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PREFACE 
 

 

This second edition provides extensions of derivations and 

new theory, based on micro crack processes leading to unification 

with strength theory. Therefore, the derivation of the complete 

strength theory of wood, also applicable to similar polymers, is 

added as the last Chapter 11.  

The now solely applied singularity approach of fracture 

mechanics prevents the possibility of exact solutions and thus 

prevents real and reliable strength predictions. The singularity Airy 

stress function of the mixed mode I-II boundary value solution 

predicts uncoupled strength criteria and the existence of infinite 

strengths. It therefore is necessary to leave the singularity 

approach and to apply the general applicable limit analysis theory 

for the special boundary value problem of notches in wood. It then 

is possible to derive the mixed “mode I – II” - interaction equation, 

with the relations between the mode I and mode II stress intensities 

and energy release rates. Because initial fracture starts in the 

isotropic matrix, it is necessary to solve the isotropic boundary 

value problem as basis for the total stresses. Therefore, for 
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combined mode I - II loading, there is always  virtual oblique 

crack extension, in the opening mode, by the same uniaxial 

ultimate tensile stress (cohesive strength) at the crack boundary. 

The total stresses then have to satisfy the failure criterion, which is 

shown to follow the orthotropic critical distortional energy 

criterion, determining also the critical energy release rate equation.  

It is shown that fracture strain softening does not exist and is 

not a material property as assumed. The derivation of the 

softening, called yield drop curve is given with the explanation of 

the measurements. It is also  shown that the area under the yield 

drop curve method, does not always give the right fracture energy.  

Further is discussed: the derivation of the power law; the 

energy method of notched beams and of joints loaded 

perpendicular to the grain; the Weibull size effect in fracture 

mechanics, and the necessary rejection of the applied crack growth 

models and fictitious crack models.  

Ultimate strength theory is discussed separately in Chapter 11, 

as a separate subject, although it is shown in the previous chapters 

to be necessary to explain and derive all laws of fracture 

mechanics.  

Discussed are the extension of the derivation and explanation 

of:  

 

 the failure criterion of wood (with hardening) and the 

meaning of the constants; 

 the necessary data fitting conditions by the derived 

relations between the constants; 

 the orthotropic extension of the critical distortional energy 

principle of yield; 

 the generalized and extended Hankinson equations; the 

Norris- Tsai Wu- Hoffmann- Coulomb- and Wu fracture 

criteria.  
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 the extended Tresca criterion for wood-matrix failure at 

final yield;  

 the determination of all constants of the failure criterion 

from simple uniaxial, oblique-grain compression and 

tension tests. 

 the hypothesis of the replacement of the normality rule by 

the intrinsic minimum work for dissipation, with hardening 

state constants, for quasi orthotropic materials like wood.  

 





 

 

 

 

 

 

 

Chapter 1 

 

 

 

INTRODUCTION 
 

 

Limit analysis is a technically exact approach for reliable 

upper- and lower bound estimations of the ultimate load. Structural 

design and strength calculations therefore have to be based on 

limit analysis, at least on the lower bound equilibrium method by 

choosing an equilibrium stress system, covering the whole body, 

which suffices boundary conditions and nowhere surmounts the 

failure or yield criterion. The high value of 
cG , the critical energy 

release rate, with respect to the surface energy, shows, that there is 

sufficient plasticity for the linear elastic- full-plastic approach of 

limit analysis. Because the isotropic wood-matrix is determining 

the initial fracture, linear elastic fracture mechanics (LEFM) 

applies perfectly for the initial fracture of wood. Plastic 

deformation of the polymeric reinforcement occurs at the creases 

at the crack tip, called the fracture process zone. This zone is also  

the location of micro crack and small crack multiplication and 

propagation. Thus, wood  shows local small scale yielding at the 

crack tip. The first yield occurs at the highest elastic stress at the 

crack boundary, which is also  the location of the highest ultimate 



T.A.C.M. van der Put 2 

strain after yield and thus is the location of the crack extension. 

This zone of confined plasticity can also  be replaced by the 

equivalent linear elastic ultimate stress value (similar to the 

applied linear elastic bending strength diagram to represent full 

plastic bending compression flow). The difference is an internal 

equilibrium system, which, as with all initial stresses and 

deformations, does not affect the collapse load, according to limit 

analysis theorems, based on virtual displacements behavior. This 

explains why, outer regarding the yield stress at the elastic plastic 

crack boundary, also LEFM may apply up to failure by the 

empirical ultimate tensile stress at the crack boundary (as 

replacement of the confined plasticity solution).  

The so called non-linear fracture mechanics approach, which 

only applies for singularity solutions, e.g., as correction of infinite 

stresses, is superfluous, because it is covered by limit analysis (see 

Chapter 4). The always applied singularity approach is not exact, 

because e.g., the Airy stress function solution wrongly predicts 

failure when whether mode I and/or mode II (without interaction) 

becomes ultimate at mixed mode fracture. It is therefore  necessary 

to reject the singularity solution.  

In Chapter 2, the derivation of the exact, non-singular, mixed 

mode failure criterion is given. Transformation to polar 

coordinates, shows that the singularity equations follow directly 

from the exact non-singular solution and should be corrected 

accordingly.  In  [1, 2], the given equation:   / 2ij ij IF K r     

applies for a stress   perpendicular to crack with a length of 2c. 

For a collinear crack extension: 0   and  0 1ijF   and 

22 / 2IK r  , where 
IK  is an arbitrary shortcut for “ c  ,” 

which follows from the exact solution, given in § 2.2.2, (see also: 

[3, 4]). This is not a parameter following from the dimensional 

analysis as  stated in [2], page 78, and 
IK  is not the limit of 
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2y r  , for crack boundary r → 0 and strength y  . Both r 

and y  are constant. For micro crack extension, (see paragraph 

10.2) it is possible for a freely chosen singularity solution of the 

Airy stress function, containing points where   , when 0c

, with 
IK  as limit of c  . This is the only possible singularity, 

which is not a necessary one, but freely chosen as a possible 

approximate solution. 

It is shown that the area under the load-displacement yield 

drop curve gives the total external work on the test specimen and 

not the fracture energy as is wrongly  assumed. The fracture 

energy follows from half this area which is equal to the critical 

strain energy release rate at initial crack extension. For wood this 

is correctly  applied for mode II (see Figure 3.4.3). For mode I 

however, as for other materials,  the total area is incorrectly 

regarded as fracture energy, which is a factor 2  too high. The 

finite element method regards the area of the loading-unloading 

hysteresis loop, Area(OABO) in Figure 3.4.3, as fracture energy, 

which indeed, correctly is equal to half the area under the load 

displacement curve (0.5∙Area(ABCD)).  

The derivations of Chapter 6 and 7 lead to an adaption of the 

energy approach for the fracture of beams with square end notches 

and of joints loaded perpendicular to the grain, providing a simple 

design method. It is further  shown that all corrective, so called, 

non-linear fracture mechanics models, such as the Dugdale model, 

the fictitious crack model and the crack growth models, are not 

exact and thus not reliable.  

It is shown that failure according to the modes I and II is not 

simply related to the dissipated stress type. The so called mode I 

may occur by dissipation of elastic shear stress energy only and the 

so called mode II, by dissipation of bending stress energy only. 

Determining for the strength is the stress combination at the 
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fracture site (as  follows also from the crack closure technique). 

Therefore, these local stresses should satisfy the derived mixed 

mode failure criterion, which is shown to follow the critical 

distortional energy criterion for initial crack extension and follows 

the Coulomb criterion after “hardening.” It is shown that strain 

softening does not exist (as assumed by cohesive zone models) and 

thus is not a material property. This “softening”- called yield drop, 

is an elastic unloading process. At loading, in a constant strain rate 

test, the unloading rate due to the kinetic damage process [5], is 

much higher than the loading rate, causing unloading of the 

specimen. Increasing the loading rate may change this apparent 

softening behavior into apparent “hardening.” “Softening”-called 

yield drop behavior therefore is not possible in a constant loading 

rate test and not in a dead load to failure test, which ends in sudden 

failure (at the speed of sound). This yield drop stress, due to crack 

extension, is a nominal stress based on unnotched specimen 

dimensions, thus is the mean actual stress outside the fractured 

area, while the actual fracture stress, in the fracture plane (at the 

ligament), increases and remains ultimate. Apparent and real 

softening, (e.g., thermal softening), are fully explained by 

molecular deformation kinetics processes [5], and here, by limit 

analysis without assuming the impossible negative dissipation, 

decreasing flow stress, and negative modulus of elasticity of the 

fictitious crack models. The derivation of the yield drop curve of 

the “Griffith strength” (which is based on the ultimate actual stress 

in the fracture plane) is given in § 3.3. It appears that small crack 

extension and crack merging in the high loaded intact clear wood 

part of the fracture plane explains yield drop and fracture in 

general, which should replace the Griffith law for overcritical long 

initial crack lengths. In that case the Griffith law only gives the 

crack closure energy which is then  lower than the crack formation 

energy. The Griffith law, as extremum principle, applies for the 
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critical crack length at the top of the initial loading curve. But also 

for the main part of unloading at yield drop, this principle applies 

for the then current crack lengths. The Griffith stress is a nominal 

stress,   based on the intact, uncracked, not ultimate, but elastic 

loaded section, and thus is the actual stress outside the fracture 

plane, and not the actual ultimate fracture stress on the intact 

material in the fracture plane.  

It is shown in § 2.3, that the oblique virtual crack extension in 

the isotropic matrix, by any stress combination, follows the 

Coulomb- equation (also called Wu-equation for wood), which 

implies that failure always occurs by the same actual ultimate 

uniaxial tensile stress in the matrix, at the crack boundary near the 

crack tip. This uniaxial tensile failure, as a measure of the cohesion 

strength, leads to the mixed mode Coulomb-equation, eq.(2.3.10), 

as exact failure criterion. This applies as initial crack extension, for 

the isotropic Airy stress function of the isotropic matrix stresses, 

and for the orthotropic total stresses after multiplication with the 

derived stiffness factors. Only for mode I loading is crack 

extension collinear. For shear, mode II loading, and for combined 

mode I and II loading, initial, virtual, oblique crack extension is 

determining providing the lower bound solution, as well  for the 

isotropic matrix, as for the total orthotropic case.  

  Following, it is further discussed: the derivation of the power 

law; the energy method of notched beams and of joints loaded 

perpendicular to the grain; the explanation of the Weibull size 

effect in fracture mechanics, and the necessary rejection of the 

applied crack growth models and fictitious crack models.  
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Chapter 2 

 

 

 

THE BOUNDARY VALUE PROBLEM  

OF FRACTURE MECHANICS 
 

 

2.1. BASIC AIRY STRESS FUNCTION 

 

For the solution of the crack-boundary value problem of 

notches in wood, the orthotropic Airy stress function is normally 

based on evensly distributed    reinforcement which acts  as a 

continuum, satisfying the equilibrium, compatibility and strength 

conditions. This behaviour is only  possible by the interaction of 

reinforcements through the matrix. Thus,  the equilibrium 

conditions and strength criterion of the matrix, as determining 

element, have to be satisfied. This is also  necessary because the 

isotropic matrix fails earlier than the reinforcement, and 

determines initial “yield” behavior. It  is therefore necessary to 

solve the Airy stress function for the stresses in the isotropic 

matrix and then to derive the total (orthotropic) stresses from this 

solution. This is not applied in other approaches mentioned e.g., in 

Chapter 2, of [1]. In fact none of the usually applied singularity 
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solutions is exact, leading  not to the exact mixed mode failure 

criterion (i.e. the Coulomb- or Wu- equation, eq. (2.5.10)) and 

thus, should in fact be rejected as a possible solution.  

In total stresses, the stress-strain relations for the two-

dimensional flat crack problem are:  

 

11 12x x yc c    ; 12 22y x yc c    ;  

66xy xyc  .  (2.1.1) 

 

This can be written: 

 

21/ /x x x y yE E     ; 

21 / /y x y y yE E      ;  

/xy xy xyG   (2.1.2) 

 

The Airy function follows from: 

 

2

2x

U

y






; 
2

2y

U

x






; 
2

xy

U

x y



 

 
,  (2.1.3) 

 

satisfying the equilibrium equations: 

 

0x

x y

  
 

 
 and 0

y

x y

 
 

 
  (2.1.4) 

 

Substitutions of eq. (2.1.1), using eq. (2.1.3):  

2 2

11 122 2x

U U
c c

y x


 
 

 
, etc., in the compatibility condition:  
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2 22

2 2

y xyx

y x x y

   
 

   
,  (2.1.5) 

 

gives: 

 

 
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
   

   
  (2.1.6) 

 

The general solution of eq. (2.1.6) is:  
4

i
i

U F x y  , 

where μ is a root of the characteristic equation: 
4 2

11 66 12 22c (c 2c ) c 0      , giving:  

 

 
2 66 12 22 11

2
11 66 12

c 2c 4c c
1 '1

2c c 2c

 
      
  

, (2.1.7) 

 

thus giving 4 imaginary roots. Introducing the complex 

variables 1z  and 2z , defined by: 1 1z x y x' iy'     and 

2 2z x y x'' iy''    , the solution of eq.2.1.6 assumes the 

form:  

 

1 1 2 2 1 1 2 2U F (z ) F (z ) F (z ) F (z )    ,  (2.1.8) 

 

where the bars denote complex conjugate values. The stresses, 

displacements and boundary conditions now can be written in the 

general form of the derivatives of these functions. There are 

standard methods to solve some boundary value problems (e.g., by 

Fourier transforms of equations of the boundary conditions) but in 
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principle, functions have to be guessed or chosen, or expanded as 

polynomials, or Fourier series or power series in: z or 
1z , etc. 

The exact non-singular solution is given in § 2.2.1. 

As alternative, eq. (2.1.6) also can be given as:  

 

2 2 2 2

1 22 2 2 2
0U

x y x y
 

     
    

     
  (2.1.9) 

 

where 
1 2 11 22/c c   and  1 2 66 12 222 /c c c    .  

Introducing 3 sets of polar coordinates for this case, 

ix iy re   , 1

1/
i

x iy re
  , 2

2/
i

x iy re
  , eq.(2.1.9) 

has e.g., elementary solutions as: 
1 1cos( )mr m

, 1 1sin( )mr m
, 

2 2cos( )mr m
, 

2 2sin( )mr m
, and solutions may be chosen in the 

form of series of these types. For wood material, the elementary 

solution in 
mr  are e.g., chosen in [2], which in principle leads to: 

 

 
 

      A
r r 1 2 3s

K
, , f ,f ,f

2 r
       


 (2.1.10) 

 

and 

 

 
 

      B
r r 1 2 3q

K
, , f ,f ,f

2 r
       


 (2.1.11) 

 

with q ≤ s. The chosen solution is such that it applies in the 

vicinity of the notch root as stress singularity at r = 0. Because for 

q < s, and r small, the stresses of eq. (2.1.10) are always higher 

than those of eq. (2.1.11), the solution, eq. (2.1.11), should be 

rejected based on the boundary conditions at failure (the highest 



The Boundary Value Problem of Fracture Mechanics 11 

lower bound solution is also most probable). It therefore is not 

right to regard 2 singular stress fields, only eq. (2.1.10) applies, as 

an approximate solution, only applicable for the strength of the 

uniaxial stress in the main material direction.  

Because wood is a reinforced material where the reinforcement 

interacts through the matrix and also the primary crack formation 

is in the matrix, the failure condition should be based on the 

strength of the matrix and first the Airy stress function of the 

matrix-stresses should be solved.  

As orthotropic solution, eq. (2.1.10), of U of eq. (2.1.9), 

always show only powers smaller than s = 0.5 (the value of the 

common isotropic singularity approach). For instance, one finite 

element solution did show s = 0.45 near a rectangular notch, while 

another investigation of the same notch type did show values of; 

 = 0.45 for   and s = 0.10 for  , while by the finite difference 

method, powers were found of s = 0.437 for the same rectangular 

notch of 90⁰ and s ≈ 0.34 for much wider notch angles. This shows 

that no compatibility, at initial failure of the (linearly lower) 

stresses and strains in the isotropic wood matrix are possible.   For 

wood, the nearly always applied solution, with (isotropic) s = 0.5, 

represents  flow of the matrix   while there isstill an elastic 

contribution of reinforcement, thus following in principle, the 

same starting point as the   in § 2.3 given  derivation of the non-

singularity approach.  

Wood acts as a reinforced material because lignin is isotropic 

and hemicellulose and cellulose are transversely isotropic, which 

means that only one stiffness factor in the main direction has a n-

fold higher stiffness in proportion to the higher stiffness of the 

reinforcement with respect to the matrix. Thus, wood material can 

be treated to  contain a shear-reinforcement and a tensile 

reinforcement in the main direction, and for equilibrium of the 

matrix stresses then applies:  
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2

2

1

x U

n y

 



; 

2

2y

U

x






; 

2

6

xy U

n x y

 
 

 
,  (2.1.12) 

 

Instead of using the matrix stresses and the matrix stiffness, 

also the orthotropic n-fold higher total stresses and n-fold higher 

stiffness can be used to give the same compatibility condition (thus 

the same condition for matrix and reinforcement). Inserting eq. 

(2.1.5) in the compatibility equation,   the total stresses, expressed 

in the isotropic Airy stress function U of the matrix stresses, gives:  

 

 
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
    

   
  (2.1.13) 

 

For the isotropic matrix:  
1 11 22/ 1n c c   and 

 6 66 1 12 22( 1 ) / 2n c n c c    giving:  

 

4 4 4
2 2

4 2 2 4
2 ( ) 0

U U U
U

x x y y

  
    

   
  (2.1.14) 

 

Thus: 

 

22
1

11

x

y

Ec
n

c E
  ;  12 12 22

6 21 12

22 11 66

2 2
xy

y

Gc c c
n

c c c E
 

 
        
 

 

 (2.1.15) 

 

This new orthotropic-isotropic transformation of the Airy 

stress function and the calculation method based on the stresses of 

the matrix, are now being used.    It now is possible to use the 

isotropic solutions of U to find the matrix stresses (which should 
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not surmount the matrix strength) and to multiply these matrix 

stresses with the n–factors of eq. (2.1.15) for the applied 

orthotropic stresses of initial flow of the regarded loading case. 

This is applied in § 2.2 by solving first the matrix stresses. This 

therefore is equivalent to the orthotropic solution of the singularity 

approach, based on a modified isotropic Airy stress function and 

an isotropic singularity 0.5r , which now is always  applied.  

 

 

2.2. THE ELLIPTICAL FLAT CRACK SOLUTION 

 

As shown above, the applied singularity approach with s = 0.5, 

only applies for uniaxial loading and thus prevents the solution of 

mixed mode loading cases and prevents the derivation of a right 

failure criterion. Instead of such a criterion, critical values are 

assumed of  the strain energy density, the J-integral, or the 

maximal principal stress, or a non local stress function, all at a 

distance away from the crack tip, thus away from the fracture site. 

A real failure criterion can only  be based on the actual ultimate 

stress in the material which occurs at the crack- boundary. A real 

physical  crack form is the flat elliptical crack, which is the first 

expanded  of any form of the crack boundary, and because the 

crack is flat, the higher expanded terms have a negligible, in te 

limit    a zero, contribution. When “flow” occurs around the crack 

tip, the ultimate strain condition (or ultimate equivalent stress, see 

Chapter 1), at the crack-boundary determines  failure and the 

direction of the crack extension. The elastic-plastic boundary (of 

limit analysis) then acts as an enlarged crack tip boundary. Thus 

the limit analysis approach incorporates linear elastic -, as well as 

non-linear fracture mechanics. There is no distinction between the 

two.  
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2.2.1. The Elliptic Hole in an Infinite Region  

 

The classical way of analyzing the elliptic crack problem is to 

use complex variables and elliptic coordinates. The Airy stress 

function can be expressed in terms of two analytic functions [3], of 

the complex variable z (= x + iy) and the transformation to elliptic 

coordinates in Figure 2.1, gives: 

 

z = x + iy = c∙cosh(ξ + iη) or: x = c∙cosh(ξ)∙cos(η);  

y = c∙sinh(ξ)∙sin(η).  (2.2.1) 

 

For an elliptic hole, 
0  , in an infinite region with uniaxial 

stress p at infinity in a direction inclined at   to the major axis Ox 

of the ellipse, the Airy stress function U, satisfying:  

 
2 2( ) 0U   ,  (2.2.2) 

 

and satisfying the conditions at infinity and at the surface 

0  , showing no discontinuity of displacement, thus is  the 

solution giving:   

 

U = R{zϕ(z) + χ(z)}, with [3]:  (2.2.3) 

 

4ϕ(z) = p∙c∙exp(2ξ₀)∙cos(2β)∙cosh(ζ) + p∙c∙(1 – exp(2ξ₀ + 

2iβ)∙sinh(ζ) (2.2.4) 

 

4χ’(z) = - p∙c∙[cosh(2ξ₀) - cos(2β) + exp(2ξ₀)∙sinh(2{ζ - ξ₀ - 

iβ})]∙ cosech(ζ) (2.2.5) 

 

where ζ = ξ + iη. For the stresses at the boundary, due to a stress p 

at an angle β to the crack, is: 



The Boundary Value Problem of Fracture Mechanics 15 

i2i 2[z ''(z) ''(z)]e 
          and: 

2[ '(z) '(z)] 4R{ '(z)}         (2.2.6) 

 

and the tangential stress t  at the surface 0    is simply 

known from the last equation because here 0  . Thus: 

determining for the strength, according to strength theory, is the 

ultimate tangential uniaxial ultimate stress t  at the crack surface 

0   due to a stress p at an angle β (of Figure 2.3.1) to the crack. 

Thus:  

 

t 0 02[ '( i ) '( i )]          = 0 0

0

p(sinh(2 ) cos(2 ) exp(2 ) cos(2( ))

cosh(2 ) cos(2 )

      

  

  

 (2.2.7) 

 

while χ’(z) has to vanish at: 0   . 

Eq. (2.2.7) can be extended for two mutual perpendicular 

principal stresses 
1p  and 2p  (see Figure 2.3.1) by a simple 

addition leading to eq. (2.3.1) below.  

 

 

Figure 2.1. Elliptic hole and coordinates.  

 



T.A.C.M. van der Put 16 

2.2.2. The Flat Crack Solution, Explaining the Singularity 

Approach  

 

The stresses in the wood-matrix of the limit case of the 

elliptical notch with 
0  approaching zero appear to be comparable 

with the results of the mathematical flat crack solution of the 

singularity approach. To derive these singularity equations (as 

special case of the general exact solution), new coordinates X, Y 

with the origin in the focus of the ellipse are necessary (see Figure 

2.2). 

