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Abstract

A high percentage of hospital admissions is due to surgical interventions. The operating theatre, which
holds the operating rooms (ORs), is therefore one of the key resources in hospitals. Managing the
operating theatre and finding an optimal OR schedule is complex due to the many factors that influence
it. Scheduling a surgery in an OR influences downstream facilities like the post anaesthesia care unit,
intensive care unit and general patient wards. This research was conducted at Leiden University Medical
Centre (LUMC), an academic teaching hospital in Leiden, the Netherlands. During the week, the LUMC
experiences a large variation in bed occupancy at the patient wards due to the way surgeries are
scheduled. The large variation in bed occupancy causes surgeries to be cancelled, because there are
no beds available at the ward. Because the OR theatre is such an expensive resource, we want to find a
schedule that utilises the OR optimally during opening times. In this research, we develop a clustering
method to cluster surgical procedures into surgery groups based on surgery duration and the length
of stay. Then, we extend a model that analytically determines the patient distributions over the wards
and intensive care for a given OR schedule. We define a mixed integer programming model with the
objective to maximise the OR utilisation and minimise the variation in bed occupancy at the wards and
intensive care. The model produces an OR schedule with the defined surgery groups assigned to days
in the OR. We use two different methods to solve the model: a global approach and a local search
heuristic, i.e., simulated annealing. The model has one nonlinear constraint and a complex objective
function. Therefore, we linearise the constraint and the objective function, which results in a mixed
integer linear program that is proven to be 𝑁𝑃-hard. Both approaches are tested on a dataset provided
by the LUMC. Furthermore, several scenarios are evaluated. We conclude that the mixed integer linear
programming method performs better and faster than the simulated annealing procedure. To obtain an
even better solution it is possible to use a combination of both. By using this method, the OR utilisation
of the LUMC can improve by 11% and the variation in bed occupancy can be decreased by 80%.
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1
Introduction

In this report, we perform research to find an operating room schedule that improves the operating
room utilisation while taking the required number of beds on the intensive care and the general patient
wards into account. We develop a tactical operating room schedule for the Leiden University Medical
Centre (LUMC). Our scheduling approach is based on the research of Van Oostrum et al. [2]. Contrary
to [2], we use an analytical model to determine the required number of beds on the intensive care
and wards. The analytical model is based on the research of Fügener [3]. An important difference
between the model of [3] and our model is that we schedule multiple types of surgeries per day instead
of assigning a whole day to a surgical specialty.
Section 1.1 gives background information about the LUMC, the hospital where this research was con-
ducted. The motivation for this research is described in Section 1.2. In Section 1.3, a problem de-
scription is given. Section 1.4 states the research goals that follow from the problem description. The
scope of the report is described in Section 1.5. Section 1.6 contains the research questions and outline
of the report.

1.1. Context
This research was conducted at the Leiden University Medical Centre, an academic teaching hospital
in Leiden, the Netherlands. After years of cooperation between university and academic hospital in
Leiden, the LUMC was founded in 1996. It is now a modern university medical centre for research,
education, and patient care. The LUMC strives to offer the highest quality in medical care as well as
in attention and care for its patients. Yearly, over 16.000 patients undergo surgery at the LUMC. The
hospital has an operating room complex that consists of 20 operating rooms, where over 12 different
specialties perform surgeries. The LUMC has multiple patient wards, i.e., a day treatment patient ward,
a short stay patient ward and multiple long stay patient wards. Together these wards house over 400
beds.
The starting point of this research was a request from the LUMC to develop an optimisation model that
would find a schedule for the operating room department that would minimise the variation of the bed
occupancy on the patient wards.

1.2. Research motivation
The demand for health care services is increasing in industrialised countries due to an ageing society
and technological progress [4]. However, hospital resources are under pressure caused by human
resource shortages. On the one hand, hospitals want to increase their production, while on the other
hand, they do not want to increase the costs. Furthermore, they want to maximise patient satisfac-
tion. Therefore, operations management is becoming increasingly important in supplying health care
in hospitals.

A high percentage of hospital admissions is due to surgical interventions. The operating theatre,
which consists of a pre-operative holding unit, operating rooms (ORs), recovery beds and post anaes-
thesia care unit (PACU), is therefore one of the key resources in hospitals. For most hospitals, the

1



2 1. Introduction

ORs are the most expensive resources, but also generate most revenue [5]. Therefore, the operating
theatre has great influence on how hospitals function in general. However, managing the operating
theatre and finding an optimal OR schedule is complex due to the many factors that influence it. When
generating an OR schedule, we need to consider all the facilities in the operating theatre, but also staff
(surgeons, nurses, anaesthetists, etc.), equipment and capacity of downstream resources and facili-
ties. Scheduling a surgery in an OR influences downstream facilities like the PACU, the intensive care
unit (ICU) and the general patient wards. Currently, while planning and scheduling the ORs, these
downstream facilities are not always considered even though the capacity of these facilities can be
limiting on scheduling surgeries. If there is no bed available on the ICU or general patient ward on the
day of a patients surgery, the surgery can be cancelled. Only considering the availability of ORs when
scheduling can lead to cancellation of surgeries, which leads to dissatisfied patients.

1.3. Problem description
In the current planning of the OR department in the LUMC, there is a regular shortage of capacity
being perceived. One of the causes is the unnatural (self-inflicted) variation in bed occupancy on the
general patient wards. In this research, we make the distinction between elective and emergency
patients. Patients who do not need urgent surgery, but together with their physician choose to have
surgery because it is beneficial for them, are called elective patients. Surgeries of elective patients
can be scheduled in advance. Emergency patients are in need of urgent surgery and are therefore not
scheduled in advance.

The LUMC uses a block-booking system when scheduling surgeries. Each surgical specialty is as-
signed to blocks (usually a day) in certain ORs. The schedule, which contains all these blocks, is called
the master surgery schedule (MSS). The MSS is a cyclic schedule and the MSS of the LUMC has a cycle
length of two weeks. The surgical specialties can schedule elective surgeries in the assigned blocks.
Many different factors are important when creating an OR schedule, i.e., available surgeons, surgery
duration, length of stay (LoS) on the wards and available equipment in ORs. Creating the OR schedule
is challenging, because of these many factors, but also because stakeholders may have different prior-
ities. The ORs are an expensive resource and should therefore be used optimally during their opening
hours. However, planners do not base surgery durations on data, but on the experience of surgeons.
Often, the available OR time is either not completely used or surgeries go on after the opening hours.

Currently, the OR schedule is made without considering consequences on downstream resources,
like the bed occupancy on the patient wards. Therefore, scheduling decisions in the OR can cause
problems in the downstream resources. In 2015, the number of cancelled elective surgical patients
in the LUMC was 1656, of which 312 were cancelled within the 24 hours before their surgery. These
numbers do not contain any patient related reasons, only cancellations due to capacity shortages or
other planning related reasons. Most frequently, these cancellations came from prioritising emergency
patients. However, schedulers in the LUMC notice that many of the cancellations occur because there
are no beds available on either the ICU or general patient wards, due to the large variation in bed
occupancy on the ICU and wards. Cancelling patients also means rescheduling these patients. This
is a nuisance for the patient as well as inefficient for the hospital. Rescheduling patients gives a lot
of extra work for hospital staff, in the LUMC this came down to 0.3 fte last year. Patients are often
informed of the cancellation on a short notice. The LUMC responded by increasing the capacity of
beds, planning less patients and using a fixed quota of admissions a day. However, they would like to
start scheduling smarter so that the variation in bed occupancy is reduced.

To tackle the variation in bed occupancy and maximise the utilisation of the OR a new tactical plan
for the OR schedule is required. Therefore, this research aims to find an OR schedule that minimises the
variation in bed occupancy and maximises the OR utilisation. Other objectives that can be considered
for this problem are minimising the number of required beds or minimising costs.
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1.4. Research Goals
Stakeholders from the hospital have set the following research goals:

• Minimise the variation in bed occupancy on the wards during the week.

• Minimise the variation in bed occupancy on the ICU during the week.

• Maximise the OR utilisation.

• Minimise overtime in the ORs.

Wewant to optimally use the ORs during the time that they are open. However, this should not effect
the downstream resources in a negative way. Bottlenecks are bed capacities in certain long stay wards
and the ICU. These capacity problems lead to cancellation of patients, which we try to avoid. Therefore,
the new OR schedule should minimise the variation in bed occupancy on these wards. Furthermore,
we also want to avoid overtime, i.e., ORs that stay open after their opening hours. Overtime in the
ORs is very expensive for the hospital. Therefore, the OR department tries to minimise the overtime.
However, if multiple surgeries in the same OR take shorter than expected, you can end up with unused
OR time at the end of the day. The staff, instruments and OR are available, but are not being used.
This is also something the OR department wants to avoid as much as possible. This means we want
to maximise the use of OR capacity within opening hours, but minimise overtime.

1.5. Scope
In operations research, we distinguish three different levels of planning, i.e., strategic, tactical and
operational. Strategic plans are designed to determine the future and long term goals of the entire
operation. This is the highest level of planning and serves as a framework for the lower levels. Tac-
tical plans support the strategic plans by outlining what various parts of the organisation should do.
Operational plans are day-to-day plans that focus on specific procedures or processes. We position
this research in the health care planning and control framework of Hans et al. [1] at the tactical level
of resource capacity planning, see Figure 1.1. We cluster surgical procedures based on factors like
surgery duration, LoS and specialty. These clusters of surgical procedures are then be planned in a
cyclic way to minimise the variation in bed occupancy. We use a model to analytically determine the
required number of beds for a given schedule. This research focuses on elective patient flows through
the ORs, ICU and surgical wards of the LUMC. The flow of non-surgical patients are out of the scope
of this project. This research provides the hospital with a scheduling strategy to tackle the variation in
bed occupancy and improve the OR utilisation.

Figure 1.1: Healthcare planning & control framework as described in Hans et al. [1].

1.6. Research questions
We have formulated research questions to structure the report. Each research question is associated
with a chapter. This is the outline of this report.
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What is the current situation and performance (Chapter 2)
This chapter is based on the experiences of practitioners working in the considered hospital obtained
through interviews with surgical and supporting staff. It discusses the clinical course of the patient,
the planning process and important resources of the hospital.

What models and solution methods are available in literature (Chapter 3)
A literature study is carried out to get an overview of OR scheduling and planning. It discusses three
main problems on different levels of planning by considering the mathematical models, solution meth-
ods and objectives used to optimise the OR schedule.

How should the OR schedule be optimised (Chapter 4)
This chapter describes the mathematical model to optimise the OR schedule in relation to the bed
occupancy on the wards and ICU. Surgical procedures are clustered into surgery groups based on LoS
and surgery duration. These surgery groups are then scheduled into the tactical OR schedule. Multiple
restrictions and a model to analytically determine the resulting bed occupancy are presented.

What solution methods are used (Chapter 5 and 6)
We use two methods to find a solution to our model.

1. A global approach where we linearise the nonlinear constraints and objective function and then
solve the corresponding mixed integer linear program. (Chapter 5)

2. A local search heuristic, namely simulated annealing. (Chapter 6)

Which method performs better (Chapter 7)
We determine the best parameter settings for both methods and compare the results of the global
approach and the local search heuristic. We also show results for a combination of the two solution
methods.

What influence do different scenarios have on the solution (Chapter 8)
Different scenarios are given and the solutions are compared to the default situation.

• Closing of the short stay ward during the weekend.

• Increasing the importance of certain wards.

• Minimising the bed occupancy.

• Planning more groups with high variance in surgery duration.

• Using different changeover times.

• Without using the master surgery schedule.

• Using data from another hospital.

What are the conclusions and recommendations (Chapter 9)
In this chapter, conclusions regarding the solution methods and their outcomes are given. Furthermore,
recommendations to the management are made and recommendations for further research are given.
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Situational analysis

In this chapter, an analysis is given of processes at the LUMC that are related to the problems formulated
in Chapter 1. The patient flow through the hospital and the OR department are described in Section
2.1. A brief overview of the current planning process is given in Section 2.2. Prior research regarding
patient logistics, which was carried out at the LUMC, is described in Section 2.3. This chapter concludes
in Section 2.4 by giving performance indicators regarding the OR and the wards.

2.1. Processes
This section describes the flow of surgical patients through the hospital to understand the processes
surrounding the problem. Further, a simplified version of the current planning process is given to un-
derstand where problems may occur.

2.1.1. Clinical route of the patient
We consider the typical flow of an elective surgical patient who stays longer than a day, see Figure
2.1. A patients route through the hospital generally starts in the outpatient clinic. Outpatient clinics
provide diagnoses and care for patients that do not need to stay overnight. If the patient is in need
of having surgery, they are put on the waiting list and have a pre-operative screening. On the day of
their surgery they are admitted to the ward of their surgical specialty. Within an hour of their surgery,
the patient is transferred to the OR complex. Here, they wait in the pre-operative holding area before
they are brought to the operating room where they undergo their surgery. After their surgery, patients
are brought to the recovery area, PACU, ICU or medium care unit (MCU), depending on their medical
condition. When the patients’ medical condition is sufficient, they are transferred to their ward. From
the ward, they can be discharged to go home, another hospital or a nursing home. Another possibility
is that the patient died during their stay in the hospital.

Figure 2.1: Surgical patient process.

5
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We also see the typical flow of emergency surgical patients in Figure 2.1. Usually, they will directly
go from the emergency department to the OR complex. From there, they follow the same route as
elective patients. During the time in the OR, the patients goes through several steps that are described
in Figure 2.2. First, the patient is transferred from the pre-operative holding area to the OR. The
moment a patient enters the OR, the OR in time is registered. At that time, the surgeon is not yet in
the OR. First, if necessary, the anaesthesiologist puts the patient under surgical anaesthesia. This is
called induction. Then, the patient is prepared for surgery, equipment is connected and instruments
are prepared. When the patient is ready to be operated on, the surgeon is called and the surgery
starts. This time is registered as the start of the intervention time. Once the surgeon is finished and
the wound is closed, the end of the intervention time is registered. This is the moment the surgeon
leaves the OR. Then, equipment is disconnected and the patient is brought out of anaesthesia. The
moment the patient leaves the OR and is brought to the recovery area is registered as the OR out
time. The OR out time minus the OR in time is called the session time, which includes the induction,
intervention time and end of the surgery. In this report, the surgery duration is defined as the session
time, so the gross OR time of a surgery.

Transport 
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Figure 2.2: Operating room process.

2.1.2. Important departments and areas
In this section, we describe various important departments and areas in the hospital. Table 2.1 explains
the abbreviations of surgical specialties used in this section.

Abbreviation Specialty

CTS Cardiothoracic surgery
ENT Ear, nose, and throat surgery
EYE Ophthalmic surgery
GS General surgery
GYN Gynaecology
NS Neurological surgery
OB Obstetrics
OMS Oral and maxillofacial surgery
ORT Orthopaedic surgery
PLA Plastic surgery
RAD Radiology
URO Urology

Table 2.1: Abbreviations of the surgical specialties in the LUMC.

Outpatient clinic In the outpatient clinic, patients are diagnosed, treated or undergo a small proce-
dure. Because the patients do not stay overnight, they are called outpatients. After their visit at the
outpatient clinic, patients are often scheduled to be admitted as inpatients. In case the patient needs
surgery, he will be sent to get a pre-operative screening and is placed on the waiting list. Most patients
enter the hospital through the outpatient clinic.
Pre-operative Screening (POS) Before surgery, patients have to visit the POS. Here, a health check
is done to make sure the patient’s condition is sufficient to undergo surgery. The patient also receives
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information regarding his surgery, e.g., medicine use and if he has to be sober or not.
Emergency department (ED) The emergency department offers acute care. Patients with a wide
range of medical issues arrive unscheduled. The urgency varies between patients. The hospital is
able to forecast the demand on the resources of the patients entering the hospital via the emergency
department. Emergency surgery patients go through an adapted pre-operative process.
Operating room (OR) In the operating rooms, surgeries take place. The master surgery schedule
of the LUMC from 2016 is given in Figure 2.3. There are 20 ORs in the LUMC, that are assigned to
a specialty each day of the week. This schedule repeats itself every two weeks. Every week, two of
the cardiothoracic ORs, two of the neurosurgery ORs and one OR of the specialty ear, nose, throat
have extended opening hours. Once every two weeks, the specialty plastic surgery (PLA) has extended
opening hours for one of their ORs. On Thursdays, OR 10 starts later. The other ORs have regular
opening hours from 8.00-16.00. The LUMC works with dedicated emergency ORs. In these ORs, noth-
ing is scheduled, so when an emergency patient needs to undergo surgery most of the time there is
an OR available. In theory, the ORs are designed in a way that every surgical procedure could take
place in every OR. The equipment can be moved, but this is time consuming and in general not very
productive. Therefore, the preferences of the specialties are taken into account while scheduling. In
Table 2.2, we see which specialties can operate in which OR.

Figure 2.3: Master surgery schedule 2016 of the LUMC.

OR Specialty

1 ORT
2 GS, ORT, Emergency OR (Em. OR)
3 URO
4 OB, Em. OR
5 GS, Em. OR
6 GS
7 GS, GYN
8 GS
9 GYN, PLA
10 OMS, PLA, GS, Em. OR

OR Specialty

11 EYE
12 Em.OR
13 NS
14 NS
15 ENT
16 ENT
17 CTS
18 CTS
19 CTS
20 CTS

Table 2.2: ORs with the specialties that operate in them.
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Recovery & PACU After their surgery, patients are brought to either the recovery or post anaesthetic
care unit. Here, they are monitored, while they recover from surgery. This can take half an hour
to multiple hours. Once it is clear that the patient is recovering well from the anaesthetics, he is
transferred back to his ward. In the recovery there are nurses, but no physicians. Patients who need
to be monitored more closely are placed on the PACU. Therefore, there is always one physician present
on the PACU.
ICU and MCU The intensive and medium care units are for patients that need urgent care, because
of there medical condition. On the ICU and MCU, patients are monitored more closely by more medical
personnel than on regular patient wards. Patients are brought to these facilities straight after their
surgery.
General patient wards A ward is a facility of a medical specialty in the hospital where patients get
specific care. In the LUMC, there are three types of wards: day clinic, short stay (less than five days)
and long stay (more than 5 days). However, patients who need specific medical care are placed on
the long stay ward even though their stay might be shorter than 5 days. Emergency patients are also
placed on the long stay wards. All wards have a certain capacity of available beds. This depends on
both the actual beds and on the available staff. We make the distinction between opened and closed
beds. Opened beds are beds that are staffed and closed beds are physically there, but not staffed. In
this research, we refer to opened beds as beds. When we mention a shortage of beds, we actually
mean a shortage of staffed beds. We consider multiple wards in this research that can be divided
into three categories: day treatment, short stay ward and multiple long stay wards. They have the
following opening times:

• day treatment: Monday to Friday: 7.00-20.00;
• short stay: Monday to Friday, Saturday until 12.00;
• long stay: every day of the week.

2.2. Planning process
In Figure 2.4, an abstraction of the planning process is shown. The master surgery schedule of the
LUMC states which specialties are assigned to certain days in the ORs, i.e., OR-days. Around two
weeks before an OR date, a patient is planned in the concept planning. This concept planning is made
without regarding any resources other than the OR capacity. In the current situation, there are separate
planners for the OR schedule and the general patient wards. Each specialty has someone to make a
schedule for the assigned OR-days. This can be a planner, but also a physician, physician’s assistant
or a nurse. They schedule with intervention time, based on intuition or experience. Resource conflicts
are often avoided by experience, but the way to handle restrictions is not formalised. Regular ORs are
open for 480 minutes. Of that time, 360 minutes of intervention time is scheduled to accommodate
for, e.g., induction, preparation and clean up. This can lead to constant over- or underestimation of
surgery durations.
Furthermore, the planners do not have a good overview of the bed occupancy on the wards in this
phase of planning. The planners do take several scheduling restrictions into account.

Availability of instruments The amount of instruments determines how many surgeries of the same
type can be planned on the same day. The following restrictions influence the planning.

Surgeons capability Surgeons are assigned to certain days in a certain OR. The surgeon scheduled
to a certain OR-day needs to be able to perform all surgeries that are scheduled on that day. The
LUMC is an academic hospital. Therefore, surgeons have specific skills and preferences towards
certain type of surgeries. In general, surgeons cannot perform all surgery types within their
specialty. Therefore, surgeons usually only perform a subset of all the surgery types in their
specialty. However, they do not work the same shifts every week. This makes it extra difficult for
planners.

Capacity of the holding and recovery areas The holding and recovery areas need to house the
patients that are scheduled in the OR. If many surgeries end at the same time it may cause a
shortage of capacity on the recovery unit.

However, due to limitations in the available data and preferences of stakeholders, these restrictions will
not be taken into account.
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Once surgeons have agreed on the concept planning and patients agree with their OR date, the
week programme is frozen and no further changes are allowed. However, only after this moment bed
capacity on the general patient wards and the PACU is considered. Bed availability on the ICU is only
known at the day of the surgery, which leads to last minute cancellations.

Figure 2.4: Planning process of elective surgical patients.

2.3. Previous research in the LUMC
The LUMC is running multiple projects regarding patient logistics. They include the problems surround-
ing the bed occupancy on the general patient wards. When the problem was observed, the planners
started using a fixed quota of admissions per day. This helped to stabilise the patient inflow. However,
it did not control the patient outflow. More beds and staff were placed on the wards with the most
capacity problems. This was not a permanent solution to one of the root causes, the OR schedule.
Therefore, the LUMC conducted research regarding the MSS. An optimisation model was applied to
find an optimal MSS regarding the bed occupancy on the wards. It also regarded the effects of having
blocks of half OR-days instead of only blocks of whole OR-days. However, this still lead to problems.
For example, a specialty that had an OR-day on Monday and Wednesday performed on average two
surgeries on Monday and six on Wednesday, while the model only took the mean number of surgeries
into account on each day. Thus, there would still be a peak of patients needing a bed on Wednesdays.
Therefore, the outcome of this model was not put into practice.

In the search for a new MSS, only the bed occupancy on the wards was taken into account. However,
the bed occupancy on the ICU and MCU are also limiting factors. In this project, we create a schedule
that specifies how many and what type of surgical procedures should be scheduled on what day such
that the bed occupancy on the wards and ICU stabilise during the week.

2.4. Performance indicators
In this section, we describe the indicators that we use to evaluate the performance of the system. In
Section 2.4.1, we discuss the OR utilisation and the problems of under- and overtime. The indicators
regarding the bed demand at the wards, ICUs and MCUs are described in Section 2.4.2.

2.4.1. OR utilisation and overtime
ORs with regular opening hours are open from 8.00-16.00 on Monday to Friday for elective patients.
Exceptions are the extended opening hours for the cardiothoracic ORs, neurological surgery ORs, plastic
surgery OR and the OR of the specialty ear, nose and throat, see Figure 2.3. We are developing a
tactical surgery scheduling approach. Therefore, we assume that the availability of OR capacity is
known beforehand. The OR department perceive that they are experiencing undertime, i.e., times
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Figure 2.5: Day in OR with overtime and changeover times.

when no procedures are done during opening hours. These times are usually at the start or at the end
of the day. The planners schedule with mean intervention times. Because surgery durations are not
deterministic this can cause problems. Often surgeries take shorter or longer than expected. If multiple
surgeries scheduled in the same OR take longer than expected, either the last planned patient will be
cancelled or the OR has to stay open after opening hours. Overtime and undertime are expensive for
hospitals. Therefore, we are interested in the utilisation and overtime of the ORs. The intervention
time does not accommodate for, e.g., induction and preparation. Furthermore, time is needed between
surgeries to clean the OR and bring in the next patient. The time between a patient leaving the OR
and the next patient entering the OR is called the changeover time, see Figure 2.5. Currently, every
OR-day gets a fixed amount of time for changeover, induction, preparation and clean up. However, the
time needed for this can be very different for differently scheduled OR-days.

We define the OR utilisation as:

OR utilisation =
∑ (OR out - OR in) during opening hours

Total available OR time
⋅ 100%.

For the OR utilisation, we only consider session times, i.e., the time from a patient entering the OR
until the patient leaving the OR, during the opening hours of the OR. In Figure 2.5, we see an example
of an OR-day. During opening hours the sum of session times is equal to 400 minutes, the last 30
minutes are not taken into account because they happen outside the opening hours of the OR. The OR
utilisation for this OR-day is given by 400/480 ⋅ 100% = 83.3%.

Figure 2.6: Percentage OR utilisation per specialty.
Figure 2.7: Percentage of OR utilisation per month.
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Figure 2.8: Average OR utilisation per hour of the specialty ENT versus the
scheduled OR utilisation.

Figure 2.9: Percentage of overtime per specialty.
Number of hours overtime devided by the total

scheduled hours.

Figure 2.10: Percentage of days with overtime per
month.

