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SUMMARY

Advances in self-healing creep steels are driven by the understanding of its mechanism.
Previous work on self-healing creep metals has shown selective precipitation inside the
creep cavities, which has a beneficial effect on the creep lifetime. This effect occurs when
a solute supersaturation exists at the creep temperature. In the case of self-healing creep
steels, the precipitation of gold was found to have an exceptional effect. Gold precipi-
tation was found to be efficient because of the atomic size mismatch of gold and iron,
which induces a high selectivity for precipitates to form inside creep cavities and not in
the bulk. However, gold is not the most widely used alloying element in steel, to put it
mildly. Ideally the self-healing effect could be achieved by another solute element dis-
solved in steel. In order to identify some other possible solute element for self healing
creep steels, the mechanism must be understood. In this thesis the mechanism of self
healing creep steels, and metals in general, is investigated.

This thesis is divided in chapters in which parts of the processes which govern self-
healing and creep damage formation are reviewed. The ultimate goal is to unravel the
mechanism and propose optimised compositions for self-healing creep steels for high
temperature healing. This was done to provide insight in the factors which determine
the efficiency of a self healing creep-resistant alloy and also to establish a theory of the
process of self healing in metals and on creep damage formation in general. The diffusiv-
ity of elements in bcc iron determines the kinetics of many processes. The rate of growth
of a creep void, the growth rate of precipitates and also the creep deformation rate are
all defined by diffusivities. Bcc-iron diffusion is a special case when compared to other
hosts for diffusion. The reason for this is the role of magnetic disordering which influ-
ences the activation energy for diffusion. As a result, the activation energy for diffusion
is not constant with temperature. This temperature dependent activation energy is re-
quired to determine all diffusivities. The diffusivities of iron self-diffusion and impurity
elements through the bulk and through the grain boundary determine how fast grain-
boundary voids and precipitates can grow. The healing of creep voids by precipiation
affects the strain rate during creep deformation. The link between creep deformation,
creep void growth and healing can be modelled, which then also leads to the critical
stress for self-healing of alloys with regard to temperature.

In chapter 2 the impurity diffusion rates are calculated using first-principles. Diffu-
sivities in bcc iron are modelled by determining formation energies of defects, vacancy-
impurity binding and nearest migration barriers are calculated in order to obtain an acti-
vation energy for diffusion. The formation energies of defects are calculated using VASP
to compute total energies and jump barrier energies. Entropies of formation were ob-
tained from harmonic phonon calculations. The prefactor is determined by calculating
vibration entropies and the jump frequency of the impurity element. The resulting acti-
vation energy and prefactor for diffusion provide species dependent diffusivities. These
diffusivities are compared to experiment in order to validate the method. The trends of
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viii SUMMARY

substitutional impurity diffusion in bcc iron are as follows: fast diffusion for those ele-
ments at the fringes of the periodic table and comparable diffusivity with respect to iron
self-diffusion for those elements which are found in the centre of the periodic table of
the elements. The diffusivity of substitutional elements which require a single vacancy
to diffuse play are important for self-healing. For an analysis of the healing of creep
damage, this chapter is fundamental.

A specific issue which complicates the diffusivity calculations in bcc iron is the mag-
netic order-to-disorder transformation. In chapter 3 the effect of magnetic ordering on
diffusivity in bcc iron is reviewed for a large selection of datasets. The activation barrier
for diffusion changes with the degree of magnetic order. This magnetic order also has its
effect on the phonon softening in a particular shear direction.The reduction of the ac-
tivation barrier for diffusion can be related to either the persistence of long-range mag-
netic order, or the total magnetic energy associated to spin allignment. This effect can
be represented by the Girifalco model and the Jönsson model, respectively. The merits
and limitations of each model are reviewed and the implications of applying each model
shows that the Girifalco model is preferred. The application of the Girifalco model to fit
experimentally determined diffusion data provides the most reasonable result. Fitting
the datasets of impurity elements to the Girifalco model provides a constant α which
relates the effect of the spontaneous magnetisation to the diffusivity. Filtering the most
reliable datasets by magnitude of the error, a constant value of α= 0.10(1) is obtained.

In chapter 4 finite element calculations are presented of solute diffusion towards
creep cavities. The time required to fill a creep cavity on a grain boundary by a diffu-
sional flux of supersaturated solute depends on the diffusivity of grain boundary and
bulk and on the geometric ratio of creep cavity radius and the intercavity distance. For
a relatively large intercavity spacing, 3D transport is observed when the grain bound-
ary and volume diffusivities are of a similar order of magnitude, while a 2D behavior is
observed when the grain boundary diffusivity is dominant. Instead when the intercav-
ity distance is small, the transport behavior tends to a 1D behavior in all cases, as the
amount of solute available in the grain boundary is insufficient. This is a relevant ob-
servation for creep cavity growth and precipitate growth, since their distance can vary
during annealing of a metal at high temperature. This can lead to a change in character
of the diffusional behaviour. A phase diagram with the transition lines is presented.

A design principle for new creep steels is presented in chapter 5. The results of the
concept can be used to elucidate the mechanism of self-healing creep metals. The flux
of vacancies towards a creep void can be countered by selective precipitation, which
thereby prevents creep cavity growth. This vacancy flux is shown to be related to the
bulk deformation, leading to the possibility of a significantly extended service life.

In chapter 6 the previously developed conceptual model is formalised using readily
available equations. The self-healing process causes precipitates to grow inside creep
cavities. Due to the Kirkendall effect, vacancies are transported away from the creep
cavity during this selective precipitation, which impedes their growth. The magnitude
of this effect depends on the strength of the solute flux towards a creep cavity, and there-
fore on the chemical potential for segregation and the solute mobility. The atomic mo-
bilities for bcc iron have been determined in chapter 2 and the chemical potential is
derived from the amount of supersaturation. With this model it is possible to calculate
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the critical stress at which self-healing can work, which depends on the solute species,
solute content and temperature dependent value. The model is applied to binary Fe-Cu,
Fe-Au, Fe-Mo, and Fe-W alloys. Fe-Au is found to be the most efficient self-healing alloy.





SAMENVATTING

De ontwikkeling van zelfherstellend kruipstaal wordt gedreven door het begrip van de
onderliggende mechanisme. Onderzoek naar zelfherstellende kruipmetalen heeft laten
zien dat selectieve precipitatie binnen de kruipholtes een vertragend effect heeft op de
kruipsnelheid van metaallegeringen. Dit effect treed op als er een oversaturatie van op-
geloste atomen bestaat op de kruiptemperatuur. In het geval van zelfherstellend staal
bleek goudprecipitatie een uitzonderlijk groot effect te hebben. Goudprecipitatie werd
gezien als efficiënt vanwege de verschillende atomaire afmetingen van goud en ijzer, wat
een selectieve precipitatie in de holtes afdwingt. Goud is echter op zijn zachts gezegd
niet het meest gebruikte legeringselement. Idealiter kan dit zelfherstellende effect ook
optreden vanwege het oplossen van een ander element in staal. Het volledige proces
moet worden begrepen om te bepalen welke elementen zodanig kunnen werken. In
dit proefschrift wordt het mechanisme van zelfherstellende kruipstalen, en metalen in
het algemeen, onderzocht. Dit proefschrift is opgedeeld in hoofdstukken waarin delen
van de processen die het zelfherstellend gedrag en kruipschade vorming beheersen. Het
ultieme doel hiervan is om de werking van het zelfherstellend mechanisme in kaart te
brengen en composities voorstellen van zelfherstellend staal wat kan werken op hoge
temperatuur. Dit is gedaan om inzicht te verschaffen in de factoren die de efficiëntie van
zelfherstellend kruip-resistente legeringen en om een algemene theorie voort te brengen
over het zelfherstellend effect en de schadevorming onder kruip belasting. De diffusivi-
teit van elementen in bcc (body centered cubic) ijzer bepaald de kinetiek van de pro-
cessen. De groei van kruipholtes, de groei van precipitaten en ook de kruip vervorming
worden allen bepaald door de diffusiviteit. Bcc ijzer is een bijzonder geval als men het
vergelijkt met andere basismaterialen. Het magnetisch effect op de energiebarrière voor
diffusie is de reden dat de activeringsenergie niet constant is met temperatuur. De tem-
peratuur afhankelijkheid van de activeringsenergie is nodig om de diffusiviteit te bepa-
len. De diffusie binnen de korrels en op de korrelgrenzen bepaald hoe snel korrelgrens
holtes en precipitaten kunnen groeien. Het autonome herstel van korrelgrens kruip-
holtes door middel van precipitatie heeft een direct effect op de vervormingssnelheid.
Het verband tussen kruip vervormingssnelheid en de kruipholte groei kan gemodelleerd
worden, wat ook een kritische spanning voor zelfherstellende metalen als functie van de
temperatuur oplevert.

In hoofdstuk 2 zijn de diffusiviteiten van elementen in ijzer berekend met behulp van
first-principles. Diffusiviteiten in bcc ijzer zijn berekend via het berekenen van formatie
energieën van puntdefecten, vacature-atoom binding en naaste buurmigratie barrières,
die de activeringsenergie voor diffusie opleveren. De formatie energieën van defecten
zijn bepaald met VASP waarmee totale energie en barrière energieën berekend kunnen
worden. De voorfactor is berekend door formatie entropieën te berekenen met harmoni-
sche fononen berekeningen en de sprongfrequentie van legeringselementen. De active-
ringsenergiën en de prefactoren voor legeringselementen in ijzer leveren temperatuurs-

xi



xii SAMENVATTING

afhankelijke diffusiviteiten op. Waar mogelijk, zijn deze vergeleken met experimentele
waardes. De trends voor de diffusie van legeringselementen in ijzer zijn als volgt: snelle
diffusie voor de elementen aan de randen van het periodieke systeem der elementen en
diffusie snelheden vergelijkbaar met ijzer zelfdiffusie voor de elementen in het midden
van het periodieke systeem. De diffusie van legeringselementen is van fundamenteel
belang voor de werking van zelfherstellend kruipstaal.

Een bcc ijzer specifiek probleem wat de diffusiviteits berekeningen compliceert is
de magnetische orde-wanorde transitie. In hoofdstuk 3 wordt het effect van de mag-
netische orde op de diffusiviteit in bcc ijzer overzien en geanalyseerd met behulp van
een grote selectie diffusiedatasets. De activeringsbarrière voor diffusie veranderd met
de mate van magnetische order. Deze magnetische order heeft ook een effect op een
specifieke stijfheidsrichting. De verlaging van de barrière voor diffusie is groot rond de
Curie temperatuur en kan ofwel aan het verlies van langeafstand order, of aan de totale
magnetische enthalpie worden gerelateerd. Dit effect wordt gemodelleerd door respec-
tievelijk het Girifalco model en Jönsson model. De voordelen en nadelen van elk model is
geanalyseerd alsmede de implicaties van elk model wat laat zien dat het Girifalco model
geprefereerd is in dit geval. De fit van het Girifalco model met de experimentele resul-
taten van diffusiviteiten levert het meest redelijke resultaat. Wanneer alle datasets van
legeringselementen gefit worden met het Girifalco model levert dit een stabiele waarde
van constanteα op. De constanteα gerelateerd het effect van de ferromagnetische mag-
netisatie met de diffusiviteit. De meest betrouwbare datasets zijn gefilterd op een vooraf
bepaalde grootte van de error, dit levert een waarde voor α= 0.10(1) op.

In hoofdstuk 4 worden de resultaten van eindige-elementenmethode berekeningen
van opgeloste elementen die diffunderen richting kruipholtes gepresenteerd. De tijd die
benodigd is om een kruipholte op een korrelgrens te vullen met een diffusionele flux van
oververzadigde elementen hangt af van de diffusiesnelheid over korrelgrens en door de
korrel (of volume) en van de ratio tussen kruipholteradius en de afstand tussen kruiphol-
tes. Voor een relatief grote afstand tussen kruipholtes word 3D transport geobserveerd
als de korrelgrensdiffusie en volumediffusie van vergelijkbare orde zijn, terwijl 2D trans-
port gedrag is geobserveerd als de korrelgrensdiffusie dominant is. Als de afstand tussen
kruipholtes echter klein is, neigt het transportgedrag naar 1D in alle gevallen, omdat de
hoeveelheid opgeloste elementen op de korrelgrens niet groot genoeg is. Dit is een rele-
vante observatie voor kruipholte groei en voor precipitatie groei op korrelgrenzen, aan-
gezien hun afstand kan variëren tijdens warmtebehandelingen van metalen. Dit lijd tot
een verandering in het karakter van het diffusiegedrag. Een fase diagram van dit gedrag
is gemaakt waarop ook is aangegeven waar transitiepunten liggen.

Een ontwerpprincipe voor nieuwe kruip-resistente staalsoorten is gepresenteerd in
hoofdstuk 5. De resultaten van het concept kan worden gebruikt om het mechanisme
van zelfherstellende metalen op te helderen. De flux van vacatures richting de kruipholte
kan worden tegengegaan door middel van selectieve precipitatie, wat de groei van de
kruipholte verhinderd. De vacature flux is gerelateerd aan bulkdeformatie van de korrels,
wat ertoe leid dat de levensduur van de metalen significant wordt verlengd.

In hoofdstuk 6 wordt het conceptuele model van hoofdstuk 5 uitgewerkt met behulp
van formules die de verschillende fluxen omschrijven. Het zelfherstellende proces ver-
oorzaakt de groei van precipitaten in de kruipholtes. Dankzij het Kirkendall effect wor-
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den vacatures weggetransporteerd van de kruipholtes dankzij de selectieve precipitatie
in de holtes, wat ervoor zorgt dat de groei van de holtes gehinderd wordt. De grote van
dit effect hangt af van de kracht van de flux van opgeloste elementen richting de holtes,
de drijvende kracht en de mobiliteit van elementen in ijzer. De mobiliteiten van lege-
ringselementen in ijzer zijn bepaald in hoofdstuk 2 van dit proefschrift, de chemische
potentiaal kan worden afgeleid van de hoeveelheid oververzadiging. Met behulp van
dit model is het mogelijk om de kritische stress te bepalen waarop het zelfherstellend
gedrag nog kan optreden. Dit is afhankelijk van de hoeveelheid oververzadigde elemen-
ten, welk element in oververzadiging is en de temperatuur. Dit model is toegepast op
Fe-Cu, Fe-Au, Fe-Mo en Fe-W legeringen. Fe-Au is de meest efficiënte zelfherstellende
legering.





1
INTRODUCTION

Je connais une planète où il y a un Monsieur cramoisi.
Il n’a jamais respiré une fleur.

Il n’a jamais regardé une étoile.
Il n’a jamais aimé personne.

Il n’a jamais rien fait d’autre que des additions.
Et toute la journée il répète comme toi :

“Je suis un homme sérieux! Je suis un homme sérieux! ”
et ça le fait gonfler d’orgueil.
Mais ce n’est pas un homme,

c’est un champignon !

Antoine de Saint-Exupery - le petit prince

1.1. ENERGY EFFICIENCY
The dangers of global warming and pollution require a great research effort and most of
all ample political courage. In the foreseeable future, neither solar, nor wind power can
provide sufficient energy for the needs of society, and battery and other energy storage
techniques are not yet in a mature state. Which means that the production of electricity
will be by means of steam turbines, propelled by heat from either fossil or nuclear fuels.
It is known from the thermodynamical properties of a Carnot cycle that the efficiency
of an energy conversion turbine can be increased by raising the inlet temperature. The
key to efficient energy conversion is the steam turbine temperature, which is limited by
the material properties of the turbine.

1.2. CREEP DEFORMATION
One of the most relevant materials and microstructural properties in high-temperature
applications is the resistance against creep deformation. Creep deformation, under con-
stant stress and temperature, is a time-dependent deformation mode, which leads to

1
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2 1. INTRODUCTION

Figure 1.1: a.) Relation between the activation energy for diffusion ∆H∗ and the melting temperature Tm
for many pure elements with fcc, hcp and bcc cyrstal structures, from Tiwari and coworkers [1]. b.) Relation
between the activation energy for self-diffusion QSD and the activation energy of creep QC , from Sherby &
Weertman [2].

failure. Both creep deformation rates, and the activation energy for diffusion are linked
to the melting temperature (Tm) of the material, see figure 1.1. For metallic materials,
creep deformation starts occurring at temperatures T > 0.4 Tm . The activation energy
for creep is related to the self-diffusion activation energy [2]. Atom diffusivity in the
bulk is the rate-controlling factor for the deformation and the growth of creep cavities.
The strain rate of a metal deforming under creep is therefore in most cases determined
by the bulk diffusivity. Yet despite creep being a phenomenon mostly dominated by
bulk diffusion, creep cavities grow on grain boundaries by fast grain-boundary diffusion
of vacancies. The description of creep cavity growth on a grain boundary under the
influence of an applied stress started in the 1950s [3, 4]. The growth rate of creep cav-
ities, which ultimately leads to the failure of creep-loaded metals, can be described by
assuming that the driving force for their growth comes from an applied stress [3]. This
applied stress causes a chemical potential for vacancies, which causes them to migrate
to a cavity surface.. The growth of creep cavities then occurs via vacancy migration
over the grain boundary by grain boundary diffusivity [4]. The vacancy formation rate
is assumed to be comparatively fast.

Failure of metals subject to creep conditions occurs due to crack formation as a
consequence of the growth and coalescence of creep cavities. The rate of creep de-
formation is controlled by bulk diffusion [2]. Yet there is a well-known experimental
relation between the strain rate and the time to failure, known as the Monkman-Grant
relation. The Monkman-Grant relation says that the product of the steady-state strain
rate ε̇ss and the time to failure t f is a constant:

CMG = ε̇ss t f . (1.1)

This provides us with an apparent inconsistency, since the strain-rate is a bulk dif-
fusion controlled process and the growth of cavities, which leads to failure is a grain-
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boundary controlled process. It was found that the growth rate of creep voids can be
constrained by the rate of deformation. This lead to a description of this process by
Ishida & McLean [5], where the strain rate is limiting for cavity growth by the formation
of vacancies at grain boundaries due to ingressing dislocations. Dyson [6] instead states
that the physical straining of the facets containing creep cavities controls their growth.
The approach by Dyson has been the prevailing theory describing the constraint growth
of creep cavities [7, 8].

1.3. CREEP RESISTANCE
A mechanical component needs to conform to its design criteria. At high tempera-
tures and during long lifetimes the mechanical and dimensional features of mechanical
components can deteriorate. Metal components operating at high temperatures whilst
loaded by stress, deform time-dependently. During this deformation, localized damage
can occur in the shape of cavities, intergranular wedge cracks, necking, or cleavage crack
formations. Since damage formation largely relies on the existence of grain boundaries,
the ultimate creep-resistant components are single crystal nickel-based superalloys [9].
The mode of damage formation is a function of both temperature and applied stress
[10, 11]. The only common factor in these different types of damage formation is that
they are temperature dependent, and they are often controlled by the diffusivity of either
host or solute in either grain interiour or on the grain boundary.

In many cases the time to failure depends on the strain rate of creeping metals.
Therefore, the conventional method of designing creep-resistant metals is by reinforc-
ing both the grain interiours and the grain boundaries by nanoprecipitates [12]. The
precipitates serve to avoid grain-boundary sliding and dislocation movement inside the
grains. Coarse precipitates do not contribute as much to strength as small nanosized
precipitates. As metals in creep conditions are also subject to precipitate coarsening
the resilience to creep deformation irreversibly deteriorates as the alloy is aged at high
temperatures [13]. Much of the optimisation of creep-resistant steel design is focused
on maintaining stable nanosized precipitates [14].

1.4. SELF-HEALING
Recently, the concept of self-healing or autonomous repair is being applied to coatings
[15, 16], polymers[17–19], composites[20], cementitious materials [21], ceramics[22, 23]
and even in metallic systems [24]. Applying self-healing principles has some distinct
benefits, since self-healing materials have the ability to repair damage locally, where it
occurs. The self-healing methods can prolong life-times of components in similar ways
as observed in biological systems.

In metals the concept of autonomous repair of creep damage by selective precipitation
was first applied by Shinya and Laha [24, 25] and Lumley and coworkers [26]. Shinya
and Laha allowed precipitation of boron nitride (BN) inside creep voids in austenitic
stainless steels, which prolonged their creep life. It was argued that this precipitation
could delay coalescence of creep voids and also block fatigue damage growth. They also
showed that there is a beneficial effect of Cu in supersaturation, as it forms precipitates
inside creep cavities. One could wonder however if the strength of the new precipitates
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Figure 1.2: Schematic representation of self-healing creep steel, where the forming and growth of a precipitate
in a creep cavity hinders the growth and coalescence of creep cavities. The precipitation growth inside a creep
cavity effectively prevents the formation of cracks from creep cavities [28].

on the surface of the creep voids adds significantly to the materials’ strength. And if
so, how the method works both for very brittle BN, and for soft copper in steel.

Research on selective precipitation of substitutionals inside creep cavities in order to
delay failure continued in Delft [27–30]. The addition of 1 atomic percent of copper
to pure iron increases the lifetime and reduces the strain rate of the alloy under creep
conditions. A comparison between the creep curves of an annealed specimen and a
quenched specimen shows the effect of solutionising the copper. When more copper is
in supersaturation, the effect of self-healing is quite pronounced and creep lifetimes can
be significantly increased. More striking is the much stronger effect on the creep curve
of the addition of gold [28]. Despite the fact that the precipitate which forms inside the
creep cavity is bulky and should not poses any particularly high strength.

The efficiency of a self-healing creep steel in this picture relies on the degree of filling
of the creep cavity and how much the precipitate prevents the growth of a partially filled
creep cavity. However, it is not obvious why gold should work much better than copper,
from the point of view of strength. This observation is more logical if the magnitude of
the diffusional flux of the solute plays an important role.

1.5. CREEP MECHANISM
In this thesis modelling thechniques are applied to the problem of self-healing creep
steel and to the subproblems involved in both growth of creep cavities, healing, and
precipitation on grain boundaries. A new model is developed on the working of self-
healing creep steels and clarity is provided into how creep deformation and damage
formation are linked. It is found that the efficiency of self-healing creep steels depends
on the strenght of the Kirkendall effect which they cause. What is interesting about this
approach is that it does not necessarily hinders traditional creep strengthening strategies.
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1.6. THESIS STRUCTURE AND SCOPE
In this thesis the efficiency of self-healing elements in bcc iron are reviewed, focusing
on substitutional elements in iron. In order to do this, modelling techniques are applied
to specific problems associated with the creep damage and healing problems. Common
industrial alloys used for creep-resistant components are multiphase iron-based alloys
with a complex microstructure. The analysis of self-healing steel is limited to binary
alloys in this thesis, in order to analyse separately the effect of solute atoms on diffusivity
and on creep live times. This is done by calculation the diffusivities of impurity elements
in bcc iron and reviewing the precipitation process inside creep cavities. The mechanism
of self-healing is intricately linked to the working of diffusional creep in metals, through
the Kirkendall effect and the formation rate of vacancies at grain boundaries. Reviewing
this mechanism provides insight which elucidates the mechanisms controlling diffusional
creep deformation and its relation to creep cavity growth. Finally, a review of the
efficiency of different amounts and types of solutes is given to illustrate the critical
parameters required to obtain an optimal self-healing creep alloy.

In chapter 2 the impurity diffusion rates are calculated using first-principles [31].
Diffusivities in bcc iron are modelled by determining formation energies of defects and
their interaction. The formation energies of defects are calculated using VASP to com-
pute total energy calculations and jump barrier energies. Entropies of formation were
obtained from harmonic phonon calculations. The trends of these factors are reviewed
as function of the elements’ position on the periodic table of the elements. The resulting
activation energies and prefactors for diffusion provide species-dependent diffusivities.
These diffusivities are compared to experiment in order to validate the method where
possible.

A specific issue which complicates the diffusivity calculations in bcc iron is the
magnetic order-to-disorder transition. In chapter 3 the effect of magnetic order on
diffusivity in bcc iron is reviewed for a large selection of elements and experimental
datasets. The degree of magnetic order has an effect on the activation energy for
diffusion. This effect and its magnitude can be described by different models. The
results are presented and explained using literature knowledge and a systematic approach
to fitting the experimental data to the model which best describes the deviation from
Arrhenius behaviour. The large selection of experimental datasets allows for a thourough
analysis of the magnitude of the magnetic effect the activation energy and also of the
accuracy of each model.

In chapter 4 finite element calculations of solute diffusion towards creep cavities
are presented [32]. The time required to fill a creep cavity on a grain boundary by a
diffusional flux of supersaturated solute depends on the diffusivity on grain boundaries
and through the bulk and on the geometric ratio of creep cavity radius and the intercavity
distance. For a relatively large intercavity spacing 3D transport is observed when the
grain boundary and volume diffusivities are of a similar order of magnitude, while a 2D
behavior is observed when the grain boundary diffusivity is dominant. Instead when the
intercavity distance is small, the transport behavior tends to a 1D behavior in all cases,
as the amount of solute available in the grain boundary is insufficient. This is a relevant
observation for creep cavity growth and precipitate growth, since their distance can vary
during annealing of a metal at high temperature. This can lead to a change in character
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of the diffusional behaviour. A phase diagram with the transition lines is presented.
A design principle for new creep steels is presented in chapter 5. The results of

the concept can be used to elucidate the mechanism of self-healing creep metals. The
flux of vacancies towards a creep void can be countered by selective precipitation, which
thereby prevents creep cavity growth. This vacancy flux is shown to be related to the
bulk deformation, leading to the possibility of a significantly extended service life.

In chapter 6 the previously developed conceptual model is formalised using readily
available equations. The self-healing process causes precipitates to grow inside creep
cavities. Due to the Kirkendall effect, vacancies are transported away from the creep
cavity during this selective precipitation which impedes their growth. The magnitude
of this effect depends on the strength of the solute flux towards a creep cavity and
therefore on the chemical potential for segregation and the solute mobility. The atomic
mobilities for bcc iron have been determined in chapter 2, the chemical potential is
derived from the amount of supersaturation. With this model it is possible to calculate
the critical stress at which self-healing can work. The critical stress depends on solute
species, solute content and temperature. The model is applied to binary Fe-Cu, Fe-Au,
Fe-Mo, and Fe-W alloys.

The main findings presented in this thesis are reiterated in the summary.
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2
FIRST-PRINCIPLES ANALYSIS OF

SOLUTE DIFFUSION IN DILUTE BCC

FE-X ALLOYS

παντα ρει

Heraclitus

The diffusivities of substitutional impurity elements in iron have been computed with ab-
inito electronic density functional techniques, using exhange correlation (xc) functional
PW91. Excess entropies and the attempt frequency for a jump were determined by calcu-
lating phonon frequencies in the harmonic approximation. The influence of the degree of
spontaneous magnetisation on diffusivity is taken into account by means of the Girifalco
model. The activation energy for diffusion has been determined, by computing the va-
cancy formation energy, impurity-vacancy binding energies, migration barrier energies,
and the effective energy associated with correlation of vacancy mediated jumps. For each
type of impurity atom these contributions have been evaluated and analyzed up to and
including the fifth nearest neighbor shell of the impurity atom. It is found that impuri-
ties that have a low migration energy tend to have a high effective energy associated with
vacancy migration correlation, and vice versa, so that the total diffusion activation en-
ergies for all impurities are surprisingly close to each other. The strong effect of vacancy
migration correlation is found to be associated with the high migration energy for iron
self-diffusion, so that movement of vacancies through the iron bulk is in all cases, except
for cobalt, the limiting factor for impurity diffusion. The diffusivities calculated with the
PW91 functional show good agreement with most of the experimental data for a wide
range of elements.

