scope for imports (e.g. to declare sort renamings). When
he implements it in the way depicted in Figure 4.22, the usual path regex (P* I*) cannot
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signature
sorts SORT constructors

SORT : string * scope -> SORT

rules
declareSort(s, n) :- {id}

new id,
!sort[n, SORT(n, id)] in s,
query sort

filter P* I*
and { n' :- n == n' }
in s |-> [_].

Figure 4.21: Interface adaption

rules
import(s, n, rn) :- {s_mod s_int}

resolveMod(s, n) == MOD(s_mod),
new s_int,
s -I-> s_int, s_int -P-> s_mod,
renameSorts(s_int, rn).

Figure 4.22: Incorrect label usage

resolve imports, because there will be a P label after the I label, which does not match this
regex.

Now, this particular language specification can use P* (IP)* aswell-formedness condition
in his queries, and his specificationwould give correct results. However, thisway of using the
interface breaks interoperabilitywith other languages that use P* I* as their well-formedness
condition. Hence, an invariant on the graph structure is an essential part of the interface.
Unfortunately, there is no trivial way to force language implementers to create a well-formed
subgraph, or even validate whether they do so.

4.2.4 Publish – Subscribe
When comparing this pattern to other design patterns, its similarity to the publish-subscribe
design pattern in Object-Oriented programming is evident. In this analogy, values are ‘pub-
lished’ by creating declarations in the scope graph, and ‘received’ by being returned in the
result of a query. The interface acts as a broker, using predicates to prescribe publication
strategies and using other predicates that manage the receiving of values.

Now that we have established our strategy to define multi-lingual type systems, we will
explain how we used this pattern in the case studies we introduced in chapter 3.

4.3 Case studies
In this section, we return to the case studies we introduced informally in chapter 3, and
discuss in more detail how we implemented their interaction using the pattern introduced
in the previous section. For each study, we summarize the concepts the languages share, and
discuss how these are encoded in an interface. After that, we discuss how the individual
languages use the interface module. Then we illustrate the interoperation with examples,
and explain in-depth how its works internally. Finally, we summarize the case study, and
name the key findings.
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4.3.1 Mini-SDF + Mini-STR
In the Mini-SDF – Mini-STR case study, we implemented an integration where Mini-STR
rewrite rules can be validated against signatures that are derived from a Mini-SDF syntax
specification.

Modules. In general, the Mini-SDF and Mini-STR languages share the concept of abstract
signatures and the concept of modules. Because the resolution of signatures from othermod-
ules depends on the module import mechanism, we first explain the module interface, and
after that the representation of abstract signatures.

In Figure 4.24, a summarized module interface is shown. This interface provides a MOD
sort and constructor. The constructor takes a scope argument, in which all the declarations of
that module are added, and a ROLE argument, which indicates whether this module supplies
or consumes a signature. By exposing its scope, other modules can construct edges to this
module, to model importing. Second, a relation mod is provided, which allows declaring and
querying modules. To declare modules, the declareMod predicate is provided. This predicate
takes a scope, which will usually be the global scope, a module name and a module scope,
and creates a corresponding definition. Finally, the import predicate defines how to import
a module. It takes a scope, a module name and a role, and then queries the mod relation
to find a corresponding module declaration. From that declaration, it extracts the scope of
the module, and constructs a corresponding edge to it. Using this edge, queries from #s can
reach declarations in #smod. Finally, the itemsOk predicate, of which the definition is discussed
in section 4.3.1, validates that no duplicate sort and constructor names are imported.

Note that the resolution policy for modules is determined by the filter P* part of the
query. In this case, nestedmodules are not supported. As the example in section 4.2.3 shows,
it is important to have a consistent resolution policy between languages. Therefore it is very
important for interface designers to anticipate the expectations of their future users, and
manage them correctly.

In Figure 4.25, we see how this interface is used by Mini-SDF. An excerpt of its syntax
is shown in the signature section. A Mini-SDF file consists of a module with a name and a
list of sections. One type of sections is the imports section, which contains a list of module
references. When a module is typed, a declaration for it is made using the declareMod predi-
cate from the interface. Furthermore, when a module is referenced in an imports section, the
import predicate is used to import it into the module scope.

The interface is used in a similar manner in Mini-STR. However, modules are declared
with the CONSUME() role, and a wildcard is passed as to the role parameter of the import predi-
cate, indicating that all module roles are allowed.

In order to understand this mechanism, consider the example provided in Figure 4.26.
In this example, two modules parent and child, are provided, where the latter imports the
former. In the corresponding scope graph on the right, we see that each of these modules
corresponds to a declaration in the global scope. Moreover, we see how the import edge is
established. First, a query from #3 reaches the declaration of the parent module. From this
declaration, the scope that corresponds to this module is extracted. Finally, the import edge,
labeled with I, is created.

Signatures. The second component of the interface module that enables interoperability
between Mini-SDF and Mini-STR is the description of abstract signatures. For reference, a
complete interface for abstract signatures in shown in Figure 4.27. This interface contains the
regular sorts, constructors, relations and predicates for the definition of signatures.

The scope arguments to the SORT and CONS constructors do not contain any declarations.
Instead, the fact that they are unique is used for name duplication checks, as discussed in
section 4.2.3.
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The TYPE sort corresponds with a position in a constructor. It can either be a single pro-
duction, an optional production or a list of productions. List types build with the ITER con-
structor must contain at least one element, while list types build with the STAR constructor
may be empty.

resolveCons(s, n, a) = C :-
query cons

filter P* I*
and { c :- c == (n, CONS(_, a, _)) }
min $ < P, $ < I, P < I
and true
in s |-> [(_, (_, C))].

Figure 4.23: Constructor resolution

Finally, the second parameter to the
CONS constructor denotes the arity of the
constructor. Mini-STR allows overloading
by arity, and therefore queries to construc-
tor declarations need to be parameterized
with a particular arity. To make these
queries easier, we include the arity explic-
itly in the constructor. As an example, the
definition of resolveCons is provided in Fig-
ure 4.23. In the match predicate, the CONS
constructor is deconstructed, and it is val-
idated that the provided name and arity of the constructor match with the declaration.

The declareCons predicate always ensures that this parameter matches the length of the
parameter list. In the graphs in this section, we will omit the scopes that serve as identity as
well as the SORT and SINGLE constructors for brevity.

module modules

signature
sorts ROLE constructors

SUPPLY : ROLE
CONSUME : ROLE

sorts MOD constructors
MOD: scope * ROLE -> MOD

relations
mod: string -> MOD

name-resolution
labels P I

rules

declareMod: scope * string * scope * ROLE
import: scope * string * ROLE
itemsOk: string * scope * scope

declareMod(s, n, s_mod, R) :-
!mod[n, MOD(s_mod, R)] in s.

import(s, n, R) :- {s_mod}
query mod

filter P*
and { n' :- n' == n }
in s |-> [(_, (_, MOD(s_mod, R))],

s -I-> s_mod,
itemsOk(n, s, s_mod).

Figure 4.24: Module interface

module minisdf

imports modules

signature
sorts Start constructors

Mod: string * list(Section) -> Start

sorts Section constructors
Import: list(ModRef) -> Section

sorts ModRef constructors
ModRef: string -> ModRef

rules

fileOk: scope * Start

sectionsOk: scope * list(Section)
sectionOk: scope * Section

importsOk: scope * list(ModRef)
importOk: scope * ModRef

fileOk(s, Mod(n, ss)) :- {s_mod}
new s_mod,
s_mod -P-> s,
declareMod(s, n, s_mod, SUPPLY()),
sectionsOk(s_mod, ss).

importOk(s, ModRef(n)) :-
import(s, n, SUPPLY()).

Figure 4.25: Module interface usage
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parent.msdf
module parent

child.mstr
module child

imports parent

1parent : MOD(2) child : MOD(3)

2 3

P P

I 2⃝

mod mod

parentmod 1⃝

Figure 4.26: Import Example

module abstract-signature

signature
sorts SORT constructors

SORT : string * scope -> SORT

sorts TYPE constructors
SINGLE : SORT -> TYPE
OPT : SORT -> TYPE
ITER : SORT -> TYPE
STAR : SORT -> TYPE

sorts CONS constructors
CONS : SORT * int * list(TYPE) * scope -> CONS

relations
sort: string -> SORT
cons: string * CONS

rules

declareSort: scope * string
resolveSort: scope * string -> SORT

declareCons: scope * string * list(TYPE)
resolveCons: scope * string * int -> CONS

Figure 4.27: Abstract signature interface

Mini-SDF uses this interface at three places.

• To create declarations of sorts in the scope graph, analogous to the declarations of mod-
ules in Figure 4.25.

• To resolve the sort references in productions, as seen in the typeOfType predicate in Fig-
ure 4.28. Again, for brevity, only one instance of typeOfType is shown, but similar vari-
ants of the rule exist for the other constructors of the Type sort.

• To create declarations of constructors, which is done by the prodOk rule. The implemen-
tation of typesOfSymbols is left out. It filters away the literals, and translates Type(t) terms
to their TYPE using typeOfType.

Mini-STR uses the interface in the same way, however, it resolves constructors for the
validation of pattern expressions aswell. This is shown in the typeOfPattern rule in Figure 4.29.
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module minisdf/productions

imports abstract-signature

signature
sorts Prod constructors

Prod : string * string * list(Symbol)

sorts Symbol constructors
Lit : string -> Symbol
Type : Type -> Symbol

sorts Type constructors
Single : string -> Type
Opt : string -> Type
Iter : string -> Type
Star : string -> Type

rules
prodOk: scope * Prod
typesOfSymbols: scope * list(Symbol) -> list(Type)
typeOfType: scope * Type -> TYPE

typeOfType(s, Single(n) = SINGLE(T) :-
resolveSort(s, n) == T.

prodOk(s, Prod(sn, cn, smbls)) :- {T}
typesOfSymbols(s, smbls) == T,
declareCons(s, sn, cn, T).

Figure 4.28: Mini-SDF interface usage

module ministr/patterns

rules
typesOfPatterns: scope * list(Pattern) -> list(TYPE)
typeOfPattern: scope * Pattern -> TYPE

typeOfPattern(s, Constr(n, args)) = SINGLE(S) :- {a}
arity(args) == a,
resolveCons(s, n, a) == CONS(S, _, Tp, _),
typesOfPatterns(s, args) == Tp.

Figure 4.29: Mini-STR interface usage

In this rule, a constructor declaration is resolved, based on the name and arity. After that,
the list of expected arguments (Tp) is compared to the actual types of the arguments.

Finally, we shortly address the duplicate import checking demonstrated in Figure 3.20.
In Figure 4.24, we mentioned an itemsOk predicate that was supposed to do the duplicate
checking. In Figure 4.30, we show a part of the implementation of this procedure for sort
declarations. First, recall that SORT was defined as SORT: string * scope, where the string is
the name, and the scope served as an identifier. The itemsOk contains two queries: the first
one resolves all sorts visible in the importedmodule, which are hence imported to the importing
module via that module. The second query resolves all sorts visible in the importing module.
The results of these queries are compared pairwise using the sortsOk and sortOk predicates.
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module import/overlap

rules
itemsOk: string * scope * scope
sortsOk: string * list(SORT) * list(SORT)

sortOk(m, SORT(n, id1), SORT(n, id2)) :-
// When name is equal, but id is different, give error
id1 == id2 | error $[Duplicate import of Sort [s]]@n.

itemsOk(m, s, s_mod) :- {S_all, S_mod}
query sort

filter P* I*
in s |-> S_all,

query sort
filter P* I*

in s_mod |-> S_mod,
sortsOk(m, S_all, S_mod).

Figure 4.30: Duplicate import checking

The sortOk rule indicates that two sorts with the same name are accepted only if they
have the same identifer. When a sort has the same name and identifier, it may be imported via
multiple paths, but is not declared twice. However, when identifiers are different we create
an error, because they indicate a duplicate declaration. Finally, pairs with different names are
accepted in the second rule. The sortsOkpredicate, ofwhich the implementation is not shown,
iterates the S_mod values. For each value, it filters sort declaration with the same name from
S_all, and compares the with the sortOk predicate. Because there is no string comparison
operator in Statix, these lists can not be ordered. Therefore, the filter operation is linear in
the size of S_all. Hence the runtime complexity of this operation is at least O(|Sall| ¨ |Smod|).
However, it is difficult to measure concrete running times for this constraint, which would
be helpful for assessing its impact.

Example. Finally, we show a more complete example, featuring almost all language fea-
tures we explained until now. In Figure 4.31, the sources for this project are shown. This
source shows a syntax definition of a language with integer constants, plus expressions and
brackets. In the normmodule, a rewrite rule is defined that removes all unnecessary brackets
from an expression.

A reduced scope graph for this project is shown in Figure 4.32. In this scope graph, #sl is
the scope of the lit module, #sp is the scope of the plus module and #sn is the scope of the
norm module. The scopes #sm and #sb correspond with the match and build term of the first
rule, respectively. The scope with the ellipsis signifies the scopes of the other rules, which
are left out for brevity. For the same reason, the global scope, the module declarations and
import queries are not shown. For all remaining relations, sample declarations and queries
are shown, with the colors in the source code corresponding to the references.

Evaluation. In this case study, we found that the SCI pattern is well-suited to define com-
posable type systems. Using just three shared relations and corresponding data types, it
was possible to set up a highly integrated pair of languages. All the checks on the imports
transferred to the multi-language semantics of imports without need for adaption.

A feature that was not very easy to implement in a neat manner was the restriction that
Mini-SDF modules may not import Mini-STR modules. By assigning roles to the modules,
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module lit

sorts Expr Term Lit

context-free syntax
Term.Lit = <<Lit>>
Term.Bracket = <(<Expr>)>

module plus

imports lit

context-free syntax
Expr.Plus = <<Term> + <Expr>>
Expr.Term = <<Term>>

module norm

imports plus

rules
norm: Plus(Bracket(Term(l)), r) -> <norm> Plus(l, r)
norm: Plus(l, Term(Bracket(r))) -> <norm> Plus(l, r)
norm: e -> e

Figure 4.31: Small Mini-SDF – Mini-STR project

sl

sp

sn

I

I

Term

Expr

Lit

sort
sort
sort

Lit : CONS(Term, 1, [Lit])

Bracket : CONS(Term, 1, [Expr])
cons
cons

Plus : CONS(Expr, 2, [Term, Expr])

Term : CONS(Expr, 1, [Term])

cons
cons

norm : RULE(Expr, Expr)rule

7sm

sb

. . .

P

P

P

l : Term

r : Expr

var
var

Expr sort

Bracket cons

normrulel var

Figure 4.32: Scope graph of Figure 4.31

we could implement this check, but it is a rather ad-hoc feature that crept into the interface
solely for this purpose. The core issue that is involved here is that it is not possible to de-
fine constraint that involve constructors for multiple languages, because there is no point in
the process where the compilation of Statix specification can refer to both of these. One can
think of a more idiomatic way to model this behavior by defining an importOk : MOD * MOD
predicate, which can be implemented by all involved languages. However, as we explain in
subsection 6.1.4, this pattern opens possibilities for inconsistent specifications, and is there-
fore prevented.
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4.3.2 Mod + Mini-SQL
In this section we discuss the integration of the Mod language and Mini-SQL, which was
introduced in section 3.2. This section has a similar structure as the previous one. First, we
introduce the interface that is used to implement this case study. After that, we explain how
this interface is used in both languages. Then, we discuss an example that shows all the ways
the languages can interact. Finally, we evaluate our findings of this case study.

Interface. First, we describe the interface that manages the interaction between the two lan-
guages in this case study, which is shown in Figure 4.33. This interface describes relational
data structures (Codd 1970). The primitive types are INT and DATE, which represent integer
numbers and datetimes, respectively. The VARCHAR data type has an int as argument, which
indicates its maximum length. The FK type represents foreign keys, which are references to
other tables. Its first argument is the type of the column of the referencing table, and the sec-
ond argument is the referenced table. The TABLE type represents a table. Its scope argument
contains declarations of the columns, using the var relation, and the constraints on the table.
The RESULT type, which represents query result sets, has a similar structure. However, as we
explain when we discuss the integration with Mod, it has a different interpretation, and is
hence given a different constructor.

module tables

signature

sorts TYPE constructors
INT : TYPE
VARCHAR : int -> TYPE
DATE : TYPE
FK : TYPE * TYPE -> TYPE
TABLE : scope -> TYPE
RESULT : scope -> TYPE

rules

declareTable: scope * string * scope
resolveTable: scope * string -> scope

declareVar: scope * string * scope
resolveVar: scope * string -> scope

Figure 4.33: Relational Data Interface

signature

relations
var : string -> scope
type : string -> scope
typeOf : -> TYPE

rules

withType: TYPE -> scope
typeOf: scope -> TYPE

withType(T) = s :-
new s, !typeOf[T] in s.

typeOf(s) = T :-
query typeOf
filter e
in s |-> [(_, T)].

Figure 4.34: Relational Data Interface (2)

In contrast to the Mini-SDF – Mini-STR case study, this interface uses scopes to represent
types. That is, the type that is returned by the various typing relations and predicates is not
a data term of sort TYPE, but rather a scope, which contains a relation typeOf that contains the
actual type. The withType and typeOf predicates can be used to convert between these repre-
sentations. This representation was present in the Mod specification for historical reasons.
In order to be as less invasive as possible, we maintained it. Because this encoding is used,
the declareTable and declareVar take a scope as their third input parameter, instead of a TYPE.
Similarly, the resolveTable and resolveVar return a scope that represents the type.