OR utilisation In Figure 2.6, we see the average OR utilisation per specialty. We only take the
OR-days into account that are on weekdays. This percentage is based on the sum of session times
during the opening hours of the OR divided by the total available hours. Holidays, closed ORs and
extended opening times are taken into account. These figures are based on data from 2015. The
ORs have an average OR utilisation of 73%. Between surgeries, there is a certain changeover time,
when the ORs are cleaned and a new patient is brought in. However, this should only take 15 minutes,
according to OR personnel. Planning for a 100% OR utilisation leads to overtime due to variation in
surgery durations and the need for changeover time. From interviews with management we set the
preferred OR utilisation at 85%.
In Figure 2.7, we see the overall OR utilisation per month. In July and August, the LUMC works with
a reduced OR schedule due to the summer holiday. This is taken into account when calculating the
OR utilisation. However, the OR utilisation is still slightly lower during these months. At the end of the



12 2. Situational analysis

year, the OR utilisation increases slightly.
In Figure 2.8, we see the average OR utilisation per hour in the OR for the specialty ENT. Only 70% of
the surgeries start on time. In the LUMC, one anaesthesiologist is responsible for two ORs. However,
all ORs open at the same time. This may be one of the reasons why the ORs do not all start on time.
Other possible reasons were concluded from interviews with staff. Surgical staff has daily morning
meetings that can cause personnel to be later at the OR. Furthermore, the start of the OR-day is not
clearly defined, sometimes it is denoted as the moment a patient enters the OR other times as the
moment a surgeon should start the surgery.
In Figure 2.8, we also see a lower OR utilisation at the end of the day. This is caused by inaccurate
estimation of intervention times and change over times instead of using quantitative criteria when
scheduling. To minimise overtime, the OR management has set the rule that no new surgeries can
start after 14.00 hour, when they do not expect to be done before 16.00 hour. This can also lead to
undertime.
Overtime in OR In Figure 2.9, we see the percentage of OR-days where overtime occurred per
specialty. In Figure 2.10, we see that the percentage of overtime at the end of the year increases.
Production goals for each specialty are determined at the beginning of the year. To reach these goals
before the end of the year, more surgeries are planned during the last months of the year, which leads
to more overtime. The average overtime when not regarding the emergency ORs is 32%. Overtime is
very expensive for the hospital and should therefore be minimised.

2.4.2. Bed demand
We discuss two indicators concerning the wards: the required number of beds on the wards and
ICU/MCU and the bed demand on the short stay ward during the weekend.

Required numbers of beds In Figure 2.11 and Figure 2.12, we see the bed occupancy of elective
patients for two random weeks in the year 2015 on the wards VCH1 and VBS3 respectively. There is
a lot of variability in the bed occupancy. During the weekend, there are no elective surgeries, so we
see lower bed occupancies. With the current planning process, it is difficult to estimate the number
of required beds. The LoS of patients can vary and is sometimes difficult to predict. The variation
in bed occupancy on the wards causes patients to be cancelled for surgery, because there is no bed
available on the ward. With the beds on the ICU, it is even more difficult. Patients that need a bed on
the ICU after their surgery need to wait until the day of their surgery to know if there is a bed available.

In Figure 2.13 and 2.14, we see the bed occupancy on the ward VCH1, for the beginning of the
year 2015 and the end of the year 2015. As with the OR utilisation and overtime, we see that at the
end of the year the bed occupancy is higher. There is also a clear difference between the days of the
week. Near the end of the week the bed occupancy goes up.

The goal of this research is to minimise the variation in bed occupancy during the week. This should
lead to less cancellations of surgeries and a more balanced workload for staff at the wards. We deter-
mine the mean variation in bed occupancy during the week for each ward, based on data from 2015.
Since no surgeries are performed on Saturdays and Sundays, we expect the bed occupancy to be lower
during the weekend. The main problem with the variation in bed occupancy comes from cancelling
elective patients due to a shortage of beds on the wards. Therefore, we do not take Saturdays and
Sundays into account when calculating the variation in bed occupancy. We define the variation in bed
occupancy in one week as the difference between the maximum and minimum bed occupancy during
that week. In Table 2.3, we see the mean variation in bed occupancy during the week. This is calcu-
lated by determining the variation in bed occupancy for each week of the year and then calculating the
mean for each ward. The sum over the variation in bed occupancy over all wards is 53 beds. The aim
of this research is to find an OR schedule that reduces this variation.
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Figure 2.11: Bed occupancy on the ward VCH1
from two weeks in March in 2015.
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Figure 2.12: Bed occupancy on the ward VBS3
from two weeks in September in 2015.
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Figure 2.13: Bed occupancy for each day of the
week from January to July in 2015 on ward VCH1.
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Figure 2.14: Bed occupancy for each day of the
week from September to December on ward VCH1.

Ward Mean variation in
bed occupancy

Minimum variation
in bed occupancy

Maximum variation
in bed occupancy

DBVL 9 4 18
KVVL 13 3 24
VBS3 5 1 10
VCH1 4 1 8
VCH2 4 1 13
VCH3 5 1 12
VERL 2 0 7
VIG1 1 0 3
VPL2 2 0 4
VRVK 4 1 10
ICU 4 1 8

Table 2.3: Mean variation in bed occupancy during the week.

Short stay ward during the weekend The short stay ward of the LUMC houses patients that
have an expected LoS of less than five days. It closes every weekend, because of personnel costs.
However, patients can have a longer LoS than expected. Patients that cannot be discharged before
Saturday need to be transferred to one of the long stay wards. If they expect that a patient is not
going to be discharged on time, a bed is reserved on the long stay ward on Friday. Sometimes the
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reserved bed is not even necessary, because the patient is discharged in time. Stakeholders in the
LUMC are interested in the benefits of keeping the short stay ward open during weekends versus the
costs. However, this is out of the scope of this research. Therefore, transferring patients from the short
stay ward during weekends should be avoided as much as possible.
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Literature review

This literature review focuses on OR scheduling and planning. OR scheduling can be divided into
three problems, namely the case mix problem, the master surgery scheduling problem and the surgery
scheduling problem. In this literature review, we consider the MSS problem, which is located at the
tactical level of planning. Section 3.1 gives a brief overview of what has been studied in OR scheduling
and planning with consideration of downstream facilities and resources, while using block scheduling.
Section 3.2 focuses on surgical case scheduling and section 3.3 covers the assigning and sequencing of
surgical procedures within the allocated time blocks. Section 3.4 describes the construction of surgery
types.

Over the years, much research has been conducted on OR planning and scheduling. Multiple review
papers have been written on this topic. Cardoen et al. [6] and Guerriero and Guido [5] both take a
different approach to provide an overview of related papers. Cardoen et al. [6] propose a review that
is structured using descriptive fields. The fields are either related to the problem setting (e.g., patient
characteristics or performance measures) or technical features (e.g., research methodology or uncer-
tainty incorporation). They conclude that researchers should put effort into using stochastic activity
durations instead of focusing on deterministic approaches. Furthermore, a better integration of OR
downstream and upstream facilities and resources should be favoured. However, both those sugges-
tions would lead to an increase of the computational complexity. Guerriero and Guido [5] give a more
general survey, where they aim to provide an overview of how operational research can be applied
to OR scheduling and planning. They pay particular attention to the most interesting mathematical
models and solution approaches. Their classification is based on a more traditionally used approach
where a distinction is made of three different hierarchical decision levels, i.e., strategic (long term),
tactical (medium term), and operational (short term). Cardoen et al. [6] chose to use a different type
of classification because of the ambiguity of these hierarchical decision levels and their lack of detail.
Both papers conclude that an efficient OR schedule is obtained when not only the demand of OR related
resources are considered, but also other resources, such as the capacity of the ICU and other wards.

This research focuses on minimising the variation of the bed occupancy on the wards when creat-
ing an OR schedule. Therefore, this literature review does not take articles into account that consider
OR planning and scheduling without considering downstream facilities and resources. We conduct our
literature search using search engines PubMed, Web of Science, Embase and Scopus. With a query
based on Van Oostrum et al. [2], Vanberkel et al. [7] and Fügener et al. [8] we found 294 unique
articles. By first selecting on title and then on abstract we found 27 relevant articles. We divided this
literature review into four subjects: developing an MSS, surgical case planning, assigning surgeries to
blocks and sequencing these surgeries and classification of surgeries.
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3.1. Developing master surgery schedules
Search terms: operating room planning, operating room scheduling, bed occupancy, peak bed occu-
pancy, master surgery schedule, block scheduling.
Operations research is extensively applied in health care and received considerable attention in liter-
ature. The operating room is a very expensive resource that most patients, who are in hospital, use.
Managing the operating room is a difficult task because of conflicting preferences of stakeholders,
scarcity of expensive resources and conflicting priorities [6]. Therefore, a large amount of literature on
operating room scheduling is available. In this section we focus on articles that develop MSSs, while
considering downstream resources. The found articles are divided by the type of optimisation model
and main solution approach they use.

The term MSS is used in different ways. Beliën and Demeulemeester [9] see it as a schedule that
is specialty specific, meaning OR time is assigned to a surgical specialty. The surgical specialties then
determine the patients that they schedule in their OR blocks. However, Van Oostrum et al. [2] uses
the term MSS for a more specific schedule where OR blocks are being allotted to specific surgical
procedures. In [10], the term MSS is not used and instead they use the term surgical block scheduling.
In this research we use the term MSS as in [9], assigning blocks of OR time to a speciality.

3.1.1. Mixed integer programming
Beliën and Demeulemeester [9] describe the first models that consider the bed occupancy at the
wards when creating an OR schedule. The models for building surgery schedules they propose and
evaluate should result in leveled bed occupancy. Elective surgeries of the same type are scheduled in
blocks. These blocks are assigned to days in the planning horizon while minimising either the highest
expected bed occupancy peak or the highest bed occupancy variance. They also propose a model that
minimises a combination of both. They take a stochastic LoS for each operated patient into account.
The LoS is assumed to be a multinomial distribution function. Two approaches are used: a mixed
integer programming (MIP) based approach, linear as well as quadratic, and a metaheuristic approach
(simulated annealing). They conclude that the best results concerning solution quality and computation
time are obtained by a combination of simulated annealing and a quadratic programming model. In
the extension Beliën et al. [11] three objectives are taken into account: leveling the bed occupancy at
the patient wards, minimising the sharing of ORs between different surgeon groups and making the
MSS as repetitive as possible. The theoretical model is extended so it includes multiple recovery wards,
which should lead to a more realistic model. They use the same solution approaches as [9].
In [9], the number of patients per operating room block was assumed to be deterministic dependent
on type of surgery and fixed for each surgeon, while in [11] they assume a multinomial distribution
function for this variable. The extension further consists of making flexible block sizes and allowing the
allocation of OR time to individual surgeons instead of surgeon groups. They modify the mixed integer
programming models such that they take the new objectives into account. Simultaneous incorporation
of all three objectives leads to a large mixed integer program that becomes computationally intractable.
Therefore, they use a modified version, that includes the new objectives, of the simulated annealing
procedure described in [9]. The observations made with these procedures leads to two hierarchical
goal programming approaches that both consist of two goal programming models that are solved
successively. They develop a decision support system that incorporates all these solution approaches
to develop an MSS. None of the solution approaches give an overall best solution, but the writers believe
that the real power of the tool lies in visualising the OR-schedule and the resulting bed occupancy so
managers can make informed decisions about their schedules.
Santibanez et al. [10] also develop a mixed integer programming model to schedule surgical blocks for
each specialty. They study the best trade-off among OR time availability, downstream resources and
patient waiting lists. In contrast to [11], they use averaged values for the LoS. The MIP model was
used to deal with two different situations: maximising daily bed utilisation and determining maximum
throughput and mix of patients. For the first objective the total amount of OR time and throughput of
patients is given, for the second objective the availability of resources is known. They considered eight
hospitals for scenario analysis. The results showed that they could reduce resource requirements such
as beds, while maintaining the throughput of patients.
Yahia et al. [12] present a mixed integer linear programming (MILP) model that levels the daily beds
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and nurses’ workload, while considering surgeons preferences. They define a parameter that is a
weighting factor between leveling the beds and leveling the nurses’ workload. The MILP model is
solved for different values of this parameter to find a desired solution. In this paper, no uncertainty in
variables like the LoS is considered, which makes the model less realistic.
Fügener [3] combines a strategic with a tactical MSS problem, i.e.,they do not only decide what type
of OR blocks to schedule when, but also decide how many blocks each specialty should get assigned.
Their approach maximises hospital revenues while considering the ICU and general patient wards. A
MILP model is set up to assign OR blocks to medical specialties, where the resource demand in ICs
and wards is calculated by a stochastic patient flow model based on Fügener et al. [8]. By optimising
revenues generated by surgeries the author hopes to give a reliable input for management decisions.

3.1.2. Analytical approach
Vanberkel et al. [7] and Vanberkel et al. [13] assign OR time to specialties, as in Beliën and De-
meulemeester [9]. They believe there are downsides to mixed integer programming models as well
as simulation models. They think that the scope of mixed integer programming models is limited,
because it needs to remain solvable. And even though simulation models can capture a broad scope,
they believe them to be inexact and the development time consuming. Therefore, they take an an-
alytical approach that can be used to quickly evaluate a proposed MSS for additional factors. Their
model computes the ward occupancy distributions, the patient admission/discharge distributions and
the distributions for the ongoing interventions/treatments required by recovering patients. The model
was applied at the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital. In [13], a new MSS
was developed by the authors together with stakeholders in the hospital. They chose the best MSS by
swapping OR blocks and surgical specialty assignments. According to the authors a better MSS may
have been found by a search heuristic, but this would lead to a very complex model that may not have
gotten the same level of staff understanding and support. The authors want their model to be used as
a decision support tool for both tactical and operational decision levels.
Fügener et al. [8] based their research on [13]. They also take an analytical approach, given an MSS
they calculate the exact distributions of patients at downstream resources. Contrary to [13] they take
multiple wards and the ICU into account, because this can be an important bottleneck. The objective is
leveling bed demand and reducing weekend bed requests, so that the costs of downstream resources
are minimised. For the exact objective function several heuristic solution methods are considered:
swapping MSS blocks, a simulated annealing approach and a simple branch-and-bound approach. The
latter is only applied to small instances. They also tested solution methods where they approximated
the objective function and then used an exact solution method. However, for large instances the com-
putation time became long. Fügener [3] based their patient flow model on the algorithm presented in
[8] to calculate the exact distributions of patients at downstream resources. They extend it by including
multiple ICs and outpatient flows.
Van Essen et al. [14] also use the analytical approach of [13] to determine the number of required beds.
The developed model consists of a list of linear constraints and a complex nonlinear objective function.
The objective of the model is to minimise the number of required beds, which should lead to a leveled
bed occupancy. Two solution methods are used, a global approach: integer linear programming, and
a local search heuristic: simulated annealing. To use the global approach, the objective function in
linearised by replacing the objective function by the maximum of expected required beds. This yields
better solutions than simulated annealing. It performs faster and gives better results. This is different
from the conclusion of [9], where simulated annealing performs better. The paper also addresses what
happens when you relax certain constraints. For example, allowing surgeries during the weekend gives
a lower number of required beds.
As in [3], Fügener et al. [15] based their patient flow model on [8]. They extend it by including out-
patients and emergency surgeries in weekends. The research aims at analysing the effect of three
different MSS options. The first MSS represents the current practice at the hospital. The two other
options are generated based on discussions with the management. One MSS is designed to avoid
bed demand in the weekend, because working on weekends is more expensive. The last MSS is a
compromise between the first and the second to avoid high peaks in bed occupancy during the week
and also avoid bed occupancy at the weekend. The developed model determines, from historical data,
the probabilities that certain number of patients are in the ward or ICU at certain days in the planning
horizon. From this, they calculate the exact quantiles of the bed occupancy in the wards and the ICU for
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these three MSS options. It is assumed that patients from the same specialty have they have the same
chance of going through the ICU and the that they have the same LoS. With the three different MSSs,
simulations were performed to find the impact on the bed occupancy at the downstream resources.

3.1.3. Other studies
Bekker and Koeleman [16] analyse the impact of variability in admissions and LoS on the required
amount of bed capacity with an approximation method. When a weekly admission pattern is given,
their method determines the mean bed occupancy of each day. They determine the admission quota
for elective patients with a quadratic programming model that minimises the difference between the
desired and expected occupancy. Another aim is to gain practical insights from their observations.
They find that more variation in admissions leads to a higher variability in bed occupancy. Reducing
the variability of the LoS only leads to less variable bed occupancy when the admissions variability is
low. They conclude that arrivals should be evenly spread over the week to get the most time-stable
performance.

3.2. Surgical case scheduling
Search terms: Surgical scheduling, operating room schedule, bed occupancy, variation
In this section we consider articles that schedule surgical procedures instead of assigning blocks to
specialties. This is still on a tactical level, because types of surgical procedures are scheduled.

3.2.1. Mixed integer programming
Van Oostrum et al. [2] plan elective surgical types that are frequently performed in a cyclic schedule.
The objective is to minimise the OR capacity and to level the requirement of hospital beds. Planned
slack is used to incorporate the stochastic nature of surgery durations. However, the LoS is assumed to
be deterministic. The solution approach consists of two phases. In the first phase the requirement of
hospital beds is ignored and an integer linear program (ILP) is formulated and solved with an implicit
column generation approach. In the second phase the problem is formulated as a MILP with the
objective to minimise the maximum needed hospital beds, which can be solved within reasonable time
bounds. They incorporated three different types of hospital beds by giving a priority factor to a certain
type of bed.
Adan et al. [17] assign surgeries to a day in the cyclic schedule, as in [2]. However, they use a stochastic
LoS, which outperforms a deterministic LoS. Multiple downstream resources are included: medium care
beds, ICU beds and ICU-nursing staff. In contrast to [2] and [9], Adan et al. [17] are less interested
in finding the best mathematical solution and more aimed at offering support and information that can
be implemented in practice. The objective from [17] also differs from the objective of [2] and [9] as
they do not minimise the required beds, but assume a fixed amount of beds and minimise the over-
and under-utilisation of these beds. Their MILP with the LoS expressed stochastic was not solved to
optimality, but the writers believe their solution is good. The extension of this model, Adan et al. [18],
also accounts for emergency patients instead of just elective patients. They plan a higher number of
patients than needed for the elective stream, so they adapt the tactical plan to the actual stream of
patients. They solve their model to obtain solutions to the tactical problem for elective patients. Then
the obtained elective schedule is modified using the flexibility so it also includes emergency patients.
They use simulation to create an operational schedule based on the obtained tactical schedule with
emergency patients.

3.2.2. Simulation
Min and Yih [19] investigate a stochastic surgery scheduling problem while considering ICU beds.
Surgery durations and LoS on the ICU are assumed stochastic with known distributions. An important
assumption they make is assuming all patients in the same surgical service group follow identical
distribution of surgery duration. The LoS is generated randomly, where they use the same mean value
and discrete distributions per surgical group. They formulate two solutions: one from a stochastic
optimisation problem and one from a deterministic expected value problem. With a simulation study,
they compare the performance of the two models. They claim the benefits of the stochastic optimisation
problem over the deterministic expected value problem outweigh the higher computation costs.
Banditori et al. [20] propose a MIP model to find an MSS. A block scheduling approach is assumed
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where a number of OR blocks is assigned to a specialty on a monthly basis. Patients are assigned to
surgery groups within the specialties, see 3.4. The solution of the proposed model indicates, for each
day of the month, how many cases from each surgery group need to be treated. Their objective is to
maximise the number of surgeries planned while minimising violating due dates. However, instead of
minimising variation of bed occupancy at the wards as in [11] and [2], they minimise the number of
patients not being given a bed at their own ward. Next to the MIP model, they also do a simulation
study to test the model solution’s robustness. To find a good mix of robustness and efficiency, they
combine the optimisation and simulation approach.
Chow et al. [21] developed a Monte Carlo simulation to predict the impact of an MSS on bed occupancy
at the ward. The simulation model predicts the daily demand of beds in an uncapacitated system. The
writers choose a trace-driven simulation, a simulation based on historical data. They also developed
an MIP model based on [11] that levels bed occupancy. However, unlike other models, the model
schedules both surgery blocks and the patient mix in each block. The objective is to minimise the total
maximum bed occupancy of all wards. They developed two integer optimisation models, one to assign
surgical blocks to days and one to determine the patient mix in each block.

3.2.3. Dynamic model
Given an MSS, Astaraky and Patrick [22] provide scheduling policies for all surgeries that minimises
the time a patient spends on the waiting list, overtime in the ORs, and congestion in the wards. They
model the scheduling problem as a Markov Decision Process (MDP). However, any realistic problem
would make the model too large to solve. Therefore, it is necessary to use a version of simulation
based approximate dynamic programming to solve the MDP. To demonstrate the success of the resulting
policy, they test their model on data from a local hospital.

3.3. Assigning surgeries and sequencing surgeries
Search terms: Surgical scheduling, OR scheduling/planning, bed occupancy, bed demand, variation.
In this section we consider the articles that plan surgeries on an operational level. Two levels can be
distinguished. During the first, specific surgeries are assigned an OR block and day in the planning
horizon. The second consists of sequencing the assigned surgeries of each block. This is all done, such
that the impact on downstream resources is limited.

3.3.1. Heuristics
Cardoen et al. [23] focus on surgical case scheduling on an operational level, instead of on a tactical
level like [2] and [17]. Instead of making a cyclic schedule consisting of surgical cases, they start
from a schedule where operating rooms are already assigned to specialties on particular surgery days.
The strategy that they use in this paper consists of assigning patterns to the OR, while minimising
multiple objectives using a branch and price methodology. Because the sequencing step depends
on the assignment policies, [23] propose to enlarge the surgical case scheduling problem to find a
qualitative surgery schedule without first assigning the ORs to specialities and surgery days.
Fei et al. [24] also determine a sequence of operations in each day, taking the availability of recovery
beds into account. However, they assume a fixed amount of beds and maximise the utilisation. They
use a column-generation-based heuristic procedure to construct weekly schedules and solve their daily
scheduling problem by a hybrid genetic algorithm. As in [23], Aringhieri et al. [25] start with a given
MSS filled with blocks assigned to specialties. The problem they address is determining the surgery
date and operating room assigned to each patient from a set of patients waiting to be operated. They
use expected duration of surgery and expected LoS. A Variable Neighbourhood Search methodology is
used to explore the solution of the problem. The only resources taken into account are the ORs and
recovery beds, where they aim at leveling the bed occupancy.

3.3.2. Stochastic model
Jebali and Diabat [26] develop a two stage stochastic program for scheduling the operating room while
considering the beds at the wards and IC. With their model they want to avoid cancellations as much
as possible. The paper could be viewed as an extension of [19], where they also propose a two-stage
stochastic program that takes the beds at the wards into account. They extend it by also taking OR
overtime capacity into account. They plan on an operational level, so they assume patients already
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have a hospitalisation date. The objective of the model is to minimise overall costs, where penalty costs
are administered when patients’ hospitalisation dates are moved. The first stage of the model assigns
elective surgery cases to a day of the week. The second stage includes decisions regarding overtime
and undertime of the OR and the utilisation of the ICU and the ward beds. The surgery durations are
assumed to follow a log-normal distribution with known mean and standard deviation.

3.4. Clustering surgical procedures
When scheduling surgical types as in 3.2 often a classification is used to distinguish different patients
and group them together. These surgery types consist of different surgeries with similar characteristics,
for example duration of surgery, specialty and LoS. We cannot only group patients who undergo the
same surgery, because this would lead to too many different groups. Therefore, a classification is
needed to construct these surgery types. In this section we discuss different approaches in literature
regarding this problem. Van Oostrum et al. [2] received data from the Erasmus MC in Rotterdam. In
cooperation with surgeons they grouped medically homogeneous procedures.
Adan et al. [17] and the extension Adan et al. [18] take a different approach. Their research only
takes the cardiothoracic ORs into account and using data from the Thorax centre in the Erasmus MC
they made a distinction based on surgery duration and intensive care resources. They used a fixed
classification of short/long surgery duration and short/medium/long ICU use. They find six adult patient
groups, for which they gathered data based on medical guidelines. For the stochastic LoS they compare
schedules obtained using empirical distributions and schedules using parametrised distributions fitted
to the sample mean and sample standard deviation of the the LoS. Jebali and Diabat [26] use the same
method as [17] and [18].
In Banditori et al. [20] patients are assigned to surgery groups, where each surgery group consists
of procedures that have similar surgery durations, LoS and belong to the same specialty. In contrast
to the distributions used by [18], they use expected values for LoS and surgery duration. They take
three kind of wards into account where they assume that the wards are characterised by cases with the
same LoS, i.e., short stay beds (LoS less than one day), medium stay beds (LoS equal to two days) and
long stay beds (LoS more than 2 days). The surgery durations are also divided over three groups,i.e.,
short-, medium- and long-lasting surgeries.
Van Oostrum et al. [27] wrote a paper on clustering surgical procedures. The resulting surgery types
should have the same characteristics like surgery duration and LoS. To get a feasible schedule, the
characteristics of the surgical procedures should not differ too much. Together with surgeons, the
surgery types were discussed, for example, they discussed if the surgeries within one type could all be
performed by one surgeon. Surgery types that do not occur often enough to be scheduled in a cyclic
schedule are grouped in so-called dummy surgeries. If the surgery types are narrowed to reduce the
variability within the characteristics, this will lead to more dummy surgeries. They propose a method
to obtain surgery types that minimises the number of dummy surgeries and the variability of surgery
types. The solution approach they develop is based on Ward’s Hierarchical Clustering Method [28].
They performed a case study at a Dutch hospital.
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Mathematical model

In the previous chapter, we described different models to optimise the bed occupancy at the wards as
found in literature. In this chapter, we describe the construction of our model. The LUMC has worked
with a two week cyclical schedule for years. To increase the acceptance within the LUMC we continue
with a tactical schedule that repeats itself every two weeks. However, instead of scheduling whole OR-
days assigned to a specialty, we make a schedule that specifies per specialty what types of procedures
they should plan on what day. In Section 4.1, the concept of the model is explained. In Section 4.2, a
method to cluster surgical procedures based on LoS and surgery duration is given. In Section 4.3, we
formulate the constraints for our basic model. Then we describe a model that analytically determines
the distribution of post-operative patients on the ICU and wards from a given cyclic schedule, in Section
4.4. Lastly, we describe the objective function of the model with a focus on minimising the bed demand
and maximising OR utilisation.

