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Abstract. A Multidisciplinary Design Optimization (MDO) system for a wing with nacelle 
and pylon is developed. The present MDO system is based on the integration of 
Computational Fluid Dynamics (CFD) codes and NASTRAN based an aeroelastic-structural 
interface code. The Kriging model is employed to save the computational time of objective 
function evaluations in Multi-Objective Genetic Algorithm (MOGA). In the present multi-
objective optimization, aerodynamic optimization is performed to minimize the drag and the 
shock wave strength at inboard of pylon, and structural optimization is performed to obtain 
the minimum wing weight with the constraints of flutter and strength. As a result of the 
optimization, several solutions improved in all objective function values compared with the 
baseline shape have been obtained. Furthermore, features of the design space have been 
investigated by data mining techniques using Self-Organizing Map (SOM) and ANalysis Of 
VAriance (ANOVA).  

 
 
1 INTRODUCTION 

A conventional aircraft design has focused on an aerodynamic performance and auxiliary 
design revisions have been done to satisfy other design requirements from the structure and 
system. However, based on such an aerodynamically oriented design process, it is difficult to 
design the aircraft considering interdisciplinary trade-off, which is particularly remarkable 
between aerodynamic (minimum drag) and structural (minimum weight) performances. 
Therefore, researches of MDO for a realistic aircraft design have been conducted by 



T. Kumano, S. Jeong, S. Obayashi, Y. Ito, K. Hatanaka, and H. Morino. 

industries and universities [1-3]. 
In Japan, a 5-year R&D project has been in progress toward the development of 

environmentally friendly high performance regional jet aircraft under auspices from New 
Energy Development Organization of Japan (NEDO) since 2003 [4]. In the project, several 
research programs have been investigated by industry-government-university cooperation [5]. 
The conceptual image of a regional jet aircraft is shown in Fig. 1. For the success of the 
project, a practical MDO system for regional jet wing design is required. 

An MDO system was developed for a clean wing under the project [6]. The MDO system 
is based on the integration of Computational Fluid Dynamics (CFD) codes and the 
NASTRAN-based aeroelastic-structural interface code. Moreover, the Kriging model is 
employed to reduce computational expenses for function evaluations in MOGA. 

In this work, the MDO tool has been extended to an engine-airframe integration problem 
which is one of the most important issues in the aircraft design. Shock wave generated at 
inboard of pylon may lead to the separation and buffeting (Fig. 2). In order to prevent these 
phenomena, the wing shape near the pylon has been optimized. In the engine-airframe 
integration system, modification of the geometry is the bottleneck because of complexities at 
junctions among wing, fuselage, pylon, and nacelle. The automated mesh generator developed 
in the previous system has been extended for this complicated geometry. 

 

 
Figure 1. Environmentally friendly high performance regional jet aircraft. 

 

 
Figure 2. Surface pressure distribution near the nacelle-pylon at the cruising condition. 

Shock wave
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2 MDO STSTEM 
Flowchart of the MDO system extended to an engine-airframe integration problem is 

shown in Fig. 3. This MDO system consists of three modules: the mesh generation module, 
CFD & CSD module, and Kriging model & Optimization module. 

 
 

 
Figure 3. Flowchart of the MDO system for engine-airframe integration problem. 
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2.1 Mesh Generation Module 
In this study, NURBS [7, 8] (Fig. 4) technique employing the B-spline function is adopted. 

A total number of the design variables is 26. This number was determined as results of 
comparisons with PARSEC [9]. Especially, NURBS has higher degree of freedom than 
PARSEC near the leading and trailing edges. 

A speedy and robust surface mesh generation system which is applicable to engine-
airframe integration is necessary. Although the unstructured dynamic mesh method is very 
useful for the modification of the wing shape [10], this method sometimes produces the 
distorted mesh for a large displacement. Furthermore, In the case of the engine-airframe 
integration, this method cannot be applied because of complexities at junctions among wing, 
fuselage, pylon, and nacelle. In this study, wing-body-nacelle-pylon configuration mesh is 
automatically generated in the following steps (Fig. 5). 

 
(a) Airfoil sections are defined by NURBS specified by the design variables. 
 
(b) 3D wing is generated using the airfoil sections. 
 
(c) Extract the intersection lines among wing, fuselage, and nacelle-pylon. 
 
(d) Delete the extra wing and pylon geometries which are inside of other geometies. 
 
(e) Combine the wing, the body, and the nacelle-pylon. 
 
(f) Specify mesh point distributions along ridge lines. 
 
(g) Generate unstructured surface mesh using the advancing front method of TAS-Mesh 
[11, 12]. 

 
(h) Generate unstructured volume mesh using delaunay tetrahedral meshing [13]. 
 
 

 
Figure 4. Airfoil defined by NURBS. 
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Figure 5. Procedures for mesh generation. 
 