Thus: 

 

X = x - c = c( 2 – 2 )/2, Y = y = cξη  (2.2.8) 

 

or in polar coordinates: 

 

r =  
0.5

2 2X Y , X = r∙cos(θ), Y = r∙sin(θ) (2.2.9) 

 

and from eq.(2.2.8): 

 
0.5

2 2 2 22 / 2 /X Y c r c       (2.2.10) 

 

 2 / cos / 2r c   ,  2 / sin / 2r c   ,  

   / tan / 2 tan      (2.2.11) 

 

Using these relations in the stresses , ,     of § 2.2.1 and 

applying the singularity, 0 0   in the general solution of the 

elliptic Airy stress function, then the tangential stress   along a 
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crack boundary
0r , due to a stress p at infinity at an angle β with 

the notch is:  

 

           
0.5

2 2 3 28 / sin / 2 cos / 2 sin 2 2cos / 2 sinr cp         

 (2.2.12) 

 

For a small value of r , as applies for any flat crack with 

, so that all terms containing not the factor 
0.5r  are 

negligible and omitted. The other stresses then are:  

 

               
0.5

2 2 2 28 / sin / 2 1 3sin / 2 sin 2 2cos / 2 1 sin / 2 sinrr cp          

 (2.2.13) 

 

              
0.5

2 2 2 28 / cos / 2 3cos / 2 2 sin 2 2cos / 2 sin / 2 sinrr cp           

 (2.2.14) 

 

For wood, using the always applied singularity method, the flat 

crack in the grain direction is supposed to propagate in that 

direction (collinear). Thus θ = 0, and eq. (2.2.12) becomes [4]:  

 

   
0.5

2 28 / 2sin r cp  and is:  r
 and: 

 

  r cotg(β).  (2.2.15) 

 

Mode I failure   t  occurs when   / 2 . Thus when: 

r   and:  

 

 

 

 𝑟 ≪  2𝑐 
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Figure 2.2. Confocal coordinates. 

(2 / )tp r c   (2.2.16) 

 

For pure shear loading, and thus for superposition of 
1 p S  at 

β = π/4 and 
2  p S  at β = 3π/4 in eq. (2.2.12) and in the other 

equations of the solution,   crack extension θ = 0:  

 

    
0.5

2 2

0
2 / cos( / 2) 3cos ( / 2) 2rr cS 


  


     (2.2.17) 

 

or: 

 

(2 / )rS r c  (2.2.18) 

 

Now with 0  r , leading to an ultimate shear failure 

criterion (without interaction with normal stresses) although real 

shear failure is plastic and a real collinear pure mode II fracture 

does not exist. Eqs. (2.2.16) and (2.2.18) thus are in fact maximum 

stress conditions for the strengths in the main planes. Fracture is 

predicted to occur when the tensile strength is reached 

perpendicular to the grain and / or when the “shear strength" in this 
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plane is reached. Thus: 
I IcK K  and/or 

II IIcK K  for all stress 

states. This also is predicted for the n-fold higher quasi orthotropic 

stresses and is empirically shown to be incorrect   (see eq. (2.2.16) 

and eq. (2.2.18) in Figure 2.3.4). This also is shown by the theory 

equation,   eq. (2.3.10) to be incorrect  because according to eq. 

(2.3.10), failure is always by the actual uniaxial maximal 

tangential tensile stress along the crack tip boundary, causing 

oblique crack extension (see Figure 2.3.1, 2.3.2, 2.4.1, 2.4.2). Thus 

the always applied singularity approach gives no correct results for 

mixed mode failure. The right failure condition for combined 

stresses, eq. (2.3.10), is derived below.in § 2.3. 

The singularity approach regards 0r  , which implies that 

the strength t  , which is not possible. The strength is finite 

and also the radius 
0r r  of the equivalent crack boundary (thus of 

the fracture process zone) is shown in § 2.3 to be constant for a 

constant stress intensity factor. Thus for a real singularity solution, 

the applied stress becomes high when the crack becomes small. 

This is derived in § 10.2.  

 

 

2.3. DERIVATION OF THE MIXED I- II-  

MODE EQUATION 

 

A general failure criterion [5] follows from the determining 

equivalent ultimate stress, mentioned in Chapter 1, which occurs at 

the crack boundary, near the crack tip.  

By an extension of eq. (2.2.7) (by superposition) to 1 1p   

inclined at an angle π/2 + β to the Ox-axis and 2 2p   inclined at 

an angle β, (see Figure 2.3.1), eq. (2.2.7) turns to:  
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0 0 0

0

2 sinh(2 ) 2 [(1 sinh(2 )) cot(2 ) exp(2 ) cos(2( )) cos (2 )]

cosh(2 ) cos(2 )

y xy

t

ec        


 

     




, 

 (2.3.1) 

 

where the stresses are given in notch coordinates with the x-axis 

along the crack. For small values of 
0  and   (thus for flat 

notches), this equation becomes:  

 

 0

2 2
0

2 




y xy

t

  


 
 (2.3.2) 

 

 

Figure 2.3.1. Stresses in the notch plane Ox. 

The maximum (critical) value of the tangential tensile stress 

t , for initial failure, depending on location  , is found by: 

td / d 0  , giving the critical value of  :  

 

      
2

2 2 2 2
0 0 02 / 2 2 / 0      xy y xy         ,  

 

or:  
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     2 2 2 2
0 0 02     xy y xy t           (2.3.3) 

 

where the second equals sign is due to the substitution of eq. 

(2.3.2).  

From the first and last term, it follows that:  

 

 t xy    (2.3.4) 

 

and from the first 2 terms:  

 

 2 2
0/ /  y y xy xy       (2.3.5) 

 

The elimination of  , from eqs. (2.3.4) and (2.26) or from eq. 

(2.3.5) and eq. (2.3.2) gives:  

 

2 2
0   t y y xy      and this can be written:  

 

2 2

2 2 2
0 0

1
/ 2

y xy y xy

t tt vf f

   

   
     (2.3.6) 

 

This is the ultimate stress equation of strength theory with 

strengths: 0 / 2t tf    and 0v tf   , where 0  depends on the 

structural form of the short notch. When the first expanded term of 

the  notch form expansion, is spherical instead of elliptical as e.g., 

for a dislocation, then: 02r c , or: 0 1  . Then, because there is a 

shear displacement of the dislocation, t  is the ultimate shear 

stress.  



T.A.C.M. van der Put 22 

Transformation from elliptic to polar coordinates by eq. 

(2.2.11):  0 02 / cosr c    shows that fracture mechanics only 

apply when 
0r  and 

t , are constant and 𝑐 ≫ 2𝑟0. Thus 
t  is the 

equivalent cohesion strength and 
0r  is the invariant radius of the 

fracture process zone near the crack tip of a flat crack.  

The flat crack solution then leads to:  

 

 

 
       

2
2

2 2
0

0

1
cos/ 2 cos cos2 cos

xyy I II

Ict IIct

cc K K

Kr Kr

  

     
   

 

  

 (2.3.7) 

 

showing that for combined (mixed mode) fracture, when 

0  , the apparent stress intensity factors of Irwin, cos( )IcK  , 

cos( )IIcK   are not constant. The value of   is stress dependent 

and depends on the combined loading according to:  

 

2

2
( ) 1

y y

xy xy

tg
 


 

    (2.3.8) 

 

for the stresses in the isotropic matrix. For pure mode I: 0 

, 0xy  , is IcK  equal to the Irwin value. For  pure shear loading 

of the isotropic matrix,  0y   and 045  , and the stress 

intensity is lower than the Irwin value, thus:  

 

 cos / 4 / 2 0.71IIc IIc IIcK K K    .  (2.3.9) 
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This is measured in  [6] according to Figure 2.3.2, for a 

relatively small  initial crack length, in Agathis lumber, (density 

480 ± 10 kg/m3; 12% m.c. 20°C). The lumber had no defects such 

as knots or grain distortions so that the specimens consisted of 

clear wood. 

Thus, according to the exact lower bound solution of limit 

analysis,  the combined mode I – II and pure mode II fractures, a 

matter of virtual oblique crack extension by reaching the maximal 

equivalent uniaxial tensile stress (at the maximal strain) along the 

crack tip boundary. The oblique angle   of eq. (2.3.8) is indicated 

in Figure 2.3.3. This oblique crack extension criterion applies 

generally (not only for clear wood), as  lower bound criterion of 

limit analysis.  

 

 

Figure 2.3.2. Fracture by pure shear loading by oblique crack extension at the 

uniaxial ultimate tensile stress (opening mode) near the crack tip in the 

asymmetric four point bending test with small center-slit. (Sketch after photo of 

[6]). 

For timber with many defects however, an approximate 

collinear crack extension, with small 0   occurs, due to a small 

crack extension towards the macro crack tip and certainly due to 

previous razor blade splitting (activating directly the 

reinforcement), causing small crack extension according to Figure 

2.4.2, so that eq. (2.3.7) becomes the Coulomb equation:. 
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 

 

2

2
1

III

Ic IIc

KK

K K
    (2.3.10) 

 

The fact that 
0 / 2IC y c tK c r      is constant as a 

necessary prerequisite for the existence of fracture mechanics with 

constant ICK , indicates that 
0r  is the radius of the fracture process 

zone (which represents a kind of structural crazing),  which size is 

invariant. Thus micro crack behavior within the fracture process 

zone determines macro crack extension. This is discussed in § 3.6 

and Chapter 10.  

 

 

Figure 2.3.3. Uniaxial tensile failure at any mixed I-II mode fracture. 

The derivation of eq. (2.3.7) also gives the relation between 

IcK  and IIcK . For the stresses in the isotropic matrix this is:  

 

0 0/ ( 2 ) / ( 2 / 2) 2 IIc Ic t tK K r r     (2.3.11) 

 

The matrix stresses are also determining for  Balsa wood, 

which is highly orthotropic, but is light, and thus has a low 

reinforcement content and shows total failure soon after matrix 

failure and thus shows at failure, the isotropic ratio of 
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/ 2IIc IcK K   of the isotropic matrix material, as  verified by the 

measurements of Wu on Balsa by: 
0.5

IIcK 140 psi in    and 

0.5
IcK 60 psi in   (

IIcK  is higher than 2x60 due to hardening at 

compression and 
IcK is lower than 70 due to early instability of the 

test rig in a tensile test, at the initial tensile strength).  

Eq. (2.3.10) is generally applicable also when y  is a 

compression stress as  follows from the measurements of Figure 

2.3.4. When the compression is high enough to close the small 

notches, ( , 02y cl xyG  ), xy  has to be replaced, in eq. (2.3.6), by 

the effective shear stress:  

 

 *
,  xy xy y y cl       (2.3.12) 

 

or:  

 
2

*

,

2 2
0 0

1
/ 2

 
xyy cl

t t



   
, (2.3.13) 

 

which fully explains fracture by compression perpendicular to the 

notch plane (see Figure 2.3.4). In these equations,    is the friction 

coefficient.  

For species with denser layers than those of Balsa, a much 

higher value of IIcK   (than twice the value of IcK  ), is measured 

because due to the reinforcement, η becomes smaller than the 

initial isotropic critical value of eq. (2.3.5) at further stretching. To 

read the equation in applied total orthotropic stress values, the 

matrix stress iso  has to be replaced by ort 6/ n  and the maximum 
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slope of the tangent, slope δ in Figure 2.2,  the location of the 

failure stress is:  

0 6tan / / 1/ 2  m Ic IIcK K n     (2.3.14) 

 

For small values of η = - |η|, eq. (2.3.2) can be written, 

neglecting (η/ξ0)
2:  

 

   

2

2 2 2
0 0 0

1 1
/ 2 / 2 / 2

    
 

y xy xy

t t t

  

        
 (2.3.15) 

 

where |η| is the absolute value of negative η. Thus:  

 

1 I II

Ic IIc

K K

K K
  (2.3.16)  

 

This is a lower bound, with:  

 

 

Figure 2.3.4. Combined mode I-II fracture strength [7]  

(eq.(2.20); (2.21); (2.30); (2.31); (2.34) of § 3.8 - [1] are: eq.(2.2.16); (2.2.18) 

(2.3.10); (2.3.13); (2.3.16). 
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 0 /   IIc m IcK K   (2.3.17) 

 

and the maximal value of  m   is found by measuring IcK  and 

IIcK , giving  a value of about 0 / 7.7m  , showing that the 

disregard of  
2

0/   = 0.017 with respect to 1 is possible. 

Measurements between the lines eqs. (2.3.10) and (2.3.16) in 

Figure 2.3.4, thus indicate a strong difference between IIcK  and 

IcK  of the local structure that is crossed by the propagating crack.  

As mentioned, to obtain real orthotropic stresses, 

6/iso ort n   has to be inserted in eq. (2.3.6), giving:  

 

 

 

22 2

2 2 2 2 2 2
0 00 0 6

1
/ 2 / 2

     
y y IIiso ort I

t t Ict t IIc

KK

Kn K

  

      
 

 (2.3.18) 

 

and it follows that:  

 

IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

 (2.3.19) 

 

According to eq. (2.1.15), is  for small clear specimens: 

 6 21 122 2 2 ( / )     xy yn G E   = 2(2 + 0.57)/0.67 = 7.7 for 

Spruce and  2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-direction. 

The densities are respectively 0.37 and 0.50;  

moisture content of 12%). Thus, for 
1.5

IcK 265 kN / m   is 

1.5
IIcK 7.7 265 2041 kN / m     in TL – direction. This agrees with 

measurements [1]. In RL-direction this factor is 3.3 to 4.4. Thus, 
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when 
IIcK  is the same as in the TL-direction, the strength in RL-

direction is predicted to be a factor 1.7 to 2.3 higher with respect to 

the TL-direction. This however applies at high crack velocities 

(“elastic” failure) and is also dependent on the site of the notch. At 

common loading rates a factor lower than 410/260 = 1.6 is 

measured [1] and at lower cracking speeds [7, 1], this strength 

factor is expected to be about 1 when fracture is in the “isotropic” 

middle lamella. It then thus is independent of the TL and RL-

direction according to the local stiffness and rigidity values. To 

know the mean influence, it is necessary to analyze fracture 

strength data dependent on the density and the elastic constants  

of 6n     

From the rate dependency of the strength, follows an influence 

of viscous and viscoelastic processes. This has to be analyzed 

according to Deformation Kinetics theory [8]. A further problem is  

the possible early instability of the mode I-test equipment. In that 

case constants should be compared by related mode II data.  

Empirical verification of the above derived theory equation, 

eq. (2.3.18), which is a Coulomb equation, called Wu-equation for 

wood, is not only obtained by [9], but also by tests of [10], done at 

the TL-system on eastern red spruce at normal climate conditions 

using different kinds of test specimens. The usual finite element 

simulations provided the geometric correction factors, and the 

stress intensity factors. The lack of fit test was performed on thise 

data, at the   usual variability for wood, assuming the five 

different, often suggested failure equations of Table 2.1. The 

statistical lack of fit values in the table show, that only the Wu-

failure criterion, the third equation of Table 2.1, cannot be rejected 

due to lack of fit. The Wu-equation is shown to also fit  clear wood 

and timber strength data in [11, 12], as expected from the theory. 
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Table 2.1. Lack of fit values for different failure criteria [10] 

 

Failure criterion p-value  

/ 1I IcK K    0.0001  

/ / 1I Ic II IIcK K K K   0.0001  

 
2

/ / 1I Ic II IIcK K K K   0.5629 

 
2

/ / 1I Ic II IIcK K K K   0.0784 

   
2 2

/ / 1I Ic II IIcK K K K   0.0001  

 

 

2.4. REMARKS REGARDING CRACK PROPAGATION 

 

Because the mixed mode failure criterion shows that cracks 

tend to propagate in the direction perpendicular to the greatest 

principal tangential tensile stress in the crack boundary as shown 

in Figures 2.3.2 and 2.3.3, an initial mode I fracture (opening 

mode) always occurs.  

In Figure 2.4.1-b, the mixed mode crack propagation starts at 

an angle with its plane (due to initial matrix failure), but (due to 

the reinforcement), may bend back along the fractured zone. Stage 

b of this crack propagation is due to small-cracks merging in the 

fractured zone, which propagate to the macro-crack tip. For wood, 

stage b occurs in a parallel crack plane as  given by Figure 2.4.2. 

This skipping across fibers is a form of oblique crack extension in 

a zigzag way, jumping when the equilibrium crack length is 

reached for the unloading stress level. Real collinear shear crack 

extension does not exist because the tensile stress there is zero and 

then  only plastic shear sliding is possible at a much higher 

ultimate shear stress. 
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Figure 2.4.1. a) Crazing at the crack tip and: b) Possible crack extension along 

the fractured zone in glassy polymers. 

 

Figure 2.4.2. Scheme of Wu, of crack extension by skipping across fibers at pure 

shear loading, showing “mode” II failure to be a tensile failure outside the 

collinear plane of pure maximal shear stress. (This also can be regarded as a zig 

zag, small oblique angle, tensile crack propagation, in accordance with theory).  

For multiple small- crack merging, collinear crack extension is 

possible by interference of tensile stresses, causing tensile failure 

in the weakest plane (along the grain) as  given by Figure 2.4.3, 

where each small crack is propagating in the two directions 

towards the neighboring cracks. This is the principle of the small 

crack merging mechanism discussed in § 3.6. 

 

 

Figure 2.4.3. Collinear small crack merging. 

Figure 2.4.4 explains why, in the mode II standard test, under 

shear loading, not a sliding mode II, but elastic, sliding unloading 

occurs, after an opening mode I tensile failure. This ‘‘mode II’’ 

test is represented by case a + aꞌꞌ. If the sign of the lower reaction 
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force V of this case is reversed and P = 0, the loading of the mode 

I, double cantilever beam (DCB) test is obtained, identical to 

loading case c with N = 0. In Figure 2.4.4, case a + aꞌꞌ is split in 

case a and in case aꞌꞌ, as loading of the upper and the lower 

cantilever. Case a is identical to case aꞌ which is similar to end-

notched beams discussed in Chapter 6. This case behaves like the 

mode I fracture test as can be seen by loading case c. The loading 

near the crack tip, given by case a, can be seen as the result of 

superposition of the stresses of cases b and c, where the loading of 

case b is such that the un-cracked state of the beam, case bꞌ, 

occurs. The loading of case c is such that the sum of cases b and c 

gives loading case a. Case c is the real crack problem and the 

critical value of strain energy release rate cG  can be found by 

calculating the differences of elastic strain energies between case 

aꞌ and bꞌ, the cracked and un-cracked system. Case c shows the 

loading of the mode I – DCB-test by V and M, combined with 

shear loading by N and thus, the energy release rate  will be 

somewhat smaller (by this combination with N) than the value of 

the pure DCB-test. 

For the loading case aꞌꞌ, the same stresses occur as in case a, 

however with opposite directions of M and V with respect to those 

of case c, according to case cꞌꞌ, causing crack closure. To prevent 

that crack closure cꞌꞌ, and friction, dominate above crack opening 

c, the crack slit has to be filled with a Teflon sheet. By 

superposition of cases c and cꞌꞌ, case c + cꞌꞌ of shear loading of 

pure mode II occurs, as crack problem due to the total loading. The 

normal load couple of 2N is just the amount to close the horizontal 

shift of both beam ends with respect to each other at that loading 

stage. This explains the applicability of the virtual crack closure 

(VCC-) technique. Because the upper cantilever is stronger for 

shear than the lower cantilever, because of higher compression 
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both perpendicular to and along the grain (see Figure 5.1 for the  

compression with parabolic increasing shear strength), mechanism 

c will dominate above cꞌꞌ, when the lower cantilever starts to flow 

in shear or fails at the support. Thus mode I, case c tensile failure 

occurs.  

 

 

Figure 2.4.4. Mode II standard test loading of the single end notch beam. 

Thus, as derived in § 2.3, there always occurs mode I failure, 

for any combined mode I – II stress combination, for any specimen 

type after stress redistribution.  

 

 

2.5. REMARKS REGARDING  

THE EMPIRICAL CONFIRMATION 

 

Measurements are given in Figure 2.3.4. The points are mean 

values of series of 6 or 8 specimens. The theoretical line eq. 

(2.3.10) is also the mean value of the data of Wu on extended 
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material properties. Only the Australian sawn notch data deviates 

from this parabolic line and lie between eq. (2.3.10) and the 

theoretical lower bound eq. (2.3.16). This is explained by the 

theory of a too high IIcK / IcK -ratio, indicating a manufacturing 

mistake. Using general mean values of the constants, the 

prediction that IIcK / IcK   21 12 xy y2 2 (G /E )      agrees 

with the measurements. However, precise local values of the 

constants at the notches are not measurable and there is an 

influence of the loading rate and cracking speed. Thus safe lower 

bound values have to be used in practice. Figure 2.3.4 shows that 

all measurements, including fracture by compression, are 

explained by theory.  
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Chapter 3 

 

 

 

SOFTENING - CALLED YIELD DROP  

AND HARDENING  
 

 

3.1. INTRODUCTION 

 

A derivation is given of the yield drop curve, the occurring 

meta stable part of the Griffith locus. It follows from the derivation 

that strain softening does not exist.  

For long over-critical initial crack lengths, the elastic crack 

closure energy, per unit area, is not equal to, but less than the 

critical energy release rate and the clear wood ultimate stress 

criterion applies for the still intact, ultimate loaded clear wood 

material adjacent to the macro-crack [1]. Thus clear wood micro-

crack extension then is determining for failure.  

The derivation of yield drop is discussed and it is shown in § 

3.4 that the area under the load-displacement yield drop curve of  

Figures 3.4.1, 3.4.2, 3.6 or 3.7, divided by the crack area, is not the 

fracture energy, but the total external work on the specimen. The 

fracture energy follows from half this area under the loading curve, 
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what is equal to the critical strain energy release rate at the start of 

yield drop, which is the start of macro-crack extension. For wood, 

this correctly is applied for mode II, see Figure 3.4.3, where the 

elastic part of stored energy is subtracted from the total applied 

energy, given by the loading curve, to get the right nominal 

fracture energy. For mode I however, wrongly, the total area is 

regarded to be the fracture energy as  is done by the fictitious crack 

models.  