4.1. Conceptual model
Creating cyclic schedules is often done by block scheduling where the OR blocks are assigned to dif-
ferent groups. The groups assigned to them can range from being defined as an entire specialty to
being defined as specific surgical procedures. For example, in the first case, all types of procedures
within cardiothoracic surgery will be put into one group and in the second case, a bypass surgery and
an aortic valve replacement are in different groups, all within the cardiothoracic surgical specialty. The
appropriate level of aggregation depends on the quality and volume of available information. In most
literature, whole specialties are assigned to OR blocks based on the average number of surgeries they
perform during one OR block. Often, the OR blocks are defined as whole days in an OR. This means
the specialties decide how many surgeries are performed on each day. As described in Section 2.3,
scheduling with OR blocks, where multiple surgeries are performed in one block, can lead to problems
when put into practice. Using the average number of patients that have surgery in one OR block can
over- or underestimate the actual number of patients that have surgery in that OR block. During the
week, this can cause unwanted variation in the bed occupancy.

Prior research was conducted in the LUMC where groups were defined as whole specialties and OR
blocks defined as whole or half OR-days. The downside of this approach is the diversity within the
specialties. The LUMC is an academic hospital that performs more specialised procedures than a non
academic hospital. According to the data of 2015, about 7% of all surgeries are unique surgeries that
happen only once a year. Surgeries that happen less than ten times a year cover 40% of all surgeries in
a year. Therefore, defining groups as particular surgical procedures will lead to groups with surgeries
that do not occur enough to be scheduled in a cyclic schedule of two weeks and defining groups as
whole specialties leads to a large diversity within the groups. Thus, we formulate groups somewhere
in between these cases, based on LoS and surgery duration. We denote these groups by the term
surgery groups.

In order to address the main problems, OR utilisation and bed occupancy, we propose to apply an
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approach to create a cyclic schedule on the tactical level based on the research of Fügener [3] and
Van Oostrum et al. [2].

First, we define surgery groups that contain surgical procedures with similar expected surgery
durations and expected LoS, see Section 4.2. The surgery groups consist of surgical procedures of one
specialty that are similar in surgery duration and LoS. For the surgery duration of a surgery group, we
use the session time, i.e., the time between a patient entering and leaving the OR. The surgery duration
of a surgery group is not set, but is a stochastic variable based on historical data of all procedures in
that group.
After defining the surgery groups, we use a model to find an optimal OR schedule, see Section 4.3. In
the model, multiple restrictions are taken into account, e.g., the need for specific ORs due to available
equipment, the total available OR time during opening hours and the number of scheduled surgeries
per surgery group.

We define an OR-day as a combination of a day in the cyclic schedule and an OR. The model
assigns surgery groups to ORs on each day of the cyclic schedule, see Figure 4.1. If a surgery group
is assigned to OR 1 every Monday, this means that in the operational planning a patient with a surgery
from that surgery group is scheduled in OR 1 on Monday. Multiple surgery groups can be assigned
to the same day in the same OR, because multiple patients can be operated on in the same OR on
the same day. Assigning a surgery group to an OR-day in the schedule means a single patient with
a surgery in that surgery group will be operated on during that day in that OR. Therefore, surgery
groups can be assigned multiple times to the same OR on the same day. Then, multiple patients with
procedures from the same surgery group are operated on that day. The surgery duration depends on
the surgery group. Thus, a variable amount of surgery groups can be scheduled on an OR-day in the
cyclic schedule, depending on the length of the surgeries from the assigned surgery groups.

Figure 4.1: OR schedule example.

The model finds feasible solutions for the OR schedule. However, we also want to take the down-
stream resources into account. We assume that the LoS of surgery types is stochastic. The bed
occupancy at the ICUs and wards for a given schedule is determined based on the stochastic LoS by
using a model based on Fügener [3]. The objective of the model is to minimise the bed occupancy at
the wards and ICUs, while maximising the OR utilisation.

The output of this model is a two weekly cyclic schedule for all ORs and specialties. The schedule
is optimised for normal weeks, so reduction weeks, e.g., summer and Christmas, are not included.
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4.2. Clustering
In this section, we present a method to determine surgery groups based on LoS and surgery duration.
Section 4.2.1 gives a short introduction into datamining techniques. In Section 4.2.2, we define the
method to cluster surgical procedures into surgery groups.

4.2.1. Literature
Datamining techniques can be split into two main categories: supervised learning and unsupervised
learning. With supervised learning there is labeled training data, i.e., a response variable that labels
each instance. The other variables are predictor variables. With the classification, response variables
are explained with predictor variables [29]. We would like to use the variables specialty and procedure
to explain the variables surgery duration and LoS. The response variable would then be a certain class
like short LoS and short surgery duration. However, these labels are dependent on the classification
we would like to make, and are therefore, not available. The other category, unsupervised learning,
assumes unlabelled data and does not split the variables into response and predictor variables. Common
clustering algorithms examine the data to find groups with similar instances. We would like instances
with the same specialty and procedure to be in one cluster, so they can easily be planned. However,
most clustering algorithms assume instances are independent. Moreover, in most clustering algorithms
we cannot specify what type of clusters we want. This means that one cluster can consists of instances
where the dispersion of LoS is small and the dispersion of surgery duration is very large, but another
cluster can consist of instances where the dispersion of LoS is large and that of the surgery duration is
small, see Figure 4.2. Therefore, we take a different approach which is explained in Section 4.2.2.

Figure 4.2: Clusters made for the specialty cardiothoracic surgery with a k-means algorithm in MATLAB with , based on
the session times and lenght of stay.

To evaluate the performance of our determined classes, we use a confusion matrix, see Table 4.1. In
the confusion matrix, the rows represent the instances in a predicted class, while the columns represent
the instances in the actual class. In the standard confusion matrix, we define two classes: positive
(P) and negative (N). If an instance belongs to a certain group, then it should be labeled positive. If
the instance does not belong to the group, it should be labeled negative. How the groups are defined
influences the labeling of instances. For each cell in the matrix this leads to fields as true positives,
false positives, false negatives and true negatives. These are defined as:

• False positive (FP): Falsly predicting a positive label.

• False negative (FN): Falsly predicting a negative label.

• True positive (TP): Correctly predicting a positive label.

• True negative (TN): Correctly predicting a negative label.
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The accuracy of the clustered groups is given by the percentage of correctly classified instances divided
by the total number of instances (TP + TN/ Total population). However, when a dataset has significantly
more instances in one class than in the other class, then the accuracy is not representative of the true
performance. For example, suppose there are 90 instances that are negative and only 10 that are
positive. If the clustering is biased towards the negative class and all the instances are in the class
negative, then the accuracy is still 90%, while the accuracy of the class positive is 0%. Therefore,
it is important to also take other metrics into account. The specificity (TN ratio) is the proportion of
instances that are labeled negative (TN) of all the instances that are negative (TN + FP). How higher
the specificity, the fewer instances that are positive are labeled as negative. The sensitivity (TP ratio), is
the proportion of instances that are labeled positive (TP) of all the instances that are actually positive
(TP + FN). With higher sensitivity, less positive instances are classified as negative. The precision,
another important metric, is the fraction of correctly labeled instances that are relevant given by the
proportion of true positives (TP) of all predicted positives (TP + FP). These metrics help us to evaluate
the clustering of procedures.

P’ N’
(Predicted) (Predicted)

P True Positive False Negative
(Actual) (TP) (FN)

N False Positive True Negative
(Actual) (FP) (TN)

Table 4.1: Confusion Matrix

4.2.2. Approach
We cluster surgical procedures into surgery groups based on historical data. These surgery groups
need to be specialty specific, so procedures of only one specialty may occur in a surgery group. To
make sure we can fill a whole OR-day with surgeries from one specialty. We use the average surgery
duration and the median LoS to cluster procedures into groups. Then, we use a confusion matrix to
determine how well the clustering method performed. To find the best clusters, we compare the ac-
curacy and precision of the confusion matrices of different outcomes.

Let 𝐵 be the set of all patients that are operated on in 2015. Let 𝑃 be the set of all procedures that
have been performed. Procedures are registered with an open text field. This leads to a lot of double
entries for the same procedure, e.g., the following inputs are registered as three different procedures:

ABOVE KNEE - AMPUTATION
ABOVE KNEE - AMPUTATION - LEFT
ABOVE KNEE - AMPUTATION - RIGHT

To minimise the number of unique procedures, we discussed the procedure lists with surgeons of the
main surgical specialties. This lead to a shortened list of codes 𝐶 that each defines multiple comparable
procedures as the three procedures mentioned above. Subset 𝑃 includes the procedures that belong
to code 𝑐. Each procedure 𝑝 should be assigned to exactly one code 𝑐. Therefore, 𝑃 ⋂𝑃 ̂ = ∅ for all
𝑐 ≠ �̂� and ⋃ ∈ 𝑃 = 𝑃. However, this still leads to over 2000 procedure unique codes. Because we
cannot schedule all of these separately in our tactical schedule, we cluster the procedure codes based
on LoS and surgery duration.

We first divide the procedures based on their LoS. We define two groups: short stay and long stay.
These two groups are chosen in consultation with surgeons and ward management. They recognise
these two types of patients. The ward personnel finds that either a patient recovers well and leaves
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the hospital after a short stay, or the medical condition of the patient does not improve, which often
means that the patient becomes a long stay patient. The groups we define here do not define the ward
a patient goes to. A short stay patient may go to another ward than the short stay ward. The LoS is
typically highly skewed as described in Carter and Potts [30]. It has a long tail on the right side, see
Figure 4.4, which is the length of stay of patients of the specialty cardiothoracic surgery. Therefore,
using the median LoS instead of the mean LoS leads to better results. We performed the algorithm
with both the mean and the median and compared the precision and accuracy of the outcomes. When
using the median LoS to define the two groups, both the accuracy and the precision were overall higher.

For every specialty, we want to find a definition of the short stay and long stay group. For example,
we could say that every surgery that has a median LoS less than 4 days is assigned to the short stay
group while every surgery that has a median LoS of more than 4 days is assigned to the long stay
group. However, we want to define this threshold between the short stay and long stay group per
specialty based on the historical data. Therefore, we use an algorithm to find a threshold between the
groups that leads to the highest precision for both groups. An optimal threshold is determined for each
specialty. This threshold is then used to define the short stay and long stay groups. A pseudocode for
the algorithm can be found in Algorithm 1. We let a threshold iterate between the smallest value for
which the group size of the short stay group is still 20% of the total to the largest value for which the
size of the long stay group is still 20% of the total. This is done to ensure that the size of both groups
does not become too small. Groups that are too small cannot be scheduled in a cyclic schedule. For
each threshold, we determine the short stay and long stay group. Every procedure with a median less
than or equal to the threshold is assigned to the short stay group, otherwise, the procedure is assigned
to the long stay group. Then, we determine the corresponding precision of both groups. We want to
use the threshold with the highest precision for both the groups. If we sum the precisions, one might
be very high while the other is low. Therefore, we look at the minimum of the precision of the short stay
group and the precision of the long stay group. The threshold for which this minimum is the highest is
chosen. The procedures are divided into the groups based on their median length of stay. In Figure 4.3,
we see for each possible threshold the percentage of instances that are in the short stay group based on
the median LoS of the procedure, but who had a realised LoS of more than the threshold. We also see
the percentage of instances that are in the long stay group based on the median LoS, but had a realised
LoS of less than the threshold. For this example, 7.7 days would be the best possible threshold between
the long stay and short stay group. To determine if the resulting groups are significantly different we
use a two-sample t-test with a 5% significance level. The null hypothesis is that the groups have
equal medians, the alternative hypothesis is that groups come from populations with unequal medians.

Data: Historical data of a specialty. List of performed procedures with LoS.
Result: Procedures clustered into day, short and long stay.
initialization;
a = threshold group size short 20% of total;
b = threshold group size long 20% of total;
for a ≤ threshold ≤ b, per 0.1 day do

group all procedures with median LoS less than or equal to the threshold in short stay;
group all procedures with median LoS greater than the threshold in long stay;
precision in short stay = #instances in short stay with a LoS less than threshold divided by
the total in short stay;
precision in long stay = #instances in long stay with a LoS greater than threshold divided by
the total in long stay;
accuracy = (correctly classified short + correctly classified long) divided by total number of
instances;
precision overall = minimum( precision in long stay, precision in short stay);

end
find threshold with maximum precision overall;
divide procedures into groups for that threshold;
Algorithm 1: Find the optimal grouping of procedures into short stay and long stay groups.
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Figure 4.3: For each possible threshold between short stay and long stay, the precision of the short stay group and the long
stay group.

In Figure 4.4, we see a normalised histogram based on historical data, that depicts the LoS of
patients from the specialty cardiothoracic surgery. In Figure 4.5, we see the same data, but divided
into short stay and long stay groups. For this specialty, the threshold found by the algorithm was 7.7
days.
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Figure 4.4: Probability distribution of the number of days a patient of the specialty cardiothoracic surgery stays in the ward
based on historical data.
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Figure 4.5: Probability distribution of the number of days a patient of the specialty cardiothoracic surgery stays in the ward
based on historical data for each LoS group.

After dividing the procedures into LoS groups, we divide each group again into different groups
based on surgery duration. This is done similarly to defining the LoS groups. However, when dividing
the surgical procedures based on surgery duration, the mean surgery duration was a better predictor
than the median surgery duration. The accuracy of the groups was higher when we used the mean
surgery duration instead of the median surgery duration. For each group, short stay and long stay,
thresholds are determined based on historical data. We define three groups, so two thresholds, based
on surgery duration: short surgery duration, middle surgery duration and long surgery duration. To
determine if the resulting groups are significantly different we use a two-sample t-test with a 5% sig-
nificance level. The null hypothesis is that the groups have equal means, the alternative hypothesis is
that groups come from populations with unequal means.
If the difference between the longest surgery duration and the shortest surgery duration in a LoS group
is less than 180 minutes, creating three surgery duration groups does not lead to a rejection of the
null hypothesis. This means the groups are not significantly different. Therefore, we only define two
groups based on surgery duration in that case. The pseudocode for defining three groups is shown
in Algorithm 2. This gives on average 6 groups, namely, the combinations of short, middle or long
surgery duration and short or long length of stay.

In literature, it is often assumed that patients from the same specialty or surgery group all go to
one specific ward or ICU. However, hospital data indicates this is not the case. Patients who have had
the same surgery do not always go to the same ward. For example, patients who are in good condition
might go to the short stay ward, while an older patient who had the same surgery is transferred to
the long stay ward, because the LoS is expected to exceed the maximum LoS of the short stay ward.
Therefore, patients from the same surgery group do not go to the same ward in our model. For each
group, the chance to go to a certain ward is calculated from historical data.
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Data: Historical data of a specialty. List of performed procedures with surgery duration in
minutes.

Result: Procedures clustered into short, middle and long surgery duration.
initialization;
a = threshold group size short 20% of total;
b = threshold group size short 60% of total;
d = threshold groups size long 80% of total;
for a ≤ threshold1 ≤ b, per 5 minutes do

c = threshold2 such that group size middle at least 20% of total with respect to threshold1;
for c ≤ threshold2 ≤ d, per 5 minutes do

group all procedures with mean surgery duration less than or equal to threshold1 in short
surgery duration;
group all procedures with mean surgery duration greater than threshold1 and less than
or equal to threshold2 in middle surgery duration;
group all procedures with mean surgery duration greater than threshold2 in long surgery
duration;
precision in short = # instances in short with a surgery duration less than or equal to
threshold1 divided by the total in short;
precision in middle = # instances with mean surgery duration greater than threshold1
and less than or equal to threshold2 divided by the total in middle;
precision in long = # instances in long with a surgery duration greater than threshold2
divided by the total in long;
accuracy = (correctly classified short + correctly classified middle + correctly classified)
long divided by total number of instances;
precision overall = minimum( precision in short, precision in middle, precision in long);

end
end
find thresholds with maximum precision overall;
divide procedures into groups for that threshold based on mean surgery duration;

Algorithm 2: Find the optimal grouping of procedures into surgery duration groups.
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4.3. Restrictions
In this section, we describe several restrictions on the OR-schedule that are relevant for the LUMC.
All indices and sets, parameters and variables, shown in Tables 4.2, 4.3 and 4.4 respectively, are also
explained in the text. Let O be the set of given ORs and K be the set of OR-days in the cyclic schedule.
An OR-day (𝑜, 𝑘) is defined as a combination of day 𝑘 of the cyclic schedule and OR 𝑜. The set of given
surgery groups J are assigned to a day 𝑘 ∈ K in OR 𝑜 ∈ O, so OR-day (𝑜, 𝑘). Multiple surgery groups
can be assigned to the same day in the same OR and a surgery group can be assigned multiple times
to one OR on the same day, see OR 2 in Figure 4.1. This means that we do not have a predefined
number of surgeries for each OR-day. The schedule we generate does not specify the order in which
these surgeries should take place. This is determined by physicians during the operational planning.
We use the integer decision variables 𝑧 , , to specify the number of times surgery group 𝑗 is scheduled
on OR-day (𝑜, 𝑘). The model of Van Oostrum minimises the needed OR capacity, while we want to
maximise the OR utilisation. Therefore, we do not schedule a fixed number of surgeries per surgery
type, but set a lower bound 𝛽 on the number of scheduled surgeries per surgery type. By doing this,
we assume that waiting lists are long enough to schedule a variable amount of surgery types in each
cycle of the cyclic schedule. The following constraint ensures that all groups 𝑗 ∈ J are scheduled a
minimum of 𝛽 times.

∑
∈O,
∈K

𝑧 , , ≥ 𝛽 , ∀𝑗 ∈ J . (4.1)

Our basic schedule is based on the current MSS. On OR-days that are assigned to a specific specialty,
we schedule only surgery groups of that specialty. Let 𝑆 be the set of specialties and 𝐽 ⊆ J the surgery
groups of specialty 𝑠. We introduce binary decision variables 𝑢 , , , which are equal to one if surgery
groups of specialty 𝑠 are planned on OR-day (𝑜, 𝑘) and zero otherwise. Furthermore, we introduce the
binary parameter 𝜖 , , , which is equal to one if specialty 𝑠 is assigned to OR-day (𝑜, 𝑘) in the current
MSS and zero otherwise. Constraint 4.2 ensures that only the surgery groups of the specialty that is
assigned to OR-day (𝑜, 𝑘) are scheduled on that day.

𝑢 , , ≤ 𝜖 , , , ∀𝑜 ∈ O, ∀𝑘 ∈ K , ∀𝑠 ∈ 𝑆 (4.2)

The relation between 𝑧 , , and 𝑢 , , is given by constraint 4.3, where 𝑀 is the maximum number of
surgeries of a specialty 𝑠 on one OR-day.

∑
∈J

𝑧 , , ≤ 𝑀 ⋅ 𝑢 , , , ∀𝑜 ∈ O, ∀𝑘 ∈ K , ∀𝑠 ∈ S (4.3)

ORs are only open for a couple of hours each day. The number of surgeries we can schedule on an
OR-day is limited by the surgery duration of the surgery groups we assign to the OR-day. We denote
the surgery duration by 𝜁 for each surgery group 𝑗 ∈ J . This is a stochastic variable with mean 𝜇 and
variance 𝜎 . Let 𝑔 , denote the probability distribution of the total session time of the surgery types
that are scheduled on OR-day (𝑜, 𝑘), for solution 𝜓. The available OR time on day 𝑘 in OR 𝑜 is denoted
by 𝜏 , . We introduce constraint 4.4, to ensure that the probability that overtime occurs is less than 𝛼.
This constraint ensures that a certain amount of slack is planned to buffer against overtime. Overtime
occurs when the total time needed for all surgeries in the OR is more than the total available time in
that OR.

𝑃(𝑔 , ≤ 𝜏 , ) ≥ 1 − 𝛼, ∀𝑜 ∈ O, 𝑘 ∈ K (4.4)

On a regular OR-day, it is required that only one surgeon performs all surgeries scheduled that day.
The surgeons are highly specialised and can only perform a subset of procedures of their specialty.
Surgeons have regular days in the OR, however due to other responsibilities, e.g., teaching, shifts
in the outpatient clinic or working in affiliated hospitals they are available on an irregular basis. The
surgeons schedules change too much during the year to take them into account for a tactical schedule.
Therefore, we use a more general constraint to ensure that a whole OR-day only gets assigned surgery
groups from the same specialty. We introduce binary parameter 𝜒 , , which denotes if an OR 𝑜 is open
on day 𝑘. Constraint 4.5 ensures that only surgery groups of the same specialty are planned on an
OR-day.

∑
∈
𝑢 , , ≤ 𝜒 , , ∀𝑜 ∈ O, ∀𝑘 ∈ K (4.5)
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Furthermore, a surgery group cannot be assigned to a random OR, because, special equipment might
be needed for procedures in that surgery group. We define a set of OR types R and for all surgery
types 𝑗 ∈ J we denote the subset of surgery groups that can be performed in OR type 𝑟 ∈ R by 𝐽 ⊆ 𝐽.
We introduce binary decision variables 𝑣 , , , which are equal to one if surgery groups of type 𝑟 are
scheduled on OR-day (𝑜, 𝑘) and zero otherwise. The number of available ORs of type 𝑟 ∈ R is different
each day and is given by 𝜂 , . This leads to the following constraint:

∑
∈O

𝑣 , , ≤ 𝜂 , , ∀𝑘 ∈ K , ∀𝑟 ∈ R . (4.6)

We relate decision variable 𝑣 , , to 𝑧 , , with the following constraint:

∑
∈Jr

𝑧 , , ≤ 𝑁 𝑣 , , , ∀𝑜 ∈ O, ∀𝑘 ∈ K , ∀𝑟 ∈ R , (4.7)

where 𝑁 is the maximum number of surgeries belonging to OR type 𝑟 on one OR-day.

Index ∈ set Description

𝑜 ∈ O ORs

𝑘 ∈ K Days in cyclic schedule on which ORs are open

𝑗 ∈ J Surgery groups

𝑠 ∈ S Specialties

𝑗 ∈ Js Surgery groups from specialty 𝑠
𝑟 ∈ R OR types

𝑗 ∈ Jr Surgery groups with OR type 𝑟

Table 4.2: Sets and indices.

Parameters Description

𝛽 How many times surgery group 𝑗 needs to be scheduled

𝜖 , , Binary parameter that equals one when specialty 𝑠 is
assigned to OR-day (𝑜, 𝑘)

𝑀 Maximum number of surgeries of specialty 𝑠 on one OR-
day

𝛼 Probability of overtime

𝜏 , Time available in OR 𝑜 on day 𝑘

𝜒 , Binary parameter that denotes if an OR is open on day
𝑘

𝜂 , Number of available OR types 𝑟 on day 𝑘

𝑁 Maximum number of surgeries needing OR type 𝑟 on
one OR-day

Table 4.3: Parameters
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Variables Description

𝑧 , , Integer decision variables that denote the number of
times surgery group 𝑗 is scheduled on OR-day (𝑜, 𝑘)

𝑢 , , Binary decision variables, which are equal to one if spe-
cialty 𝑠 is scheduled on OR-day (𝑜, 𝑘)

𝑔 , Probability distribution of total session time of the
surgery types on day 𝑘 in OR 𝑜

𝑣 , , Binary decision variables, which are equal to one if on
OR-day (𝑜, 𝑘) OR type 𝑟 is needed

Table 4.4: Variables

4.4. Patient distribution
In this section, we describe a model that calculates the distribution of post-operative patients in the
downstream units for a given cyclic schedule. Determining the patient distribution is done in three
steps, where we include multiple ICUs and wards. The first step is to calculate the distribution of
recovering patients in the ICUs and wards for each surgery group, see Section 4.4.1. Step two is to
calculate the distribution of patients resulting from scheduling a surgery group in a cyclical schedule,
see Section 4.4.2. Here we take patients into account that had surgery in one cycle, but are discharged
in a later cycle. They influence all the cycles where they are still occupying a bed. The last step is to
combine all surgeries from a cyclic schedule and calculate the occupancy levels on the ICUs and wards,
see Section 4.4.3. This last step needs to be repeated for every cyclic schedule. The first two steps
can be done beforehand. Section 4.4.4, describes the resulting objective function.

Index ∈ Set Description

𝑖 ∈ I ICUs

𝑤 ∈ W Wards

𝑗 ∈ Ji Surgery groups that go to ICU 𝑖
𝑗 ∈ Jw Surgery groups that go to ward

𝑤
𝑛 ∈ {1, ..., 𝑁 } Days in the ICU

𝑛 ∈ {1, ..., 𝑁 } Days in ward after surgery

𝑛 ∈ {1, ..., 𝑁 } Days in ward after ICU

𝑙 ∈ L Days in cyclic schedule

Table 4.5: Sets and indices.

Table 4.5 presents a summary of sets and indices that are used in the model. In Table 4.6 and 4.7,
parameters are presented. The parameters and sets and indices are also presented in the text. This
approach is based on the approach of Fügener [3]. It is extended by assuming that patients of the
same surgery group do not all go to the same ward, but have a probability of going to a certain ward
versus another. The same is assumed for ICUs. Furthermore, [3] use OR blocks that cover a whole
OR-day and specialties are assigned to an OR-day. In our model we assign multiple surgery groups to
one OR-day (𝑜, 𝑘). For each assigned surgery group, one patient will be scheduled during operational
planning.
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Figure 4.6: Most common patient flows from operating room to discharge.

We assume that most patients take one of two paths: from surgery directly to a ward (WS), or
from surgery first to the ICU (I) and then to the ward (WI), see Figure 4.6. After staying on the ward,
patients are discharged. We assume that patients do not go back from the ward to the ICU. Patients
that are directly discharged from the ICU are modelled by a ward stay of zero days. A few patient flows
are not covered in this approach. They are redefined such that the stay at the ICU is directly after
their surgery. As [3] assumes that all patients from one surgery group are admitted in the same ICU
or ward, they do not distinguish between different ICUs and wards. However, as explained in Section
4.2, patients who belong to the same surgery group do not always go to the same ward. Therefore,
we do distinguish between different ICUs and wards. Let the set I denote all ICUs and MCUs and let
the set W denote all the surgical patient wards. For all 𝑗 ∈ J we define the subsets Ji ⊆ J and Jw ⊆ J

as the surgery groups who go to ICU 𝑖 and ward 𝑤 respectively. The LoS (in days) in ICU 𝑖 or ward 𝑤
of each surgery group is modelled by discrete empirical distributions obtained from LUMC records. The
empirical distribution of the LoS are the same for patients from the same surgery group, regardless of
which ward they are transferred to. The patient flow model requires additional empirical data that can
be obtained from hospital information systems. The following input parameters are required for every
surgery group 𝑗 ∈ J :

• 𝑎 , represents the probability that a patient of surgery group 𝑗 is transferred to ICU 𝑖 after surgery.