In Figure 4.35a, a scope graph fragment of a declaration of a variable x with type Int is
shown. Because this notation is rather verbose, we will use the more compact notation with
rounded corners, shown in Figure 4.35b, in the remainder of the section to denote types that
are encoded with such an intermediate scope.
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1 x : #2 2 INT()var typeOf

(a) Full

1 x : INT()var

(b) Compact

Figure 4.35: Scopes representing types

signature

sorts CNULL constructors
CNULL : CNULL
CNOTNULL : CNULL

relations
nullable : CNULL

Figure 4.36: Nullability

module procedures

signature
constructors
PROC: list(TYPE) * TYPE -> TYPE

rules
declareProc: scope * string * list(TYPE) * TYPE

Figure 4.37: Stored Procedures

Albeit not introduced for that reason, the intermediate scope is used to add additional
data to a declaration. For example, column types have a nullable relation (shown in Fig-
ure 4.36), and table types can have constraint relations, which are not included in the inter-
face.

Finally, the interface exposes a PROC type, which represents stored procedures. This part
of the interface is depicted in Figure 4.37.The first argument represents the list of parameter
types, while the second argument is the RESULT type that the procedure returns. This interface
has a declareProc predicate, but no resolveProc. The reason for this is that procedures are in
the same namespace as columns. Therefore procedures can be resolved with the resolveVar
predicate. This requirement is mainly imposed by Mod, because in Mod functions are just
regular variables.

module types

imports tables

signature
constructors
STRING : TYPE
REC : scope -> TYPE
FUN : TYPE * TYPE -> TYPE

Figure 4.38: Mod Types

Mini-SQL Integration. This interface is
used by Mini-SQL at three places. First, for
a create table statement, a new scope is
created. In this scope, the columns are de-
clared with the declareVar predicate. After
that, this scope is passed to the declareTable
predicate. Second, the from clause uses
resolveTable to find the tables that are in-
cluded in the result set. Third, the select
clause joins all tables included in the from
clause, and uses resolveVar to find the types
of the columns that are included in the re-
sult set. Fourth, the create procedure statement uses the declareProc predicate to declare a
procedure. Mini-SQL has no scoping mechanism. That is, tables and procedures are always
declared in the global scope.

Mod Integration. The integration of the interface with the Mod language is more com-
plicated. This increased complexity has two reasons. First, we adapted an already existing
language definition. Second, the interface doesmatch the relational model more closely than
the data model Mod uses.

Initially, we tried to adapt the predicates in Mod to work with the newly introduced
type constructors where appropriate. However, we found that this required rather perva-
sive changes to the whole type system specification. Moreover, this approach regularly re-
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sulted in stuckness in the typeEq, subtype and lub predicates, which Mod uses to implement
its subtyping rules.

To mitigate these problems, we choose to translate the types from the interface to types
that were already present in Mod. For this translation, a strict : TYPE -> TYPE predicate is
introduced. This predicate is used at every place where a type is returned from a query. The
translations that this predicate performs are:

• The VARCHAR(_) type is translated to STRING(). This looses the information regarding the
maximum length of the string, which cannot be tracked in Mod anyway.

• The foreign key types are mapped to the type that is referenced. This mechanism ensure
that tableswith references can be instantiatedwith nested record expressions, as shown
in Figure 3.32.

• DATE() types are translated to a record type that has a epoch : INT() field. This transla-
tion resembles a type provided by fictional runtime integration ofMod and SQL,which
could translate SQL dates to this format.

• A RESULT(s) type is translated to a record type that has two fields. The hd field contains
a record type that contains all the columns of the result set. The tl recursively points
to the translated type. In this way, this type represents the result set as a list.

• Finally, the PROC(Tp, T) type is translated to a curried FUN(Tin, T) type.

Because the TABLE(s) type is almost analogous to the REC(s), we have integrated this type in
the type system of Mod using our initial approach. Therefore, the strict predicate does not
translate TABLE types. We have deliberately chosen to maintain both types, and not replace
REC with TABLE. When we would have done so, Mod would expose its top-level record type
definitions. This would allowMini-SQL to define foreign key references toMod record types,
which is certainly undesired behavior.

Example. Finally, we consider an example, depicted in Figure 4.40, which illustrates the
concepts we have discussed so far.

First, we see two table definitions, Quotes and Authors, with a foreign key reference from
the former to the latter. In the scope graph in Figure 4.41, we see the declarations of these ta-
bles, with most of their fields. In the author column, the foreign key type is reflected with the
FK(INT(), TABLE(#2)) type, which references #2, the scope of the Authors table. As explained
earlier, this reference information is lost when this field is selected in a query. Therefore, the
author field in #4, which represents the result set of the select statement, has type INT().

However, in theMod programon the right, the assignment expression to the author fields
type-checks differently. It is assigned the value of the kant variable, which has type TABLE(#2),
retrieved by the query to the Authors table declaration, shown in blue. This type-checks cor-
rectly, because the type of the author field is transformed using the strict predicate, intro-
duced in Figure 4.39. As can be seen there, this predicate extracts the second parameter from
an FK type, which is indeed TABLE(#2).

Second, in gray, we see the built-in declaration of the Date record type, which is different
from the DATE() type from the interface. This type declaration is equivalent to the type that is
created by the strict predicate call on an DATE() type. Therefore, the assignment to the bdate
field in the first record type-checks correctly.

Third, the accesses to the fields of the kant variable work similar. For the id field, this
translation is trivial, because Mini-SQL and Mod use the same INT() type. However, for the
text and bdate fields, the transformation from VARCHAR(1000) and DATE() to their Mod coun-
terparts is performed again. Hence these expressions type-check against the explicit type
annotations on the id, name and date definitions.
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module type-translation

rules
strict : TYPE -> TYPE

strict(VARCHAR(_)) = STRING().
strict(FK(_, T)) = strict(T).

strict(DATE()) = REC(s_date) :-
new s_date,
!var["epoch", withType(INT())] in s_date.

strict(RESULT(s)) = T :-
new s_rec,
T == REC(s_rec),
!var["hd", withType(REC(s))] in s_rec,
!var["tl", withType(T)] in s_rec.

strict(PROC([], R)) = strict(R).
strict(PROC([H|T], R)) = FUN(Hs, Ts) :-

Hs == strict(H),
Ts == strict(PROC(T, R)).

strict(T) = T.

Figure 4.39: Type Translation

Fourth, we discuss the call to the quotes procedure, marked in red. First, the correspond-
ing query in the scope graph shows that the reference resolves to the stored procedure dec-
laration. Note that this query resolves because the procedure declaration is in the var names-
pace.

FUN(INT(), FUN(STRING(), FUN(REC(#1), REC(#2))))

1 epoch : INT()

2 tl : REC(#2)

hd : REC(#3) 3 text : VARCHAR(1000)

id : INT()

author : INT()

Figure 4.42: Transformed Procedure Type

Again, this refer-
ence is transformed
by the strict predi-
cate. In this case, it
results in the type de-
picted in Figure 4.42.
In this picture REC(#1)
corresponds to the
translated DATE() type,
which is structurally
the same as the built-
in Date type we dis-
cussed above. Fur-
thermore, REC(#2) is a linked-list like record, as created by evaluating strict on RESULT(#3),
the result type of the quotes procedure. By transforming, the input arguments match the
types of the variables the procedure is called with, and in this way the function application
expressions type-checks. The result variable does not have an explicit type, because a pro-
cedure result type cannot be referenced by name. However, the final expression shows it
has the type REC(#2), which would be expected, based on the signature of the (transformed)
procedure.
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CREATE TABLE Quotes (
id INT NOT NULL PRIMARY KEY,
text VARCHAR(1000),
author INT NOT NULL,
CONSTRAINT fk_Authors FOREIGN KEY
(author) REFERENCES Authors(id)

);

CREATE TABLE Authors (
id INT NOT NULL PRIMARY KEY,
name VARCHAR(32) NOT NULL,
bdate DATE

);

CREATE PROCEDURE quotes
@id INT, @name VARCHAR, @bdate DATE

AS
SELECT Q.id, Q.text, Q.author
FROM Quotes AS Q JOIN Authors AS A
ON Q.author = A.id

AND A.name = @name
AND A.bdate = @bdate

WHERE A.id = @id
GO;

def kant = Authors {
id = 1,
name = "Immanuel Kant",
bdate = Date {

epoch = 1604419336
}

};

def science = Quotes {
id = 1,
text = "Science is organized knowledge.",
author = kant

};

def wisdom = Quotes {
id = 2,
text = "Wisdom is organized life.",
author = kant

};

def id : Int = kant.id;
def name : String = kant.name;
def date : Date = kant.bdate;

def result = quotes id name date;

$ result.hd.id == 1

Figure 4.40: Mod – Mini-SQL Integration example

1

Authors : TABLE(#2)

2

type

Pid : INT() var

name : VARCHAR(32)
var

bdate : DATE()

var

Quotes : TABLE(#3)

3

type
P

. . . var

author : FK(INT(), TABLE(#2))

var

quotes : PROC([INT(), VARCHAR(80), DATE()], RESULT(#4))

var 4 . . .var

author : INT()
var

Date : REC(#5)

5 epoch : INT()

type

var

kant : TABLE(#2)

var

Authors

type

quotes

var

Figure 4.41: Scope Graph of Figure 4.40

Evaluation. In this case study, we found that the Shared Concept Interface (SCI) even
scales to languages that do not share a common, or very similar, runtime data model. More-
over, in this case, it is possible to adapt an existing type system to use an interface with only
moderate effort. We needed to lift some concepts into the interface, and we needed to define
a translation between SQL types and Mod types.
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However, there were some features that were not easy to handle neatly. First, the do-
main mismatch between relational data and the Mod type system gave rise to difficulties
and namespacing. InMod, functions are regular variableswith a FUN type, while inMini-SQL
procedures are in a separate namespace. In general, there are two possibilities to solve this
mismatch. First, the interface can define these concepts in the same namespace (under the
same relation). In that case, the language with multiple namespaces must use a customized
match predicate in the filter clause of its queries, that retains only declarations with an eli-
gible type. On the other hand, the interface can use different namespaces for the respective
declarations. The language with only a single namespace then needs to query both relations,
and combine the results. In general, we do not recommend this latter approach, because
combining results can be tedious, and shadowing rules cannot be implemented using the
min clause. In this case study, we took the former approach as well. Therefore, columns and
stored procedures are both declared using the var relation.

Second, different data models usually come with different naming. In the interface, it
is needed to choose one particular name, which makes the interface somewhat counter-
intuitive to read from the perspective of the language whose natural naming scheme is not
chosen.

Third, different data models can come with different naming conventions. In this case
study, SQL databases usually have a plural name, while record type names in Mod are sin-
gular. In the example we choose to have plural names in Mod, because in that context a
developer will usually be more aware of the fact that he is integrating with SQL. Another so-
lution to this impedancemismatch is having a language feature inMod that allows renaming
types.

Finally, we learned that creating declarations in the global scope, or scopes that can be
reachable from the scope using the interface, need careful consideration. As we show in
subsection 6.1.4, the Statix implementation guarantees that it is not possible to accidentally
expose definitions of relations that are not defined in the interface. However, sometimes
a declaration that can be expressed in terms defined by the interface must still remain hid-
den. This observation gave rise to the distinction between TABLE and REC types, which are
structurally equivalent, but distinct in visibility.

To conclude this chapter, we have explained how type systems can be specified with
cross-language analysis as a primary concern. Furthermore, we have shown how this pat-
tern works in practical examples. However, defining a type system this way is one thing, but
actually executing it is another. Therefore we continue with a discussion on the implemen-
tation of a runtime that supports executing composed type systems in chapter 5.
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Chapter 5

Implementation in Spoofax 3

In this chapter, we describe the implementation of amulti-language runtime that can execute
composed type systems, defined according to the design pattern discussed in chapter 4. In
order to do that, we first introduce the Statix compiler, solver and runtime in section 5.1.
Subsequently, we introduce the Spoofax 3 language engineering framework, in which we
integrated our runtime. After discussing these preliminaries, we give a detailed overview of
the architecture of the multi-language meta-component. Finally, shortly summarize the key
points in the conclusion.

Throughout this chapter, we will use UML class diagrams to display parts of the design
of the systems we discuss. Several projects that we discuss in this chapter generate imple-
mentations for data classes. In our UML diagrams, we will represent those as if they are
regular data classes, using field notation instead of accessor methods. In this way, the dis-
tinction between data and operations remains clear. Furthermore, we sometimes shorten
class names to keep diagrams concise.

5.1 Background: Architecture of the Statix Implementation
In order to integrate multi-language analysis in Spoofax 3, we need to reuse parts of the ex-
isting infrastructure. In general, the Statix infrastructure in Spoofax 2 consists of three com-
ponents. First, there is a compiler, which transforms Statix source files in compiled modules.
Secondly, there is a solver, implemented in Java, which is called using Stratego primitives.
Before calling these primitives, the Statix runtime transforms the file AST and the compiled
specification into a form that the solver accepts.

As we will discuss in subsection 5.2.4, the Statix compiler is already integrated in the
Spoofax 3 compiler, and hence we reuse it. We will not use the Statix runtime, but rather
create an adapted reimplementation in Spoofax 3. From this new runtime, we call the existing
Statix solver. In order to understand our usage of the existingAPIs and the argument that our
implementation is correct, we will now discuss the architecture of these three components
as they exist in Spoofax 2.

5.1.1 Compiler
The Statix compiler transforms a Statix file into a compiledmodule. These compiledmodules
include the rules from their original source file, and the labels and relations used in the
module. Moreover, scope extensions (discussed below) are recorded in the module. The
compiled modules are stored in the src-gen/statix directory of the project.

During compilation, the well-formedness of the specification is checked. The Statix com-
piler validates whether the constraints are referenced with the right argument counts and
types, whether terms are well-formed, and labels and relations are used correctly. Addition-
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ally, twomore advanced types of analysis are performed: Pattern overlap checking and scope
extension permission checking. Moreover, in the generated modules, all names are substi-
tuted with fully qualified names. As will turn out in subsection 6.1.4, all of these features are
important to consider when validating the correctness of our approach.

Qualified Names. During transformation, all names are qualified explicitly. This allows
modules to be merged without name collisions. For declarations of labels and relations, the
name of the module in which they are declared is prepended. Similarly, references to labels,
relations and constraints are prepended with the name of the module in which the declara-
tion they resolve to was made.

However, the qualification of rules is handled a bit differently. As we demonstrated in
subsection 4.1.3, it is possible to define rules for a constraint that is declared in another mod-
ule. To ensure that those rules are treated together as one constraint, each rule name is qual-
ified with the name of the module in which the predicate it contributes to is declared.

Overlapping Patterns. The Statix solver is implemented using constraint simplification and
solving. User-defined constraints, such as typeOfExp, are simplified to built-in constraints,
such as equality constraints, scope graph declarations and queries.

During constraint solving, the solver can be in a statewheremultiple rules for a constraint
can be applied. For example, the rule that should be chosen to simplify typeOfExp(s, exp)
depends on the value of exp, which might still be unknown. Instead of trying all possible
applicable rules (backtracking), the solver will delay the constraint until its arguments are
known precisely enough to unambiguously choose a rule that is to be used for simplification.

In order to choose a rule unambiguously, Statix uses a comparison of patterns to define
a partial ordering on rules. The term comparison can give four results:

• Equal when the two terms match on exactly the same set of terms. For example, _ and
T compare equal, and likewise do MOD(T) and MOD(T') compare equal.

• Less than when the left pattern is more specific than the right pattern. That is, when
the set of terms that matches on the left pattern is a strict subset of the set of terms that
matches on the right pattern. For example, MOD(T) is less then T.

• Greater than when the right term is more specific than the left term.

• Incomparable otherwise.

For rules, Statix applies this comparison from left to right on its input patterns. When
two patterns are equal or incomparable, comparison proceeds with the next pair of input
patterns. Otherwise, the rulewith themost specific pattern is preferred over the rulewith the
more general pattern. For example, in Figure 5.1, the rule numericType(s, INT()) is preferred
over numericType(s, T), because the first arguments compare equal, and for the second pair
of arguments, INT() is more specific than T.

However, incomparable patterns need some more consideration. When two patterns are
incomparable, it can not immediately be derived that their input sets are disjoint. When a
variable occurs multiple times in a pattern (i.e. the pattern is non-linear), all occurrences

rules
numericType(s, INT()).
numericType(s, T) :- ....

Figure 5.1: Ordered rules

rules
simplify(UNION(T, T)) = simplify(T).
simplify(UNION(T, INT()) = simplify(T).

Figure 5.2: Rules without order
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after the first one do not compare as less than a more specific term anymore, because they
are restricted by an equality constraint on the first occurrence.

rules
equal(_).
equal(_) :- false.

lub(_, NULL()).
lub(T, T).

Figure 5.3: More overlap

For example, UNION(T, T) is not comparable with
UNION(T, INT()), because, depending on the value of the
first T of the first pattern, the second T might not match
INT() anymore. Therefore, it can not be derived that T is
greater than INT(). When we consider the sets of terms
that match on each of these patterns, we see why this is
the case. For example, the pattern UNION(BOOL(), BOOL())
only matches the first, UNION(BOOL(), INT()) only matches
the second, and UNION(INT(), INT()) matches both. Hence,
neither of these patterns has a strictly smaller input set,
and therefore they cannot be compared.

However, this poses a problem for the solver. When a constraint is called with inputs
that match the patterns of multiple rules, but there is no ordering for these rules, the solver
cannot decide which rule it should use. For example, there is no way to choose the correct
rule for the constraint simplify(UNION(INT(), INT()) in the specification of Figure 5.2, because
the rules cannot be compared.