 

 

3.2. MODE I “SOFTENING” CALLED YIELD DROP 

EXPLAINED BY HARDENING  

 

Apparent softening- like yield drop, only exists for the nominal 

stress  thus, for the actual elastic stress far outside the fracture 

plane. The Griffith stress, eq. (3.2.8), is acting on the section b∙t of 

Figure 3.1. This actual stress of the intact part of this specimen, 

outside the fracture plane, shows “softening- called” yield drop, 

following the Griffith locus, which  is not strain softening (at 

failure), but is elastic unloading of intact, undamaged material, due 

to the reduction of intact, ultimate loaded material in the fracture 

plane by crack extension. The actual stress at the fractured section 

shows hardening and quasi hardening by the stress spreading 

effect, and  increases,  thus showing no softening as will be 

derived below. The same applies for the necked actual cross 

section area of a steel rod (and for the reduced fracture area of 

other materials). Clearly the term strain softening has to be 

replaced by “elastic unloading,” occurring when the unloading 

damage process is faster than the loading rate by the constant 

strain rate test. Because of sufficient plasticity, limit analysis 

applies and linear elastic fracture mechanics can be applied up to 
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the ultimate stress at the elastic-plastic boundary around the crack 

tip. The dissipation by micro crack formation, plastic deformation 

and friction within this boundary, called fracture process zone, 

then is regarded to be part of the fracture energy of macro crack 

extension. Thus the limit analysis equilibrium method is 

applicable. 

 

 

Figure 3.1. Center notched specimen b x l and thickness t, containing a flat crack 

of 2c. 

When a specimen is loaded until just before the start of yield 

drop and then unloaded and reloaded, the behavior has become 

elastic-full plastic, and the real stress differs in an internal 

equilibrium system with linear elastic loading case. Because limit 

analysis applies based on virtual displacements, this internal 

equilibrium system and other initial stresses and displacements 

have no influence on the value of the collapse load (when initial 

dimensions are regarded in the calculation). Therefore,  Code 

calculations can be based on a reduced E-modulus, up to the 

ultimate state and also therefore  replacement, in e.g., [2, 3, 6, 8], 
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and [9], etc., of the measured: compliance: 
11/ E , by the very bad 

fit:   
0.5

11 22 22 11 12 66 11/ 2 / 2 / (2 )a a a a a a a   , is not needed and 

therefore also the derivation below, of the yield drop curve of the 

fractured specimen, based on the effective E-modulus, is 

appropriate.  

In Figure 3.1, a mode I, center notched test specimen is given 

with a length “l,” a width “b” and thickness “t,” loaded by a stress 

σ showing a displacement increase δ of the loaded boundary due to 

small crack extension. The work done by the constant external 

stress σ on this specimen, during this crack extension, is equal to:  

 

σ∙b∙t∙δ = 2W = 2(σ∙b∙t∙δ/2) (3.2.1) 

 

This is twice the increase of the strain energy W of the 

specimen. Thus, the other half of the external work, also equal to 

W, is the fracture energy used for crack extension. Thus the 

fracture energy is equal to half the applied external energy which 

is equal to the strain energy increase W and follows for the total 

crack length, from the difference of the strain energies of a body 

containing a crack and the same body without a crack: 

 

2 2

2 2eff

blt blt W
E E

 
    (3.2.2) 

 

The fracture energy is also equal to the strain energy decrease 

at fixed grips conditions when δ = 0:  

 

c

c
W t vda




   = 2 2 /c t E   (3.2.3) 
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where the last two terms give the strain energy to open (or to 

close) the flat elliptical crack of length 2c and where “v” is the 

displacement of the crack surface in the direction of stress σ. From 

eq. (3.2.2) and eq. (3.2.3), it follows that:  

 

2 2

2 2eff

blt blt
E E

 
   2 2 /c t E  (3.2.4) 

 

Thus the effective Young’s modulus of the specimen of Figure 

3.1, containing a crack of 2c, is:  

 

21 2 /
eff

E
E

c bl



  (3.2.5) 

 

The extremum principle of the normality rule, or energy 

equilibrium condition of the critical crack length is:  

 

 2 0cW G ct
c


 


  (3.2.6) 

 

where cG  is the fracture energy for the formation of the crack 

surface 2ct  per unit crack area. With W of eq. (3.2.2) or of eq. 

(3.2.3), eq. (3.2.6) becomes:  

 

2 2

2 0c

c t
G ct

c E

 
  

  
,  

 

or:  
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2 2 22
1 2 0

2 2
c

blt c blt
G ct

c E bl E

    
     

   
  (3.2.7) 

 

giving both the nominal Griffith strength:  

 

c
g

G E

c



  (3.2.8) 

 

which is the actual stress /P bt  outside the fractured section on the 

intact area bt of the specimen of Figure 3.1.  For strength 

problems, the necessary real, actual stress in the weakest actual 

cross section (ligament) with width: b – 2c, where fracture occurs, 

is:  

 

1

2 ( / ) (1 2 / )

c c
r

G E G Eb

c b c b c b c b


 
   

  
 (3.2.9) 

 

and it follows that: 

 

   
6 / 1

0
( / ) 2 / 1 2 /

r cG E c b

c b b c b c b





 
  

  
,  (3.2.10) 

 

when c/b > 1/6 = 0.167. This always applies for the critical crack 

length. Thus, / 0r c   , and the real stress increases with the 

crack length and no softening behavior exists at the damage site. 

For larger initial cracks, the geometrical correction factor Y of § 

10.2, should be accounted for. Then: 
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21 1
1 (2 / )

2 ( / ) (1 2 / )

c c
r

G E b G E
c b

Y c b c b c b c b


 
    

  

(1 2 / )

( / ) (1 2 / )

c
c bG E

b c b c b


 

 
,  

 

and: 0
( / )

r

c b





 gives: 

2

2
2 2 0.5 0

c c

b b
   ,  

 

or: 
2 1

0.207
2

c

b


   (3.2.11) 

 

This always happens because the critical value of eq. (3.3.3): 

/ 1/ 6 0.23cc b   , is higher than 0.207. After initial yield, the 

real actual stress 
a

  increases with the increase of the crack 

length, and “hardening” behavior characterizes the critical stress 

(not softening). However, a maximal ultimate value for this clear 

wood-strength applies at the maximal possible stress spreading. 

Thus,  the constant maximal value of the nominal energy release 

rate, basic for the Griffith theory, ends. The nominal stress follows 

the Griffith locus, eq. (3.3.2), (see Figure 3.6), as failure condition, 

which also is the condition of no damage acceleration. (Instable 

failure will not occur when the testing rig is sufficiently stiff, see 

Appendix I). The stress for the critical crack length of c/b = 1/6, of 

eq.(3.2.10) is: /
c c

G E c   / ( / 6)
c

G E b  and the actual stress 

at the fracture plane is:   
,

/ ( / 6) / / 3
c a c

G E b b b b    

1.5 / ( / 6)
c

G E b , and thus is 1.5 times the nominal Griffith 

stress. Therefore, macro crack extension demands hardening (not 

softening), and  demands an increase of the tensile strength. The 
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possible tensile strength increase follows from the exact stress 

spreading theory of [4]. Although derived for local compression, 

the sign of the shear stresses may be reversed and the same 

spreading rules apply for tension. For c/b = 1/6, according to 

Figure 3.1, there is a spreading of the stress on b − 2c = 4c solid 

material to the full width: b = 6c. Thus the tensile strength is: 

1.1 6 / 4 1.35m m    , or 1.35 times the uniaxial tensile strength 

m . The nominal, fully spread, stress then is 

1.1 4 / 6 0.9m m     . Thus 1.5 1.35g m   or: 0.9g m  , thus: 

 

   6 / 0.9c mG E b  . (3.2.12) 

 

In the same way, when the crack extends after twice this initial 

length, to: c/b = 1/3, then the actual stress becomes 3 times the 

Griffith stress, while the strength is 1.9 m , and the fully spread 

stress would be 0.64∙ m . Thus 23 1.9g m  , or 2 0.63g m  , or:  

 

   3 / 0.63c mG E b  →  

   6 / 2 0.63 0.9c m mG E b       (3.2.13) 

 

From eq. (3.2.12) and eq. (3.2.13) it follows that the nominal 

stress intensity 
cG  (fracture energy) does not decrease at the main 

part of yield drop and crack extension. Mathematically, the 

following calculation was followed regarding the strength of the 

specimen of Figure 3.1. The actual stress in the fracture plane is 

due to the spreading effect: 

 

1.1
2

a m

b

b c
  


 (3.2.14) 
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where 
m  is the uniaxial tensile strength. In the intact plane, where 

the stress is fully spread, it is:  

 

2
1.1a m

b c

b
 


    (3.2.15) 

 

The actual Griffith stress in the fracture plane is: 

 

2

c
g

G E b

c b c






  (3.2.16) 

 

From eq. (3.2.14) and eq. (3.2.16), it follows that: 

 

1.1
2

a m

b

b c
  


= 

2

cG E b

c b c 
,  

or: 
2

1.1c
m

G E b c

c b





    (3.2.17) 

 

The nominal Griffith stress thus is equal and identical to the 

fully spread stress (the actual stress in undamaged material 

according to eq. (3.2.15)). This shows that the spreading effect 

causes a constant value of 
cG  during yield drop. The hardening 

(by the spreading effect), compensates the decreasing, still intact, 

material in the fracture plane during yield drop. This however ends 

when the maximal possible stress spreading is reached. Then the 

maximal “hardening” is reached and then  a constant ultimate 

stress criterion applies    (shown in § 3.7) and the Griffith law for 

macro crack extension does not apply anymore and thus is not able 

to explain fracture at low stresses. Then the ultimate stress 

criterion applies. This is the case below the factor 0.38 yield drop 

unloading level (see Figure 3.7). The total fracture cannot be due 
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to single macro crack extension. Necessary is clear wood fracture, 

(of the high loaded intact parts of the fracture plane), causing 

micro crack extension towards the macro crack tip, to explain 

macro crack extension at low nominal stresses (see § 3.3). Because 

unloading outside the fracture plane follows the stiffness and 

strength decrease of the specimen due to crack extension, the 

mathematical expression of this influence has to be discussed in 

the next § 3.3. 

 

 

3.3. MODE I “SOFTENING” - CALLED YIELD  

DROP CURVE 

 

Yield drop, (wrongly called softening) is only possible for 

nominal stresses, thus for the actual stress outside the fracture 

plane and should be described by the limit analysis damage theory 

of Deformation Kinetics [5]. But an alternative lower bound 

description is possible by the Griffith theory as follows: The 

critical strain of specimen of Figure 3.1, at which the initial crack 

will grow is according to eq. (3.2.5): 

 

 2/ 1 2 / /g g eff gE c bl E         (3.3.1) 

 

Substitution of 
2/c c gc G E  , of the ultimate state according 

to eq. (3.2.8), gives:  

 
2 3/ 2 /g g c gE G E bl      (3.3.2) 

 

This is the equation of critical (metastable) equilibrium states, 

representing the yield drop curve due to the Griffith stress eq. 
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(3.2.8), which is the actual stress on the intact part of the 

specimen, outside the fracture plane (and is the nominal stress at 

the fracture plane). It is shown by the dynamics of crack 

propagation (Appendix I), that the velocity of crack propagation is 

zero at the initial critical crack length and that the Griffith relation 

eq. (3.2.8), is the condition for zero acceleration of crack 

extension. Thus the crack of Griffith length is in unstable 

equilibrium but does not propagate. For crack propagation a 

slightly higher stress is necessary. The “softening” called yield 

drop curve, eq. (3.3.2), is called “Griffith locus” and has a vertical 

tangent / 0g gd d   , or: 2 / / 6 /g c c cG E bl G E c    , thus 

occurring at a crack length of:  

 

/ 6cc bl  , (3.3.3) 

 

which is, with c  according to eq. (3.3.5), the top of the curve of 

Figure 3.2. The effective length l of the specimen of Figure 3.1 is 

the St. Venant distance, thus l ≈ b. Therefore 

2 / 6 0.23cc b b  . For small initial cracks is l ≈ 2c and 

/ 3 / 9.42 0.1cc b b b   < b/6, thus acting as clear wood 

fracture. Due to the steepness of the curve at the top, the first yield 

drop already may start earlier at: 0.57̈∙0.23b = 0.13b, according to 

eq. (3.5.3). The locus below this top has a negative slope 

(following eq. (3.3.6)), as it should be at unloading, because a 

positive slope, represents crack recovery, which is not possible.  

Eq. (3.3.2) shows  a positive damage rate d g , and negative 

stress rate, d g , and that g c  . Thus 
c is  the top of the yield 

drop curve (see Figure 3.2).  
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Figure 3.2. Yield drop curve according to eq.(3.3.2) for specimens of Figure 3.1 

or Figure 3.5.  

For a (small) cracks distribution, it applies that when their 

distance is higher than 2 times the St. Venant distance, the strength 

of the plate is about the same as when each small crack was alone 

in the plate. Thus for a critical distribution of small cracks in a 

repeating pattern, b and l in eq. (3.3.3) are the St Venant crack 

distances and the critical crack distance for extension therefore is 

about 2.2 times the crack length, because when b ≈ 2.2∙(2
cc ) and l 

≈ 2.2∙(2
cc ), then 2bl b

219 cc 26 cc , according to eq. (3.3.3). 

This also applies for a single crack, or extended small cracks after 

merging to one crack, because the stress flow around the crack 

needs the St Venant’s distance below and above the crack to be on 

full stress to be able to extend the  present, small cracks further.  

Thus the critical crack density for the start of yield drop, is 

reached, when the intermediate crack distance is about the crack 

length. This critical distance also is predicted by Deformation 

Kinetics, discussed in § 4.5, and is used in § 3.6 to explain yield 

drop by small-crack propagation in clear wood at the fracture 

plane (the ligament). Thus, when the intermediate crack distance is 

the St Venant distance, the stress and strength is about the same as 



Corrections of the Singularity Approach 47 

if the crack is alone in an infinite plate. This critical density is 

given by row A of Figure 3.8, which determines the critical crack 

density, because a lower crack distance (e.g., due to crack 

extension) then reduces the strength and starts yield drop. 

According to eq. (3.3.3), the yield drop line eq. (3.3.2), can be 

written:  

 

4

4
1

3

g c
g

gE

 




 
   

 

, (3.3.4) 

 

where: /c c cEG c   (3.3.5) 

 

is the ultimate load with 
cc  according to eq. (3.3.3). The 

negative slope of the “metastable” part of the Griffith locus, being 

the yield drop line, then is:  

 

4

4
1

g

cg

g

E






 




 (3.3.6) 

 

Vertical yield drop occurs at the top at g c  , and the strain 

then is: ( / ) (1 1/ 3)gc c E     and eq. (3.3.4) becomes: 

 

3

3
0.75

3

g g c

gc c g

  

  

 
    

 

, (3.3.7) 
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More in general, eq. (3.3.4) can be written, when related to a 

chosen stress level
1g :  

 
4 4

4 4

1 1 1

1 / 3

1 / 3

g g c g

g g c g

   

   


 


 (3.3.8) 

 

 

Figure 3.3. Measuring nonsense data at gage 2, (see[6]). 

When the occurring yield drop curve starts to differ from the 

Griffith locus, c  decreases, causing a steeper decline of the total 

curve. This failure by a small-crack merging mechanism is 

discussed in § 3.6. To measure the fracture energy as area under 

the yield drop curve (discussed in §3.4), the displacement of the 

loading jack due to the mean deformation of the specimen has to 

be known. This cannot be obtained by measuring the gage 

displacement over a crack (see Figure 3.3), because it is not known 

what then is measured and this local unloading around the open 

crack is mainly proportional to the crack length itself, and to 

possible rotation and is not simply related to the constant ultimate 

stress state of the ligament and to the decreasing external loading.  
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3.4. FRACTURE ENERGY AS AREA UNDER THE YIELD 

DROP CURVE 

 

As long as the fictitious crack models continue to calculate the 

fracture energy from the total area under the stress-displacement 

curve, the proof has to be repeated that only half this area has to be 

accounted for. This follows from the basic theory of the energy 

method, leading to eq. (3.2.1) and eq. (3.2.2), which of course is 

confirmed by the loading curve (Figure 3.4.1 and 3.4.2).  

When a test specimen is mechanically conditioned, the effective 

stiffness is obtained, given  by the lines OA and OC in Figure 

3.4.1 and 3.4.2. In Figure 3.4.1, the area OAB, written as 
OABA , is 

the strain energy of the specimen of Figure 3.1 with a central crack 

or with two side cracks according to Figure 3.5 (or Figure 3.2) 

with a width “b,” length “l” and thickness “t,” loaded to the stress 

 . During the quasi static crack extension from B to D in Figure 

3.4.1, the constant external load   does work on the specimen of: 

BD BDb t l b t            ABDCA , where BD  is the strain 

increase due to the cracking and BD  the corresponding 

displacement. The strain energy after the crack extension is OCDA  

and the strain energy increase by the crack extension thus is in 

Figure 3.4.1: OCDA  - OABA  = OCDA  - OCBA  = CBDA  = / 2ABDCA . 

Thus half of the external energy: / 2ABDC BDA b t      is the 

amount of increase of the strain energy due to the elongation by 

, and the other half  is the fracture energy which is equal to this 

increase of strain energy. The same follows for unloading at yield 

drop. Because every point of the yield drop curve gives the 

Griffith strength which decreases with increasing crack length, 

unloading is necessary to maintain equilibrium. The fracture with 

unloading step AC in Figure 3.4.2 is the energetic equivalent to 
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theunloading steps AE and FC and the fracturing step EF at 

constant stress EB = FD = (AB + DC)/2. Thus 
ABDCA  = 

EBDFA . 

Identical to the first case of Figure 3.4.1, the increase in strain 

energy due to crack extension is: 

 

0.5 0.5ODF OBE ODF OBF BFD EBDF ABDCA A A A A A A        ,  

 

equal to half the work done by the external stresses during 

crack propagation and thus also equal to the other half, the work of 

crack extension. It therefore is shown that half the area under the 

load-displacement curve represents the fracture energy. For mode 

II, only line OACO in Figure 3.4.1 is measured and OACA   

is regarded to be the fracture energy. Because 

OAC BAC ABDCA A 0.5 A   , thus equal to half the area under the 

load displacement curve, the right value is measured and mode II 

data needs no correction. Because eq. (3.2.2) is based on the total 

crack length and the strength is a Griffith stress, the initial value 2c 

of the crack length has to be accounted and   and cG  has to be 

related to the whole crack length, including the initial value 2c, 

and thus should be related to the whole specimen width b and not 

to the reduced width of the fracture plane: b – 2c as is done now 

and leads to an energy, dependent on the choice of the initial value 

of 2c. Only for the Griffith stress, the energy method of § 6 and §7 

applies for initial failure, based on the energy difference of the 

cracked and un-cracked state. This has to be corrected together 

with the correction by a factor 2 for the mode I fracture energy cG . 

A third correction occurs when c  of eq. (3.3.4) changes. The 

decrease of the mean cG -value, starting half way the yield drop 

stage, shows the decrease of the nominal value of the constant cG , 
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due to the formation of an overcritical crack length by the decrease 

of intact area at the fracture plane. This is discussed in § 3.6.  

 

 

Figure 3.4.1. Stress – displacement curve for tension, of the specimen of Figure 

3.5. 

 

 

Figure 3.4.2. Descending branch of the stress –displacement curve of Figure 

3.4.1. 
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Figure 3.4.3. Mode II fracture energy and similarly start mode I: Area: OAB = 

CAB = ABCD/2. 

In [7], not ABDCA /2 is regarded as fracture energy but the 

amount 
OACOA  of Fig 3.4.2. This is the irreversible energy of a 

loading cycle by a crack increment in the specimen. This consists 

of: OEAOA + OEFOA - OFCOA = OEFOA = 0.5∙ BEFDA = 0.5∙ ABDCA , thus 

again half the area under the load-displacement curve. As 

discussed in [1], the measurements of [7] indicate the presence of a 

mechanosorptive process, acting in the whole specimen. It thus 

should be realized, that the area under the loading curve as: OACOA  

gives no separate information on the fracture process alone of the 

still intact part of the fracture plane. Other viscoelastic and visco-

plastic processes will dominate what has to be corrected by 

deformation kinetics [5] by determination of the activation energy 

of all acting processes. After correction, as first lower bound 

solution, the fracture energy can be regarded to be constant per 

unit crack length and then the area below the yield drop curve is a 

measure of the amount of intact ultimate loaded material at the 

increasing crack extension.  
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Figure 3.5. Geometry of the specimens of [3]. 

 

3.5. EXPLANATION OF MODE I DATA 

AND THE EMPIRICAL YIELD DROP CURVE  

 

The measurements of [3] are completed by measuring the 

whole loading and yield drop curve and using the compact tension 

tests as control, being a control by the different loading case. The 

graphs of [3], Figure 3.6 and 3.7, are the result of tension tests on 

the specimen of Figure 3.5. The length of the specimen was l = 3 

mm, the width and thickness: b = t = 20 mm and the notch length 

2c = 2x5 = 10 mm with a notch width of 0.5 mm. In Figures 3.6 

and 3.7, the measured stress-displacement is given together with 

the lines 1 and 2 according to the Griffith locus eq. (3.3.7). The 

strain g  follows from the displacements at the x-axis of the 

figures divided through 3 mm, the measuring length and length of 

the specimen. Because of the small length of 3 mm, not the whole 

width b of the specimen is active. Assuming a possible spreading 

of 1.2:1 through the thickness of 1.25 mm above and below the 

side notches, the working width effb  is equal to the length of the 

fracture plane plus 2 times 1.2 x 1.25 or: 
effb  = 10 + 3 = 13 mm. 

Thus the notch lengths in Figure 3.5 should be regarded to be 1.5 

mm instead of 5 mm. The stresses in the Figures 3.6 and 3.7 of [3], 
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are related to the length of the fracture plane and not to the width 

effb , according to the nominal Griffith stress. Thus the actual 

stresses have to be reduced by a factor 10/13 = 0.77. The standard 

compact tension tests of [3] did show a stress intensity 
IcK  of 330 

3/ 2kNm
. This value also should follow from the area under the 

yield drop curve of that compact tension test. When half the area 

of that diagram is taken to be the fracture energy instead of the 

total area, then 
IcK , mentioned in [3], indeed is corrected to the 

right value of 467/√2 = 330
3/ 2kNm

 giving an empirical 

verification of the theory. Regarding the short double edge notched 

specimens of Figure 3.5, the measured E-modulus should be 

related to the effective width of 13 mm instead of the width of 10 

mm of the fracture plane and therefore is E = 700x10/13 = 

700x0.77 = 539 MPa. The critical energy release rate then is:  

 
2 2/ 330 / 539 200c IcG K E    N/m (3.5.1) 

 

The measured value of cG  from the area under the stress-

displacement curve is given in [3] to be 515 N/m. But, because 

half this area should have been taken and this value is wrongly 

related to the length of the fracture plane instead of on effb , the 

corrected value is cG  1/2x515x0.77 = 200 N/m, as found above 

in eq. (3.5.1), giving again an empirical verification of the theory, 

now by the tests on the short double edge notched specimens.  