This chapter has been published in Physical Review B 96, 94105 (2017) [1].
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2.1. INTRODUCTION
Diffusional processes in metals are relevant for a wide variety of mechanisms, such as
phase transformations and partitioning. In many cases the subsititutional diffusivity
is rate limiting for growth and coarsening of precipitate phases. Understanding and
predicting such processes accurately requires knowledge of diffusivities of all elements
present in a host. Here we present a systematic calculation of substitutional impurity
diffusivities in bcc iron that makes it possible to compare the various contributing factors.

The diffusion of dilute substitutional impurities in iron has been the subject of many
experimental studies[2, 3, 3–7, 7–46]. It has become apparent that in contrast to im-
purity diffusion in say fcc aluminum, the diffusivities of subsitutional impurities in bcc
iron do not differ very much from one another. However, a comprehensive comparison
of ab initio computed substitutional diffusivity with actual experimental data, not just
the fitted parameters, is highly desirable. This is particularly the case for diffusion in
iron where an Arrhenius plot does not show a simple linear relation in the ferromagnetic
state. DFT calculations have proven successful in predicting experimental data such as
lattice parameters[47, 48], elastic properties [49, 50], and energy barriers for diffusion,
e.g. diffusivities in aluminum[51], magnesium[52, 53], and nickel[54]. Many impurity
diffusivities in bcc iron[55–62] have been calculated with DFT methods, but oftentimes
only experimentally fitted data, such as activation energy for diffusion, have been com-
pared with the computed results. The fact that the Arrhenius plot of the diffusivity in
bcc iron is not linear makes it desirable to compare the computed and experimentally
determined diffusivities directly. This is because the determination of an activation en-
ergy for diffusion experimentally is not trivial because of the narrow temperature range
available in the paramagnetic state.

The calculations were performed for the following elements (in order of atomic num-
ber): Mg, Al, Si, P, S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Zr, Nb, Mo, Ag,
Sn, Sb, Hf, Ta, W, Au, Pb and Bi. These elements were chosen to represent the entire
periodic system of the elements and because of their use in the steel industry. In order
to clarify trends, most elements of the 4th row, and of several columns, in the periodic
table were considered. For 21 of these 28 diffusing elements the calculated results could
be compared to experimental data. Some elements, such as the heavier earth alkaline
species and the rare earths proved to be so large in the iron matrix that a single va-
cancy (ä) assisted impurity diffusion mechanism was deemed unrealistic. We therefore
excluded the elements Sr, Ba, Ce, and La from this study.

Diffusivities in most metallic crystalline solids can be accurately described with an
Arrhenius equation over a wide range of temperatures with just two parameters, the
activation energy for diffusion Q and the diffusivity prefactor D0,

D = D0e−βQ , (2.1)

where β = 1/(kB T ) with kB the Boltzmann constant and T the absolute temperature.
Accordingly, for most diffusivities, an Arrhenius plot gives a straight line, but for diffu-
sion in bcc iron there is a systematic deviation from linearity near the Curie temperature.
This deviation indicates the effect of magnetic order in the bcc iron matrix. Extensive
experimental work[3–6, 8, 63] has resolved that around the Curie temperature the dif-
fusivity prefactor is relatively little affected, but that the activation energy for diffusion
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changes significantly. In analogy with CsCl type ordering on a bcc lattice, as occurs in β
brass Cu-Zn alloys, Girifalco[64, 65] derived a mean field model to relate the magnetic
order parameter to the diffusion activation energy,

Q =QP M (1+αs2), (2.2)

where QP M is the diffusion activation energy in the paramagnetic state (PM), α is
a dimensionless proportionality constant, and s is the (dimensionless) magnetic order
parameter in the ferromagnetic state (FM). The magnetic order parameter is given
as a ratio of spontaneous magnetizations: s = M(T )/M(T = 0), where M(T ) is the
temperature dependent spontaneous magnetisation in the ferromagnetic state. In the
perfectly ordered ferromagnetic state, with s = 1 the activation energy for diffusion QF M

can be computed ab initio, so that QP M is obtained through

QP M = QF M

1+α . (2.3)

The activation energy for substitutional diffusion in a pure metal includes a vacancy
formation energy and a migration energy for the actual movement of the vacancy. As
these energy terms are computed within finite size supercells, rather than within a more
or less infinitely large crystal, special care must be taken. To limit errors associated with
wave expansions, calculations are performed in a supercell of constant (cubic) shape
and volume. However, when a vacancy is introduced in such a cell, and/or when an iron
atom is replaced by a large substitutional atom, under normal (practically zero external
pressure) conditions, the supercell should relax to some other volume and/or shape.
Therefore, we convert ab initio computed internal energies to zero pressure enthalpies
according to

H [super cel l ] =U [super cel l ]+P [super cel l ]V0 + 1

2
Ui nt [super cel l ], (2.4)

where P [super cel l ] is the hydrostatic pressure as computed ab initio within the fixed
size supercell, and V0 is the volume of the supercell. Ui nt is the elastic interaction
between lattice defects due to periodic images that are unavoidable in supercell calcula-
tions. The energy correction has been computed using the program Aneto of Varvenne
et al.[66], using the stiffness matrix parameters used to obtain the hydrostatic and dipole
energies of all supercells. With the stiffness matrix (in units of GPa) is follows;

Ci j kl =



268.760 154.450 154.450 0 0 0
154.450 268.760 154.450 0 0 0
154.450 154.450 268.760 0 0 0

0 0 0 89.400 0 0
0 0 0 0 89.400 0
0 0 0 0 0 89.400

 . (2.5)

We used supercells consisting of 4×4×4 bcc cubes with a lattice parameter of a =
0.283 nm, giving V0 ≈ 1.45 nm3. We selected a = 0.283 nm because it is the zero
pressure value for pure bcc iron according to the PW91 GGA exchange correlation
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potential (xc-potential). At T = 0 K, the vacancy formation enthalpy can then be
computed with

∆H f ,ä = H [FeN−1ä]− N −1

N
H [FeN ], (2.6)

where FeN−1ä refers to a supercell with N −1 iron atoms and a single vacancy, where
N=128 for a 4×4×4 supercell.

Of course, the effect of a vacancy or impurity atom is not limited to the ground
state properties, as excitations are also affected. Therefore, the formation free energy
of a defect is evaluated by adding the free energy contribution due to excitations to the
defect formation enthalpy. In the case of a vacancy this gives

∆G f ,ä(T ) =∆H f ,ä+∆∆Gexc,ä(T ), (2.7)

where ∆∆Gexc,ä(T ) is the free energy change associated with a defect (here a vacancy)
due to excitations, such as related to electrons and phonons. Calculations in supercells
with and without a defect give

∆∆Gexc,ä(T ) =∆Gexc (T )[FeN−1ä]− N −1

N
∆Gexc (T )[FeN ], (2.8)

analogous with equation 2.6. The electronic excitations are evaluated by varying the
electron temperature in the Fermi-Dirac distribution function in the supercell calcula-
tions. Vibrational excitations have been evaluated in the harmonic approximation using
zone-centered supercell modes. Then, the vibrational free energy Gvi b is computed from
the phonon frequencies ωi using[67],

∆Gvi b(T ) =∑
i

1

2
ħωi +kB T ln

(
1−e−βħωi

)
. (2.9)

At high temperatures the excess vibrational free energy associated with a defect is
approximately linear with temperature, limT→∞ ∆Gvi b(T ) = T

∑
i kB ln(ħωi ). The excess

vibrational enthalpy difference behaves as the reciprocal of temperature and therefore
vanishes. The vibrational formation energy of a vacancy is obtained through

∆∆Gvi b,ä(T ) ≈∆∆Hvi b,ä−T∆∆Svi b,ä, (2.10)

where, in the high temperature limit, ∆∆Hvi b,ä = 0 and the effective vacancy formation
entropy arises from the difference between the ∆S contributions of a cell with and
without a vacancy;

∆∆Svi b,ä =−∑
i

kB ln(ħωi [Fe127ä])+ 127

128

∑
i

kB ln(ħωi [Fe128]). (2.11)

Specific to bcc iron is a correction for the diffusivity activation energy in order to
capture the effect of magnetism [65], (see equation 2.2) through the relative spontaneous
magnetisation s. The temperature dependence of s is accurately represented by an
empirical formula[68],

s(τ) = (1−τ)B

1−Bτ+ Aτ3/2 −Cτ7/2
, (2.12)
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where τ is the reduced temperature
(
τ= T

TC

)
, with the Curie temperature TC = 1043 K

in bcc iron. The constants take the values [68] A = 0.11, B = 0.368, and C = 0.129. The
parameter α, which indicates how much the magnetic disordering affects the activation
barrier for diffusion, was found to be similar for all solute elements in bcc iron. The
determination of this parameter is discussed by the authors in a separate manuscript [69].
The parameter α = 0.10 for all impurities in Fe, except for iron self-diffusion where
α= 0.16.

2.1.1. SELF-DIFFUSION
To determine the self-diffusivity D[Fe], the migration energy for the movement of a
vacancy to a neighboring iron atom needs to be calculated. The migration energy Hmi g

is the energy difference between energies of the transition-state (tr ) and equilibrium
state (eq). The rate Γ at which a vacancy trades place with its neighbor atom can then
be expressed as

Γ= νe−βHmi g , (2.13)

where ν is the attempt frequency and where the exponential gives the probability of
success. In the transition state the evaluation of the vibrational excitations requires care
because of the negative curvature of the energy along the transition path. Therefore, the
vibrational contribution to the migration free energy is treated according to transition
state theory [70]. The effective jump attempt frequency ν̃ is given by [70],

ν̃=
∏
νi [eq]∏′νi [tr ]

, (2.14)

where the product of vibrational modes (∏νi ) of a system with a vacancy is computed
with a diffusing atom in the transition state ([tr ]) and with all atoms in the equilib-
rium state ([eq]). The imaginary frequency representing the direction of the unstable
vibrational mode of the transition-state is specifically excluded from the product, as is
indicated by the prime in the product operator in the denominator. In our calculations,
we ignore the effect of thermal lattice expansion, and the small contribution of electronic
excitations is neglected also. The vacancy migration rate is then,

Γ= ν̃e−βHmi g , (2.15)

where ν̃ is given by equation 2.14, and Hmi g is computed with

Hmi g = Htr [FeN−1ä]−Heq [FeN−1ä], (2.16)

where Htr [FeN−1ä] is the enthalpy of a supercell in the transition state (the saddlepoint
configuration where an atom is about midway its jump) and Heq [FeN−1ä] concerns the
situation prior to the jump where all atoms are still in their equilibrium positions.

The self-diffusivity D[Fe] is the product of the migration rate Γ, the vacancy con-
centration Cä, a correlation factor f and the actual jump distance l that a migrating
atom travels squared,

D[Fe] =Cäl 2 f Γ. (2.17)
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The jump distance is equal to the nearest neighbor distance l =
p

3
2 a in the case of bcc

iron, where a is the bcc lattice parameter of iron. The correlation factor f describes how
efficiently the vacancy contributes to the movement of iron atoms. It can be calculated
with the 9-frequency model of Le Claire[71, 72], which yields a constant value f = 0.727
in the case of self-diffusion in bcc.

The vacancy concentration is assumed to be at equilibrium in the low concentration
limit and therefore given by an Arrhenius equation with prefactor unity and with the
Gibbs energy of vacancy formation ∆G f ,ä as,

Cä = e−β∆G f ,ä , (2.18)

where ∆G f ,ä is given by equation 2.7.

2.1.2. IMPURITY DIFFUSION
In comparison with self-diffusion, impurity diffusion introduces several new factors be-
cause of the interaction between impurity atom and the vacancy. One can recognize the
influence of the two point defects a) on the correlation factor because of a variety of
migration barriers, b) on vacancy binding at various distances from the impurity both
as a binding enthalpy and as a binding entropy. First we consider how a vacancy moves
in the immediate vicinity of a substitutional diffusing species via the correlation factor.
Unlike in the case of self-diffusion, there are multiple jump rates because after a jump
the vacancy can have a new position relative to the impurity atom, as is illustrated in
figure 2.1. Each of the distinct jumps has its own migration enthalpy and its own jump
rate. Of course, the migration enthalpy is generally not the same in both directions.
We will assume that the jump attempt frequency, ν̃ in equation 2.15, takes the value of
pure iron for all jumps of iron atoms given by equation 2.14. For the Γ2 jump, where
an X impurity atom jumps, we compute the jump rate according to equation 2.14. De-
tails concerning the attempt frequency are generally not extremely important because it
varies over a relatively small range of values compared to the Boltzmann factor which
varies over many orders of magnitude as function of temperature.

The correlation factor f of an impurity diffusing in a bcc system was approximated
by Le Claire [71] with a model explicitly considering 9 distinct jump-rates Γ, the so-called
9-frequency model,

f =
3Γ3 +3Γ3′ +Γ3′′ − Γ3Γ4

Γ4+FΓ5
− 2Γ3′Γ4′
Γ4′+3FΓ0

− Γ3′′Γ4′′
Γ4′′+7FΓ0

2Γ2 +3Γ3 +3Γ3′ +Γ3′′ − Γ3Γ4
Γ4+FΓ5

− 2Γ3′Γ4′
Γ4′+3FΓ0

− Γ3′′Γ4′′
Γ4′′+7FΓ0

, (2.19)

with the factor F = 0.512.
The correlation factor f , equation 2.19, depends on temperature because each of the

Γ varies with temperature (eq. 2.15). The influence of temperature on the correlation
factor can be quite significant for elements with large variations in ∆Hmi g ,i . In spite
of the complex formal temperature dependence of the correlation factor, usually it is
well approximated by a simple Arrhenius equation because one of the jump frequencies
Γi tends to become the bottleneck in the diffusive process. A simple analysis of equa-
tion 2.19 shows that the numerator is dominated by the largest terms; either Γ3, Γ3′ ,
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or Γ3′′ . If the largest Γ in the numerator is larger than Γ2 in the denominator, f will be
approximately unity almost independent of temperature. However, if Γ2 is larger than
the largest Γ in the numerator, their ratio will be a good estimate of f ,

f ≈ max(Γ3,Γ3′ ,Γ3′′ )

max(Γ2,Γ3,Γ3′ ,Γ3′′ )
. (2.20)

The jump rates are all Boltzmann factors, so that f is approximated by an Arrhenius
equation. This leads to the definition of an effective entropy and effective enthalpy of
correlation by fitting a linear relation between ln( f ) and β,

ln( f ) ∼∆Sc /kB −β∆Hc . (2.21)

The approximation for f in equation 2.20 then yields for

∆ Hc ≈ max[0,min(Hmi g ,3, Hmi g ,3′ , Hmi g ,3′′ )−Hmi g ,2]. (2.22)

When fitting within the temperature range between 600 and 1200 K and accounting for
the negative terms in the numerator and denominator in equation 2.19, it is found that
a minor rescaling is required which gives

∆Hc,appr ox = 1.2 max[0,min(Hmi g ,3, Hmi g ,3′ , Hmi g ,3′′ )−Hmi g ,2]. (2.23)

The effective entropy of correlation is not easily estimated by an approximate expression.
The impurity-vacancy binding at various separation distances is temperature depen-

dent and thus can be thought of as both a binding enthalpy and as a binding entropy.

Figure 2.1: The 9 frequency model by Le Claire [71]. Each distinct jump frequency is indicated, and with the
red numbers indicating the nearest neighbor with respect to the impurity atom. Γ2 concerns the impurity
trading places with the vacancy, Γ3 concerns an iron atom that is a 2nd neighbor of the impurity exchanging
with a vacancy and thereby becoming a nearest neighbor to the impurity, Γ4 is the reverse of Γ3, Γ3′ is a jump
whereby an iron atom changes from a first to a third neighbor of the impurity, Γ4′ is the reverse of Γ3′ , an iron

atom jumping from 1st to 5th impurity neighbor is Γ3′′ , andΓ4′′ is the reverse of Γ3′′ . All other jump frequencies
are assumed to be unaffected by the presence of a substitutional solute and are assumed to take the same value
as the one in pure iron bulk Γ0.
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The enthalpy differences at zero pressure are evaluated with,

∆Hbi nd ,Xä(R j ) = H [FeN−2Xä](R j )−H [FeN−1X ]−H [FeN−1ä]+H [FeN ], (2.24)

where each of the supercell enthalpies have been computed using equation 2.4, and
where R j indicates the shortest vector that separates X and ä. The entropic binding
terms then arise from electronic, magnetic, and vibrational excitations. The electronic
excitations are easily incorporated self-consistently through the Fermi-Dirac distribution
function. We find these effects to be negligible. The magnetic excitations are globally
included through the Girifalco model. Of course, magnetic behavior, and its temperature
dependence, must be expected to differ from the global pure Fe bulk in the vicinity of a
defect. We have chosen to neglect such local defect-induced excess terms. The excess
vibrational free energy associated with vacancy-impurity binding has been calculated
from supercells with and without defects, analogeous to equation 2.11.

∆∆Sbi nd ,Xä(R j ) =−∑
i

kB ln(ħωi [FeN−2,X ,ä])+∑
i

kB ln(ħωi [FeN−1,X ])+∑
i

kB ln(ħωi [FeN−1,ä])−∑
i

kB − ln(ħωi [FeN ]).

(2.25)

As indicated in equation 2.10, the excess vibrational free energy can be separated in
a vanishing excess vibrational enthalpy ∆Hvi b,Xä(R j ) and an approximately temperature-
independent vibrational impurity-vacancy binding entropy ∆Svi b,X,ä(R j ) term. The ac-
tivation barrier for diffusion in the fully ferromagnetically ordered state is calculated as
the sum of the various contributions,

QF M =∆H f ,ä+∆Hbi nd ,Xä(R1)+∆Hmi g ,2 +∆Hc . (2.26)

where R1 indicates a nearest neighbor in the bcc crystal structure. The paramagnetic
activation energy for diffusion is computed from QF M with equation 2.3. The pre-
exponential factor D0, in equation 2.1 is calculated in the purely ferromagnetic state
and is assumed to be the same for PM and FM states. This is justified by the relatively
small shifts in phonon frequencies [73–75]. In addition, the shift in phonon frequencies
are gradual with temperature [76, 77]. The entropy contribution which originates from
the correlation is modest and the difference with magnetic order is expected to be small
as well.

D0 = 3

4
a2ν̃2e(∆∆Svi b,ä+∆∆Sbi nd ,Xä(R1)+∆Sc )/kB , (2.27)

where ∆∆Svi b,ä/kB applies to pure iron.

2.2. FIRST-PRINCIPLES CALCULATIONS
Enthalpies (total energies) have been computed within the local density approximation
using the Vienna ab initio simulation program (VASP) [78, 79] version 5.2 at a pres-
sure of 0 GPa. The calculations were performed using pseudopotentials of the projector
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augmented wave (PAW) type [80]. Standard potentials were used[81], except for atoms
much larger than Fe where harder potentials with semicore states treated as valence
states were used: Bi_d, Ca_pv, Ge_d, Hf_pv, Mo_pv, Nb_pv, Pb_d, Sn_d, Ta_pv,
Ti_pv, V_pv, W_pv and Zr_sv. Supercells with 4×4×4 conventional bcc cubes (128
lattice sites) were employed, with 5×5×5 Γ-centered k-point grids in the case of the va-
cancy formation energies and migration barriers with an energy cutoff of 400 eV for plane
wave expansions. For the vacancy-impurity binding phonon calculations the cutoff fre-
quency was chosen to be 440 eV, in 3×3×3 bcc supercells with 4×4×4 Γ-centered kpoint
grids. All calculations were spin-polarized. Migration barriers have been calculated with
the nudged-elastic band (NEB) method with the climbing image algorithm[82]. Elastic
energy corrections for image interactions associated with supercells were made using
the method of Varvenne et al.[66]. The elastic interaction energy is computed from the
pressure and the deviatoric stress computed ab initio within supercells with fixed volume
and fixed (cubic) shape. Elastic energy corrections for image interactions were typically
in order of meVs at most for the 4×4×4 supercells, with the larger values occurring for
the transition state configurations. In our calculations two GGA exchange-correlation
(xc) functionals were used: PW91 [83, 84] and PBEsol[85]. The PBEsol xc functional
was designed with the aim to correct for an inaccuracy in predicted lattice constants of
PW91 and PBE. The overestimation of lattice parameters (in the case of PBE) coincides
with an underestimation of the bulk modulus of pure metals, PBEsol is reported to give
a better approximation for many different pure metals [48]. However, PBEsol for bcc
iron fails at predicting the lattice parameter, giving 2.79 Å [86], to be compared with
an experimental value of about 2.86 Å. At the theoretical lattice parameter (2.79 Å),
PBEsol gives a rather high vacancy formation enthalpy [47, 87], about 2.47 eV, which
is beyond the currently general accepted value of about 2.2 eV[47, 58, 88–91]. The
results of the PBEsol calculated energies are therefore presented only in table 2.1 and
in the supplementary material [1]. The PBEsol computed value increases to even higher
values when a more realistic value for the lattice parameter is selected [47]. At the bcc
lattice parameter selected in this work, 2.83 Å, the PW91 equilibrium value, it is to be
expected that too large a vacancy formation enthalpy is computed for PBEsol. However,
recent work by Glensk et al.[92] has called into question the validity of currently gen-
erally accepted vacancy formation enthalpies, so that we find it of interest to consider
the PBEsol functional.

2.3. RESULTS & DISCUSSION

2.3.1. VACANCY FORMATION AND IMPURITY-VACANCY BINDING ENTHALPY

The vacancy formation enthalpy in pure bcc iron was computed with equation 2.6, see
table 2.1. Table 2.1 shows that there is agreement with previously published data. Our
PW91 vacancy formation enthalpy is in the middle of the range of values reported in the
literature and it agrees nicely also with results published for the PBE GGA [93]. PBEsol
rather consistently gives values almost half an eV higher than PW91 and PBE.

The vacancy formation vibrational entropy, see equation 2.10, in bcc iron is computed
to be about 4.14 kB for PW91 in a 4×4×4 supercell. This value is in good agreement with
the value obtained by Lucas and Schäublin [95] Svi b,ä = 4.08 kB , and in a little less close
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Table 2.1: Calculated vacancy formation enthalpies (∆H f ,ä) calculated with equation 2.6 and en-
tropies (∆∆Svi b,ä), calculated with equations 5 and 10, comparison of various exchance-correlation (xc) func-
tionals.

xc type ∆H f ,ä (eV) ∆∆S f ,vi b,ä (kB )
PW91 2.129 [this work] 4.14 [this work]
PW91 2.02 [57] -
PW91 2.0[94] -
PW91 2.16[89] -
PW91 2.16[47] -
PW91 2.16[95] 4.08[95]
PBE 2.18[96] 4.62[96]
PBE 2.13[88] -
PBE 2.23[58] -
PBE 2.01[90] -
PBE 2.22[47] -
PBE 2.31[91] -

PBEsol 2.626 [this work] -
PBEsol 2.47[47] -

revTPSS 2.64[47] -

agreement with the value by Messina et al.[97] Svi b,ä = 4.6 kB . The vacancy formation
vibrational entropy obtained in a 3×3×3 supercell is 3.79 kB , quite close to our 4×4×4
result. In view of the computational resources needed, and the relatively small effect on
the diffusivity, we use the 4×4×4 result for the vacancy formation vibrational entropy,
and the 3×3×3 supercell results for the vacancy-impurity binding entropy. The vacancy
formation vibrational entropy is quite large in comparison to other single site excess
entropies: the configurational entropy in real alloys and entropy differences between
allotropes are usually in the neighborhood of 1 kB or less.

The impurity - vacancy binding enthalpies, computed with equation 2.24, are plotted
in figure 2.2. These enthalpies correlate well with the columnar position in the periodic
table of the elements of the impurity atom. The row position of the impurity atom
is less discriminating; for elements in the same column row 5 and row 6 differ little
from one another. There is a minimum at the edges of the periodic system of the
transition metals in each row of the periodic table. Of course, atoms at the middle of
the transition metal series are usually smallest confirming a well-documented relation
to atomic sizes[51, 52]. There have been several studies of vacancy-impurity binding
in bcc iron [58–60, 62, 98, 99] and our results mostly agree with previous calculations
with a few notable exceptions: For cobalt our results, and those of Olsson et al. [99]
and Messina et al. [62], are in marked contrast to those of Ohnuma et al. [98]. For
nickel we agree with refs. [62, 99], but disagree with those of Vincent et al. [59]. For
copper our results are closest to those of Ohnuma et al. [98], and close to those of
refs. [62, 99], but differ significantly from others [59, 60]. For Mo we agree with Huang
et al. [58] and refs. [62, 99], but not with Ohnuma et al. [98]. For some elements we
did not find literature values to compare with: Bi, Ca, Ge, Mg, Pb, and Sn. Details for
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Figure 2.2: Vacancy binding enthalpy next to a single impurity atom as computed with 2.24 using PW91. Im-
purity elements are arranged by row and column of the periodic system, row 3 of the periodic system (purple
triangles), row 4 of the periodic system (red squares), row 5 of the periodic system (green triangles), row 6 of
the periodic system (blue diamonds). Dashed lines, between neighboring impurities, are guides to the eyes
only.

the impurity-vacancy binding up to the 5th shell for all impurities can be found in the
supplementary information [1].

The vacancy-impurity binding enthalpy varies rather systematically with distance as
can be seen in figure 2.3 and was also reported by others[62, 99]: relative to the binding
with the 1st nearest neighbor, the 2nd neighbor binding is a bit weaker, at the 3rd and
4th neighbors the binding is much weaker, while at the 5th neighbor, it is again stronger,
but weaker than at the 1st and 2nd neighbors. This can be rationalized by the strong
transmission of strain effects along a dense packed direction, such as applies to the 1st

and 5th neighbors.

2.3.2. MIGRATION BARRIERS

The migration enthalpies of various impurity elements in iron and the barriers of the
iron atoms in the vicinity of the impurity were computed with equation 2.16. Large
impurity atoms, such as towards the left and right extremities of the periodic table,
have low values for ∆Hmi g ,2, see figure 2.4. Impurities close to Fe in the middle of the
periodic table have ∆Hmi g ,2 of similar magnitude as ∆Hmi g for iron self-diffusion with
the exception of Mn, which has a much lower barrier. This trend was reported by Ding
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Figure 2.3: Vacancy-impurity binding enthalpy for impurities in the 4th row of the periodic table as computed
with equation 2.24 using PW91. Nearest neighbors: pink squares, 2nd neighbors: red diamonds, 3rd neighbors:
green triangles, 4th neighbors: blue circles, 5th neighbors: black X-es.

et al.[61] and Messina et al.[62] also. It has been found for TM impurities diffusion in
fcc Ni as well [54]. The inverse relation between the magnitude of ∆Hmi g ,2 and atomic
size, has been rationalized through the displacement of the large impurity atom towards
the vacancy. This results in short jump distances and correspondingly low barriers [51].
Very large impurity atoms such as Sr, Ba, Ce, and La, take an intermediary position
between the original position and the neighboring vacancy, forming a vacancy-impurity
atom complex. Such complexes can probably only migrate when an additional vacancy
approaches. Such double-vacancy assisted diffusion processes have not been explored
in the current work. For calcium a nearest-neighbor jump although shortened, still can
be defined, but the associated migration enthalpy is 19 meV only. In such a case the
Ca atom frequently jumps back and forth without any net displacement, and diffusion
of the calcium atom is going to be determined by how the vacancy migrates through
the neighboring bulk, that is, it will be determined by the correlation factor, as will be
discussed below.