In order to avoid this situation, Statix statically forbids patterns where rules have over-
lapping input patterns, but can not be compared. In addition to the example in Figure 5.2,
Figure 5.3 shows some more examples that are rejected. First, the equal rules are rejected,
because the input patterns of both rules are exactly equal. Second, the lub rule is rejected
because there are inputs that match only the first rule or only the second rule, and there are
inputs that match both rules. Moreover, this example demonstrates that the overlap detec-
tion for non-linear patterns extends to cases where the variables occur in different argument
positions.

Scope Extensions. In Statix specifications, the solving of typing constraints and name reso-
lution queries can be interleaved. Therefore, Statix needs to resolve queries in scope graphs
that are not yet complete. However, it needs to ensure that the results returned by a query
cannot be invalidated when the scope graph is expanded. For an in-depth treatment of
the way Statix implements sound scheduling of queries we refer to the work of Antwerpen,
Poulsen, Rouvoet, andVisser (2018) andRouvoet, Antwerpen, Poulsen, Krebbers, andVisser
(2020). For our discussion it suffices to make two observations.

First, a scope may only be extended with a declaration or a edge to another scope when
it is either freshly created in the constraint, or passed to it from a direct argument. It is
not allowed to extend scopes that are returned from other predicates, or that are obtained by
matching other terms. When a rule violates this constraint, an error is emitted. To implement
this analysis, Statix first transitively records for each constraint argumentwith type scopewith
which labels it might be extended. After that, it checks each constraint call argument with
type scope. When the called constraint does extend the scope, but the scope is not freshly
created by the calling constraint, or passed as a direct argument, it emits an error.

Second, the information collected during the first part of the analysis (with which labels
a scope argument might be extended) is included in the compiled module. The solver uses
this information to schedule queries correctly. In particular, the solver will only return the
result of a query for a relation rel when all the scope it passes through will not be extended
with declarations for that relations, nor with edges to subgraphs that are valid according to
the path well-formedness predicate.
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Figure 5.4: Solver API

5.1.2 Solver
Second, Statix provides a solver, which solves a constraint using a specification. A UML
diagram of the API is shown in Figure 5.4. The specification is defined in the Spec class,
which closely resembles the compiled Statix modules. The solver returns a SolverResult
object, which contains the result state of the solver. This state, defined in the State class,
contains a scope graph, and a unifier that contains the values of all variables. Such a state
can be passed to the solver as an initial state as well. Additionally, the SolverResult object
contains a set of messages and a set of delayed constraints. Here the Delay class contains
information about the reason why a constraint could not be solved yet.

5.1.3 Runtime
To integrate this solver in the Spoofax 2 Workbench, a runtime, implemented in Stratego, is
provided. This runtime ensures the specification of a language is loaded, that the correct
constraints are instantiated and solved. Finally, it creates messages based on the output of
the solver.

The current Statix runtime has limited support for incremental analysis with file level
granularity (Aerts 2019). This incremental analysis is performed in the following steps:

1. In order to create a global scope, the constraint new s is solved.

2. The projectOk(s) constraint is solved.

3. For each file, the constraint fileOk(s, ast) is solved, and the solver result is cached. In
this output, there may be delayed constraints, which depend on information retrieved
from the analysis of other files.

4. The states of the solver results of step two and three are combined using the State.add
method. Using this state, the conjunction of all delayed constraints is solved. This
solver run yields the final result. All messages from the solver results of steps two
to four are collected. Moreover, the delayed constraints from step four are marked as
errors.

When a file is changed, only step three for that file, and step four need to be recomputed.
All partial analysis results of the other files can be reused. However, note that the majority of
the work generally is performed in step four. Therefore the reuse of results is rather limited.
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Finally, The Statix runtime provides an option to register Stratego transformations that
are applied to the AST of a file before respectively after the analysis.

5.2 Background: Spoofax 3 Architecture
The Multi-language Statix Runtime is implemented in the Spoofax 3 language workbench
(Gabriel Konat 2020). In this section we discuss the architecture of this workbench. To un-
derstand the architecture, we first discuss the design goals of Spoofax 3. After thatwe explain
the architecture of PIE, which is used to define incremental pipelines, and Dagger, which is
used for dependency injection. Finally, we explain the architecture of Spoofax 3 itself.

5.2.1 Spoofax 3 Design Goals
Spoofax 3 is a reimplementation of the Spoofax 2 Language workbench (Kats and Visser
2010). The main design goals of Spoofax 3 are to be ”modular, flexible, and correctly incre-
mental”.

• Modular: languages should only have a dependency on the meta-components they
actually use.

• Flexible: meta-components should depend on the core framework but the core frame-
work should not depend on any meta-component. In this way, meta-components can
be adapted or replaced without changing other parts of the system.

• Correctly Incremental: in Spoofax 3, compilation of languages, projects that use a lan-
guage definition developed using the Spoofax 3 framework, and the framework itself
should be compiled incrementally, with the possibility for languages to define their
own incremental pipelines.

These design principles enable multi-language analysis. It is possible to add a new meta-
component that executes multi-language analysis. The static analysis of languages that sup-
port multi-language analysis is implemented using that component. When loading the lan-
guage, the component is integrated in the core framework. In this way, there is no tight cou-
pling between the meta-component and the framework, nor between the meta-component
and languages that do not support multi-language analysis.

5.2.2 PIE Build Pipelines
In Spoofax 3, incremental pipelines are implemented using Pipelines for Interactive Environ-
ments (PIE) (Gabriël Konat, Erdweg, and Visser 2018; Gabriël Konat, Steindorfer, Erdweg,
and Visser 2018). PIE is a framework that aims at efficient and precise incrementalization of
build scripts. Its efficiency requirement entails that only tasks that are affected by a change
are recomputed. Similarly, the precision requirement states that results of an incremental
build should be exactly the same as results from a clean build. In this section, we provide a
high-level overview of PIE.

Central to the PIE framework is the concept of taskdefs. A taskdef is similar to a regular
function, but it is automatically incrementalized by the PIE runtime. A taskdef called with a
particular input is referred to as a task. A task can call other tasks, require resources (files),
and generate other resources. When a resource is changed, either by an external change or
when a task that provides that resource is recomputed, all tasks that required that resource
will be recomputed as well.

PIE allows abstracting over a task definition or a task using respectively a function or a
supplier. Functions and suppliers are regular values, and can hence be passed as arguments
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to other task definitions. This allows loose coupling of task definitions. Moreover, functions
can be chained with the map method, which makes them useful to transform task inputs and
outputs to the correct type.

In PIE, tasks can executed in two ways. When using the top-down approach, the called
task calls a particular task definition. If needed, the framework will then compute the result
of that task, and the tasks that it requires. On the other hand, when some resources are
changed, all tasks that directly or indirectly depend on at least one of these resources are
recomputed, and their observers are notified. This feature makes PIE especially suitable for
interactive environments, such as an IDE.

func javac(file: path) -> path = foreign;
func jar(classes: path*) -> path = foreign;

taskdef compile(file: path) -> path {
requires file;
val classFile = javac(file);
generates classFile; classFile

}

taskdef build(project: path) -> () {
val classes = [compile(file) |

file <- walk project with extension "java"
];
val jarFile = jar(classes);
generates jarFile;

}

Figure 5.5: Example PIE pipeline for creating
a Jar file from a Java project

In this thesis, we will present PIE
pipelines using an enriched dialect of the
PIE DSL presented in (Gabriël Konat, Stein-
dorfer, Erdweg, and Visser 2018), although
the actual implementation is done in Java.
In Figure 5.5, we see an example of such a
pipeline that compiles a Java project. At the
first two lines, we see two regular functions,
declaredwith the func keyword. The foreign
keyword at the end of the declaration indi-
cates that they are provided by an external
dependency. The javac function compiles a
single Java file to a class, file, and returns the
output path. The jar function creates a Jar
file from a list of class files (indicated by the
asterisk). The compile task definition wraps
the javac function. It declares the Java file as
input using the requires keyword, and simi-
larly indicates the file it produces using the
generates keyword. These directives ensure that the PIE runtime recomputes the correct tasks
when a file changes. Finally, the build task definition traverses over all Java source files in the
project using the walk keyword. Each file is incrementally compiled using the compile task
definition, and all compiled files are bundled in a jar file. Again, the build task indicates that
it generates the jar file, to ensure correct incrementality.

PIE is used extensively in Spoofax 3. In fact, all objects have to be immutable, and should
either be the result of a PIE task, or be created when the framework is initialized. In this
way, all mutable state is captured in PIE tasks, which (assuming that the task definitions are
implemented correctly) enforces correct incrementalization.

5.2.3 Dagger Dependency Injection
Spoofax 3 uses Dagger1 for Dependency injection. Unless most other dependency injection
frameworks, Dagger is fully static. That means that Dagger creates all its bindings at compile
time, using annotation processors.

The main entry point for the use of Dagger is an interface annotated with a @Component
annotation. A component can be parameterized with modules, which are defined using the
@Module annotation. Modules define bindings for objects by providing methods that are an-
notated with a @Provider annotation. The Dagger compiler ensures that the parameters of
these methods are injected properly. A component can define abstract methods without pa-
rameters to define entry points that can be used to access its objects. The Dagger annotation
processor will then generate an implementation for these methods that creates these objects

1https://dagger.dev/
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Figure 5.6: Spoofax 3 Core API

module multilang

data LanguageInstance = foreign {
func extensions() -> String*;
taskdef tokenize(file: path) -> Token*;
taskdef style(tokens: supplier<Token*>) -> Styling;
taskdef check(project: path) -> Message*;

}

Figure 5.7: Task Definitions in LanguageInstance

using the bindings its modules supply. Furthermore, Dagger uses the annotations provided
by the javax.inject API to provide qualification and scoping of bindings.

In Dagger, it is possible to define a hierarchy of components. When an object is requested
from a particular component, and the modules of the component do not define a binding for
it, the request for the object is delegated to the parent components.

5.2.4 Spoofax 3

Central to the architecture of Spoofax 3 is the LanguageInstance interface from the Spoofax
Core project (shown in Figure 5.6). This interface exposes properties and task definitions of
a language that enable the Spoofax 3 framework components to work. Some of the interface
members are shown in Figure 5.7.

Every Language Definition Project should implement this interface, probably using the
meta-component libraries Spoofax 3 provides. The instantiation of a LanguageInstance sub-
class ismanagedby an implementation of the LanguageComponent interface. Moreover, Spoofax
3 Core provides a PlatformComponent interface, which allows accessing platform services,
such as resources and logging.

Furthermore, Spoofax 3 provides libraries that integrate existing meta components, such
as the JSGLR parser or the Statix runtime, into the Spoofax 3 framework. These libraries are
used by the languages generated by the Spoofax 3 compiler, but do not have a dependency
on Spoofax 3 Core.

Moreover, Spoofax 3 provides libraries that help to embed a language in a particular en-
vironment, such as Eclipse, IntelliJ or a command-line application. These projects provide
a specialized instance of the PlatformComponent interface, and classes that integrate the ser-
vices provided by a language in the environment. These libraries do not depend on any
meta-component.

Finally, Spoofax 3 provides a language project compiler. This compiler takes a compiled
Spoofax 2 language as input, and transforms it to integrate with the Spoofax 3 framework. In
particular, it creates an implementation of the LanguageInstance and LanguageComponent in-
terfaces. To perform this task, it embeds the compiled artifacts from the Spoofax 2 language
in the jar file that is created, and generates classes that load these resources. Based on these
resources, it creates PIE task definitions, which are injected to the language instance by the
language component. Additionally, it can create a command line interface, an Eclipse plu-
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module mylang:tasks

// Read file to string
taskdef readFile(file: path) -> String {

requires file; read file
}

// List source files of language in directory
taskdef sourceFiles(project: path) -> path* {

requires project; walk project with extensions lang.extensions()
}

taskdef parse(str: supplier<String>) -> (AST, Token*, Message*) {
jsglr.parse(str.get())

}

taskdef tokenize(file: path) -> Token* {
val (_, tokens, _) = parse(readFile.supplier(file)); tokens

}

taskdef style(tokens: supplier<Token*>) -> Styling {
esv.style(tokens.get())

}

taskdef analyze(
sources: supplier<path*>,
parser: function<supplier<String>, AST>

) -> Message* {
val asts = [ast |

ast = parser.apply(readFile.supplier(file)),
file <- sources.get()

];
statix.analyzeMulti(asts).messages

}

taskdef check(project: path) -> Message* {
val parseMessages = [msg | msg <- msgs,

(_, _, msgs) = parse(readFile.supplier(file)),
file <- sourceFiles(project)

];
val analysisMessages = analyze(

sourceFiles.supplier(project),
parse.function.map((ast, _, _) -> ast)

);
parseMessages + analysisMessages

}

Figure 5.8: Spoofax 3 Default Pipeline

gin and an IntelliJ plugin, based on the libraries Spoofax provides. Usually, the Spoofax 3
compiler is invoked using a Gradle plugin.

In Figure 5.8, we show the default task definition structure that is generated for language
projects with multi-file analysis. Most of the tasks have a straightforward implementation.
The parse task definition uses the jsglr parser to parse its input. In a similar manner, the
style and analyze tasks use an esv and statix variable to implement their task. In this code,
these variable are assumed to be globally available, while in the actual implementation, they
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are injected into the task definition by the LanguageComponent.
The analyze task takes two arguments. The sources parameter provides the task with all

the files that should be analyzed. The parser argument is an incremental function that returns
an AST, based on a string supplier. For each file, this function is called with a supplier based
on the readFile task definition. Note how this pattern decouples the analyze task from the
parse task or the file extensions of the language. Finally, the check task integrates these tasks.
It calls the parse and analyze tasks with the correct inputs, and aggregates their messages.

5.3 Implementation of Multi-Language Analysis
Having introduced Spoofax 3, we explain how we implemented a runtime that can execute
specifications designed according to the pattern introduced in chapter 4. After defining some
terminology, we discuss the architecture of theMulti-languagemeta-component. Finally, we
describe howwe embedded this component in the Eclipse IDE environment, and howwe ex-
tended the Spoofax 3 language compiler to generate the boilerplate code that the component
needs.

5.3.1 Definition of Terms
First, we define some terminology we use throughout this section:

• Module: a single Statix module. Contrary to the previous chapter, we will mostly refer
to compiled modules.

• Partial Specification: an incomplete collection ofmodules. In general, amodule is a par-
tial specification. Furthermore, multiple partial specifications can be merged to form a
new partial specification.

• Specification Fragment: a partial specification, containing all the modules of a particu-
lar language project. A specification fragment can depend on other specification frag-
ments. When a fragment has dependencies, the fragment itself does not contain the
modules of the dependencies. In practice, all modules of an interface constitute a frag-
ment, just as all modules of a particular language.

• Specification: a complete, executable collection of specification fragments. In a spec-
ification, all fragment dependencies should be satisfied. That is, when fragment F
depends on fragment F 1, all specifications that include F should by definition include
F 1 as well.

• Composed Specification: a specification that is composed of fragments that were not
compiled together.

• Analysis Context: the shared data and configuration of group of languages that are
analyzed in conjunction. A context can be referenced by its identifier, or accessed via
any language that it includes.

5.3.2 Metadata
In this section, we describe the static metadata that is required for the component to exe-
cute properly. All required metadata is collected in the AnalysisContextService (shown in
Figure 5.9). For each language, its default context identifier is recorded. This context will
be used when the project configuration does not override it. Furthermore, some informa-
tion about a language that is specific for a language that supports multi-language analysis is
maintained in LanguageMetadata objects. This information includes:

65



5. IMPLEMENTATION IN SPOOFAX 3

Figure 5.9: Analysis Metadata

• A PIE function that returns the paths of all files of a language in a particular directory.

• A PIE function that returns the AST of a particular file.

• A PIE function that executes a transformation after applied to the analyzed AST.

• The names of the root constraints, as introduced in subsection 4.1.4.

The role and the definition of these functions will be discussed in subsection 5.3.4.
Furthermore, information that is required to load a specification fragment is collected in

SpecConfig objects. These objects contain the following information:

• A resource in which the modules of this fragment are located.

• The fragment identifiers of the fragments this fragment depends on.

• A set of root modules that serve as entry points for the specification loading algorithm.

In this configuration, a distinction is made between languages and specifications. This
distinction is made to reflect the fact that interfaces are not complete languages, but rather
specification fragments. Hence a LanguageMetadata object can not be provided for interfaces,
and neither is it needed.

When initializing an AnalysisContextService, we validate that all languages have an ac-
companying specification fragment. Moreover, we validate that all specification fragment
dependencies can be satisfied.

Every platform has exactly one AnalysisContextService instance. This instance is in-
jected into all language-parametric task definitions that use either a LanguageMetadata or a
SpecConfig instance. Therefore, in the code snippets in the remainder of this section, we as-
sume that an analysisContextService variable is implicitly available. Similarly, the language-
specific task definitions and data types have an implicit language variable, which denotes the
language instance, and an implicit languageId variable, that denotes the LanguageId of the
language.
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5.3.3 Compiling Multi-Language Specifications
Besides the language-specific metadata, we need to obtain the specification that we want to
execute. In this section, we explain howwe compile Statix specifications, and what their run-
time representation looks like. How the compiled specifications are loaded into the runtime
is explained in subsection 5.3.4.

At the time this framework was implemented, it was required to have a Spoofax 2 lan-
guage project to create a Spoofax 3 language. The Spoofax 3 compiler did not compile sources
of meta-languages itself, but rather generates boilerplate code that wraps the artifacts of a
Spoofax 2 language. Hence, we must define Spoofax 2 language projects for our languages
first.

In general, there are two types of projects that we need to consider. First, an interface
project contains only the Statix sources that define the interface. Those can be compiled
using the standard Statix compiler, and packaged in a Spoofax language artifact.