Integrated configuration (step(e))

Geometories of body, wing, and nacelle-pylon (step(b)) 

Unstructured surface mesh (step(g))
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2.2 CFD & CSD Module 
In order to evaluate aerodynamic and structural performances, CFD&CSD module in Fig. 

3 is performed. The procedure is as follows: 
 
(a) Euler analysis is performed for the sample points. 
 
(b) Using the pressure distribution obtained from the Euler analysis, structural and flutter 
analysis models are generated by FLEXCFD which is an aeroelastic-structural interface 
code. 

 
(c) Structural optimization is conducted to minimize wing weight under the strength and 
flutter constraints. 

 
Figure 6 shows the CFD (unstructured) and CSD (structured) meshes. In the CFD&CSD 

module, structural optimization of a wing box is performed to realize minimum weight with 
constraints of strength and flutter. Given the wing outer mold line for each individual, the 
finite element model of wing box is generated automatically by the FEM generator for the 
structural optimization. The wing box model mainly consists of shell elements representing 
skin, spar and rib. Other wing components are modeled using concentrated mass elements. In 
the present study, MSC. NASTRAN [14] which is a high-fidelity commercial software is 
employed for the structural and aeroelastic evaluations. 

 
 

 
Figure 6. CFD and CSD meshes. 

 

2.3 Kriging Model & Optimization Module 
Aerodynamic optimization using MOGA requires a tremendous computational time for 

objective function evaluations, even with a high performance supercomputer facility. To make 
the optimization more practical, an approximation model is introduced. The approximation 
model used in this study is the Kriging model [15, 16]. This model, developed in the field of 
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spatial statistics and geostatistics, predicts the distribution of function values at unknown 
points instead of the function values themselves. From the distribution of function values, 
both function values and their uncertainty at unknown points can be estimated as shown in 
Fig. 7. By using these values, the balanced local and global search is possible. This concept is 
expressed as the criterion ‘Expected Improvement (EI)’ [17]. EI indicates the probability 
being superior to the current optimum in the design space. By selecting the maximum EI point 
as an additional sample point for the Kriging model, the improvement of the model accuracy 
and the exploration of the optimum can be achieved at the same time. 

In this research, drastic reduction of computational cost has been realized by replacing the 
time-consuming high fidelity CFD&CSD solvers with the Kriging approximation models. 
The overall optimization procedure using the Kriging model is shown in Fig. 8: 

 
 (a) Initial sample points distributed uniformly in the design space are selected by the 

Latin Hypercube Sampling [18]. 
 
 
 (b) CFD&CSD module is performed for the initial sample points, and the initial 

Kriging models are constructed for all objective functions, respectively. 
 
 
 (c) MOGA operations are performed on the Kriging models as 
  - Generation of initial population 
  - Evaluation of EI for each objective function 
  - Selection of parents 
  - Crossover and mutation 
  - Evaluation of new individuals 
  - Evolution for 100 generations 
 - Selection of additional sample points from non-dominated solutions in terms 

of EIs 
 
 
 (d) Kriging model is reconstructed as 
            - Evaluation of the additional sample points with CFD&CSD module 
            - Update of the Kriging model using all sample points 
 

 (e) Go back to (c) 
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Figure 7. Predicted value and the standard error of the Kriging model. 

 
Figure 8. Flowchart of Kriging model & optimization module. 
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3 OPTIMIZATION PROBLEM 

3.1 Definition of Optimization Problem 
<Objective functions> 
 Minimize  
  - Drag at the cruising condition (CD).  
  - Shock strength near wing-pylon junction (–Cp,max). 
  - Structural weight of the main wing (Wing weight). 
 

Figure 9 shows the pressure distribution at lower surface of the wing near wing-pylon 
junction, and −Cp,max is defined as indicated. 

 
<Design variables> 
  - Airfoil shapes of lower surface at 2 span wise sections = 26 variables 
  - Twist angles at 4 sections   = 4 variables 
         30 variables in total 
<Constraints> 
  - Wing thickness > specified values 
  - Rear spar heights > specified values 
       - Strength margin > specified values 
  - Flutter margin > specified values 
 

0.00 0.20 0.40 0.60 0.80 1.00 1.20

x/c

-C
p

 
Figure 9. Pressure distribution near the wing-pylon junction. 

3.2 Results 
In this optimization, the update of the Kriging models has been performed in six times. In 

total 149 sample points were used. Figure 10 shows performances of the baseline 
configuration and those of additional sample points at every iteration. As the iteration 
progresses, individuals move toward the optimum direction. It means that the additional 
sample points for update are selected successfully. Several solutions improved in all objective 
function values compared with the baseline shape have been obtained. One of the solutions is 

–Cp,max 



T. Kumano, S. Jeong, S. Obayashi, Y. Ito, K. Hatanaka, and H. Morino. 

improved in 7.0 counts in CD, 0.503 in –Cp,max, and 21.6 kg in the wing weight compared with 
the performances of the baseline shape. 
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Figure 10. Performances of baseline shape and sample points. 
 