Large impurity atoms, at the left and right sides of the periodic table, generally have
strong vacancy binding, see figure 2.2. As a result their migration barriers for dissociative
jumps ∆Hmi g ,3, ∆Hmi g ,3′ , and ∆Hmi g ,3′′ tend to be much larger than the corresponding
barriers for associative jumps ∆Hmi g ,4, ∆Hmi g ,4′ , and ∆Hmi g ,4′′ . For many larger atoms
∆Hmi g ,4′′ is the lowest barrier (Ca, Zr, S, Hf, Pb, Bi, Ge, P, Sn, Mn, Sb, Si, Cu, Cr,
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Au, W), for a others (Mg, Nb, Ti, Zn, Ag, Al, Ta, V, Mo) it is ∆Hmi g ,4′ . For Co and
Ni only, we find ∆Hmi g ,3 to be the lowest barrier. Not surprisingly Ni has almost no
vacancy binding, and Co is the only element (in our analysis) that we found that repels
a vacancy at the nearest neighbor shell in bcc Fe.

The migration enthalpies for all the impurity species form a large data set. Therefore,
all detailed information concerning migration enthalpies is tabulated (table III) in the
supplementary material [1], with a detailed comparison to literature data.

2.3.3. CORRELATION FACTOR

Using equation 2.19, the correlation factor for each impurity species has been computed
as function of temperature. As the correlation factor is found to be described rather well
by an Arrhenius relation, an effective entropy and effective enthalpy of correlation has
been defined (equation 2.21). ∆Hc is significant for several impurity species, especially
for impurity species at the far left and far right of the periodic table, see figure 2.6.
This result relates with the finding that large impurity atoms diffusing in a Mg matrix
also feature significant effective correlation enthalpies[52, 53]. However, position in the
periodic table gives a more significant correlation than atomic size. Tungsten and gold
are larger atoms than chromium and copper, but the latter two have larger effective

Figure 2.4: Migration enthalpy ∆Hmi g ,2 of impurity elements calculated with equation 2.16, arranged by row
and column of the periodic table, row 3 of the periodic system (purple triangles), row 4 of the periodic system
(red squares), row 5 of the periodic system (green triangles), row 6 of the periodic system (blue diamonds).
Dashed lines, between neighboring impurities, are guides to the eyes only.



2

24 2. FIRST-PRINCIPLES ANALYSIS OF SOLUTE DIFFUSION IN DILUTE BCC FE-X ALLOYS

correlation enthalpies. Likewise sulfur, phosphorous, and germanium have much larger
effective correlation enthalpies than their atomic size in the bcc Fe matrix would suggest,
but they are clearly far to the right from Fe in the periodic table. For elements with large
∆Hc one cannot neglect the temperature dependence of the correlation factor, as has
been found in Mg also [52, 53]. An analysis of the expression for the correlation factor has
revealed that an approximate analytic expression can be derived, (see equation 2.23). In
figure 2.5 the accuracy of the approximate expression can be gauged. The approximation
deviates typically by up to about 5% of the value obtained by fitting according to
equation 2.21 with f from equation 2.19. Eqn. 2.23 also suggests a negative correlation
between ∆Hc and ∆Hmi g ,2. This is confirmed by the opposite tendencies in figure 2.6
and figure 2.4. When ∆Hc is plotted as function of ∆Hmi g ,2, in figure 2.7, this negative
correlation is evident. Clearly, when the activation energy of diffusion is computed,
using equation 2.26, two element specific terms, ∆Hc and ∆Hmi g ,2 have the tendency
to compensate one another. As a result, the activation energy of impurity diffusion in bcc
Fe does not vary nearly as much as in some other metallic matrices, e.g. fcc Al [51]. It
is clear that the temperature dependence of the correlation factor should not be ignored,
in contrast to some previous studies [55, 58, 61, 61, 89]. Fortunately for elements close
to iron in the periodic table ∆Hc is relatively small, see figure 2.4. Evaluating the

Figure 2.5: Effective enthalpy associated with correlation as estimated from equation 2.23, ∆Hc [appr ox] as
function of the ∆Hc obtained from equation 2.21 within the temperature range of 600 K to 1200 K for all ele-
ments considered in this study. The most overestimated value pertains to sulfur.
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Figure 2.6: Effective enthalpy of correlation calculated with equation 2.21 derived from the temperature rela-
tion of correlation factors of impurity elements, arranged by row and column of the periodic system, row 3 of
the periodic system (purple triangles), row 4 of the periodic system (red squares), row 5 of the periodic system
(green triangles), row 6 of the periodic system (blue diamonds). Dashed lines, between neighboring impurities,
are guides to the eyes only.

correlation factor at one specific temperature[100] is thus likely to give a large error in
the calculated diffusion activation energy of yttrium, titanium and zirconium.

The effective entropy associated with correlation as obtained by fitting to equa-
tion 2.21 within T=600 K to 1200 K is much less transparent. For Fe self diffusion,
where all Γi take the same value, this gives ∆Sc =−0.32kB . Likewise, when

min(Hmi g ,3, Hmi g ,3′ , Hmi g ,3′′ ) < Hmi g ,2, (2.28)

such as for Co, Ni, and W, equation 2.20 yields a temperature independent value of
f with ∆Sc ≈ −0.32kB . For the other impurity elements ∆Sc /kB generally takes small
positive values, in the neighborhood of unity, except for Ge, Zn and Ca where ∆Sc /kB ≈ 2.
Recently, a more accurate expression for the correlation factor has been derived [62]
where the jump rate between 2nd and 4th impurity atom neighbors is not equated to
the bulk jump rate. Use of this equation did not yield any significant changes in our
qualitative or quantitative results.

2.3.4. DIFFUSIVITIES
For the calculation of diffusivities of impurities in iron, we examine first the parameters
for the fully FM state as given by eqns. 2.26 and 2.27. The element-specific terms
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Figure 2.7: ∆Hc from equation 2.21 as function of ∆Hmi g ,2.

in equation 2.27 are ν̃2, ∆Sc , and ∆Svi b,Xä(R1), the other factors being independent
of impurity species. The effective attempt frequency for the diffusing species, ν̃2, has
been computed using equation 2.14, see figure 2.8 and table II of the supplementary
material [1]. table II shows a number of remarkable results: For the 3d transition metal
(TM) impurities attempt frequencies are generally high, with a remarkable dip for Mn
in the middle of the series. The early 4d and 5d TM impurities are rather similar and
have markedly lower attempt frequencies than the corresponding 3d TM impurities. The
late TMs, Cu, Ag, and Au, all have rather similar attempt frequencies, in spite of their
significant differences in atomic mass. Both the described tendencies and numerical
values agree well with those found by Messina et al. [62]. Our frequencies are typically
about 10% higher than those reported previously [62], which may be related to our
somewhat smaller bcc lattice parameter. Given a typical temperature of 1000 K, a 10 %
error in the attempt frequency, gives the same deviation in the computed diffusivity as an
error in the diffusion activation energy of 8 meV. Concerning tendencies for frequencies
of non-TM impurities, the rather low values stand out. These elements, such as Ca, Mg,
Zn, Al, Si, Ge, Sn, Pb, P, Sb, and Bi all fall in the range of 1 to 5 THz, except S at 0.44
THz. Non-TM elements have lower frequencies further down in the same column of the
periodic system, as is seen in the comparison Mg-Ca, Si-Ge-Sn-Pb, and Sb-Bi. The 3p
series Al-S also shows a marked decrease of frequencies as the number of p-electrons
increases, with a value of about 5 THz for Al and a very low value of 0.44 THz for S
(figure 2.8). We also applied a Meyer-Neldel fit to attempt frequency - ∆Hmi g ,2. As
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before [62], the fit to the 3d TMs is very poor, but the fit to 3p elements [Al-S]also
does not yield a physically significant result [101]. For the 3p elements an exponent of
0.507 and a Meyer-Neldel energy of 0.014 eV, as well as a reference frequency ν0 of 0.01
THz is found. These parameters differ strongly to what has been found for the 4d and
5d TM impurities [62], and appear to be closer to other analyses [102, 103]. However,
an alternate Meyer-Neldel analysis of the computed log(D0) versus ∆Hmi g ,2 values does
not yield a significant correlation because the D0 are similar for all impurity elements
considered. Therefore, the Meyer-Neldel analysis does not appear particularly useful for
substitutional impurity diffusion in bcc iron.

The vibrational impurity-vacancy binding entropy, ∆Svi b,Xä(R1), ranges from about
-0.5 to +1.5 kB 2.9. The largest value is reached for Ca, and the smallest for Mg. For
TM, values of about +0.5 kB are common, while for non-TM, lower values predominate.
Our data did not allow us to recognize any clear trends. Meyer-Neldel type correlations
between ∆Svi b,Xä(R1) and Hmi g ,2 or QF M are not significant, reinforcing our conclusion
that a Meyer-Neldel analysis is not particularly revealing.

The element-specific terms in equation 2.26, ∆Hbi nd ,Xä(R1), ∆Hmi g ,2, and ∆Hc

have all been discussed above already, so that here we examine QF M . The activation
energy for diffusion ranges from about 2 to 3 eV figure 2.10, with most TM impurities

Figure 2.8: The attempt frequencies for an impurity jump in iron calculated with equation 2.14, arranged by
row and column of the periodic system, row 3 of the periodic system (purple triangles), row 4 of the periodic
system (red squares), row 5 of the periodic system (green triangles), row 6 of the periodic system (blue dia-
monds). Dashed lines, between neighboring impurities, are guides to the eyes only.
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within the range of 2.4 to 2.8 eV. This is in marked contrast to activation energies for
subsitutional impurity diffusion in metals such as Al [51] or Mg [52, 53]. The activation
energy for TM impurities in aluminum can be twice that of aluminum self diffusion
while non-TM impurities often have activation energies which are very similar to that
of the host [51, 104]. The activation energies for the p-type elements in bcc iron show
some interesting trends. The 3p impurities, Al-Si-P-S, display a monotonic decrease in
diffusion activation energy in bcc Fe as the number of p electrons is increased. Along the
columns of the periodic table too, a tendency is apparent where elements of the lower
rows feature lower activation energies than those of the upper rows; Si-Ge-Sn-Pb, and P-
Sb-Bi. This tendency is already recognizable in the vacancy-impurity binding enthalpy
and also in the impurity nearest neighbor migration enthalpy. Increasing p-electron
count strengthens the pd hybridization and thereby makes the vacancy-impurity binding
increasingly less favorable. Furthermore, the loss of a number of nearest neighbors in
the transition state is energetically less costly for a more covalently bonded element
than for a metallicly bonded element. Therefore the migration energy is lowered as
the p-electron count increases. Of course, impurities further down a given column in
the periodic system with their increased atomic size relax more toward the vacancy
position, and have p-bands that are wider and better aligned with the iron d-bands to

Figure 2.9: The impurity-vacancy binding entropy of in units of kB , arranged by row and column of the periodic
system, row 3 of the periodic system (purple triangles), row 4 of the periodic system (red squares), row 5 of
the periodic system (green triangles), row 6 of the periodic system (blue diamonds). Dashed lines, between
neighboring impurities, are guides to the eyes only.
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give a further decrease in migration energies.

Figure 2.10: PW91 total activation energies in fully ferromagnetic state of impurity elements, arranged by row
and column of the periodic system, row 3 of the periodic system (purple triangles), row 4 of the periodic system
(red squares), row 5 of the periodic system (green triangles), row 6 of the periodic system (blue diamonds).
Dashed lines, between neighboring impurities, are guides to the eyes only.

A comparison of the computed impurity diffusivities with experimental data as func-
tion of temperature requires consideration of the effect of magnetic (dis)ordering. The
paramagnetic activation barrier has been computed in pure iron by Ding et al. [75] via
the spin-wave method [74]. This provides a description of pure iron paramagnetic dif-
fusion, however to apply it for all impurity elements would not be trivial. Fortunately,
the results [75] strongly resemble that of the semi-empirical Girifalco model [65] so that
we will be using that method here, just as was done in most diffusivity studies with re-
gard to bcc iron so far. Our detailed review of experimental impurity diffusivities above
and below the Curie temperature [69] has revealed that the Girifalco α parameter, see
equation 2.2, for all impurities in the dilute limit can be reasonably chosen as α = 0.10,
with the exception of iron self diffusion for which α = 0.16 is in better agreement with
the majority of experimental data.

The diffusivities of impurity elements in bcc iron calculated with PW91 agree well
with the experimental results. The diffusivities of impurities in bcc iron are close to-
gether experimentally, which is reflected in the calculated results. The greatest deviation
between calculated and experimental results are in overestimating the diffusivities of Mn,
Zn, Nb, Ta, and Au in bcc iron figure 2.12. For those elements that are not compared to
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Figure 2.11: Prefactor to diffusion, calculated with 2.27. values are arranged by row and column of the periodic
system, row 3 of the periodic system (purple triangles), row 4 of the periodic system (red squares), row 5 of
the periodic system (green triangles), row 6 of the periodic system (blue diamonds). Dashed lines, between
neighboring impurities, are guides to the eyes only.

experiments the diffusivities are presented in figure 2.13. Notably high diffusivities are
found for Pb and Ca in bcc iron, this coincides with a very low solubility. The reason for
this seem to be underestimated activation barriers, which is especially seen in the low
temperature deviation between the PW91 line and experimentally measured points. In
other cases there is an overestimation of diffusivity as calculated by PW91. The reason
for this seems similar, but opposite, in the way that there is a discrepancy in the slope
of the diffusivities.

The agreement with measured diffusivities is very good in most cases, especially
considering the discrepancy between various experimental datasets of dilute impurity
diffusion. The methodology presented here provides reliable results for the determination
of diffusivity in bcc iron.

The results for the vacancy binding energies, migration barriers and diffusivities are
compared (in the appendix) to the calculated results of[55, 57, 58, 61, 62, 89, 91,
94, 100, 105] for which migration barriers were found to be very similar in all cases.
Differences are found in vacancy formation energies, which is very sensitive to the type
of exchange-correlation functional.

One general trend captured very well in the calculations is that all diffusivities are
very close together for impurities in bcc iron. This indicates a similar mechanism and
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Figure 2.12: The diffusivity as calculated with the PW91 xc functional (red lines), compared to experimental
data of Fe[4–8] self-diffusion and dilute impurity diffusion of; Al[9, 10], Si[11], P[12–17], S[18], Ti[19], V[20, 21],
Cr[22–24], Mn[25], Co[3, 7, 26, 27], Ni[3, 28], Cu[29–32], Zn[33], Nb[34], Mo[35, 36], Ag[37], Sn[38, 39], Sb[40–
43], Ta[44], W[45, 46], and Au[3]. The Curie temperature (TC ) is indicated by a vertical black line in all panels.
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Figure 2.13: The impurity diffusion of elements Mg, Ca, Ge, Zr, Hf, Pb, and Bi in bcc iron. Diffusivities as
calculated with the PW91 xc functional (red lines). The Curie temperature (TC ) is indicated by a vertical black
line in all panels.
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as well a rate of diffusion which is determined by the self-diffusion of vacancies in the
iron matrix. The trend that the activation energy for diffusion is dependent on the
column of the periodic system, is captured both by the diffusivity calculations and the
comparison to experiments. This makes the trends captured by these calculations very
useful to predict the diffusivities of those elements whose diffusivities have not yet been
determined experimentally.

2.4. CONCLUSIONS
Diffusivities of a large number of impurities in bcc iron have been calculated by means
of first-principle methods. The selection of the elements in the periodic table gives a
good overview of all single-vacancy diffusing elements. The magnitude of the vacancy
formation energies is highly dependent on the chosen exchange-correlation functional,
unlike the magnitude of migration barriers.

The magnitudes of the nearest neighbor barriers, vacancy formation and binding
energies are correlated to the position of the element in the periodic system; with low
values on each end of the columns of the periodic system. This is compensated by
the effective enthalpy barrier caused by the temperature dependence of the correlation
factor. The diffusivity of any single-vacancy diffusing element in bcc iron is dominated
by the diffusivity of a vacancy through the host. All single-vacancy diffusing elements
are expected to follow the same trends that the calculated elements do. The activation
energy for diffusion are presented in figure 2.10. The nearest-neighbor barrier for the
elements strontium, barium, lanthanum, cerium is so low, that it likely does not diffuse
through the single-vacancy mechanism. It is more plausible that they form an impurity-
vacancy complex which requires another vacancy to diffuse.

All elements except Co, Mn, and Ta show a faster diffusivity than iron self-diffusion,
which is confirmed by the experimental data. The other elements show a good agreement
with experiments. In bcc iron most substitutional elements diffuse within one order of
magnitude faster than bcc iron self-diffusion. Some faster diffusing elements are Au, Pb,
Ca. With Pb diffusing 2 orders of magnitude faster than Fe. For the other diffusivities,
each impurity element in bcc iron seems to be limited by the self-diffusivity of vacancies
in iron.

When considering the position of the element in the periodic table, trends in the
rates of diffusivities of impurity element in bcc iron can be observed. With fast diffusing
elements at the columns furthest away from Fe and elements in columns close to Fe
with diffusivities similar to Fe self-diffusivity. Less important seems to be the row of the
periodic system.

2.5. APPENDIX: TABLED DIFFUSIVITIES AND ENERGY BARRI-
ERS

The following tables collect the vacancy binding enthalpies and entropies as calculated
according to the procedure laid out in the main article. The data are compared to liter-
ature values of other DFT papers. Two different exchange-correlation functionals were
used to determine the vacancy formation and binding energies and migration barriers:
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PW91 and PBEsol. For each literature source the exchange-correlation functional used
and the calculated value is indicated. Unless indicated otherwise, the values reported
here were calculated by the authors.

2.5.1. DIFFUSIVITY PARAMETERS
The self-diffusivity and impurity diffusivity of elements in bcc iron, are calculated using
the procedures described in this chapter. The activation energies and the prefactor for
diffusion as calculated in this thesis are compared to values from literature.

Table 2.2: Calculated activation energies for diffusion in bcc-iron in paramagnetic state (∆QP M ), ferromag-
netic state (∆QF M ), and the prefactor (D0). The activation energies and the prefactor (D0) are calculated with
equations 24 and 25, The data are obtained using different exchange-correlation fucntionals as indicated in
the table. All energies are in eV and the D0 is in m2s-1.

xc type QP M (eV ) QF M (eV ) D0 (m2s-1)
Fe
PW91 2.440 2.830 3.5e-05
PBEsol 2.912 3.328 1.3e-04
PBE - 2.66[100] 5.9e-7[100]
PBE 2.48[58] 2.87[58] 6.7e-5[58]
PW91 2.46[89] 2.85[89] -
PW91 - 2.67[57] -
PBE 2.47[91] 2.85[91] 2.99e-5[91]
PBE 2.26[62] 2.88[62] 1.16e-4[62]
Mg
PW91 2.210 2.431 2.3e-05
PBEsol 2.634 2.898 2.2e-05
Al
PW91 2.392 2.631 5.0e-05
PBEsol 2.812 3.093 4.2e-05
Si
PW91 2.337 2.570 3.6e-05
PBEsol 2.814 3.095 4.1e-05
P
PW91 2.210 2.431 2.2e-05
PBEsol 2.683 2.952 2.2e-05
S
PW91 2.157 2.373 4.7e-05
PBEsol 2.624 2.886 4.9e-05
Ca
PW91 1.966 2.162 1.3e-04
PBEsol 2.402 2.642 1.2e-04
Ti
PW91 2.415 2.656 7.6e-05
PBEsol 2.860 3.146 7.4e-05



2.5. APPENDIX: TABLED DIFFUSIVITIES AND ENERGY BARRIERS

2

35

Table 2.2: Calculated activation energies for diffusion in bcc-iron in paramagnetic state (∆QP M ), ferromag-
netic state (∆QF M ), and the prefactor (D0). The activation energies and the prefactor (D0) are calculated with
equations 24 and 25, The data are obtained using different exchange-correlation fucntionals as indicated in
the table. All energies are in eV and the D0 is in m2s-1.

xc type QP M (eV ) QF M (eV ) D0 (m2s-1)
PBE - 2.26[100] 1.0e-6[100]

V
PW91 2.497 2.747 8.2e-05
PBEsol 2.948 3.242 8.3e-05
PW91 2.32[89] 2.60[89] -
Cr
PW91 2.484 2.732 7.7e-05
PBEsol 2.938 3.232 7.7e-05
PW91 2.32[89] 2.63[89] -
Mn
PW91 2.380 2.618 6.4e-05
PBEsol 2.785 3.063 5.7e-05
PW91 2.12[89] 2.44[89] -
Co
PW91 2.616 2.877 4.7e-05
PBEsol 3.070 3.377 4.7e-05
Ni
PW91 2.415 2.656 3.6e-05
PBEsol 2.873 3.161 3.6e-05
Cu
PW91 2.341 2.576 2.7e-05
PBEsol 2.795 3.075 2.7e-05
Zn
PW91 2.372 2.609 6.1e-05
PBEsol 2.822 3.105 6.0e-05
Ge
PW91 2.355 2.590 6.7e-05
PBEsol 2.815 3.096 6.8e-05
Zr
PW91 2.162 2.378 5.5e-05
PBEsol 2.611 2.872 5.4e-05
PBE - 2.42[100] 1.2e-6[100]

Nb
PW91 2.327 2.560 7.4e-05
PBEsol 2.781 3.059 7.4e-05
Mo
PW91 2.409 2.650 5.9e-05
PBEsol 2.865 3.152 5.4e-05
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Table 2.2: Calculated activation energies for diffusion in bcc-iron in paramagnetic state (∆QP M ), ferromag-
netic state (∆QF M ), and the prefactor (D0). The activation energies and the prefactor (D0) are calculated with
equations 24 and 25, The data are obtained using different exchange-correlation fucntionals as indicated in
the table. All energies are in eV and the D0 is in m2s-1.

xc type QP M (eV ) QF M (eV ) D0 (m2s-1)
PBE 2.43[58] 2.60[58] 6.3e-5[58]

Ag
PW91 2.128 2.340 2.9e-05
PBEsol 2.587 2.845 2.8e-05
Sn
PW91 2.141 2.355 3.3e-05
PBEsol 2.597 2.857 3.2e-05
Sb
PW91 2.204 2.424 5.0e-05
PBEsol 2.668 2.935 5.2e-05
Hf
PW91 2.201 2.421 6.0e-05
PBEsol 2.649 2.914 5.8e-05
PBE 1.67[58] 1.75[58] -
Ta
PW91 2.333 2.566 5.5e-05
PBEsol 2.791 3.070 5.3e-05
PBE 2.22[58] 2.35[58] -
PBE 2.17[61] 2.30[61] 4.04e-6[61]

PW91 2.15[89] 2.27[89] -
W
PW91 2.450 2.695 2.6e-05
PBEsol 2.932 3.226 2.7e-05
PBE 2.58[58] 2.80[58] 1.4e-4[58]

PBE 2.52[61] 2.74[61] 1.38e-4[61]

PW91 2.50[89] 2.72[89] -
Au
PW91 2.152 2.367 6.8e-05
PBEsol 2.626 2.888 6.2e-05
PBE 2.11[61] 2.64[61] 2.1e-5[61]

Pb
PW91 2.027 2.229 2.6e-05
PBEsol 2.487 2.735 2.7e-05
Bi
PW91 2.044 2.249 4.7e-05
PBEsol 2.512 2.763 4.8e-05
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2.5.2. VACANCY BINDING FREE ENERGY AND JUMP ATTEMPT FREQUENCY
The impurity-vacancy binding free energy consists of an enthalpy term and a change in
entropy term. Where possible the obtained values were compared to literature.

Table 2.3: Calculated impurity-vacancy binding enthalpies (∆Hvi b,Xä(R1)), calculated with equation 22, and
impurity-vacancy binding entropies (∆∆Svi b,Xä(R1)), calculated with equation 23 are presented. Also the
species dependent nearest neighbour jump frequency (ν̃X ), calculated with equation 12 is shown. The data are
obtained using different exchange-correlation functionals as indicated in the table. The vacancy and impurity
binding entropies we calculated only for PW91 and are presented in units of kB (∆Sb

ä (-)).

xc type ∆Hvi b,Xä(R1) (eV) ∆∆Svi b,Xä(R1) (kB ) ν̃X (THz)
Mg
PW91 -0.459 -0.49 4.73
PBEsol -0.5151 - -
Al
PW91 -0.317 -0.38 4.98
PBEsol -0.348 - -
Si
PW91 -0.302 -0.22 3.58
PBEsol -0.3015 - -
PW91 −0.23[57] - -
P
PW91 -0.377 0.12 1.86
PBEsol -0.3697 - -
PW91 −0.31[57] - -
S
PW91 -0.544 -0.15 0.44
PBEsol -0.5397 - -
Ca
PW91 -1.239 1.55 1.07
PBEsol -1.2843 - -
Ti
PW91 -0.244 0.15 10.30
PBEsol -0.2576 - -
PBE 0.26[100] - -
V
PW91 -0.065 0.41 11.11
PBEsol -0.0681 - -
PW91 −0.06[89] - -
PW91 −0.03[57] - -
Cr
PW91 -0.053 0.41 10.14
PBEsol -0.0531 - -
PW91 −0.06[89] - -
PW91 −0.03[57] - -
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Table 2.3: Calculated impurity-vacancy binding enthalpies (∆Hvi b,Xä(R1)), calculated with equation 22, and
impurity-vacancy binding entropies (∆∆Svi b,Xä(R1)), calculated with equation 23 are presented. Also the
species dependent nearest neighbour jump frequency (ν̃X ), calculated with equation 12 is shown. The data are
obtained using different exchange-correlation functionals as indicated in the table. The vacancy and impurity
binding entropies we calculated only for PW91 and are presented in units of kB (∆Sb

ä (-)).

xc type ∆Hvi b,Xä(R1) (eV) ∆∆Svi b,Xä(R1) (kB ) ν̃X (THz)
Mn
PW91 –0.140 0.12 5.56
PBEsol -0.1966 - -
PW91 −0.20[89] - -
PW91 −0.09[57] - -
Co
PW91 0.018 0.50 8.85
PBEsol 0.0145 - -
PW91 0.06[57] - -
Ni
PW91 -0.094 0.23 10.43
PBEsol -0.1016 - -
PW91 −0.03[57] - -
Cu
PW91 -0.248 -0.24 2.97
PBEsol -0.2505 - -
PW91 −0.17[57] - -
Zn
PW91 -0.339 -0.23 3.05
PBEsol -0.347 - -
Ge
(PW91 -0.464 -0.39 2.51
PBEsol -0.4633 - -
Zr
PW91 -0.724 0.50 3.38
PBEsol -0.7415 - -
PBE −0.78[100] - -
Nb
PW91 -0.362 0.38 6.77
PBEsol -0.3593 - -
Mo
PW91 -0.182 0.38 8.18
PBEsol -0.1684 - -
PBE −0.17[58] - -
PW91 −0.08[57] - -
Ag
PW91 -0.517 0.05 2.51
PBEsol -0.512 - -
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Table 2.3: Calculated impurity-vacancy binding enthalpies (∆Hvi b,Xä(R1)), calculated with equation 22, and
impurity-vacancy binding entropies (∆∆Svi b,Xä(R1)), calculated with equation 23 are presented. Also the
species dependent nearest neighbour jump frequency (ν̃X ), calculated with equation 12 is shown. The data are
obtained using different exchange-correlation functionals as indicated in the table. The vacancy and impurity
binding entropies we calculated only for PW91 and are presented in units of kB (∆Sb

ä (-)).

xc type ∆Hvi b,Xä(R1) (eV) ∆∆Svi b,Xä(R1) (kB ) ν̃X (THz)
Sn
PW91 -0.720 -0.01 2.54
PBEsol -0.7219 - -
Sb
PW91 -0.745 0.19 4.71
PBEsol -0.7406 - -
Hf
PW91 -0.598 0.51 3.36
PBEsol -0.6026 - -
PBE −0.65[58] - -
Ta
PW91 -0.317 0.30 6.03
PBEsol -0.3053 - -
PBE −0.32[58] - -
PBE −0.33[61] - -
PW91 −0.33[89] - -
W
PW91 -0.155 0.23 7.64
PBEsol -0.1348 - -
PBE −0.14[58] - -
PBE −0.17[61] - -
PW91 −0.20[89] - -
PW91 −0.06[57] - -
Au
PW91 -0.469 1.26 3.43
PBEsol -0.4582 - -
PBE −0.32[61] - -
PW91 −0.33[57] - -
Pb
PW91 -0.960 -0.09 2.18
PBEsol -0.9541 - -
Bi
PW91 -1.019 0.46 2.91
PBEsol -1.012 - -
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2.5.3. MIGRATION BARRIER ENERGIES
The barrier for vacancy jumps as function of the distance from from the impurity element.
The jump barrier were compared to literature values.