• 𝑏 , represents the probability that a patient from surgery group 𝑗 is transferred to a certain ward
𝑤 after surgery or ICU.

• 𝑐 , represents the probability that a patient from surgery group 𝑗 stays exactly 𝑛 days in the ICU
after surgery.

• 𝑐 , represents the probability that a patient from surgery group 𝑗 stays exactly 𝑛 days in the
ward after surgery.

• 𝑐 , represents the probability that a patient from surgery group 𝑗 stays exactly 𝑛 days in the
ward after a stay on the ICU.

Here, the probability a patient from surgery group 𝑗 goes to the ICU is given by ∑ ∈I 𝑎 , . The probability
a patient from surgery group 𝑗 goes to the ward is given by 1 − ∑ ∈I 𝑎 , . The probabilities 𝑐 , , 𝑐 ,
and 𝑐 , are not given separately for every ward/ICU, because for every surgery group 𝑗 the probability
of a patient staying exactly 𝑛 days on the ward/ICU is the same for every ward/ICU. Their LoS does
not depend on the ward/ICU they are transferred to. In our model we assume that when a patient is
discharged on day 𝑛 he is still on the ward or ICU on that day. Often patients are only discharged in
the afternoon, while admissions are during the morning.

4.4.1. Single surgery group
We start by calculating the conditional probabilities 𝑑 , , , 𝑑 , and 𝑑 , assuming surgery took place on
day 1. Equation (4.8) is the conditional probability that a patient from surgery group 𝑗 who is still in the
ICU on day 𝑛 + 1, which is 𝑛 days after surgery, is transferred to the ward on day 𝑛 + 1. We calculate
this by dividing the probability that the patient stays exactly 𝑛 days by the sum of the probabilities
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that the patients stays 𝑛 days, 𝑛 + 1 days, 𝑛 + 2 days and so on until the maximum number of days
that patients from surgery group 𝑗 can stay in the ICU, 𝑁 . Following the same logic, we calculate
the probability that a patient from surgery group 𝑗, who is in the ward on day 𝑛, is discharged on day
𝑛, see Equation (4.9). Here 𝑑 , gives the probability that a patient from surgery group 𝑗 leaves the
hospital directly after surgery on day 1 (e.g. in case of death, transfer to another hospital or nursing
home). Equation (4.10), is the probability that a patient from surgery group 𝑗, who is in the ward on
day 𝑛 after being transferred from the ICU, is discharged on day 𝑛, where we assume the patient is
transferred from the ICU on day 1. 𝑁 and 𝑁 are the maximum number of days patients from
surgery group 𝑗 stay in the ward after surgery and the ward after a stay in the ICU, respectively. We
define 𝑁 = max(𝑁 ,𝑁 + 𝑁 ) as the maximum number of days a patient from surgery group 𝑗
stays in the hospital, where the ICU and ward are both included.

𝑑 , =
𝑐 ,

∑ 𝑐 ,
, 𝑗 ∈ J , 𝑛 ∈ {1, ..., 𝑁 } (4.8)

𝑑 , =
𝑐 ,

∑ 𝑐 ,
, 𝑗 ∈ J , 𝑛 ∈ {0, ..., 𝑁 } (4.9)

𝑑 , =
𝑐 ,

∑ 𝑐 ,
, 𝑗 ∈ J , 𝑛 ∈ {0, ..., 𝑁 } (4.10)

With 𝑑 , , 𝑑 , and 𝑑 , we determine the probabilities 𝑒 , , 𝑒 , and 𝑒 , . 𝑒 , , the probability that a
patient from surgery group 𝑗 who had surgery on day 1, is still in the ICU on day 𝑛 is determined in
Equation (4.11). For 𝑛 = 1 this is simply the probability that the patient is transferred to the ICU after
surgery. We assume a patient stays at least one day in the ICU, otherwise it is modelled as going directly
to the ward. Therefore, for 𝑛 = 2 we have the same probability as for 𝑛 = 1. For 𝑛 ∈ {3, ..., 𝑁 + 1} this
is the probability that the patient was not transferred to the ward the day before, day 𝑛−1, multiplied
with the probability that the patient was still in the ICU the day before. Following the same line of
thought we find Equation (4.12), which gives the probability that a patient from surgery group 𝑗 who
had surgery on day 1, is still in the ward on day 𝑛. In Equation (4.13) we determine the probability
that after an ICU stay of 𝑚 days, a patient from surgery group 𝑗 is still in the ward on day 𝑛. Here,
𝑚 can range from day one to the maximum number of days patients of surgery group 𝑗 can stay in
the ICU. The number of days a patient stays in the ward after a stay of 𝑚 days in the ICU is given by
𝑛 −𝑚. Therefore, 𝑛 ranges from 𝑛 = 𝑚 to 𝑛 = 𝑚+𝑁 + 1. For 𝑛 = 𝑚 and 𝑛 = 𝑚+ 1, 𝑒 , , is given
by the probability that a patient is not being discharged straight after their stay of 𝑚 days in the ICU
(1− 𝑑 , ), multiplied with the probability that the patient was in the ICU on day 𝑚 (𝑒 , ) multiplied by
the probability that he was transferred from the ICU on day 𝑚 (𝑑 , ). For 𝑛 ∈ {𝑚+2, ..., 𝑚 +𝑁 +1},
we multiply the probability that a patient from surgery group 𝑗 is not discharged after a stay of 𝑛 − 𝑚
days on the ward, so 𝑛−1 days after the surgery, with the probability that the patient was in the ward
on day 𝑛 − 1.

𝑒 , = {
∑ ∈I 𝑎 , for 𝑛 = 1, 2
(1 − 𝑑 , ) 𝑒 , , for 𝑛 ∈ {3, ..., 𝑁 + 1}
0, otherwise

(4.11)

𝑒 , = {
1 − ∑ ∈I 𝑎 , for 𝑛 = 1
(1 − 𝑑 , ) 𝑒 , , for 𝑛 ∈ {2, ..., 𝑁 + 1}
0, otherwise

(4.12)

𝑒 , , = {
(1 − 𝑑 , )𝑒 , 𝑑 , , for 𝑚 ∈ {1, ..., 𝑁 + 1}, 𝑛 = 𝑚,𝑚 + 1
(1 − 𝑑 , ) 𝑒 , , , for 𝑚 ∈ {1, ..., 𝑁 + 1}, 𝑛 ∈ {𝑚 + 2, ..., 𝑚 + 𝑁 + 1}
0, otherwise

(4.13)



34 4. Mathematical model

We combine the probabilities 𝑒 , and 𝑒 , , to calculate the probability that a patient of surgery group
𝑗 is in the ward on day 𝑛, see Equation (4.14). We do this for all 𝑚 ≤ 𝑛. For 𝑛 = 1 we just have 𝑒 , ,
because we assume the minimum stay at the ICU is one day. For 𝑛 ∈ {2, ..., 𝑁 } we have the probability
that the patient from surgery group 𝑗 is transferred to the ward and the probability that first the patient
is transferred to the ICU. This second probability is the sum over all probabilities that the patient is in
the ward on day 𝑛 after a ward stay of 𝑚 days, for all possible values of 𝑚 ≤ 𝑛.

𝑒 , = {
𝑒 , , for 𝑛 = 1
𝑒 , + ∑ 𝑒 , , , for 𝑛 ∈ {2, ..., 𝑁 },
0, otherwise

(4.14)

In this research, we assume that patients from the same surgery group do not always go to the
same ward/ICU. Therefore, we need to determine the probability that patients from certain surgery
groups are on specific wards and ICUs on day 𝑛. Thus, we need the probability that a patient from
surgery group 𝑗 is in ICU 𝑖, given they are in the ICU. ∑ ∈I 𝑎 , is the probability a patient of surgery
group 𝑗 is in the ICU. So, for all 𝑗 ∈ J and 𝑖 ∈ I we have the probability:

�̂� , =
𝑎 ,

∑ ∈I 𝑎 ,
,

that a patient of surgery group 𝑗 is in ICU 𝑖, given they are in the ICU. For the ward, this probability
is given by 𝑏 , . We do not need to normalise this probability, because every patient in our model is
transferred to the ward. Patients who do not stay at the ward, are modelled by a ward stay of zero
days. 𝑓 , , and 𝑓 , , are the probability distributions of the number of patients from surgery group 𝑗
in ICU 𝑖 or ward 𝑤 on day 𝑛. f , , and f , , are the discrete stochastic variables that are associated
to the probability distributions 𝑓 , , and 𝑓 , , respectively. The probability that there is one patient on
the ward or ICU is calculated by multiplying the probability that a patient from surgery group 𝑗 goes to
a certain ICU 𝑖 (ward 𝑤), given they are on the ICU (ward), with the probability they are on the ICU
(ward) on day 𝑛, see Equation (4.16) (Equation (4.18)). The probability that there are zero patients is
equal to one minus the probability that there is one patient.

𝑃(f , , = 0) = 1 − �̂� , 𝑒 , , 𝑖 ∈ I , 𝑗 ∈ J , 𝑛 ∈ {1, ..., 𝑁 } (4.15)

𝑃(f , , = 1) = �̂� , 𝑒 , , 𝑖 ∈ I , 𝑗 ∈ J , 𝑛 ∈ {1, ..., 𝑁 } (4.16)

𝑃(f , , = 0) = 1 − 𝑏 , 𝑒 , , 𝑤 ∈ W , 𝑗 ∈ J , 𝑛 ∈ {1, ..., 𝑁 } (4.17)

𝑃(f , , = 1) = 𝑏 , 𝑒 , , 𝑤 ∈ W , 𝑗 ∈ J , 𝑛 ∈ {1, ..., 𝑁 } (4.18)
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Notation Description

𝑎 , Probability that a patient of surgery group 𝑗 is trans-
ferred to ICU 𝑖 after surgery

𝑏 , Probability that a patient of surgery group 𝑗 is trans-
ferred to ward 𝑤 after surgery or ICU

𝑐 , Probability that a patient of surgery group 𝑗 stays 𝑛
days in ICU

𝑐 , Probability that a patient of surgery group 𝑗 stays 𝑛
days in ward after surgery

𝑐 , Probability that a patient of surgery group 𝑗 stays 𝑛
days in ICU after surgery

𝑑 , Probability that a patient of surgery group 𝑗 trans-
ferred to the ward on day 𝑛

𝑑 , Probability that a patient of surgery group 𝑗 dis-
charged from the ward on day 𝑛

𝑑 , Probability that a patient of surgery group 𝑗 dis-
charged from the ward 𝑛 days after transfer from
ICU

𝑒 , Probability that a patient of surgery group 𝑗 who had
surgery on day one is in ICU 𝑖 on day 𝑛

𝑒 , Probability that a patient of surgery group 𝑗 who had
surgery on day one and no ICU is in the ward on day
𝑛

𝑒 , , Probability that a patient of surgery group 𝑗 who had
surgery on day one and left the ICU on day 𝑚 is in
the ward on day 𝑛

𝑒 , Probability that a patient of surgery group 𝑗 who had
surgery on day one is in the ward on day 𝑛

𝑓 , , Probability distribution of the number of patients of
surgery group 𝑗 who had surgery on day one in ICU
𝑖 on day 𝑛

𝑓 , , Probability distribution of the number of patients of
surgery group 𝑗 who had surgery on day one in ward
𝑤 on day 𝑛

Table 4.6: Parameters.



36 4. Mathematical model

4.4.2. Cyclical surgery group
In this step, we account for the fact that the schedule is cyclical. This means that the scheduled surgery
groups are repeated every cycle. The maximum LoS of a patient can exceed the cycle time. Therefore,
patients who had surgery in different cycles might be recovering at the same time. The number of
overlapping cycles is dependent on the maximum number of days patients from surgery groups recover
in the ICU 𝑁 and the ward 𝑁 . Furthermore, it depends on the cycle length 𝐿, which is the number of
elements in L. Depending on the day 𝑙 in the cycle we have ⌊(𝑁 −𝑙)/𝐿⌋+1 the number of overlapping
cycles for the ICU and ⌊(𝑁 − 𝑙)/𝐿⌋ + 1 the number of overlapping cycles for the ward.

Figure 4.7: Six cycles shown for one surgery group. Patients stay a maximum of 2.5 times the cycle length.

In Figure 4.7, we see an example of a patient distribution from one surgery group throughout
multiple cycles. Here, the maximum number of days a patient stays on the ward is two and a half
times the cycle length. Therefore, a block only influences the next two cycles. From cycle three
onward we see that the cycles all have the same distribution, caused not only by the patient from
the surgery group in the current cycle, but also by patients from surgery groups from previous cycles.
Therefore, we sum the patient distributions of all overlapping cycles. Because these random variables
are independent the resulting probability distribution is the convolution of their individual distributions.
We perform discrete convolutions on the patient distribution of all overlapping cycles, specified with
symbol ∗, to obtain the distribution of patients on the days of one cycle. Suppose 𝑆 equals the sum of
two independent discrete random variables 𝑆 = 𝑋+𝑌, then the distribution of 𝑆 is given by the discrete
convolution of the probability distributions of 𝑋 and 𝑌. Discrete convolution is defined as:

𝑃(𝑆 = 𝑠) = ∑ 𝑃(𝑋 = 𝑡)𝑃(𝑌 = 𝑠 − 𝑡).

So for each possible outcome 𝑠 we determine the probability that it occurs. We do this by summing all
probabilities where 𝑠 is an outcome. The outcome is equal to 𝑠 when we look at the probability that 𝑋
equals 𝑘 and 𝑌 equals 𝑠 − 𝑡. We do this for all possible 𝑡.

Equations 4.19 and 4.20 give the distributions 𝐹 , , and 𝐹 , , , of the number of recovering patients
from surgery group 𝑗 in ICU 𝑖 and ward 𝑤, respectively, on the 𝑙th day of a cycle, when the cyclical
surgery group is scheduled on day one of the cycle.

𝐹 , , = 𝑓 , , ∗ 𝑓 , , ∗ 𝑓 , , ∗ ⋯ ∗ 𝑓 , , ⌊( )/ ⌋ , 𝑖 ∈ I , 𝑗 ∈ J , 𝑙 ∈ L (4.19)

𝐹 , , = 𝑓 , , ∗ 𝑓 , , ∗ 𝑓 , , ∗ ⋯ ∗ 𝑓 , , ⌊( )/ ⌋ , 𝑤 ∈ W , 𝑗 ∈ J , 𝑙 ∈ L (4.20)

This is the last step that can be done as preprocessing. Before generating a cyclic schedule, we can
already determine the patient distribution over the days 𝑙 in a cycle caused by one cyclical surgery
group. For the next step, we require a given cyclic schedule.
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4.4.3. Cyclic schedule
In this last step, we calculate the patient distributions on the wards and ICUs from a given cyclic
schedule. The OR department does not handle elective cases during the weekends, so surgery groups
can only be scheduled on weekdays. For a given cyclic schedule, we get a set of integer decision
variables 𝑧. Each 𝑧 , , is the number of times surgery group 𝑗 is assigned to OR 𝑜 on day 𝑘. In this
step we assume the cyclic schedule is given so these values are known. Let 1 , , be an indicator
function, that is equal to one if 𝑧 , , is greater than zero and equal to zero if 𝑧 , , is zero. The patient
distribution in ICU 𝑖 and ward 𝑤 on day 𝑙 of the cyclic schedule coming from scheduling surgery group
𝑗 once on OR-day (𝑜, 𝑘) is given by 𝐺 , , , , and 𝐺 , , , , respectively, in Equations 4.21 and 4.22.

𝐺 , , , , = {
𝐹 , , 1 , , , 𝑙 ≥ 𝑘
𝐹 , , 1 , , , otherwise. 𝑖 ∈ I , 𝑜 ∈ O, 𝑘 ∈ K , 𝑙 ∈ L , 𝑗 ∈ Ji (4.21)

𝐺 , , , , = {
𝐹 , , 1 , , , 𝑙 ≥ 𝑘
𝐹 , , 1 , , , otherwise. 𝑤 ∈ W , 𝑜 ∈ O, 𝑘 ∈ K , 𝑙 ∈ L , 𝑗 ∈ Jw (4.22)

We make a distinction between days after day 𝑘 on which a surgery group is assigned in the cycle
and days that come before the day 𝑘 on which a surgery group is assigned in the cycle. 𝐹 , , and
𝐹 , , are the distributions of the number of recovering patients when the cyclical surgery group was
scheduled on day one of the cycle. Therefore, we need to shift these distributions to the day they
actually take place. Here 𝑙 is the day for which we are determining the patient distribution and 𝑘 is
the day the surgery group, of which we are determining the patient distribution, is scheduled in the
cyclic schedule. If 𝑙 ≥ 𝑘, the number of days between day 𝑙 and the day of the surgery 𝑘 is 𝑙 − 𝑘. For
the patient distribution of surgery group 𝑗 in a cyclic schedule, 𝐹 , , , we assume that the surgery took
place on day 1. To find the patient distribution on day 𝑙 when the surgery group was scheduled on
day 𝑘, we shift by 𝑘 − 1 days. If 𝑙 < 𝑘, then the patient distribution on day 𝑙 results only from surgery
groups scheduled on day 𝑘 of previous cycles. This means that the number of days between 𝑙 and 𝑘 is
then 𝑙 − 𝑘 + 𝐿. Thus, we shift by 𝑙 − 𝑘 + 1 + 𝐿. We multiply these distributions by 1 , , , which is only
non-zero if the surgery group 𝑗 is assigned to OR-day (𝑜, 𝑘). We only need to sum over the surgery
groups that can go to ward 𝑤 or ICU 𝑖.
Next, we obtain the patient distribution in ICU 𝑖 and ward 𝑤 on day 𝑙 of the cyclic schedule for a whole
OR-day. In 4.21 and 4.22, we use the indicator function 1 , , to determine if a surgery group 𝑗 is
assigned to OR-day (𝑜, 𝑘). However, a surgery group might be assigned multiple times to one OR-day.
To obtain the distribution of patients from a whole OR-day, we need to convolve all distributions 𝐺 , , , ,
of the surgery groups scheduled on that OR-day. If a surgery group is assigned 𝑛 times to one OR-day,
then, we need to convolve the distribution 𝑛 times with itself, before convolving it with the distributions
of the other surgery groups assigned to that OR-day. Therefore, we use the convolution power, which
is defined as the 𝑛-fold iteration of the convolution with itself. For ℎ a function ℤ → ℝ and 𝑛 ∈ ℕ we
have:

ℎ∗ = ℎ ∗ ℎ ∗ ... ∗ ℎ ∗ ℎ⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝, ℎ∗ = 𝛿 (4.23)

where 𝛿 is the delta dirac function. The delta dirac function focusses the mass of a function around
zero, which in practice means that if we convolve a distribution zero times, the probability of being zero
is equal to one. For each given cyclic schedule, the integer decision variables 𝑧 , , specify the number
of times surgery group 𝑗 is assigned to OR-day (𝑜, 𝑘). The patient distribution in ICU 𝑖 and ward 𝑤
on day 𝑙 of the cyclic schedule resulting from all surgeries from surgery group 𝑗 scheduled on OR-day
(𝑜, 𝑘) is given by �̂� , , , , and �̂� , , , , in Equations 4.24 and 4.25 respectively.

�̂� , , , , = 𝐺 , , , ,
∗ , , , 𝑖 ∈ I , 𝑜 ∈ O, 𝑘 ∈ K , 𝑗 ∈ Ji (4.24)

�̂� , , , , = 𝐺 , , , ,
∗ , , , 𝑤 ∈ W , 𝑜 ∈ O, 𝑘 ∈ K , 𝑗 ∈ Jw (4.25)

where 𝑧 , , denotes the number of times surgery group 𝑗 is scheduled on OR-day (𝑜, 𝑘). We convolve
the distribution as many times as it is assigned to the OR-day, to obtain the patient distribution on day
𝑙 in the ICUs and wards coming from scheduling this surgery group in the cyclic schedule.
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From these distributions, we can define the distributions 𝐻 , , , and 𝐻 , , , , which represent the
patient distributions on day 𝑙 on ICU 𝑖 and ward 𝑤, resulting from all surgeries on OR-day (𝑜, 𝑘) (see
Equations 4.26 and 4.27). We obtain these distributions by convolving all distributions for the surgery
groups that can be scheduled on OR-day (𝑜, 𝑘) and have a chance of going to ICU 𝑖 or ward 𝑤 after
surgery, they are denoted by 𝑗 , 𝑗 , ..., 𝑗 ∈ Ji .

𝐻 , , , = �̂� , , , , ∗ �̂� , , , , ∗ ... ∗ �̂� , , , , , 𝑖 ∈ I , 𝑜 ∈ O, 𝑘 ∈ K , 𝑗 ∈ Ji (4.26)

𝐻 , , , = �̂� , , , , ∗ �̂� , , , , ∗ ... ∗ �̂� , , , , , 𝑤 ∈ W , 𝑜 ∈ O, 𝑘 ∈ K , 𝑗 ∈ Jw (4.27)

To obtain the patient distributions resulting from the whole cyclic schedule, we need to convolve
the distributions of all the days in the cyclic schedule (see Equations 4.28 and 4.29). �̂� , denotes the
distribution of recovering patients in ICU 𝑖 on day 𝑙 of the cyclic schedule. �̂� , denotes the distribution
of recovering patients in ward 𝑤 on day 𝑙 of the cyclic schedule. The last OR and the last day in the
cyclic schedule on which surgeries take place are denoted by max{O} and max{K } respectively.

�̂� , = 𝐻 , , , ∗ 𝐻 , , , ∗ ... ∗ 𝐻 , , {K }, ∗ 𝐻 , , , ∗ 𝐻 , , , ∗ ... ∗ 𝐻 , {O}, {K }, 𝑖 ∈ I , 𝑙 ∈ L

(4.28)

�̂� , = 𝐻 , , , ∗ 𝐻 , , , ∗ ... ∗ 𝐻 , , {K }, ∗ 𝐻 , , , ∗ 𝐻 , , , ∗ ... ∗ 𝐻 , {O}, {K }, 𝑤 ∈ W , 𝑙 ∈ L

(4.29)

The functions �̂� , and �̂� , are used to model the probability distribution on day 𝑙 of the number
of patients in ICU 𝑖 and ward 𝑤 respectively. We define the probability of having 𝑛 patients in ICU 𝑖
or ward 𝑤 on day 𝑙 by �̂� , [𝑛] and �̂� , [𝑛]. For a given solution for the cyclic schedule 𝜓, we want to
minimise the variation in bed occupancy during the week. Therefore, we find the required number of
beds for each day of the cyclic schedule. We calculate the probability that there are at most 𝑛 patients,
thus 𝑛 required beds, by summing over the probabilities that there are less or equal than 𝑛 patients in
the ICU or ward. For each day 𝑙, we find the minimum number of patients 𝑛 , for which the probability
of there being 𝑛 or less patients is greater or equal to the parameter p. So, for each day 𝑙, we can say
with probability p that there are at most 𝑛 patients. The required number of beds on day 𝑙 on ICU 𝑖,
𝛾 , (𝜓), for a given solution 𝜓 ∈ Ψ is given by:

𝛾 , (𝜓) = min{𝑛| ∑ �̂� , [𝑚] ≥ p} . (4.30)

The required number of beds on day 𝑙 on ward 𝑤 for a given solution 𝜓 is given by

𝛾 , (𝜓) = min{𝑛| ∑ �̂� , [𝑚] ≥ p} . (4.31)

The variation in bed occupancy, denoted by 𝛾 (𝜓) and 𝛾 (𝜓), on ICU 𝑖 and ward 𝑤 is given by the
difference between the maximum and minimum number of required beds during the week. Peaks in
bed occupancy during weekdays can cause cancellation of scheduled surgical patients, because not
enough beds are available. Therefore, we are interested in minimising the variation in bed occupancy
during weekdays, because in weekends the bed occupancy is much lower than during the week due
to no new patients being admitted. The variation in bed occupancy at ICU 𝑖 and ward 𝑤 are given by

𝛾 (𝜓) = max
∈K
𝛾 , (𝜓) − min∈K

𝛾 , (𝜓) (4.32)

𝛾 (𝜓) = max
∈K
𝛾 , (𝜓) − min∈K

𝛾 , (𝜓) (4.33)

where K is the set of all workdays as defined in Section 4.3.
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Notation Description

𝐹 , , Distribution of number of recovering patients from
surgery group 𝑗 in ICU 𝑖 on the 𝑙th day of a cycle,
when the cyclical surgery group was scheduled on
day one of all cycles.

𝐹 , , Distribution of number of recovering patients from
surgery group 𝑗 in ward 𝑤 on the 𝑙th day of a cycle,
when the cyclical surgery group was scheduled on
day one of all cycles.