4 DATA MINING 

Data mining is performed by using airfoil parameters different from NURBS because 
NURBS control points have no significant aerodynamic or structural meaning. Figure 11 
shows the airfoil parameters of interest. XmaxL represents a distance from the leading edge to 
the maximum thickness point of the lower half of the airfoil. maxL is the corresponding 
maximum thickness of the lower half. XmaxTC is a distance from the leading edge to the 
maximum thickness point. maxTC is the corresponding maximum thickness. And, sparTC is 
the thickness at the front spar. These parameters are taken at two sections as shown in table 1. 

Optimum direction Optimum direction 

Optimum direction 

20 kg 

20 kg 

20 counts 

20 counts 

0.2 

0.5 

CD

CD 
W

in
g 

w
ei

gh
t [

kg
] 

W
in

g 
w

ei
gh

t [
kg

] 

−Cp,max 

−C
p,

m
ax

 Baseline 

Baseline 

Baseline 



T. Kumano, S. Jeong, S. Obayashi, Y. Ito, K. Hatanaka, and H. Morino. 

 
Figure 11. Airfoil parameters using data mining. 

 
Table 1. Airfoil parameters using data mining. 

Number Airfoil parameters
dv1 XmaxL @ η= 0.12 
dv2 XmaxL @ η= 0.29 
dv3 maxL @ η= 0.12 
dv4 maxL @ η= 0.29 
dv5 XmaxTC @ η= 0.12

dv6 XmaxTC @ η= 0.29

dv7 maxTC @ η= 0.12 
dv8 maxTC @ η= 0.29 
dv9 sparTC @ η= 0.12 
dv10 sparTC @ η= 0.29 

 

4.1 ANOVA 
ANOVA is one of the statistical data mining techniques showing the effect of each design 

variable to the objective and the constraint functions. ANOVA uses the variance of the model 
due to the design variables on the approximation function. By decomposing the total variance 
of the model into the variance due to each design variable, the influence of each design 
variable on the objective function can be calculated.  

Figure 12 shows the results of ANOVA for each objective function. According to the 
results, dv2, dv7, and dv9 give large influences on CD. dv6, dv10, and dv2 give large 
influences on −Cp,max. Furthermore, dv6, dv8, and dv2 give large influences on the wing 
weight. 

maxL 

maxTC 
XmaxTC 

XmaxL 

sparTC 
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Figure 12. ANOVA results. 

 

4.2 Visualization of Design Space 
Next, in order to visualize the design space, Self-Organizing Map (SOM) proposed by 

Kohonen [19, 20] is employed. This method has been applied to data mining of aerodynamic 
design space [21-23]. 

Solutions uniformly sampled from the design space have been projected onto the two-
dimensional map of SOM. Figure 13 shows the resulting SOM with 12 clusters considering 
the three objectives. Furthermore, Fig. 14 shows the same SOMs colored by the three 
objectives, respectively. These color figures show that the SOM indicated in Fig. 13 can be 
grouped as follows: 

- The upper right corner corresponds to the designs with high wing weight and low CD. 
- The upper edge area corresponds to those with high wing weight.  
- The lower right corner corresponds to those with low CD, −Cp,max, and wing weight. 
- The upper left corner corresponds to those with high CD. 
- The lower left corner corresponds to those with high CD, and −Cp,max. 

As a result, the lower right corner is the sweet spot in this design space that improves all 
three objective functions. 

CD −Cp,max

Wing weight 
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Figure 13. SOM of solutions uniformly sampled from the design space. 

 

 
        (a) CD     (b) –Cp,max         (c) Wing weight 

Figure 14. SOM of solutions uniformly sampled from the design space colored by the objective functions. 
 
 

Figure 15 shows the same SOMs colored by four airfoil parameters (dv2, dv6, dv7, and 
dv10, respectively). In Fig. 15(a) colored by dv2, large dv2 values can be found at the right 
edge. This area corresponds to small CD and −Cp,max values as shown in Figs. 14(a) and 14(b), 
respectively. This means that large dv2 values lead to high performances of CD and −Cp,max. 
Furthermore, in Fig. 15(c) colored by dv7, low dv7 values can be found at the right edge. This 
color pattern is very similar to that for CD. This also means that low dv7 values lead to high 
performance of CD.  