As shown before, the yield drop curve of Figure 3.6 has (as 

Figure 3.2) a vertical tangent at the top /g gd d   . The 

critical crack length for yield drop / 6cc bl   according to eq. 

(3.3.3) is:  
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cc  3 3( ) / (6 ) (13 3) / (6 ) 10 1.4 10 1.4effb l           mm 

 (3.5.2) 

 

This confirms the mentioned initial St. Venant crack length to 

be as small as about 1.5 mm. In Figure 3.6, at the Griffith maximal 

stress of (0.77)∙7 = 5.39 MPa, is IcK c   or IcK  = 5.39∙

31.4 10   = 0.36 
3/ 2MNm

, (> 0.33 
3/ 2MNm

) for this 

strong specimen. The strength level above 4 (to 4.6) Mpa, given by 

Figure 3.7, is measured in 3 of the 10 specimens of the discussed 

series. T1309/2309 of [3] and Figure 3.6, shows the highest level, 

thus the total curve, as given by Figure 3.2 indicating that this 

strength of the fracture plane, according to crack-pattern A of 

Figure 3.8, was determining the yield drop. The other specimens of 

this series did show lower strength values than about 4 MPa, as 

applied for further unloading due to already extended small cracks. 

At § 3.3 and § 4.5, it is shown that for the critical small crack 

density of eq. (3.3.3), the intermediate crack distance is about the 

crack length as given by row A of Figure 3.8. Line 1 of Figure 3.6 

gives the primary crack extension, eq. (3.3.7), by this critical crack 

density. This curve 1 levels off from the measurements at 4   

Mpa, where the next process starts, given by line 2 of Figure 2.6. 

This  happens when the crack length has become about 3 times the 

initial critical value c ,0c , because then 4 MPa is reached according 

to:  

 

,03

c
g

c

EG

c



   0.57∙7 =∙4 MPa  (3.5.3) 
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Figure 3.6. Stress - displacement of specimen T 1409. 

 

Figure 3.7. Stress – displacement of specimen T 1509 of [3]. 

This 3 times larger crack length is given by crack row B of 

Figure 3.8. The top value 
c  of the first process on row A is 

c = 

7 Mpa, for all values of g  between 4 and 7 Mpa. The top value of 
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the second process B on 3 c,0c  cracks is 
c = 4 MPa. This process 

ends where cracks of 7 c,0c  lengths remain, according to row C of 

Figure 3.8. Thus when:  

 

1 1
7 0.378 7 2.65

7 7 7

c c
g

c c

EG EG

c c


 
       Mpa  (3.5.4) 

 

This is where line 2 of Figure 3.6 levels off from the data line. 

This stress is equal to top value 
c  of the next process C, on 7 c,0c  

crack lengths, given below line 2 in Figure 3.6. This ends at 

(1/ 15) 7 0.258 7 1.81     Mpa, where the process on 15 c,0c  

starts. However, at longer cracks, maximal spreading is reached 

and the ultimate stress is determining and processes towards the 

longer cracks of 15, 31 and 63 c,0c
.
 They are probably not distinct 

and it is probable that due to the high actual stress, failure may 

occur at any point of the still intact part of the ligament. Here 

applies another hardening effect, because the strongest material 

will fail the last.  

The Griffith law is apparently paradoxical. At a certain stress 

level there is enough energy to fracture a critical crack length of 2c 

(of Figure 3.1). But at crack extension the stress level lowers. Thus 

there is not enough energy to extend the now longer crack further. 

Thus, initial and further crack extension is impossible. The reason 

of this paradox is that nominal stresses are regarded, while fracture 

laws only can apply in real,  actual stresses. After the first process 

of row A of Figure 3.8, half of the intact material is fractured, but 

the stress level is not halved, but 0.57 times lower. The next steps 

to rows B and C show respectively, the stress levels of 0.378 and 

0.258, thus more than 0.25 and 0.125 needed to fracture the 
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remaining 0.25 and 0.125 intact material. The proof of the 

increasing sufficient stress level for further fracture is given by eq. 

(3.2.10), because not only the first derivative but also the second 

derivative is positive when c/b > 1/6.  

The Griffith law thus is an extremum principle of limit 

analysis, which applies for virtual work at the top of the yield drop 

curve for the regarded initial crack length. In the form of eq. 

(3.3.2) or eq. (3.3.7) they represent this principle for the yield drop 

states. It proves the necessity of applying limit analysis as the basis 

of the new fracture mechanics theory. 

At overcritical crack lengths, after some yield drop, IcK - 

values decrease, showing that the crack closure energy is lower 

than the bond breaking energy. Thus it remains, that failure of the 

post-critical crack lengths is due to the ultimate, uniaxial, clear 

wood failure stress,  by micro-cracking of the adjacent 2c parts of 

Figure 3.8. This is discussed further below.  

It  is shown that the Griffith yield drop equation, combined 

with the crack merging model, precisely explains the data of strong 

specimens. The data of the less strong specimens, given by Figure 

4.7, show instability of process A (of Figure 3.8) due to the steep 

slope near the top of Figure 4.2. This also explains the high 

variability of the data, found in [3]. Line 1 of Figure 4.7 is the 

same as line 2 of Figure 4.6, and can be chosen to level off at 

about 2.2 MPa, in accordance with the uniaxial strength of the still 

intact area of the ligament, which is half the area at 4.4 MPa, 

showing again that an ultimate stress criterion is determining for 

long (overcritical long) small-cracks (thus at low nominal stress). 

The optimal crack merging mechanism, clearly noticeable at 

strong specimens, is a chosen lower bound equilibrium system of 

limit analysis, which precisely follows the measured data (See 

above and § 3.6).  
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3.6. CRACK MERGING MECHANISM 

 

As derived in § 4.4 of [5], the activation energy and activation 

volume parameters of the damage process of wood, show that the 

change of the site distance parameter 
11/   strongly dominates 

above bond breaking rate, shown by the decreasing distance, the 

increase of the flow unit density up to a critical value. Thus, as 

discussed in § 4.5 about deformation kinetics, macro crack 

extension is preceded by the formation of a high density of small 

cracks, providing a mechanism with the least loss of strength with 

the highest dissipation. Because for a distribution of small cracks, 

it applies that when the intermediate crack distance is higher than 2 

times the St. Venant distance, the strength of the plate is about the 

same as   when each small crack alone, was in the plate. The 

critical, maximal small crack density thus is determined by the St 

Venant distance. The critical intermediate small crack distance of a 

fracture process in “clear” wood in the fracture plane  is about 

equal to the crack length, as given in scheme A of Figure 3.8. In § 

3.3, theoretically, a crack distance of 2.2 times the crack length c is 

found, which for simplicity is rounded down to 2 in Figure 3.8.  

 

 

Figure 3.8. Small crack merging. 

As shown in § 3.5, eq. (3.3.7) applies for yield drop going 

from row A to row B, which ends when the stress reaches the 

value according to eq. (3.5.3). This value is the top value for the 

nest process, going from row B to row C, wherefore again eq. 

(3.3.7) applies until the stress reaches the value of eq. (3.5.4). The 

   2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c     2c    2c    2c    2c  .  A 

 

           6c           2c             6c            2c           6c             2c           6c          .  B 

 

                         14c                            2c                          14c                         . C   
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crack merging mechanism thus can be seen as an extension and 

correction of the Griffith law and Griffith locus.  

For the initial small cracks, the critical crack length according 

to eq. (3.3.3) is:  

 

0 0 0/ 6 2.2 (2 ) 2.2 (2 ) / (6 ) 1.0cc lb c c c         ,  (3.6.1) 

 

for the specimen with row A. The distance l between the rows, 

above each other, is 2.2 times the crack length, being the Saint-

Venant distance for building up full stress again behind a crack, to 

be able to form a new crack. Thus l = b = 2.2∙2c for row A, and l = 

b = 2.2∙6c in row B, and l = b = 2.2∙14c for row C. Thus when 

crack pairs of row A join together, a double-crack length of 6c 

occurs. The critical crack length therefore  for row B is:  

 

 
22

0 0 0 0/ 6 2.2 6 2.2 6 / (6 ) 0.5 6 0.5 6 3cc lb c c c c             .  

 (3.6.2) 

 

Next a double-crack length of 14c is formed as row C and then 

30c, etc. However, for very long cracks, the maximal stress 

spreading is already reached and the ultimate stress criterion 

applies and it is more probable that random failure of the ultimate 

loaded remaining intact clear wood parts 2c length of rows A, B or 

C are determining for ultimate tensile failure. Thus micro crack 

formation and propagation in the remaining high loaded, intact 

clear wood part of the ligament is determining. This determining 

clear wood failure also applies from the beginning (as discussed in 

e.g., § 3.7), so that fracture is always  due to the same micro crack 

extension. This damage process acts in all these parts at the same 

time during the whole fracture process. Thus, for the whole 

fracture process, from the beginning to full separation, it applies 
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that micro-crack formation in the intact part ( 2 )b c of Figure 3.1 

of the ligament is determining, (despite  the strength increase by 

the spreading effect) and that the concentration is not determined 

by the merged macro crack length 2/ 6 / 6cc lb b      0.23b, 

but by the merged, micro crack length in clear wood of:  

 

2' ( 2 ) / 6cc b c    0.23 ( 2 )b c   .  (3.6.3) 

 

For every successive process, it applies optimally, that every 

initial crack merges with one neighbor by extension at one side 

over a distance of 1
0c , leading to halving of the solid area of the 

ligament, and to an increase of the crack length by:  

 

1 02 2 2 2n nc c c    ,  

giving 
1 02 6c c  and 2 1 0 02 2 2 2 14c c c c    . (3.6.4) 

 

The increase of the crack length is: 

 

1 0(2 ) ' 2 2 2 2n n nc c c c c     ,  (3.6.5) 

 

Including the initial crack length of 2 0c , the increase of the 

total crack length is: 

 

1 0(2 ) 2 2 2 2n n nc c c c c     .  (3.6.6) 

 

More general for all merging cracks at any distance during 

time t  this is:  

 

1( )c c t      (3.6.7) 
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and as the determining damage deformation kinetics [5] equation 

this is (see § 5, eq.5.3): 

 

2 0/ exp( )dc dt c    , (3.6.8) 

 

when the initial site concentration 0c  is high, (zero-order reaction) 

as applies for row A of Figure 3. This equation can be written 

ln( ) ln( ) vc C   , or, because 0v  = n, is constant, independent 

of stress, due to the time stress equivalence, [5], is: 

 

0 0

1
1 ln( )v

v

c

n c




    (3.6.9) 

 

showing that the combined Griffith – crack-merging model is 

identical to common damage behavior. Fracture is caused by 

accumulation of broken bonds, thus following a thermal activated 

process [5], and also applies for the following micro-crack 

formation and large cracks formation due to coalescence of micro-

cracks (in a coupled process). This occurs when the critical density 

is reached.  

The kinetics for timber show the same behavior as for clear 

wood, indicating that  the same micro-crack propagation is always 

determining for fracture. As shown in [5], always two coupled 

processes act, showing the same time-temperature and the same 

time-stress equivalence of both. A high concentration of micro-

cracks delivers the sites for the low concentration of macro-cracks 

formation. The reaction thus is autocatalytic, which means that one 

of the reaction products is also reactant and therefore a catalyst in 

the coupled reaction. The mode I notched specimen, discussed 

here, shows the coupled low concentration reaction of the macro-

crack extension, by its property of a strong yield drop behavior of 
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the nominal stress. Thus, the initial crack length is the reactant and 

the reaction product is the newly extended macro crack length. The 

numerous small-cracks, growing towards each other and to the 

macro notch provide the site for the macro crack to grow as 

coupled second low-concentration reaction process. The kinetics 

of this bond breaking process is discussed in [5].  

 

 

3.7. MODE II YIELD DROP BEHAVIOR 

 

As shown before, for mode I, yield drop occurs when the rate 

of the damage process is faster than the rate of loading in a 

constant strain rate test. This causes unloading, which has nothing 

to do with softening behavior. Analysis of tests on overcritical 

crack lengths is necessary to know the properties of yield drop 

behavior. Therefore first, in paragraph 3.7.1, a prediction of the 

mode II critical crack length is discussed. This critical length 

causes the start of yield drop, and thus represents the top of the 

mode II yield drop curve.  

 

 

3.7.1. Derivation of the Mode II Critical Crack Length for 

Yield Drop 

 

Analogous to the mode I derivation in paragraph 3.2, is the 

fracture energy equal to the strain energy increase W at fracture 

under constant loading:  

 

   2 22 1 2 1

2 2eff

blt blt W
E E

    
  , (3.7.1) 
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and analogous to eq. (3.2.3) and eq. (3.2.2), is for crack closure:  

 

W   2 2 2 2 2( ) / /c t E c t E     ,  (3.7.2) 

 

for pure shear. Thus:  

 

   2 2

2 22 1 2 1
/

2 2eff

blt blt c t E
E E

   


 
    (3.7.3) 

 

giving: 

 

 21 / 1
eff

E
E

c bl 


 
 (3.7.4) 

 

The Griffith stress g follows from:  

 

  0cW G ct
c


 


, or: 

2 2

0c

c t
G ct

c E

 
  

  
; or:  

2

c
g

G E

c



  or: 

2/ (2 )c c gc G E   (3.7.5) 

 

Substitution of 
2/ (2 )c cc G E   into: 

 

 / 2 1 /eff effG E       gives: 

 

        

 

2 2

2 2

2 1 1 / 12 1 2 1 ( )
(1 )

(2 ) 1

c

eff

c bl G E

E E E bl

       


 

   
   


 

 (3.7.6) 
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and the top of the yield drop curve follows, as for mode I, from: 

0
d

d




 , giving:  

 

  2

4

2 1 3
0

2

cG E

E bl



 


   or: 

 1 4 / 3

c c

c

c

G E G E

cbl


 

 



.  

 

Thus:  

 

 4 1 / 3 / 0.5 0.62 0.785cc bl bl bl bl        (3.7.7) 

 

This value of 
cc  is applied as 

ca  in paragraph 3.7.2. 

 

 

3.7.2. Mode II Fracture Strength Criterion 

 

In [8, 9], results of mode II tests, called asymmetric four point 

bending tests, are given (see Figure 3.9), and applied on very long 

over-critical initial crack lengths, which clearly represent an 

identical state of a former yield drop stage, because the measured 

IIcK -values were a factor 2.5 to 4 lower than normal, thus much 

lower than the control tests on standard “single edge notched 

beam” specimens.   The, by the numerical VCC- (virtual crack 

closure) test found too low,  value of 
IIcG , is not the critical energy 

release rate, but simply the elastic energy for elastic crack closure, 

(per unit crack length) of the existing very long overcritical crack 

length, which closure energy, per unit crack length, is much lower 

than the apparent surface energy. The  /f a W  - factor in eq. 

(3.7.8) thus is not a geometry factor but an empirical coupling 

factor of terms in the equation. Because of the zero moment in the 
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middle of the beam at the location of the cracked, glued-in, 

specimen (see Figure 3.9), only shear stress loading and energy 

should be regarded as also follows from the VCC-method. The 

starting point in [8, 9] is the Griffith eq. (3.7.8), giving:  

 

   /IIc c i IIcK a f a W EG    ,  (3.7.8) 

 

In this equation 
IIcG  is found by the crack closure method; 

c , 

the nominal critical shear stress is measured; 
ia , the initial crack 

length, is wrongly regarded to be the critical crack length and 

 /f a W  connects empirically 
c , 

ia , and 
IIcG . The nominal eq. 

(3.7.8) has to be corrected for the real critical 
ca  and actual stress 

,a c  values which apply at the fracture site. Thus:  

 

  2 2

, , , ,/ ( / )( / )a c c IIc c i a c c IIa c IIa ca f a W EG a a EG K       , 

 

or: 

 

,

1

,

( / )
IIa c

c

a c

K
a f a W C


    (constant) (3.7.9) 

 

where ,a c  is the actual ultimate shear stress and ,IIa cK  the real 

critical value of the stress intensity at the critical initial crack 

length 
ca . 

1C  is only dependent on dimensions and stiffness 

factors of the specimen. For instance, eq. (6.2.7), which is based 

on a compliance method for shear loading and shear deformation, 

gives: 

 

2

1 ,/ 0.27 ( ) /IIc a cC K h E G       ,  (3.7.10) 
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which is constant, and independent of the crack length h . The 

common empirical estimation in [8, 9], wrongly based on nominal 

stress and on initial crack lengths 
ia  instead of critical crack 

lengths 
ca , resulted in a not constant 

1C , but on a strong 

dependency of 
1C  on the crack length /a W , which therefore was 

a factor 2 higher at /a W = 0.9, with respect to the value at /a W = 

0.7. The found factors  2.5 to 4 too low, not critical, not constant, 

values of cG , are mainly due to the assumption that the 

overcritical crack length of /a W = 0.7, 0.8, and 0.9, are the right 

initial critical crack lengths of the Griffith theory. According to 

Figure 12 of [9], there is no difference (by volume effect) between 

the data for W = 40 and 20 mm, thus in the following mean data 

values of both are regarded. This is necessary because the 

measured values of c , dependent on W, are not published in [8, 

9]. Because the applied initial crack length is overcritical, the clear 

wood strength, thus micro crack extension, is determining in the 

still available intact area of: ( )W a ∙ ( )W a , adjacent to the long 

(overcritical) initial cracks 
ia . Then the equivalent merged, critical 

macro-crack length according to eq. (3.3.3) is, (for a constant W in 

all tests): 

 

 0.78 0.78 (1 / ) (1 / ) 0.78 (1 / )ca bl W a W W a W W a W         , 

 (3.7.11) 

 

Thus, 
1C  according to eq. (3.7.9), is, for respectively: 

 

/ia W = 0.7: ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W

2.46 0.3 1.0 0.85W W        (3.7.12) 
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/ia W = 0.8: ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W

2.46 0.2 1.2 0.84W W       (3.7.13) 

 

/ia W  = 0.9: ( / )ca f a W   2.46 (1 / )W a W  ( / )f a W

2.46 0.1 1.67 0.83W W      (3.7.14) 

 

This gives  the necessary constant value of 
1C  of eq. (3.7.9), for 

shear loading. The equations show that only eq. (3.7.12) gives the 

right value of 
ca  because  /f a W =1, as should be for the 

compliance method. Therefore the smaller fracture planes need 

correction factors (respectively of 1.2 and 1.67) to obtain the same 

determining ultimate shear strength given by eq. (3.7.18) to eq. 

(3.7.20). Therefore:   

 

ca 
2

,0( ( / ))ca f a W   (3.7.15) 

 

Thus, it also is shown that  the initial crack length is not 

critical, but the actual shear strength is determining for yield drop 

by overcritical initial crack lengths. The  actual stress of actual, 

still intact material follows from the nominal Griffith stress, 

corrected by a factor  /W W a . This stress is determining for 

all clear wood failure. It is therefore  necessary that the  found 

actual clear wood shear strength is the same for the above 3 

overcritical cases. Thus, similar to eq. (3.2.9) for mode I, is for 

(mode II) shear loading:  

 

/

( / ) (1 / ) ( / ) / (1 / ) ( / )

II II II
u

K W K K W

W aa f a W a a W f a W a W a W f a W




 
   

         

 (3.7.16) 
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or: 

 

/ (1 / ) ( / )

II
u

K
W

a W a W f a W
  

    (3.7.17) 

 

This is constant, independent of /a W  because  the crack 

closure value of 
IIcK of 0.79, 0.71 and 0.52 are not determining 

factors in this case, but the ultimate shear stress, which is as 

u W   equal to:  

For  

 

/ 0.7a W  : 
/ (1 / ) ( / )

IIK

a W a W f a W


  

0.79
3.2

0.7 0.3 1


 

 (3.7.18) 

 

For  

/ 0.8a W  : 
/ (1 / ) ( / )

IIK

a W a W f a W


  

0.71
3.3

0.8 0.2 1.2


 
 

 (3.7.19) 

 

For  

/ 0.9a W  : 
/ (1 / ) ( / )

IIK

a W a W f a W


  
= 

0.9 0.1 1.6

0.5
.

7

2
3 3

 
, 

 (3.7.20) 

giving a mean value of: u W  = 3.25 MPa m , and with 

30W   mm, this is u = 10 Mpa of the clear wood strength of the 

tested small clear specimen of 30x10x15 mm3 glued in the centre 

of the beam specimen (see Figure 3.9). The real value of 
IIcK  

follows from eq. (3.7.9) and eq. (3.7.12): , ,/c IIa c a ca K   or:  
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, , (3.25 / )0.85 3.25 0.85 / 1.56IIa c a c cK a W W          

MPa m , (3.7.21) 

 

as lower bound. This is equal to the in [9], Figure 12, given 

value of 1.6 MPa m , which is measured by the single-edge 

notched beam test, as control on the data of the asymmetric four 

point bending tests of [9].  

 

 

Figure 3.9. Mode II tests, called “asymmetric four point bending tests” of [8, 9]. 

All measured strength values are at the low side in [8, 9], 

because the start of viscous non-linearity in the test was regarded 

as the ultimate fracture state. It however is confirmed by the data 

of [8, 9], that the actual mean shear strength of the intact part of 

the fracture plane is determining for overcritical initial crack 

lengths and not the apparent critical 
IIK - value of crack closure, 

which is not constant and too low. Thus, macro crack extension is 

due to apparent ultimate clear wood shear strength, and thus occurs 

by small crack merging towards the macro-crack tip. The stress 

intensity is determining for initial crack lengths below / 0.7a W  . 

The test setup is however not stable enough for the higher stresses 

by lower initial crack lengths.  
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Chapter 4 

 

 

 

CORRECTIONS OF THE  

SINGULARITY APPROACH 
 

 

4.1. INTRODUCTION 

 

Only in Chapter 2 is the given non-singularity approach  exact, 

up to initial yield, by applying a statically admissible equilibrium 

system, which suffices compatibility and boundary conditions and 

nowhere violates the failure criterion. The singularity 

approximation, applies not at, but in the neighborhood of the 

singularity, and is based on collinear crack extension and is 

therefore not able to show and satisfy the right failure criterion. 