𝐺 , , , , Distribution of number of recovering patients in ICU
𝑖 on day 𝑙 of one surgery from surgery group 𝑗 sched-
uled in OR 𝑜 on day 𝑘

𝐺 , , , , Distribution of number of recovering patients in ward
𝑤 on day 𝑙 of one surgery from surgery group 𝑗
scheduled in OR 𝑜 on day 𝑘

�̂� , , , , Distribution of the number of recovering patients in
ICU 𝑖 on day 𝑙 resulting from all surgeries of surgery
group 𝑗 on day 𝑘 in OR 𝑜

�̂� , , , Distribution of the number of recovering patients
in ward 𝑤 on day 𝑙 resulting from all surgeries of
surgery group 𝑗 on day 𝑘 in OR 𝑜

𝐻 , , , Distribution of the number of recovering patients in
ICU 𝑖 on day 𝑙 resulting from all surgeries on day 𝑘
in OR 𝑜

𝐻 , , , Distribution of the number of recovering patients in
ward 𝑤 on day 𝑙 resulting from all surgeries on day
𝑘 in OR 𝑜

�̂� , Distribution of recovering patients in ICU 𝑖 on day 𝑙
of the cyclic schedule

�̂� , Distribution of recovering patients in ward 𝑤 on day
𝑙 of the cyclic schedule

𝛾 (𝜓) Number of required beds on ICU 𝑖 for given solution
𝜓

𝛾 (𝜓) Number of required beds on ward 𝑤 for given solu-
tion 𝜓

Table 4.7: Parameters.

4.4.4. Objective function
In accordance with our research goals, our model has two main goals. The first goal is to maximise
the OR utilisation and the second goal is to minimise the variation in bed occupancy. Because the
available OR time is determined beforehand, it is constant. Therefore, maximising the OR utilisation is
equal to maximising the time needed for scheduled surgery groups. The utilised OR time is the sum
of all session times (surgery durations), as defined in Section 2.1.1, of scheduled surgery groups. As
in the research of Van Oostrum et al. [2], we assume that surgery durations are normally distributed
with mean 𝜇 and variation 𝜎 . Furthermore, we want to minimise the variation in bed occupancy, 𝛾
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and 𝛾 , at the ICUs and wards. We include the weights 𝜃 and 𝜃 , so we can balance between the
variation in bed occupancy and the OR utilisation.
The objective function is given by

max∑
∈O

∑
∈K

∑
∈J

𝜇 ⋅ 𝑧 , , −∑
∈I

𝜃 ⋅ 𝛾 (𝜓) + ∑
∈
𝜃 ⋅ 𝛾 (𝜓), (4.34)

where the objective function value for a given schedule 𝜓 is denoted by 𝑂𝐵(𝜓). The objective function,
subject to constraints 4.1-4.4, form our basic model.

The calculations in Sections 4.4.1 and 4.4.2 can be performed beforehand. However, the calculations
in Section 4.4.3 still involve the convolution of several probability distributions. Therefore, calculating
the objective function takes a lot of computation time and it is hard to predict the effect in the objective
function for different OR schedules. Furthermore, the minimum and maximum operators in Equations
4.32 and 4.33 are not linear operators. Moreover, constraint 4.4 is a nonlinear constraint so the resulting
model is a nonlinear model. To reduce the computation time, we can either (1) approximate the
objective function and the nonlinear constraint and use these approximations in an MILP or (2) we
use a local search heuristic based on the given constraints and objective function. The approaches are
discussed in more detail in the following chapters.
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In our model, we have a complex objective function and a nonlinear constraint. Part of the objective
function minimises the number of required beds on the wards and ICU. It is hard to predict the effect in
this part of the objective function for different OR schedules. We use two different approaches to solve
the model described in the previous chapter. We can either solve the original problem with a heuristic
procedure or use a global approach to a simplified version of the problem. We want to investigate
which of these two methods leads to better solutions, because there is no guarantee that either finds
the optimal solution. In this chapter, we simplify the original problem so we can use a global approach.
This approach uses an approximation of the objective function and a linearised version of the nonlinear
constraint 4.4 and searches the entire solution space.

In Section 5.1, we linearise the overtime constraint 4.4. Because there is no direct relation between
a given OR-schedule and the number of required beds, we also linearise the objective function in Sec-
tion 5.2. This results in an mixed integer linear programme (MILP), which is proven to be 𝑁𝑃-hard in
Section 5.3.

5.1. Linearising the surgery duration constraint
In the problem formulation introduced in Section 4.3, we have a nonlinear constraint. This constraint
makes the surgery schedule more robust against overtime. It ensures that in addition to the planned
surgeries we also assign planned slack to each OR-day. To use a MILP solver we need to linearise the
overtime constraint. Our approach is based on Bosch [31]. The overtime constraint is given by

𝑃(𝑔 , ≤ 𝜏 , ) ≥ 1 − 𝛼, ∀𝑜 ∈ O, 𝑘 ∈ K (5.1)

where 𝑔 , is the probability distribution of the total session time of all surgery types scheduled on OR
day (𝑜, 𝑘) and 𝜏 , is the total available time to perform surgeries on OR-day (𝑜, 𝑘).

Stepaniak et al. [32], compare the fit of the normal distribution with that of the 2- and 3- param-
eter log-normal distributions for surgery durations. They conclude that the 3-parameter log-normal
distribution provides the best results. However, Van Oostrum et al. [2] and Hans et al. [33] assume
that surgery durations are normally distributed. Assuming a normal distribution for surgery durations
has the advantage that the sum of surgery durations is also normally distributed. This means that
the probability of overtime on an OR-day is easy to calculate. When we assume the 3-parameter log-
normal distribution for surgery durations, there is no exact expression for the sum of surgery durations.
Therefore, we assume that surgery durations are normally distributed. The total duration of OR-day
(𝑜, 𝑘) is normally distributed with mean 𝜇 , and variance 𝜎 , . Thus, 𝑔 , (𝑥) ∼ 𝒩(𝜇 , , 𝜎 , ). Rewriting
the probability that no overtime occurs to the standard normal form gives

𝑃(𝑔 , ≤ 𝜏 , ) = Φ(
𝜏 , − 𝜇 ,
𝜎 ,

) . (5.2)

41
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The overtime constraint can then be written as

Φ(𝜏 , − 𝜇 ,
𝜎 ,

) ≥ 1 − 𝛼. (5.3)

Rewriting Equation (5.3) gives us a new formulation of the overtime constraint

𝜇 , +Φ (1 − 𝛼)𝜎 , ≤ 𝜏 , . (5.4)

We assume the surgery duration of surgery group 𝑗 is normally distributed with mean 𝜇 and variance
𝜎 for all surgery groups 𝑗. The number of times a surgery from surgery group 𝑗 is scheduled on day
𝑘 in OR 𝑜 is given by 𝑧 , , . Therefore, the mean and variance of the total surgery duration 𝑔 , on
OR-day (𝑜, 𝑘) can be written as

𝜇 , =∑
∈J

𝑧 , , 𝜇 and 𝜎 , =∑
∈J

𝑧 , , 𝜎 . (5.5)

Substituting this into the overtime constraint 5.4 gives

∑
∈J

𝑧 , , 𝜇 + Φ (1 − 𝛼)√∑
∈J

𝑧 , , 𝜎 ≤ 𝜏 , , ∀𝑜 ∈ O, 𝑘 ∈ K . (5.6)

However, this constraint is still nonlinear in decision variable 𝑧 , , due to the square root. Therefore,
we approximate the square root function 𝑓(𝑥) = √𝑥 by a piecewise linear function to reduce the non-
linear problem to a linear one. We only look at the optimisation in a given interval [𝑥 , 𝑥 ]. We do
not want to underestimate the function 𝑓(𝑥), therefore, the approximation function must be greater
or equal to 𝑓(𝑥) in all 𝑥 ∈ [𝑥 , 𝑥 ]. The intervals of the piecewise linear functions are determined
by breakpoints 𝑛 ∈ 𝑁, where 𝑁 = {0, 1, ..., 𝑚}. Here, 𝑥 is the value on the 𝑥-axis of breakpoint 𝑛 ∈ 𝑁.
We define 𝑥 as the first 𝑥-value and 𝑥 as the last 𝑥-value, for which we approximate the square root
function. The other 𝑥-values, 𝑥 for 𝑛 = {1, ..., 𝑚−1}, are intersection point of the linear approximations.
In each interval we define the points 𝑡 . Each linear function is given by the tangent line of the square
root function in the point 𝑡 for 𝑛 ∈ 𝑁\{0}. We describe the linear approximation functions for each
interval 𝑛 ∈ 𝑁\{0} by ℎ (𝑥) = 𝑎 + 𝑏 𝑥 where 𝑏 is the derivative of the square root function in point
𝑡 .

𝑏 = (√𝑡 ) =
1

2√𝑡
(5.7)

We determine 𝑎 by setting the linear approximation function equal to the square root function in the
point 𝑡 .

√𝑡 = ℎ (𝑡 )
= 𝑎 + 𝑏 𝑡

Substituting the definition of 𝑏 into this equation gives us

𝑎 = √𝑡 − 1
2√𝑡

𝑡 (5.8)

= √𝑡 − 12√𝑡

= 1
2√𝑡 .

So for each interval 𝑛, the linear approximation function on that interval is given by

ℎ (𝑥) = 1
2√𝑡 + 1

2√𝑡
𝑥 (5.9)
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Let 𝑦 be the function value of the linear approximation function at breakpoint 𝑛, so 𝑦 = ℎ (𝑥 ).
How to determine the breakpoints is explained in Appendix A. Once the breakpoints are known we can
use the 𝜆-formulation, a common method to model piecewise linear functions together as described in
Bisschop [34]. The function value of any point between two breakpoints is the weighted sum of the
function values of these two breakpoints. Let 𝜆 denote 𝑛 nonnegative weights such that their sum
equals one. The piecewise linear approximation of the square root function can be written as:

∑𝜆 ℎ (𝑥 ) = ℎ (𝑥) (5.10)

∑𝜆 𝑥 = 𝑥 (5.11)

∑𝜆 = 1 (5.12)

The last constraint and a requirement for the set of 𝜆’s, form a special ordered set type two (SOS2)
constraint, see Bisschop [34]. The SOS2 constraint has the common restriction that out of a set of
nonnegative variables, at most two variables can be nonzero. Furthermore, in a fixed order list the two
variables that are nonnegative must be adjacent to each other.
The overtime constraint is given for every OR-day (𝑜, 𝑘). Therefore, we need a set of 𝜆 ’s for every
OR-day. The overtime constraint, with additional constraints, can now be written as:

∑
∈J

𝑧 , , 𝜇 + Φ (1 − 𝛼)∑
∈
𝜆 , , 𝑦 ≤ 𝜏 , ∀𝑜 ∈ O, ∀𝑘 ∈ K (5.13)

∑
∈
𝜆 , , 𝑥 =∑

∈J

𝑧 , , 𝜎 ∀𝑜 ∈ O, ∀𝑘 ∈ K (5.14)

∑
∈
𝜆 , , = 1 ∀𝑜 ∈ O, ∀𝑘 ∈ K (5.15)

where 𝑦 is equal to √𝑥 .
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Figure 5.1: Linear approximation of the square root function on the interval [ , ] with two approximation functions.

Following the approach explained in Appendix A, we can determine the breakpoints. In Figure 5.1,
an example with two linear approximation functions on the domain [0, 200] is shown. To determine
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the breakpoints we need the maximum interval and the maximum allowed approximation error. The
maximum interval on which we want to calculate the square root function is determined by calculating
the largest standard deviation possible on one OR-day. The maximum approximation error is set to
five minutes. This means we will overestimate the standard deviation by at most five minutes. To
obtain this maximum approximation error on the calculated interval we need six linear approximation
functions. However, at breakpoint 𝑥 , the breakpoint value 𝑦 is greater than zero, because all linear
approximation functions overestimate the square root function in the breakpoints. Suppose there is
an OR-day, (�̄�, �̄�), where an OR is closed and therefore the available time, 𝜏 ̄ , ̄ , equals zero. On these
days, no surgeries are scheduled. However, for 𝛼 less than 0.5, the overtime constraint will be violated.

∑
∈J

𝑧 ̄ , ̄ , 𝜇 + Φ (1 − 𝛼)∑
∈
𝜆 ̄ , ̄ , 𝑦

= Φ (1 − 𝛼)𝜆 ̄ , ̄ , 𝑦
= Φ (1 − 𝛼) ⋅ 𝑦
≥ 𝜏 ̄ , ̄ = 0

To solve this problem we create an extra breakpoint between breakpoints 𝑥 and 𝑥 , denoted by 𝑥 .
This breakpoint 𝑥 , will be very close to zero. We then give the corresponding breakpoint value 𝑦
the old value of 𝑦 and let 𝑦 = 0. Now, the overtime constraint will not be violated when scheduling
no surgeries on an OR-day. Moreover, it does not influence the other approximations. The smallest
standard deviation of all surgery groups is larger than 𝑥 , and therefore, we never use the approximation
functions between 𝑥 and 𝑥 .

5.2. Linearisation of the objective function
In this section, we linearise the objective function. Our approach is based on the approach of Beliën
and Demeulemeester [9], but applied to a more extended model. Instead of using 𝛾 and 𝛾 , the
required number of beds in the ICU and ward we work with the expected values �̄� , (𝜓) and �̄� , (𝜓),
the expected number of required beds at ward 𝑤 and ICU 𝑖, on day 𝑙 of the cycle, for solution 𝜓. We
first show that these variables are linear in the integer decision variable 𝑧 , , . We use the expected
value of the distribution functions �̂� , and �̂� , . They are defined as the probability distributions of the
number of recovering patients in the ICU and ward respectively.
Let ℋ̂ , and ℋ̂ , be the discrete random variables that are associated to the probability distributions
�̂� , and �̂� , . The expected number of required beds at ICU 𝑖 on day 𝑙 is equal to the expected value of
ℋ̂ , , the discrete random variable corresponding with the probability distribution of recovering patients
in ICU 𝑖 on day 𝑙 of the cyclic schedule, see Equation 5.16. This random variable is the sum of multiple
discrete random variables ℋ̂ , , , , the random variables corresponding to the probability distributions
described in Equation (4.28). Suppose random variable 𝑆 is the sum of two random variables 𝑆 = 𝑋+𝑌
then 𝔼(𝑆) = 𝔼(𝑋 + 𝑌) = 𝔼(𝑋) + 𝔼(𝑌). The random variable ℋ̂ , is the sum of the random variables
ℋ , , , that are associated to the probability distributions 𝐻 , , , . The expected value of sums is equal
to the sum of expected values, which gives Equation (5.18). This is the sum over all OR-days (𝑜, 𝑘) of
the expected number of patients recovering in ICU 𝑖 on day 𝑙 who had surgery on OR-day (𝑜, 𝑘). The
expected number of patients in ICU 𝑖 on day 𝑙 from OR-day (𝑜, 𝑘) is equal to the sum over all surgery
groups 𝑗 ∈ J of the expected number of patients in ICU 𝑖 on day 𝑙 resulting from surgeries of surgery
group 𝑗 OR-day (𝑜, 𝑘), see Equation (5.20). The expected number of patients from surgery group 𝑗 on
OR-day (𝑜, 𝑘) is equal to the expected value resulting from scheduling surgery group 𝑗 once on OR-day
(𝑜, 𝑘) times 𝑧 , , , the number of times surgery group 𝑗 is scheduled on OR-day (𝑜, 𝑘), see Equation
(5.21). In Equation (4.21), we define the distribution function 𝐺 , , , , . The definition depends on 𝑙 in
relation to 𝑘. Therefore, the expected value of the random variable corresponding to the distribution
function 𝐹 , , is split into two parts, one for 𝑙 ≥ 𝑘 and one for 𝑙 < 𝑘. This gives Equation (5.21),
where 𝑧 , , equals zero if group 𝑗 is not scheduled on OR-day (𝑜, 𝑘). The expected value of ℱ , , is the
expected number of patients on day 𝑛 in ICU 𝑖 resulting from scheduling surgery group 𝑗 on day one.
Because we want to know the expected number of patients on day 𝑙 we shift with the number of days
between day 𝑙 and the day of the surgery day 𝑘. For 𝑙 ≥ 𝑘 this is equal to 𝑙−𝑘+1, for 𝑙 < 𝑘 this is equal
to 𝑙−𝑘+1+𝐿. Again using that the expected value of the sum of random variables is equal to the sum
of the expected values we obtain Equation (5.23). We sum from 𝑛 = 0 to 𝑛 = ⌊(𝑁 −(𝑙−𝑘+1))/𝐿⌋+1,
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i.e., the number of overlapping cycles on day 𝑙 ∈ L when 𝑙 ≥ 𝑘. When 𝑙 < 𝑘 we sum from 𝑛 = 1 to
𝑛 = ⌊(𝑁 −(𝑙−𝑘+1+𝐿))/𝐿⌋+1 the number of overlapping cycles on day 𝑙 ∈ ℒ. The expected value of
f , , is given by the probability that there is a patient of group 𝑗 in ICU 𝑖 on day 𝑛, see Equation (4.15).

�̄� , = 𝔼(ℋ̂ , ) (5.16)

= 𝔼(∑
∈O

∑
∈K

ℋ , , , ) (5.17)

=∑
∈O

∑
∈K

𝔼 (ℋ , , , ) (5.18)

=∑
∈O

∑
∈K

∑
∈J

𝔼(�̂� , , , , ) (5.19)

=∑
∈O

∑
∈K

∑
∈J

𝔼(𝒢 , , , , ) 𝑧 , , (5.20)

=∑
∈O

∑
∈K

∑
∈J

𝔼(ℱ , , ) 𝑧 , , +∑
∈O

∑
∈K

∑
∈J

𝔼(ℱ , , ) 𝑧 , , (5.21)

=∑
∈O

∑
∈K

∑
∈J

𝔼(f , , + f , , + ... + f , , ⌊( ( ))/ ⌋ ) 𝑧 , , (5.22)

+∑
∈O

∑
∈K

∑
∈J

𝔼(f , , + f , , + ... + f , , (⌊( ( ))/ ⌋ ) ) 𝑧 , ,

=∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ 𝔼(f , , ) 𝑧 , , (5.23)

+∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ 𝔼(f , , ) 𝑧 , ,

=∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ �̂� , 𝑒 , ⋅ 𝑧 , , (5.24)

+∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ �̂� , 𝑒 , ⋅ 𝑧 , ,

Similarly, we obtain

�̄� , = 𝔼(�̂� , ) (5.25)

�̄� , =∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ 𝑏 , 𝑒 , ⋅ 𝑧 , ,

+∑
∈O

∑
∈K

∑
∈J

⌊( ( ))/ ⌋

∑ 𝑏 , 𝑒 , ⋅ 𝑧 , , (5.26)
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with ⌊(𝑁 − (𝑙 − 𝑘 + 1))/𝐿⌋ + 1 the number of overlapping cycles on day 𝑙 ∈ L when the surgery is
scheduled on day 𝑘 and 𝑙 ≥ 𝑘 and ⌊(𝑁 − (𝑙 − 𝑘 + 1 + 𝐿))/𝐿⌋ + 1 the number of overlapping cycles
on day 𝑙 ∈ ℒ when 𝑙 < 𝑘. The expected number of required beds on day 𝑙 is given by the sum over
all surgery groups of the probability that a patient from surgery group 𝑗 is still in the hospital on day
𝑙, accounting for all cycles, multiplied with the number of times this surgery group is scheduled on all
OR-days (𝑜, 𝑘). Since ∑⌊( )/ ⌋ �̂� , 𝑒 , is constant, the new objective is linear in the decision
variables. Again, we want the maximum and minimum of �̄� , (𝜓) and the maximum and minimum
�̄� , (𝜓), because the variation in bed occupancy is given by the difference between the maximum and
minimum number of beds needed during the week. The maximum and minimum operator are not
linear. Therefore, we add constraints 5.30-5.33 and let

�̂� = �̄� + �̄� , ∀𝑖 ∈ I , (5.27)

�̂� = �̄� + �̄� , ∀𝑤 ∈ W . (5.28)

The resulting MILP model is given by

max∑
∈O

∑
∈K

∑
∈J

𝜇 ⋅ 𝑧 , , −∑
∈I

𝜃 �̂� − ∑
∈W

𝜃 �̂� (5.29)

s.t. (4.1)− (4.3), (5.13)− (5.15)
�̄� ≥ �̄� , ∀𝑖 ∈ I , 𝑙 ∈ L (5.30)
�̄� ≥ �̄� , ∀𝑤 ∈ W , 𝑙 ∈ L (5.31)

�̄� ≥ −�̄� , ∀𝑖 ∈ I , 𝑙 ∈ L (5.32)

�̄� ≥ −�̄� , ∀𝑤 ∈ W , 𝑙 ∈ L . (5.33)

We refere to this problem as the linear OR schedule problem.

5.3. Complexity of the problem
In this section, the computational complexity of the linear OR schedule problem, as described in Section
5.2, is discussed. In Section 5.3.1, we give an introduction to computational complexity. In Section
5.3.2, it is proven that the problem given in Section 5.2 is NP-hard.

5.3.1. Computational complexity
In this section, the theory of computational complexity is introduced based on Papadimitriou and Stei-
glitz [35] and Haemers [36]. With information given in this section, statements regarding the compu-
tational complexity of linear programming are made in Section 5.3.2.

In complexity theory, two different types of problems can be distinguished: decision problems and
optimisation problems. A decision problem can be answered by ’yes’ or ’no’. Given an optimisation
problem, we can define a closely related decision problem. An example of an optimisation problem is
the shortest path problem: Given an undirected unweighted graph 𝐺 = (𝑉, 𝐸) and two vertices 𝑣, 𝑢 ∈ 𝑉,
find the shortest path between 𝑣 and 𝑢. The related decision problem is given by the question: Given
an undirected unweighted graph 𝐺 = (𝑉, 𝐸), two vertices 𝑣, 𝑢 ∈ 𝑉 and a non-negative integer 𝑘, is
there a path between 𝑢 and 𝑣 in 𝐺 that has a length of at most 𝑘 The decision problem is not harder
to solve than the original optimisation problem. Therefore, any results proven about the complexity of
the decision problem will also apply to the related optimisation problem.

The computation time or running time of an algorithm is defined by counting the number of el-
ementary operations performed by the algorithm. The algorithm’s performance varies for different
input sizes, but can also vary for different inputs of the same size. Therefore, it is common to use
the worst-case time complexity, 𝑇(𝑛), of an algorithm. The worst-case time complexity, 𝑇(𝑛), is the
maximum amount of time taken on each input of size 𝑛. If the running time of an algorithm is upper
bounded by a polynomial expression in the size of the input 𝑛 of the algorithm, then it is said to be of
polynomial time. Thus, the running time of an algorithm is of polynomial time when 𝑇(𝑛) = 𝒪(𝑛 ) for
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some non-negative integer 𝑝. This notion of polynomial running time gives rise to the classes 𝑃 and
𝑁𝑃, which are defined in the following two definitions.
Definition 1. (Class 𝑃) The class 𝑃 contains all decision problems for which the correct answer, i.e.,
a ’yes’ or ’no’-instance, can be found in polynomial time.

Definition 2. (Class 𝑁𝑃) The class 𝑁𝑃 contains all decision problems for which the correct answer,
i.e., a ’yes’-instance, can be verified in polynomial time given a certificate.

It is clear that 𝑃 is a subset of 𝑁𝑃. Suppose there is a decision problem Π that is in the class
𝑃, so there exists a polynomial-time algorithm for problem Π. Given any ’yes’-instance of Π, the
polynomial-time algorithm that operates on this instance is a valid certificate for the class 𝑁𝑃. To show
that a decision problem belongs to a certain class, we use polynomial-time reductions, as defined in
Definition 3.

Definition 3. (Polynomial-time reduction) Let Π and Π be two decision problems. We say that Π
polynomially reduces to Π (notation: Π ∝ Π ), whenever any instance 𝐼 of Π can be transformed
in polynomial time to an instance 𝐼 of Π such that 𝐼 is a ’yes’-instance for Π if and only if 𝐼 is a
’yes’-instance for Π .

When decision problem Π polynomially reduces to decision problem Π and it is known that deci-
sion problem Π cannot be solved in polynomial time, then decision problem Π cannot be solved in
polynomial time either.
There is another subclass of 𝑁𝑃 next to the class 𝑃, namely the class 𝑁𝑃𝐶, see Definition 4.
Definition 4. (Class 𝑁𝑃𝐶) The class 𝑁𝑃𝐶 contains all decision problems Π ∈ 𝑁𝑃 for which all decision
problems Π ∈ 𝑁𝑃 can be polynomially reduced to Π , i.e., Π ∝ Π , ∀Π ∈ 𝑁𝑃.

A decision problem that in in the class 𝑁𝑃𝐶 is called 𝑁𝑃-complete. No polynomial-time algo-
rithms are known for decision problems in the class 𝑁𝑃-complete. It is expected that there exists no
polynomial-time algorithm for this class.

Definition 5. A problem Π is said to be 𝑁𝑃-hard, if Π ∝ Π for every problem Π in 𝑁𝑃.
In practice this means that a problem Π is 𝑁𝑃-hard if and only if there exists an 𝑁𝑃-complete

problem Π such that Π ∝ Π . When a related decision problem of an optimisation problem Π is 𝑁𝑃-
complete then Π is 𝑁𝑃-hard. Problems that are 𝑁𝑃-hard are at least as hard as the hardest problem
in 𝑁𝑃. If there exists a polynomial-time algorithm to solve any 𝑁𝑃-hard problem, then there would
exist polynomial-time algorithms for all problems in 𝑁𝑃, and 𝑃 would not be a strict subset of 𝑁𝑃, but
𝑃 = 𝑁𝑃.

5.3.2. Complexity of the linear problem
In this section, we prove that the linear OR schedule problem is 𝑁𝑃-hard by formulating the related de-
cision problem and reducing the unbounded knapsack problem to it. First we introduce the unbounded
knapsack problem. Then we make a polynomial-time reduction from the unbounded knapsack problem
to the decision problem related to the OR schedule problem.