Second, there are concrete languages, which have specifications for other aspects, such
as a syntax definition or editor service specifications, as well. The Statix compiler does not
support separate compilation, but requires the sources of all modules that are referenced to
be present. Hence, when compiling the Statix specification of a concrete language, we need
access to the interface definition. Unfortunately, it is not possible to reference Statix modules
included in (source) dependencies. Therefore we copy these into the language project using
gradle tasks. Thus, the interface is re-analyzed and recompiled for each language that im-
plements it. Using the exports option from the metaborg.yaml file, we ensure that a language
artifact does not include the compiled modules from the interface. In this way, we ensure
that all modules are included in a language exactly once.

Figure 5.10: Specification definition

Figure 5.10 shows how the specifi-
cation is defined in the runtime. The
Spec class is provided by the Solver
API, as shown in Figure 5.4. The
Module class wraps a Spec instance
for a single module. A SpecFragment
wraps all modules from a single lan-
guage project, and explicitly records
which dependencies are not yet re-
solved. Such delayed dependencies
occur when a module from a concrete
language imports a module from an
interface, which are included in the
fragment for the interface, and not in
the fragment from the language.

In Figure 5.11, we summarize the specification management graphically. On the left of
the picture, there are three language projects. The first project is an interface, and the other
two are projects for a concrete language. The statix modules of the interface are copied to the
languages, but their compilation artifacts (the .spec files) are not included in the language
artifacts of the concrete languages, but only in the archive for the interface language.

At the right hand side of the picture, the runtime representation of the specification
is shown. Each source module corresponds to a Module instance, and similarly does each
SpecFragment correspond to a language project. Moreover, the delayedModules field main-
tains the modules that must be included from another fragment. These delayed modules
correspond with import statements in the original Statix source files. Since module d only
imports module b from the interface, the delayedModules set in the fragment of language B
contains only b. Finally, we see how fragments are combined into full specifications on the
right. The langA Spec is the specification that is used to solve the partial constraint of lan-
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Figure 5.11: Specification Management

guage A. Furthermore, the langAB Spec is the specification that is used to perform the final
phase of the analysis in a context where language A and B analyzed together.

5.3.4 Pipeline

Next, we discuss the PIE pipeline that we implemented to be able to execute analysis incre-
mentally. We first describe how the ASTs are transformed, how the correct specification for
each task is loaded, and how project-specific configuration is loaded. After that, we explain
how the analysis is executed, and how the results are processed. Finally, we discuss some
implementation details on how we handle exceptions, PIE usage, solver logging and shared
term factories.

In this section, we use the PIE DSL to represent the various task definitions that consti-
tute the system. Some of these task definitions are part of the framework, while others are
provided by the language implementation. In the code snippets, this is indicated with a
top-level module statement. All task definitions in the multilang module are provided by the
framework, and all task definitions in the mylang module are language-specific.

AST transformations. First, we discuss the part of the pipeline that transforms resources.
The pipeline is shown in Figure 5.12. First, there are two library functions that add a resource
attachment and a Term index annotation to the AST. These attachments and annotations are
used by the runtime to determine the correct position of messages. Moreover applyStrategy
function applies a strategy to an AST.

The first two functions are used by the index task definition to add the attachments and
annotations to the AST that provided by the parse task output provided resource parameter.

After indexing the AST, the preTransform task definition applies the pre-analysis transfor-
mation strategy to the annotated AST. We separated this task from the index task definition
because the abstract task definition for transformations requires a supplier<AST>, while the
index task must have access to the path of the resource it is indexing. Furthermore, this al-
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module mylang:multilang

// Library function adding ResourceKey attachment to AST
func setResource(ast: AST, resource: path) -> AST = foreign;
// Library function adding term indices
func addIndices(ast: AST) -> AST = foreign;
// Library function applying stratego transformation on an ast
func applyStrategy(strategy: String, ast: AST) -> AST = foreign;

taskdef parse(str: supplier<String>) -> (AST, Token*, Message*) { ... }

taskdef index(resource: path) -> AST {
val (ast, _, _) = parse(readFile.supplier(resource));
val ast' = setResource(ast, resource);
addIndices(ast')

}

taskdef preTransform(ast: supplier<AST>) -> AST {
applyStrategy("pre-transform", ast.get())

}

taskdef postTransform(result: supplier<(AST, SolverResult)>) -> AST {
val (ast, _) = result.get();
applyStrategy("post-transform", ast)

}

Figure 5.12: Transformation Task definitions

module mylang:multilang

data MylangMetadata : LanguageMetadata {
resourcesSupplier() -> function<path, path*> {

project -> walk project with extensions language.extensions()
},
astFunction() -> function<path, AST> {

resource -> preTransform(index.supplier(resource))
},
postTransform() -> function<supplier<(AST, SolverResult)>, AST> {

postTransform.function
}

}

Figure 5.13: Transformation Integration in LanguageMetadata

lows a language designer to provide a custom implementation for the pre-transformation
task definition without touching the required index task definition.

Finally, the postTransform task definition applies the post-analysis transformation strategy
to the AST returned by the preTransform and the final analysis result. In its default implemen-
tation, it applies the post-analysis transformation strategy without using the solver result.
Together, the preTransform and postTransform strategies provide the same features as the trans-
formation hooks in the Spoofax 2 Statix runtime.

It must be noticed that all these task definitions are language-specific. The task definition
bodies presented in Figure 5.12 are the default implementations as created by the compiler.
The Runtime therefore cannot call them directly, but rather uses the LanguageMetadata in-
stance for a language to retrieve PIE functions wrapping these task definitions. Figure 5.13
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module multilang:spec

func loadModule(mod: path) -> Module = foreign;
func imports(mod: Module) -> String* = foreign;
func combine(fragments: SpecFragment*) -> Spec? = foreign;

taskdef loadFragment(id: FragmentId) -> SpecFragment {
val config = analysisContextService.getSpecConfig(id);
var loaded = []; var delayed = [];
var worklist = [mod | mod <- config.rootModules];
while(modName <- worklist) {

val modPath = config.rootPackage.append(modName);
if (!exists modPath) {

// Module in another fragment (i.e. interface)
delayed += modName; continue;

}
requires modPath;
val mod = loadModule(modPath); loaded += mod;
worklist += [import | import <- imports(mod)

if (!import in loaded && !import in delayed && !import in worklist)
];

};
SpecFragment {

modules = loaded,
delayedModules = delayed

}
}

func dependencies(id: FragmentId) -> Set<FragmentId> {
val directDeps = analysisContextService.getSpecConfig(id).dependencies;
val transDeps = [dep |

dep <- dependencies(id),
id <- directDeps

];
set(transDeps + id)

}

taskdef buildSpec(ids: LanguageId*) -> Spec? {
val fragments = [loadFragment(fragment) |

fragment <- dependencies(lang), lang <- ids
];
combine(fragments)

}

Figure 5.14: Transformation Task definitions

illustrates how these task definitions are wrapped into the metadata instance of a particular
language. When we discuss the part of the pipeline that actually executes the analysis, we
will demonstrate how this interface is used.

Spec loading. Secondly, the runtime will load the specification that it requires to do the
analysis. In subsection 5.3.3, we have shown how the specification is defined in the language
artifacts and the runtime. In this section, we discuss the task definitions that load the speci-
fication. The implementation of these task definition is shown in Figure 5.14.

The loadFragment task definition loads all modules of a single specification fragment. First
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it retrieves the config of this specification using the analysis context service. The loading
algorithm maintains three lists. First, the loaded variable contains all loaded modules. The
delayed variable holds the names of all modules that are imported by a module in loaded, but
that could not be found in the fragment root package. These modules are for now assumed
to be in a fragment dependency. Finally, the worklist variable contains all module names that
the still need to be loaded. When a module in the worklist cannot be resolved, it is added to
the delayed list. Otherwise, it is loaded and added to the loaded list. After that, all imports of
the module are added to the worklist if they have not yet been encountered.

Preferably, we would have recursively walked the package in which the specification is
located. However, listing package contents is not supported inside a jar file, breaking the
currently default way of distribution.

The buildSpec task definition takes a set of language identifiers, and loads the combined
specification for these languages. It first computes the identifiers of all fragments thatmust be
included by transitively including the dependencies of the supplied languages as recorded in
their SpecConfig. Then it loads all individual specification fragments using the loadFragment
task. Finally, the Spec instances of all fragments are combined into a single specification.
During combination, declarations of labels, relations and constraints are qualified with the
identifier of their fragment. Likewise, the references are qualifiedwith the fragment towhich
they originally resolved as well. This yields an alpha-equivalent specification, in which no
naming collisions between declarations in sibling fragments can occur. Moreover, the combine
method validates that this set of fragments is a valid specification by checking that:

• For each fragment, all modules that could not be resolved in the fragment itself are
supplied by another fragment.

• Rules for a constraint are contained in one fragment. That is, it can not occur that a
fragment contains a rule for a constraint declared in another fragment.

For an example on how Specification fragments relate to language projects and complete
specifications, we refer to Figure 5.11.

Comparing this procedure to the Statix runtime of Spoofax 2, we see that the concept
of specification fragments is new. We introduced it to ensure we can properly validate the
consistency of composed specifications, and to ensure that we do not include interface multi-
ple times in a composed specification. The procedure of merging modules is similar to the
implementation in Spoofax 22.

languageContexts:
'mb.minisdf': "ctx"
'mb.ministr': "ctx"

contextConfigs:
ctx:
logging: "debug"

Figure 5.16: Configuration

Configuration loading. Multi-language analysis takes place
in a particular context. This context has the following proper-
ties:

• The languages included in it.

• The log level passed to the solver debug context.

In subsection 5.3.2, we explained that each language provides
a default context identifier. Furthermore, the default log level
is set to warn. Therefore, having a project-specific configuration
file is entirely optional.

However, it is possible to override these settings using a multilang.yaml file in the root of
the project. Using this file the default values for the settings named in the above paragraph
can be overridden. An example of such a configuration file is shown in Figure 5.16. In this file,

2https://github.com/metaborg/nabl/blob/master/statix.runtime/trans/statix/runtime/analysis.str
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module multilang:config

data Config = foreign {
contexts: Map<LanguageId, ContextId>,
settings: Map<ContextId, Settings>

};
data Settings = foreign { ... };
data ContextConfig = foreign {

languages: LanguageId*,
settings: Settings

};

func defaultSettings() -> Settings = foreign;
func deserializeConfig(str: String) -> Config = foreign;

taskdef readConfig(project: path) -> Config {
val configFile = project.append("multilang.yaml");
if (!exists configFile) {

Config { }
} else {

requires configFile;
deserializeConfig(read configFile)

}
}

taskdef buildConfig(langId: LanguageId, project: path) -> ContextConfig {
val config = readConfig(project);
val defaultContextId = analysisContextService.defaultContext(langId)
val contextId = config.contexts.getOrDefault(langId, defaultContextId);
var languages = [lang | lang <- analysisContextService.languagesForContext(contextId)];
languages -= config.contexts.keys;
languages += [lang |

(lang, context) <- config.contexts if context == contextId
];
ContextConfig {

languages = languages,
settings = config.settings.getOrDefault(contextId, defaultSettings())

}
}

Figure 5.15: Configuration Task definitions

Mini-SDF and Mini-STR are configured to run in the ctx context. This context is configured
with log level debug.

This configuration is read and parsed by the readConfig task. When there is no configura-
tion file, an empty Config instance is returned. The buildConfig task specializes the configu-
ration to a particular language. When an option is not customized, a default value from the
AnalysisContextService is substituted. Moreover, the set of languages that are included in
the context is made explicit. From the default set of languages, all languages that override
their default are removed, and all languages that explicitly declare to be in the same context
of the language parameter are included again.

Executing Analysis. Now we have all our inputs in place, we can explain how we imple-
mented the actual analysis. The implementation we provide closely resembles the current
runtime, as discussed in subsection 5.1.3. A representation of the implementation in the PIE
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DSL is shown in Figure 5.17.
As the first step of the pipeline, the globalScope task creates a global scope by solving the

new s constraint (embedded using the $stx syntax). The global scope variabe and the initial
state are passed to all the other tasks.

Second, the solveProject task definition ensures that the project constraint for a particular
language, of which the identifier is passed as an input, is solved. The output of the task is
the SolverResult that is returned by the solver. Note how the analysisContextService is again
used to find language-specific information in a language-parametric task.

Third, the solveFile task definition implements the third step of the analysis. This task
definition takes a language identifier and a resource key as input. Then it requires the AST
for the resource using the preTransform function of the language that was passed as input.
After retrieving the proper AST, the task creates the specification of the language using the
buildSpec task. Subsequently, the Statix solver is called with this specification to solve the
language’s fileOk constraint for the supplied AST. The returned SolverResult, together with
the AST passed to it, is returned as output.

The fourth step of the pipeline is implemented in the analyzeProject task definition. This
project takes a project path and a set of language identifiers as input. For all languages in-
cluded in its context, it computes the solver results of its project constraints, and the file
results of all sources of the languages. The source files for a language are resolved using
the resourcesSupplier method retrieved using the appropriate language metadata. The in-
termediate results of these partial analyses are merged, and the conjunction of all residual
constraints are solved. The final solver result, as well as the intermediate results of all file
and project constraints, are provided as output.

Finally, the check task definition, shown in the Figure 5.18, integrates this pipeline into
the Spoofax 3 framework. It takes a project path as input, and provides a list of messages.
This signature ensures that the check method of a LanguageInstance implementation (as in-
troduced in Figure 5.7) of a language that supports multi-language analysis can use this task
definition. After extracting the parse messages for all files, the task computes the config-
uration for the context, based on the project and the language is (which is globally avail-
able). Then, it executes the analyzeProject task for the languages in the context. Based on the
analysis result, messages are created. In order to prevent the duplication of messages, only
messages for the language for which this task is defined are returned.

We split the analyzeProject and check task definitions to enable other tasks to use the anal-
ysis results. In this way languages can define tasks that perform other processing of the
analysis results. Moreover, the check task specialized the output to a particular language,
while the analyzeProject task definition is language-parametric.

In Figure 5.19, we summarize all task definitions we discussed in this section. Columns
two to four list the responsibility that each task has. The last column indicates whether a task
is language-specific or generic. Generic tasks are implemented fully in the runtime library.
The language-specific tasks are generated per language, based on an abstract class in the
runtime library.

Exception Handling. In this analysis pipeline, we need to handle exceptions appropriately.
When an exception occurs during analysis, we do not want our environment to crash, nor
bother users with pop-ups. On the other hand, we do not want exceptions to be ignored
silently. In order to make it easier to implement this behavior properly, Spoofax 3 has a
Result<V, E> type, which is either a value with type V, or an exception with type E. All task
definitions that can fail actually have such a result type as output. To keep the figures concise,
we have shown only V in this section.

Furthermore, when some tasks require multiple other tasks, it can occur that multiple ex-
ceptions are returned. To handle these properly, we introduced a custom MultilangException
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module multilang:analysis

typealias FileResult = (path, LanguageId, SolverResult, AST);
typealias ProjectResult = (LanguageId, SolverResult);
typealias FinalResult = (FileResult*, ProjectResult*, SolverResult);

func makeConstraint(name: String, params: Term*) -> Constraint = foreign;
func solve(spec: Spec, constraint: Constraint, state: State) -> SolverResult = foreign;
func merge(states: State*) -> State = foreign;
func conjoin(constraints: Constraint*) -> Constraint = foreign;

taskdef globalScope() -> (Var, SolverResult) {
val res = solve(emptySpec(), $stx({s} new s), emptyState());
(extractVar(res, "s"), res)

}

taskdef solveProject(lang: LanguageId) -> SolverResult {
val (s, state) = globalScope();
val cname = analysisContextService.getMetadata(lang).projectConstraint;
solve(buildSpec([lang]), makeConstraint(cname, [s]), state)

}

taskdef solveFile(lang: LanguageId, res: path) -> (AST, SolverResult) {
val metadata = analysisContextService.getMetadata(lang)
val ast = metadata.preTransform().apply(res);
val (s, state) = globalScope();
val cname = metadata.fileConstraint;
val res = solve(buildSpec([lang]), makeConstraint(cname, [s, ast]), state);
(ast, res)

}

taskdef analyzeProject(context: LanguageId*, project: path) -> FinalResult {
// Collect partial results
val projectResults = [solveProject(lang) | lang <- context];
val fileResults = [ (file, lang, res, ast) |

(res, ast) = solveFile(lang, file),
file <- metadata.resourcesSupplier().apply(project),
metadata = analysisContextService.getMetadata(lang)
lang <- context

];
val results = projectResults + [res | (_, _, res, _) <- fileResults];
// Solve residual constraints
val constraint = conjoin([res.delay | res <- results]);
val state = merge([res.state | res <- results]);
val finalResult = solve(buildSpec(context), constraint, state);
// Apply post-transformations
val fileResults' = [(f, l, res, ast') |

ast' = metadata.postTransform().apply(() -> (ast, finalResult)),
metadata = analysisContextService.getMetadata(l),
(f, l, res, ast) <- fileResults

];
(fileResults, projectResults, finalResult)

}

Figure 5.17: Analysis Execution Task definitions

74



5.3. Implementation of Multi-Language Analysis

taskdef check(project: path) -> Message* {
val parseMsgs = /* omitted */;
// Execute analysis
val config = buildConfig(languageId, project);
val (fileRes, projectRes, finalRes) = analyzeProject(config.languages, project);
// Extract messages
val projectMsgs = [msg | msg <- res.messages,

(l, res) <- projectRes if l == languageId
];
val fileMsgs = [msg | msg <- res.messages,

(_, l, res, _) <- fileRes if l == languageId
];
val finalMsgs = [msg | msg <- finalRes.messages if msg.origin.languageId == languageId];
parseMsgs + projectMsgs + fileMsgs + finalMsgs

}

Figure 5.18: Check Task definition

Name Role Input Output Generic

index
Add metadata

annotations to AST path AST No

preTransform
Apply transformation
on AST before analysis AST AST No

postTransform
Apply transformation
on AST after analysis (AST, SolverResult) AST No

loadFragment Load specification fragment FragmentId SpecFragment Yes

buildSpec
Create specification

for languages LanguageId* Spec Yes

readConfig Load project configuration path Config Yes

buildConfig
Create configuration
for language in project (LanguageId, path) ContextConfig Yes

globalScope Create global scope () SolverResult Yes

solveProject Solve project constraint LanguageId SolverResult Yes

solveFile Solve file constraint (LanguageId, path) FileResult Yes

analyzeProject Finish constraint solving (LanguageId*, path) FinalResult Yes

check Create messages for project path Message* No

Figure 5.19: Summary of Task Definitions

type. When multiple exceptions are reported, a new exception is constructed which takes all
the original exceptions as parameter. In this way, all exceptions are threaded up the task
hierarchy.