Therefore, corrective models are applied,  to remove the infinite 

stresses at the singularities. These models, based on plasticity by 

assumed crack bridging, are known as non-linear fracture 

mechanics, and are only applicable to singularity solutions. The R-

curve is an applied correction for viscous flow and hardening, 

which is wrongly regarded as crack toughening. The R-curve also 

is assumed to explain instable crack propagation, although 
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instability does not occur at a sufficient stiff test assembly (see 

Appendix I). Thus the viscoelastic, plastic, and other structural 

change processes in beam type specimens at loading, (known from 

molecular deformation kinetics [1], see § 4.5), are not regarded 

separately, but wrongly regarded to be, all together, the response 

of one toughening fracture process. The start of non-linearity by 

these processes is wrongly regarded as the start of crack extension, 

although this happens at the top of the loading curve. This results 

in many meaningless mutual different R-curves depending on the 

specimen type. The hardening effect, due to stress spreading, does 

not show a hardening effect of the nominal apparent surface 

energy (energy release rate). The decrease of the nominal stress at 

yield drop is wrongly regarded to be a decrease of the actual stress 

in the fracture plane, which leads to the assumption of physically 

impossible strain softening behavior at crack extension.  

To correct for combined mode I II loading, the wrong, 

uncoupled, ultimate uniaxial strength criterion (following from 

collinear crack extension), additional models are applied to 

constitute the ultimate state. For instance, the energy methods; 

numerical crack closure techniques, J-integral, or M- θ- integral, 

determine the initial strain energy release rate as ultimate state 

criterion. This however does not remove the influence of the 

infinite singularity peak stresses which are not corrected by adding 

an equilibrium system, as assumed by the fictitious crack models 

(Dugdale, Barenblatt, Hillerborg). This is discussed in § 4.2. The 

dynamic crack growth models and critical energy criteria are 

discussed in § 4.3.  

The problems with these approximations of the singularity 

approximation are avoided by applying the    given, exact (non-

singular) limit analysis approach outlined in Chapter 2.  
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4.2. THE FICTITIOUS CRACK MODELS 

 

The aim of the fictitious crack models (Dugdale, Barenblatt, 

Hillerborg) was initially to remove the infinite high stresses of the 

singularity approach. The model was based on a “fictive” crack 

length extension, which is loaded by a cohesive flow stress, over 

such a length that the singularity due to this cohesive flow stress 

neutralizes the singularity due to the field stress at the extended 

crack tip. The extended crack length is however not fictitious, but 

real, because only then, there is a real singularity possible at a real 

extended crack tip which can be neutralized. The singularity is not 

neutralized at the actual existing crack tip when this crack 

extension would not be real. Calculated thus is the strength of an 

extended crack length in an external stress field, loaded also by a  

physical and structural impossible,  internal opposite applied, 

dilute viscous stress field, near the crack tips. In principle this is an 

internal equilibrium system superposed on the Airy stress function 

solution. But because this added equilibrium system is not present 

in the equilibrium method solution, it is necessary to subtract the 

energy of this system from the total failure energy, which is not 

done. According to virtual work limit analysis theorems, there is 

no influence of initial stresses and deformations on initial 

equilibrium systems on the plastic limit or collapse load, when 

initial dimensions are regarded in the calculations, which always is 

the case. The addition of corrective equilibrium systems thus has 

no influence on the collapse load. It remains necessary to regard 

the uncorrected singularity solution of the Airy stress function. 

The consequence thus is the rejection of the singularity solution 

with its infinite high stresses. The fictitious crack models therefore 

are not exact and superfluous. Instead, the exact boundary value 

limit analysis approach of Chapter 2, without singularities, leading 

to the exact, Wu-failure criterion, is determining and has to be 
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followed. This failure criterion cannot be derived by the 

singularity approach. The most   exact model for uniaxial loading 

perpendicular to the grain only, is the elastic-plastic Dugdale 

model, and the results can be compared with the results of the 

exact solution. Then, the length of that enlarged plastic zone 
pr  of 

the extended crack length, according to the Dugdale model is 

given by eq. (4.2.1) as:  

 

2
2 2

28 8

Ic
p

f f

K c
r

  

 

 
    

 

, (4.2.1) 

 

where f  is the yield stress or is regarded to be a cohesive stress. 

This leads to a maximal crack opening displacement 
c  at the 

crack tip of:  

 

8
c f pr

E
 


    = 

2

Ic

f

K

E
 = 

2

f

c

E




 (4.2.2) 

 

when pr  from eq. (4.2.1) is substituted. This result, based on 

singularity equations, was necessarily based on very small values 

of r  and 0r  in § 2.2.2, so that all terms containing not the factor 

0.5

0r


 were neglected at the derivation of the equation. For finite 

values of 0r  this is not a correct result. According to the theory  

Chapter 2 applies for Mode I, at the crack tip boundary 0r , at the 

start of flow, the condition  
2

0 2 / fr c    according to eq. 

(2.3.7) for the elliptic crack tip. This is approximately 
2 2

0 / 2 fr c   according to eq. (2.2.16) for the circular crack tip 
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of the singularity approach, showing a difference by a factor 4. 

The form of the crack tip determines the value of the tangential 

tensile stress along the crack-tip boundary. The Dugdale numerical 

factor 2 / 8 1.23   (based on an enlarged crack length) is between 

the values of 0.5 and 2, but is too far away from the elliptic value 

2, which applies as the highest lower bound of limit analysis 

(which bound is equal to the measurements, thus is the solution). 

Also the theoretical elastic elliptic crack opening displacement of 

(2 ) /c c E  is far above the Dugdale value. The Dugdale model 

thus shows an  inexact, too low, and thus rejectable lower bound of 

the strength, which only applies for uniaxial tensile loading 

perpendicular to crack and grain direction (due to the assumed 

collinear crack extension). The Dugdale model thus is based on a 

real, not fictive, extended crack length. Thus the superposed 

compression closing stress is an impossible, non existant, external 

load on the specimen. This is not comparable with the crack 

problem, which is not loaded perpendicular to the crack boundary 

by a stress depending on the crack opening, but failure is 

independent of this, by the determining tangential stress in the 

crack boundary surface (see Chapter 2). This strength- determining 

stress is much higher than the regarded maximal stresses of the 

fictitious crack models, which don’t satisfy the real   failure 

criterion. The same  applies for the Hillerborg model, which is 

based on closing stresses, proportional to the yield drop curve, thus 

proportional to the lowering mean elastic stress far outside the 

fracture plane and not proportional to the actual  spreading   stress 

at the fracture plane. Therefore a zero tangential stress is found at 

the location of the highest (strength determining) tangential tensile 

stress. This error is of course far from right because the calculated 

increasing stress and hardening at the fracture plane (see § 3.2), are 

opposite to the arbitrary assumed softening.  
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4.3. APPLIED CRACK GROWTH MODELS 

 

The acknowledged,  basically identical crack growth models 

for wood, of Williams, Nielsen and Schapery, mentioned in [2], 

are based on linear viscoelasticity and on the Dugdale-Barenblatt 

model in order to try to derive the empirical crack rate equation: 

 

n

I

da
A K

dt
    (4.3.1) 

 

The followed procedure is contrary to the normal one, and 

cannot  lead to a real solution, because the rate equations are 

constitutive and have to follow from Deformation Kinetics theory, 

(see § 4.5 and Section B, [1, 3]) which applies for all materials and 

is the only way to account for time and temperature dependent 

behavior. Constitutive equations  can only follow from theory and 

not from general thermodynamic considerations. In [2], it is stated 

that Fig 4.1 of [2] represents eq. (4.3.1). However, eq. (4.3.1) is a 

straight line on a double log-plot, while Figure 4.1 gives the semi-

log-plot which confirms the applicability of the damage equation 

of Deformation Kinetics [1] in the form exp( )va C   , or:  

 

ln( ) ln( ) va C     (4.3.2) 

 

This equation is equal to eq. (3.6.9), discussed in § 3.6. More 

appropriate forms of the exact damage equations and power law 

forms, with the solutions as  the yield drop at the constant strain 

rate test, are discussed in [1] and the meaning of the power law 

equation, eq. (4.3.1), is discussed below. The impossibility of the 

derivation of the fracture rate equation from the Dugdale- 
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Figure 4.1. Crack growth tests of Mindess (Figure 10 of [2]). 

Barenblatt equations follows e.g., from the derivation in [2, § 

2.2] of eq. (4.3.3):  

 

  (4.3.3) 

 

based on the relations: /y c E   and 
Ic c cK E  , with 

0

nE E t   and pr a t  . These four (interlinked) relations thus 

also can be used now to eliminate at least 4 parameters, e.g., 
IcK , 

y , pr  and 0E  to obtain an equation in E, t, a  c  and c . When 

this is done, eq. (4.3.3) turns to an identity E = E, and eq. (4.3.3) 

thus is not a new derived crack rate equation but an alternative 

writing of the four relations. The same follows for the other 

models of § 2.2 of [2] showing comparable parameter 

manipulations of many critical parameter values which cannot be 

applied independently because they are part of the same failure 

condition. The models are further  based on linear viscoelasticity 

which does not exist for polymers. It is shown in  [1], page 97, and 

by the zero creep and zero relaxation tests at page 119, that a 

0

n n

Ic c y pK E a r     
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spectrum of retardation or relaxation times does not exist. The 

superposition integral eq. (28) or eq. (51) of [2]:  

 

   
( )t d

t C t d
d

 
  


    (4.3.4) 

 

thus has no physical meaning. This also applies for the power 

law models of time and power law eq. (4.3.1), which only apply in 

a limited range, making predictions and extrapolations outside the 

fitted range of the data impossible. It is thus  necessary to apply 

the exact theory of Section B, of iews.nl, for the kinetics of 

damage and crack growth processes.  

 

 

4.4. CONTINUUM DAMAGE MECHANICS 

 

Continuum damage mechanics [4], is a simplified application 

of needed Deformation Kinetics analysis (of [1]), leading to the 

most elementary damage kinetics equations. But not all possible 

structural change processes can be given in this simplified form. 

Regarding fracture mechanics of [4], the analysis is based on the 

fractured (lost) area A  of an initially undamaged section 
0A , 

leading to the variable:  

 

0

0

A A

A



   (4.4.1) 

 

The actual stress 
a  on the material then is (expressed, as 

wanted, in the nominal stress  ):  

0 0

a

P P

A A A




 
  


 (4.4.2) 
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where   is the nominal stress and 
a  the actual stress on still 

undamaged, actual area of the section. Now:  

 

1) The  actual stress on the actual area evidently determines 

the rate of damage growth, and 

2) The strain increase due to damage is caused by the actual 

stress at the damage location.  

 

Thus, the stress-strain behavior of the damaged material can be 

represented by the constitutive equation of the virgin, undamaged, 

material with the stress in it, replaced by the actual stress. Thus: 

 

1

'
a

E E E

  



     (4.4.3) 

 

with: 'E E . A simple form of the deformation kinetics damage 

equation for uniaxial tension is:  

 
n

d
C

dt

 




  

 
 (4.4.4) 

 

This is comparable with the deformation kinetics equation of § 

4.5:  

 

0

'
exp

dN
CN

dt kN

 
   

 
, (4.4.5) 

 

for a forward zero order reaction due to a high reactant 

concentration and high stress, where this exponential equation is 

replaced in eq. (4.4.4) by its power law representation (derived in 

§ 4.6). Because the stress is high, the sinh(x) -form is changed to 
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exp(x) -form in the equation and initially also 
0 0/ /N N   is 

constant, independent of the value of 
0  and independent of 

temperature, explaining the time temperature and time stress 

equivalence. Because the pre-exponential concentration term N is 

high and does not change much during the reaction, the value of 

0N  can be used and the reaction then is of zero order at the start 

and the solution eq. (4.5.4) then applies for initial failure. After a 

delay time of relatively small change, eq. (4.4.4) can be used for 

further failure at high enough stress, leading after integration, for a 

rod loaded by a constant tensile stress 
0 , at the initial boundary 

condition for virgin material, 1   at t = 0, and at 0   for 

complete fracture, to a time to failure of:  
1

0' 1 nt C n 


    , and 

for stepwise loading then follows:  

 

 
1

1

1; ' 1
'

s
nk

k k

k k

t
t C n

t







      with: 

1k k kt t t    ,  

k = 1,2,…..s.  (4.4.6) 

 

which is Miner’s rule, or the principle of linear summation, which 

evidently also applies for wood and timber. Important conclusions 

now are:  

 

1) It is necessary to apply the actual stress in damage 

equations, for correct results, as  applied in [4, 3 and 1], for 

all existing solutions, which all are empirically verified by 

tests.   

2) Limit analysis deformation kinetics (developed in [1]), 

have to be applied (e.g., in continuum mechanics), for 

exact solutions.  



Corrections of the Singularity Approach 83 

3) The determining micro-crack equation, which produces 

macro-crack extension, can be based on an initially high 

concentration, high loaded, zero order reaction equation.  

 

This is applied and discussed in Chapter 3 and in next 

paragraphs. 

 

 

4.5. DEFORMATION KINETICS OF  

FRACTURE PROCESSES 

 

The basic equations for fracture according to the limit analysis 

equilibrium theory of molecular deformation kinetics are given in 

§ 4.4 of [1]. The basic concept of this fundamental theory is to 

regard plastic flow as a matter of molecular bond breaking and 

bond reformation in a shifted position, which is the same as to 

state that the flow is the result of a chemical reaction like 

isomerization. Thus, not the composition changes, but only the 

bond structure of the molecules. Damage occurs when not all 

broken side bonds reform, providing the   sites of the damage 

process.  

The general theory developed in [1] is based on the limit 

analysis equilibrium method and is, as such, an exact approach, 

which is able to predict all aspects of time dependent behavior of 

materials by the same constitutive equation, because the 

mathematical derivation of this general theory is solely based on 

the reaction equations of the bond-breaking and bond- reformation 

processes at the deformation sites due to the local stresses in the 

elastic material around these sites. The form of the parameters in 

the rate equations are according to the general equilibrium 

requirements of thermodynamics. By expressing the concentration 
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and work terms of the rate equation in the number and dimensions 

of the flow units, the expressions for the strain rate, fracture, flow, 

hardening and delay time are directly derived without any 

assumptions. To obtain simplifications, series expansion of the 

potential energy curve is applied, leading to the generalized flow 

theory, and thus to a proof of this general flow model, and 

showing the hypotheses of this generalized theory, to be 

consequences of the series expansion. This theory therefore applies 

generally, also for structural changes, giving an explanation of the 

existing phenomenological models and laws of fracture.  

The rate equation for fracture then can be given for high stress, 

as always applies for fracture, by:  

 

2
sinh exp

r r

d W W

dt t kT t kT

    
     

  
 (4.5.1) 

 

where the concentration of activated units per unit volume   can 

be written 
1/N A   with N flow units per unit area of a cross 

section, each at a distance 1  behind each other with   as jump 

distance and A as area of the flow unit. The work of a flow unit W, 

with area A moving over a barrier, over  distance   is 

/W fA N   . Because of equilibrium per unit area of the 

external load 1 1    with the force on the N flow units NfA . Thus 

NfA   and eq. (4.5.1) becomes expressed in the nominal macro 

engineering stress  , which is the part of the total external stress 

that acts on N, to be found from tests with different loading paths:  
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1 1

exp
r

d N N

dt t NkT

  

 

 
   

  
, (4.5.2) 

 

In this equation  
rt  is the relaxation time. The value of A can 

be regarded constant because any change is compensated by a 

corrected value of f  and a corrected value of   to obtain a correct 

load on the flow unit and its correct volume. Eq. (4.5.2) can be 

written with 
1' /N N   (the number of flow units per unit 

volume)      ' / ' / exp /rd N dt N t NkT    , or:  

 

exp
' ' r

d

dt N N t NkT

    
   

  
 (4.5.3) 

 

For this zero order reaction in wood, when the very high initial 

reactant concentration does not change much and initially also 

0 0/ /N N   is constant, the solution is: 

 

0 0 0

exp
' ' '

f

r

t

N N t N kT N

  
 

 
, or:  

0

0 0 0 0 0

'
exp exp

' '

f f f

r

t t tN kT E E

N N t t h kT N kT t kT N kT

   

 

    
              

    

 

 

or  

 

(with 1
kT

h
 ):  
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Figure 5. Stress and temperature dependence of the lifetime for structural 

materials [1]. 

 

0

0 0

'
ln ln 1

'

f

f

t NE

kT N kT t N

 
      

    0

ln
ft

t


 

 
, (4.5.4) 

 

Figure 5 shows that eq.(4.5.4)  applies generally for structural 

materials. Thus 0' 0.5 'fN N   as  experimentally found for 

fracture. ,  Thus the crack length is about the same as the crack 

distance, or the intact area has reduced to 0.5 times the initial area 

when macro-crack propagation starts due to small crack merging 

behavior, which explains the measured mode I and mode II final 

nominal yield drop behavior of fracture.  

 

 

4.6. DERIVATION OF THE POWER LAW 

 

The power law equation may represent any function f(x),   as 

derived below. . It therefore also may represent, in a limited time 
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range, a real damage equation giving  a meaning of the power n of 

the power law eq. (4.4.4). This is applied in § 4.4. 

Any function f(x) always can be written in a reduced variable 

x/x0  

 

1 0( ) ( / )f x f x x  (4.6.1) 

 

and can be given in the power of a function: 

  1/

1 0 1 0( ) ( / ) ( / )
n

n
f x f x x f x x   and expanded into the row: 

2

0 0
0 0 0

( ). .( ) ( ) '( ) ''( ) .......
1! 2!

x x x x
f x f x f x f x

 
   

, giving:  

 

   
1/ 1/ 10

1 1 1

0 0

1 . .( ) (1) (1) '(1) ..... (1)

n n

n nx x x
f x f f f f

x n x

   
      
   

 

 (4.6.2) 

 

when:    
1/ 1/ 1 '

1 1

1
(1) (1) (1)

n n
f f f

n


   or: 

'

1 1(1) / (1),n f f   

where:     
 0

'

1 1 0 0 / 1
(1) / / /

x x
f f x x x x


    and 1 0(1) ( )f f x   

Thus:  

 

0

0

.( ) ( )

n

x
f x f x

x

 
  

 

with 01

1 0

'( )'(1)

(1) ( )

f xf
n

f f x
   (4.6.3) 

 

Thus the derivation of the power law, using only the first 2 

expanded terms, shows that eq. (4.6.3) only applies in a limited 

range of x around 0x . Using one 0x  is not limiting for strength 

problems. 

Using this approach on equation: 2 sinh( ) exp( )a C C     

(for high stresses), gives:  
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0

0

0

. .exp( )a C a







 
   

 

 (4.6.4) 

 

The power 
0n   of the power law equation follows from 

the slope of the double log-plot: 

 

0 0ln( ) ln( ) ln( / )a a n      (4.6.5) 

 

Thus: 
0ln( ) / ln( / )n d a d    and n 

0  gives a meaning 

of n as the activation volume parameter 
0  of the exact equation. 

The values of “n” and the matching activation energies of the 

different creep and damage processes in wood, with the 

dependency on stress moisture content and temperature, are given 

in [1]. The constancy of the initial value of the parameter 
0 , 

independent of applied stress 
0 , explains the time-temperature 

and time- stress equivalence and explains, by the physical 

processes, why and when at high stresses, the   in [2] mentioned 

value of n + 1 ≈ 60 is measured and at lower stresses, half this 

value (see [1]). 

 

 

4.7. J-INTEGRAL APPLICATION 

 

Path-independent integrals are used in physics to calculate the 

intensity of a singularity of a field quantity without knowing the 

exact shape of this field in the vicinity of the singularity. They are 

derived from conservation laws. For the singularity method of 

wood, the J-integral (Rice integral) and M-θ-integral are applied 

for estimation of the energy release rate. However, even the finite 

element applications for wood, appear to lead to quite different 
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outcomes by different authors at different situations, showing the 

application to be not exact, as also follows from remarks from [5]: 

J (near a crack singularity) is the component along the crack-line 

of a vector integral, having a meaning for not oblique (thus invalid 

for mode II and mixed mode I-II) and (only for mode I possible) 

incipient self-similar growth of a crack in a (nonlinear) elastic 

material. In this case, J has the meaning of the rate of energy-

release per unit of crack-extension. The path-independency of J 

can be established only when the strain energy density (or stress 

working density) of the material is a single valued function of 

strain. In a deformation theory of plasticity, which is valid for 

radial monotonic loading but precludes unloading and which is 

mathematically equivalent to a nonlinear theory of elasticity, J still 

characterizes the crack-tip field and is still a path-independent 

integral. However, in this case, J does not have the meaning of an 

energy-release rate; it is simply the total potential-energy 

difference between two identical and identically (monotonically) 

loaded cracked bodies which differ in crack lengths by a 

differential amount. Further, in a flow theory of plasticity (as 

applies for wood), even under monotonic loading, the path-

independence of J cannot be established. Also, under arbitrary load 

histories which may include loading and unloading, J is not only 

not path-independent, but also does not have any physical 

meaning. The blunting of the top of the loading curve and 

formation of the fracture zone and the main amount of crack 

growth with crazing and small crack formation in, (and outside), 

the process zone, means unloading and non-proportional plastic 

deformation which also invalidates the deformation theory of 

plasticity.  

Thus the J- integral method of the singularity approach, does 

not apply to wood (and other structural materials [6]). It is shown 

in § 2.3 and § 2.4, that oblique crack extension in the isotropic 
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matrix and skipping across fibers, is necessary for mode II crack 

extension.  
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Chapter 5 

 

 

 

ENERGY THEORY OF FRACTURE 
 

 

5.1. INTRODUCTION 

 

The failure criterion of clear wood, i.e., wood with small 

defects, is the same as the failure criterion of timber, i.e., notched 

wood, showing again that the small-crack is dominating and small 

crack extension towards the macro-crack tip is the cause of macro-

crack extension. This small-crack failure criterion thus delivers 

essential information on macro-crack behavior as discussed in 

Chapter 10 and in this chapter. The limit analysis derivation of the 

boundary value problem and applied Airy stress function of the 

singularity approach of small crack extensions, are given in 

Chapter 2 and Chapter 10.  
 

 

5.2. CRITICAL DISTORTIONAL ENERGY  

AS FRACTURE CRITERION 
 

The failure criterion of wood consists of an anisotropic third 

degree tensor polynomial (see [1], and Appendix II), which, for the 
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same loading case, is identical to the Wu-mixed mode I-II-

equation [2], eq. (5.2.3). The second degree polynomial part of the 

failure criterion, eq. (5.2.1), is shown (see Appendix II and [3]) to 

be the orthotropic critical distortional energy principle for initial 

yield showing the start of energy dissipation, which is not yet 

incorporated in the finite element method [4]. By this dissipation 

according to the incompressibility condition, the minimum energy 

principle is followed, providing therefore the exact initial yield 

criterion (see Appendix II) as:  

 
22 2

12 2
2 1

' ' ' '

y y yx x x
x yF

XX X X YY Y Y S

     
          

 (5.2.1) 

 

where X, Y are the tension strengths and ', 'X Y  the compression 

strength in the main directions and S  is the shear strength and: 

122 1/ ' 'F XX YY . This value of 
12F  is necessary for the elastic 

state which also applies at the starting point of initial stress 

redistribution and micro-crack formation in the matrix. After 

further straining, 
12F  becomes zero, 12 0F   at final failure 

initiation. The absence of this coupling term 12F between the 

normal stresses indicates symmetry, thus (possible random 

oriented) initial small-cracks are extended during loading to their 

critical length in the weak planes, the planes of symmetry only. 