In Fig. 15(b) colored by dv6, large dv6 values can be found at the right edge. This means 
that large dv6 values lead to high performance of −Cp,max. Also, the color pattern of Fig. 15(d) 
is very similar to that for −Cp,max. This means that low dv10 values lead to high performance 
of −Cp,max. As seen in Fig. 16, large dv6 and low dv10 values lead to mitigate the blockage 
between the wing and nacelle. Therefore, the shock wave between the wing and nacelle is 
weakened. Figures 14(b), 15(b), and 15(d) are found to indicate this phenomenon. 
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(a) dv2    (b) dv6  

 

  
             (c) dv7    (d) dv10 

Figure 15. SOM of solutions uniformly sampled from the design space colored by the airfoil parameters. 
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Figure 16. Pressure distribution near the wing-pylon junction. 
 

4.3 Visualization of Trade-offs 
Non-dominated solutions obtained from the final Kriging models have been plotted in the 

three-dimensional objective function space in Fig. 17 (black points). Blue, red, and green 
points are the same non-dominated solutions projected onto the two-dimensional objective 
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function plane. As seen from this figure, there are trade-offs among all objective functions 
within the sweet spot of the design space. 

The same non-dominated solutions have been projected onto the two-dimensional map of 
SOM. Figure 18 shows the resulting SOM with 13 clusters considering the three objectives. 
Figure 19 shows the same SOMs colored by the three objectives, respectively. These color 
figures show that the SOM indicated in Fig. 18 can be grouped as follows: 

 - The lower right corner corresponds to the designs with high CD and low −Cp,max. 
 - The upper right corner corresponds to the designs with high wing weight. 
 - The lower left corner corresponds to the designs with low wing weight. 
 - The upper left corner corresponds to the designs with high −Cp,max and low wing 

weight. 
 In the lower right corner of Fig. 19(a) and (b), the solutions have maximum CD and 

minimum −Cp,max solutions. Therefore, there is a strong trade-off between CD and −Cp,max .  

 
Figure 17. Non-dominated solutions projected onto three-dimensional objective function space. 

 

 
Figure 18. SOM of non-dominated solutions obtained from the Kriging model. 
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           (a) CD             (b) –Cp,max               (c) Wing weight 

 
Figure 19. SOM of non-dominated solutions colored by the objective functions. 

 
Figure 20 shows the same SOMs colored by six airfoil parameters (dv2, dv4, dv5, dv6, dv8, 

and dv9, respectively). In Fig. 20(a) colored by dv2, large dv2 values can be found at the 
lower right corner. This area corresponds to large CD and  small −Cp,max values as shown in 
Figs. 19(a) and (b). This means that dv2 has influence on trade-off between CD and −Cp,max. 
Similarly, in Figs. 19(b)-(d) colored by dv4, dv5, and dv6, respectively, large values can be 
found at the lower right corner. It means that dv4, dv5, and dv6 also have influence on trade-
off between CD and −Cp,max. On the other hand, dv8 and dv9 have little influence on the 
objective functions. 
 

 
          (a) dv2                 (b) dv4                         (c) dv5 

 
          (d) dv6                 (e) dv8                         (f) dv9 

Figure 20. SOM of non-dominated solutions colored by the airfoil parameters. 

Lower Higher Lower Higher Lower Higher 5.2 counts 0.096 19.2 kg 

Lower Higher Lower Higher Lower Higher 

Lower Higher Lower Higher Lower Higher 



T. Kumano, S. Jeong, S. Obayashi, Y. Ito, K. Hatanaka, and H. Morino. 

5 CONCLUSION 
The MDO tool has been extended to an engine-airframe integration problem which is one 

of the most important issues in the aircraft design. The mesh generator developed in the 
previous system have been improved and made it possible to modify the wing shape 
automatically in the complicated geometry problem. 

The present system has been applied to the wing with nacelle and pylon design problem 
that considers the aerodynamic and structural performances simultaneously. As a result of the 
optimization, non-dominated solutions were successfully generated after 149 function 
evaluations. One of the non-dominated solutions is found to be improved by 7.0 counts in CD, 
0.503 in –Cp,max, and 21.6 kg in the wing weight compared with the performances of the 
baseline shape. Therefore, it has been verified that the revised MDO system is very useful and 
efficient. 

Moreover, data mining for the design space was performed using ANOVA and SOMs. In 
the case of SOM obtained from solutions uniformly sampled from the design space, the sweet 
spot was found in the design space. Furthermore, as the result of the same SOMs colored by 
the airfoil parameters and ANOVA, airfoil parameters effective to improve or worsen the 
objective functions were found. 

In the case of SOM obtained from non-dominated solutions on the Kriging model, it was 
found that there were trade-offs among CD, –Cp,max, and wing weight within the sweet spot. 
As the result of the SOMs colored by the airfoil parameters, particular airfoil parameters 
having influence on these trade-offs were found. 

 Data Mining using SOM and ANOVA provides knowledge and valuable information 
regarding the design space and trade-off, and will extract hidden information during the 
optimization. 
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