Table 2.4: Calculated migration barriers in bcc-iron (∆Hmi g ,i ), calculated with equation 15, comparison of
various xc formulations. All barrier energies are in eV including the effective correlation enthalpy barrier
(∆Hc ), which is calculated with equation 20.

xc type ∆Hmi g ,nn ∆Hmi g ,12 ∆Hmi g ,21 ∆Hmi g ,13 ∆Hmi g ,31 ∆Hmi g ,15 ∆Hmi g ,51 ∆Hc

Fe
PW91 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0
PBEsol 0.703 0.703 0.703 0.703 0.703 0.703 0.703 0
PBE 0.64[58] - - - - - - -
PW91 0.69[89] - - - - - - -
PW91 0.65[57] - - - - - - -
PBE 0.65[105] - - - - - - -
USPP 0.62[94] - - - - - - -
Mg
PW91 0.295 1.156 0.615 0.738 0.333 0.689 0.346 0.468
PBEsol 0.282 1.214 0.646 0.767 0.311 0.705 0.311 0.506
Al
PW91 0.467 0.921 0.574 0.774 0.479 0.753 0.498 0.362
PBEsol 0.464 0.956 0.581 0.773 0.444 0.760 0.478 0.360
Si
PW91 0.487 0.749 0.556 0.893 0.583 0.824 0.531 0.281
PBEsol 0.492 0.772 0.564 0.890 0.574 0.826 0.530 0.301
PW91 0.44[57] - - - - - - -
USPP 0.42[94] - - - - - - -
P
PW91 0.393 0.700 0.582 0.988 0.580 0.863 0.461 0.315
PBEsol 0.394 0.713 0.580 0.982 0.573 0.860 0.461 0.328
PW91 0.34[57] - - - - - - -
S
PW91 0.151 0.784 0.614 1.026 0.459 0.849 0.308 0.644
PBEsol 0.148 0.794 0.613 1.009 0.438 0.830 0.293 0.659
Ca
PW91 0.020 1.987 0.934 1.268 0.138 1.072 0.021 1.252
PBEsol 0.005 2.000 1.018 1.296 0.119 1.099 0.010 1.295
Ti
PW91 0.377 1.103 0.677 0.729 0.495 0.715 0.527 0.395
PBEsol 0.365 1.120 0.686 0.735 0.487 0.720 0.521 0.413
PBE 0.42[100] 1.14[100] 0.70[100] 0.75[100] 0.52[100] 0.75[100] 0.58[100] -
PBE 0.35[105] - - - - - - -
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Table 2.4: Calculated migration barriers in bcc-iron (∆Hmi g ,i ), calculated with equation 15, comparison of
various xc formulations. All barrier energies are in eV including the effective correlation enthalpy barrier
(∆Hc ), which is calculated with equation 20.

xc type ∆Hmi g ,nn ∆Hmi g ,12 ∆Hmi g ,21 ∆Hmi g ,13 ∆Hmi g ,31 ∆Hmi g ,15 ∆Hmi g ,51 ∆Hc

V
PW91 0.528 0.833 0.677 0.672 0.606 0.691 0.661 0.160
PBEsol 0.522 0.839 0.678 0.671 0.602 0.691 0.660 0.166
PW91 0.50[89] - - - - - - -
PW91 0.57[57] - - - - - - -
Cr
PW91 0.536 0.693 0.658 0.690 0.645 0.665 0.645 0.128
PBEsol 0.540 0.698 0.661 0.691 0.644 0.666 0.646 0.126
PW91 0.53[89] - - - - - - -
PW91 0.58[57] - - - - - - -
PBE 0.58[55] 0.69[55] 0.65[55] 0.67[55] 0.63[55] 0.64[55] 0.62[55] -
PBE 0.52[105] - - - - - - -
Mn
PW91 0.406 0.635 0.598 0.684 0.576 0.655 0.564 0.241
PBEsol 0.418 0.643 0.602 0.688 0.571 0.940 0.845 0.233
PW91 0.48[89] - - - - - - -
PW91 1.02[57] - - - - - - -
USPP 1.03[94] - - - - - - -
Co
PW91 0.737 0.619 0.738 0.713 0.738 0.677 0.712 -0.009
PBEsol 0.744 0.622 0.741 0.717 0.741 0.681 0.714 -0.009
PW91 0.72[57] - - - - - - -
Ni
PW91 0.624 0.592 0.690 0.715 0.656 0.653 0.611 -0.002
PBEsol 0.641 0.595 0.693 0.720 0.654 0.648 0.598 -0.006
PW91 0.70[57] - - - - - - -
PBE 0.68[55] 0.55[55] 0.69[55] 0.70[55] 0.67[55] 0.62[55] 0.59[55] -
USPP 0.68[94] - - - - - - -
Cu
PW91 0.507 0.738 0.646 0.734 0.510 0.668 0.501 0.230
PBEsol 0.540 0.698 0.661 0.691 0.644 0.666 0.646 0.227
PW91 0.65[57] - - - - - - -
USPP 0.54[94] - - - - - - -
Zn
PW91 0.421 0.887 0.632 0.775 0.461 0.730 0.469 0.409
PBEsol 0.427 0.901 0.643 0.781 0.456 0.738 0.465 0.410
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Table 2.4: Calculated migration barriers in bcc-iron (∆Hmi g ,i ), calculated with equation 15, comparison of
various xc formulations. All barrier energies are in eV including the effective correlation enthalpy barrier
(∆Hc ), which is calculated with equation 20.

xc type ∆Hmi g ,nn ∆Hmi g ,12 ∆Hmi g ,21 ∆Hmi g ,13 ∆Hmi g ,31 ∆Hmi g ,15 ∆Hmi g ,51 ∆Hc

Ge
PW91 0.385 0.910 0.589 0.916 0.465 0.842 0.415 0.545
PBEsol 0.379 0.920 0.600 0.918 0.460 0.845 0.412 0.559
Zr
PW91 0.110 1.614 0.799 0.956 0.293 0.822 0.214 0.863
PBEsol 0.108 1.623 0.819 0.972 0.290 0.841 0.213 0.880
PBE 0.16[100] 1.62[100] 0.81[100] 0.96[100] 0.32[100] 0.86[100] 0.23[100] -
Nb
PW91 0.344 1.248 0.731 0.758 0.430 0.726 0.440 0.450
PBEsol 0.344 1.242 0.734 0.757 0.431 0.729 0.445 0.449
Mo
PW91 0.550 0.979 0.686 0.685 0.529 0.705 0.574 0.156
PBEsol 0.563 0.968 0.685 0.680 0.535 0.703 0.582 0.135
PBE 0.54[58] - - - - - - -
PW91 0.57[57] - - - - - - -
Ag
PW91 0.448 1.017 0.698 0.721 0.312 0.681 0.328 0.296
PBEsol 0.477 0.997 0.707 0.726 0.316 0.692 0.339 0.273
Sn
PW91 0.411 1.302 0.656 0.931 0.271 0.855 0.239 0.537
PBEsol 0.417 1.299 0.667 0.937 0.266 0.864 0.232 0.537
Sb
(PW91 0.495 1.284 0.657 1.014 0.309 0.921 0.243 0.546
PBEsol 0.501 1.276 0.673 1.021 0.310 0.931 0.242 0.549
Hf
PW91 0.234 1.510 0.743 0.870 0.324 0.783 0.289 0.656
PBEsol 0.233 1.505 0.760 0.872 0.318 0.794 0.293 0.658
PBE 0.18[58] - - - - - - -
Ta
PW91 0.484 1.213 0.703 0.730 0.444 0.732 0.471 0.273
PBEsol 0.487 1.197 0.712 0.726 0.448 0.733 0.469 0.264
PBE 0.44[58] - - - - - - -
PW91 0.44[89] - - - - - - -
W
PW91 0.723 0.973 0.682 0.672 0.538 0.720 0.611 -0.001
PBEsol 0.740 0.955 0.680 0.666 0.548 0.718 0.629 -0.006
PBE 0.71[58] - - - - - - -
PW91 0.71[89] - - - - - - -
PW91 0.79[57] - - - - - - -
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Table 2.4: Calculated migration barriers in bcc-iron (∆Hmi g ,i ), calculated with equation 15, comparison of
various xc formulations. All barrier energies are in eV including the effective correlation enthalpy barrier
(∆Hc ), which is calculated with equation 20.

xc type ∆Hmi g ,nn ∆Hmi g ,12 ∆Hmi g ,21 ∆Hmi g ,13 ∆Hmi g ,31 ∆Hmi g ,15 ∆Hmi g ,51 ∆Hc

Au
PW91 0.580 0.942 0.715 0.714 0.350 0.686 0.351 0.146
PBEsol 0.624 0.911 0.715 0.729 0.369 0.695 0.357 0.117
PW91 0.76[57] - - - - - - -
Pb
PW91 0.247 1.489 0.725 1.051 0.189 0.923 0.109 0.814
PBEsol 0.253 1.469 0.735 1.054 0.188 0.938 0.110 0.811
Bi
PW91 0.303 1.529 0.729 1.128 0.197 0.991 0.100 0.836
PBEsol 0.308 1.507 0.745 1.137 0.201 1.006 0.101 0.841
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2.5.4. IMPURITY ELEMENT ELASTIC INTERACTION ENERGIES
The energies associated to straining the matrix beyond its equilibrium and the dipole
energy associated to the effect of defects on their mirror images contribute to the total
free energy of supercells. This effect has been taken into account and the relevant values
are reported here.

Table 2.5: The elastic interaction energies of a defect (either single impurity or impurity-vacancy complex)
with its own periodic image in a 4×4×4 supercell as computed with the Aneto computer program of Varvenne
et al. [66]. Note that half this energy is assigned to the total energy of the defect itself. The energies are in eV
per supercell. In the first column the element is listed, the rest is the energy for nearest neighbors of vacancy
and impurity.

- Fe127-X 1st 2nd 3rd 4th 5th

Ag 1.29e-09 2.74e-03 2.48e-05 1.91e-04 4.04e-05 8.05e-04
Al 2.58e-11 9.84e-04 1.69e-04 8.81e-05 6.45e-05 1.68e-04
Au 5.58e-11 2.00e-03 6.97e-05 1.53e-04 1.19e-05 8.93e-04
Bi 2.29e-09 4.97e-03 3.23e-03 5.35e-04 2.57e-05 8.78e-04
Ca 9.66e-10 1.37e-02 5.14e-02 8.73e-04 1.77e-04 1.10e-03
Co 2.29e-11 1.04e-06 6.71e-06 7.27e-06 1.14e-05 5.80e-06
Cr 1.12e-09 1.57e-04 1.73e-04 4.69e-06 6.45e-05 1.45e-05
Cu 5.44e-10 4.61e-04 1.82e-05 3.44e-05 1.00e-04 8.62e-05
Fe 0 2.58e-09 - - - -
Ge 7.28e-08 4.48e-04 1.80e-08 7.75e-05 1.04e-04 5.62e-05
Hf 7.46e-09 5.29e-03 4.62e-03 1.72e-04 5.28e-05 3.86e-04
Mg 3.11e-10 3.53e-03 2.41e-04 1.66e-04 4.90e-05 3.88e-04
Mn 1.73e-10 4.83e-04 5.10e-04 2.08e-06 1.21e-04 4.65e-05
Mo 1.32e-08 9.06e-04 1.86e-06 1.42e-05 1.80e-05 1.27e-04
Nb 3.28e-08 2.31e-03 8.57e-04 3.30e-05 2.98e-05 2.21e-04
Ni 5.58e-10 1.09e-04 1.32e-04 4.07e-06 6.03e-05 4.84e-05
P 3.43e-09 2.24e-06 6.96e-05 1.77e-04 1.63e-04 6.72e-05
Pb 1.08e-11 4.96e-03 1.44e-03 4.99e-04 3.81e-05 9.95e-04
S 2.70e-10 2.07e-05 9.05e-04 3.71e-04 1.65e-04 2.81e-04
Sb 1.04e-08 2.41e-03 7.52e-04 3.38e-04 2.28e-05 3.62e-04
Si 1.06e-08 1.04e-04 1.15e-04 9.99e-05 1.15e-04 4.30e-06
Sn 2.98e-07 3.19e-03 2.27e-04 3.11e-04 3.12e-05 6.05e-04
Ta 3.33e-09 2.10e-03 3.43e-04 4.59e-05 2.94e-05 2.61e-04
Ti 1.16e-09 1.34e-03 8.62e-05 2.32e-05 1.96e-05 6.41e-05
V 7.40e-10 2.58e-04 1.19e-05 7.04e-07 3.44e-05 2.41e-05
W 1.09e-08 8.24e-04 8.80e-06 1.76e-05 1.85e-05 1.21e-04
Zn 6.92e-10 6.91e-04 2.56e-06 4.64e-05 1.14e-04 1.63e-04
Zr 8.86e-09 7.08e-03 6.99e-03 1.81e-04 6.70e-05 4.27e-04
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2.5.5. TRANSITION STATE ELASTIC INTERACTION ENERGIES
The energies associated to straining the matrix beyond its equilibrium and the dipole
energy associated to the effect of defects on their mirror images contribute to the total
free energy of supercells. This effect has been taken into account and the relevant values
are reported here.

Table 2.6: The elastic interaction energies of a defect in transition state (A jumping vacancy some distance
away from the impurity) with its own periodic image in a 4×4×4 supercell as computed with the Aneto com-
puter program of Varvenne et al. [66]. Note that half this energy is assigned to the total energy of the defect
itself. Transition states are indicated by the initial and final states as indicated by the neighbor shell distance
between vacancy and solute atom. Units are eV.

elements 1 → 1 1 → 2 1 → 3 1 → 5
Ag 1.22e-02 4.11e-03 2.10e-03 7.57e-03
Al 5.49e-03 2.49e-03 1.69e-03 5.27e-03
Au 1.12e-02 3.93e-03 3.10e-03 6.38e-03
Bi 1.20e-02 4.96e-03 2.93e-03 7.22e-03
Ca 1.89e-02 6.01e-03 3.22e-03 4.59e-03
Co 1.05e-03 1.67e-03 1.80e-03 1.78e-03
Cr 1.23e-03 1.67e-03 1.15e-03 2.81e-03
Cu 3.44e-03 2.10e-03 1.64e-03 3.77e-03
Fe 1.83e-03 - - -
Ge 1.88e-03 2.05e-03 1.89e-03 3.60e-03
Hf 1.45e-02 5.50e-03 1.66e-03 7.79e-03
Mg 1.20e-02 3.63e-03 1.66e-03 8.69e-03
Mn 2.72e-03 1.82e-03 1.25e-03 2.87e-03
Mo 3.98e-03 2.92e-03 1.20e-03 5.38e-03
Nb 7.80e-03 4.16e-03 1.24e-03 7.53e-03
Ni 2.01e-03 1.73e-03 1.79e-03 2.51e-03
P 9.50e-05 2.95e-03 3.86e-03 1.32e-03
Pb 1.29e-02 4.87e-03 2.80e-03 7.35e-03
S 6.11e-04 5.34e-03 5.17e-03 6.33e-04
Sb 7.49e-03 4.02e-03 2.49e-03 6.34e-03
Si 9.44e-04 1.75e-03 2.12e-03 2.75e-03
Sn 1.05e-02 4.25e-03 2.43e-03 7.43e-03
Ta 8.36e-03 4.24e-03 1.28e-03 6.99e-03
Ti 6.07e-03 3.36e-03 1.24e-03 5.60e-03
V 2.08e-03 2.14e-03 1.01e-03 3.50e-03
W 4.32e-03 3.21e-03 1.26e-03 4.58e-03
Zn 4.30e-03 2.26e-03 1.55e-03 4.53e-03
Zr 1.48e-02 5.14e-03 1.75e-03 7.69e-03



2

46 REFERENCES

REFERENCES
[1] C. D. Versteylen, N. H. van Dijk, and M. H. F. Sluiter, First-principles analysis

of solute diffusion in dilute bcc Fe-X alloys, Phys. Rev. B 96, 094105 (2017).

[2] G. Neumann and C. Tuijn, Self-Diffusion and Impurity Diffusion in Group III Met-
als, in 314 Self-diffusion and Impurity Diffusion in Pure Metals 1st Ed. (Elsevier,
2008) pp. 121–148.

[3] R. J. Borg and D. Y. F. Lai, The diffusion of gold, nickel, and cobalt in alpha
iron: A study of the effect of ferromagnetism upon diffusion, Acta Metall. 11,
861 (1963).

[4] M. Lübbehusen and H. Mehrer, Self-diffusion in α-iron: The influence of dislo-
cations and the effect of the magnetic phase transition, Acta Metall. Mater. 38,
283 (1990).

[5] Y. Iijima and K. Hirano, Self-diffusion and isotope effect in α-iron, Acta Metall.
36, 2811 (1988).

[6] G. Hettich, H. Mehrer, and K. Maier, Self-diffusion in ferromagnetic α-iron, Scr.
Metall. 11, 795 (1977).

[7] D. W. James and G. M. Leak, Self-diffusion and diffusion of cobalt in alpha and
delta-iron, Philos. Mag. 14, 701 (1966).

[8] F. S. Buffington, K. Hirano, and M. Cohen, Self diffusion in iron, Acta Metall.
9, 434 (1961).

[9] D. Bergner and Y. Khaddour, Impurity and Chemical Diffusion of Al in BCC and
Fcc Iron, Defect Diffus. Forum 95-98, 709 (1993).

[10] J. Hirvonen and J. Räisänen, Diffusion of aluminum in ion-implanted alpha iron,
J. Appl. Phys. 53, 3314 (1982).

[11] D. Bergner, Y. Khaddour, and S. Lörx, Diffusion of Si in bcc- and fcc-Fe, Defect
Diffus. Forum 66-69, 1407 (1990).

[12] T. Matsuyama, H. Hosokawa, and H. Suto, Tracer diffusion of P in Iron and iron
alloys, Trans. Japan Inst. Met. 8, 589 (1983).

[13] T. Heyward and J.I. Goldstein, Ternary diffusion in the a and phases of the Fe-Ni-P
system, Met. Trans. 4, 2335 (1973).

[14] A. Bramley, F. W. Haywood, A. T. Cooper, and J. T. Watts, the Diffusion of
Non-Metallic Elements in Iron and Steel, Trans. Faraday Soc. 31, 707 (1934).

[15] G. Siebel, Diffusion du phosphore dans le fer, C. R. Acad. Sci. 256, 4661 (1963).

[16] P. L. Gruzin and V. V. Mural, no title, Fiz. Met. Met. 16, 551 (1963).

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.094105
http://dx.doi.org/ 10.1016/0001-6160(63)90055-5
http://dx.doi.org/ 10.1016/0001-6160(63)90055-5
http://dx.doi.org/10.1016/0956-7151(90)90058-O
http://dx.doi.org/10.1016/0956-7151(90)90058-O
http://dx.doi.org/10.1016/0036-9748(77)90078-3
http://dx.doi.org/10.1016/0036-9748(77)90078-3
http://dx.doi.org/ 10.1080/14786436608211966
http://dx.doi.org/10.1016/0001-6160(61)90137-7
http://dx.doi.org/10.1016/0001-6160(61)90137-7
http://dx.doi.org/ 10.4028/www.scientific.net/DDF.95-98.709
http://dx.doi.org/ 10.1063/1.330990
http://dx.doi.org/10.4028/www.scientific.net/DDF.66-69.1407
http://dx.doi.org/10.4028/www.scientific.net/DDF.66-69.1407


REFERENCES

2

47

[17] A. C. Yen, W. R. Graham, and G. R. Belton, The segregation of phosphorus to
the free surface of a ferritic iron alloy at 723 to 823 K, Metall. Trans. A 9, 31
(1978).

[18] W. Arabczyk, M. Militzer, H.-J. Müssig, and J. Wieting, Activation energy of
supher diffusion in ferromagnetic alpha-iron determined by surface segregation
studies, Scr. Metall. 20, 1549 (1986).

[19] P. Klugkist and C. Herzig, Tracer diffusion of titanium in α-iron, Phys. Status
Solidi 148, 413 (1995).

[20] J. Geise and C. Herzig, Impurity diffusion of vanadium and self-diffusion in iron,
Z. Met. 78, 291 (1987).

[21] K. Obrtlík and J. Kučera, Diffusion of vanadium in the Fe-V system, Phys. Status
Solidi 53, 589 (1979).

[22] C.-G. Lee, Y. Iijima, T. Hiratani, and K.-i. Hirano, Diffusion of Chromium in
alpha iron, Mater. Trans. JIM 31, 255 (1990).

[23] A.-M. A. Huntz, M. Aucouturier, and P. Lacombe, Mesure des coefficients de
diffusion en volume et intergranulaire du chrome Radioactif dans le fer alpha, C.
R. Acad. Sci. Paris Ser. C 265, 554 (1967).

[24] P. J. Alberry and C. W. Haworth, Alberry (1974) # Interdiffusion of Cr Mo and
W in Iron.pdf, Met. Sci. J. 8, 407 (1974).

[25] V. Irmer and M. Feller-Kniepmeier, Diffusion of manganese in α-iron single crystals
of different purity, J. Phys. Chem. Solids 33, 2141 (1972).

[26] Y. Iijima, K. Kimura, C.-G. Lee, and K. Hirano, Impurity Diffusion and Isotope
Effect of Cobalt in α-Iron, Mater. Trans. JIM 34, 20 (1993).

[27] B. Kosaburo, Diffusion of Co60 into By Kosaburo, Trans. Japan Inst. Met. 212,
91 (1963).

[28] K. Hirano, M. Cohen, and B. Averbach, Diffusion of nickel into iron, Acta Metall.
9, 440 (1961).

[29] G. Speich, J. Gula, and R.M. Fisher, The Electron Microprobe, in The Electron
Microprobe, edited by D. W. T.D. McKinley, K.F. Heinrich (Wiley, New York,
1966) p. 525.

[30] S. Rothman, N. Peterson, C. Walter, and L. Nowicki, Diffusivity of Copper in
Iron, J. Appl. Phys. 39, 5041 (1968).

[31] M. S. Anand and R. P. Agarwala, Diffusion of copper in iron, J. Appl. Phys. 37,
4248 (1966).

[32] G. Salje and M. Feller-Kniepmeier, The diffusion and solubility of copper in iron,
J. Appl. Phys. 48, 1833 (1977).

http://dx.doi.org/10.1007/BF02647167
http://dx.doi.org/10.1007/BF02647167
http://dx.doi.org/10.1002/pssa.2211480209
http://dx.doi.org/10.1002/pssa.2211480209
http://dx.doi.org/10.1002/pssa.2210530223
http://dx.doi.org/10.1002/pssa.2210530223
https://www.jim.or.jp/journal/e/31/04/255.html
http://dx.doi.org/10.1016/S0022-3697(72)80244-0
https://www.jstage.jst.go.jp/article/matertrans1989/34/1/34{_}1{_}20/{_}article{%}5Cnpapers2://publication/doi/10.2320/matertrans1989.34.20
http://dx.doi.org/10.1016/0001-6160(61)90138-9
http://dx.doi.org/10.1016/0001-6160(61)90138-9
http://dx.doi.org/10.1063/1.1655922
http://dx.doi.org/10.1063/1.1708006
http://dx.doi.org/10.1063/1.1708006
http://dx.doi.org/ 10.1063/1.323934


2

48 REFERENCES

[33] I. Richter, Diffusion of Zn in alpha-Fe Single Crystals, Phys. Status Solidi 68, 289
(1981).

[34] N. Oono, H. Nitta, and Y. Iijima, Diffusion of niobium in .ALPHA.-iron, Mater.
Trans. 44, 2078 (2003).

[35] H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu,
and Y. Iijima, Diffusion of molybdenum in α-iron, Acta Mater. 50, 4117 (2002).

[36] K. Nohara and K.-i. Hirano, self-diffusion in the Fe-Mo system Nohara, J. Jpn.
Inst. Met. 40, 1053 (1976).

[37] A. Bondy and V. Levy, Etude de la diffusion de l’argent dans le fer alpha. C. R.
Acad. Sci. Paris Ser. C 272, 19 (1971).

[38] D. N. Torres, R. A. Perez, and F. Dyment, Diffusion of tin in α-iron, Acta Mater.
48, 2925 (2000).

[39] D. Treheux, D. Marchive, J. Delagrange, and P. Guiraldenq, Determination des
coefficients d’heterodiffusion a dilution infinie dans le fer α, C. R. Acad. Sci. Ser.
C 274, 1260 (1972).

[40] R. A. Pérez, D. N. Torres, and F. Dyment, Sb diffusion in α-Fe, Appl. Phys. A
Mater. Sci. Process. 81, 787 (2005).

[41] G. A. Bruggeman and J. A. Roberts, The diffusion of antimony in alpha iron,
Metall. Trans. A 6, 755 (1975).