Then, when these small-cracks arrive at their critical crack-density 

(discussed in § 3.6) and start to extend further, a type of hardening 

occurs because the reinforcement prevents crack extension in the 

matrix in the most critical direction. Then, due to hardening, 12F  

and all third degree coupling terms of the tensor polynomial 

become proportional to the hardening state constants [3] (or see 
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Chapter 11) and therefore, also dependent on the stability of the 

test and equipment. For the mixed I-II-loading of the crack plane 

by tension 
2  and shear 

6 , the polynomial failure criterion 

reduces to:  

 
2 2 2

2 2 22 2 66 6 266 2 63 1F F F F         

 or: 6 2 2

2

(1 / ) (1 / ')

1 / '

Y Y

S C Y

  



  



 (5.2.2) 

 

with: C 
2

2663 'F Y S   0.9 to 0.99, depending on the stability of 

the test. When, due to hardening, C approaches to C   1, eq. 

(5.2.2) becomes eq. (5.2.3), the in § 2.3 exact, theoretically 

explained, Coulomb- or Wu-equation, with a cut off by the line 

2 Y  . Full hardening is thinkable when the testing rig is stiff 

enough during the test. The solution of the crack problem of Irwin 

as summation of in-plane and antiplane solutions in order to use 

isotropic stress functions for the orthotropic case, and to apply 

descriptions in the three different modes and to sum the result for a 

general mixed mode case is comparable with this state because it 

misses the stress interaction term of hardening of eq. (5.2.2), 

which is not orthotropic by being not quadratic, but contains a 

third degree term and thus does not show orthotropic symmetry. 

This hardening coupling term is absent in all general accepted 

solutions. The stress function which leads directly to the Wu-

equation, eq. (5.2.3) is derived in § 2.3. 

 

2

6 2 1
S Y

  
  

 
 or: 

2

2
1II I

IIc Ic

K K

K K
   (5.2.3) 
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Wrongly, and against the lack of fit test, given by  Table 2.1 is 

for wood and other orthotropic materials, eq. (5.2.2)  generally 

replaced in literature by:  

 

2 2

2

2 2
1

Y S

 
  , written as: 

2 2

2 2
1I II

Ic IIc

K K

K K
  ,  (5.2.4) 

 

which surely is not a summation of energies as is stated, but is 

identical to eq. (5.2.1) when it wrongly is assumed that the 

compression and tension strength are equal for wood and 

orthotropic materials.  

To know the mode of failure, the stresses at the crack 

boundary should be known. This follows from the exact derivation 

in [5] and is applied by the VCC- technique of finite element 

simulation.  

 

 

Eq. (5.2.2), influence of 
2

266 2 63F   ,  

giving compressional data outside the elliptic curve. 

Figure 5.1. (Continued). 
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The same hardening at compression with (here) dashed parabolic 

limit eq. (5.2.3). 

Figure 5.1.  

The influence of 
2

266 2 63F    in eq. (5.2.2), is given by Figure 

5.1. The term is not quadratic by containing a third degree term 

and thus does not show to be orthotropic.  

 

 

5.3. REVISION OF THE CRITICAL ENERGY RELEASE 

RATE EQUATION 

 

Based on the failure criterion of § 5.2, adaption of the energy 

release equation is necessary. 

The Griffith strength equation, eq. (3.2.8) of § 3: 
2 /y c yG E c   can be extended by superposition to: 

 
2 2 /y xy c yG E c     (5.3.1) 
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This is only  right, when 
cG  is not constant but may reach 

values between 
IcG  and 

IIcG depending on /y xy  , because 
cG  

also has to satisfy the failure criterion eq. (5.2.3). In orthotropic 

stresses, eq. ( 5.3.1) is 
2 2 2

6/ /y xy f yn G E c     and when 0xy 

, is fG  = 
IcG  and 

Ic y IcK E G . When 0y  .Is: , 

2 2 2

6 64xy IIc y Ic yc n G E n G E    , because 
62IIc IcK n K  (eq. 

(2.3.19)). Thus: 

 

6 62IIc y IIc y IcK n E G n E G   or: 4IIc IcG G  (5.3.2) 

 

The failure condition eq. (5.2.3) can be written in fracture 

energies:  

 

 

 

2

2
1

III

Ic IIc

KK

K K
   

I II

IIcIc

G G

GG
   

 1f f

IIcIc

G G

GG

   
  

 (5.3.3) 

 

where, according to eq. (5.3.1): 

 

 1f I II f fG G G G G          (5.3.4) 

 

Thus: 
 

2

21

f I

f II

G K

G K







 or: 

2 2

2 2

1 1

1 1
II xy

I y

K

K






 

 

  (5.3.5) 

 

and   depends on the stress combination /xy y   in the region of 

the macro notch-tip and thus not on the stresses of fracture energy 
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dissipation as generally postulated by the I and II failure modes. 

This stress combination also may follow from a chosen stress field 

according to the equilibrium method of limit analysis as is applied 

in § 6 and § 7. With eq. (5.3.2): / 4IIc IcG G  , eq. (5.3.3) 

becomes:  

 

2 24 / (1 ) / (1 )f Ic IIcG G G       (5.3.6) 

 

where   acts as an empirical constant, explaining the differences 

in fracture energies depending on the notch structure and shear 

slenderness of the beam by the different occurring /xy y  -values 

according to eq. (5.3.5). Applications of the theory with the total 

critical fracture energy fG  are given by § 6 and § 7. 

The theory is e.g., applied for beams with rectangular end 

notches as basis of the design rules of the Dutch Timber Structures 

Code and some other Codes and is a correction of the method of 

the Euro-Code. In the Euro-Code, an approximate compliance 

difference is used and a raised stiffness which does not apply for 

the applied Airy stress function. Further IcG  is used instead of fG  

according to eq. (5.3.6). Important is  also that the theoretical 

prediction IIc IcG 4G  is verified by measuring IIc IcG /G  = 3.5 

(with R2 = 0.64, thus showing the data to be not very precise).  

In comparing results it should be realized that there is a 

Weibull volume effect of the clear wood strength. Further is a 

strong hardening possibil due to compression, perpendicular to 

grain at bending failure of small clear single-edge notched 

specimens, which is wrongly  regarded as IIcG resistance increase.  
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Chapter 6 

 

 

 

ENERGY APPROACH FOR FRACTURE  

OF NOTCHED BEAMS 
 

 

6.1. INTRODUCTION 

 

The theory of total fracture energy discussed in § 5 was 

initially developed to obtain simple general design rules for beams 

with square end-notches and edge joints, loaded perpendicular to 

the grain design rules of square notches and joints for the Dutch 

Building Code and later, as correction of the method of [1], 

published in [2] with the extensions for high beams. Horizontal 

splitting in short, high beams loaded close to the support, causes 

no failure because the remaining beam is strong enough to carry 

the load and vertical transverse crack propagation is necessary for 

total failure. This is not discussed here because it is shown that 

also the standard strength calculation is sufficient. In [3, 4] the 

theory is applied to explain behavior, leading to the final proposal 

for design rules for the Eurocode, given at § 7.5, and to an always 

reliable simple design method.  
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In the following paragraph, the theoretical basis and 

implementation of the new developments of the energy approach 

for fracture of notched beams are given and it is shown that the 

predictions of the theory are verified by the measurements. The 

presentation of more data can be found in [2].  

 

 

6.2. ENERGY BALANCE  

 

When crack-extension occurs over the length Δx along the 

grain,  the work done by the constant load V is V∙Δδ, where Δδ is 

the increase of the deformation at V. This work is twice the 

increase of strain energy of the cantilever part: V∙Δδ/2. 

 

 

Figure 6.1. Notched beam. 

Thus, half of the external work done at cracking is used for 

crack formation being  equal to the other half, the strain energy 

increase. Thus in general, when the change of the potential energy 

ΔW = V∙Δδ/2 becomes equal to the energy of crack formation, 

crack propagation occurs. The energy of crack formation is: 

c cG b x G bh    , where cG  is the crack formation energy per 

unit crack area. Thus crack propagation occurs at V = fV  when: 

2/ 2 ( / ) / 2        cW V V V G bh , thus when:  
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2

( / )
c

f

G bh
V

V








  (6.2.1) 

 

and only the increase of the compliance δ/V has to be known. The 

deflection δ has to be calculated from elementary beam theory 

representing the first term of the row expansion of the stress 

division as occurring equilibrium system for virtual work and as a  

lower bound of the strength. This is close to real behaviour 

because, according to the theory of elasticity, the deflection can be 

calculated from elementary beam theory while the difference from 

this stress distribution is an internal equilibrium system causing no 

accountable virtual deflection of the beam and also the shear 

distribution can be taken to be parabolic according to this 

elementary theory, as only the first order component of this 

polynomial expansion, contributing to the deflection. As such, 

influences of initial stresses and deformations have no influence on 

the strength according to limit analysis theorems.  

According to Figure 6.2, the notch can be seen as a horizontal 

split, case: a = a’, and case “a” can be split in the superposition of 

case “b” and “c,” where b = b’.  

Case “c” now is the real crack problem by the reversed equal 

forces that can be analyzed for instance by a finite element 

method, etc. From the principle of energy balance it is also 

possible to find the critical value of case “c” by calculating the 

differences in strain energies or the differences in deflections δ by 

V between case b’ and case a’, thus differences in deformation of 

the cracked and un-cracked part to find Δ(δ/V) for eq. (6.2.1). 

Deformations due to the normal stresses N of case c, are of lower 
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order in a virtual work equation and should not be accounted. It 

then follows that case c of Figure 6.2 is equal to a mode I test and 

c IcG G . When the beam is turned upside down, or when V is 

reversed in direction, then 'M  and 'V  are reversed, closing the 

crack and fracture only is possible by shear, identical to the mode 

II test and then 
c IIcG G . The change of δ by the increase of shear 

deformation is with 
eh h  :  

 

1.2
v

h h
V

G b h bh

 




 
   

 
  (6.2.2) 

 

 

Figure 6.2. Equivalent crack problem according to superposition. 

The change of δ by the increase of the deflection is:  

 

 

 

 
3 3 3

3 3 3

4 1
1

3 /123 /12
m

V h V h V

Ebh EbEb h

  




 
     

 
 (6.2.3) 

 

Thus: 
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2

3

( / ) 1.2 1 12 1
1 1

V

Gb Eb

 

  

    
        

    
 (6.2.4) 

The critical value of V,   according to eq. (6.2.1) thus is:  

 

2

2

3

1.67

1 1 1 10
1 1

c
f

G hb
V

G E



 


   

      
   

 (6.2.5) 

 

or: 

 

 3 4 2 4

/

0.6( ) 6 /

f c
V GG h

b h G E



     


  
  (6.2.6) 

 

For small values of β, eq. (6.2.6) becomes:  

 

2

/

0.6 ( )

f c
V GG h

b h  


 
 (6.2.7) 

 

For high values of β, eq. (6.2.6) becomes:  

 

4

/

6( )

f c
V EG h

b h



   



  (6.2.8) 

 

 

6.3. EXPERIMENTAL VERIFICATION 

 

A verification of the prediction of the theory for high values β, 

eq. (6.2.8), when the work by shear is negligible, is given by Table 
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6.1 of an investigation of Murphy, mentioned in [1], regarding a 

notch starting at β = 2.5 and proceeding to β = 5.5.  Beams were 

also tested with a slit at a distance: β = 2.5. Because the exact eq. 

(6.2.6) gives a less than 1% higher value, eq. (6.2.8) applies. (

cGG = 11.1 resp. 10.9 
1.5N / mm ) and: 

cEG = 48.8 
1.5N / mm . 

This value is used in Table 6.1 for comparison of eq. (6.2.8) with 

the measurements showing an excellent agreement between theory 

and measurement. For all specimens was: α = 0.7; η = L/h = 10 (L 

is distance field loading to support) and b = 79 mm. The other 

values are given in Table 6.1.  

 

Table 6.1. Strength of clear laminated Douglas  

fir with notches in the tensile zone in MPa 

 

H 

mm 

  number V/αbh 

tests eq.(6.2.8) 

305 2.5 2 0.46 0.47 

305 5.5 2 0.24 0.22 

457 2.5 2 0.38 0.38 

457 5.5 1 0.16 0.17 

 

The fracture energy is: 
cG      

2
48.8 / 14000 0.17N / mm 170N / m

, which agrees with values of the critical strain energy release rate. 

The value of 
Ic

K  is about: 0.17 700 10.9
Ic

K     
1.5N/mm = 

345 
1.5kN / m , as is   expected by the high density of Douglas fir.  

In Table 6.2, data are given for Spruce for low values of β, to 

verify the then predicted theoretical behaviour according to eq. 

(6.2.7) with energy dissipation by shear stresses only. It appears 

for these data that the difference between the mean values 
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according to eq. (6.2.7) and eq. (6.2.6) are 10% and thus are not 

negligible  and also, the values of eq. (6.2.6) are given to obtain a 

possible correction factor. It follows from Table 6.2 for Spruce 

that: 
c

GG 
1.5

6.8N / mm  or: 
cG   

26.8 / 500 0.092N /mm 92N /m . 

For Spruce, 
IcK  ≈ 6.3 to 7.6 according to [5], depending on 

the grain orientation and then also applies: 2
E G  and: 

2
6.8

Ic c
K E G  

1.5N / mm .  

Although the fracture energy is shear-stress energy, failure still 

is by mode I (of Figure 6.2) and not by the shear mode II, as is 

supposed by other models. Thus the total work contributes to 

failure, whether it is bending stress energy (Table 6.1) or shear 

stress energy (Table 6.2) and 1   (eq. (5.3.5) for failure of this 

type of notch by the high tensile stress perpendicular to the grain at 

the notch root.  

In [2], more data are given regarding the strength of square 

notches. The size influence, or the influence of the height of the 

notched beam on the strength, is tested on beams with notch 

parameters   = 0.5 and 0.75;   is 0.5 and heights h 50, 100 

and 200 mm with b = 45 mm at moisture contents of 12, 15 and 

18%. The strength fGG  appeared to be independent of the 

beam depth as   expected for macro crack extension along an 

always sufficient long fracture plane. The value of fGG  at 

moisture contents of 12, 15 and 18% was respectively; 6.7; 7.7 and 

8.0 1.5Nmm . Higher values of fGG  for Spruce, given in [2], are 

possible for loads close to the support. Then, horizontal splitting 

does not cause failure because the remaining beam is strong 

enough to carry the total load and the derivation is given by 

regarding vertical crack propagation necessary for total failure 

(bending failure of the remaining beam).  
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Table 6.2. Strength of notched beams, Spruce,  

Mohler and Mistler 

 

h 

mm 

    η/α b 

mm 

n 

 

V/bαh 

N/mm2 

var. 

coef. 

% 

fGG  

eq. 

(6.2.6) 

eq. 

(6.2.7) 

N/mm1.5 

120 .917 .25 3.4 32 6 2.36 11 (5.8) (5.5) 

.833 3.8 27 1.93 15 6,4 6.1 

.75 4.2 43 1.68 19 6.6 6.2 

.667 4.7 14 1.52 18 6.5 6.1 

.583 5.4 10 1.5 18 6.8 6.3 

.5 6.3 49 1.59 18 7.4 6.7 

.333 9.5 10 1.48 16 7.0 5.9 

mean 6.8 6.2 

Testing time more than 1 min., m.c. 11%, ρ = 510 kg/m3 

 

For this mode I, mGG   57.5 N/ 1.5mm  = 1818 kN/ 1.5m  

(comparable with 1890 kN/ 1.5m  of [5]) For still higher values of 

 , above α = 0.875, compression with shear failure is determining 

by direct force transmission to the support. In [3] it is shown that 

Foschi’s finite element prediction and graphs, given in [5] can be 

explained and are identical to eq. (6.2.8).  
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Chapter 7 

 

 

 

ENERGY APPROACH FOR FRACTURE  

OF JOINTS LOADED PERPENDICULAR  

TO THE GRAIN 
 

 

7.1. INTRODUCTION 

 

It was for the first time shown in [1] that fracture mechanics 

applies for these type of joints. As for square end-notches, the 

analysis can be based on the compliance change by an 

infinitesimal crack increase. Because measurements show no 

difference in strength and fracture energy between joints at the end 

of a beam (Series G6.1 and G6.2 of [2]) and joints in the middle of 

the beam (the other G-series), and also the calculated clamping 

effect difference by crack extension is of lower order, this 

clamping effect of the fractured beam at the joint in the middle of a 

beam has to be disregarded. It is necessary to disregard lower 

order terms of the virtual energy equation of fracture. This applies 

according to the limit state analysis which is based on the virtual 

work equations. For end-joints, the split off part is unloaded and 
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there is no normal force and no vierendeel-girder action at all and 

the situation and fracture equations are the same as for the notched 

beams of Chapter 6. For joints in the middle of the beam, splitting 

goes in the direction of lower moments and is stable until the total 

splitting of the beam. The analysis in [1, 2] shows this stable crack 

propagation because the terms in the denominator become smaller 

at crack length increase, until the shear term remains, giving the 

maximal value of V according to eq. (7.2.6), the same value as for 

end-joints. It thus is not true, as is stated in the CIB/W18-

discussion of [2], that the analysis and theory are incorrect when 

virtual lower order terms are omitted in the analysis and that 

splitting of joints analysis is not comparable to splitting of notched 

beam analysis. The proof that this neglecting of the vierendeel-

action is right, is given (outer the empirical proof by the 

measurements) by the complete analysis for this case in [3], where 

also the influence on the strain of normal stresses is accounted, 

leading to eq. (7.2.5) containing the negligible clamping effect 

term in the denominator, (based on the assumption that the  total 

splitting of the beam is not  the end state).  

 

 

7.2. ENERGY BALANCE 

 

For a simple calculation of the compliance difference of the 

cracked and un-cracked state (maintaining the clamping action in 

the end state), half a beam is regarded, as given in Figure 7.1, 

loaded by a constant load V. At the start of cracking, the deflection 

at V increases with δ (see Figure 7.2) and the work done by the 

force V is: 2ΔW = V∙δ, which is twice the increase of the strain 

energy (ΔW = V∙δ/2) of the beam and therefore the amount ΔW is 

used to increase the strain energy and the other equal amount of 

ΔW is used as fracture energy. Because δ is the difference of the 
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cracked and “un-cracked” state, only the deformation of the 

cracked part βh minus the deformation of that same part βh in the 

un-cracked state, needs to be calculated, because the deformation 

of all other parts of the beam by load V are the same in the cracked 

and un-cracked states. As discussed at 6.2, the deflection δ has to 

be calculated from elementary beam theory of elasticity. It thus is 

not right to regard an additional deformation r
, as is done, due to 

the non-linearity and clamping effect of the cantilevers βh, formed 

by the crack. The clamping effect change is mathematically of a 

lower order at an infinitesimal crack extension. If this effect would 

have any influence, there should be a difference in notched beams 

in the splitting force for a real square notch of length βh and a 

vertical saw cut at a distance βh from the support, because that slit 

has at least twice that clamping effect (see Figure 6.2).  

For a connection at the middle of a beam, the following applies 

after splitting (see Figure 7.1). The part above the crack (stiffness 

 
3 3

2 1 /12 I b h ) carries a moment 3M  and normal force N 

and the part below the crack (stiffness 
3 3

1 /12I b h ) carries a 

moment 1M , normal force N and a shear force V. and at the end of 

the crack a negative moment of about: 
2 1 M M . Further,  

2 1  M M V , thus 
1 / 2M V . 

The deformation of beam 2 of the cracked part βh is equal to 

the un-cracked deformation un
 of that part and the deformation of 

beam 1 is un  plus the crack opening   (see Figure 7.1 and 7.2) 

and δ is:  

 
22 3 3 3 3

1

3

1 1 1 1 1

1 2 1 1 1 1

2 3 2 3 4 12

    
 


           

MV V V V V

EI EI EI EI EI bE  
 (7.2.1) 
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The deflection difference of the cracked and un-cracked state 

is:   

 

1.2  




 
   

 

h h
V

G b h bh
+ 

3

3





V

bE
  (7.2.2) 

 

The condition of equilibrium at crack length β is:  

 

 / 2 / 0      cV G b h  or: 

   2/ / / 2     cV V G bh  or,  

 

with 
cG  as fracture energy:  

 

c
f

2G bh
V

( / V)


 



, (7.2.3) 

 

where it follows from eq. (7.2.2) that:  

 

  2

3

/ 1.2 1 3
1

 

  

  
   

  

V

bG Eb
 (7.2.4) 

 

and eq. (7.2.3) becomes: 

 

  2

/

0.6 1 1.5 / ( )


   


 

c
f

GG h
V b h

G E
  (7.2.5) 

 

For the always relatively small values of β, the previous found 

eq. (6.2.7): 



Energy Approach for Fracture of Joints Loaded … 113 

/

0.6 (1 )  


  

f c
V GG h

b h
  (7.2.6) 

 

which  also applies for notched beams and for end-joints and 

verifies the lower bound of the strength, predicted by the theory of 

[2]. This also indicates that only work by shear stresses contributes 

to fracture. The fit of the equation with vierendeel action, eq. 

(7.2.5), to the data is not better than the fit by eq. (7.2.6) which 

shows that the term 1.5β2G/αE is small with respect to 0.6(1 – α)α 

and also that β is about proportional to α and is of the same order. 

Comparison of eq. (7.2.5) and eq. (6.6) shows that the higher value 

of the end joint is determining for this definition of the strength 

and the same design rules as for notches are possible for joints 

when not the joint, but splitting is determining. However, design 

should be based on “flow “ of the joint before splitting of the beam 

and the interaction of joint failure and beam splitting has to be 

regarded as follows.  

 

 

Figure 7.1. Beam with crack by the dowel force of a joint and bending moment. 
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Figure 7.2. Statics of half the crack. 

When crack extension starts of a cantilever beam loaded by a 

constant load V, giving a deflection increase of δ at V, then the 

applied energy to the beam is V∙δ. The energy balance equation 

then is:  

 

/ 2   cV V E   (7.2.7) 

 

where / 2V  is the increase of the elastic energy and cE  the 

energy of crack extension.  