When the task executing results in an exception, the check task definition transforms the
exception into messages, and displays them at the proper location in the editor. In this way,
exceptions are neither silently ignored nor reported too obtrusively.
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PIE usage. When using multi-language analysis, a single session can execute tasks and
access resources from different languages. However, a Pie instance needs to have all task
definitions registered explicitly, before a task definition can be called. Therefore, we have
two Pie instances for a language. The prototype Pie contains only the task definitions for the
languages. This instance is provided by the LanguageMetadata.languagePie() method. The
AnalysisContextService then creates a Pie instance with the prototype Pie instances of all
languages as ancestors. This instance is injected into the LanguageComponent of each language.
In this way, the Pie instance that is used formulti-language analysis can always access all task
definitions it uses.

Log Level Input. Furthermore, the framework allows to configure the log level of the Statix
solver. This log level is passed as an input to all applicable tasks. However, the log level
should not influence the result of the analysis. Hence, we do not want to re-analyze a project
when the log level is changed. Therefore, we did not include the log level argument in the
identity of an input. In thisway, taskswill not be re-instantiatedwhen the log level is changed.
After cleaning the project, the analysis can be rerun with a different log level.

Term Factory. When loading Statix specifications and transforming ASTs, we need to sup-
ply an ITermFactory instance to properly build terms. Especially, to ensure Statix terms
can be build correctly, and error messages can be located properly, usage of a specific im-
plementation, the ImploderOriginTermFactory, is required. However, we do not want the
Multi-language component to tightly integrate with this particular implementation, because
we want to support (future) languages that use a custom term factory implementation as
well. Therefore, we allow languages to provide their own term factory using the termFactory
method from the LanguageMetadata interface.

5.3.5 Injection
Having discussed the Multilang Component in isolation, we explain how we integrated this
component into the Spoofax 3 framework. First, we introduced the MultiLangComponent class,
which provides an AnalysisContext instance, and instances for all task definitions. This com-
ponent depends on the PlatformComponent and a MultiLangModule. The constructor of this
module takes an AnalysisContext supplier as argument, which is injected into all applicable
task definitions. Language components can declare this component as parent component.

However, this approach initially introduced a cyclic dependency. In order to initialize
the AnalysisContextService, we need to aggregate information about particular languages,
retrieved from the components of these languages. However, to initialize these components,
a MultiLangComponent instance must be supplied, which requires an AnalysisContextService.
To break this cycle, we made the initialization of the AnalysisContextService lazy, and call
the supplier only when the first instance is requested. Because the methods of this class are
only called by the task definitions introduced above, this approach is safe.

5.3.6 Integration in Eclipse
To embed this framework in Eclipse, we introduced a new Eclipse plugin. This plugin pro-
vides a singleton AnalysisContextService. Eclipse plugins for particular languages can re-
trieve this component and initialize their own components with it.

However, individual languages must supply their LanguageMetadata and SpecConfig in-
stances to the Multi-language plugin as well. Because all classes in Spoofax 3 should be
immutable, we cannot just add them to the AnalysisContextService we retrieved from the
component. Instead, we introduced an extension point. Plugins for concrete languages can

76



5.3. Implementation of Multi-Language Analysis

use this extension point to register implementations of the LanguageMetadataProvider inter-
face. When the Multi-language plugin initializes the MultiLangModule, it provides a supplier
that uses the extension point to resolve all language metadata providers, and creates an anal-
ysis context service based on the aggregated information.

Moreover, we needed to ensure that eclipse handles concurrency correctly. Until now,
builds of individual languages did not interfere, and hence they could be executed in parallel.
For builds with multi-language analysis this is not the case. Therefore, the plugin provides
a scheduling rule that ensures only one multi-language build is running at the same time.
This rule is injected into the eclipse plugins for a language.

5.3.7 Generating Boilerplate
As follows from the previous sections, there is a fair amount of boilerplate that should be
supplied by a language. Sincewedonotwant language developers towrite that, we extended
the Spoofax 3 compiler to generate it. This compiler takes the following input parameters:

• Root Modules: non-empty list of modules that the loadFragment task uses as initial items
in the worklist.

• Language identifier: string used to identify the language. Default value is the base pack-
age of the language.

• Default context: the identifier of the default context that this language uses. Its default
value is the language identifier, meaning that static analysis is done in isolation. Alter-
natively, the identifier of the interface could be provided, meaning that multi-language
analysis is performed by default. The context identifier can be customized per project
using project specific configuration, as we explained above.

• Dependencies: references to Spoofax 3 projects that supply a specification component
that this language depends on. By default a language has no dependencies.

• File constraint: name of the file constraint, introduced in subsection 4.1.4. Its default
value is statics!fileOk.

• Project constraint: name of the project constraint. Its default value is statics!projectOk.

• Pre-analysis strategy name: name of the stratego strategy that is to be executed before
analysis. Its default value is pre-analyze.

• Post-analysis strategy name: name of the stratego strategy that is to be executed after
analysis. Its default value is post-analyze.

First, the compiler generates a SpecConfigFactory. This class provides the identifier for
this specification fragment, and a Map<FragmentId, SpecConfig> that contains the specifica-
tion configurations for this fragment, and all its dependencies. The specification configura-
tions are retrieved by calls to their configuration factories. We include them into this config-
uration to ensure that we do not need to create an eclipse plugin for each interface fragment.
The specification is included in the src-gen/statix folder inside the java package of the lan-
guage.

Second, when the project implements a full language (not an interface), the compiler cre-
ates implementations for the language specific tasks. In the transformation tasks, the correct
strategy names are inserted. In the index task definition, a parse function is injected. Addi-
tionally, in the check task, the language identifier is substituted. Finally, an cmdAnalyzeProject
task definition is generated. This task definition converts the output of the check task to the
CommandFeedback type, to ensuremulti-language analysis can be used from the command line.
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Third, the compiler adjusts some other classes to fully integrate multi-language analysis
in the framework. First, adds a dependency on the multi-language component on the gener-
ated language component. Furthermore it adds a method that provides the metadata of the
language. Third, the checkmethod of the generated language instance class is adjusted to sup-
ply a task based on the check task generated by themulti-language analyzer compiler, instead
of the default one. In this way, the pipeline can be embedded in the different platforms. Last,
the languagemodule is adapted to provide the specification configuration retrieved from the
specification factory, and to create a languagemetadata instance that aggregates and exposes
all information from the settings and generated sources.

Last, the compiler adjusts the generated Eclipse plugin. The component supplied by the
Multi-language plugin is added to the component supplied by the language plugin. Second,
an extension is added to the extension point that the Multi-language plugin provided. This
extension supplies the specification configuration and languagemetadata to the analysis con-
text service.

5.4 Conclusion
In this chapter, we introduced Spoofax 3 and the Statix Compiler and runtime. In this en-
vironment, we have implemented a meta-component that allows to execute composed type
systems that are implemented according to the SharedConcept Interface design pattern intro-
duced in chapter 4. This meta-component is integrated in the Eclipse IDE, and the language-
specific boilerplate code can be generated by the language compiler.

Having presented a design pattern and accompanying runtime, we will evaluate our ap-
proach in the next chapter. After that, we compare our approach with the other approaches
we found in the literature, and conclude this thesis.
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Chapter 6

Evaluation

In this chapter, we evaluate our approach with respect to the criteria we posed in section 2.4,
and the guarantees about composition it provides. In this evaluation, we used the criteria by
posed Leduc, Degueule, Wyk, and Combemale (2020). After that, we recall the criteria for
the Multi-Language Programming Environment, and discuss our compliance with them.

After discussing the functional properties of the system, we assess how resilient our ap-
proach is with respect to changes in its dependencies (the Statix Solver and PIE). After that,
we analyze how potential users would experience the system by assessing the amount of
work that needs to implement our framework for a concrete language project. Moreover, we
compare the performance of our runtime with the reference implementation in Spoofax 2.
Based on the results of these evaluations, we propose several directions of improvement for
our framework as well as for the Statix solver and PIE. Finally, we summarize our findings
and conclude the chapter.

6.1 Correctness of the SCI Design Pattern
In this section, wewill argue that the SCI pattern adheres to the criteria specified in section 2.4.
While the first three criteria are guaranteed by the design of the Statix language and the SCI
design pattern, we investigate several threats that could invalidate the Correctness criterion,
and explainwhy the restriction on specificationswe imposed prevents these fromhappening.

6.1.1 Derivability
The first criterion we posed was in section 2.4 that cross-language type-checking should be
integrated in the type system of the language. By using an interface module to implement
the type system, it is immediately and unambiguously derivable which definitions to expose
to and potentially reference from other languages.

6.1.2 Editor/Build Support
The second criterion states that the specification of type systems should be usable for both
compilation environment and editor services. This is guaranteed by the fact that Statix is de-
signed to yield executable specifications, which can be embedded in any type of environment.
Hence, type systems specified using this pattern can naturally be used for both compilation
and editor analysis.

6.1.3 Loose Coupling
Third, we required that there may be no dependency between the type systems of two con-
crete languages. This is implemented by lifting all shared concepts of a type system into an
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interface. In this way, no direct dependency between type systems is required.
The main motivation for this criterion was guaranteeing O(n) development effort for

cross-language type systems. While actually validating this requirementwould requiremore
experimental analysis, it is reasonable to assume that the additional effort that must be in-
vested in designing and implementing a good interface, discounted for the advantage of
reusing the interface, is proportional to the development effort of the type system of a lan-
guage this uses this pattern.

6.1.4 No Incorrect Results
Finally, the last proposed criterion was correctness. Meeting this requirement is not trivial.
In this section, we discuss some restrictions we impose to ensure correctness.

The first usage scenario in which the design pattern and runtime should provide correct
results is when a language is used in isolation. Correctness in this situation is guaranteed
by the fact that a specification that uses an interface module is not different from a regular
Statix specification, and hence is executed in isolation in a similar fashion.

Second, when multiple languages are used in a project, but no joined analysis is desired,
accidental interaction must not occur. This criterion is met by the fact that the framework
makes it explicitly configurable which languages should be analyzed together. When lan-
guages are not analyzed together, a different analysis context is used. Therefore, their inter-
mediate results are not merged, and hence their scope graphs remain disjoint. Hence, no
accidental interference in rule simplification or query resolution can occur.

Third, we need to ensure that no accidental interference can occur when languages are in
the same context. Accidental interference can occur when a reference to a predicate, relation
or label from a particular language resolves to a declaration from the specification of another
language. In principle, this could occur when two languages declare constraints, labels or
rules with the same name in a module with the same name. To prevent this, we qualify
all declarations and references for labels, relations and constraints with the identifier of the
fragment in which they are declared.

Additionally, when a language contributes rules to a constraint that is declared in an in-
terface, somewell-formedness conditionswith respect to scope extensions, overlap detection
and rule ordering may be violated. For that reason, we close constraint definitions in a frag-
ment by rejecting specifications that add rules to a constraint from a different fragment. In
the remainder of this section, we explain the well-formedness violations that this behavior
prevents in more detail.

Scope Extensions. Regarding the scope extension permissions, consider the example in
Figure 6.1. In this example, the interface module represents an interface fragment, and the
other modules represent fragments of a language specification. The make predicate returns a
fresh scope. The ext predicate is not implemented in the interface, but language B contains a
rule that adds a declaration to its parameter. Language A contains a rule foo that combines
the constraints of the interface, by calling ext with the result of make.

In subsection 5.1.1, wementioned that a scopemay only be extendedwith a declaration or
a edge to another scopewhen it is either freshly created in the constraints, or passed to it from
a direct argument. In the example in Figure 6.1, this restriction holds for the combination of
the interface and langA modules. The scope in foo can not be extended because it is returned
from another predicate, but neither are extensions found for the argument of ext. Hence this
reference is considered fine. The same holds for the combination of the interface and langB
modules. An extension for ext is recorded, but there is no invalid call to ext. Hence this pair
of modules can be compiled together as well. However, when we would try to compile all
three modules together, we get an error at the call to ext from foo, because it is detected that
ext might extend its parameter, but s has no permission to be extended.
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module interface

rules
// Creates a new scope
make: -> scope
// Adds declaration to scope
ext: scope

make() = s :-
new s.

module langA
imports interface

rules

foo:

foo() :- {s}
s == make(),
ext(s).

module langB
imports interface

signature
relations
rel: string

rules
ext(s) :-
!rel["x"] in s.

Figure 6.1: Extension Permission not composable

module interface

rules
// "Extension point"
typeEq: TYPE * TYPE

module langA
imports interface

rules
typeEq(T, T) :- primitive(T).

module langB
imports interface

rules
typeEq(T, T).

Figure 6.2: Overlap Detection not composable

This example shows that separately compiled rules cannot be composed trivially. The
analysis result of a particular module can influence the result of another module, without
having a direct dependency. However, the restriction that a rule cannot extend a constraint
from another specification fragment prevents this situation, because the rule for ext in mod-
ule langB extends the declaration from interface, which is in another fragment. Hence the
specification of language B is rejected when it is loaded.

Overlapping Patterns. The example from the previous section only involves predicates
with scope arguments. Hence it could be solved by only forbidding extension of rules with
scope arguments. However, besides the fact that the type of an argument can not be retrieved
at specification loading time, a similar situation regarding the overlapping pattern detection
can occur for any type of argument. For instance, consider the example in Figure 6.2. Here,
the interface defines a predicate typeEq without rules. Both languages define a rule for this
predicate that indicates that similar terms denote equal types. However, language A limits
this to primitive types only.

Again, the combination of the interface with either language A or B compiles fine, because
there are no overlapping patterns. However, the combination of all three modules does have
such a pattern. When the Solver run from the analyzeProject task would need to simplify
typeEq(INT(), INT()), it would get stuck, because it is not possible to choose one of both rules.

With the restriction that rules cannot extend a constraint from another specification frag-
ment, both langA and langB are rejected, because they define a rule that extends the typeEq
predicate.

InterferencebyPrecedence. Yet, the RuleSet.getAllEquivalentRulesmethod,which is part
of the Statix solver API, can be used to detect these situations easily. We could use this
method to reject combinations of fragments that would result in rules with overlapping pat-
terns. However, there is still another more intricate form of interference, that can not be
detected statically nor at specification loading time in a trivial way. Consider the example
in Figure 6.3. In this example, there is again a predicate typeEq that is extended by both
languages. In language A, equal terms denote equal types, but language B does explicitly
prohibit coercion for values with INT() type.
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module interface

rules
// "Extension point"
typeEq: TYPE * TYPE

module langA
imports interface

rules
typeEq(T, T).

module langB
imports interface

rules
typeEq(INT(), _) :- false.

Figure 6.3: Precedence Interference

In this example, even when compiling all three modules together, there are no over-
lapping patterns. However, suppose that in a context with these languages the constraint
typeEq(INT(), INT()) must be simplified. Now, the rule that is chosen to simplify this con-
straint depends on the phase the analysis is in. When the constraint is simplified by the
solveFile task for a file of language A, only the typeEq(T, T) rule, supplied by the specification
of language A, is available in the specification, and is hence chosen. In that case, solving the
constraint succeeds. However, when it is simplified in the final solver phase, executed by the
analyzeProject task, the rule defined in the fragment of language B will be chosen, because it
has higher priority.

This inconsistent behavior is rather unpredictable, and hence confusing and undesired.
However, this type of interference can not be detected statically. Therefore we decided to
over-approximate it by preventing fragments to define rules for constraints declared in an-
other fragment. In this way, we guarantee that in any phase of the analysis pipeline, for any
constraint reference, all rules are available.

No missed Results. This explanation shows that a query can not return results it was not
intended to return. However, the converse must hold as well. A query should return all
declarations that are reachable, even when their declaring constraints were defined in spec-
ifications of other languages. We argue the existing scheduling algorithm scales directly to
multi-language analysis. This algorithm works as follows: all queries that cross file bound-
aries (and possibly language boundaries) do this either directly or indirectly through a dec-
laration in the global scope. When solving file and project constraints partially (phase two
and three), the solver is aware that other solvers may contribute declarations to the global
scope as well, and hence it will never return results from queries that pass through the global
scope. Instead, these constraints are delayed to phase four. As a result of this, all queries that
start in scopes retrieved from queries that pass the global scope (e.g. with projection) are de-
layed as well, because its start scope can not be ground. When these queries are revisited in
phase four, the solver knows all constraints that still require solving, and hence can schedule
the queries correctly.

Scope extension analysis, the overlapping patterns check and the pattern precedence
rules are the only aspects of the Statix well-formedness criteria that do whole-program anal-
ysis. In this sectionwe explained the restrictions we imposed to ensure the results of all these
analyses remain valid for composed specifications. Therefore, we are confident there are no
other factors that could make composed specifications behave differently than specifications
that were compiled together.