[42] A. Schröder and M. Feller-Kniepmeier, The Ferromagnetic Diffusion Anomaly of
the Diffusion System Iron-Antimony, Phys. Stat. Sol. 107, 107 (1988).

[43] S. Myers, Nontraditional Methods in Diffusion, edited by G. E. Murch, H. K.
Birnbaum, and J. R. Cost (Metallurgical Society of AIME, New York, NY, 1984)
p. 137.

[44] Q. A. Shaikh, Interdiffusion measurement of niobium and tantalum in iron base
alloys, Mater. Sci. Technol. 6, 1177 (1990).

[45] S. Takemoto, H. Nitta, Y. Iijima, and Y. Yamazaki, Diffusion of tungsten in
α-iron, Philos. Mag. 87, 1619 (2007).

[46] R. A. Pérez and D. N. Torres, W diffusion in paramagnetic and ferromagnetic
α-Fe, Appl. Phys. A Mater. Sci. Process. 104, 329 (2011).

[47] B. Medasani, M. Haranczyk, A. Canning, and M. Asta, Vacancy formation
energies in metals: A comparison of MetaGGA with LDA and GGA exchange-
correlation functionals, Comput. Mater. Sci. 101, 96 (2015).

[48] T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, Advancing density
functional theory to finite temperatures: methods and applications in steel design,
J. Phys. Condens. Matter 24, 053202 (2012).

http://dx.doi.org/10.2320/matertrans.44.2078
http://dx.doi.org/10.2320/matertrans.44.2078
http://dx.doi.org/ 10.1016/S1359-6454(02)00229-X
http://dx.doi.org/10.1016/S1359-6454(00)00074-4
http://dx.doi.org/10.1016/S1359-6454(00)00074-4
http://dx.doi.org/10.1007/s00339-004-2771-2
http://dx.doi.org/10.1007/s00339-004-2771-2
http://dx.doi.org/10.1007/BF02672296
http://dx.doi.org/ 10.1179/mst.1990.6.12.1177
http://dx.doi.org/10.1080/14786430600732093
http://dx.doi.org/ 10.1007/s00339-010-6142-x
http://dx.doi.org/10.1016/j.commatsci.2015.01.018
http://dx.doi.org/10.1088/0953-8984/24/5/053202


REFERENCES

2

49

[49] J. Janssen, N. Gunkelmann, and H. M. Urbassek, Influence of C concentration
on elastic moduli of α-Fe1−xCx alloys, Philos. Mag. 96, 1448 (2016).

[50] G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, First-Principles Elastic Con-
stants for the hcp Transition Metals Fe, Co, and Re at High Pressure, Phys. Rev.
B 60, 791 (1999), 9904431 [cond-mat] .

[51] D. Simonovic and M. H. F. Sluiter, Impurity diffusion activation energies in Al
from first principles, Phys. Rev. B 79, 054304 (2009).

[52] L. Huber, I. Elfimov, J. Rottler, and M. Militzer, Ab initio calculations of rare-
earth diffusion in magnesium, Phys. Rev. B 85, 144301 (2012).

[53] B. C. Zhou, S. L. Shang, Y. Wang, and Z. K. Liu, Data set for diffusion coefficients
of alloying elements in dilute Mg alloys from first-principles, Data Br. 5, 900
(2015).

[54] M. Krčmar, C. L. Fu, A. Janotti, and R. C. Reed, Diffusion rates of 3d transi-
tion metal solutes in nickel by first-principles calculations, Acta Mater. 53, 2369
(2005).

[55] S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth, M. Asta, and
D. Morgan, Ab-initio based modeling of diffusion in dilute bcc Fe-Ni and Fe-Cr
alloys and implications for radiation induced segregation, J. Nucl. Mater. 411, 1
(2011).

[56] J. D. Tucker, R. Najafabadi, T. R. Allen, and D. Morgan, Ab initio-based diffusion
theory and tracer diffusion in Ni-Cr and Ni-Fe alloys, J. Nucl. Mater. 405, 216
(2010).

[57] C. Domain, Ab initio modelling of defect properties with substitutional and inter-
stitials elements in steels and Zr alloys, J. Nucl. Mater. 351, 1 (2006).

[58] S. Huang, D. L. Worthington, M. Asta, V. Ozolins, G. Ghosh, and P. K. Liaw,
Calculation of impurity diffusivities in α-Fe using first-principles methods, Acta
Mater. 58, 1982 (2010).

[59] E. Vincent, C. S. Becquart, and C. Domain, Ab initio calculations of vacancy
interactions with solute atoms in bcc Fe, Nucl. Instrum. Methods Phys. Res. B
228, 137 (2005).

[60] C. S. Becquart and C. Domain, Ab initio contribution to the study of complexes
formed during dilute FeCu alloys radiation, Nucl. Instrum. Methods Phys. Res. B
202, 44 (2003).

[61] H. Ding, S. Huang, G. Ghosh, P. K. Liaw, and M. Asta, A computational study
of impurity diffusivities for 5d transition metal solutes in α-Fe, Scr. Mater. 67,
732 (2012).

http://dx.doi.org/ 10.1080/14786435.2016.1170224
http://dx.doi.org/10.1103/PhysRevB.60.791
http://dx.doi.org/10.1103/PhysRevB.60.791
http://arxiv.org/abs/9904431
http://dx.doi.org/10.1103/PhysRevB.79.054304
http://dx.doi.org/10.1103/PhysRevB.85.144301
http://dx.doi.org/ 10.1016/j.dib.2015.10.024
http://dx.doi.org/ 10.1016/j.dib.2015.10.024
http://dx.doi.org/ 10.1016/j.actamat.2005.01.044
http://dx.doi.org/ 10.1016/j.actamat.2005.01.044
http://dx.doi.org/10.1016/j.jnucmat.2010.12.231
http://dx.doi.org/10.1016/j.jnucmat.2010.12.231
http://dx.doi.org/ 10.1016/j.jnucmat.2010.08.003
http://dx.doi.org/ 10.1016/j.jnucmat.2010.08.003
http://dx.doi.org/10.1016/j.jnucmat.2006.02.025
http://dx.doi.org/ 10.1016/j.actamat.2009.11.041
http://dx.doi.org/ 10.1016/j.actamat.2009.11.041
http://dx.doi.org/10.1016/j.nimb.2004.10.035
http://dx.doi.org/10.1016/j.nimb.2004.10.035
http://dx.doi.org/10.1016/S0168-583X(02)01828-1
http://dx.doi.org/10.1016/S0168-583X(02)01828-1
http://dx.doi.org/ 10.1016/j.scriptamat.2012.06.010
http://dx.doi.org/ 10.1016/j.scriptamat.2012.06.010


2

50 REFERENCES

[62] L. Messina, M. Nastar, N. Sandberg, and P. Olsson, Systematic electronic-
structure investigation of substitutional impurity diffusion and flux coupling in
bcc iron, Phys. Rev. B 93, 184302 (2016).

[63] Y. Iijima, Diffusion in high-purity iron: Influence of magnetic transformation on
diffusion, J. Phase Equilibria Diffus. 26, 466 (2005).

[64] L. Girifalco, Vacancy concentration and diffusion in order-disorder alloys, J. Phys.
Chem. Solids 25, 323 (1964).

[65] L. Ruch, D. R. Sain, H. L. Yeh, and L. A. Girifalco, Analysis of diffusion in
ferromagnets, J. Phys. Chem. Solids 37, 649 (1976).

[66] C. Varvenne, F. Bruneval, M. C. Marinica, and E. Clouet, Point defect modeling
in materials: Coupling ab initio and elasticity approaches, Phys. Rev. B 88, 134102
(2013).

[67] D. C. Wallace, Thermodynamics of Crystals, Dover books on physics (Dover
Publications, 1998) pp. 180–183.

[68] A. S. Arrott and B. Heinrich, Application of magnetization measurements in iron
to high temperature thermometry, J. Appl. Phys. 52, 2113 (1981).

[69] C. Versteylen, N. van Dijk, and M. Sluiter, to be submitted, to be Submitted .

[70] G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes,
J. Phys. Chem. Solids 3, 121 (1957).

[71] A. D. Le Claire, Solvent self-diffusion in dilute b . c . c . solid solutions, Philos.
Mag. 21, 819 (1970).

[72] M. J. Jones and A. D. Le Claire, Solvent self-diffusion in dilute b.c.c. solid solu-
tions, Philos. Mag. 26, 1191 (1972).

[73] J. Neuhaus, W. Petry, and a. Krimmel, Phonon softening and martensitic trans-
formation in α-Fe, Phys. B Condens. Matter 234-236, 897 (1997).

[74] A. V. Ruban and V. I. Razumovskiy, Spin-wave method for the total energy of
paramagnetic state, Phys. Rev. B 85, 174407 (2012).

[75] H. Ding, V. I. Razumovskiy, and M. Asta, Self diffusion anomaly in ferromag-
netic metals: A density-functional-theory investigation of magnetically ordered
and disordered Fe and Co, Acta Mater. 70, 130 (2014).

[76] F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger, B. Fultz, and
J. Neugebauer, Temperature dependent magnon-phonon coupling in bcc Fe from
theory and experiment, Phys. Rev. Lett. 113, 165503 (2014).

[77] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related
crystal properties from density-functional perturbation theory, Rev. Mod. Phys.
73, 515 (2001), arXiv:0012092v1 [arXiv:cond-mat] .

http://dx.doi.org/10.1103/PhysRevB.93.184302
http://dx.doi.org/10.1007/s11669-005-0036-1
http://dx.doi.org/ 10.1016/0022-3697(64)90111-8
http://dx.doi.org/ 10.1016/0022-3697(64)90111-8
http://dx.doi.org/10.1016/0022-3697(76)90001-9
http://dx.doi.org/ 10.1103/PhysRevB.88.134102
http://dx.doi.org/ 10.1103/PhysRevB.88.134102
https://books.google.nl/books?id=qLzOmwSgMIsC
http://dx.doi.org/10.1063/1.329634
http://dx.doi.org/10.1016/0022-3697(57)90059-8
http://dx.doi.org/ 10.1080/14786437208227373
http://dx.doi.org/ 10.1016/S0921-4526(96)01185-4
http://dx.doi.org/ 10.1103/PhysRevB.85.174407
http://dx.doi.org/ 10.1016/j.actamat.2014.01.025
http://dx.doi.org/ 10.1103/PhysRevLett.113.165503
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://arxiv.org/abs/0012092v1


REFERENCES

2

51

[78] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6,
15 (1996).

[79] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).

[80] P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B 50, 17953 (1994).

[81] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector
augmented-wave method, Phys. Rev. B 59, 1758 (1999).

[82] G. Henkelman and H. Jonsson, Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points, J. Chem. Phys.
113, 9978 (2000).

[83] J. P. Perdew and Y. Wang, Accurate and Simple Analytic Representation of the
Electron-Gas Correlation-Energy, Phys. Rev. B 45, 13244 (1992).

[84] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, and C. Fiolhais, Erratum: Atoms, molecules, solids, and surfaces: Appli-
cations of the generalized gradient approximation for exchange and correlation,
Phys. Rev. B 46, 6671 (1992).

[85] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A.
Constantin, X. Zhou, and K. Burke, Restoring the Density-Gradient Expansion
for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100, 136406 (2008).

[86] P. Haas, F. Tran, and P. Blaha, Calculation of the lattice constant of solids with
semilocal functionals, Phys. Rev. B 79, 085104 (2009).

[87] R. Nazarov, T. Hickel, and J. Neugebauer, Vacancy formation energies in fcc met-
als: Influence of exchange-correlation functionals and correction schemes, Phys.
Rev. B 85, 144118 (2012).

[88] Y. Jiang, J. R. Smith, and G. R. Odette, Formation of Y-Ti-O nanoclusters in
nanostructured ferritic alloys: A first-principles study, Phys. Rev. B 79, 064103
(2009).

[89] C. Zhang, J. Fu, R. Li, P. Zhang, J. Zhao, and C. Dong, Solute/impurity diffu-
sivities in bcc Fe: A first-principles study, J. Nucl. Mater. 455, 354 (2014).

[90] D. Murali, M. Posselt, and M. Schiwarth, First-principles calculation of defect
free energies: General aspects illustrated in the case of bcc Fe, Phys. Rev. B 92,
064103 (2015).

[91] X. Gao, H. Ren, C. Li, H. Wang, Y. Ji, and H. Tan, First-principles calculations
of rare earth (Y, la and Ce) diffusivities in bcc Fe, J. Alloys Compd. 663, 316
(2016).

http://dx.doi.org/ 10.1016/0927-0256(96)00008-0
http://dx.doi.org/ 10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/ 10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/ 10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.48.4978.2
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/ 10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.85.144118
http://dx.doi.org/10.1103/PhysRevB.85.144118
http://dx.doi.org/10.1103/PhysRevB.79.064103
http://dx.doi.org/10.1103/PhysRevB.79.064103
http://dx.doi.org/10.1016/j.jnucmat.2014.07.011
http://dx.doi.org/10.1103/PhysRevB.92.064103
http://dx.doi.org/10.1103/PhysRevB.92.064103
http://dx.doi.org/10.1016/j.jallcom.2015.12.129
http://dx.doi.org/10.1016/j.jallcom.2015.12.129


2

52 REFERENCES

[92] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Breakdown of the ar-
rhenius law in describing vacancy formation energies: The importance of local
anharmonicity revealed by Ab initio thermodynamics, Phys. Rev. X 4, 011018
(2014).

[93] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation
Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[94] E. Vincent, C. S. Becquart, and C. Domain, Atomic kinetic Monte Carlo model
based on ab initio data: Simulation of microstructural evolution under irradia-
tion of dilute Fe-CuNiMnSi alloys, Nucl. Instrum. Methods Phys. Res. B 255, 78
(2007).

[95] G. Lucas and R. Schäublin, Vibrational contributions to the stability of point
defects in bcc iron: A first-principles study, Nucl. Instrum. Methods Phys. Res. B
267, 3009 (2009).

[96] L. Messina, M. Nastar, T. Garnier, C. Domain, and P. Olsson, Exact ab initio
transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys, Phys.
Rev. B 90, 104203 (2014).

[97] L. Messina and M. Nastar, http://link.aps.org/supplemental/ 10.1103/Phys-
RevB.93.184302, Tech. Rep. (1800).

[98] T. Ohnuma, N. Soneda, and M. Iwasawa, First-principles calculations of vacancy-
solute element interactions in body-centered cubic iron, Acta Mater. 57, 5947
(2009).

[99] P. Olsson, T. P. C. Klaver, and C. Domain, Ab initio study of solute transition-
metal interactions with point defects in bcc Fe, Phys. Rev. B 81, 054102 (2010).

[100] D. Murali, B. K. Panigrahi, M. C. Valsakumar, and C. S. Sundar, Diffusion of y
and Ti/Zr in bcc iron: A first principles study, J. Nucl. Mater. 419, 208 (2011).

[101] A fit of three parameters to just four data points is questionable in any case, .

[102] G. Boisvert and L. J. Lewis, Self-diffusion on low-index metallic surfaces: Ag and
Au (100) and (111), Phys. Rev. B 54, 2880 (1996).

[103] M. C. Marinica, C. Barreteau, D. Spanjaard, and M. C. Desjonquères, Diffusion
rates of Cu adatoms on Cu(111) in the presence of an adisland nucleated at fcc
or hcp sites, Phys. Rev. B - Condens. Matter Mater. Phys. 72, 115402 (2005).

[104] T. Marumo, S. Fujikawa, and K.-i. Hirano, Diffusion of zirconium in aluminium,
J. Japan Inst. Light Met. 23, 17 (1973).

[105] A. Claisse and P. Olsson, First-principles calculations of (Y, Ti, O) cluster forma-
tion in body centred cubic iron-chromium, Nucl. Instrum. Methods Phys. Res. B
303, 18 (2013).

http://dx.doi.org/10.1103/PhysRevX.4.011018
http://dx.doi.org/10.1103/PhysRevX.4.011018
http://dx.doi.org/10.1103/PhysRevLett.46.1425
http://dx.doi.org/10.1016/j.nimb.2006.11.033
http://dx.doi.org/10.1016/j.nimb.2006.11.033
http://dx.doi.org/10.1016/j.nimb.2009.06.110
http://dx.doi.org/10.1016/j.nimb.2009.06.110
http://dx.doi.org/ 10.1103/PhysRevB.90.104203
http://dx.doi.org/ 10.1103/PhysRevB.90.104203
http://dx.doi.org/10.1016/j.actamat.2009.08.020
http://dx.doi.org/10.1016/j.actamat.2009.08.020
http://dx.doi.org/10.1103/PhysRevB.81.054102
http://dx.doi.org/ 10.1016/j.jnucmat.2011.05.018
http://dx.doi.org/ 10.1103/PhysRevB.54.2880
http://dx.doi.org/ 10.1103/PhysRevB.72.115402
http://dx.doi.org/10.1016/j.nimb.2013.01.016
http://dx.doi.org/10.1016/j.nimb.2013.01.016


3
MAGNETIC ACTIVATION ENERGY

FOR DIFFUSION IN BCC IRON

Da ubriaco è difficile acchiappare un gatto nero in una stanza buia;
soprattutto quando non c’è...

Italian proverb

A rather remarkable feature of diffusion behaviour in bcc-iron, is the deviation from the
Arrhenius relation around the Curie temperature. The activation barrier for diffusion is
lower in the paramagnetic state than in the ferromagnetic state. This change in activa-
tion energy occurs gradually, and most strongly in the vicinity of the Curie temperature.
Apart from the activation barrier for diffusion, there is a marked shear modulus softening
around the Curie temperature. The degree of magnetic ordering and the magnetic con-
tribution to the free energy can be used as a way to fit the temperature dependence of the
activation barrier. The Girifalco model relates the change in activation barrier to the de-
gree of magnetic order, and the Jönsson model relates the change in activation barrier to
the total magnetic enthalpy. Both models can lead to similar results over the tempera-
ture range in which diffusion in bcc iron is conventionally measured, but give different
values for the activation barrier in paramagnetic state. A comparison is made between
experimental data and modelling results for both models. The fitting of a wide selection of
experimental data shows that it is within reason to state that the effect of magnetic order
on the activation energy is species independent. The species-independent fitting parame-
ter used to determine the effect of magnetic order on the activation energy is α= 0.10(1).
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3.1. INTRODUCTION
The diffusive transport of elements in a crystal is a thermally activated process. In the
case of substitutional diffusion, the rate of diffusivity depends on the concentration of
vacancies, and the jump rate. If the energy for the formation of a vacancy and the
energy barrier are independent of temperature, the diffusivity (D) can be described by
an Arrhenius relation,

D = D0 exp

(
− Q

kB T

)
. (3.1)

Where the prefactor D0, the activation energy for diffusion Q, and the Boltzmann
constant kB are constants and the diffusivity D is a function of temperature T . In bcc-
iron, there is a deviation from this Arrhenius relation. The deviation from the Arrhenius
relation takes place for diffusivity at the ferromagnetic-to-paramagnetic transition (TC ).
For pure iron (and sufficiently dilute binary iron alloys) the transition temperature TC is
1043 K.

Figure 3.1: Experimental data of iron self-diffusivity as a function of the inverse temperature [1–5]. The Curie
temperature is indicated as TC , and the dashed line is an extrapolation of Arrhenius behaviour of the param-
agnetic state above TC .

This deviation could in principle be attributed to a temperature dependence of D0

and/or Q. Both the pre-exponential factor and the activation energy may change with
the degree of ferromagnetic order. Buffington and coworkers [5] presented D0 and Q for
ferromagnetic and for paramagnetic bcc iron as separate phases. They noted that, for a
constant activation barrier, the change in D0 would have to be 4 orders of magnitude,
which seems unlikely. They therefore concluded that there is a different activation barrier
for diffusion in the paramagnetic state, compared to the ferromagnetic state.

The narrow temperature range studied in many diffusivity measurements did not
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allow for a more detailed description of the diffusivity in paramagnetic and in ferromag-
netic states. Hettich and coworkers [3] were the first to measure diffusivities over a wide
temperature range of more than 300 K, all below the Curie temperature. The diffusivity
was found to deviate from the Arrhenius relation, an observation which is often called
the anomalous effect in bcc iron, later observations confirmed this [1, 2].

3.2. MAGNETIC ORDER
The Curie temperature is the transition temperature above which no long-ranged ferro-
magnetic order exists. The ground state of bcc iron at 0 K is the fully aligned ferromag-
netic state. The magnetic alignment is gradually weakened with increasing temperatures,
until long-ranged ferromagnetic ordering is lost at TC . The reduced spontaneous mag-
netisation s = Ms (T )/Ms (0), has been measured by Bergmann and coworkers [6], and
the data have been fitted by Arrott and coworkers [7], see figure 3.2.

s = (1−τ)B

(1−Bτ+ Aτ3/2 −Cτ7/2)
, (3.2)

with τ = T /TC , B = 0.368, A = 0.110, and C = 0.129. At the Curie temperature

Figure 3.2: Normalised spontaneous magnetisation s = Ms (T )/Ms (0) of bcc iron as function of the normalised
temperature (T /TC ).

long-range order is lost, but short-range order in the magnetic alignment persists. The
magnetic free energy therefore also develops above the Curie temperature. The magnetic
free energy can be approximated through the Inden model for magnetic heat capacity, as
done by Hillert and Jarl [8]. They used a Taylor expansion to approximate the magnetic
free energy. Alternatively, the magnetic specific heat of bcc iron can be described by a
fit to experiments, as done by Chuang and coworkers [9]. They also successfully apply
the same method to approximating the magnetic specific heats of nickel and cobalt.
The results of the normalized magnetic enthalpy as function of normalized temperature
are shown in figure 3.3.
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Figure 3.3: The relative magnetic enthalpy Hmag /Hmag (TC ) as function of T /TC . Obtained from the magnetic
enthalpy equations of Chuang and coworkers [9], and of Hillert and Jarl [8]. The Curie temperature is indicated
as TC , and the transition temperature in pure iron between α-iron (bcc), and γ-iron (fcc).

Note that pure iron transforms from bcc to fcc at 1.14 T /TC , which means that the
extrapolated magnetic free energy in bcc phase for temperatures above 1.14 TC cannot
be observed in pure iron.

The deviation of the diffusivity from Arrhenius relation is only one of the effects
associated with magnetic ordering in bcc iron. The phonon spectrum of iron softens at
high temperatures for certain modes, as was measured by Vallera [10] and Neuhaus and
coworkers[11]. This phonon softening coincides with a reduction in stiffness in certain
crystallographic directions. The stiffness tensor describing directional stiffness of a cubic
crystal has 3 degrees of freedom only;

Ci j kl =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 . (3.3)

The influence of temperature on the stiffness tensor of bcc-iron is significant when the
Curie temperature is approached, as was measured by Dever [12], see figure 3.4. The
softening of the shear modulus

C ′ = C11 −C12

2
, (3.4)

is an indication that the shear in bcc iron is affected by the spin alignment, especially
between the second and first nearest neighbors [12].

To summarize, the loss of magnetic spin alignment in bcc iron causes:
(i) the reduction in free energy associated to magnetism as spins lose order both over
long range below TC and also at short range above TC . therefore this reduction occurs
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Figure 3.4: Shear modulus C ′ as function of normalized temperature T /TC (figure adapted from Dever [12]).

partially above the Curie temperature, figure 3.3.
(ii) phonon softening and a shear modulus softening.
(iii) The effect on the diffusivity is due to a variation in the effective jump barrier Q,
which manifests itself as a deviation from linear Arrhenius behaviour.

3.3. MODELS FOR MAGNETIC ENTHALPY OF DIFFUSION
Since the discovery of the deviation of the diffusivity from Arrhenius relation in bcc iron,
attempts were made to explain the effect. The deviation from Arrhenius relation was
found to be related to the activation energy, which means there is a contribution of the
activation energy for diffusion Q that is dependent on the degree of magnetic order.
The most important models describing this magnetic contribution to the activation
barrier are made by Girifalco and by Jönsson. Both of these models propose a magnetic
dependence on the activation barrier for diffusion and describe the magnitude of the
magnetic activation barrier as function of magnetic parameters.

The origins of this effect however are still unclear, but there are proposed solutions.
Borg [13] analyzed the effect of magnetism on the diffusivity in bcc iron, and related
the effective magnetic activation energy to the marked softening of stiffness directions
in bcc-iron close to the Curie temperature. Hettich and coworkers [3] applied the logic
of Borg, and used the Girifalco model to describe the diffusivity of bcc iron, as function
of the magnetic order parameter.

For both the Girifalco and the Jönsson model, the magnetic contribution to the
activation energy for diffusion, is a fraction of the magnetic energy of interacting spins
in the material. The enthalpy associated to spin alignment can be described with a
magnetic Ising Hamiltonian with spin S (up or down) where the exchange interaction
between spins J is constant:

H =−J
∑
i , j

Si S j . (3.5)

The magnetic energy of interacting spins depends on their alignment and the ionic
positions. A fraction of the energy difference between paramagnetic and ferromagnet-
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icly ordered lattices, is responsible for the reduction in magnetic activation barrier for
diffusion.

In the Girifalco model, this effect only exists due to the loss of long-rang magnetic
order below the Curie temperature, while in the Jönsson model, all magnetic spin align-
ment plays a role (both long-range and short-range), which means that part of the
deviation is above the Curie temperature. Applying either model gives accurate results
when fitting the temperature-dependence of the diffusivity around TC . However, there
is a difference in the obtained activation energies for diffusion between the paramagnetic
and ferromagnetic states ∆QP M−F M . Experimental data for impurity diffusion in bcc
iron allows us to discriminate between both models.

3.3.1. GIRIFALCO MODEL

The magnetic contribution to the activation energy was determined by Girifalco [14].
The exchange energy arises from the exchange integral J , and the spontaneous mag-
netisation, see figure 3.2. The activation energy for diffusion is proposed to be of the
following form:

Q(T ) =QP M (1+αs2). (3.6)

The parameter α determines the effective magnetic exchange. The magnetic energy
affects the activation barrier, which was determined by fitting experimental data to
the models’ equations by Ruch and coworkers [15]. Their analysis provided that the
magnetic interaction parameter in bcc iron is α = 0.112. More recent reports on self-
diffusivity resulted in α= 0.16 [3] and α= 0.156(3) [2]. The implicit assumption in this
model is that short-range magnetic ordering plays no role in the barrier for diffusion.
This model has been used to capture the deviation from Arrhenius relation of many
diffusing elements [2, 3, 16, 16–27]. Since the parameter α could be dependent on the
diffusion element in bcc iron, an attempt was made to estimate the values of α for each
impurity element. Iijima and coworkers [28] found that α depends on the species of
impurity element diffusion in iron. They proposed a relationship between the change
in magnetic moments of the first and second nearest neighbours due to the impurity
element and the value of α. This relationship was based on observations of diffusion
of the elements: Ti, Cr, Fe, Co, Nb, Mo in bcc iron. This method was later applied
by Ding and coworkers [29], in order to predict α in the context of first-principles
diffusivity calculations. The difference between the activation energy for diffusion in
paramagnetic and in ferromagnetic state for the Girifalco model is between 10 and 16%
of the paramagnetic activation barrier [2, 3].