Unbounded knapsack problem
The Unbounded Knapsack Problem (UKP) is an 𝑁𝑃-hard combinatorial optimisation problem [35]. It is
formulated as follows:

Definition 6. (Unbounded knapsack problem) Given a knapsack of capacity 𝑐 and a set of 𝑛 items,
with item 𝑗 having weight 𝑤 and profit of 𝑝 the problem is as follows:

max ∑𝑝 𝑥

s. t. ∑𝑤 𝑥 ≤ 𝑐,

𝑥 ≥ 0 and integer for 𝑗 = 1, ..., 𝑛
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where the variable 𝑥 is equal to the number of times item 𝑗 is put into the knapsack. The unbounded
knapsack problem describes the problem of selecting items such that the weight of the combined items
is less than or equal to the capacity of the knapsack, while maximising the profit. Items can be selected
multiple times. The related decision problem is given in Definition 7.

Definition 7. (Decision problem unbounded knapsack) Given a knapsack of capacity 𝑐 and a set of 𝑛
items, with item 𝑗 having weight 𝑤 and a profit of 𝑝 . Can a profit of at least 𝐾 be achieved without
exceeding the capacity 𝑐 of the knapsack

A proof that the decision problem of unbounded knapsack is 𝑁𝑃-complete can be found in Papadim-
itriou and Steiglitz [35].

Reduction to the linear OR schedule problem
In this section, we show that there exists a polynomial-time reduction of the unbounded knapsack
problem to the linear OR schedule problem.

Let 𝐼 be an instance for the unbounded knapsack decision problem with 𝑛 items with profit 𝑝 and
weight 𝑤 for item 𝑗. The capacity of the knapsack is 𝑐. Binary variable 𝑥 is equal to the number of
times item 𝑗 is placed in the knapsack. This is a ’yes’-instance when the profit is at least 𝐾.
Now, we construct instance 𝐼 for the decision problem related to the OR schedule problem with 𝑛
surgery groups, where there is one OR, a planning horizon of one day, one specialty and one ward.
This means we have one OR-day with available time 𝜏. All surgery groups can be scheduled on this
day, because they all belong to the same specialty. Suppose 𝛼 = 0.5, then the standard deviation of
the surgery groups are not taken into account. Therefore, the surgery duration for surgery group 𝑗
is given by 𝜇 . Because it is a cyclic schedule and there is only one OR-day, the expected number of
patients on the ward, 𝑒 , resulting from scheduling surgery group 𝑗 is equal to the expected number
of days a patient from surgery group 𝑗 stays at the ward. We minimise the total number of expected
patients. The surgery durations are defined as

𝜇 = 𝑤 , for 𝑗 = 1, ..., 𝑛
and the expected number of patients resulting from scheduling group 𝑗 is defined as

𝑒 = −𝑝 + 𝜇 , for 𝑗 = 1, ..., 𝑛.
The available amount of time on the OR-day, 𝜏, is given by 𝜏 = 𝑐 and the objective function value
should be at least 𝐿 = 𝐾.
Claim 1. The decision problem related to the OR schedule problem is in 𝑁𝑃.

Given which surgery groups are scheduled, it is not difficult to check whether the sum of surgery
durations is less than the available time. Therefore, the problem is in 𝑁𝑃.
Claim 2. 𝐼 is a ’yes’-instance for the unbounded knapsack problem if and only if 𝐼 is a ’yes’-instance
for the decision problem related to the OR schedule problem. Thus, ∑ (𝜇 − 𝑒 )𝑧 ≥ 𝐿.

Proof

⇒ Assume 𝐼 is a ’yes’-instance for the unbounded knapsack decision problem. Let integer variable 𝑥
be equal to the number of times item 𝑗 is assigned to the knapsack. Then ∑ 𝑝 𝑥 ≥ 𝐾 and
∑ 𝑤 𝑥 ≤ 𝑐. Now, 𝑧 = 𝑥 , where 𝑧 is the integer variable that denotes how many times
surgery group 𝑗 is assigned to the OR-day. Then

∑𝜇 𝑧 =∑𝑤 𝑥 ≤ 𝑐 = 𝜏,

so the overtime constraint is not violated. Furthermore, 𝛾 = ∑ 𝑒 𝑧 and the objective function
value is given by

∑𝜇 𝑧 − 𝛾 =∑(𝜇 − 𝑒 )𝑧 .
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We have that ∑ 𝑝 𝑧 ≥ 𝐾, and therefore, by definition of 𝑒 and 𝜇 we get

∑(𝜇 − 𝑒 )𝑧 ≥ 𝐾 = 𝐿.

This means that 𝐼 is a ’yes’-instance for the decision problem of the OR schedule problem.

⇐ Assume 𝐼 is a ’yes’-instance for the decision problem of the OR schedule problem. Let 𝑧 be the
integer decision variable that is equal to the number of times surgery group 𝑗 is scheduled on the
OR-day. Then ∑ (𝜇 −𝑒 )𝑧 ≥ 𝐿. Now, 𝑥 = 𝑧 , where integer decision variable 𝑥 denotes the
number of times item 𝑗 is assigned to the knapsack. Then ∑ 𝑝 𝑥 = ∑ (𝑒 − 𝜇 )𝑧 ≤ 𝐿 = 𝐾
and the capacity of the knapsack is not exceeded, because ∑ 𝑤 𝑥 = ∑ 𝜇 𝑧 ≤ 𝜏 = 𝑐. So,
we also have a ’yes’-instance for the unbounded knapsack problem.

We can conclude that the decision problem related to the OR schedule problem is 𝑁𝑃-complete. There-
fore, the linear OR schedule problem is 𝑁𝑃-hard.





6
Local search approach

As described in Chapter 5, we use two approaches to solve our problem. In Chapter 5, a simplified
version of our problem was introduced which can be solved with a global approach. In this chapter,
we use a local approach, simulated annealing (SA), which was first introduced by Kirkpatrick et al.
[37]. The advantage of SA is that it can immediately evaluate the true objective function instead of
a linearised version as in the global approach. In Section 6.1, the approach is introduced. In Section
6.2, we describe how the parameters are set.

6.1. Introduction to simulated annealing
Simulated annealing (SA) is a local search approach. Starting from a current solution, 𝜓 , it randomly
selects a neighbour solution 𝜓 . If the neighbour solution has a better objective function value than the
current solution, then the neighbour solution is accepted as the new current solution. Here, with better
objective function value we mean lower when minimising the problem and higher when maximising
the problem. Because we maximise the objective function, a neighbour solution has a better objective
function value when it is higher than the objective function value of the current solution.
Simple heuristics only move to better neighbours and stop when they have reached a solution where
no neighbour has a better objective function value. Instead of only accepting neighbour solutions with
better objective function values, it is also possible to accept a neighbour solution that has a worse
objective function value than the current objective function value in order to avoid staying in a local
optimum. A failure to find a better state among neighbours does not mean that there is no better
solution. If the objective function value of the neighbour solution is worse than the current objective
function value, we accept it as the new solution with a certain probability. This method allows for
searching a larger part of the solution space. The acceptance probability depends on the current
objective function value, the objective function value of the neighbour solution and on a parameter
that denotes the temperature. During the search process, this temperature parameter, denoted by 𝑇,
gradually decreases. When the temperature decreases, the probability of accepting worse solutions
also decreases. Cooling of the temperature happens after one of the following events: 𝜔 iterations
where performed or 𝜔new new solutions where accepted, where 𝜔new ≤ 𝜔. Because the next solution
only depends on the current solution, the iterations form a Markov chain. The temperature is cooled by
multiplying the current temperature with reduction factor 𝜌, where 0 < 𝜌 < 1, which gives the cooling
scheme. The procedure stops when the final temperature, 𝑇 is achieved. During the procedure we
save the solution with the best objective function value, 𝜓 . The objective function value of a solution
𝜓 is denoted by 𝑂𝐵(𝜓).

A summary of the SA procedure is given below:

Step 1 Start with an initial solution 𝜓 . We use the one given by running our MILP model for one
minute. Let the best overall solution 𝜓 ∶= 𝜓 . Then, determine the objective function of this
solution and set the initial temperature, 𝑇 ∶= 𝑇 . Furthermore, set the reduction factor 𝜌 and
the final temperature 𝑇 .

Step 2 Repeat 𝜔 times or until 𝜔new new solutions are accepted:
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1. Select a random neighbour𝜓 of our current solution𝜓 and determine the objective function
value.

2. If the objective function value of the neighbour solution is better than the objective function
value of the current solution, 𝑂𝐵(𝜓 ) > 𝑂𝐵(𝜓 ), set 𝜓 ∶= 𝜓 . Otherwise, set 𝜓 ∶= 𝜓
with probability 𝑒 , where Δ is given by the difference between the objective function
value of the neighbour solution and the objective function value of the current solution, i.e.
Δ = 𝑂𝐵(𝜓 ) − 𝑂𝐵(𝜓 ). If 𝑂𝐵(𝜓 ) > 𝑂𝐵(𝜓 ), let 𝜓 ∶= 𝜓 .

Step 3 Set 𝑇 ∶= 𝜌𝑇. If 𝑇 < 𝑇 then stop. Otherwise, go to Step 2.

The best overall solution is given by 𝜓 .

6.2. Selecting parameters and neighbour solutions
In Section 6.1, we described the parameters that need to be specified: the initial temperature, the
final temperature, the reduction factor and the maximum number of new solutions accepted. The
effectiveness of the method greatly depends on the choices made for these parameters. Furthermore,
different ways of defining neighbour states can also influence the method. First, we explain how we
define neighbour solutions, and then, we describe how we set the parameters.

Neighbour solutions
To obtain feasible neighbour solutions, we set a generator function that uses the current solution to
produce a new solution. We consider four different ways to generate a neighbour solution.

Removing a surgery group The first way to find a possible neighbour solution is removing one
surgery group from all scheduled surgery groups in the current solution. To find a feasible new
solution, it is important to only remove a surgery group if it is scheduled more often than the
required minimum amount.

Adding a surgery group The second way to find a neighbour solution is taking the current solution
and adding a surgery group to a certain OR-day. Again, it is important to check if adding a certain
surgery group does not violate any constraint. Therefore, we check which groups can be added
to which OR-days based on the overtime constraint and the specialties assigned to the OR-days.
From this list with valid combinations of surgery groups and OR-days, we randomly choose one
combination and add that surgery group to the specified OR-day.

Swap two OR-days We also define neighbour solutions by swapping all surgery groups between two
OR-days. This can only be done if they have the same available time for surgeries and the same
specialty can operate in the ORs. We do not swap two OR-days that take place on the same day,
because this would not lead to a decrease in the objective function value.

Swap two groups The last way to define neighbour solutions is to swapping two different surgery
groups that have been scheduled in the current solution. They can only be swapped if either the
OR or the day on which they are scheduled is different. Furthermore, the new solution is only
feasible if the swap happens between surgery groups from the same specialty and the overtime
constraint is not violated.

These four interventions in the current solution define feasible neighbour solutions. They have an equal
probability of getting chosen.

Initial temperature and final temperature
In the beginning of the procedure, we want the probability of accepting a neighbour with a worse
objective function value to be relatively high. Near the end of the procedure, the probability of accepting
a neighbour solution with even a slightly worse objective function value should be very low. Therefore,
we choose the initial temperature 𝑇 in such a way that a decrease in the objective function value
is accepted with a relatively high probability. Furthermore, we choose the final temperature 𝑇 such
that a small decrease in the objective function value is only accepted with a very low probability. We
observe that the maximum decrease can be caused by either removing a surgery group or by swapping
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two groups or two OR-days, which can lead to an increase in the variation in bed occupancy. Adding a
surgery group can also lead to an increase in the variation in bed occupancy, however, the utilised OR
time improves. Therefore, we focus on the other possibilities.

Removing a surgery group This decreases the objective function value with the mean surgery du-
ration of the removed surgery group. Furthermore, this can lead to a increase of one bed in the
variation of bed occupancy.

Swapping two surgery groups The OR utilisation stays the same, but the variation in bed occu-
pancy can increase. During preliminary testing, we found that this leads to at most an increase
in variation of two beds.

Swapping two OR-days Again the OR utilisation stays the same, but the variation in bed occupancy
can increase. However, the increase can be much higher than two beds. During preliminary tests,
the highest increase we registered was ten beds.

We do not want to accept every decrease in the objective function value with a high probability. A small
decrease, such as when removing a surgery group leads to an increase in variation in bed occupancy,
can lead to a better solution later on. For example, if the removal is accepted, it is possible that
another group is scheduled in place of the removed group, with a similar LoS and a higher surgery
duration. This would result in the original variation in bed occupancy and a higher OR utilisation, thus,
a higher objective function value. However, we do not want to accept very large decreases with a
high probability, not even in the beginning of our procedure. For example, we do not want to accept
swapping two OR-days that lead to a very high increase in the variation in beds, because then it can
take a long time to come back to the original objective function value.
In our objective function, the number of required beds at the ward and ICUs are multiplied with the
factors 𝜃 and 𝜃 respectively. In the preliminary tests, we used the parameter 𝜃 = 𝜃 = 𝜃 , so each
ward and ICU was given the same weight. Therefore, the maximum decrease that we permit, is given
by max ∈𝒥 𝜇 + 𝜃, which depends on the parameters 𝜃 and the surgery groups 𝒥. At the start of the
procedure, we want to accept the maximum decrease permitted with a probability 0.5. Thus, the initial
temperature is given by

𝑇 = max decrease permitted
ln(0.5) (6.1)

We determine the final temperature using the same approach. Near the end of the procedure we want
to accept small negative changes in the objective function with a very low probability. This way, no
worse solution is accepted and the procedure converges to a local minimum. Our minimum negative
change is given by removing the surgery group with the shortest surgery duration, while not influencing
the variation in bed occupancy. We set the probability of accepting this change to 0.001, i.e.,

𝑇 =
−min ∈𝒥 𝜇
ln(0.001) (6.2)

Other parameters
Next to the initial and final temperature values, we also need to set the reduction factor, the number
of iterations per temperature and the maximum of accepted solutions per temperature. We set the
reduction factor 𝜌 to 0.95, so the system will cool slowly. Furthermore, the number of iterations per
temperature value is based on the number of neighbour solutions that can be reached in one step.
This is dependent on which way a neighbour solution is chosen.

• The number of feasible neighbour solutions when removing a surgery group, depends on how
many surgery groups are scheduled more often than necessary in the current solution.

• When adding a surgery group the number of feasible neighbour solutions depends on how many
OR-days in the current solution still have available time and which groups can be scheduled there.

• Swapping OR-days can only occur when the ORs have the same specialty assigned to them.

• Swapping two surgery groups is only permitted if they are of the same specialty and the overtime
in not violated after the swap.
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For the data of the LUMC, all of these interventions have a comparable amount of neighbours at the
start of the procedure. Because there is no guarantee these are the best choices for the parameters,
we tested the effect of varying the different parameters. Results of these tests can be found in Chapter
7. With these results we determined the best combination of parameters to make a consideration
between solution time and the quality of the solution found.



7
Computational results

In Chapter 4, we introduced the method we use to form surgery groups based on LoS and surgery
duration. We discuss the collected data and the results of the clustering method in Section 7.1. Then,
we analyse the parameter settings for both the MILP and the SA approach, which were introduced in
Chapter 5 and Chapter 6. We perform multiple numerical experiments to determine the best settings for
both methods. In the global approach, we calculate the objective function value differently from the SA
approach. Therefore, we determine the original objective function value for the resulting OR-schedule
afterwards, using the 90-percentile. In Section 7.2, results of the MILP for different parameter settings
are given. The results of the SA approach for different initial temperatures, a different cooling schedule
and other parameters are given in Section 7.3. We compare the two methods in Section 7.4. In Section
7.5, we try to improve our best solution from the MILP model with the SA procedure. We compare
the performance indicators of the best solution with the performance of the LUMC in 2015 in Section 7.6.

The performance indicators are based on the two objectives of this research: minimising the vari-
ation in the required number of beds and maximising the OR utilisation. The required number of beds
at the wards and ICUs are expected to be lower in the weekends, since no surgeries are preformed on
Saturdays and Sundays. Patients can be discharged in the weekend, but no new patients are admitted.
Therefore, there is a difference between the variation in bed occupancy during the planning horizon
with Saturdays and Sundays and without Saturdays and Sundays. The main problem with the variation
in bed occupancy is that elective patients are cancelled, because there are not enough available beds
at the ward due to a high bed occupancy. This mainly happens during the week days. Our approach
calculates the required number of beds for all days of the planning horizon. We look at the variation in
required number of beds in the planning horizon without Saturdays and Sundays. This is the difference
between the maximum and minimum number of beds needed during the week. To compare solutions,
we sum the difference in required number of beds over all wards and ICUs and call this the difference
in beds, which refers to the variation in required number of beds.
Another performance indicator is the computation time. We record the computation time for the dif-
ferent parameter settings. This model is used to create a tactical schedule, which is a two week cyclic
schedule for a whole year. The model will be used a few times a year to incorporate possible changes.
Therefore, the computation time does not need to be very short. However, because the created sched-
ule needs to be checked by physicians and other personnel, it would be preferable if the computation
time is less than a day, so small changes can be easily applied.
A less important performance indicator is the total number of required beds. This is the sum of the
maximum number of beds needed at each ward and ICU. This indicator is not used to determine how
good a solution is. It is only used to draw conclusions about required number of beds and other per-
formance indicators.

Solving the MILP model is done by using version 4.2.3 of AIMMS. AIMMS is a software system that
is meant for modelling and solving optimisation and scheduling-type problems. Multiple solvers are
linked to AIMMS. For our MILP model, we use CPLEX version 12.6.3 that uses a branch and cut method.
The clustering method and the SA procedure are implemented in MATLAB R2016b. All computational
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experiments are performed on a PC with an Intel Core i7 6700K 4.20 GHz with 16.00 GB RAM.

7.1. Surgery groups
As mentioned in the first two chapters, this research was performed at the LUMC. The goal of the re-
search is to give the LUMC more insight in the way that the OR schedule influences the bed occupancy
and provide them with a different way of scheduling surgeries. Therefore, the data used is based
on the data of the LUMC. We have a master surgery schedule where each OR-day is assigned to a
specialty. The planning horizon is 14 days, with 20 ORs where 11 different surgical specialties operate.
We have 13 different wards and one ICU.

Data was gathered from interviews with surgeons, OR personnel, ward nurses, managers and the
hospital data warehouse (DWH). From DWH, we obtained the OR, ward and ICU data of all the patients
that were operated on in 2015. The surgery groups are determined based on this data. We linked the
data of these units to get a dataset with information about the surgical procedure, surgery duration,
length of stay at the ICU and the length of stay at the ward. If certain data was missing, which lead to
no information about one of these variables, the data was excluded. No registration of the end time of
the surgery and a wrong entry for surgical procedure caused the most deleted data. 75% of the total
dataset was used.

Patients can have multiple surgeries during a hospital stay. However, we do not take this into
account in our model. We take the main surgery of every patient and link this to the information from
the ward.

In practice, patients are sometimes transferred to another ward, because of capacity issues or a
change in the patients medical condition. Since we develop a tactical schedule and assume that the
system operates as it should, patient transfers between wards are not taken into account in our model.
Therefore, we use the ward they spend the most time on to link to the other available data. The LoS
on the ICU is, however, taken into account. It is assumed that after surgery, patients go to the ICU
and then to the ward or directly to the ward after surgery. However, there are a few instances when
patients go back to the ICU when they were already at the ward. These instances are adapted to fit
the assumed path. This gives us a dataset with the variables: specialty, procedure, ICU LoS, ward LoS
and surgery duration.

For each specialty, we use the clustering method to determine the threshold between the short
stay group and the long stay group. For most specialties, this threshold is between 0.5 and 2.5 days.
However, for the specialties NS and CTS, the threshold is 4.4 days and 7.7 days, respectively. The pro-
cedures with a median LoS of less than the threshold are denoted as short stay, while the procedures
with a median LoS higher than the threshold are in the long stay group. In Figure 7.1, the precision
of the 22 LoS groups is shown. The precision is defined as the number of realised instances in the
group that were indeed lower or higher than the threshold divided by the total realised instances in
the group. The procedures of each LoS group are then divided over three surgery groups based on
the surgery duration of the procedures. Two thresholds are determined and procedures are put into a
short, medium or long surgery duration groups dependent on their mean surgery duration. However,
some LoS groups did not contain enough procedures to be split into three significantly different surgery
groups. In these cases, only two surgery groups are defined. This approach leads to a total of 62 dif-
ferent surgery groups. In Figure 7.2, the precision of all these surgery groups is shown. Four surgery
groups have a precision of less than 0.6. These groups all belong to different specialties and are the
groups that contain the procedures with medium surgery duration. For these specific groups, the two
thresholds defining the three surgery groups are very close together, namely less than 30 minutes.
Therefore, the mean surgery duration of certain procedures may fall into the interval between the two
thresholds, but many realised instances are outside these bounds, which leads to the low precision.
However, the three groups have significantly different means, and therefore, the method does define
three groups instead of two. We could adjust the method to define only two groups instead of three
groups whenever the precision is lower than a certain parameter. However, this may lead to surgery
groups with a higher variance.

For each group, the mean surgery duration and variance in surgery duration are determined. Fur-
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thermore, we determine the probability of patients from a surgery group going to ICU 𝑖 and ward 𝑤.
With the model described in Section 4.4, we determine the patient distribution resulting from scheduling
the surgery groups. The changeover time between surgeries is set to 15 minutes.
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Figure 7.1: Precision of the length of stay groups.
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Figure 7.2: Precision of the surgery groups.

7.2. Global approach
In this section, results are given for the global approach. Using all data proved to be difficult, because of
the computation time needed. After three hours, no solution was found when using the whole dataset.
Fortunately, two specialties, NS and CTS, have designated ORs and wards. Therefore, we separate the
data for those specialties from our main data. The specialties NS and CTS are implemented separately
in AIMMS. For the computational results given in the following sections, we used the data of all other
specialties. Thus, we use the data of 9 surgical specialties, that can operate in 13 ORs with a planning
horizon of 14 days, which results in a total of 1107 OR-days.

In our MILP model, only a few parameters are not recovered from data, because they can be influ-
enced by management. We have the parameter 𝛼 that denotes the probability of overtime occurring,
and in the objective function, we have the parameters 𝜃 and 𝜃 that denote the balance between the
OR utilisation and the variation in bed occupancy at the wards and ICU. These parameters can be set
by the management. In our basic model, every ward and ICU is equally important. Therefore, we let
𝜃 = 𝜃 = 𝜃 for all 𝑤 ∈ 𝑊 and 𝑖 ∈ 𝐼. First, we analyse the influence of different values of 𝜃 on the
solution. The OR utilisation is given in minutes of utilised OR time. This means that when we set the
factor 𝜃 = 200, we would remove scheduled surgery groups with a total OR time of 200 minutes if this
would lead to a decrease of one bed in the variation of number of required beds. Thus, it is a factor
that determines how many OR minutes a decrease of one bed in variation is worth. Because we have
a high number of total OR minutes in our schedule, we denote the OR utilisation by the percentage
of the total available OR time in our tables. After analysing the influence of different values of 𝜃, we
analyse the influence of the parameter 𝛼. In our basic model, we used 𝛼 = 0.3, so the probability
that overtime will occur is 30%. We interrupt the CPLEX solver after a set computation time, because
proving optimality of a solution can take up quite some time. When solving, AIMMS also calculates the
linear programming (LP) bound of the problem. This is an upper bound for our solution, and from this,
we can calculate the optimality gap, which is the gap between the current best solution and the upper
bound.

In Table 7.1, we provide some performance indicators for different values of 𝜃 with a computation
time of 10 minutes. We cannot compare the objective function values of the solutions, because 𝜃
influences the objective function value. When 𝜃 = 0, we are only optimising the OR utilisation, which
results in a high OR utilisation, but also in a high variation in number of required beds at the wards and
ICU. With 𝜃 = 1000, the variation in number of required beds is low, but the OR utilisation has also
decreased a lot. The total sum of all available hours in the OR for the specialties we are scheduling
is 950 hours. Thus, a decrease of 10% in OR utilisation means that the utilisation decreased with 95
hours. Because this is a lot, we prefer a value of 𝜃 that leads to a higher OR utilisation. Therefore,
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we analyse the solutions for 𝜃 in between 0 and 1000. In Table 7.1, we see that the optimality gap
increases when 𝜃 increases. The difficulty of the problem increases when the number of required beds
gets more important.

𝜃 OR utilisation Required
beds

Difference in
beds

Optimality
gap

𝜃 = 0 87.59% 177 54 4.68%

𝜃 = 200 84.82% 158 20 15.17%

𝜃 = 300 84.50% 155 18 19.72%

𝜃 = 400 83.97% 153 19 20.21%

𝜃 = 500 82.87% 156 18 23.64%

𝜃 = 800 81.40% 155 17 29.51%

𝜃 = 1000 77.38% 141 16 45.98%

Table 7.1: Results for different ’s used in AIMMS with 10 minutes computation time with .

In Table 7.1, we see that for 𝜃 = 300, 𝜃 = 400 and 𝜃 = 500 the variation in number of required
beds is almost equal. However, the OR utilisation is higher for 𝜃 = 300. The other values presented in
the table lead to either a lower OR utilisation with a small decrease in variation of number of required
beds or to more variation in the number of required beds, with only a small increase in OR utilisation.
Therefore, we look more closely at solutions for 𝜃 = 300, 𝜃 = 400 and 𝜃 = 500. In Table 7.2, we
present solutions for 𝜃 = 300, 𝜃 = 400 and 𝜃 = 500 for different computation times, namely 10, 30 or
90 minutes. We see that for 𝜃 = 300, the OR utilisation increases slightly with a longer computation
time. The variation in number of required beds goes down by one bed for a computation time of
90 minutes compared to the solution after 10 minutes. The OR utilisation also increases for longer
computation times, when 𝜃 = 400, but after 90 minutes the number of required beds goes down by
three beds compared to the solution after 10 minutes. For 𝜃 = 500 the OR utilisation also slightly
increases for longer computations times. It is still lower than the OR utilisation for 𝜃 = 300, however,
after 90 minutes computation time a solution is found where the difference between the maximum
and minimum number of beds needed is only 12, which is much lower than seen in other solutions.
Therefore, we use 𝜃 = 500 with further experiments, unless specified otherwise.