6.2 Composability

In this section, we assess the functional properties of our system. We will evaluate the capa-
bilities of our system regarding the composition of type systems. After that, we reflect on
the goal of the Multi-Language Programming environment we set out in section 2.2.
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Recently, Leduc, Degueule, Wyk, and Combemale (2020) presented an analogy between
the Expression Problem and the Language Extension Problem (LEP). They define this problem
using five criteria:

Extensibility in both dimensions: It should be possible to extend the syntax and
adapt existing semantics accordingly. Furthermore, it should be possible to in-
troduce new semantics on top of the existing syntax.
Strong static-type [sic] safety: All semantics should be defined for all syntax.
No modification or duplication: Existing language specifications and implementa-
tions should neither be modified nor duplicated.
Separate compilation: Compiling a new language (e.g., syntactic extension or new
semantics) should not encompass recompiling the original syntax or semantics.
Independent extensibility: It should be possible to combine and used [sic] jointly
language extensions (syntax or semantics) independently developed.

Although there is a slight domain mismatch, we evaluate our solution using the last four of
these criteria. We do not evaluate the Extensibility in both dimensions criterion, because we did
not include syntactic extension in this thesis1.

6.2.1 Type Safety
When Strong Static Type Safety is defined using the regular notions of progress and preser-
vation (Wright and Felleisen 1994), this criterion holds for regular Statix specifications. The
type system of Statix guarantees that variables are always unified with a term of the type
that was inferred. Moreover, Statix has well-defined semantics for constraint simplification,
even when there is no matching rule. In these cases the constraint will fail, which, from the
Statix viewpoint, is just a part of the solver result.

However, the fact that Statix has a fall-back mechanism that ensures specification exe-
cution can not get stuck does not give much guarantees for the behavior of the combined
specifications. Ultimately, users of multi-language analysis do not want to have errors due
to incomplete combined specifications. Hence, we think this criterion is partially satisfied in
our implementation.

First, because the using SCI design pattern does not involve extending syntax, behavior
in this respect does not change. That is, a constraint on an AST node for which no inference
rule is defined will fail regardless whether multi-language analysis is used or not.

Additionally, we can consider extending this criterion to operations on semantic terms,
such as types. In our framework it is allowed to declare new constructors for sorts declared
in another fragment. Hence, an operation (constraint) that was initially defined on all terms
of a sort has now become partial. When such a term is exposed using a relation defined in an
interface, it is even possible that queries from other languages return a term build using that
constructor, and apply operations on it. These operations can fail, even when the operation
was total with respect to constructors that were defined when the language was developed.

For example, recall the case studywithModandMini-SQL. The specification fragment for
Mod extends the TYPE sort, declared in the interface, with a REC : scope -> TYPE constructor.
When a record type is declared, queries from Mini-SQL could potentially resolve to that
declaration. However, it cannot do anything useful with it, because the REC constructor was
not visible when Mini-SQL was compiled.

However, this leaves a slight hole in strong type safety guarantees regular Statix spec-
ifications have. When the Mini-SQL specification contains a constructor declaration with

1In general, we think Spoofax matches this criterion quite well. SDF3 has features to extend existing syntax,
and in Statix rules for a constraint can be added in separate modules as well. However, it is not clear how to
introduce new semantics to existing syntax.

83



6. EVALUATION

the same name, operations defined for that declaration could accidentally be applied on the
remote term as well. When the constructor in question has the same arity, but different ar-
gument sorts (e.g. REC : string -> TYPE), it can occur that variables are unified with terms
from another type, hence breaking the guarantees the type system provides in regular specifi-
cations. Because Statix has no guarantees about solving order, these values could propagate
to other places in the specification, yielding undefined results.

In general we think the impact of this downside is rather small, because of the large num-
ber of coincident features that are required to actually trigger the behavior. Ideally, wewould
like to prevent this in the same way we prevented declaring rules for constraints from other
fragments. However, the signatures of terms are not included in the compiled Statix specifi-
cations, and hence we can not perform this check when loading specifications. In section 6.7,
we propose a strategy to solve these problems together.

6.2.2 Compilation

The No Duplication/Modification criterion states that it should not be necessary to copy or
modify sources to implement composition. This criterion is currently not satisfied, because
interface sources need to be copied to the projects of languages that implement these inter-
faces. Moreover, the copied modules are then reanalyzed and recompiled for each language
implementing the interface as. This is necessary to validate the well-formedness of the speci-
fication. That means that Separate Compilation is not fully implemented. On the other hand,
it is not required to fully recompile combinations of language specifications.

6.2.3 Independent Extensibility

Fifth, the Independent Extensibility criterion states that it must be possible to use separately
defined extensions (which in our case are language fragments) together. We support it al-
most completely, because we can combine arbitrary type systems by merging their specifi-
cations. One might think that sharing an interface is a prerequisite for joined analysis, but
we want to point out that it is only a requirement for meaningful interaction. Under the same
consistency preconditions as for regular multi-language analysis, it is possible to analyze
sources of languages in the same context, even when the type system specifications do not
share an interface. This feature is useful in usage scenarios where a language uses multiple
interfaces in its type system. In that case, other languages that do not interact directly can
still be included in the same analysis context. For example, consider an extensible variant
of Java that integrates with a query language and a template language. To leverage all pos-
sibilities for joined analysis, Java, the query language and the template language should be
analyzed together. Our system supports this usage pattern, and the correctness guarantees
discussed in section 6.1 ensure that no undesired interaction between the latter two will take
place.

6.2.4 Glue Code

In addition to these five criteria inspired by the Expression Problem, the paper of Leduc,
Degueule, Wyk, and Combemale (2020) raises the concern of Automatic Composability. That
is, no ‘glue code’ should be required to compose extensions. Because composition is not
performed by combining scope graphs, instead of passing data, this criterion is fully satisfied
in our implementation as well.
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6.3 Revisiting The Multi-Language Programming Environment
With this assesment of correctness and composability in place, we assess whether our run-
time can be used to realize the Multi-Language Programming Environment we sketched in
chapter 2. In section 6.1, we argued that our approach largely satisfies the criteria we posed
in section 2.4, although we add some well-formedness restrictions to the type system speci-
fications.

However, a significant restriction to fully realizing this goal is the fact that this framework
is confined to languages for which the type system can be expressed in Statix. Currently, it is
not clear how to define Hindley-Milner style polymorphic type inference, substructural type
systems or dependent types in Statix. This restriction precludes large groups of languages
and hence limits the generality of our solution.

Secondly, we do not think that the additional restrictions we impose to guarantee cor-
rectness of runtime composition precludes any languages a priori. The restriction that con-
straints can not be extended over fragment boundaries does not limit the support for indi-
vidual languages, but only restrict the ways interfaces can model the interactions between
languages. Whether this restriction makes particular interaction patterns impossible is not
yet clear.

Finally, we do not yet support analysis over project boundaries. The reason for that is
that Spoofax 3 does not yet have a notion of a project using a Spoofax 3 languages. Hence,
we cannot retrieve dependencies, nor adjust our analysis accordingly. Nonetheless we think
cross-project analysis should be possible by constructing edges from the global scope of the
depending project to the global scope of the dependent project, but that is future work.

6.4 Durability
Our runtime uses Statix in a way that is on the verge of what it was intended to support.
When Statix develops further, additional well-formedness criteria might be imposed. These
criteria may either require adaption of our implementation to maintain the correctness guar-
antees, possibly imposing more restrictions on the design pattern, or in the worst case inval-
idate the approach completely. Due to this relation, it is difficult to estimate the required
future maintenance effort and assess the durability of the implementation.

Lastly, this meta-component adds analysis infrastructure next to the existing runtime
(which is integrated in Spoofax 3 as well). This imposes an additional maintenance burden,
and might increase build times as well. In the future, we must evaluate whether the new
runtime supports all use cases that the old runtime supports as well, and consider replacing
it entirely.

6.5 Usability
From a language designer perspective, the framework itself requires minimal effort to use.
When a language specification is compiledwithmulti-language analysis enabled, all relevant
code and configuration is generated, and the new runtime is used in the Eclipse IDE. No
further actions are required to use the framework. Presumably, the most effort when using
multi-language analysis goes to defining a good interface, and distributing it properly.

On the other hand, Spoofax 3 does not yet support dynamic loading of languages. There-
fore, testing multi-language interactions requires restarting the IDE with updated plugins
after every edit, which is rather time-consuming.

Furthermore, until now, we have tested the framework only on small toy languages. To
assess the usability of our framework better, a more extensive study on real-world examples
is required.
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6.6 Performance
We wanted to gain an impression on the performance of our runtime. We did not have the
goal to be significantly faster than the Spoofax 2 runtime, but neither do we want that user
experience regarding responsibility drops significantly when switching to our runtime. In
order to validate this, we implemented some benchmarks.

6.6.1 Benchmark setup

Files LOC
Source set 1 1 2
Source set 2 26 1524
Source set 3 1 1424

Figure 6.4: Size of Bench-
mark Source sets

As a language, we choose the Java implementation in Spoofax,
because that is the only language that has a specification of rea-
sonable size, and for which large enough code bases exist. The
performance measurements are implemented using the Java Mi-
crobenchmark Harness (JMH)2. The benchmarks are executed
on a Ubuntu 20.04.1 LTS PC with a Intel Core i7-4710MQ proces-
sor with four 2.5 GHz cores and eight threads, and 12 GB RAM
available. For each run, a maximum of 10 GB memory was al-
located. Per benchmark, we performed five warm-up iterations,
and 20 measurement iterations.

In the implementation of the runtimes, there are two important differences.

• The Multi-language Runtime is implemented in Java, while the Spoofax 2 runtime is
implemented in Stratego.

• The Multi-language Runtime loads specifications using PIE tasks. Hence loaded spec-
ifications will be cached by the runtime. In constrast, the Spoofax 2 runtime loads
specifications for every analysis.

For each of these differences, we want to measure the impact on the running times of full as
well as incremental analyses, if appropriate. Ideally, we would like to measure the effect of
the fact that Spoofax 2 executes phases two and three using a parallel stream, while Spoofax
3 is strictly sequential. However, there is no Statix specification available which does consid-
erable local analysis and for which a codebase of considerable size is available.

We used two source sets for our benchmarks. The first project contains only an empty
class. Using a small source set ensures that the solver times are negligible, and hence the
runtime overhead can be measured better. The second source set consists of a set of Mini-
Java examples 3. Since this source set contains rather many files, compared to the actual lines
of code, it is a good project to assess the impact of having multiple files. To make that com-
parison more precise, we concatenated all files from source set two in source set three. The
project sizes are summarized in Figure 6.4. The values in the lines of code (LOC) column
are measured with tokei 12.044, where columns and blank lines are ignored.

In order to benchmark the incremental analysis, we use five different change sets:

• A change set in which no file is marked as changed.

• A change set in which all files are marked as changed, but their contents remain iden-
tical (which could happen e.g. when a new branch is checked out).

• A change set in which only layout is changed.

• A change set in which a constant is changed in one file.

• A change set in which a constant is changed in all files.
2https://github.com/openjdk/jmh
3https://github.com/chrismwendt/MiniJava/tree/ff2c614d4dc9660ce054ad9f5100957eebe40ae9/examples
4https://github.com/XAMPPRocky/tokei
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6.6.2 Results
The results of this benchmark are shown in Figure 6.5. Based on these results, we can draw
the following conclusions.

In general, the overhead of the runtimes is insignificant for source sets of reasonable size.
In Figure 6.5a, we see that the Spoofax 2 analysis takes roughly 15 times as long as the Spoofax
3 analysis. Analyzing the flame charts generated by our benchmark shows that this is mainly
due to the overhead of the Stratego interpreter.

In Figure 6.5b, it is interesting to observe that the Spoofax 2 running times for single-
file source sets are slightly larger than those of our runtime, while for the multi-file source
set, this relation is reversed. Although this could be caused by Spoofax 2 solving the file
constraints in parallel, we cannot rule out that this mismatch is just caused by measurement
error.

In Figure 6.5c, we see that the Spoofax 2 runtime can detect that ASTs for changed files
remain the same much faster than our runtime can. The reason for this behavior is that
Spoofax 2 compares precomputed AST hashcodes, while the early cut-off algorithm of PIE
does a structural comparison or the parser output, which contains a list of tokens and a set
of parse messages as well as the AST.

Another remarkable observation is the big difference in performance between the ‘iden-
tical’ and the ‘layout’ change set, executed by the Spoofax 3 runtime. Moreover, the raw
benchmark data shows that no PIE tasks are executed for the ‘identical’ change set, and 27
tasks for the ‘layout’ change set. The reason for this behavior as follows. When files are
identical, the parser results will be identical as well. Again, the early cut-off feature of PIE
requires comparison of these outputs, which takes considerable amount of time. In contrast
to that, it is quite soon detected that parse outputs are different when the layout is changed.
PIE will then continue executing the index tasks, and compare the returned AST with the
previous results. These are equal again, and hence no more tasks are executed. Apparently,
executing the AST indexing task and comparing its result is approximately twice as fast as
comparing the complete parser output. Because the Spoofax 2 runtime does not compare
complete parse outputs, but only precomputed AST hashcodes, it does not suffer from this
problem.

Finally, in Figure 6.5d, we see that there is no significant difference in performance when
a real change is made. When only one file in the source set is changed, we see that approxi-
mately 35% of the work could be reused. However, again no significant benefit of paralleliz-
ing file constraint solving can be observed. Therefore we believe that the execution time we
save is mainly due to the fact we do not have to transform the ASTs of cached files. Finally,
the incremental analysis poses a small overheadwhen all the files in a source set are changed.

Summarizing, we see that for tiny source sets, the execution times of the runtimes can
differ significantly. However, when projects get larger, the solver execution time becomes the
dominant factor. Therefore we expect neither decreased nor increased user experience when
transitioning to our runtime.

6.7 Possible Improvements
Having established this quality assessment, we discuss two adaptations to the current Statix
compiler that improve the current solution. After that, we propose adaptations to the Statix
Solver and PIE that would improve the quality of our solution as well.

6.7.1 Improving Compilation
In this section, we discuss two major improvements to the current compilation procedure.
First, Separate Compilation should remove the need to copy interface sources. When Sepa-
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rate Compilation is implemented, we can move the name qualification that is currently done
at specification loading time to the compiler. Ultimately, that would allow relaxation of the
restrictions on rule extension.

Separate Compilation. First, the current compilation procedure, as presented in subsec-
tion 5.3.3, should be improved. Currently, the sources of interface modules must be dupli-
cated in each language project. Although it can be automated, it imposes an additional main-
tenance burden. In order to prevent source copying, the Statix specification format should be
enriched to enable Separate Compilation. Furthermore, when the Statix compiler in Spoofax
3 matures, we should design and implement a way to distribute compiled specifications in
such a way that they can be used as a source dependency in other languages. Related to this,
we would like to distribute only the signatures of interfaces as compile-time dependency. In
this way, we can enforce strict adherence to the conventions with respect to relation usage
of an interface that are now implicit (as explained in section 4.2.3) by hiding the relations in
the implementation fragment.

Language Identifier in Qualified Names. Secondly, while loading a specification, we pre-
fix labels names, relations names and constraint names with the fragment identifier in which
they are included. This prevents naming collisions between fragments that were not com-
piled together. However, generating fully qualified names should be done at compilation
time, to prevent duplicate work at specification loading time.

However, hen we would implement that right now, our current compilation procedure
would be invalidated, because the declarations in copied signature modules will be qualified
differently. For example, consider an interface that defines a label interface/base!P in module
base. When this module is copied to a language A, it will be analyzed again. In that analysis,
langA will be prepended instead of interface, because the compiler is not aware of the fact
these modules are actually copied. This mismatch will propagate to all references to P in the
specification of language A. At runtime, the interface modules are loaded from the original
interface language, and not from language A. This will result in a naming mismatch, causing
queries to return incorrect results. Therefore, this change can only be performed after the
separate compilation with enriched specifications is implemented, because that invalidates
the need to copy sources, and hence avoids the incorrect qualification.

Additionally, when the compiler knows whether a constructor is declared in the current
fragment or in a dependency, we can slightly relax the restriction that a fragment can not
contribute rules to a constraint declared in another fragment. In particular, we can allow
rules that:

• Have at least one constructor that is declared in the current fragment in their input
pattern.

• Are linear.

• Have no overlap with the rules from the dependency.

These conditions guarantee that no runtime accidental overlap between sibling specification
fragments can occur.

6.7.2 Improving Dependencies
Our Statix Runtime mainly relies on two components: The Statix Solver and PIE. Hence the
runtime can piggy-back on improvements on these components as well. We envision three
major approaches that could improve performance of analysis executed using our runtime.
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Incremental Solver. When the Statix solverwould get better support for concurrent and/or
incremental analysis, we can increase the performance for our runtime as well. However,
when the existing solver implementation would be replaced with a new solver implementa-
tion (as recent work on a concurrent solver is doing), we need to re-implement the part of
the pipeline that executes the actual analysis. Furthermore, a different solver architecture
may change the requirements and functional guarantees with regard to specification as well.

Parallel Task Execution. Moreover, when PIE would support parallel execution of tasks,
the partial constraints could be solved in parallel, which can decrease the time required to
transform the ASTs and execute phases two and three of an analysis. When this could be
abstracted in the PIE Runtime, no adaption of the Multi-language Statix Runtime is required.

Improved Early Cut-off. Finally, in the current implementation, the post-transformation
tasks for each file are executed after each time the analysis is executed. We implemented
it this way to enable language implementers to define custom transformations that use the
analysis result. To keep the input size small, the post-transformation task takes a supplier of
the analyzed AST and analysis result as input. Hence the task is executed when the AST or
the analysis result changes. Ideally, we would want an option to have only the latter, but
in PIE, it is not possible to do early cut-off when a task does not use a part of its input. As
a matter of fact, this behavior caused the strange benchmarking result with the ‘identical’
change set as well. We think this could be solved when PIE would support requiring a task
with a custom equality comparing function.