3.3.2. JÖNSSON MODEL

The effect of magnetic order on the activation barrier for diffusion was described by
Jönsson [30], using the magnetic enthalpy as described by Hillert and Jarl [8] (figure
3.3). Unlike the Girifalco model, in the Jönsson model the activation barrier depends
on the energy associated with all magnetic order (short-range and long-range).

This model was applied by Messina and coworkers to model the magnetic contribu-
tion to the activation energy for diffusion [31, 32]. The activation energy for diffusion
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is considered to depend on temperature as;

Q(T ) =QF M −ξH(T ). (3.7)

The normalised temperature dependent magnetic enthalpy used to calculate the acti-
vation barrier is defined as H(T ) = 1−Hmag (T )/Hmag (0), where Hmag is the magnetic
enthalpy, and with ξ as a fitting parameter, similar to α for the Girifalco model. The
Jönsson model is applied in Dictra as part of the Thermocalc package [33]. Liu and
coworkers [34] applied this model to experimental data and fitted the parameter ξ to
different impurity elements in bcc iron. From those results, Messina and coworkers [32]
concluded that the parameter is diffusing species independent. The difference between
the activation energy for diffusion in paramagnetic and in ferromagnetic state obtained
from this model is approximately 22% of the paramagnetic activation barrier [32].

3.3.3. MODEL COMPARISON
The different models describing the anomalous effect of bcc iron diffusion are reviewed
by Lübbehusen [1], who reviewed 5 different models, of which some have several fitting
parameters. Lübbehusen concluded that each gives a fit which is equivalent in accuracy.
Therefore a choice to focus only on the two models with one fit parameter, namely the
Girifalco model and the Jönsson model was made. However, it is difficult to obtain an
accurate fit because the paramagnetic range of bcc α-iron is very limited (between 1043
and 1185 K). The accuracies of the measured diffusivities are not high enough to obtain
an accurate fit over such a small temperature range. The data from bcc δ-iron can be
used, which is the phase stable between 1766 K and 1811 K. When data from both bcc
iron phases is used the activation energies obtained for iron self-diffusion are close to
2.5 eV [4, 35] (approximately 240 k J/mol).

Determining the paramagnetic activation barrier in bcc iron by means of computa-
tional methods is a challenge. Ruban and Razumovskiy [36] have applied DFT spin-wave,
EMTO-CPA, and Monte Carlo methods to simulate the paramagnetic state in bcc iron.
They compared vacancy formation energies calculated with these different methods.
The spin-wave method was also used to calculate the migration barrier in paramagnetic
state, in order to obtain the paramagnetic activation for diffusion in pure iron, which
was found to be 2.41 eV [37]. They also applied the same method to determine the dif-
ference in activation barriers in ferromagnetic state and in paramagnetic state of fcc Co,
and found a negligible difference in the activation energies between the paramagnetic
and ferromagnetic states.

The activation barrier for paramagnetic diffusion was also determined by Sandberg
and coworkers by means of Monte Carlo methods with a Heisenberg Hamiltonian to ob-
tain the magnetic contribution to the energy [38]. They reported the magnetic enthalpy
and activation barrier for paramagnetic diffusion. The magnetic enthalpy was found to
deviate from the experimentally observed values and the paramagnetic activation barrier
using this approach is 2.26 eV.

The self-diffusion activation barrier for iron can be evaluated in alloys containing
small percentages of bcc-stabilizing solute. This has been done in order to determine
the self-diffusion activation barrier over a wider range of temperatures. Since the effect
of the experimental errors in determining the diffusivity has a smaller effect on the error



3

60 3. MAGNETIC ACTIVATION ENERGY FOR DIFFUSION IN BCC IRON

Table 3.1: Bcc iron self-diffusion activation barriers determined in alloys which stabilise the bcc phase.

Alloy QP M (eV) ∆T (K) source
Fe-5.7 at.%Al 2.55 1123-1458 Borg [40]
Fe-5.5 at.%Si 2.59 1013-1373 Million [39]
Fe-4.7 at.%Si 2.41 1173-1733 Borg [40]
Fe-2.0 at.%Ti 2.50 1173-1473 Borg [40]
Fe-1.8 at.% V 2.45 1173-1773 Borg [40]
Fe-5.3 at.% V 2.55 1173-1466 Borg [40]
Fe-2.5 at.%Sb 2.25 1169-1370 Borg [40]

in the experimentally determined activation barrier if the data is obtained over a wider
range of temperatures, this allows for more confidence in the value of the activation
energy for diffusion. Fe-4.7at.%Si is therefore an excellent model system to analyse
the diffusivity of Fe in bcc at higher temperatures [39]. Borg and Lai have collected
and analysed a large amount of data on high temperature Fe diffusion [40], with alloys
containing Al, Si, Ti, V, and Sb (see table 3.1).

All but one of the activation energies for paramagnetic diffusion lie very close to the
commonly more accepted activation energy for iron self-diffusion in paramagnetic state
of 2.44 eV [41], 2.47 eV [42], 2.46 eV [43] and 2.48 eV [44]. This supports the Girifalco
model, since the difference between paramagnetic and ferromagnetic activation barriers
is 0.36 eV[37] as opposed to the value obtained by the Jönsson model of 0.62 eV [32].

3.4. FITTING OF EXPERIMENTAL DATA
Having established that the Girifalco model better agrees with experiments than the
Jönsson model, it is now applied to reviewing experimental diffusivity data in bcc iron.
In order to determine the species-dependent influence of magnetic order on the diffusion
in bcc iron, the diffusion function is used to fit experimental data:

D = D0 exp

(
−QP M (1+αs2)

kB T

)
, (3.8)

where the function s is obtained from Arrot [7]. The only fittable parameters are;
QP M , D0, and α. Previously, Iijima and coworkers [28] found a relationship between
the magnitude of α and the effect of the nearest neighbour elements on the magnetic
moments (∆M1−2). The amount of experimental datasets in their analysis was limited
to 6. If more datasets are used to determine the value of α, one finds a large spread
for α, and no clear relation between α and ∆M1−2 in figure 3.5. The trend that was
observed by Iijima and coworkers [28] does not seem evident if more datasets are included
in the analysis. The paramagnetic activation energies and the parameter α of these
datasets suggest an inverse relation with activation energy. The activation energies of
the impurity elements in bcc iron, used by Iijima and coworkers [28], are all higher than
that of iron self-diffusion. This trend does not agree with more recent evaluations for
the same elements [29, 41, 53]. The impurity diffusion activation energies seem to
generally be smaller for elements in bcc iron, except for cobalt. This suggests that the
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Figure 3.5: Fitted values of α versus the change in magnetic moment of nearest neighbours ∆M1−2. For iron
self-diffusion Fe [2–5] and the following solute elements; , Co [4, 16, 45], Ni [45, 46], Mo [20], Nb [18], Cr [23],
Sn [24], Ag [47], Au [45], Zn [48], Cu [25, 49], Sb [19, 50] , P [51], and Al [26, 52].

Figure 3.6: Parameter α and activation energy for diffusion QP M according to the data used in the paper by
Iijima and coworkers [28].

relationship found might be the result of imprecise activation energies.
If the paramagnetic activation energy is fit in the paramagnetic temperature range,

the value of α can be calculated for each measured diffusivity at different temperatures
below TC . The value of α now depends on the temperature range at which the para-
magnetic activation energy QP M is fit. Pure iron self-diffusion can be analysed in the
paramagnetic range range from TC to the phase transformation temperature Tbcc → f cc ,
or in the range from TC +40 K to Tbcc → f cc . The fit for α is strongly dependent on
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Figure 3.7: Experimental data of Iijima [2], Lübbehusen [1], and Buffington [5] was used to fit QP M in the
temperature range above TC and 40 K above TC in order to obtain the value ofα for each data point at different
temperatures below TC . For the data of Hettich [3], the QP M of Iijima and coworkers was used to fit α below
TC .

the temperature range of the fit of QP M , since the magnitude of the paramagnetic ac-
tivation energy depends on the temperature range of the fit and the number of data
points. This is an illustration of the fragility of this method, and the interdependence
of the magnitude of the fitting parameters. Furthermore, it is clear from this figure that
close to the Curie temperature, the reliability of the fit of parameter α is compromised
significantly.

The maximum amount of available experimental datasets was used to obtain accu-
rate fits for α. The nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm was
used fit the experimental data to the diffusion function. For each experimental data set,
this results in fitted values with certain error margins. The accuracy of the fit can be
approximated by analysing the magnitude of the error. The lowest possible error for the
value of α was used and all parameter with an error > 0.025 were discarded.

3.5. RESULTS & DISCUSSION
From the results of the fits in figure 3.8, it can be concluded that there is no reason
to assume a relationship between α and ∆M1−2. The average value of α for impurity
elements is 0.10(1). For iron self-diffusion, fits applied to a combination of all datasets
gives α= 0.17(2) and the most reliable from literature α= 0.16 [3] and α= 0.156(3) [2],
leads us to α= 0.16(1). When these values of α for iron self-diffusion and for impurity
diffusion are applied to known diffusion data, the Girifalco model seems to provide a
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Figure 3.8: Datasets with sufficiently low fitting errors for α plot against the change in magnetisation ∆M1−2.
Datasets from: Cr [54], Co [45], Ni [45], Cu [25], Zn [48], Nb [18], Mo [20], Ag [47], Au [45] were used. The line
corresponds to the average value of α.

good correction for the deviation from Arrhenius behaviour. In figure 3.9, experimental
data of iron self-diffusion is plotted as function of (1+αs2)/(kB T ) (with α= 0.16). This
provides a logarithmic relation indicating that the deviation of the Arrhenius relation
has been compensated by this correction.

The same approach is followed for iron self-diffusion (with α= 0.16) and for impurity
elements (with α= 0.10) together in figure 3.10. The value of α was compared to many
other impurity properties, such as migration barrier, vacancy binding, atomic size, or
atomic mass with no relation found. It should be noted that also for the Hillert-Jarl
model as used by Messina and coworkers[32], the fitting parameter ξ was chosen to be
constant for all impurities diffusing in bcc iron, based on the Calphad analysis of Liu
and coworkers [34]. The α= 0.10(1) approximation can be applied to a large selection
of impurity data in order to test the validity of this assumption. The results are shown
in figure 3.10 and show satisfactory agreement.

The reason behind the non-Arrhenius diffusion behaviour could be in the softening
of a specific shear mode C ′ in the bcc crystal close to TC [13, 63]. In other words there is
a strong coupling between the spin order and the elastic stiffness properties. Softening
of phonon modes and shear modes, has a particularly large effect on the bcc crystal
structure. Perhaps a similar effect can be seen in Zr self-diffusion in body centered
crystalline structure [13]. The non closely packed crystal structure could be required to
show the non-Arrhenius behaviour. Where the phonon modes soften as well and the
diffusivity deviates far from Arrhenius. This behaviour is assumed to be related to the
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Figure 3.9: Plot of ln(D) for pure iron self-diffusion against (1+αs2)/(kB T ) with α = 0.16. The straight line
indicates that this fit is reasonable for this wide temperature range. Data of iron self-diffusion is taken from
[1–5, 35, 40].

instability of the bcc phase, which could locally transform to an omega phase [64].
The deviation from Arrhenius behaviour makes the modelling of the diffusivity com-

plicated [65], it is required to take into account phonon mode softening with tempera-
ture, as shown by Mikhin and Osetsky [66]. The effect is not quite so large in bcc Fe,
but could be similar to bcc Zr diffusion. The softening of phonons have been calculated
for bcc-iron [67–70], showing a magnon-phonon coupling which causes the remarkable
softening of specific stiffness directions [10, 11]. Directionally phonon softening is a
precursor for an unstable crystal structure. It is possible that this then affects the struc-
ture and electron density of the transition state and thereby the activation barrier for
diffusion. The analysis of Ding and coworkers [37] shows that in fcc Cobalt there is
barely any magnetic effect on the diffusivity. This could be due to the stability of this
close-packed crystal structure. The difference with bcc iron cannot be explained by a
significant difference in magnetic enthalpies, or in a significant difference in the magni-
tude of the magnetic moments, since the magnetic moments on atoms are very similar
for cobalt and iron.

The bcc iron diffusivity around the Curie temperature has also been evaluated [28]
for grain-boundary diffusion [21], and for dislocation pipe diffusion [22]. The deviation
from Arrhenius relation is much more pronounced. This coincides with a much higher
degree of ionic disorder, which in turn coincides with increased magnitudes of the spins.
A special case is the equi-atomic Fe-Co alloy, which has a phase transformation from
bcc to fcc at 1003 K. A deviation from linearity can be seen below this transition
temperature, but not above it [71]. The deviation from Arrhenius relation due to the
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Figure 3.10: Plot of ln(D) against (1 +αs2)/(kB T ). With α = 0.10 for impurities and α = 0.16 for iron self-
diffusion. The validity of the approach is confirmed by the straight lines obtained. Data used: Fe [1–3, 5, 40],
Cu [25, 49], Co [16, 45], Ni [45, 46, 55], Ti [27], Sn [24, 56], P [51], Al [26, 52], Sb [19, 50, 57], Mo [20, 58], Au [45],
Nb [18, 59], Cr [23], Ag [47], V [60], Si [61], Zn [48], W [17, 62].

magnetic effect occurs only in the bcc crystal structure for this alloy and not at higher
temperature in fcc, despite both these faces being below the Curie temperature.

Both the Jönsson model, and the Girifalco model lead to a similar conclusion: the
magnitude of the interaction parameter is species independent. The only characteristic
difference is in evaluating the magnetic effect on the barrier for diffusion as fraction of
the energy related to short and long-range magnetic ordering, or only the energy related
to long-range magnetic order. During an atomic jump through the transition state, the
magnetic fluctuations cause magnetic clusters to flip with certain frequencies. The size
of those clusters and their fluctuation time of magnetic cluster in paramagnetic state
and in ferromagnetic state vary with temperature. This variation is particularly large
close to the Curie temperature[72], which might be related to the activation energy for
diffusion in paramagnetic state.

The actual mechanism behind the anomalous effect in diffusion of bcc iron seems
to be based on the directional softening of shear modes in the bcc crystal. This can
be related to the magnetic ordering. The phonon mode softening seems to be similar
to softening observed in bcc-Zr, which shows a much more significant deviation from
Arrhenius relation diffusion behaviour. The manner of determining the magnitude of
this phenomenon should be based on calculation the temperature and magnetic order
dependent phonon frequency spectra.
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3.6. CONCLUSIONS
When predicting the magnetic effect on diffusion in bcc iron, for self-diffusion and
for impurity diffusion the Girifalco model can be used with a constant α = 0.10(1) for
all impurity elements. The deviation from Arrhenius behaviour seems to be due to
stiffness and phonon mode softening close to the Curie temperature. Whether this is
modelled using the Jönsson approach, or the Girifalco model seems almost equivalent.
If we assume the value of the activation barrier for diffusing in ferromagnetic state
QF M can be calculated. The greatest distinction between these models is the resulting
paramagnetic activation barrier QP M , which is significantly lower when the Jönsson
model is used. The low value of QP M does not agree with the most reliable first-
principle modelling, and neither with most of the data of iron self-diffusion over a wide
range of temperatures in the paramagnetic state, in binary Fe-X alloys. Therefore, the
best method of modelling the effect of magnetism on the diffusivity within iron is the
Girifalco model with α = 0.10(1) for impurity elements in iron. In the case of iron
self-diffusion a higher effect is found in literature and the value of α = 0.16(1).
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4
FINITE ELEMENT MODELING OF

CREEP CAVITY FILLING BY SOLUTE

DIFFUSION

Double rainbow all the way across the sky! Oh my god. Oh my god. Oh god.
What does this mean? Oh. Oh my god. Oh. Oh. God. Its so bright,

oh my god its so bright and vivid!

Paul “Bear” Vasquez

In recently discovered self-healing creep steels, open-volume creep cavities are filled by the
precipitation of supersaturated solute. These creep cavities form on the grain boundaries
oriented perpendicular to the applied stress. The presence of a free surface triggers a flux
of solute from the matrix, over the grain boundaries towards the creep cavities. We studied
the creep cavity filling by finite element modeling and found that the filling time critically
depends on (i) the ratio of diffusivities in the grain boundary and the bulk, and (ii) on
the ratio of the intercavity distance and the cavity size. For a relatively large intercavity
spacing, 3D transport is observed when the grain boundary and volume diffusivities are
of a similar order of magnitude, while a 2D behavior is observed when the grain bound-
ary diffusivity is dominant. Instead when the intercavity distance is small, the transport
behavior tends to a 1D behavior in all cases, as the amount of solute available in the grain
boundary is insufficient. A phase diagram with the transition lines is constructed.

This chapter has been published in Philosophical Magazine [1].
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4.1. INTRODUCTION

When metals are subjected to a load at high temperature, creep damage can occur
in the form of creep cavities. These cavities grow under the influence of stress which
can lead to failure. Generally, strategies are adopted to prevent creep damage to form,
or slow down its growth [2, 3]. An alternative method in the form of self-healing has
been proposed by Laha and coworkers [4] and Shinya [5], where selective precipitation
of supersaturated solute at creep cavities hinders the creep cavity growth in stainless
steels. This mechanism was modelled by Karpov and coworkers [6]. Zhang and cowork-
ers subsequently demonstrated that precipitation of substitutional solute leads to the
self-healing of creep cavities in Fe-Au and Fe-Mo alloys [7–9]. The creep defects and
repairing precipitates were studied in detail for Fe-Au self-healing creep alloys, using
X-ray nanotomography [10]. It was found that the creep cavity growth and the precip-
itate growth directly affect the strain rate of the alloys. Additional scanning electron
microscopy studies indicated a close similarity between the precipitation mechanism at
the outer surface [11], compared to the precipitation on the creep cavity surface within
the material [10].

Creep cavity growth by the diffusional flux of vacancies over grain boundaries has
been described by Herring [12], and Hull and Rimmer [13]. Who propose that the
driving force for vacancies to migrate to the creep cavities is a function of the applied
stress. The effect of strain rate in the bulk material on the creep cavity growth was
treated in finite-element calculations by Needleman and Rice [14]. The role of stress
states around creep cavities, and the effect of the intercavity distance implemented in
the model proposed by Needleman and Rice was investigated by van der Giessen [15].
In all of these studies, the vacancy transport is solely along the grain-boundary, by
grain-boundary diffusion.

Zener first treated the bulk-diffusion dominated growth of spherical precipitates in a
homogeneous bulk material [16]. In the case of precipitate growth on grain-boundaries,
both the diffusivity in bulk and on the grain-boundary play an essential role. The fast
diffusion along grain boundaries acts as a collector plate to accumulate solute [17], or
diffuse solute in the case of precipitate dissolution [18, 19].

The aim of the present paper is to quantitatively estimate the time required to fill a
creep cavity by solute precipitation as a function of several key modelling parameters such
as: the creep cavity size, the intercavity spacing, the concentration of supersaturated
solute, the grain-boundary diffusivity, and the volume diffusivity. We also aim to show
the influence of the diffusivities and intercavity distance on the 1D, 2D, or 3D character
of the diffusion field and therefore its influence on the rate of filling. The growth rate
of a precipitate can change character during the life-time of a material. This change of
character can play a significant role in the behaviour of creep-resistant alloys, as they
have long service lives at high temperature.

4.2. METHODS

The diffusional flux of substitutional solute towards the creep cavity is evaluated using
finite element modeling (FEM). The modelling was performed using the Sepran software
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[20, 21]. The diffusional flux ~J is modelled as,

~J =−D

Ω
~∇c, (4.1)

where D is the diffusivity, Ω is the atomic volume (i.e. the volume of a single atom in
the bcc crystalline iron), and c is the solute concentration in atomic fraction. Assuming
that the driving force for diffusion originates only from a gradient in concentration (~∇c),
and that the atomic volume of the solute atom is equal to the volume of an iron atom in
the bcc lattice (Ω). The diffusional flux of solute towards a the volume of a lens-shaped
cavity is evaluated at the surface of the cavity S:

d N

d t
=−

Ó
S

~J · ~dS. (4.2)

The diffusional flux arriving at the creep-cavity surface S results in a number of ingressing
atoms N per unit of time t . The precipitate then grows inside the creep cavity until the
number of atoms that have ingressed is sufficient to fill the volume V of the original
creep cavity (NΩ= V ). The fraction of filling f then corresponds to f = NΩ/V (with
f = 1 at complete filling).

As indicated in figure 4.1, the simulation volume is a cylinder of radial dimension
r and vertical dimension z. The simulation box has a radius λ, and a box height H .
The grain boundary thickness amounts to δ = 0.5 nm, the creep cavity radius is chosen
to be a = 50 nm, and the atom volume of bcc iron is Ω = 0.0117 nm3 (for a lattice
parameter of 0.286 nm).

The boundary conditions are: (1) the concentration at the edge of the creep cavity
(r = a) is kept at a constant level c1, (2) the starting concentration in the matrix and
grain boundary is chosen to be equal to the nominal concentration c0, and (3) at the
edge of the simulation box (r =λ and z = H), the diffusional flux is chosen to be zero.
The box radius λ corresponds to half the intercavity spacing on the grain boundary
(z = 0). A small box radius therefore corresponds to a high cavity concentration on the
grain boundary. The box height H , was chosen to always be sufficiently large, so that
the concentration remains equal to the nominal concentration at the vertical box edge,
for the times up until complete filling.

The ratio λ/a is a characteristic parameter in the modelling of the creep cavity filling.
In our simulations we used the following values for the intercavity ratios: λ/a = 2, 3,
5, 10, 20, 50, 100, 200, and 400. We varied the grain-boundary diffusivity (Dg b) over
9 orders of magnitude and the volume diffusivity DV in the bulk of the matrix over
10 orders of magnitude. The shape of the cavities on grain edges, corners, and on
precipitates has been analysed by Raj & Ashby [22]. The creep cavities that form on the
grain boundaries are found to be self-similar over a large range of length scales. In this
work we will only consider the lens-shaped cavities forming on straight grain-boundary
edges perpendicular to the stress direction. For such a lens-shaped cavity, the volume
is given by Vcav = FVspher e with

F = 1− 3

2
cos(ψ)+ 1

2
cos3(ψ), (4.3)
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Figure 4.1: Lens-shaped creep cavity defined by an opening angle ψ, a height h, and a radius a. The creep
cavity is formed on a grain boundary with width δ. The simulation box is a cylinder with a radius λ and a
height H .

where ψ is the opening angle and Vspher e = 4πa3/3 is the volume of a sphere with radius
a. For metals the equilibrium opening angle ψ is estimated at 75°, following the approach
by Raj and Ashby [22], resulting in a scale factor of F ≈ 0.62. The height of the creep
cavity directly scales with the cavity radius a with h/a = (1−cosψ)/sin(ψ) ≈ 0.77.

Throughout the simulations the nominal concentration is chosen to be c0 = 0.01,
with an edge concentration of c1 = 0.0001, in order to reflect the experimental situation
for self-healing in Fe-Au alloys [7, 8, 10]. As a consequence, the supersaturation ∆c is
comparable to the nominal concentration c0.

4.3. RESULTS
In figure 4.2 the concentration profile at the time of creep cavity filling is shown for
λ/a = 20 and λ/a = 2, and for three different ratio’s of Dg b/DV . It can be seen that
the character of the diffusional field where the solute is depleted critically depends on
both diffusivity and size ratio. The axially symmetric cavity can have either a 3D, 2D, or
1D diffusion field, depending on λ/a and Dg b/DV . For the ratio of λ/a = 2 the diffusion
field has a 1D character with a concentration gradient towards the grain boundary and
the creep cavity. For the ratio of λ/a = 20, the diffusion field has a 3D character for
Dg b/DV ≈ 1, and a 2D character for Dg b/DV À 1.

In figure 4.3 the filling time of the creep cavity as a result of the diffusional solute
flux towards the creep cavity is shown as a function of the grain-boundary diffusivity
and the volume diffusivity, for different ratio’s of λ/a. For the smallest ratio of λ/a = 2,
the filling time is only controlled by DV . This is consistent with the results of figure
4.2, where the diffusion field always shows a 1D character for λ/a = 2. For λ/a = 5 and
λ/a = 20, in figure 4.3, a clear transition is observed for a specific ratio of diffusivities.
For a relatively high grain-boundary diffusion, the grain boundary is depleted faster,
leading to a 1D diffusion for most of the filling time. For λ/a = 400, both the grain
boundary and volume diffusivity control the filling time. Based on these observations it
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is useful to introduce a dimensionless time τ:

τ= DV t

a2 . (4.4)

In figure 4.4, τ f i l l is shown for different ratio’s of λ/a. For the 1D and 3D conditions,
where the volume diffusion is rate-limiting, the dimensionless filling time τ f i l l is now
independent of the volume diffusion DV . For large values of λ/a, τ f i l l is also indepen-
dent of λ/a. For a large ratio of λ/a and Dg b/DV = 1, the diffusion field has a 3D
character. However, when the grain-boundary diffusivity is much larger than the volume
diffusivity Dg b À DV , the diffusion field shows a distinct 2D character. In figure 4.5, the
dimensionless filling time (τ f i l l ) is plotted as function of the geometric ratio (λ/a) and
the diffusivity ratio (Dg b/DV ). τ f i l l is found to depend on both the ratio of diffusivities
and the geometric ratio. For λ/a > 50 only the diffusivity ratio defines the dimensionless
filling time. In this case, for high diffusivity ratios τ f i l l scales as t f i l l ∝

(
Dg b/DV

)−1,
as t f i l l is then controlled by Dg b only.

The diffusion profile can be 3D, 2D, or 1D in nature. In order to evaluate which
of these occurs, one can use the diffusion length at the filling 2

√
Dt f i l l . When the

diffusion length for grain-boundary and/or volume diffusion exceeds the box radius λ,
a cross-over in behavior occurs. In order to further evaluate the nature of the diffusion
process, the amount of atoms ingressing in the creep cavity as function of time can
approximated by a power law;

N (t ) = K tν, (4.5)

where N is the number of solute atoms collected in the cavity, K is a constant and ν is

Figure 4.2: Solute concentration around the cavity at the time of filling. a.) λ/a = 20, and Dg b /DV = 108. b.)

λ/a = 20, and Dg b /DV = 103. c.) λ/a = 20, and Dg b /DV = 1. d.) λ/a = 2, and Dg b /DV = 108. e.) λ/a = 2, and

Dg b /DV = 103. f.) λ/a = 2, and Dg b /DV = 1. All data are for a supersaturation of ∆c = 0.01. For λ/a = 2, the
grain boundary contains insufficient solute, and as a result, a quasi-1D profile is observed at the time of filling,
independent of the ratio Dg b /DV .
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Figure 4.3: Filling time for different ratio’s of λ/a (2, 5, 20, 400). The filling time depends only on the volume
diffusivity for small λ/a, and evolves to the situation where both diffusivities contribute. All data are for a
supersaturation level of ∆c = 0.01.
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Figure 4.4: Dimensionless filling time τ f i l l , as function of the diffusivity ratio Dg b /DV . The ratio λ/a de-
fines at which diffusivity ratio the diffusion length impinges the edge of the box at r = λ. All data are for a
supersaturation of ∆c = 0.01.