 

Thus: / 2cE V   (7.2.8) 

 

Thus the energy of crack extension is equal to the increase of 

elastic energy. 

Eq. (7.2.8)  can also be written with de incremental deflection  

δ = du: 

 

2

cE V d(u/V)/2 fG bh d ( )  or: 
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2

( / ) / 


 

fG bh
V

u V
  (7.2.9) 

where 
fG is the fracture energy per unit crack surface and 

“bhd(β)” the crack surface increase with “b” as width and “h” the 

height of the beam with a crack length l = βh. When the load on 

the cantilever beam mentioned above, is prevented from moving, 

the energy balance, eq. (7.2.7) becomes:  

 

0  e cE E , or: / 2   c eE E V   (7.2.10) 

 

for the same crack length and now the energy of crack extension is 

equal to the decrease of elastic energy in the beam. When the joint 

at load V becomes determining and  is just  at the point to start to 

flow at 
1  when splitting of the beam occurs, then eq. (7.2.7) 

becomes: 

 

1 1=( ) / 2 ( ) cV V V E          (7.2.11) 

 

where again 1 / 2V  is the increase of the elastic energy and 

1( ) V  the plastic energy of the flow of the joint. From eq. 

(7.2.11), it then follows:  

 

1 / 2cE V   (7.2.12) 

 

the same as eq. (7.2.8), despite of the plastic deformation.  

For connections, plastic deformation in the last case will not 

yet occur because it is coupled with crack extension. When the 

dowels of the joint are pressed into the wood, the crack opening 

increases and thus also the crack extension. It can be seen in eq. 
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(7.2.11), that when flow occurs, the total applied energy Vδ is used 

for plastic deformation. This is a comparable situation as given by 

eq. (7.2.10), and the   plastic flow coupled crack extension will 

cause a decrease of the elastic energy. Eq. (7.2.11) thus for joints 

is:  

 

1 2 1V = (V ) / 2 ( )          sV E   (7.2.13) 

 

where 
2 / 2V  is the decrease of the elastic energy by the part of 

crack extension due to the plastic deformation. From eq. (7.2.13) 

now follows:  

 

1 2( ) / 2  sE V   (7.2.14) 

 

and eq. (7.2.9) becomes:  

 

1 2

2

(( ) / ) / 


  

fG bh
V

u u V
  (7.2.15) 

 

From eqs. (7.2.12) and (7.2.14), it follows that 

1 1 2( )   c cV V , where 
1c cV  is the amount when the 

connection is as strong as the beam. Thus:  

 

1 2

1

 




 c

c

V

V
  c n c

n

n V n

nV n
  (7.2.16) 

 

where nV  is the ultimate load of the dowel at flow and n the 

number of dowels.  

Substitution of eq. (7.2.16) into eq. (7.2.15) gives:  
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1

2

( / ) / 
 

 

f

c c

G bh n
V

u V n
  (7.2.17) 

which is equal to / cn n  times the strength according to eq. 

(7.2.9) for 
1 cu u , thus / cn n  times the splitting strength of the 

beam as is applied in [2].  

According to eq. (7.2.13), the theoretical lower bound of V 

according to eq. (7.2.17) occurs at 
1 2  , thus when / cn n  = 1/2. 

In [2], the empirical value of 0.5 to 0.4 is mentioned according to 

the data giving:  

 

1 1

2 2
0,45 0.67

( / ) / ( / ) /

f f

c c

G bh G bh
V

u V u V 
   

   
  (7.2.18) 

 

This requirement for “flow” of the joint at failure
fGG = 

0,67∙18 = 12 1.5Nmm  is included in the Eurocode (see § 7.4). 

This was accepted by CIB-W18 and the Eurocode Committee. The 

condition 
1 2   means that there is sufficient elastic energy for 

total unloading and thus full crack extension with sufficient 

external work for plastic dissipation by the joints. Accordingly,  

eq. (7.2.14) is for that case:  

 

1cE V   (7.2.19) 

 

 

7.3. EXPERIMENTAL VERIFICATION 

 

The value of cE  in eq. (7.2.19) is 12 1.5Nmm  as follows from 

the test data given in [2]. In [2], first test-results of 50 beams of [4] 
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with one or two dowel connections are given for beams of 40x100 

and 40x200 mm with  values between 0.1 and 0.7 and dowel 

diameters of 10 and 24 mm. In all cases, 0.5 cn n   and not 

splitting but “flow” of the connection is determining for failure 

reaching the (in [2]) theoretically explained high embedding 

strength by hardening, as   expected for the always sufficient high 

spreading possibility of one- (or two-) dowel joints. The same 

applies for the 1 and 2 dowel joints of the Karlsruhe investigation. 

Splitting then is not the cause of failure but the result of post-

failure behaviour due to continued extension by the testing device.  

Table 7.1 shows that for series B, splitting of the beam is 

determining. Whether there are 10, 15, 20 or 25 nails per shear 

plane, the strength is the same 16.7 . This is 

confirmed by the too low value of the embedding strength of the 

nails  of series B. A more precise value of  follows from 

the mean value of 17.1  of series’ B2 to B4. Then the 

value for 10 nails of series B1 is a factor 15.5/17.1 = 0.9 lower.  

Thus, . Thus,  for series B. This 

means that the number of 5 nails of series A is below  

and the measured apparent value of  is the minimal value of 

. The same value 

should have been measured for series C because the number of 3 

nails also is below . Measured is 11.7 . For the 

53 beams of all the series G of [2], this is 12.0 . As 

mentioned, a mean value of 12 is now the Eurocode requirement.  

 

 

 

cGG  1.5Nmm

cf cGG

1.5Nmm

/ 10 / 0.9c cn n n  12cn 

/ 2 6cn 

cGG

0.5 / 17.1 0.5 12.1c c cGG n n    1.5Nmm

/ 2 6cn  1.5Nmm

1.5Nmm
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Table 7.1 TU-Karlsruhe test data No.1: Joint with nails, [2] 

 

Type No  d rows Col a=h ar fc GGc =L /h F/bh 

Test tests  m N   [2] eq.(7)   

  mm   mm mm MPa N/mm1.5  MPa 

 beam: b.h=40.180 

mm  

      

A1 8 3.8 5 1 28 76 3.7 13.9 2.37 7.37 

A2 4 3.8 5 1 47 76 4.3 13.3 2.37 5.82 

A3 3 3.8 5 1 66 76 4.2 11.3 2.37 4.52 

A4 3 3.8 5 1 85 76 4.2 10.2 2.37 3.94 

A5 3 3.8 5 1 104 76 5.5 11.7 2.37 4.54 

 beam: b.h 

=40.180mm  

 mean 4.4 12.1   

B1 4 3.8 5 2 47 76 3.5 15.5 2.37 6.77 

B2 3 3.8 5 3 66 76 3.8 17.9 2.37 7.15 

B3 3 3.8 5 4 85 76 3.3 16.1 2.37 6.21 

B4 3 3.8 5 5 104 76 3.6 17.2 2.37 6.69 

 beam: b.h = 40.120 m  mean 3.6 16.7   

C1 3 3.8 2 1 28 76 6.8 15.3 2.18 8.51 

C2 3 3.8 2 1 28 57 6.2 13.0 2.26 7.21 

C3 3 3.8 2 1 28 38 5.6 10.9 2.34 6.07 

C4 3 3.8 2 1 28 19 5.7 10.3 2.42 5.73 

C5 3 3.8 1 1 28 0 6.9 11.2 2.50 6.21 

C6 3 8 1 1 28 0 5.8 9.7 2.50 5.40 

 beam: b.h=40.180 

mm 

 mean 6.2 11.7   

L8 1 8 1 1 28 0 5.0 8.8 2.50 4.64 

 

The value of 0.5 cn , depends on the dimensioning of the joint 

and thus on the amount of hardening by the spreading effect of 

embedding strength. Thin, long nails at larger distances in thick 
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wood members are less dangerous for splitting and show a high 

value of cn . For series G, with b = 100 mm, / 2cn  is at least below 

8 nails. For series V of [2] with dowels of 16 mm, 8.6cn  . For 

design, cn  need not  be known. But the dimensioning of the joint 

to meet  the requirement of 
cGG = 12 1.5Nmm , will lead to the 

number of nails of / 2cn . This dimensioning also determines the 

value of cf . The value of cf = 4.4 MPa of series A is lower than 

cf = 6.2 MPa of series C, in proportion to the square root of the 

spreading lengths per nail as expected from theory [2].  

 

 

7.4. DESIGN EQUATION OF EUROCODE 5 

 

As discussed in [2], the shear capacity is (for he  0.7 h)  

 

10.3 10.3
(1 ) ( )

u e

e

V h

h hb h




 

 
  (7.4.1) 

 

where 10.3 (2 / 3) ( / 0.6)cGG  is the characteristic value.  

This can be replaced by the tangent line through this curve at 

point  = 0.5 giving: 

 

1.7u
c

V
GG

b h
 = 1.7∙(2/3)∙12 = 13.6 1.5Nmm .  (7.4.2) 
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Chapter 8 

 

 

 

CONCLUSIONS REGARDING  

FRACTURE MECHANICS  
 

 

8.1. CONCLUSIONS OVERVIEW  

 

In this Chapter 8, conclusions are given regarding Chapters 1 

to 7.  

Conclusions of Chapter 9, regarding the size effect, are given 

in § 9.5. 

Conclusions of Chapter 10 regarding small crack fracture are 

given in § 10.4. 

Conclusions regarding strength theory are given in § 11.5. 

 

 

8.2. CONCLUSIONS CHAPTER 1 TO 7 

 

 The fracture mechanics of wood is now solely based on the 

singularity type solutions of the Airy stress function, where 

collinear crack extension is regarded. This leads to a wrong 
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mixed mode failure criterion and prevents the possibility of 

sufficient reliable solutions. The singularity approach thus 

is not exact and  not able to always give the right strength 

prediction. This leads to the necessary rejection of the 

singularity approach for strength prediction of new, never 

measured, cases.  

 Wood acts as a reinforced material. The isotropic matrix 

fails earlier than the reinforcement and determines initial 

“flow” behavior. It therefore is necessary to solve the Airy 

stress function for the stresses in the isotropic matrix and 

then to derive the total (“orthotropic”) stresses from this 

solution.  

 A real failure criterion  can only be based on the actual 

ultimate stress in the material which occurs at the highest 

stressed crack boundary. A real, physically possible, crack 

form is the flat elliptical crack, which is the first expanded 

of any crack boundary form and because the crack is flat, 

the higher expanded terms have a negligible, in the limit of 

zero, contribution,  

 Strength analysis has to be based on the technical exact 

theory of limit analysis, at least by applying the lower 

bound equilibrium method of regarding an equilibrium 

system which satisfies the boundary conditions and 

nowhere surmounts the failure criterion.  Accordingly, a 

linear elastic boundary value approach is possible up to the 

empirical elastic- plastic boundary around the crack tip.  

 This stage, after initial “yield,” of confined plasticity near 

the crack tip can also  be replaced by the equivalent linear 

elastic ultimate stress value, as  is also applied for the 

bending compression strength of wood. Thus, the linear 

elastic approach is possible up to the crack boundary 

where an empirical ultimate, uniaxial, cohesive tensile 
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strength is determining for the strength of general (mixed 

mode) loading cases.  

 This limit analysis approach (which is similar to the 

Dugdale model), incorporates linear elastic -, as well as 

non-linear fracture mechanics. There is no distinction 

between the two.  

 Thus, the so called nonlinear fracture mechanics, which 

only applies for singularity solutions,  for instance as 

correction of infinite stresses, is superfluous, because it is 

covered by limit analysis.  

 It is shown in Chapter 4, that these corrective models of 

the singularity approach, to replace infinite stresses, as  the 

Hillerborg model, fictitious crack models, J-integral and 

crack growth models are questionable and not based on 

theory requirements of Deformation Kinetics and 

Continuum Damage Mechanics, and therefore have to be 

replaced by general limit analysis theory, as applied in this 

publication.  

 Determining for the strength is the stress combination at 

the fracture site, which satisfies the  derived, exact mixed 

mode failure criterion (shown in Chapter 2), which is 

shown to follow the critical distortional energy criterion 

for initial crack extension and the Coulomb criterion after 

“hardening.”  

 This mixed mode failure criterion is the consequence of 

the ultimate uniaxial cohesive strength of the crack 

boundary near the tip, causing virtual oblique crack 

extension (which is always possible according to limit 

analysis theorems). The theory therefore also explains the 

relations between IcK  and IIcK  in TL- and in RL-
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direction and the relations between the related fracture 

energies and energy release rates. 

 The derivation in § 2.3, of the mixed mode fracture 

criterion, shows that fracture mechanics is a two-

dimensional problem, and only applies for flat elliptical 

cracks while for spherical cracks, the ultimate strength 

theory applies. This explains why the failure criterion 

equation is the same in both cases. The derivation also 

shows that Irwin’s stress intensity factor  is only constant 

for collinear crack propagation. In § 2.4, it is shown that  

fracture always occurs in the opening mode for any 

combined mode I – II stress combination, for any specimen 

type after some plastic stress redistribution. The mode II 

shear shift is due to elastic unloading after fracture in the 

opening mode.  

 Based on the reinforced material approach of wood, the 

mode I and II stress intensities are Ic y IcK E G , 

6IIc y IIcK n E G , following from the mode I and II 

energy release rates, which are related by 4IIc IcG G  and 

which are for the total orthotropic stresses for combined 

mode I – II failure  1f I II f fG G G G G       

24 / (1 )IcG    with  2 21/ 1 /xy y     and 

   6 21 122 /xy yn G E     . 

The theoretical value of 4IIc IcG G  is verified by 

reported measurements where ratio 3.5 is found instead of 

4 (with R2 = 0.64, explaining the measured difference).  

If mode I and/or mode II values are known at combined 

failure, the following (eq. (5.3.3)) applies: 
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 It is shown in § 2.2.2, that the singularity solution is a 

special case of the general, exact, non-singular solution. 

Therefore it is wrongly stated that when r in that equation 

goes to zero,   goes to infinity, but  the product is 

constant by a constant AK . There is no relation by the 

applied methods, which confirms this. On the contrary, the 

derivation of Chapter 2 shows that 
0r r  (the boundary of 

the fracture process zone) is constant and the cohesive 

strength  ,  is also constant for the isotropic matrix. The 

real singularity is given by AK p c , where the applied 

stress p becomes infinite when the crack length c 

approaches zero. This follows from the separate exact 

derivation of the singularity equation in § 10.2, eq. 

(10.2.4). The external loading stress   2
/ 1 /Y a x   

becomes infinite when x a , and the crack length 

 2ca x a    0 , when x a . However, the 

product: 

      
2

/ 1 / 2 2 /IK Y a x x a Yx x a         

is constant, equal to IK Y a   for the singularity 

x a . The smallest possible clear wood (micro-) crack 

length ( )x a , is determining for macro-crack extension 

due to small crack coalescence. It is known from testing 



T.A.C.M. van der Put 128 

that micro-crack multiplication and merging precedes 

macro-crack extension.  

 As shown by Continuum Damage Mechanics, (§ 4.4), it is 

necessary for the right theory, that strength analysis is 

based on the actual stress at the actual intact area, and the 

strain increase is due to damage caused by the actual stress 

at the damage location. This explains why approaches 

based on nominal stresses lead to absurdities, as  to the 

assumption of the existence of strain softening, and 

negative spring constants, etc. all against basic theorems of 

science showing the inherent rejection by limit analysis 

theory.  

 The Griffith stress is a nominal stress at the fracture site 

but, as shown by the stress spreading model, acts as actual 

stress on the intact, uncracked, not ultimate, but elastic 

loaded section outside the fracture plane. For fracture, it 

therefore leads to the following paradox:  

 “At fracture, the elastic energy level is just high enough to 

cause crack extension of the critical initial crack length. 

But, at crack extension, the elastic stress level (and thus the 

elastic energy level) goes down while the crack length 

increases. Thus there is too little energy to extend this 

longer crack further. Thus, the Griffith law is not able to 

explain crack extension at the initial, and following lower 

stress levels.”  

 The formulation of the Griffith law shows that it is an 

extremum principle and only applies for virtual stresses 

and displacements and thus only applies for limit analysis 

approach as necessarily applied in this publication. The 

reason for this paradox is that nominal stresses are 

regarded, while fracture laws only apply in real, actual 

stresses. For the real stress at the fracture site, it applies 
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that at yield drop, there is an increasingly sufficient high, 

actual stress level for further fracture as follows from eq. 

(3.2.10), showing that not only the first derivative but also 

the second derivative is positive for fracture when critical 

c/b > 1/6.  

 In § 3.2, it is shown that, at  crack merging of the row of 

critical small crack density (row A of Figure 3.8), the local 

strength of adjacent clear material increases by the stress 

spreading effect (proportional to c ) and therefore gives 

precisely a constant value of nominal IcG , (see eq. 

(3.2.14) to eq. (3.2.17)) which is the reason that the first 

stage of yield drop still follows the nominal Griffith law. 

This applies until the maximal possible stress spreading is 

reached.  

 The Griffith, nominal stress law, thus, does not apply for 

long overcritical initial crack lengths. The energy of elastic 

crack opening (or closure) is not equal to the crack 

formation energy for overcritical crack lengths. And 

because the maximal stress spreading is reached, an 

ultimate actual stress criterion applies.  

 It therefore is shown that strain softening does not exist for  

real, actual, stress. Softening, called yield drop is only 

possible for the nominal stress, thus for the actual elastic 

stress outside the fracture plane and thus represent elastic 

unloading outside the fracture plane, while the intact part 

of the fracture plane shows apparent hardening (by the 

spreading effect) and remains in the ultimate loaded state.  

 Yield drop, (wrongly called softening)  is only possible 

when the loading rate is lower than the damage rate, as is 

normal in a constant strain rate test and is  not possible in a 
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constant loading rate test and not in a dead load to failure 

test, and thus is not a material property.  

 The fracture energy, as area under the yield drop curve 

should be based on half this area for mode I, as is already 

applied for mode II. The stress should be, as the Griffith 

stress, related to the whole width of the specimen, 

including the initial crack length, and not only to the still 

intact part of the fracture plane, because then, the fracture 

energy is different for each different initial crack length. 

When the fracture energy is related to the whole width, the 

energy method is correctly based on the energy difference 

of the cracked and  fully un-cracked state of the specimen 

(as  is also the basis of the virtual crack closure method).  

 The area of a loading cycle at “yield drop,” divided by the 

crack length, is indeed equal to the fracture energy, 

because this area is indeed half the area under the yield 

drop curve. However, this energy is proportional to the 

apparent activation energy of all acting processes in the 

whole test specimen, including visco-elastic and plastic 

processes, for which responses should be obtained by 

Deformation Kinetics mainly on a specimen with a 

blocked crack which then has to be subtracted to obtain the 

fracture energy. Because this is not applied, and therefore 

does not lead to  crack energy related R-curves, this area 

method should no longer be applied.   

 A derivation of the mode I and II yield drop curves 

(wrongly called softening curves), according to the Griffith 

theory is given in Chapter 3. Starting with the critical small 

crack density, the curve can be explained by an optimal 

small crack merging mechanism, leading to a row of 

increasing small crack lengths, showing that this curve is 

also fully  explained by the ultimate state of the decreasing 
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intact clear wood part in the fracture plane. The yield drop 

curve follows the so called “stable” part of the Griffith 

locus. This means that every point of the yield drop curve 

gives the Griffith strength for the current small crack 

lengths of the small crack row.  

 This yield drop curve depends on only one parameter, the 

maximal critical Griffith stress c  and therefore depends 

on the critical crack density. This applies until about the 

0.38 unloading level. The fracture energy is down to this 

point equal to the critical energy release rate. After that, 

the actual strength of the fracture plane of the test 

specimen becomes determining due to a crack merging 

mechanism, changing the crack density and intact area of 

the fracture plane and therefore causing a decrease of c  

(the top of the yield drop curve) and an apparent decrease 

of the fracture energy. The strength at every point of the 

“softening” curve is fully determined by the strength of the 

intact area of the fracture plane. Yield drop thus is a matter 

of elastic unloading of the specimen outside the fracture 

zone and yield drop thus is not a material property. 

 Fracture mechanics of wood and comparable materials 

appears to be determined by small-crack propagation 

towards the macro-crack tip. This follows  from the same 

failure criterion for “clear” wood and for macro-crack 

extension. The presence of small-crack propagation is 

noticeable by the Weibull volume effect of timber strength. 

There is no influence on macro-crack propagation of the 

geometry of notches and sharpness of the macro crack-tip 

in wood (against orthotropic theory). Thus orthotropic 

fracture mechanics is not determining. This also follows 

from the nearly same fracture toughness and energy release 
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rate for wide and slit notches and the minor influence of 

rounding the notch (also against orthotropic theory). 

Determining, thus is the influence of small cracks in the 

isotropic matrix for the total behavior, having the same 

influence at the tip of wide, as well as, slit notches.  

 The theory shows that the Eurocode design rules for beams 

with rectangular end notches or joints should be corrected 

to the correct, real compliance difference and the correct, 

measured uniaxial stiffness.  

The verification of the derived theory by measurements 

shows  excellent agreement. The method provides an exact 

solution and is shown to be generally applicable also for 

joints and provides simple design equations as wanted  

 Because the macro-crack kinetics is the same for timber 

and clear wood, this small-crack behavior is always 

determining.  

 For long sub critical initial cracks, the ultimate strength of 

the intact part of the fracture plane, thus the actual stress, is 

always determining and explains the measured, too low 

apparent stress intensity which is not determining.  

 The ultimate stress of ultimate stress theory, is 

incorporated in all fracture mechanics laws and is always 

determining. Therefore it is the complete ultimate stress 

theory  discussed separately in Chapter 11. 

 Small-crack coalescence explains precisely the yield drop 

curve by the strength (or plastic flow stress) of the intact 

part of the fracture plane, which is always in the ultimate 

state and is most probable because it requires a lower stress 

than single macro-crack propagation and shows in rate 

form, the necessary molecular deformation kinetics 

equation of this damage process.  
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 The energy approach for the fracture of notched beams and 

fracture of joints, loaded perpendicular to grain, is 

simplified by applying the total variable sum of the energy 

of both modes in the energy balance equation. This leads  

to the special relation, eq. (5.3.6), of the critical mode I and 

mode II energies (release rates). 

 It was proposed and accepted by CIB-W18 and the Euro-

Code Committee that design for fracture of joints loaded 

perpendicular to the grain should be based, (as in the past), 

on the “flow “ of the joint before the splitting of the beam. 

This is derived and discussed in § 7.2.  