𝜃 Computation
time

OR utilisation Required
beds

Difference in
beds

𝜃 = 300 10 min 84.50% 155 18

𝜃 = 300 30 min 85.05% 157 19

𝜃 = 300 90 min 85.41% 156 17

𝜃 = 400 10 min 83.97% 153 19

𝜃 = 400 30 min 83.98% 152 17

𝜃 = 400 60 min 84.24% 155 16

𝜃 = 500 10 min 82.87% 156 18

𝜃 = 500 30 min 83.09% 151 16

𝜃 = 500 90 min 83.91% 152 12

Table 7.2: Results for different ’s and computation times with .
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In the overtime constraint, we have parameter 𝛼 which denotes the probability of overtime occur-
ring. We set the computation time to 10 minutes and consider different values for 𝛼, see Table 7.3. For
𝛼 = 0.5, the standard deviation of the surgery groups is not taken into account at all and no additional
slack is scheduled. The schedule is made with just the mean surgery duration. This means there is a
probability of 50% that overtime will occur. The OR utilisation decreases when 𝛼 increases, which is to
be expected, because OR schedules with less surgeries will have a lower probability of overtime. We did
not include lower values of 𝛼, because after 10 minutes of computation time these are still infeasible.
In Table 7.3, the optimality gap for different values of 𝛼 is also given. When 𝛼 takes on higher values,
the optimality gap decreases for the same computation time. The objective function value is higher
for solutions with higher 𝛼 Using a low value of 𝛼 decreases the probability of overtime occurring, but
increases the probability of not using all available OR time. We use 𝛼 = 0.3 in further experiments, be-
cause we want the probability of overtime to be relatively low, while the OR utilisation is relatively high.

In Figure 7.3, the LP bound and current best solution are shown over time. We can see that set-
ting longer computation times allows the solution to improve, thus, the optimality gap decreases over
time. However, the speed of improvement also decreases a lot over time. Because we have a tactical
schedule, which in theory should only be calculated a couple of times a year, a computation time of 90
minutes is acceptable.

Probability
overtime

Objective
function
value

OR utilisation Required
beds

Difference in
Beds

Optimality
gap

𝛼 = 0.5 45576 94.97% 174 17 7.27%

𝛼 = 0.4 40660 88.97% 165 20 17.77%

𝛼 = 0.3 38186 82.87% 156 18 23.64%

𝛼 = 0.25 37667 81.08% 148 17 24.52%

Table 7.3: Results for different values of , the probability that overtime will occur, with computation time set to 10 minutes.
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Figure 7.3: The upper LP bound and objective function value of the best solution over time.
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7.3. Local search heuristic
In this section, we discuss results from our local search heuristic SA. Our initial solution comes from
running AIMMS for 60 seconds. First, we run preliminary tests to find the right parameter settings.
We discuss the initial temperature, reduction factor, final temperature and the maximum number of
iterations within one temperature. As in Section 7.2, we use 𝛼 = 0.3 and 𝜃 = 500. Furthermore,
the same dataset is used. In Table 7.4, the standard settings of the parameters in our SA procedure
are given. We want to compare the results for different parameter settings. Therefore, we use a
seed to initialise the random number generator that generates neighbour solutions and the acceptance
probabilities of these solutions. For the SA procedure, we do not have an upper bound, because we
do not know how close we are to the optimal solution. The upper bound of the MILP method does not
work, because it does not take the 90-percentile for the number of required beds into account.

Symbol Standard
value

Description

𝑇 1000 Initial temperature

𝑇 5 Final temperature

𝜌 0.95 Reduction factor

𝜔 300 Number of iterations in one temperature

𝜔new 20 Maximum number of new solutions accepted in
one temperature

Table 7.4: Standard settings of the parameters used in the SA procedure.

Initial temperature

In Chapter 6, we showed that theoretically the initial temperature should be defined by

𝑇 = max decrease permitted
ln(0.5) (7.1)

Using our data, this results in 𝑇 ≈ 1000. However, we could also set the initial temperature in such
a way that the maximum possible decrease is accepted with probability 0.5. The maximum possible
decrease is a lot higher than the maximum permitted decrease that we used to determine 𝑇 = 1000.
Accepting the maximum possible decrease with probability 0.5 gives an initial temperature of 𝑇 ≈
10000. Furthermore, we compare these results with the results for setting the initial temperature to
𝑇 = 100, which would be the initial temperature when we would only want to accept very small
changes in the objective function value. In Figure 7.4, we see that for 𝑇 = 10000 during the first 300
iterations the objective function value goes down. It takes almost 300 iterations to start improving on
the original objective function value. This can be easily explained. By setting the initial temperature in
such a way that it accepts the maximum decrease of the objective function value at a high probability,
all relatively small decreases are accepted with a very high probability. A high amount of these smaller
decreases results in a large decrease of the objective function value. For 𝑇 = 1000, the objective
function value starts improving immediately, however, small negative changes do occur. For 𝑇 = 100,
we can conclude that the procedure almost never excepts worse neighbour solutions as the objective
function value is almost always increasing. In Table 7.5, we see the results of the best solutions for
different initial temperatures. Because we used the same final temperature, the computation time of
lower initial temperatures is shorter. The solution found with initial temperature 𝑇 = 10000 has the
best objective function value. However, it also has the longest computation time and most iterations.
The initial temperature 𝑇 = 1000 is preferred, because it starts improving the solution immediately.
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Initial temperature: 𝑇 = 100
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Initial temperature: 𝑇 = 1000
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Initial temperature: 𝑇 = 10000
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Figure 7.4: The objective function value during the SA procedure for different initial temperatures.

Initial tem-
perature

Objective
function
value

OR utilisation Required
beds

Difference in
beds

Computation
time (min)

100 31742 74.19% 136 21 38

1000 32490 74.62% 138 20 63

10000 33132 82.77% 141 28 83

Table 7.5: Results for different initial temperatures.

Cooling schedule
We also tested different cooling schedules. Using a lower reduction factor 𝜌, leads to a quicker cooling
schedule. In total, this leads to fewer iterations, so shorter computation times. Moreover, the accep-
tance probabilities of decreases in the objective function value change a lot faster than with a higher
reduction factor. In Table 7.6, results are shown for decreasing the reduction factor to 0.6 and 0.8
and increasing it to 0.97. The computation time decreases a lot for lower reduction factors. However,
the objective function values of the solutions are much lower than for the reduction factor 𝜌 = 0.95.
Increasing the reduction factor leads to a much better result, however, the computation time increases.
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Cooling factor Objective
function
value

OR utilisation Required
beds

Difference in
beds

Computation
time (min)

𝜌 =0.6 20240 68.91% 138 38 4

𝜌 =0.8 27214 71.50% 135 27 12

𝜌 = 0.95 32490 74.62% 138 20 63

𝜌 = 0.97 35595 76.56% 136 16 100

Table 7.6: Results for different cooling factors.

Final temperature
In Chapter 6, we showed that theoretically the final temperature should be defined by

𝑇 =
−min ∈𝒥 𝜇
ln(0.001) (7.2)

Using our data, this results in 𝑇 ≈ 5. In Table 7.7, results are shown for different final temperatures.
If we were to use a lower final temperature, we would perform more iterations so the Markov chain
would increase in length. Using a higher temperature results in a shorter Markov chain. Increasing the
final temperature to 10, results in a shorter computation time, however, in Figure 7.5 we can see that
the solution has not yet converged. For 𝑇 = 1, it looks like the procedure converged to a solution. No
changes are made the last 1000 iterations. Therefore, we prefer 𝑇 = 1, even though the computation
time increases.

Final tem-
perature

Objective
function
value

OR utilisation Required
beds

Difference in
beds

Computation
time (min)

𝑇 = 1 33476 76.35% 139 20 83

𝑇 = 3 33086 75.67% 138 20 67

𝑇 = 5 32490 74.62% 138 20 63

𝑇 = 10 31548 73.85% 137 21 48

Table 7.7: Results for different final temperatures.
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Figure 7.5: The objective function value during the SA procedure for different final temperatures.

Maximum number of success
We can also increase the length of the Markov chain by increasing 𝜔 and 𝜔new, the maximum number
of successes in one temperature. First, we only increase 𝜔new while using the same value of 𝜔. In Table
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7.8, we see that increasing the number of iterations improves the objective function value, however,
the computation times also increases. Because the increase in computation time is so large, we used
𝜔new = 20 for other preliminary tests.

Maximum
number of
success

Objective
function
value

OR utilisa-
tion

Required
beds

Differ-
ence in
beds

Computation
time (min)

Iterations

𝜔new = 20 33397 79.37% 148 24 63 3959

𝜔new = 50 34161 81.07% 147 24 155 10114

𝜔new = 100 37552 83.51% 153 20 250 15374

Table 7.8: Results for different values of .

We also tried to increase the Markov chain, by increasing both 𝜔 and 𝜔new. In Table 7.9, we see
results for different values of 𝜔new and 𝜔. We set 𝜔 = 3⋅𝜔new and vary the values of 𝜔new. The Markov
chain grows for higher values of𝜔new. However, a higher number of iterations does not necessarily leads
to a better solution, but it does mean a longer computation time. When using a different number of
iterations per temperature, the cooling to a new temperature happens at a different solution. Therefore,
it is possible that the best objective function value obtained when 𝜔 = 200 is less high than the best
objective function value for 𝜔 = 150, even though the same choices are made. The best solution
is obtained with 𝜔new = 150 and 𝜔 = 450. The computation time is just over six hours.

Maximum
number of
success

Objective
function
value

OR utilisa-
tion

Required
beds

Differ-
ence in
beds

Computation
time (min)

Iterations

𝜔new = 100 35963 85.11% 160 25 307 17807

𝜔new = 150 38699 85.53% 159 20 412 24137

𝜔new = 200 38031 86.11% 162 22 513 29556

Table 7.9: Results for different values of and .

Best solution
In conclusion, we choose to use initial temperature 𝑇 = 1000, because this temperature allows
acceptable negative changes in the objective function value, while a higher temperature allows too
much negative change and a lower temperature allows no negative changes. Furthermore, we have
stopping temperature 𝑇 = 1, which should make sure that the procedure converges to an optimal
solution. To obtain a good solution, we let 𝜌 = 0.97, 𝜔 = 450 and 𝜔new = 150.
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7.4. Comparing the global and local approach
In this section, we compare the local and the global approach. To determine which of the two ap-
proaches performs better, we compare the results for the best solutions of both approaches. Both
objective function values are calculated using the 90-percentile of the probability distribution of the
number of required beds.

The SA procedure is very slow compared to the MILP approach. The best obtained solution is shown
in Table 7.10 and took over seven hours to compute. This can be explained by the high amount of
convolutions needed to calculate the objective function value. The MILP performs better in less time.
Within 1.5 hours, we have a solution with a good OR utilisation and very little variation in number of
required beds. Running AIMMS for seven hours, does not improve the objective function value.

Solution
method

Objective
function
value

OR utilisa-
tion

Required
beds

Difference in
beds

Computation
time (hours)

SA 38699 85.53% 159 20 7

MILP 41778 83.91% 152 12 1.5

Table 7.10: Results for the best solution of MILP and SA procedure.

In Figure 7.6, the 90-percentile number of required beds for the ward VBS3 is shown for both ap-
proaches. We see big dips during the weekend, but during the week the MILP approach gives a very
steady number of required beds. The SA approach performs worse with a difference of two beds during
the week. However, for both solutions the same amount of beds are needed at this ward, namely 14
beds, while the OR utilisation is slightly higher for the solution of the SA approach.

In Figure 7.7, we see the number of required beds at the wards KVVL and VCH1, for both methods.
The solution for the KVVL obtained with the MILP results in a very steady number of required beds dur-
ing the week. The SA method has more variation during the week. For the ward VCH1, it seems more
difficult to decrease the variation in number of required beds. However, the MILP again outperforms
the SA method, because the variation in beds is slightly less.
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Figure 7.6: The number of required beds at the ward VBS3, from the best AIMMS and the best SA solution.
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Figure 7.7: The number of required beds at the wards VCH1 and KVVL, from the best AIMMS and the best SA solution.

The MILP also outperforms the SA approach for the 85-percentile, see Table 7.11. The objective
function of the MILP only depends on the expected number of beds needed, while the SA approach
considers the chosen percentile during the procedure. This means that we do not have to solve the
MILP again, but only determine the 85-percentile for the solution found by the MILP. We do have to
run SA again to determine new solutions for the 85-percentile.

Solution
method

Objective
function
value

OR utilisa-
tion

Required
beds

Difference in
beds

Computation
time (hours)

SA 36518 84.33% 149 23 6

MILP 41278 83.91% 146 13 1.5

Table 7.11: Results for the 85-percentile.

The MILP performs really well, even though it uses a linearised version of the objective function.
In the MILP, we use the expected number of required beds and use this to minimise the variation in
number of required beds. It seems that the expected number of required beds corresponds well with
the true number of required beds, which depends on the chosen percentile. In Figure 7.8 and Figure
7.9, we see for ward VCH1 and KVVL the number of required beds for different percentiles. We see that
the expected value of the number of required beds is lower than for higher percentiles, however, the
trend is very comparable. Therefore, the expected number of required beds is a good predictor of the
difference between the maximum number of required beds and the minimum number of required beds
during weekdays. On ward KVVL, we see that for the 75-percentile the difference is one bed, while for
the 90-percentile and the expected value the difference is zero beds. On ward VCH1, the difference is
two beds for the expected value, which is also true for the 75-percentile and the 90-percentile. This
explains why the global approach performs well: the difference in beds is approximated well by the
expected value of the number of required beds.
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Figure 7.8: The number of required beds at the
ward VCH1 for different percentiles.
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Figure 7.9: The number of required beds at the
ward KVVL for different percentiles.

In Beliën and Demeulemeester [9], a similar comparison is made between a MILP approach and
using SA. In their case, SA was also slower than the global approach, however, on all other aspects
the SA procedure outperformed the global approach. In Van Essen et al. [14], the SA procedure is
much faster than the global approach. However, the global approach gives better solutions. In this
research, the SA procedure is much slower. We can give multiple reasons why this might be the case.
First, in [14] and [9] OR blocks of whole days are scheduled instead of surgery groups. Because there
are on average four surgery groups scheduled each OR-day, a lot more convolutions have to be cal-
culated. Secondly, in their SA methods, neighbour solutions are defined by swapping OR blocks that
are assigned to different days, while we define neighbour solutions by adding, removing and swap-
ping surgery groups and swapping OR-days. To fill an OR schedule completely with surgery groups is
computationally more intensive than having a filled OR schedule and only swapping OR blocks. This
explains why in our case the global approach performs better than the local search heuristic.

Together with stakeholders we set the goal for the OR utilisation at 85%. Our best solution does
not achieve this goal. We can add a constraint that ensures that the OR utilisation is higher than 85%.
However, the computational complexity increases and after three hours no solutions were found.

7.5. Improving MILP solution with SA
The SA procedure needs an initial solution. In our experiments, we used a solution that our MILP ap-
proach produced after one minute. However, improving the initial solution might improve the outcome
of the SA procedure. Therefore, we test if the solution generated by AIMMS after 90 minutes can be
improved by the SA procedure. In Figure 7.10, we see the objective function value during the iterations
of the SA procedure with 𝑇 = 1000, the default setting. After 3534 iterations the procedure stopped
due to reaching the maximum number of consecutive rejections. During the first 500 iterations, the
objective function value goes down. Apparently, no neighbour solutions with better objective function
values are found. After this, the solution starts to improve again. However, it never reaches the original
objective function value. The returned solution is just the initial solution. With the initial temperature
at 𝑇 = 1000, we did not obtain better solutions. Therefore, we analysed different initial tempera-
tures. Instead of treating the initial solution like we normally would in the SA procedure, so accepting
a decrease in objective function value, we treat it like it is at the end of the SA procedure, so only
accepting a decrease in objective function value with a very small probability. Therefore, we use initial
temperatures that are much lower, namely 𝑇 = 100 and 𝑇 = 10. We also decrease the stopping
temperature with the same factor, so we use 𝑇 = 10 and 𝑇 = 1 respectively. For 𝑇 = 100, we get
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a slightly better solution in the first 200 iterations. It reaches the maximum number of consecutive
rejections after 8500 iterations. For 𝑇 = 10, we find a better solution after 100 iterations. It keeps
improving slightly until it reaches the maximum consecutive rejections after 30 minutes of computation
time. In Table 7.12, we see the performance indicators for all solutions. The computation time is given
by the sum of the computation time of the MILP and the SA procedure. For 𝑇 = 10, the OR utilisation
improves with 0.66% and the variation in required number of beds goes down by one bed. With just
an extra half hour of computation time, this is a good result. We therefore recommend to try and
improve the best solution given by the MILP method with SA.
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Figure 7.10: The objective function value during the SA procedure with different initial temperatures and the best solution from
the global approach as initial solution.
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Solution method Objective
function
value

OR utilisa-
tion

Required
beds

Difference in
beds

Computation
time (hours)

MILP 41778 83.91% 152 12 1.5

SA, 𝑇 = 1000 41778 83.91% 152 12 3

SA, 𝑇 = 100 42084 84.45% 152 12 4

SA, 𝑇 = 10 42658 84.57% 152 11 2

Table 7.12: Results for the MILP, and running the SA procedure with the best MILP solution as initial solution.

7.6. Comparing results to situational analysis
In this section, we compare the performance of the model with the performance of the LUMC in 2015.
In 2015, the average OR utilisation of the surgical specialties we took into account was 71%. The
variation in bed occupancy during the week over all relevant wards and ICUs was 53 beds. When we
compare this with our best solution, the variation in bed occupancy can be brought down to 11 beds,
while the OR utilisation can be improved to 84.57%. In Table 7.13, we see the mean variation in bed
occupancy for 2015 and the variation in required number of beds for each ward and the ICU. We see
that for each ward the variation in bed occupancy can decrease, or in case of the VRVK, stay the same.

Ward Historical mean variation
in bed occupancy

Variation in required
number of beds

DBVL 9 0
KVVL 13 0
VBS3 5 0
VCH1 4 2
VCH2 4 1
VCH3 5 2
VERL 2 1
VIG1 1 0
VPL2 2 0
VRVK 4 4
ICU 4 1

Table 7.13: The variation in bed occupancy from historical data compared to the variation in required number of beds
according to our model.



8
Scenarios

We want to give more insight into the factors that influence the bed occupancy and the OR utilisation.
Therefore, we use the global approach to determine solutions for different scenarios. In Section 8.1,
we try to avoid having patients in the short stay ward during the weekend. The wards: VCH1, VCH2
and VCH3 are seen as important. Therefore, we perform a scenario where we increase the importance
of these wards in Section 8.2. In Section 8.3, we discuss a scenario in which we minimise the total
number of required beds instead of the variation. In Section 8.4, we analyse a way to include the sum
of standard deviations of the surgery duration in the objective function. The influence of changeover
times on the OR utilisation is shown in Section 8.5. In Section 8.6, we analyse how much there is to
gain when the constraints regarding the current master surgery schedule are relaxed. To analyse if our
MILP model also performs well with other datasets, we use data from the HagaZiekenhuis in Section
8.7.

8.1. Short stay ward during weekends
We would like to avoid having patients in the short stay ward during the weekend. The short stay
ward closes during the weekend and patients that are still there need to be transferred to other wards.
Unfortunately, this cannot be added to the model described in Section 4.4. There, we first determine
the probability distribution for each ward and each surgery group. Therefore, the distribution of the
number of patients on each ward is already determined before the surgery groups are assigned to days
in the schedule. We can only determine the probability that patients are in the short stay ward during
the weekend after the surgery groups are assigned to days in the cyclic schedule. But at that time,
we can no longer influence the probability distributions of these groups, because they are already set.
Therefore, we use a penalty 𝑄 when patients are on the short stay ward during the weekend. We
define 𝑟 as the variable that denotes how many patients there are on the short stay ward during the
weekend. 𝑟(𝜓) is equal to the maximum number of required beds on Saturdays and Sundays. We
denote the short stay ward with SSW and Saturdays and Sundays in the planning horizon are given by
the set L , a subset of all days in the planning horizon L. The resulting MILP model is given by

max∑
∈O

∑
∈K

∑
∈J

𝜇 ⋅ 𝑧 , , −∑
∈I

𝜃 �̂� − ∑
∈W

𝜃 �̂� − 𝑄 ⋅ 𝑟(𝜓). (8.1)

s.t. (4.1)− (4.3), (5.13)− (5.15), (5.30)− (5.33)
𝑟 ≥ �̄� , ∀𝑙 ∈ L (8.2)

In Figure 8.1, we see the results of the model with 𝑄 = 10000 and a computation time of 90 minutes
compared to the best solution produced by the regular MILP model. We see that the number of required
beds during the weekend goes down, but does not come close to zero. It also affects the OR utilisation,
which decreases by 7.5% and the difference in beds, which increases by 12 beds. For higher values of
𝑄, the results for the KVVL stay the same. All surgery groups have a minimum demand, the minimum
amount of times they need to be scheduled. In this solution, the surgery groups that include patients
that can go to the KVVL are already scheduled the minimum amount of times. We can explain why it is

69
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difficult to require no beds on the short stay ward during the weekend by how we formed the surgery
groups. We cluster surgical procedures into surgery groups. However, surgical procedures are not
the best predictors for the ward a patient goes after surgery. Therefore, patients from certain surgery
groups may have a probability of going to the short stay ward, even though the LoS of these patients
can exceed the LoS of a typical short stay ward patient, which is less than five days. By changing
the clustering procedure, i.e., defining surgery groups not only by surgical procedure but also by, for
example, age and general health, we improve the probability of finding a schedule for which the short
stay ward requires no beds during the weekend.
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Figure 8.1: The required number of beds at the ward KVVL.

8.2. VCH1, VCH2, VCH3

According to personnel, the wards VCH1, VCH2 and VCH3 are the long stay wards with the most
variation in bed occupancy. This is confirmed by data from these wards. A lot of cancellations of
elective surgical patients happened, because there were no beds available on one of these wards.
Our model also cannot remove all variation in required number of beds for these wards. All solutions
still contain some variation in the number of required beds during the week for these three wards.
Therefore, we want to run a scenario, where we increase the importance of these wards. We use 𝜃 to
make the wards VCH1, VCH2 and VCH3 five times as important as the other wards and ICU. In Figure
8.2, we see the outcome of this scenario. For the ward VCH2, the variation in required number of beds
has improved. For the other wards, the difference in required beds during the week stays the same. It
does have a slightly negative influence on the variation in required number of beds of other wards as
this goes up with three beds. Furthermore, the OR utilisation goes down with 3% in comparison with
the solution for the basic model.



8.3. Minimising bed occupancy 71

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

10

15

20

Days in planning horizon

N
um
be
r
of
re
qu
ire
d
be
ds

VCH1-Scenario
VCH1-Basic
VCH2-Scenario
VCH2-Basic
VCH3-Scenario
VCH3-Basic

Figure 8.2: The required number of beds at the VCH.

8.3. Minimising bed occupancy
In our default model, we minimise the variation in bed occupancy. However, personnel to keep the
beds open is expensive. Therefore, instead of minimising the variation in bed occupancy, we can also
minimise the maximum number of required beds in the planning horizon. Even though there might be
more variation, the maximum number of required beds can decrease, which can lead to needing less
beds at the wards.

This is a variation of our basic linear model described in Section 5.2. Here, we use the maximum
values of �̄� , (𝜓) and �̄� instead of using the difference between the maximum and minimum values of
�̄� , (𝜓) and �̄� , (𝜓), because the required amount of beds during the week is equal to the maximum
amount of beds needed during the week. The resulting MILP is:

max∑
∈O

∑
∈K

∑
∈J

(Θ ⋅ 𝜇 + Θ ⋅ 𝜎 ) 𝑧 , , −∑
∈I

𝜃 �̂� − ∑
∈W

𝜃 �̂� (8.3)

s.t. (4.1)− (4.3), (5.13)− (5.15)
�̂� ≥ �̄� , ∀𝑖 ∈ I , 𝑙 ∈ L

�̂� ≥ �̄� , ∀𝑤 ∈ W , 𝑙 ∈ L .

The results for running this scenario for 90 minutes are shown in Table 8.1. We cannot compare
objective function values, because these are different for both methods. The difference in number of
required beds is a lot higher, as was to be expected. However, the OR utilisation is also higher while
less beds are needed in total. In Figure 8.3, we have the number of required beds for ward VCH1 and
VBS3 for the scenario where we minimise the number of required beds and the basic model. Even
though the basic model has less variation during the week, more beds are needed for this solution.

Solution
method

OR utilisa-
tion

Required
beds

Difference in
beds

Computation
time (hours)

min Variation 83.91% 152 12 1.5

min Beds 85.23% 147 26 1.5

Table 8.1: Results for the best solution of our basic model and the scenario in which we minimise the required number of beds.
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Figure 8.3: The required number of beds at the wards VBS3 and VCH1.