Figure 4.5: Dimensionless filling time τ f i l l as a function ofλ/a and Dg b /DV . All data are for a supersaturation
of ∆c = 0.01.
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Figure 4.6: Time exponent ν for cavity filling kinetics as a function of λ/a and Dg b /DV . All data are for a
supersaturation of ∆c = 0.01.

the time exponent, which can be obtained by fitting the simulation results for N (t ) to
equation 4.5. N (t ) is obtained by integrating the atom flux from equation 4.2.

The time exponent for the filling kinetics of the creep cavity depends on the dimen-
sional character: for 1D one finds ν = 0.5, and for both 2D and 3D ν starts at 0.5 and
gradually tends to 1.0 over time (see appendix I). As shown in figure 4.6, a 1D character
(ν = 0.5) is observed for low values of λ/a, while a 2D/3D character (with ν≈ 0.85) is
observed for high values of λ/a. This is consistent with the result from figures 2-5.

4.4. DISCUSSION
The dimensional character of the solute transport towards the cavity has a large effect on
the filling time. For a small λ/a ratio the solute transport is purely 1D and is controlled
by the diffusivity through the bulk towards the grain boundary and creep cavity. The
diffusion length required for filling, can be estimated from the grain-boundary surface
area (scaling as S ∝λ2). The resulting 1D diffusion length 2

√
DV t f i l l scales as V /S∆c,

where the volume of the creep cavity scales as V ∝ a3. This leads to a dimensionless
filling time of τ f i l l ∝ (λ/a)−4∆c−2. This scaling behavior can be observed for small λ/a
in figure 4.4.

For larger λ/a ratios, the filling time depends on Dg b/DV . When Dg b = DV , the
filling of the creep cavity takes on a 3D character. When the creep cavity is assumed
to be spherical, the exact solution for the solute flux on the creep cavity boundary at
r = a is (see Appendix I):

J (r = a) = DV∆c

a

(
1+ 1p

πτ

)
. (4.6)
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Figure 4.7: Phase diagram for the diffusional character of creep cavity filling by supersaturated solute, as a
function of the diffusivity ratio Dg b /Dv and the characteristic length scale ratio λ/a. 3 different regimes with
1D, 2D, and 3D diffusion are observed. The characteristic values for the cross-over between these regimes are
indicated.

The filling fraction then corresponds to f (τ) = 3∆c
(
τ+

√
4τ
π

)
. The second term repre-

sents the quasi-1D behavior for short times ( f ∝p
τ), and the first term refers to the

behavior at large times ( f ∝ τ). Based on the long-time contribution the dimensionless
time to filling can be approximated as τ f i l l ≈ 1

3∆c .
When the diffusivity ratio Dg b/DV increases (Dg b/DV À 1), while the intercavity

distance λ is large enough to provide the solute required to fill the cavity from the
grain boundary (λ/a À 1), the diffusion is of 2D character. This means that the filling
time depends only on the grain-boundary diffusivity and the grain-boundary width. For
2D diffusional behavior, the grain-boundary diffusivity is rate controlling, with a time
exponent ν≈ 1. A dimensionless filling time of the following form is now expected;

τ f i l l ∝
1

∆c

aDV

δDg b
. (4.7)

In figure 4.4, it is clear that only the grain-boundary diffusivity Dg b plays a role in filling,
then τ f i l l ∝ DV /Dg b . For those cases where grain-boundary diffusion is dominant until
impingement occurs (such as in λ/a = 5, 10, or 20), the 2D character of filling changes
after impingement to 1D. After impingement, the value of τ f i l l becomes constant.
In figure 4.7 the nature of the transport behavior is indicated as function of λ/a and
Dg b/DV . For a high λ/a ratio, and for Dg b/DV = 1, the character of the solute transport
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is 3D. When the diffusivity ratio Dg b/DV increases, the character changes to 2D, which
is reflected by the cross-over in figure 4.5. For a small λ/a ratio, an increase in the
ratio Dg b/DV , leads to a fast impingement. This leads to a 1D character, where the
filling time only depends on the volume diffusivity. This is clearly indicated by the
change in time exponent ν in figure 4.6. The phase diagram of figure 4.7, schematically
summarises the results of figures 4.5 and 4.6. In order to predict the type of behavior,
we can estimate the transition points between 1D, 2D, and 3D behavior. For λ/a À 1
a cross-over between 2D and 3D behavior is expected when the flux through the grain
boundary surface connecting the cavity Sg b = 2πaδ and the flux through the bulk surface
connecting the cavity SV ≈ 4πa2 are balanced. From the flux balance Dg bSg b = DV SV a
transition is expected for Dg b/DV ≈ 2a/δ. For the present model parameters this cross-
over takes place at 2a/δ = 200. In the isotropic limit where Dg b = DV , a cross-over is
expected when the solute-depleted region impinges with the box radius λ. Assuming for
simplicity a complete depletion, a mass balance gives 4

3πa3 =∆c 4
3πλ

3 with a transition
between the 1D and 3D character for λ/a ≈ ∆c−1/3. For ∆c = 0.01, this corresponds
to λ/a ≈ 4.6. For Dg b/DV À 1 a cross-over is expected when the solute depleted
region impinges with the box radius λ. Assuming for simplicity a complete depletion a
mass balance, then, results in 4

3πa3 =∆cδπλ2 with a transition between the 1D and 2D
character for λ/a ≈

√
4a

3δ∆c . For our simulation parameters this occurs at λ/a ≈ 115.
Precipitate growth inside a creep cavity is very similar to the heterogeneous precip-

itate growth on a grain boundary. The difference between the case analysed here and
heterogeneous growth of precipitates on grain boundaries is in the moving boundary. If
the boundary is not static, the analysis of the growth of a precipitate is much more com-
plicated. Glicksmann evaluated the moving-boundary problem of 3D precipitate growth
in relation to the static-boundary case [23], and found that for small supersaturations
the difference is negligible. A similar analysis has been done by Aaron and coworkers in
the context of diffusional phase transformations [24].

The growth of a single precipitate on a relatively large grain boundary has been
evaluated by Aaron and Aaronson [17], and by Brailsford and Aaron [25]. Brailsford
and Aaron [25] report the growth rate of the precipitate thickness S and the radius
R. The volumetric growth rate obtained from this analysis, is equivalent to the filling
rate in our analysis ( f ∝ tν). In the experimental data of Brailsford and Aaron, this
volumetric time exponent of precipitate growth on a grain boundary is between 0.72 and
1.05. Aaron and Aaronson [17] found an experimental volumetric time exponent of 0.85.
These results are in excellent agreement with our predicted time exponent for precipitate
growth inside creep cavities with a large intercavity distance λ/a on grain-boundaries.

The transition between these two diffusion regimes; one dominated by grain-boundary
diffusion and one dominated by bulk diffusion, has been observed by Yi and coworkers
[26]. This is related to the depletion of solute from the grain boundary, and subsequently
transporting solute from the bulk which can be depleted in later stages of precipitate
growth. Yi and coworkers showed that in practical situations, the change in character
can play a significant role in growth rate of precipitates on grain boundaries.

The transition between two regimes might have been observed for creep cavity growth
as well. When single creep cavities in brass were monitored by Isaac and coworkers using
X-ray tomography [27], it was found that the cavity growth rates can change abruptly
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during the creep life-time.
The diffusional transport character of second phase particles or the growth of creep

cavities is very sensitive to the intercavity or interprecipitate distance. For our case
of precipitation inside creep cavities, the nucleation of new creep cavities during creep
reduces the intercavity distance. This behavior has implications on the self-healing
process of creep steels, where the interdistance between creep cavities decreases until
coalescence joins them. Precipitates forming on the creep cavity surfaces can grow
through 2D grain-boundary diffusion, or in later stages through 1D volume diffusion.
The transitions in behavior are mapped and can thereby be predicted.

4.5. CONCLUSIONS

The filling of creep cavities located on grain boundaries perpendicular to the applied
stress, through the diffusional flux of supersaturated solute is modelled using finite
element methods. The time required for filling depends on the volume diffusivity DV

and grain-boundary diffusivity Dg b and on the intercavity spacing λ with respect to
the creep cavity size a. For a relatively fast grain-boundary diffusivity the geometric
factor λ/a determines whether the solute can be drained from the grain boundary,
or has to come primarily from the bulk. For a relatively large intercavity spacing 3D
transport is observed when the grain boundary and volume diffusivities are of a similar
order of magnitude, while a 2D behavior is observed when the grain boundary diffusivity
is dominant. Instead, when the intercavity distance is small, the transport behavior
tends to a 1D behavior in all cases, as the amount of solute available in the grain
boundary is insufficient. The various regimes could be identified when the normalised
time for creep cavity filling was analysed with respect to the intercavity distance and
the diffusivity ratios. The kinetics of the filling fraction for 1D transport scales as
f ∝ t 0.5, while for 2D and 3D transport an effective scaling of approximately f ∝ t 0.85 is
observed. Predictions are provided for the transitions between the 3 regimes. The three
regimes identified and the transition between the regimes, are experimentally found in
applications where precipitation growth or creep cavity growth is observed. The accurate
prediction of this regime change is important for the correct description of the growth
of second phase particles or creep cavities, during long service lives.

4.6. APPENDIX: IDEAL SOLUTIONS TO 3D, 2D AND 1D DIFFU-
SION PROBLEMS

The mass flux of solute in a medium depends for a large part on the geometry of the
problem. Of particular interest for creep cavity filling is the time dependence of the flux
at the edge of the creep cavity. In this appendix the time dependence of this flux is
evaluated for ideal 3D, 2D, and 1D solute transport.

4.6.1. 3D SOLUTE TRANSPORT

For a spherical cavity and isotropic diffusion (Dg b/DV = 1) without boundaries
(λ/a → ∞), the problem has been treated analytically [23]. For a constant diffusivity
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we can start from the diffusion equation in spherical coordinates;

∂c

∂t
= DV

(
∂2c

∂r 2 + 2

r

∂c

∂r

)
. (4.8)

For a static position of the boundary of the creep cavity (r = a) the concentration profile
takes the following form [23],

c0 − c(r, t )

c0 − c1
= a

r
erfc

(
r −a

2
p

DV t

)
for r ≥ a. (4.9)

The solute flux at the edge of the creep cavity J (r = a) =−(DV /Ω)(∂c/∂r ), determines
the filling rate of the creep cavity. The development of the concentration profile deter-
mines the diffusional flux at the edge boundary resulting in

J (a) =−DV∆c

aΩ

(
1+ ap

πDV t

)
=−DV∆c

aΩ

(
1+ 1p

πτ

)
. (4.10)

Where ∆c = c0 − c1. For short times (τ¿ 1/π), the second term, which represents 1D
diffusion, prevails. This is logical as the diffusion length is short with respect to the
cavity radius for short times. For longer times (τÀ 1/π) the steady-state growth of a
precipitate proceeds as follows,

J (a) ≈−DV∆c

aΩ
for τÀ 1

π
(4.11)

The filling fraction is now obtained after integration of the flux over surface area and
time. In the initial stage (τ¿ 1/π) the time exponent for the filling fraction f ≈ tν is
ν= 0.5. In the later stages of filling the dominant time exponent for the filling fraction
( f ∝ tν) for isotropic 3D diffusion is ν = 1. In practical cases 0.5 ≤ ν≤ 1 can be found.

4.6.2. 2D SOLUTE TRANSPORT
For a cylindrical cavity and isotropic grain-boundary diffusion without boundaries
(λ/a → ∞), the 2D diffusion equation corresponds to [23]

∂c

∂t
= Dg b

(
∂2c

∂r 2 + 1

r

∂c

∂r

)
. (4.12)

The concentration profile is mathematically complex, but relatively quickly approaches
an equilibrium shape. For this equilibrium situation ∂c/∂t = 0, providing a general
solution to the concentration profile of the form [28]

c(r ) = A+B ln(r ). (4.13)

With boundary condition c(r = a) = c1 and c(r = λ) = c0, the concentration profile be-
comes [28]

c(r ) = c1 ln(λ/r )+ c0 ln(r /a)

ln(λ/a)
. (4.14)
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The flux at the creep cavity surface is then;

J (a) =−Dg b∆c

aΩ

1

ln(λ/a)
. (4.15)

This flux corresponds to the solution for long times (steady-state). For short times, the
diffusion length is small compared to the cavity radius, and in analogy to the case for
3D diffusion, the diffusional flux should effectively be 1D in nature,
with J (a) = −(Dg b∆c/Ω

√
πDg b t ). The filling fraction is obtained after surface and time

integration of the flux. The dominant time exponent for the filling fraction ( f ∝ tν) for
isotropic 2D diffusion is ν = 1 in the later stages of filling, as can be seen from equation
4.15. For short times ν = 0.5 is expected. In practical cases 0.5 ≤ ν≤ 1 can be found.
The cross-over between the solution for short and long times is expected to take place
when 2

√
Dg b t ≈ a, which leads to τ≈ (1/4)(Dv /Dg b).

The flux rapidly stabilizes to a constant value, which is similar to the case of 3D
symmetric cavity filling. This solution is similar to the simplified solution of Herring [12],
describing the axial diffusional growth of creep cavities, which means that like the 3D
case, the time exponent for the diffusional flux tends to ν= 1 for large times.

4.6.3. 1D SOLUTE TRANSPORT
In planar geometry (1D), the diffusion equation corresponds to;

∂c

∂t
= DV

(
∂2c

∂r 2

)
. (4.16)

The well-known concentration profile, for boundary conditions c(r = a) = c1 and
c(r =λ) = c0, is of the form

c0 − c(r, t )

c0 − c1
= erfc

(
r −a

2
p

DV t

)
. (4.17)

The flux at the edge of the creep cavity is now

J (a) =−DV∆c

Ω

1p
πDV t

=−DV∆c

aΩ

1p
πτ

. (4.18)

The filling fraction is obtained after surface and time integration of the flux. The time
exponent for the filling fraction ( f ∝ tν) for 1D diffusion is always ν = 0.5.
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5
A NEW DESIGN PRINCIPLE FOR

CREEP-RESISTANT MATERIALS

If you try and take a cat apart to see how it works,
the first thing you have on your hands is a non-working cat.

Douglas Adams

Achieving higher energy efficiency and reduced carbon dioxide emission requires develop-
ment of materials that retain strength at high temperature. To further improve current
creep resistant materials new design principles are needed. The new design principle en-
gineers a vacancy flux in order to limit creep void growth by selective precipitation and
simultaneously counters bulk deformation by preventing grain boundary relaxation. Se-
lective precipitation can produce a countercurrent of vacancies away from creep cavities
and thereby prevent cavity growth and grain boundary relaxation leading to significantly
extended service life of newly developed creep-resistant steels. The key to determining the
efficiency of the autonomous repair lies in the relative diffusivity and the available solute
inside the host matrix.
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Creep damage prevents reliable and low-cost application of high-temperature steam
turbines, which are an important link in the chain of high-efficiency energy conversion
technologies. Creep strain in metals is attributed to grain-boundary sliding and bulk
deformation. The approaches used to increase creep life are based on the formation of
small and stable precipitates on grain boundaries and in the bulk, to delay grain-boundary
sliding and bulk deformation, and by retaining up to high temperature high dislocation
densities [1, 2]. The failure mode is in many cases due to the growth and coalescence
of creep cavities on grain boundaries [3]. A costly approach to avoid such failure modes
involves eliminating grain boundaries altogether by forming structural components out
of a favorably-oriented single crystal [2].

Here we will focus on a new, potentially more practical, method. The growth of
creep voids is controlled by the flux of vacancies [4, 5]. The vacancies originate from
the grain boundaries, rather than from the bulk, because the vacancy formation energy is
lower at the grain boundary than in the bulk. Ishida and McLean [6] discovered that the
free volume required to form vacancies on the grain boundary originates from the ingress
of dislocations. Dislocations are defects that destroy perfect packing and therefore are
associated with excess volume. When dislocations annihilate in grain boundaries they
create strain and deposit excess volume. It has been shown that for low-angle grain
boundaries [7] and for twins [8], the boundaries can get more disordered, and therefore
become higher energy boundaries due to the ingress of dislocations. These disordered
grain boundaries provide a better barrier for the ingress of new dislocations in the form of
a back stress. Eventually, the grain boundary relaxes the accumulated strain under the
expulsion of excess volume, in the form of vacancies [9, 10]. Following the arguments
by Hull and Rimmer [5], we propose that the vacancies then drain to creep cavities on
the grain boundary, causing these cavities to grow and ultimately coalesce.

The growth of creep cavities can be countered by creating a vacancy flux in the
opposite direction, away from the cavities. The Darken analysis gives a recipe for
creating such a flux: utilize a substitutional solute with a (i) strong driving force to
go from the bulk towards the cavity and (ii) with high solute mobility compared to the
host species. As the flux is the product of mobility, activity and chemical potential
gradient, it is clear that the difference of solute chemical potential in the bulk and in
the cavity should be as large as possible. This can be achieved by maximizing the
chemical potential in the bulk by solute supersaturation, and by selecting a solute that
forms highly stable precipitates in the cavity. Experimentally it has been observed that
the presence of supersaturated solute in the bulk can result in an autonomous filling
of creep cavities [11–14]. The solute that segregates at the cavity surfaces is found to
be transported along the grain boundaries [11] and form precipitates at free surfaces
and inside cavities [13]. The fluxes of solute atoms and vacancies are illustrated in
figure 5.1. As the vacancy counter flux reduces the net flux of vacancies to the creep
cavities the growth rate of the cavities is slowed down. This extends the life-time if
cavity coalescence is the failure mechanism. The reduced drainage of vacancies has
other consequences as well.

When vacancies are not expelled by the grain boundary, the strain relaxation cannot
proceed. The highly strained grain-boundary region provides a back stress for the ingress
of dislocations as was shown in various computer simulations [15, 16], see figure 5.2.
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Figure 5.1: Schematic representation of creep cavity growth and precipitation inside a creep cavity. (A) vacancy
flux towards creep cavity. (B) creep cavity growth is controlled by the vacancy flux. (C) segregation of solute
at the creep cavity surface induces a vacancy flux in opposite direction. (D) the solute flux causes filling of the
creep cavity and retention of vacancies at grain boundaries.

Just as in the Hall-Petch effect, such a back stress retards further dislocation movement,
which manifests itself as a reduction of the strain rate. Apart from a more effective
barrier for dislocation movement, this failure to dissipate dislocations, leads to a higher
dislocation density in the material, which is in concurrence with the observations by
Zhang and coworkers [12].

The strain rate and time to failure under creep are found to be inversely proportional
in agreement with the Monkman-Grant relation. The reduction in strain rate, therefore
increases the creep life time. The reduction in cavity growth rate and the reduction in
strain rate can thus be achieved by the selective precipitation at the creep cavities by
a substitutional solute from the bulk. Solute elements that are likely to act in such a
manner in bcc-iron should: (i) display a strong tendency to accumulate, and ultimately
precipitate, selectively at a creep cavity surface (ii) be an element with a retrograde
solubility line in the phase diagram with iron, such that it can be in supersaturation
at creep temperatures, and (iii) be sufficiently mobile in iron, such that the flux of
the solute exceeds the flux of the iron host. At first sight this list of requirements
appears difficult to fulfill. Diffusivities of substitutional solutes are generally close to
those of iron self-diffusion, while higher diffusivities often occur for elements with very
low solubility [17]. However, iron has a rather high surface energy [18], so that there
are many elemental solutes in iron that segregate to its free surfaces.

In the context of creep alloys, autonomous repair has been investigated for austenitic
stainless steels [19, 20] and for ferritic Fe-Cu, Fe-Au [11–14], and Fe-Mo [21] alloys. In
these studies solute elements are brought in a supersaturated state and subsequently
made to precipitate during creep. It was found that up to 80% of the creep cavities could
be filled by selective precipitation [12]. This autonomous repair mechanism has been
demonstrated to significantly extend the creep lifetime. Not all precipitating solutes
are equally effective, however. In bcc iron a fixed 1 atomic percent oversaturated gold
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Figure 5.2: Schematic microstructure evolution during creep. A creep cavity on a grain boundary under stress
grows by diffusional flux of vacancies. The vacancies are formed at the grain boundaries at locations where
dislocations impinge. Dislocations travel through a grain and annihilate at the grain boundaries, where they
leave a stress concentration. This prevents the ingress of more dislocation, until the grain boundary can relax
by emitting vacancies. Thus vacancy formation at grain boundaries and bulk strain rate are coupled.

retards creep much more than copper [12]. The high effectiveness of gold cannot be
explained by the mechanical properties of the gold-rich precipitates because these are
rather soft at elevated creep temperatures. Gold is, however, more effective at generating
a vacancy counter flux. It has a lower surface energy than copper, especially in relation
to iron [18], and it has a higher mobility in iron as well [17].

In aluminum alloys the vacancy counter flux mechanism appears to have been ob-
served already. Yousefiani and coworkers [22] showed that creep strain-rates in 7075
aluminum alloys can be reduced by almost an order of magnitude by overheating the
alloy prior to exposure to creep. During the overheating treatment precipitates with
zinc and magnesium are completely dissolved. Solutes such as zinc and magnesium
have significantly lower surface energies than aluminum and thus can be expected to
segregate towards free surfaces and locally form precipitates. Indeed, during creep the
overheated material forms large precipitates on the strained grain boundaries where cav-
ities are expected, just as was seen in Fe-Au alloys [11–14]. Whereas the conventionally
heat treated material fails through cavity coalescence and grain-boundary sliding, the
overheated material fails through constrained cavitation and bulk deformation - just as
one would expect on the basis of the counter flux description. In aluminum alloys a
similar effect has been observed, with magnesium segregation towards cavities [23].

The principle of vacancy counter-flux does not necessarily interfere with the currently
common design principle of inter- and intragranular precipitation. The formation of gold-
rich precipitates in cavities does not interfere with the precipitation of various carbides
and borides because gold generally is hardly soluble in these phases. Therefore, it



5

93

can be used in conjunction with conventional design principles to further enhance the
performance of industrial creep-resistant alloys. Recent results in Fe-Mo alloys indicate
that the proposed mechanism is not limited to Fe Au but is expected to be generic for
metallic alloys with suitable solutes.
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6
A SIMPLE MODEL FOR

CREEP-RESISTANT METALS

Off course, geometry is the ultimate abstraction.

stranger in a London supermarket

A self-consistent model is presented to predict the creep cavity growth and strain rates in
metals from the perspective of self-healing. The creep cavity growth rate is found to be
intricately linked to the strain rate. The self-healing process causes precipitates to grow
inside creep cavities. Due to the Kirkendall effect, vacancies are transported away from
the creep cavity during this selective precipitation which impedes their growth. The crit-
ical stress for self-healing can be derived and an analysis is made of the efficiency of self-
healing elements in binary Fe-Cu, Fe-Au, Fe-Mo, and Fe-W alloys. Fe-Au is found to be
the most efficient self-healing alloy. Fe-Mo and Fe-W alloys provide good alternatives that
have the potential to be employed up to higher temperatures.
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6.1. INTRODUCTION
High-temperature deformation and failure mechanisms in metals have attracted consid-
erable academic and industrial attention since the 1950s [1–4]. The materials’ response
can be complicated since many processes are at play simultaneously, such as; disloca-
tion glide and climb, jog and wall formation, vacancy formation and annihilation, and
creep-cavity nucleation and growth. A key damage mechanism is the nucleation of creep
cavities located at the grain boundaries oriented perpendicular to the applied load at
elevated temperatures [5]. After nucleation, these cavities start to grow by the diffusion
of vacancies [6] and eventually they coalesce with neighboring cavities formed on the
same grain boundary. After coalescence a rapid damage growth is observed, resulting in
macroscopic failure. In this failure mechanism the creep time is inversely proportional
to the creep strain rate of the alloy. This behavior is known as the Monkman-Grant
relation. Linking the strain rate to the cavity growth has been a key subject of interest
[7–16].

Recently, the concept of self-healing has been explored to extend the lifetime of
structural and functional man-made materials [17]. Autonomous repair of creep dam-
age has been investigated by Laha and coworkers for stainless steels [18, 19] and by
Zhang and coworkers for ferritic Fe-Au [20–23] and Fe-Mo alloys [24]. In these studies
solute elements are brought in a supersaturated state and thereby show a strong ten-
dency to segregate. It was found that up to 80% of the creep damage could be filled
by selective precipitation growth at creep cavity surfaces [21]. This autonomous repair
mechanism is demonstrated to significantly extend the lifetime, and thereby lead to a
more creep-resistant metal. Where creep failure is largely controlled by the diffusion of
vacancies, the self-healing of creep damage largely relies on the diffusion of supersatu-
rated solute. This means that self-healing of creep damage requires a new theoretical
framework to describe creep damage and healing, based on a delicate balance between
the simultaneous diffusion of host atoms (vacancies) and solute atoms. The aim of this
work is to link the transport mechanisms of excess vacancies, supersaturated solute and
the macroscopic strain rate in creep-healing high-temperature metal alloys. A model
is developed, based on the transport of vacancies between bulk, grain boundary, and
creep cavities. The creep behaviour of the extensively studied binary Fe-Au(1 at.%)
alloy [20–22] is used as an example to optimise the temperature and stress dependence
for the healing of creep damage. The healing potential of Fe-Au alloys is compared to
that of Fe-Cu, Fe-Mo and Fe-W alloys.

6.2. MODEL DESCRIPTION

6.2.1. CONSTRAINED GROWTH OF CREEP CAVITIES

As is shown in figure 6.1a, a creeping material generally deforms in three stages; an initial
stage when load and temperature are first applied (stage I), a steady-state constant creep
rate (stage II), and finally an accelerated creep rate until failure, (stage III). Under the
influence of stress, creep cavities form at grain boundaries oriented perpendicular to the
stress direction, as visualized in figure 6.1b.

The damage formation in creeping metals was first described by Hull & Rimmer [6].
In this model, creep cavities form on grain boundaries and grow through the diffusional
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Figure 6.1: a. Strain-time curve of a metal under creep conditions. In stage II a steady-state strain rate (ε̇ss )
is observed. b. Formation of creep cavities at grain boundaries oriented perpendicular to the applied stress
direction.

Figure 6.2: Creep cavity of width 2a on a grain boundary in a metal under a stress σ, where the distance 2λ
indicates the distance to the next creep cavity. The creep cavities are lens-shaped with a height h, and an opening
angle ψ.

flux of vacancies, which is driven by a gradient in chemical potential of a vacancy between
a location far away from the creep cavity and at the cavity surface. Following Herring
[1] and Hull & Rimmer [6], the gradient in chemical potential ∇µ can be approximated
by;

∇µ≈ σΩ

λ
. (6.1)

The stress σ causes an increase in the chemical potential of a vacancy with volume
Ω. At the edge of the creep cavity this stress is zero and far away from the cavity, at
distance λ, it is equal to the applied stress. This stress dependence results in a gradient
in vacancy concentration and a flux of vacancies towards the surface of the creep cavity.
The cavity grows due to a diffusional vacancy flux over grain boundaries (vacancies are
indicated by the symbol ä);
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Jä =− 1

Ω

Dg b
ä cg b

ä
kB T

∇µ≈−Dg b
ä cg b

ä
kB T

σ

λ
, (6.2)

where kB is Boltzmann’s constant and T is the temperature. The flux of vacancies
towards the creep cavity Jä, is a function of the vacancy diffusivity over the grain
boundary Dg b

ä (which is much faster than bulk diffusivity Dbulk
ä ), and a function of the

equilibrium vacancy concentration at the grain boundary, cg b
ä (in atom fraction). This

approach of Hull & Rimmer [6] provides a diffusional flux, driven only by applied stress
(they introduced a vacancy density C g b

ä = cg b
ä /Ω). This flux contributes to the growth

of the creep cavity by adding a volume Ω for each added vacancy. The creep cavity
surface connecting the grain boundary is equal to S = 2πaδ, where a is half the opening
width of the creep cavity and δ is the grain boundary thickness.