6.8 Conclusion
In conclusion, we have seen that our framework has quite good properties with respect to
composition. Most of the limitations are due to lacking features in the infrastructure, rather
than algorithmic limitations. With some restrictions in place, we explained that our imple-
mentation adheres to the criteria we proposed in section 2.4, and should therefore be capable
to solve the problems we encountered during the analysis of alternative approaches in sec-
tion 2.3. The most important remaining work is ensuring strong static type safety again and
improving the compilation infrastructure. Moreover we could research possibilities to relax
the newly introduced restrictions.

We are not the first to try to combine type systems of multiple languages. Therefore,
before we conclude this thesis, we discuss related work on Type System Composition in the
next chapter.
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Chapter 7

Related Work

In this chapter, we discuss other work related to Type System Composition. Generally, there
are numerous concrete implementations of static analysis tools/frameworks that in someway
or another derive information from sources in different languages. Yet, all of these are either
restricted to a particular language family or a particular domain (e.g. security or standards
compliance). In contrast, we explicitly aimed for generality in this thesis.

As far as we are aware, there are no approaches to compose type system specifications
for constraint-based type checkers yet. Neither are we aware of approaches that pursue
language-parametric composition by cross-language referencing. However, for other ap-
proaches to type system composition are taken.

First, we discuss a classification of composition, proposed byErdweg, Giarrusso, andRen-
del (2012). After that, we discuss related work on Attribute Grammars. Finally, we compare
our work with some more pragmatic approaches found in the literature.

7.1 Taxonomy
Erdweg, Giarrusso, and Rendel (2012) propose a taxonomy of language composition pat-
terns. This taxonomy helps us to relate our work to the work of others. The types of compo-
sition they distinguish are:

• Language Extension (LE): adding a new syntactic construct, with accompanying se-
mantics to a language.

• Language Restriction (LR): removing a construct from a language. This category can
be seen as a subpattern of Language Extension.

• Language Unification (LU): integrating two equivalent language definitions together,
possibly by using some additional code (glue code). An example of this pattern is the
integration of JavaScript and HTML.

• Self-Extension (SE): defining an extension for a host language in the same host lan-
guage.

• Extension Composition (EC): using several language extensions together simultane-
ously.

In this taxonomy, ourwork is in the LanguageUnification category. In particular, we compose
validation procedures.
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7.2 Attribute Grammars
Attribute Grammars (Knuth 1968) is a formalism in which context-free grammars are ex-
tendedwith attributes that can be defined on productions. In its initial conception, contained
two types of attributes. Synthesized attributes calculate an attribute value based on the at-
tributes of its subtrees, while inherited attributes are calculated using attributes of the parent
and sibling nodes.

Before comparing the approaches, it must be observed that Attribute Grammars serve a
different composition style than the framework presented in this thesis. While we combine
analyses results of several files in different languages, Attribute Grammars provide means to
transport informationwithin an AST. Therefore, they are more suitable to implement compo-
sition (and extension) by syntax embedding than by cross-language referencing. In partic-
ular, extensions of the original concept have been explored for Language Extension and Ex-
tension Composition (Ekman andHedin 2007a; Kaminski andWyk 2012; Kaminski, Kramer,
Carlson, and Wyk 2017; Mernik 2013). Assuming that composition of languages is roughly
the same as composing extensions of an empty language, attribute grammars are promising
for language composition as well.

In general, attributes are defined using small functions. Hence, type system implementa-
tions such for languages usually do not resemble the formal specification as precise as Statix
does. Hence our approach stays closer to the goal of closing the gap between specification
and implementation than attribute grammar based approaches do. On the other hand, at-
tribute grammar systems can be used to create type systems for a broader range of languages.
Especially, a subset of Haskell, including polymorphic type inference is implemented using
Attribute Grammars Dijkstra and Swierstra (2004).

First, JastAdd (Ekman and Hedin 2007b) is a system that extends the attribute grammar
formalism with several other types of attributes:

• Attributes referencing other AST nodes, whichmake theASTmore like a graph (Hedin
2000).

• Decoupling parent nodes from child nodes and vice versa by broadcasting attributes
and parameterized attributes.

• Automatic rewriting interleaved with reading attributes.

• Adding generated nodes (non-terminal nodes) to an AST.

• Circular attributes implemented using fixpoint calculation.

By using these extensions to the attribute grammar formalism, JastAdd aims to have the AST
as the only data structure in the compiler pipeline. This system has successfully been used
to implement Java 1.5 using extensions on a Java 1.4 definition (Ekman and Hedin 2007a).

Due to these additional complications, well-formedness for JastAdd specifications can
not be guaranteed statically anymore. Hence JastAdd has runtime consistency checks that
validate some consistency requirements, but leaves others unchecked. Examples of such
unchecked properties are confluence and termination, both of which Statix guarantees.

Secondly, Silver (Wyk, Bodin, Gao, and Krishnan 2010) uses an Attribute Grammar im-
plementation extended with forwarding (Wyk, Moor, Backhouse, and Kwiatkowski 2002),
higher-order attributes (Vogt, Swierstra, and Kuiper 1989) and reference attributes (Hedin
2000). Forwarding entails that a new production can specify a term it ‘forwards to’. When an
attribute on that new production must be calculated, but no definition is provided, it is cal-
culated using the definition provided by term it forwards to. Additionally, unless specified
otherwise, inherited attributes are by default copied to all child nodes. Unlike JastAdd, lan-
guage specifications in Silver are still strongly typed. Additionally, Silver is one of the few
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attribute grammar systems with separate compilation. Silver has been used to implement
AbleC (Kaminski, Kramer, Carlson, and Wyk 2017) and AbleJ (Wyk, Krishnan, Bodin, and
Schwerdfeger 2007), which are implementations of respectively the C11 standard and Java
1.4. For both languages, a considerable amount of reliably composable extensions have been
developed.

Third, LISA (Mernik 2013) is a system that supports inheriting multiple attribute gram-
mars. In this way, all composition patterns from Erdweg et al. are supported. Unlike our
approach, LISA requires some glue code to compose languages. Therefore, in contrast to our
system, it can not be used to compose mutually agnostic type systems automatically.

In the context of Forwarding Attribute Grammars (e.g. Silver), Kaminski andWyk (2017)
investigate the problem of Interference. Interference occurs when two extensions work cor-
rectly when used separately, but cause invalid behavior when used together. By adding
some restrictions to the definition of a language extension, they manage to prove that com-
position of such extensions maintains the correctness guarantees each extension has. This
work actually inspired us to formulate our correctness condition in section 2.4, and to thor-
oughly assess the risk of interference in our solution. Although they operate in a different
context, both of our approaches need to impose some restrictions to the original system to
ensure correct behavior in any composition settings. However, we had to impose some re-
strictions for operational reasons as well rather than just declarative ones. On the other hand,
we actually enforce the imposed restrictions at runtime, while Kaminski and Van Wyk pro-
vide a randomized testing approach to validate whether the restrictions they impose hold.
We both claim that the imposed restrictions still allow a useful class of languages or language
extensions to be composed.

7.3 Other Approaches

Other approaches toMulti-language analysis have been pursued aswell. For example, Strein,
Kratz, and Löwe (2006) define a common model, which is defined as ”an integrative represen-
tation of a whole mixed-language program including cross-language relations”. This model
is populated by frontends for particular languages, and in return provides high-level analysis
and some refactoring options.

Comparing to our approach, it seems that this common meta-model fulfills a role simi-
lar to our interfaces. They write: ”[The common meta-model includes only] those language
concepts, that are relevant to higher level analyses or to other languages.” Like our approach,
this framework allows cross-file analysis as well. Moreover, their approach seems rather
demand-driven, whereas we achieved a much stronger foundation in type theory because
we use specifications written in Statix. For that reason, we can provide well articulated as-
sessments of composability and correctness. On the other hand, their system has stronger
experimental validation. It has been used to integrate several web languages (HTML, XML
and JavaScript) and server-side languages (JSP, Java, ASP, C#, Visual Basic and J#) in a single
model.

Finally, Pfeiffer and Wasowski (2012b) present TexMo, which is a Development Environ-
ment especially designed for Multi-Language applications. TexMo provides a universal lan-
guage representation, which can be used to represent andmanipulate sources of 75 different
GPLs and DSLs. The static analysis of TexMo is concentrated on heuristic-based reference
resolution rather than type-checking. Therefore our system provides much stronger guar-
antees regarding completeness and correctness. Furthermore, it is not clear what range of
language classes TexMo supports.

A case studyusingTexMo (Pfeiffer andWasowski 2012a) shows that usingCross-Language
Support mechanisms, including static analysis, navigation and refactoring, significantly aid
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developers maintaining large Multi-language code-bases. This result is a strong motivation
for all work on Multi-language Analysis.
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Chapter 8

Conclusion

A Multi-Language Programming Environment is an environment that helps a developer to
understand and manipulate a codebase that contains sources in multiple programming lan-
guages. To provide these services, the information that static analysis of these sources pro-
vides must be processed in an integrated fashion. The integration of the informationmust be
consistent with the formal semantics of the languages, available for editors as well as build
tools, not require tight coupling nor glue code, and deliver results that are consistent with
the actual interaction pattern.

Type Systems that complywith all these criteria can be specified in Statix using the Shared
Concept Interface (SCI) design pattern. In this pattern, the semantic concepts that should be
shared across languages are encoded in a separate interface language. Concrete languages
dependon these interfaces to specify their own type systems. In thisway, a languagedesigner
can regulate the information that is exposed and retrieved precisely.

We provide a runtime that can load and execute composed specifications, and integrated
it in Spoofax 3. This runtime is implemented using a pipeline of PIE tasks, which ensures
it has the same level of incrementality as the reference implementation in Spoofax 2. The
Spoofax 3 compiler is adapted to generate all boilerplate code for languages that support
multi-language analysis, whichmakes the framework easy to use. The framework is platform-
agnostic, and an embedding in the Eclipse IDE is provided. Finally, the project-specific con-
figuration options give the user fine-grained control regarding the sources that should be
analyzed together.

In order to maintain correctness guarantees for combined specifications, we imposed the
restriction that a predicate definition, including its rules, must be contained in a single lan-
guage project.

The proposed design pattern and the corresponding implementation are validated with
two case studies. First, we integrated a subset of SDF3 and a subset of Stratego. This inte-
gration allows to check whether terms in Stratego rules were well-formed with respect to a
signature derived from an SDF3 syntax specification. Second, we integrated a subset of SQL
with a toy language that features expressions, records, modules and functions. In this inte-
gration, table definitions can be interpreted as record types, and stored procedures as func-
tions. Both case studies were implemented successfully, demonstrating that the approach is
actually working.

8.1 Future Work

Multi-Language Type System Composition is a broad and lively field of research. Hence
we hope this work will inspire a lot of other research in this area. Especially, we see several
opportunities to use heterogeneous scope graphs for other, currently unsupported, composi-
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tion patterns. Besides that, there are several research directions and technical improvements
that could improve our current solution.

In particular, there are forms of composition that the system this thesis presents does not
yet cover. First, we believe heterogeneous scope graphs can be used to type-check programs
that use syntactic embedding as well. In that case, the scope graph of the object program
will be a subgraph of the enclosing scope in the host language. Similarly, references from
anti-quotations can be resolved through the scope graph of the object program.

To further leverage the flexibility of heterogeneous scope graphs, we should consider
adding support for extension composition, similar to the pattern many Attribute Grammar
systems support. When we can relax the restrictions on rule composition as described in
section 6.7 and introduce ‘extension fragments’ that provide a specification fragment that
extends the base language, we could implement meaningful language extensions.

Third, we do not yet support type-checking across project boundaries. Again, we think
this could be implemented by using heterogeneous scope graphs. In this case, an edge from
the global scope of the dependent project to the global scope of the dependency should be
added.

Throughout chapter 5 and chapter 6, we encountered several properties of the Statix com-
piler that prevented correct composition in general. This problem is caused by the fact that
Statix has several whole-program analyses. To remediate these problems, we should adapt
the compiler to comply with the Separate Compilation criterion of Leduc, Degueule, Wyk, and
Combemale (2020).

Fifth, we should investigate if we can use the findings on the composability of Statix
to create distributable language component libraries, in the style that Butting, Reikerman-
nobert, Hölldobler, Jansen, Rumpe, and Wortmann (2020) recently presented. This would
prevent repeated reimplementation of the basic aspects of a type system, making language
engineering more efficient.

Finally, we have only verified our solution on small toy languages. To get a better evalua-
tion of the possibilities and limitations of our approach, case studies on real-world languages
should be performed.
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Appendix A

Statix Specification of Mini–SDF and
Mini–STR Case Study

In this appendix, we include the Statix specification of the Mini–SDF and Mini–STR case
study.

A.1 Interface

module abstract-sig/types

signature

sorts TAG = scope

sorts SORT constructors
SORT : TAG * string -> SORT

sorts TYPE constructors
SINGLE : SORT -> TYPE
OPT : SORT -> TYPE
ITER : SORT -> TYPE
STAR : SORT -> TYPE

sorts CONS constructors
CONS : SORT * list(TYPE) * TAG -> CONS

name-resolution
labels
P // lexical parent
I // Module import
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A. STATIX SPECIFICATION OF MINI–SDF AND MINI–STR CASE STUDY

module abstract-sig/sorts

imports
abstract-sig/types

signature

relations
sort: string -> SORT

rules

declareSort: scope * string

declareSort(s, n) :- {stag}
new stag,
!sort[n, SORT(stag, n)] in s,
// Check for sorts with same name in same scope
query sort

filter e and { n' :- n' == n }
in s |-> [_] | error $[Duplicate declaration of sort [n]],

// Check for sorts with same name in imported modules
query sort

filter P* I* & ~e and { n' :- n' == n }
in s |-> [] | error $[Shadowing imported sort [n]].

rules

sortOfSort: scope * string -> SORT
sortOfSort(s, n) = T :-

query sort
filter P* I* and { n' :- n' == n }

min $ < P, $ < I, P < I
in s |-> [(_, (_, T)) | _]

| error $[Sort [n] not declared].
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A.1. Interface

module abstract-sig/constructors

imports
abstract-sig/types

signature

relations
// Store arity in relation arguments
cons: string * int -> CONS

rules

declareCons : scope * SORT * string * list(TYPE)

declareCons(s, T, n, S) :- {a ctag}
new ctag,
a == arityOfSig(S),
!cons[n, a, CONS(T, S, ctag)] in s,
// Check for constructors with same name in same scope
query cons
// In this data well-formedness predicate, both the name and arity should match
filter e and { t :- t == (n, a) }
in s |-> [_]

| error $[Duplicate declaration of constructor [n]/[a].],
// Check for constructors with same name in imported modules
query cons
filter P* I* & ~e and { t :- t == (n, a) }

min $ < P, $ < I, P < I
in s |-> []

| error $[Shadowing imported constructor [n]/[a].].

rules

resolveCons : scope * int * string -> CONS

resolveCons(s, a, n) = C :-
query cons
filter P* I* and { t :- t == (n, a) }
in s |-> [(_, (_, _, C))| _]

| error $[Constructor [n]/[a] not declared].

rules

arityOfSig : list(TYPE) -> int

arityOfSig([]) = 0.
arityOfSig([_]) = 1.
arityOfSig([h|t]) = res :- {ts}

ts == arityOfSig(t),
res #= ts + 1.
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A. STATIX SPECIFICATION OF MINI–SDF AND MINI–STR CASE STUDY

module abstract-sig/conflicts/sorts

imports
abstract-sig/types
abstract-sig/sorts

signature

sorts STI = (string * TAG) // Sort type info

rules

sortsUnique: scope * scope

sortsUnique(s_imp, s_mod) :- {SM SI}
sortsInScope(s_mod) == SM, // Sorts in imported module scope
importedSorts(s_imp) == SI, // Sorts imported in importing module scope
sortsDisjoint(SM, SI).

rules

sortsInScope : scope -> list(STI)

sortsInScope(s) = typeInfosOfSorts(S) :-
query sort

filter P* I*
in s |-> S.

rules

importedSorts : scope -> list(STI)

importedSorts(s) = typeInfosOfSorts(S) :-
query sort

filter P* I* & ~e
in s |-> S.

rules

typeInfosOfSorts maps typeInfoOfSort(list(*)) = list(*)
typeInfoOfSort: (path * (string * SORT)) -> STI

typeInfoOfSort((_, (n, SORT(id, _)))) = (n, id).

rules
// Double maps to validate each pair
sortsDisjoint maps sortDisjoint(list(*), *)
sortDisjoint maps sortPairDisjoint(*, list(*))

sortPairDisjoint: STI * STI

sortPairDisjoint((n, id1), (n, id2)) :-
id1 == id2 | error $[Duplicate import of sort [n]].

sortPairDisjoint((n1, _), (n2, _)).
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A.1. Interface

module abstract-sig/conflicts/constructors

imports
abstract-sig/types
abstract-sig/constructors

signature

sorts CTI = (string * int * TAG) // Constructor type info

rules

conssUnique: scope * scope

conssUnique(s_imp, s_mod) :- {CM CI}
conssInScope(s_mod) == CM, // Constructors in imported module scope
importedConss(s_imp) == CI, // Constructors imported in importing module scope
conssDisjoint(CM, CI).

rules

conssInScope : scope -> list(CTI)

conssInScope(s) = typeInfosOfConss(C) :-
query cons
filter P* I*
in s |-> C.

rules

importedConss : scope -> list(CTI)

importedConss(s) = typeInfosOfConss(C) :-
query cons
filter P* I* & ~e
in s |-> C.