8.4. Standard deviation

As in the research of Van Oostrum et al. [2], we assume that surgery durations are normally distributed
with mean 𝜇 and variation 𝜎 . In our basic model, we only maximise the sum of mean surgery
durations. This, in combination with constraint 4.4 will most likely yield solutions that prefer surgery
groups with a low variation in surgery duration. In this scenario, we include the sum of standard
deviations in the objective function, so surgery groups with a high variation are more likely to be
scheduled. Our resulting objective function is given by

max∑
∈O

∑
∈K

∑
∈J

(Θ ⋅ 𝜇 + Θ ⋅ 𝜎 ) 𝑧 , , −∑
∈I

𝜃 �̂� + ∑
∈
𝜃 �̂� (𝜓). (8.4)

where Θ and Θ are parameters that denote the importance of mean surgery duration versus the
standard deviation of the surgery duration. In Figure 8.4, we see how many times surgery groups with
low, middle and high variation in surgery duration are scheduled more than their minimum demand. In
comparison with the basic model, slightly less surgery groups with low and middle standard deviations
of the surgery duration are scheduled, while slightly more surgery groups with a high standard deviation
of the surgery duration are scheduled. The OR utilisation for this solution is only 0.2% less than the OR
utilisation of the basic model. The method seems to work, however, the difference in required number
of beds does go up by 7 beds.
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Figure 8.4: How many times groups are scheduled per standard deviation group.

8.5. Changeover times
In our default scenario, we use a changeover time of 15 minutes. The changeover time is defined as
the time between one patient leaving the OR and the next patient entering the OR. This changeover
time is chosen, because we want to assume the theoretically achievable changeover time. In practice,
the changeover time is often higher than 15 minutes. Therefore, we compare the results for a solution
with a changeover time of 15 minutes and a solution with a changeover time of 30 minutes in Table
8.2. It is clear that the changeover time heavily influences the OR utilisation. With less time between
surgeries, more time can be spend on surgeries, which improves the OR utilisation. If we only take the
minimum cleaning time into account, 5 minutes, the OR utilisation can improve by 5%. This is a very
optimistic value for the changeover time, but is shows that in order to improve the OR utilisation, the
LUMC should work towards shorter changeover times.

Changeover
time

OR utilisa-
tion

Required
beds

Difference in
beds

Computation
time (hours)

5 min 89.54% 164 17 1.5

15 min 83.91% 152 12 1.5

30 min 78.36% 146 16 1.5

Table 8.2: Results for the best solution of our basic model and the scenario in which we set the changeover times.

8.6. Different master surgery schedule
In our default scenario, we use the master surgery schedule of LUMC. This means that, for example,
the surgery groups that belong to the plastic surgery specialty can never be scheduled on Thursdays.
We analyse whether the MSS has a large influence on the variation in number of required beds. In
Table 8.3, we see that the problem becomes more complex when the MSS is not used. After 10 minutes
of computation time, the optimality gap is very large and no good solution has been found. After 90
minutes of computation time, the optimality gap is still 45.81%, however, the solution improved greatly
on the solution after 10 minutes. The solution has a slightly lower objective function value than the
solution of the default scenario, which has an objective function value of 41778, an OR utilisation of
83.91% and the difference in beds is 12 beds. After six hours, the objective function value is higher than
the objective function value of the solution of the default scenario. The OR utilisation has improved,
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but the difference in beds has increased compared to the solution of the MILP method for our default
scenario.

Computation
time (min)

Objective
function
value

OR utilisa-
tion

Required
beds

Difference in
beds

Optimality
gap

10 min 2106 54.63 % 127 58 885.14 %

90 min 40561 87.04% 163 18 45.81 %

180 min 41595 87.10% 162 16 42.70%

360 min 41847 87.54% 162 16 39.25%

Table 8.3: Scenario in which the MSS is disregarded.

8.7. Different data
We use a dataset from HagaZiekenhuis to analyse if our MILP model also performs well for other
datasets. It is a dataset from the orthopedic surgery department. They identify 43 surgery groups,
where the means, variation and minimum demand are given. Instead of different surgical specialties,
here, we have surgeons who all perform a subset of the surgery groups. As with the surgical specialties
in our default model, a whole OR-day is assigned to one surgeon. The LoS probability distribution is
given for each surgery group. Only one ward and no ICUs are taken into account. We use the 95-
percentile to calculate the required number of beds. The results can be found in Table 8.4, for different
computation times. Bosch [31] uses the same dataset and probability of overtime occuring and aims
to maximise the OR utilisation while minimising the required number of beds. The solution where
instruments are not taken into account, which is comparable to our solution, yields a OR utilisation
of 91% that needs 45 beds in total. Our solution has 1.4% less OR utilisation, however, the required
number of beds goes down by six beds. In [31], first OR-days are formed based on the OR utilisation,
then these OR-days are used to find a schedule which minimises the required number of beds. The
method they use is much faster. Their method generates a solution in under a minute. However, the
OR-days are formed beforehand, so there is no flexibility in removing or adding a surgery group to an
OR-day, which could be the reason we end up with a solution that requires a lot less beds.
In [31], the aim was an OR utilisation of 90%, which they reached for most scenarios. In order to
compare the solutions even better, we added a constraint to ensure the OR utilisation is at least 90%.
However, after three hours no solution is found.

Computation
time (min)

OR utilisa-
tion

Required
beds

Difference in
beds

Optimality
gap

10 min 86.69 % 40 3 15.35%

90 min 89.59% 39 3 12.21%

Table 8.4: Results for the data from HagaZiekenhuis.
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Conclusions and recommendations

In Chapter 1, we have stated four research goals:

• Minimise the variation in bed occupancy on the wards during the week.

• Minimise the variation in bed occupancy on the intensive care unit (ICU) during the week.

• Maximise the operating room (OR) utilisation.

• Minimise overtime in the ORs.

Section 9.1 discusses the conclusions from this research. In Section 9.2, we give managerial recom-
mendations and further research recommendations.

9.1. Conclusions
In Chapter 2, a situational analysis is given. Possible causes for poor performance were identified:

• Scheduling with intervention times

• Scheduling without considering the capacity of the wards

• Scheduling without considering downstream capacity needs of other surgical specialties (post
anaesthesia care unit, ICU)

• Not taking the stochastic nature of surgery duration into account

In Chapter 3, we conducted a literature review into scheduling approaches to overcome the causes
mentioned in Chapter 2. We developed a surgery scheduling approach based on Van Oostrum et al.
[2]. To model the stochastic length of stay (LoS), we use a model based on Fügener [3], which is
based on Vanberkel et al. [13].

In Chapter 4, we propose a method to cluster surgical procedures into surgery groups based on
LoS and surgery duration. We contribute to literature by extending the model of Fügener [3] to in-
clude multiple ICUs, account for scheduling surgery groups instead of whole OR-days and include the
possiblity that patients from the same group are going to different wards after surgery.

We use two different solution methods to solve the model: the global approach and a local search
heuristic, i.e., simulated annealing. In Chapter 5, we linearise part of the objective function that is
based on the analytical model to determine the required number of beds, so it can be used in a global
approach. Only a simpler version of this model, as presented in Beliën and Demeulemeester [9], has
ever been used in a global approach. The resulting MILP is proven to be 𝑁𝑃-hard. The other solution
method, simulated annealing, is introduced in Chapter 6. Four possible ways to identify neighbour
solutions are given.
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In Chapter 7, we conducted numerical experiments for both these approaches. First, results from
the clustering method are shown. Dividing surgical procedures into groups based on their average
LoS resulted in well defined groups. However, dividing these groups again into groups based on the
average surgery duration resulted in a few less well defined groups. This can have multiple reasons:
too few surgical procedures in a group, surgical procedure is not always a good predictor of surgery
duration or too much variation within surgical procedures. In Section 9.2.3, we discuss recommenda-
tions regarding the clustering procedure.

The mixed integer linear programming (MILP) method performs well within two hours. The best
solution with respect to the objective function value gives an OR utilisation of 83.91%, which is 1.1%
less than preferred. The variation in number of required beds is very low. To obtain the best solution
for the SA procedure we had to run the procedure for seven hours. This solution does have an OR
utilisation above 85%, however, the variation in number of required beds is more than 1.5 times the
variation in number of required beds of the solution from the MILP.

In the MILP, the simplification of the part of the objective function that denotes the variation in
required number of beds, predicts the outcomes for other percentiles well. Furthermore, the linearisa-
tion of the overtime constraint uses only five piecewise linear functions to obtain a maximum error of
five minutes on the total surgery duration of the whole OR-day. This means we overestimate the total
surgery duration of an OR-day with at most five minutes. It is possible to use more piecewise linear
functions and obtain a lower maximum error. Overall, the global approach performs well, and is there-
fore, preferred over the local search heuristic. As shown in Section 7.5, we can improve the best solution
of the MILP method by using it as an initial solution for the SA procedure. We recommend to use a
low initial temperature in that case, to prevent a decrease in objective function value. This results in a
solution with an OR utilisation of 84.57% and a total of 11 beds in variation in number of required beds.

With our global approach, we found that changing the probability that overtime will occur, highly
influences the OR utilisation. Using longer or shorter changeover times also highly influences the OR
utilisation. Furthermore, with this model and data, it is not possible to find a solution where the short
stay ward does not require any beds during the weekend. To achieve this, surgery groups should not
only be defined by surgical procedure, but also take other factors into account like age and medical
condition. However, this does not guarantee a solution were the short stay ward can close during the
weekend.

Our model allows us to have influence on which wards and ICUs we find more important. Fur-
thermore, we can ensure that surgery groups with a high variation in surgery duration are scheduled
more often. By changing the constraints slightly, we can minimise the required number of beds instead
of minimising the variation in required number of beds. This can be useful when personnel for beds
becomes more important than other factors.

In Section 7.5, we describe the improvements that can be made with our surgery scheduling ap-
proach. The OR utilisation can be improved with 13.6%, while the variation in bed occupancy can be
brought down from 53 beds to 11 beds.

9.2. Recommendations
In this section, we discuss recommendations for the LUMC and further research. We propose that
the LUMC applies the surgery scheduling approach described in this research. First, we discuss some
general recommendations regarding available data in Section 9.2.1. Then we discuss the proposed
managerial implementation. Lastly, we give recommendations for further research in Section 9.2.3.

9.2.1. General recommendations
In this section, we discuss general recommendations for the LUMC.

Define the start of OR-days Anaesthetists are responsible for two ORs at the same time. This
means that during the first session of the day, an anaesthetist should perform the induction of
two patients almost simultaneously. Therefore, the first patient can arrive on the OR before
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the anaesthetist has time to perform the induction. This can reflect in the registered surgery
duration, which starts when the patient arrives on the OR. When the starting time of the two ORs
differentiates, this may be prevented. Furthermore, the start of the OR-day is not clearly defined.
Either the incision should be made at 8.00 or the patient should be there at 8.00. By defining the
start of the OR-day clearly, late starts because ambiguity of starting times should decrease.

Schedule with session times Currently, the OR planners schedule surgeries based on intervention
time (time from incision until closing the wound) and can schedule 360 minutes of intervention
time on a 480 minute OR-day. The total amount of changeover time, induction time and time
after closing the wound until the patient leaves the OR, can vary a lot per OR-day. It depends
on the amount of surgeries and type surgeries that are scheduled on that OR-day. Therefore,
we propose that planners of the LUMC start scheduling with session times, which is the time
between a patient arriving at the OR until the patient leaving the OR. This session time should be
estimated based on historical data. Furthermore, the planners should take the needed amount
of changeover time and slack needed to prevent overtime into account.

Clearly define the case mix The case mix of the LUMC is not clearly defined for every specialty.
The production agreements should be clearly stated and known to planners. Then, they can
be taken into account in the model by setting the minimum demand of surgery groups in the
cyclic schedule. Now, the minimum demand is based on historical data, however, this may not
be accurate for the production agreements of the coming years.

Improve quality of data We recommend that the LUMC invests in improving the recording of data.
A lot of data is already collected, however, the quality of the data can be improved. With more
reliable data, better performance evaluations can be made. In relation to our scheduling approach
we name a few important points for improvement:

• Accurate time registration of surgeries

• Time registration, registration of specialty and registration on the wards of emergency surg-
eries

• Registration of multidisciplinary surgeries

With accurate time registration, the surgery duration of surgical procedures can be better esti-
mated. There could even be made a distinction between surgeons, so a more accurate estimation
of the total duration of an OR-day can be made to reduce overtime.

Emergency patients are not always registered. Also, the data of the surgery of emergency patients
was considerably worse than the data of surgeries of elective patients. Furthermore, the priority
rating of patients had discrepancies between data from the OR department and data from the
wards. From interviews with personnel we found that elective patients sometimes get a higher
priority status so they can be operated on, even though they are not real emergency patients. OR
management needs to set strict standards on when a patient gets an emergency patient status.
With better registration of emergency patients, they could be taken into account in the model.

Another instance that was not well documented were multidisciplinary surgeries. Because the
LUMC is an academic hospital, there are multidisciplinary surgeries where surgeons of multiple
specialties are present. However, this was not recorded well in the available data. If better data
becomes available about these type of surgeries it could be implemented in the model.

Decreasing variation in surgery duration When surgeries have less variation in surgery duration,
the OR utilisation can go up with a same probability of overtime. The data collected from the
LUMC showed that the variance in surgery duration for a surgical procedure can be hours.
A simple way to obtain better defined surgery durations is to clearly register when a physician
in training is going to perform (part of) the surgery and when the more practised physician is
performing the surgery. Then, you can make a distinction between the surgery duration when
the physician in training is operating or when the physician is operating. When this is known
beforehand, the variance of the surgery duration decreases, which can decrease the probability
of overtime.
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9.2.2. Managerial implementation
Every year, the surgery groups should be evaluated, to see if they are still up to date. The tactical
schedule should be generated every 3-6 months with relevant data and surgery groups, dependent
on how well the cyclic schedule is performing. The tactical schedule should be communicated to the
OR department, planners, wards and the ICU. The wards and ICU can then anticipate on the resource
demand of the surgery schedule. To achieve this, the LUMC board should have clear production agree-
ments with the surgical specialties and a division of OR capacity for the cyclic schedule.

Gather data automatically. In this research, we processed the data manually to determine the
surgery duration and length of stay. Two different datasets were used, one from the wards and
one from the OR department. In linking the two datasets, some data was lost. Furthermore, this
process was time consuming and there were discrepancies in the data from both sets. Therefore,
these systems should be linked and process the historical data automatically. The surgery types
should be integrated into the information system by making a new list of codes. If the information
system is adjusted, it will be easier for OR planners to start using historical surgery durations to
schedule surgeries.

Use production agreements. As stated before, the OR management should make clear production
agreements per two week period, where up to date capacity availability is taken into account.
The minimum demand of a surgery group in the planning horizon can then be based on these
production agreements. Furthermore, knowledge about waiting lists should be used to determine
the maximum demand of surgery groups, to prevent that they are scheduled too often regarding
the supply of patients. If production agreements are met throughout the year, it should also
reduce the peak of overtime at the end of the year.

Decisions regarding the model. The model requires the input of certain parameters that denote
the probability of overtime and the balance between OR utilisation and variation in number of
required beds. The OR management should make decisions regarding these parameters. Setting
a higher probability of overtime leads to a higher OR utilisation, but will also have an effect on staff
and budget. We have a parameter that denotes the balance between beds and OR utilisation.
It denotes how many OR minutes are worth the decrease of one bed. We recommend that the
OR management determines the costs of having an occupied bed, the costs of not using the OR
for one hour and the costs of overtime. Then, a consideration can be made for the parameters.
Another possibility is that the capacity of certain resources, due to a shortage of OR personnel
or nurses on the wards, are the determining factor. If there is only so much available personnel,
then this should be taken into account when setting the parameters.

Evaluate the performance of the model. We recommend that before putting the model into prac-
tice, a performance evaluation is done. This could help gain commitment of surgeons, OR plan-
ners and other personnel. Given a surgery schedule, the model can determine the OR utilisation,
probability of overtime and the bed occupancy. This can be compared to the actual performance.

Pilot with cardiothoracic surgery (CTS) or neurosurgery (NS). We propose a pilot with one sur-
gical specialty. We recommend to start with either CTS or NS, as both specialties have separate
resources, such as their own ORs and ward. Planners from these specialties are also interested
in a new way of planning. The model will be used by the patient logistics team to find a suitable
cyclic schedule. The OR planners can start using the cyclic schedule to assign patients to their
surgery group slot. The patient logistics team can work together with the OR planner and sur-
geons to implement changes in the model. During this time, the surgery group definitions can
be sharpened and the surgeons availability can be taken into account. The performance of the
cyclic schedule can then be evaluated.

Develop a tool that planners can use. After the model is evaluated, it is important to develop a
tool, so all OR planners can easily start scheduling according to the cyclic schedule. The tool
can be made in house or outsourced to a software development company. The planner of the
specialty where the pilot is performed can test the tool.

Let all OR planners use the tool. When the tool is running smoothly for the pilot specialty, OR
planners of other specialties can start using it too.



9.2. Recommendations 79

9.2.3. Research recommendations
In this section, we describe recommendations regarding further research. We split this into three parts:
the clustering method, the model and the solution methods.

Clustering method
In this research, we propose a clustering method that takes the surgery duration and LoS into account.
We create surgery groups to which we assign surgical procedures. However, surgical procedures are
not always the best predictor regarding surgery duration and LoS. Many other important factors like
diagnosis, age and medical condition also play an important role. Therefore, we propose to research
which factors, or combination of factors, are the most important and usable. For instance, medical
condition is harder to quantify than age and can therefore be difficult to use. The next step would be
to adjust the clustering method to incorporate these factors. This should lead to better defined surgery
groups.
Redefining the surgery groups may also help with the problem of the short stay ward. With our
current model and defined surgery groups, we cannot find a schedule in which the short stay ward can
completely close during the weekend. If the surgery groups are redefined, there should be surgery
groups that solely go to the short stay ward. This would mean defining the surgery groups based on
specialty, surgical procedure, age and medical condition. Only the surgery groups that have an average
LoS of less than five days can be send to the short stay ward. It would be interesting to research if
with differently defined groups it would be possible to close the short stay ward during the weekend.

Model
In this report, we created a tactical schedule where we assume that the patients all follow one of
two paths. From surgery to ICU to ward or directly from surgery to ward. However, in practice
patients are often transferred between wards. It would be interesting to incorporate this into the
model. Furthermore, we assume that on the day of admission and the day of discharge patients
occupy the bed for the whole day. In practice, this is not the case. Two patients can occupy the
same bed on a day, because the first patients is discharged and the second admitted on that day. To
better relate the bed occupancy from our model to the actual bed occupancy at the wards, we should
determine the bed occupancy for shorter time intervals.
Currently, our model incorporates the OR department and some of the downstream resources, i.e.,
ICU and wards. Before arriving at the OR department, patients arrive at the hospital through the
outpatient clinic. The way this is organised influences the admission rate of surgical patients. It would
be interesting to incorporate this into the model, because it highly influences the waiting lists.
We recommend that in further research, an operational surgery scheduling approach based on this
model is made. Then, actual patients are scheduled, so it is possible to better predict the surgery
duration and LoS. In an operational model, we could also incorporate the order in which to perform
the surgeries assigned to an OR day. This could be used minimise the variation on the holding area,
recovery area and PACU. To achieve this, the bed occupancy needs to be determined more than once
a day. By using shorter time intervals, the model can represent the actual bed occupancy.
In the operational model, we should also include emergency patients. In theory, only the emergency
patients are operated on in the emergency OR. However, elective patients are sometimes urgent, such
that the emergency OR can be used for their surgery. Therefore, it would be interesting to analyse if
emergency ORs are the best choice for the LUMC. Without emergency ORs, the elective patients need
to be scheduled in such a way that there are multiple break-in times during the day. These break-in
times can be used to operate on emergency patients. The emergency ORs can then be used for elective
patients.
In this report, we assumed that surgery durations were normally distributed. However, from research
we know that the 3-parameter log-normal distribution can be a better fit for surgery durations. In
further research, it would be interesting to use the 3-parameter log-normal distribution and compare
the resulting schedule with a schedule when a normal distribution is assumed. Then, we can determine
if it is worthwhile to use the 3-parameter log-normal distribution.

Solution methods
We recommend using the MILP and, if necessary, improve the solution with the SA procedure. Within
two hours a good solution is found. However, our method is currently too slow to be used in an
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operational model. It could be rewarding to analyse if the computation time of the MILP decreases
when the overtime constraint if formulated in a different way or the LoS is assumed to be deterministic.
By comparing the approaches, we can determine if using a stochastic LoS is worthwhile.



A
Determing breakpoints

A good approximation comes from having a high amount of breakpoints. However, having a high
amount of breakpoints also leads to a more complex ILP due to the increase in variables. Therefore,
we determine the minimum amount of breakpoints needed to obtain the maximum approximate error
Δ . Every linear approximation function has the highest error at the breakpoints, see Figure A.1.
The approximate error 𝛿 at breakpoint 𝑛 ∈ 𝑁 is given by

𝛿 = ℎ (𝑥 ) − √𝑥 ∀𝑛 > 0 (A.1)
𝛿 = ℎ (𝑥 ) − √𝑥 (A.2)

The maximum error 𝛿 is minimised when 𝛿 = 𝛿 = ... = 𝛿 . The solution can be found by solving

ℎ (𝑥 ) = ℎ (𝑥 ) 𝑛 = 1, ..., 𝑚 − 1 (A.3)
𝛿 = 𝛿 𝑛 = 0, 1, ..., 𝑚 − 1 (A.4)

𝑥 <𝑡 < 𝑥 𝑛 = 0, 1, ..., 𝑚 − 1 (A.5)

Equation (A.3), follows from the intersections of two linear approximations. The 𝑥 are defined as the
begin- and endpoints of the linear approximation for each interval. Therefore, two successive linear
approximations ℎ and ℎ should have the same value in their shared point 𝑥 . Equation (A.4)
ensures that all approximation errors are equal. The last Equation (A.5) ensures that the interval of
the linear function is positive and that the tangent point is in between two subsequent breakpoints.
Equation (A.3) can be expressed in terms of 𝑧 and 𝑡. This gives Equation (A.6), which can be rewritten
with the definitions of 𝑎 and 𝑏 from (5.8) and (5.7).

𝑎 + 𝑏 𝑥 = 𝑎 + 𝑏 𝑥

𝑥 = 𝑎 − 𝑎
𝑏 − 𝑏

𝑥 = √𝑡 − √𝑡

√ − √
= √𝑡 𝑡 . (A.6)

From the second equation, Equation (A.4), it follows that

𝛿 = 𝛿
ℎ (𝑥 ) − √𝑥 = ℎ (𝑥 ) − √𝑥

𝑥 = (2√𝑡 − √𝑥 ) (A.7)
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Figure A.1: Approximation of √ on interval [ , ] by one linear function.

When no surgeries are scheduled on an OR-day, the variance is zero. Therefore, we assume that
𝑥 = 0. Using (A.6) and (A.7) gives

𝑥 = (2√𝑡 − √0) = 4𝑡 (A.8)

𝑡 = 4 𝑡 (A.9)

𝑥 = (2 ⋅ 4√𝑡 − √4√𝑡 ) (A.10)

= (2 ⋅ 4 − √4)
4 𝑡 (A.11)

The variable 𝑐 is introduced to denote the ratio between 𝑥 and 𝑡 . When 𝑥 = 0 this ratio is constant.
We get the following set of equations:

𝑐 = 4 (A.12)
𝑥 = 𝑐 𝑡 for 𝑛 = 1, ..., 𝑚 (A.13)

𝑡 = 𝑐 𝑡 for 𝑛 = 1, ..., 𝑚 (A.14)

𝑐 = (2𝑐 − √𝑐 )
𝑐 for 𝑛 = 1, ..., 𝑚 (A.15)

When 𝑥 = 0, 𝑐 = 4. With Equation (A.15) we can compute 𝑐 for all 𝑛, see Table A.1.

Number of intervals 𝑛 1 2 3 4 5 6 7 8 9 10
𝑐 4 2.25 1.78 1.56 1.44 1.36 1.31 1.27 1.23 1.21

Table A.1: -values per number of intervals for .

The approximation error for the last breakpoint 𝛿 can be expressed in terms of 𝑥 and 𝑐 . All
approximation errors are equal at the breakpoints, see Equation (A.4). Therefore, we have that 𝛿 =
𝛿

𝛿 = 𝛿
= ℎ (𝑥 ) − √𝑥

= √𝑥 ( 1
2√𝑐 , +

√𝑐
2 − 1)
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This means that the approximation error depends on the maximum value of the interval (𝑥 ) and the
number of linear functions (m). Given an interval, we can calculate the approximation error for dif-
ferent numbers of linear functions. For a given maximum approximation error Δ we determine the
minimal number of linear functions needed to achieve at most this error by finding the smallest 𝑚 for
which 𝛿 ≤ Δ .

Number of intervals 𝑛 1 2 3 4 5 6 7 8 9 10
𝛿 25.00 8.33 4.17 2.50 1.67 1.19 0.89 0.69 0.56 0.45

Table A.2: Approximation errors per number of intervals with .

For example, let [0, 10000] be the domain of our square root function. In Table A.2, we see the
approximation errors for 𝑥 = 10000 for different numbers of intervals. Suppose we want at most an
overestimation of five minutes, so Δ = 5, then we need at least three linear functions. Because
𝑚 = 3 is the smallest value of 𝑚 for which 𝛿 ≤ Δ .
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Figure A.2: Linear approximation of the square root function on the interval [ , ] with three linear approximation
functions.

This approach results in the following plan of attack.

1. Define a maximum value of the interval [𝑥 , 𝑥 ] for which to approximate the square root
function.

2. Set a maximum approximation error Δ as the maximum overestimation of the square root
function.

3. Compute the 𝑐 -values
4. Calculate the maximum approximation errors 𝛿 for each of the linear functions 𝑚.
5. Choose the lowest 𝑚-value for which 𝛿 ≤ Δ
6. Determine 𝑡
7. Determine the other tangent points 𝑡 for all 𝑛.
8. Determine the breakpoints 𝑥 for all 𝑛.
9. Determine the breakpoint function values 𝑦 = ℎ (𝑥 )
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