The void growth rate V̇ = JäSΩ can now be described as;

V̇ = Dg b
ä cg b

ä
kB T

σ

λ
2πaδΩ. (6.3)

During typical operating conditions, creep deformation is dominated by steady-state
creep; also known as stage II creep (see figure 6.1). For these conditions, the time to
failure t f depends directly on the steady-state strain rate ε̇ss . This is known as the
Monkman-Grant relation [25]:

ε̇ss t f =CMG , (6.4)

where CMG is the Monkman-Grant constant. At first glance equations 6.3 and 6.4 seem
to contradict each other. Since ε̇ss , is normally related to the bulk diffusivity and the
void growth rate V̇ to the grain boundary diffusivity.

The description of creep has been divided in microscopic damage descriptions [6,
26], and the macroscopic strain-rate description; i.e. the Monkman-Grant relationship
[4, 25]. In order to explain the relation between this large-scale deformation model and
the small scale damage model, the principle of constrained creep cavity growth was
proposed. This constrained growth was first introduced by Ishida & McLean [7] to ex-
plain discrepancies between theoretical unconstrained cavity growth and experimentally
observed creep curves. In their approach a grain boundary requires the ingress of a
dislocation to form a vacancy. Thereby the steady-state creep strain rate ε̇ss is thereby
coupled to the volumetric growth rate V̇ of a creep cavity [4].

The link between the steady-state strain rate ε̇ss and the cavity growth rate V̇ leads
to the Monkman-Grant relation. Dyson [8] and Riedel [4] showed that in many cases
the creep cavity growth rate will be limited by the strain rate of the material;

ε̇ss = V̇

4λ2d
, (6.5)

where d is the grain size, and 4λ2 is the grain-boundary surface area assigned to a
single cavity.

Building on the ideas of Dyson, Rice [14] formulated a model where the rate of
opening for creep cavities is a function of the strain rate by combining both effects. This



6.2. MODEL DESCRIPTION

6

101

was worked out by Needleman & Rice [15] and Budiansky [27]. Van der Giessen and
coworkers [16] analyzed this effect for different applied load combinations. However,
these studies do not treat the case where the strain-rate is a limiting factor on the
diffusional growth rate of a cavity, which is treated here. Cocks & Ashby [28] reviewed
all different creep regimes and provided maps of the damage rate as a function of
applied stress. This description can provide good agreement with experimental data [4]
for conventional creep, but it does not accurately describe self-healing systems. It also
does not provide an explanation why the strain rate and void growth rates are linked.

We follow the ideas of Ishida and McLean and assume that the ingress of a dislocation
to the grain boundary can cause the formation of a vacancy, which in turn contributes
to the growth of a creep cavity. If these vacancies are not formed continuously, the
void growth rate would come to a stop. Thereby the growth rate of creep cavities and
the creep strain rate are linked through the movement of dislocations, where the rate
limiting step is the dislocation climb in the bulk (leading to an activation energy similar
to the self-diffusion activation energy in the bulk).

The assumptions used in the proposed model are:
(i ) creep cavities form at grain boundaries perpendicular to the loading direction.
(i i ) Cavity growth rate and the steady-state strain rate are proportional.
(i i i ) Continuous formation of vacancies is required in order to maintain the cavity
growth rate, these vacancies form predominantly as a result of dislocation ingress at
grain boundaries. This means that the vacancy formation is the rate-limiting step for
the diffusional growth of creep cavities.
(i v) The ingress of dislocation to a grain boundary can cause excess volume and stress
concentrations to accumulate in the grain boundary. The relaxation of the excess volume
and the stress concentration on the grain boundary can happen by draining vacancies
from the grain boundary to the creep cavities.

6.2.2. DISLOCATION MOVEMENT AND VACANCY TRANSPORT
In the present models that describe creep cavity growth[6], the implicit assumption is
that the vacancy concentration remains at equilibrium values at a characteristic distance
from the creep cavity at all times. It is not a priori obvious that this should be true.
In fact the concepts of Ishida and coworkers [7, 29] that a grain boundary requires the
ingress of dislocations in order to be able to slide, can be combined with the proposal of
Dyson [8, 30] that grain-boundary sliding is a constraint for the growth of creep cavities.

This means that the movement of dislocations, which controls the strain rate of
metal that deforms under creep conditions, is also the rate-determining factor for cavity
growth. This explains the Monkman-Grant relationship: the strain rate determines the
time to failure by the formation of vacancies on the grain boundaries close in the diffusion
zone of the creep cavities.

When a dislocation network has developed and the steady-state strain rate causes
a certain number of dislocations per second to reach a grain boundary, each of them
caries an open volume [31], of which part is transfered to the grain boundary when the
dislocation impinges. The vacancy fraction in the grain boundary cg b

ä should depend on
the rate at which vacancies are generated due to the influx of dislocations.

The strain rate of a metal depends on the mobile dislocation density [32] ρdi sl , the
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climb velocity vcl of a dislocation jog and the Burgers vector b, as described by the
Orowan equation;

ε̇= bρdi sl vcl . (6.6)

The strain rate depends on the stress through the dislocation density [33] and the
climb velocity [34]. The stress-dependence of the strain rate is expressed with a power
law as, ε̇∝σn .

The stress dependence of the dislocation climb velocity [35] can be approximated
by,

vcl ≈
Dsd fclΩ

b2kB T
, (6.7)

where Dsd is the self-diffusivity, and fcl the force acting on a climbing dislocation.
During stage II creep with a constant strain rate, the average collective dislocation
movement is of interest for the deformation rate. The drift velocity of the dislocation
network can be correlated to the individual movement of dislocations[36]. The collective
climbing or gliding rate of dislocations in a dislocation network is unknown, but as an
approximation the individual movement can be considered. The strain rate according to
the Orowan equation (equation 6.6), can be linked to the Dyson equation (equation 6.5),
in order to obtain an equation of the creep cavity growth;

ε̇= bρdi sl vcl =
V̇

4λ2d
. (6.8)

The creep-cavity growth rate V̇ now depends on the influx of dislocations, and the
volume associated to these dislocations. The density of dislocations transported to the
grain boundary is associated to the creep void by length λ. The dislocation density
is a function of the subgrain size [37], for an observed subgrain size (dsub) of 1 µm
in Fe-Au [20], the dislocation density

(
ρdi sl

) = 1×10-12 m-2. For Fe-Au, it was found
experimentally [20–22], that at 550 ℃ and an applied load of 100 MPa, the strain rate
(ε̇) = 2× 10-8 s-1. The Burgers vector of bcc iron b = 2.5 Å. The climbing velocity of
the collective dislocation network then (vcl ) = 8×10-11 m s-1. The associated velocity
of the dislocation network is approximately 1 Å/s. This value is of similar magnitude
compared to the values found by Caillard for single dislocation kink movement, in the
presence of solute [34].

As was discussed in the previous chapter, when a dislocation impinges on or near a
grain boundary, it will provide a back stress on the following dislocations. The character
of a grain boundary is altered by the absorption of a dislocation and its associated
volume [38, 39]. This change in character, in the form of a stress concentration provides
a repulsive barrier for the influx of the next dislocation [40]. The increase of volume
in the grain boundary, leads to a more disordered structure and an excess vacancy
concentration. We postulate that the relaxation of the excess volume and the stress
concentration on the grain boundary can happen by draining vacancies from the grain
boundary to the creep cavities. This flux of vacancies from a disordered section of grain
boundary to the creep cavities, leads to a less disordered grain boundary and allows new
dislocation to ingress into the grain boundary. This link of the grain deformation rate
and the creep cavity growth rate causes the Monkman-Grant relation.
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6.2.3. SELF-HEALING
Experimentally it has been observed that the presence of supersaturated solute can result
in an autonomous filling of creep cavities and a significant extension of the creep life
time [20–22]. It is found that the self-healing mechanism does not significantly affect the
critical strain at rupture, but does reduce the steady-state strain rate, as schematically
illustrated in figure 6.3. The solute that segregates at the free creep cavity surfaces is
found to be transported along the grain boundaries from the supersaturated bulk. This
flux of segregating solute competes with the vacancy flux, and thereby reduces both
the cavity growth rate and the vacancy flux away from grain boundaries under stress
towards the creep cavities. This process is known as the Kirkendall effect.

Figure 6.3: Evolution of strain with time for a non-self-healing and a self-healing metal. The non-self-healing
metal has a shorter creep life time t f ,N SH , and a higher steady-state strain rate ε̇ss . The time to failure is
predominantly controlled by the strain rate in stage II.

6.2.4. SOLUTE TRANSPORT
After nucleation a diffusional growth of the precipitate initiates a flux of solute, driven
by a chemical potential;

Jsol =−Dsol

kB T
∇µsol . (6.9)

The difference in chemical potential of solute atoms between precipitation in the
bulk and on creep cavity surface, causes a preference for precipitate growth in the creep
cavities. The terms playing a role are, the possibility for the precipitate to reduce the
surface energy of the free surface of bulk material in the creep cavity, the possibility of
reducing the surface energy of a precipitate and the reduction in stress concentration
between the precipitate and the bulk material. The driving force for precipitation is then
given by this chemical potential, but also by the supersaturated solute which remains
in solution during service life. This is assumed to be the largest contribution to the
self-healing process in metals, and it is measurable with atom probe tomography [20],
the solute is then depleted from the grain boundary and neighboring bulk as a result of
the diffusion towards the precipitate.
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Figure 6.4: a. Schematic illustration of the vacancy transport near a creep cavity. The flux of vacancies through
a grain boundary towards a creep cavity during stage II creep causes this creep cavity to grow. b. When precip-
itation occurs inside the creep cavity, a solute flux causes the precipitate to grow. The solute flux

(
Jsol

)
causes

a vacancy flux (Jä) in the opposite direction due to the Kirkendall effect. The net vacancy flux can be zero,
preventing the creep cavity to grow.

The difference in diffusivity of host and substitutional solute causes a net diffusion
of vacancies in the direction opposite to the faster species. The flux balance of this
process can be approximated with the following Darken equation which, in the dilute
limit, can be simplified to:

Jä,out = 1

Ω
(Dsol −Dhost )∇csol . (6.10)

where Dhost is the diffusivity of the host atoms, Dsol is the diffusivity of the solute,
and ∇csol is the concentration gradient of the solute. Assuming that the supersaturated
solute ∆cg b

sol shows a concentration profile over the grain boundary with a characteristic
length λ, the gradient can be approximated by ∆csol =∇cg b

sol /λ. This approximation is
valid in the dilute limit, with negligible off-diagonal terms of the Onsager matrix [41, 42].

6.2.5. FLUX BALANCE AND CRITICAL STRESS
The opposite vacancy fluxes caused by the gradient in stress-induced chemical potential
and by the solute gradient, result in a net vacancy flux, either towards or from the cavity.
Self-healing can be achieved when,

J g b
ä,out ≥ J g b

ä,i n , (6.11)

where the flux of vacancies over the grain boundary towards the creep cavity Jä,i n

has to be smaller (or equal) than the flux of vacancies in the opposite direction Jä,out .
As discussed in the appendix, the outflux of vacancies from the creep cavity is in most
cases controlled by the diffusivity of solute through the bulk.
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When the two fluxes are equal a critical stress can be defined below which diffu-
sional creep can be self-healed. Combining equations 6.2, and 6.10, with 2πaδJ g b

ä,out =
8λ2 J bulk

ä,out (see appendix), the flux balance results in the critical stress for self-healing,

σcr i t = kB T

Ω

4λ3

πaδl

(
Dbulk

sol −Dbulk
host

)
∆cbulk

sol

Dg b
ä cg b

ä
. (6.12)

The critical stress for self-healing (σcr i t ), depends on the solute diffusivity compared
to the host diffusivity

(
Dbulk

sol −Dbulk
host

)
, the grain-boundary diffusivity

(
Dg b

ä
)
, the super-

saturated solute concentration (∆csol ), and vacancy concentration
(
cg b
ä

)
. The length l is

the diffusion length of the supersaturated solute in the bulk towards the grain boundary.
The maximum distance

(
lmax = π

3
a3

λ2∆c0Ω

)
can be estimated from mass conservation (see

appendix).

6.2.6. CAVITY GROWTH RATE FROM NET SOLUTE TRANSPORT
Creep cavity growth rate can be estimated from the net vacancy flux integrated over
the creep void area connecting the grain boundary:

V̇ = 2πaδJ g b
ä Ω. (6.13)

The rate limiting factor for the void growth is the formation of vacancies, which is
linked to the strain rate. The solute precipitation in the cavity is quickly limited by the
bulk diffusional flux to the area surrounding the creep cavity

(
4λ2

)
, see Appendix. For

stage II creep where the supersaturated solute is transported exclusively to the creep
cavities, it is possible to write the constrained cavity growth rate as;

V̇ = 2πaδ
Dg b

ä cg b
ä

kB T

Ωσ

λ
−8λ2

(
Dbulk

sol −Dbulk
host

) ∆cbulk
sol

l
. (6.14)

The depletion of supersaturated solute from the bulk close to the grain boundaries is
clearly observed by Zhang and coworkers [20]. This depleted zone points to a diffusion-
controlled process. This proves that grain-boundary sliding is not rate-limiting to the
deformation.

Using equation 6.8, the strain rate of self-healing creep steels can be formulated as:

ε̇ss = πaδ

2λ2d

Dg b
ä cg b

ä
kB T

Ωσ

λ
− 2

d

(
Dbulk

sol −Dbulk
host

) ∆cbulk
sol

l
(6.15)

6.3. MODEL PREDICTIONS
The predictions of this model are now compared to the experimental data of Fe-1at.%Cu
and Fe-1at.%Au alloys [20–22]. The solubility of copper in bcc-iron is obtained from
Chen and co-workers [43], the solubility of gold in bcc-iron from Okamota and co-workers
[44], the molybdenum solubility [45], and tungsten solubility from Landolt-Börnstein
[46]. The relevant part of the phase diagram (between 700 and 1400 K, and between
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0 and 4 at.% atom fraction of impurity) is presented in figure 6.5 for Fe-Cu, Fe-Au,
Fe-Mo, and Fe-W binary alloys.

Figure 6.5: Phase diagrams for Fe-Cu, Fe-Au, Fe-Mo, and Fe-W binary alloys. With the creep temperatures
550 °C and 650 °C indicated as dashed lines. The magnetic Curie temperature (TC ) is indicated for reference.
All fraction indicated in the figure are in atom%.

The grain-boundary self-diffusivity of iron was measured over a wide temperature
range [47]. The grain-boundary vacancy formation enthalpy

(
∆H g b

ä, f

)
is unknown, but

a reasonable approximation is to assume the vacancy formation enthalpy at the grain
boundary to be 50% of the activation energy for diffusion. In bcc iron there is a magnetic
effect on the diffusivity, which is represented by the factor

(
αg b

)
and the spontaneous

magnetisation s. The bulk diffusivities and the influences of magnetic ordering on their
activation energy for the substitutional elements used in bcc iron are obtained from the
manuscript of Versteylen and coworkers [48, and references therein].

The diffusivity parameters, the vacancy concentrations, the volume of a vacancy, the
thickness of a grain boundary, the considered creep cavity radius and spacing, and the
applied stress that are used as modelling parameters to obtain the critical stresses for
self-healing and the efficiency for self-healing are gathered in table 6.1. These model
parameters are used to estimate the critical stress for self-healing of diffusional creep
damage.

The critical stress was calculated for Fe-Au, Fe-Cu, Fe-Mo, and Fe-W alloys for
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Table 6.1: Model parameters for self-healing creep steel, for Fe-Au, Fe-Cu, Fe-Mo, and Fe-W alloys.

variable value unit reference

Qg b
ä 0.58 eV [47]

δDg b
0,ä 6.35 10-15 m3s-1 [47]

αg b 1.28 - [47]
Qbulk

Fe 2.83 eV [48]
Dbulk

0,Fe 0.35 10-4 m2s-1 [48]

αbulk
Fe 0.16 - [48]

Qbulk
Au 2.37 eV [48]

Dbulk
0,Au 0.68 10-4 m2s-1 [48]

αbulk
Au 0.10 - [48]

Qbulk
Cu 2.58 eV [48]

Dbulk
0,Cu 0.27 10-4 m2s-1 [48]

αbulk
Cu 0.10 - [48]

Qbulk
Mo 2.65 eV [48]

Dbulk
0,Mo 0.59 10-4 m2s-1 [48]

αbulk
Mo 0.10 - [48]

Qbulk
W 2.70 eV [48]

Dbulk
0,W 0.26 10-4 m2s-1 [48]

αbulk
W 0.10 - [48]

∆H g b
ä, f or m 0.29 eV -

δ 0.5 10-9 m -
d 30 10-6 m -
a 0.5 10-6 m -
λ 5 10-6 m -
Ω 11.7 10-30 m3 [49]

different solute contents (figure 6.6) assuming that all supersaturated solute experiences
a driving force for the selective precipitation at the creep cavity surfaces. The self-healing
process in Fe-1at.%Au, is found to be functional up to relatively high stresses, due to the
high diffusivity of Au in the Fe bulk. At high temperatures the efficiency drops quickly,
which is caused by; (i) the decrease in amount of supersaturated solute available for
self-healing and (ii) the diffusivities of solute and host are getting closer to each other
at high temperatures. In addition, the activation energy for grain-boundary diffusion
shows a considerable temperature evolution close to the Curie temperature [47].

The supersaturation can also be expressed as a homologous temperature TH , which
indicates (on the absolute temperature scale) the relative temperature compared to the
temperature at which the solute is fully dissolved [51]. Note that this depends on the
amount of solute present and is an indication for the driving force for precipitation.
For reference the supersaturation and the homologous temperature at T = 550 and
650 ℃ are listed in table 6.2.

The mechanism that reduces the growth rate of the creep cavities, also functions
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Figure 6.6: Critical stressσcr i t for the self-healing of creep damage as a function of temperature T for different
compositions of binary Fe-Au, Fe-Cu, Fe-Mo and Fe-W alloys. The nominal solute concentration (in at.%) is
indicated for each curve. molybdenum (Mo) and tungsten (W), are more soluble at high temperatures and
therefore analysed for higher solute contents.
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Table 6.2: Supersaturation and homologous temperature (TH ) of different solute containing alloys, at a tem-
perature of 550°C and in brackets (650°C).

alloy concentration (at.%) supersaturation (at.%) TH (-)
Au 0.25 0.10 (0.00) 0.92 (1.03)
- 0.50 0.35 (0.19) 0.83 (0.94)
- 0.75 0.60 (0.44) 0.79 (0.89)
- 1.00 0.85 (0.69) 0.76 (0.85)

Cu 0.25 0.19 (0.09) 0.85 (.095)
- 0.50 0.44 (0.34) 0.79 (0.88)
- 0.75 0.69 (0.59) 0.76 (0.85)
- 1.00 0.94 (0.84) 0.73 (0.83)

Mo 1.00 0.00 (0.00) 1.05 (1.17)
- 2.00 0.84 (0.25) 0.86 (0.96)
- 3.00 1.84 (1.25) 0.78 (0.87)
- 4.00 2.84 (2.25) 0.73 (0.82)

W 1.00 0.80 (0.67) 0.73 (0.81)
- 2.00 1.80 (1.67) 0.65 (0.73)
- 3.00 2.80 (2.67) 0.61 (0.69)
- 4.00 3.80 (3.67) 0.59 (0.66)

at stresses higher than the previously determined critical stress for self-healing. In this
range (σ>σcr ), the reduction in creep strain rate can be expressed in a parameter η;

η= 1− ε̇(∆csol )

ε̇(0)
= kB T

Ωσ

4λ3

πaδl

(Dbulk
sol −Dbulk

host )∆cbulk
sol

Dg b
ä cg b

ä
. (6.16)

The efficiency of the self-healing process goes to zero at very high stresses and to
η = 1 at the critical stress. In figure 6.7 the efficiency of self-healing is indicated as
a function of stress and temperature at different Au concentrations. The addition of
molybdenum and tungsten in solid solution is common for creep steels [52]. The addition
is generally related to the formation of nanoprecipitates in creep steels. When they are
added to remain in solution however the amount which can be solutionized at high
temperatures is much higher than for copper or gold, see figure 6.5. The efficiency of
self-healing can therefore be analysed for higher nominal concentrations, see figure 6.8.

The efficiency and critical stress for self-healing strongly depends on the relative
distance between cavities compared to the size of the creep cavities; λ

a . The difference
in bulk diffusivities between Cu and Au, predict that the self-healing process will work
approximately 3 times more efficient for Fe-Au than for Fe-Cu at the same degree of
supersaturation. This is in concurrence with what was found in experiments [50]. As
expected, temperature has a large effect on the efficiency of self-healing since the self-
healing and damage formation processes are diffusional in nature.

Self-healing behavior has potentially been observed in Al-Mg alloys as well [53],
where voids were filled by segregation of Mg to a void site. Examples for (partial)
self-healing of creep damage by precipitation may also have been observed in other
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Figure 6.7: Self-healing efficiency η = 1− ε̇(∆csol )
ε̇(0) , as a function of stress and temperature. The critical stress

for complete self-healing (η = 1) as function of temperature is indicated by the red line. The Fe-Au healing is
indicated as function of concentration between 0.25% and 1% of nominal concentration. Partial self-healing
(η< 1) is indicated by the other colors. The ferromagnetic transition temperature (TC ) for the bcc Fe matrix is
indicated.
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Figure 6.8: Self-healing efficiency η= 1− ε̇(∆csol )
ε̇(0) , as a function of stress and temperature. The critical stress for

complete self-healing (η= 1) as function of temperature is indicated by the red line. Fe-Cu and Fe-Au contain
1% nominal concentration of solute, and Fe-W and Fe-Mo are indicated with 4% nominal concentration of
solute. Partial self-healing (η < 1) is indicated by the other colors. The ferromagnetic transition temperature
(TC ) for the bcc Fe matrix is indicated.
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metals. For instance, Yousefiani and coworkers [54] presented the creep strain-rates of
overheated aluminum alloys. In their samples the precipitates of a 7075 aluminum alloy
were dissolved at high temperatures, which caused lower creep strain-rates, and bulky
precipitates that form in a similar nature to those formed at creep damage sites in Fe-Au
and Fe-Mo alloys [20, 21, 24].

6.4. CONCLUSIONS
A model was presented which predicts that supersaturated solutes can be used to
strongly reduce stage II creep rates and thereby extend creep lifetimes. This process can
be complementary to conventional methods for creep-resistant metals. The creep cavity
growth rate and the strain rate in metal alloys are closely linked during steady-state
creep. The creep cavities grow through the drainage of vacancies from grain boundaries
on which the cavities nucleate. The vacancy formation on the grain boundaries is linked
to the rate of ingress of dislocations to that grain boundary. During the selective pre-
cipitate growth process in the creep cavities, a transport of solute atoms takes place.
The creep cavities grow by a diffusional flux of vacancies under a chemical potential
gradient that originates from the applied stress. This vacancy flux can be countered by
a flux of substitutional solute towards creep cavities. The growth of precipitates can
thereby reduce growth-rates of a creep cavities, reduce the strain-rate, and increase the
creep lifetime. The self-healing efficiency can be described as a function of the amount
of supersaturated solute and the relative diffusivities, assuming selective precipitation at
the free creep cavity surfaces. It is found that Au is the most efficient solute element
for self-healing of creep damage, the addition of Au to a creep-resistant steel is thought
to have little effect on other precipitates and could be implemented in creep-resistant
steels. Mo and W provide a good and low-cost alternative that have potential for self-
healing as long as they remain in supersaturation. For this to be true a higher amount
of solute can be added.

6.5. APPENDIX: FLOW RESISTANCE FOR SOLUTE DIFFUSION
Starting from the local flux of solute atoms described by Fick’s law,

~Jsol =− 1

Ω
Dsol~∇csol (6.5.17)

and assuming a flow through a volume with a uniform cross section A and a length
L the total current of solute (in number of atoms per unit of time) can be expressed as:

I = V̇

Ω
=

∫
A

~Jsol ·d~S = ∆csol

R
. (6.5.18)

The flow resistance then corresponds to:

R = L

ADsol
(6.5.19)

Assuming that; (i) most of the solute that flows to the creep cavity originates from
the bulk (grain boundary volume is low compared to the creep cavity volume) and (ii)
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we only consider the time scales where the bulk diffusion is significant. Under these
conditions we can approximate the diffusional flow of solute atoms as a bulk diffusion
and a grain boundary diffusion process in series.

The flow resistance for the bulk diffusion can be approximated by assuming that
the effective cross section equals two times the grain boundary surface available for an
individual cavity Abulk = 8λ2 (to account for the bulk diffusion from both sides of the
grain boundary) and that Lbulk ≈ l =

√
πDbulk

sol t is the diffusion length, resulting in:

Rbulk = L

Abulk Dbulk
sol

≈ l

8λ2Dbulk
sol

. (6.5.20)

The time-dependent diffusion length can be approximated by its maximum value
at complete filling of lmax ≈πa3/3λ2∆csol . The flow resistance for the grain-boundary
diffusion can be approximated by assuming that Ag b ≈ 2πaδ and Lg b ≈λ,resulting in:

Rg b = L

Ag bDg b
sol

≈ λ

2πaδDg b
sol

. (6.5.21)

The total flow resistance between the nominal solute concentration in the bulk and
the solute at the creep cavity surface then corresponds to:

Rtot = Rbulk +Rg b ≈ l

8λ2Dbulk
sol

+ λ

2πaδDg b
sol

. (6.5.22)

The total supersaturation of solute is now divided over the bulk and the grain bound-
ary as: ∆cbulk

sol = ∆csol Rbulk /(Rbulk +Rg b) and ∆cg b
sol = ∆csol Rg b/(Rbulk +Rg b), respec-

tively.
For l ≈ lmax the ratio of bulk and grain-boundary flow resistances is:

Rg b

Rbulk
≈ aDbulk

sol

δDg b
sol

12λ5

π2a5∆csol ¿ 1. (6.5.23)

For the Fe-Au alloy with ∆csol = 0.01, a= 0.5 µm, λ = 10 µm, δ = 0.5 nm,
Dbulk

sol = 7.47 × 10-21 m2s-1, and Dg b
sol = 7.43 × 10-12 m2s-1 at T = 823 K, (Ta-

ble 1) we find Rg b/Rbulk = 0.03 ¿ 1. As a result we can assume Rtot ≈ Rbulk and
∆cbulk

sol ≈∆csol .
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