rules

typeInfosOfConss maps typeInfoOfCons(list(*)) = list(*)
typeInfoOfCons: (path * (string * int * CONS)) -> CTI

typeInfoOfCons((_, (n, a, CONS(_, _, id)))) = (n, a, id).

rules
// Double maps to validate each pair
conssDisjoint maps consDisjoint(list(*), *)
consDisjoint maps consPairDisjoint(*, list(*))

consPairDisjoint: CTI * CTI

consPairDisjoint((n, a, id1), (n, a, id2)) :-
id1 == id2 | error $[Duplicate import of cons [n]/[a]].

consPairDisjoint((n1, _, _), (n2, _, _)).
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module modules/modules

imports
abstract-sig/types

abstract-sig/conflicts/sorts
abstract-sig/conflicts/constructors

signature

sorts MODULE constructors
MODULE : scope * ModuleType -> MODULE

sorts ModuleType constructors
SUPPLY : ModuleType
CONSUME : ModuleType

relations
mod : string -> MODULE

rules

// Rule used for validating unique import of sorts/conss/rules
itemsOk: string * scope * scope

itemsOk(_, s_imp, s_mod) :-
sortsUnique(s_imp, s_mod),
conssUnique(s_imp, s_mod).

rules

declareMod: scope * string * scope * ModuleType

declareMod(s, n, s_mod, T) :-
!mod[n, MODULE(s_mod, T)] in s,
// Validate module name unique
query mod

filter P* and { n' :- n' == n }
in s |-> [_]

| error $[Module [n] declared multiple times].

rules

import: scope * string * ModuleType -> scope

import(s_imp, n, T) = s_mod :- {T1}
s_imp -I-> s_mod,
query mod

filter P* and {n' :- n' == n }
in s_imp |-> [(_, (_, MODULE(s_mod, T1))) | _]

| error $[Module [n] could not be found],
// Validate module type combination is correct.
T1 == T | error $[Module of type [T] cannot import module of type [T1]],
// Validate no conflicts in imported constructs
itemsOk(n, s_imp, s_mod).
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A.2. Mini–SDF

A.2 Mini–SDF

module mini-sdf/sorts

imports
signatures/minisdf-sig
abstract-sig/types
abstract-sig/sorts

rules

sortsOk maps sortOk(*, list(*))

sortOk: scope * ID
sortOk(s, n) :-

declareSort(s, n).
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module mini-sdf/productions

imports
abstract-sig/types
abstract-sig/constructors
abstract-sig/sorts

signatures/minisdf-sig
mini-sdf/sorts

rules

prodsOk maps prodOk(*, list(*))

prodOk: scope * Production
prodOk(s, Production(sn, cn, t)) :- {T T1}

sortOfSort(s, sn) == T,
typeOfSymbols(s, prodTerms(t)) == T1,
declareCons(s, T, cn, T1).

rules

// Filter away Terminals, since they do not have a sort
// (and hence don't need type-checking, or a position in the constructor signature)
prodTerms: list(Symbol) -> list(Symbol)
prodTerms([]) = [].
prodTerms([Terminal(_) | tl]) = prodTerms(tl).
prodTerms([s@Term(_) | tl]) = [s | prodTerms(tl)].

rules

typeOfSymbols maps typeOfSymbol(*, list(*)) = list(*)

typeOfSymbol: scope * Symbol -> TYPE
typeOfSymbol(s, Term(t)) = typeOfTerm(s, t).

rules

typeOfTerm : scope * Term -> TYPE

typeOfTerm(s, Plus(t)) = ITER(sortOfSort(s, t)).
typeOfTerm(s, Option(t)) = OPT(sortOfSort(s, t)).
typeOfTerm(s, IterStar(t)) = STAR(sortOfSort(s, t)).
typeOfTerm(s, Ref(t)) = SINGLE(sortOfSort(s, t)).
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module mini-sdf/imports

imports
modules/modules
abstract-sig/sorts
signatures/minisdf-sig

abstract-sig/conflicts/sorts
abstract-sig/conflicts/constructors

rules

importsOk maps importOk(*, list(*))

importOk : scope * MOD

importOk(s, n) :-
import(s, n, SUPPLY()) == _.

module mini-sdf

imports
signatures/minisdf-sig

abstract-sig/types
modules/modules

mini-sdf/sorts
mini-sdf/productions
mini-sdf/imports

rules

projectOk : scope
projectOk(_).

rules

fileOk : scope * Start
fileOk(s, Module(n, sec)) :- {s_mod}

new s_mod,
s_mod -P-> s,
declareMod(s, n, s_mod, SUPPLY()),
sectionsOK(s_mod, sec).

rules

sectionsOK maps sectionOk(*, list(*))

sectionOk : scope * Section

sectionOk(s, SortsDecl(str)) :-
sortsOk(s, str).

sectionOk(s, ContextFreeSyntax(prd)) :-
prodsOk(s, prd).

sectionOk(s, ImportSection(i)) :-
importsOk(s, i).
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A.3 Mini–STR

module mini-str/signatures/sorts

imports
abstract-sig/sorts
abstract-sig/types

signatures/ministr-sig

rules

sortsOk maps sortOk(*, list(*))

sortOk: scope * SMBL

sortOk(s, n) :-
// Declare sort in module root scope
declareSort(s, n).
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A.3. Mini–STR

module mini-str/signatures/constructors

imports
abstract-sig/types
abstract-sig/sorts
abstract-sig/constructors

signatures/ministr-sig
mini-str/signatures/sorts

rules

conssOk maps consOk(*, list(*))

consOk: scope * ConstructorDef

consOk(s, NoArgs(cn, sn)) :- {T}
sortOfSort(s, sn) == T,
declareCons(s, T, cn, []).

consOk(s, WithArgs(cn, p, sn)) :- {T T1}
sortOfSort(s, sn) == T,
sortsOfParams(s, p) == T1,
declareCons(s, T, cn, T1).

rules

sortsOfParams maps sortOfParam(*, list(*)) = list(*)

sortOfParam: scope * ArgSort -> TYPE

sortOfParam(s, Sort(n)) = SINGLE(sortOfSort(s, n)).
sortOfParam(s, SOpt(n)) = OPT(sortOfSort(s, n)).
sortOfParam(s, SIter(n)) = ITER(sortOfSort(s, n)).
sortOfParam(s, SStar(n)) = STAR(sortOfSort(s, n)).

module mini-str/signatures/signatures

imports
signatures/ministr-sig
mini-str/signatures/sorts
mini-str/signatures/constructors

rules

signaturesOk maps signatureOk(*, list(*))

signatureOk: scope * SignatureSection

signatureOk(s_mod, Sorts(s)) :-
sortsOk(s_mod, s).

signatureOk(s_mod, Constructors(c)) :-
conssOk(s_mod, c).
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module mini-str/rules/resolution

imports
abstract-sig/types
abstract-sig/sorts
mini-str/rules/list-sorts
mini-str/rules/sorts-names

signature

sorts RTDECL = (path * (string * RULE))
sorts RULE constructors

RULE : TYPE * TYPE -> RULE // Rule type: input sort => output sort

name-resolution
labels S

relations
ruleInst: string -> RULE // Declaration of single rewrite rule
rule: string -> RULE // Module-unique declaration of rule

rules
// Declares a single rule instance in a scope
declareRule : scope * scope * string * TYPE * TYPE
// Constraint declaring rule which respects all earlier declared rules in its typing
declRule: scope * scope * list(RTDECL) * list(RTDECL) * string * RULE
equitype : RULE * RULE

declareRule(s, s_seq, n, Tin, Tout) :- {rls rts rits}
query rule

filter P* I* & ~e and { n' :- n' == n }
in s |-> rts,

query ruleInst
filter S+ and { n' :- n' == n }
in s_seq |-> rits,

declRule(s, s_seq, rts, rits, n, RULE(Tin, Tout)).

// Rule definition is valid when no parent rule specified
declRule(s_mod, s_seq, [], [], n, T) :-

!rule[n, T] in s_mod,
!ruleInst[n, T] in s_seq.

// Rule definition is valid when it complies with parent
declRule(s_mod, s_seq, [(_, (_, T_decl)) | _], _, n, T) :- equitype(T_decl, T).
declRule(s_mod, s_seq, [], [(_, (_, T_decl)) | _], n, T) :- equitype(T_decl, T).

equitype(RULE(T1, T2), RULE(T3, T4)) :-
T1 == T3 | error $[Input type [T3] does not match with specified type [T1]],
T2 == T4 | error $[Output type [T4] does not match with specified type [T2]].

rules

resolveRule : scope * string -> RULE

resolveRule(s, n) = R :-
query rule

filter P* I* and { n' :- n' == n }
min $ < P, $ < I, P < I
in s |-> [(_, (_, R)) | _].
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module mini-str/rules/list-sorts

imports
abstract-sig/sorts
signatures/ministr-sig
mini-str/rules/resolution

signature

constructors // Create exact types for list build patterns
EMPTY : TYPE
SINGLETON : SORT -> TYPE
MULTI : SORT -> TYPE

rules

// Rule validating if types match
// signature: expected type at position * actual type at position
typeEq: TYPE * TYPE

// Equal types match
typeEq(T, T).

typeEq(EMPTY(), STAR(_)).
typeEq(EMPTY(), OPT(_)).

typeEq(SINGLETON(T), OPT(T)).
typeEq(SINGLETON(T), STAR(T)).
typeEq(SINGLETON(T), ITER(T)).

typeEq(MULTI(T), STAR(T)).
typeEq(MULTI(T), ITER(T)).

rules

typeEq(OPT(T), STAR(T)).
typeEq(ITER(T), STAR(T)).

rules

typeOfList : Pattern * SORT -> TYPE

typeOfList(List([]), _) = EMPTY().
typeOfList(List([_]), T) = SINGLETON(T).
typeOfList(List([_ | _]), T) = MULTI(T).

rules

typeOfContent: TYPE -> SORT

typeOfContent(SINGLE(T)) = T.
typeOfContent(STAR(T)) = T.
typeOfContent(ITER(T)) = T.
typeOfContent(OPT(T)) = T.
typeOfContent(SINGLETON(T)) = T.
typeOfContent(MULTI(T)) = T.
typeOfContent(EMPTY()) = _.
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module mini-str/rules/variables

imports
abstract-sig/types
signatures/ministr-sig

signature

relations
var : string -> TYPE

rules

declareVar : scope * string * TYPE

declareVar(s, n, T) :-
!var[n, T] in s,
query var

filter P* and { n' :- n' == n }
in s |-> [_]

| error $[Variable [n] declared multiple times].

rules

resolveVar : scope * string -> TYPE

resolveVar(s, n) = T :-
query var

filter P* and { n' :- n' == n }
in s |-> [(_, (_, T)) | _]

| error $[Variabe [n] not declared] @n.
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module mini-str/rules/rules

imports
abstract-sig/types
abstract-sig/sorts

signatures/ministr-sig
mini-str/rules/variables
mini-str/rules/resolution
mini-str/rules/patterns

rules

rulesOk: scope * scope * scope * list(RuleDef)
rulesOk(_, s_out, s_out, []).
rulesOk(s_root, s_seq, s_out, [h | t]) :- {s}

new s, s -S-> s_seq,
ruleOk(s_root, s_seq, h),
rulesOk(s_root, s, s_out, t).

ruleOk: scope * scope * RuleDef
ruleOk(s_root, s_seq, RewriteRuleDef(n, m, b, w)) :-

{s_match s_build s_with T1 T2}
new s_match s_build s_with,
s_match -P-> s_root,
s_build -P-> s_with,
declareRule(s_root, s_seq, n, T1, T2),
typeOfBuild(s_build, b) == T2,
withOk(s_match, s_with, w),
typeOfMatch(s_match, m) == T1.

rules

withOk: scope * scope * list(With)

withOk(s_match, s_build, []) :-
s_build -P-> s_match.

withOk(s_match, s_build, [With(str)]) :-
strategyOk(s_match, s_build, str).

rules

strategyOk : scope * scope * Strategy

strategyOk (s_match, s_decl, Assign(n, p)) :- {T}
s_decl -P-> s_match,
typeOfBuild(s_match, p) == T,
declareVar(s_decl, n, T).

strategyOk(s_match, s_build, Seq(str1, str2)) :- {s_int}
new s_int,
strategyOk(s_match, s_int, str1),
strategyOk(s_int, s_build, str2).
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module mini-str/rules/patterns

imports abstract-sig/types
imports abstract-sig/sorts
imports abstract-sig/constructors

imports signatures/ministr-sig
imports mini-str/rules/resolution
imports mini-str/rules/list-sorts
imports mini-str/rules/variables

signature
sorts PATTERN constructors

MATCH : PATTERN
BUILD : PATTERN

rules // Generic pattern rules
ptrnsOk maps ptrnOk(*, *, list(*), list(*))
ptrnOk : scope * PATTERN * Pattern * TYPE
lptrnsOk maps lptrnOk(*, *, list(*), *)
lptrnOk : scope * PATTERN * Pattern * SORT
typeOfRules : scope * list(string) -> RULE
typeOfBuild : scope * Pattern -> TYPE
typeOfMatch : scope * Pattern -> TYPE
arityOfCons : list(Pattern) -> int

ptrnOk(s, pt, Constr(n, p), SINGLE(T)) :- {T'}
resolveCons(s, arityOfCons(p), n) == CONS(T, T', _)
| error $[Expected constructor of sort [T]] @n,
ptrnsOk(s, pt, p, T').

ptrnOk(s, pt, l@List(i), T) :- {Tc}
typeOfContent(T) == Tc,
typeEq(typeOfList(l, Tc), T) | error $[Expected list of type [T]],
lptrnsOk(s, pt, i, Tc).

ptrnOk(s, pt, c@RuleCall(n, op), T) :- {T1 T2}
typeOfRules(s, n) == RULE(T1, T2),
ptrnOk(s, pt, op, T1),
typeEq(T, T2).

ptrnOk(s, MATCH(), Var(n), T) :- declareVar(s, n, T).

ptrnOk(s, BUILD(), Var(n), T) :-
typeEq(resolveVar(s, n), T) | error $[Expected variable of sort [T]] @n.

lptrnOk(s, P, p, S) :- ptrnOk(s, P, p, SINGLE(S)).

typeOfRules(s, [n]) = resolveRule(s, n).
typeOfRules(s, [n | t]) = RULE(Tin, Tout) :- {T}

resolveRule(s, n) == RULE(Tin, T),
typeOfRules(s, t) == RULE(T, Tout).

typeOfBuild(s, P) = T :- ptrnOk(s, BUILD(), P, T).
typeOfMatch(s, P) = T :- ptrnOk(s, MATCH(), P, T).

arityOfCons([]) = 0.
arityOfCons([_ | t]) = res :-

res #= arityOfCons(t) + 1.
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module mini-str/imports

imports
modules/modules
signatures/ministr-sig

abstract-sig/types
abstract-sig/conflicts/sorts
abstract-sig/conflicts/constructors

mini-str/rules/resolution

rules // Import section

importsOk maps importOk(*, list(*))
importOk : scope * MOD

importOk(s, n) :- {s_mod}
import(s, n, _) == s_mod,
rulesImpOk(n, s, s_mod).

rules // Check overlapping imports of rules

rulesImpOk: string * scope * scope

rulesImpOk(n, s_imp, s_mod) :- {rds}
query rule

filter P* I*
min $ < P, $ < I, P < I
in s_mod |-> rds,

ruleMergesOk(n, s_imp, namesOfRules(rds)).

rules

ruleMergesOk maps ruleMergeOk(*, *, list(*))
ruleMergeOk: string * scope * string
ruleTypesOk : string * string * (list(TYPE) * list(TYPE))

ruleMergeOk(m, s, rn) :- {rls T1 T2}
query rule

filter P* I*
min $ < P, $ < I, P < I
in s |-> rls,

ruleTypesOk(m, rn, typesOfRules(rls)).

ruleTypesOk(_, _, ([_], [_])).
ruleTypesOk(m, r, (_, _)) :- false
| error $[Importing conflicting definitions for rule [r]]@m.

rules

namesOfRules maps nameOfRule(list(*)) = list(*)
typesOfRules maps typeOfRule(list(*)) = (list(*), list(*))

nameOfRule : (path * (string * RULE)) -> string
nameOfRule((_, (n, _))) = n.

typeOfRule: (path * (string * RULE)) -> (TYPE * TYPE)
typeOfRule((_, (_, RULE(T1, T2)))) = (T1, T2).
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module mini-str

imports
signatures/ministr-sig

modules/modules
abstract-sig/types

mini-str/rules/rules
mini-str/rules/resolution
mini-str/rules/list-sorts
mini-str/signatures/signatures
mini-str/imports

rules

projectOk: scope
projectOk(_).

rules

fileOk : scope * Start
fileOk(s, Module(n, sec)) :- {s_mod s_seq}

new s_mod s_seq,
s_mod -P-> s,
declareMod(s, n, s_mod, CONSUME()),
sectionsOk(s_mod, s_seq, _, sec).

rules

sectionsOk: scope * scope * scope * list(Section)
sectionOk: scope * scope * scope * Section

sectionsOk(_, s_out, s_out, []).

sectionsOk(s_root, s_seq, s_out, [h | t]) :- {s_int1 s_int2}
sectionOk(s_root, s_seq, s_int1, h),
new s_int2, s_int2 -S-> s_int1,
sectionsOk(s_root, s_int2, s_out, t).

sectionOk(s, s_in, s_out, Rules(rls)) :-
rulesOk(s, s_in, s_out, rls).

sectionOk(s, s_seq, s_seq, Signatures(sigs)) :-
signaturesOk(s, sigs).

sectionOk(s, s_seq, s_seq, Imports(i)) :-
importsOk(s, i).
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