At the plastic embedment flow of the dowel, the stress is 

constant and all external supplied energy by the movement 

is dissipated. However, by the movement of the dowel 

crack opening, thus a splitting of the dowel hole occurs, 

showing dissipation of available elastic energy (see eq. 

(7.2.13)). This leads to an adapted compliance change 

equation, showing at which loading level the flow of the 

dowel is determining for the strength and not splitting of 

the joint.  

 According to virtual work, limit analysis theorems, there is 

no influence of initial stresses and deformations, and initial 

equilibrium systems on the plastic limit or collapse load, 

when initial dimensions are regarded in the calculations, 

which  is always the case. The addition of corrective 

equilibrium systems thus has no influence on the collapse 

load. It remains necessary to regard the uncorrected 

singularity solution of the Airy stress function. The 

fictitious crack models thus are not exact and superfluous. 

 There is a negligible, in the limit of zero, influence of the 

clamping effect of notched beams. Therefore there is no 

difference in the splitting force for a real square end notch 
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of length βh and a vertical saw cut at a distance βh from 

the support, although that slit has at least twice the 

clamping effect (see Figure 6.2).  



 

 

 

 

 

 

 

Chapter 9 

 

 

 

WEIBULL SIZE EFFECT IN FRACTURE 

MECHANICS OF WIDE ANGLE NOTCHED 

TIMBER BEAMS 
 

 

Because the Weibull size effect is normally not regarded as a 

fracture mechanics subject, this influence is discussed in a separate 

Chapter.  

 

 

9.1. OVERVIEW 

 

A new explanation is given for the strength of wide angled 

notched timber beams by accounting for a Weibull type size effect 

in fracture mechanics. There the strength of wood is described by 

the probability of critical initial small crack lengths. This effect is 

opposed by toughening because of the probability of having a less 

critical crack tip curvature. The toughening effect dominates at  

different wide angle notched beams showing different high 

stressed areas by the different wide notch angles and thus different 
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influences of the volume effect. This is shown to explain the other 

power of the depth in eqs. (9.4.7) and (9.4.8), rather than those that 

apply for the sharp notch value of 0.5 of eq. (9.4.6). It is further  

explained why, for very small dimensions, also for sharp notches, 

the volume effect applies. The explanation by the Weibull effect 

implies that the strength depends on small crack initiation and 

propagation in the neighbourhood of the macro crack tip. This 

initial crack population will be different for full scale members, 

indicating that correction of the applied data is necessary and that 

additional toughness tests have to be done on full scale (or semi 

full scale) test specimens. Small cracks fracture mechanics is 

discussed in Chapter 10.  

 

 

9.2. INTRODUCTION 

 

Mixed mode fracture of wood shows jumps to the next growth 

layers at weak spots. This response at randomized stress raisers, 

near weak spots is indicated by the volume effect of the strength. 

There is no clear influence on macro-crack propagation of the 

crack geometry and notch form and sharpness of the macro crack 

tip, showing orthotropic fracture mechanics, not to be  decisive. 

The determining small crack behavior also follows from the failure 

criterion of common un-notched, clear wood, being of the same 

form as the theoretically explained fracture mechanics criterion for 

notched wood.  

The wood matrix is determining for initial failure and not the 

reinforcement. The failure criterion of unnotched wood shows no 

coupling term between the reinforcements in the main directions, 

confirming the orthotropic strength schematization to be non- 

determining for initial failure. The determining small crack 

dimension follows from the Weibull size effect. The here treated 
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strength of wide angle notched beams is an example of a 

determining size effect in fracture mechanics.  

 

 

Figure 9.1. Wide angle notched beam element. 

The strength analysis of [1], of wide angle notched beams, 

given in Figure 9.1, was based on the common applied [2], Airy 

stress function. However, despite  the dominant mode I loading, 

none of the solutions of this function are close enough to the 

measurements to be a real solution. The reason for this is the 

absence of the Weibull size effect in the equations as will be 

shown in this paragraph. The  [1] chosen solutions of the 

biharmonic Airy stress function are 1 1cos( )nr n

, 1 1sin( )nr n

, 

2 2cos( )nr n

, 2 2cos( )nr n

 resulting in:  

 

 

Figure 9.2. Measured bending strengths for different sizes and notch angles. 
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 (9.2.1) 

 

where AK  is the stress intensity factor and “r” the distance from 

the notch root. In the direction of crack extension, along the grain (

0 ), the tensile strength perpendicular to the grain   is 

determining for fracture. The boundary conditions for the different 

notch angles a/g, provide different values of the power “n” and 

thus different slopes of the lines in Figure 9.2. However, it is 

theoretically not possible that these lines intersect through one 

point, as is measured, because the different boundary conditions by 

the different notch angles cannot be satisfied at the same time and 

the chosen mathematical solution of [1] thus has to be rejected. 

The fact that these lines cross one point at the elementary volume, 

proves the existence of a volume effect of the strength. This is 

introduced in the fracture mechanics energy method calculation in 

§ 9.4. In § 9.3, the derivation of the size effect is given to show 

that the derivation of the toughening size effect in § 9.4 is the 

same.  

 

 

9.3. SIZE EFFECT 

 

Due to the initial small crack distribution, clear wood shows a 

brittle like failure for tension and shear. According to the Weibull 

model, the probability of rupture due to propagation of the biggest 

crack in an elementary volume 0V  is equal to 01 ( )P  , when 0P  

is the probability of survival. For a volume V containing 
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0/N V V  elementary volumes the failure probability is: 

     0 0 0 01 1 1 1 1
N

sP P P P P        .  

Thus    0 0ln 1 ln 1sP N P NP      because 0P  << 1. Thus, 

the probability of survival of a specimen with volume V, loaded by 

a constant tensile stress  , as in the standard tensile test, is given 

by: 

 

 0

0 0

( ) exp exp

k

s

V
P V NP

V





  
      
   

  (9.3.1) 

 

where    0 0/
k

P     is chosen, because the power law of   

may represent any function of   around a chosen stress value as  

the mean failure stress (see § 4.6 for the proof). For a stress 

distribution, eq. (9.3.1) becomes:  

 

0
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s
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
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  (9.3.2) 

 

This specimen has an equal probability of survival as in the 

standard test specimen eq. (9.3.1), when the exponents are equal. 

Thus, when:  

 

0

( , , )
k

V
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dV




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 

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s
sV





 
 
 

  (9.3.3) 

 

For a constant stress ( , , )x y z  , the specimen strength  will 

decrease with its volume V according to:  
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where s  is the mean strength of the specimen with volume sV . 

The power k depends on the coefficient of variation /s   

according to:  
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1 2 / ks
1
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  

   
  (9.3.5) 

 

From the row-expansion of the Gamma-functions it can be 

seen that:  

 

1.2
s s

k f
 

 
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 
  (9.3.6) 

 

where f( /s  ) is normally a little varying function. Thus, 

1/ / (1.2 )k s     

For a stress distribution, eq. (9.3.3) becomes:  
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 (9.3.7) 

 

where m  is the determining maximal stress in volume V and 

 /
k

ch mV dV   , a characteristic volume. Eq. (9.3.7) thus 

becomes:  
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  (9.3.8) 

 

This applies for the strength of common unnotched specimens. 

This strength also is determined by fracture mechanics, in the 

neighborhood of flat notches. The tensile strength is: 

 

Ic
t

K
f

c
  or ,

s
t t s

c
f f

c
 .  (9.3.9) 

 

where IcK  is the stress intensity factor. Substitution of the 

strength according to eq. (9.3.4) (or eq. (9.3.8))  leads to:  

 

0.5 1/
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 (9.3.10) 

 

This equation gives the probability of a critical Griffith crack 

length c leading to fracture due to small crack extension from 

weak spots towards the macro crack tip. Also, in this case, a crack 

toughening mechanism is thinkable, as discussed in § 9.4, leading 

to the opposite volume effect with a negative value of the exponent 

1/k. This cannot be distinguished and the resultant value of 1/k 

then is given by eq. (9.3.10). Because for every type of wood 

material, the value of c is specific, determining the specimen 

strength, eq. (9.3.8), as shortcut of eq. (9.3.10), is applied in 

practice.  

According to eq. (2.3.7), the stress intensity factor of eq. 

(9.3.9) is / 2Ic tK r  where t  is the equivalent cohesion 

strength at the crack tip boundary and r  is the radius of the elastic-
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plastic boundary of the crack tip zone. A constant stress intensity 

factor IcK means that t r  is constant and only the crack length 

c is a variable, as for brittle fracture. Toughening means an 

increase of the plastic zone, thus of r of the small cracks, within 

the characteristic volume. This influence is visible at the different 

wide angle notches as discussed in § 9.4.  

Because fracture across the grain is tough and the lengths of 

applied beams don’t vary much, the size effect of the length 

dimension is small, which also implies no volume effect in width 

direction and the volume effect for bending is replaced by a height 

effect of the beam only. More probable is that this absence of a 

width effect is mainly explained by the constant widths of 2 'b of 

2 zones of weakness adjacent to the free sides of the beam due to 

the cutting action at manufacturing. Then, the height factor of the 

Codes becomes    
1/ 1/

/ 2 ' / 2 '
k k

s ch sV V b h l b hl   
1/

/
k

sh h . 

This width effect is applied in § 9.4, leading to expressions in 

/ sh h , given as in [1], as 
0/D D .  

 

 

9.4. SIZE EFFECT OF WIDE NOTCHED BEAMS 

 

The analysis of the strength of notched beams can be based on 

the energy method where the critical fracture energy is found from 

the difference of the work done by the constant force due to its 

displacement by a small crack extension minus the increase of the 

strain energy due to this displacement. According to this approach 

of [3, 4], and § 6, the bending stress m  at the end of the notched 

beam at l D  in Figure 9.1 is:  
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when the notch is not close to the support. In [1] it is chosen   = 

d/D = 0.5, which means that d = a. Further, the length is l = 2D 

when g/a = 0 and 2, while l = 4D for g/a = 4 in Figure 9.1. E is the 

modulus of elasticity and cG
 the critical energy release rate, given 

in [3]. Eq. (9.4.1) applies for the rectangular notch (g = 0). For 

wide notch angles a more complicated expression applies because 

of the changing stiffness over length l  of the crack extension. 

However, for given dimensions and loading, the basic form of the 

equation is the same as eq. (9.4.1), thus:  

 

/m cB EG D    (9.4.2) 

 

where B is a constant depending on dimensions and notch angle. 

According to §2 and [3], it is, as mentioned, , 

where t  is the equivalent cohesion strength and the crack tip 

radius r  is the only parameter of the notch strength. The volume 

effect depending on the stress, follows from § 9.3 and the analysis 

thus can be based on the yield stress and the characteristic volume 

around the notch tip. For the probability of a critical value of r, of 

the small initial cracks within the high stressed characteristic 

volume around the notch tip, the probabilistic reasoning of § 9.3 

can be repeated as follows. The probability of having a critical 

flaw curvature 1/ r  in an elementary volume 0V  is equal to 

01 (1/ )P r , when 0P  is the survival probability. For a volume V, 

c c tEG K r 
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containing 0/N V V  elementary volumes, the survival 

probability is in the same way:  
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where    0 01/ /
k

P r r r , because the power law may represent 

any function in 1/r. At “flow,” this probability is not a function of 

 , but of the flow strain, given by a critical r. Equal exponents 

for the same probability of failure in two cases now lead to:  
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and eq. (9.4.2) becomes:  
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For the notch angle of 90°, (g = 0 in Figure 9.1), or for smaller 

angles, the high stressed elastic region around the crack tip is, as 

the fracture process zone itself, independent of the beam 

dimensions. Thus in characteristic dimensions 0' ' 'V b l h V   and 

eq. (9.4.5) becomes:  

 

 



Weibull Size Effect in Fracture Mechanics … 145 

0.5

0

0

m m

D

D
 


 

  
 

, (9.4.6) 

 

independent of a volume effect. For the widest notch angle of 166° 

(g/a = 4), there is a small stress gradient over a large area and V is 

proportional to the beam dimensions. Thus, V (:) b∙d∙l = γD∙δD∙βD 

= γ∙β·δ 3D  and V/ 0V  = (γδβ 3D /γδβ
3
0D ) =  

3

0/D D . Thus,  with 

1/k = 0.18:  
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For the angle of 153.40°, (g/a = 2), the high stressed region 

dimensions become proportional to the dimensions b and D and: 

 

V/ 0V  = (bdl)/( 0 0b d l ) = (
2D /

2
0D ) = ( 2D /

2
0D ) and 

with1/k = 0.18 is: 

 

0.5 2/(2 ) 0.32

0 0

0 0

k

m m m

D D

D D
  

  
   

    
   

 (9.4.8) 

 

It follows from Figure 9.2, that the values of exponents of – 

0.5, - 0.32, and -0.23 are the same as measured. The coefficient of 

variation of the tests must have been 1.2∙0.18 = 0.22, as is common 

for wood. According to the incomplete solution of [1], discussed § 

9.2, these values of the exponents were respectively  0.437, - 0.363 

and - 0.327, thus, too far away from the measurements.  
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The explanation of a no volume effect of sharp notches due to 

the invariant characteristic volume, independent of the beam 

dimensions, explains  why for very small beams, also for sharp 

notches, there is a volume effect because  the beam dimensions are 

restrictive for the characteristic volume. As known, the exponent 

may also change from – 0.5 to -0.23 with the decrease of the beam 

dimensions. The constant dimensions of the fracture process zone 

act as a relative increase of the plastic zone for decreasing test 

beam dimensions and it appears that toughening is the explanation 

for this volume effect. The lines in Figure 9.2 intersect at the 

elementary Weibull volume wherefore the depth dimension is 

0.610 4 mm with a material bending strength of 147 MPa. 

 

 

9.5. CONCLUSIONS REGARDING SIZE EFFECT  

 

 A new explanation is given of the strength of wide angled 

notched beams of [1] by introducing the Weibull type size 

effect in fracture mechanics, based on the critical small 

crack length, opposed by the toughening tip curvature of 

the initial small cracks near the high stressed macro notch 

tip zone.  

 For sharp notch angles, up to 90°, there is no volume effect 

for full scale specimens, due to the constant characteristic 

volume of the fracture process zone. Crack extension 

occurs at the notch tip. For wider notch angles, the peak 

stresses and stress gradients become lower and are divided 

over a larger region and influenced by the dimensions of  
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the specimen and thus a volume effect correction applies. 

Crack extension towards the notch tip starts at adjacent, 

high stressed weak spots. 

 For very small beams, also for sharp notches, there is a 

volume effect because then the beam dimensions are 

restrictive for the characteristic volume. Tests should be 

repeated on full scale beams for the right effect.  

 The intersection of the three lines in Figure 9.2, with 

different values of “n” of eq. (9.2.1), due to different 

boundary conditions, which cannot apply at the same time 

for the different notch angles,  cannot be explained by the 

boundary value analysis. This intersection  can only be 

explained   due to the volume effect of the strength 

indicating failure by small crack extension within the high 

stressed region at the notch tip. 

 The measured values of the powers of the depths (or the 

slopes of the lines of Figure 9.2) are precisely explained by 

applying the Energy approach and the volume effect 

correction according to  
0.5

0 0/m m D D 



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Chapter 10 

 

 

 

SMALL CRACK FRACTURE MECHANICS 
 

 

10.1. INTRODUCTION 

 

Because small crack behavior is a new subject and has been 

shown  to always be  determining for fracture, it is discussed here 

in a separate chapter as the basis for a necessary, new approach. 

That small crack extension is determining, is  indicated by the 

volume effect of the strength, as discussed in Chapter 9, and by the  

unclear influence on the macro-crack propagation of the crack and 

crack-tip geometry of notches in wood. This behavior is the only 

possible explanation of yield drop and the dynamics of crack 

propagation by micro crack extension and small crack merging.    

The failure criterion of clear wood and of timber [1, 2, 3], and the 

failure criterion by a single macro notch [3, 4], are the same, 

showing that small-crack extension towards the macro-crack tip is 

the cause of macro-crack extension. This is confirmed by the fact 

that the stress intensity factor is independent on the macro-form of 

the notch. It  is also confirmed by molecular deformation kinetics, 

showing the same processes in clear and  notched wood (see 



T.A.C.M. van der Put 150 

discussions Annexes B on: iews.nl). Also, the exact solutions 

given in [4] and below, of the geometric correction factor and of 

[5] and § 3.7, of the strength behavior of long post-critical crack 

lengths is totally based on small crack behavior. The small-crack 

merging mechanism explains in [3] and in § 3.6 and § 3.5, 

precisely the mode I yield drop curves of [6]. The failure criterion 

[1], shows no coupling term between the normal stresses at “flow,” 

and thus shows no dowel action of the reinforcements and there  is 

only a direct interaction of the reinforcement with the matrix and 

the matrix stresses determine the stresses in the reinforcements. 

Because the initial small cracks in wood are in the matrix and start 

to extend in the matrix, the stress equilibrium condition of the 

isotropic matrix by the matrix-stresses has to be regarded. The 

isotropic solution of the matrix stresses thus has to be regarded in 

the end state. The total stresses, due to the reinforcement, then 

follow by multiplication of the constants factor  derived in Chapter 

2 and § 2 of [3]. To show that this also applies for the singularity 

approximation,  in § 10.2, (started in [4]), the exact derivation 

given, of the geometric correction factor of the center notched test 

specimen, are based on small cracks merging. As known, this 

geometric correction factor accounts for the difference of finite 

specimen dimensions with respect to the notch in an infinite plate. 

Because contrary to macro-crack extension, unloading by yield 

drop (wrongly called “softening”) by step wise small crack 

merging is possible at any low mean stress level, it can be 

postulated that small crack merging always takes place in the high 

loaded zone near the macro-crack tip and that macro-crack 

extension is always due to small crack extension and towards the 

macro-crack tip.  
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10.2. DERIVATION OF THE GEOMETRIC CORRECTION 

FACTOR OF THE CENTER NOTCHED SPECIMEN 

 

As mentioned, in eq. (2.3.10), fracture mechanics laws only 

apply when 0r  (process zone) and t  (strength) are constant in 

0 / 2IC y c tK c r     . The singularity approach (called 

LEFM), as derived in § 2.2.2, as a special case of the exact 

solution, is shown to be wrongly regarded to be based on 0 0r  , 

and an infinite strength t  . It is necessary   in the equation 

above that y  , 0cc   at the singularity for the right 

solution. Therefore, the necessary exact derivation of the right 

geometric correction factor has to be given. For a crack in an 

infinite plate, which is loaded by a tensile stress  , the stress 

distribution along the fracture plane, line AB of Figure 10.2, is:   

 

 
,

2
1 /

Y

a x


  


 x a   (10.2.1) 

 

where 2a  is the crack length (including the process zones) and x is 

the distance from the center of the crack. This stress distribution is 

according to the solution of the Airy stress function of [7]. Such a 

solution satisfies the equilibrium, compatibility and boundary 

conditions and thus is an exact (limit analysis) solution. To obtain 

the ultimate state of the specimen given in Figure 10.1, we may cut 

out the specimen dimensions from the infinite plate, as is given in 

Figure 10.2. Next we may multiply the stress ,y   by a (by 

definition stress independent) factor Y with such magnitude that 
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the resultant shear loading 2R in the planes AD and BC of Figure 

10.2 becomes zero. There remains an equilibrium system in those 

vertical planes giving an internal equilibrium system in the cut-out 

specimen which, as such, has no influence on the strength when 

undeformed dimensions are used. Thus, because limit analysis 

applies with virtual displacements, there is no effect of initial 

stresses or deformations on the limit collapse load. As a condition 

for zero values of R, the sum of the normal stresses in the upper 

plane AB should be equal and opposite to the normal stresses W  

in the bottom plane CD, giving: 

 

    
/2 /2

222 2 / 1 ( / ) 1 2 /

W W

y

a a

W dx Y a x dx Y W a W        
, 

 (10.2.2) 

 

and the stress multiplication factor thus is:  

 

21/ 1 (2 / )Y a W  . (10.2.3) 

 

 

Figure 10.1. CN test specimen. 
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Figure 10.2. Cut out of the specimen from the infinite plate. 

The stress intensity factor IK  due to the critical small crack 

concentration follows from: 

 

        
2

2 / 1 / 2 2 /I y c yK a x a Y a x x a Yx x a                

 (10.2.4) 

 

As shown § 3.6 and in [3], the small crack merging towards 

the macro-crack tip causes the macro-crack extension. When the 

nearest, determining small crack tip is situated at a distance x, then 

the one sided small crack merging distance to the macro-crack tip 

is x a , which is equal to half the small crack length c of row A 

of Figure 3.8. Thus, ( )c x a  , and total 2( )x a  applies to  both 
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sides of the two sided macro-crack extension of the initial crack 

length of 2a . This also applies when the macro crack-tip has 

become sharp enough to take part in the crack merging process. 

Then, all active crack tips extend over a distance c, which is equal 

to ( )c x a   in the analysis.  

 

Table 10.1. Comparison of linear elastic  

geometric correction factors 

 

2 /a W   sec /Y a W   
2

1/ 1 2 /Y a W   Y= ( / ) tan( / )W a a W   

0.1 1.006 1.005 1.004 

0.2 1.025 1.021 1.016 

0.3 1.059 1.048 1.040 

0.4 1.112 1.091 1.075 

0.5 1.189 1.155 1.128 

0.6 1.304 1.250 1.208 

0.8 1.799 1.667 1.565 

0.9 2.528 2.294 2.113 

0.95 3.570 3.203 2.918 

 Feddersen  

Koiter et al. 

Limit analysis 

solution, 

eq.(10.2.3) 

Irwin 

 

For x a , the lowest, thus first occurring initial flow value 

for IK  of eq. (10.2.4) becomes:  

 

IK Y a    (10.2.5) 

 

This is identical to the results of other methods showing the 

mathematical flat crack, singularity solution, to apply for the 

smallest initial small crack system and to represent clear wood 

fracture at the start of “flow” and crack extension (see also § 3.6 
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and § 3.10). Thus, the derived geometric correction factor Y is 

comparable to the other solutions of Tada, Feddersen, Koiter, Isida 

and Irwin [8]. The exact value of Y, according to eq. (10.2.3) 

21/ 1 (2 / )Y a W  , lies intermediate between the  [8] given 

values of Feddersen and Koiter et al. around  sec /Y a W  

and the solution of Irwin ( / ) tan( / )W a a W  . In Table 10.1, 

eq. (10.2.3) is compared with the solution of Irwin and the usual 

applied Feddersen equation. The precise description by the exact 

derivation shows that small crack merging does not only explain 

yield drop, but is the basic mechanism of all crack extension. This 

is discussed in Chapter 3. The small crack limit behavior is derived 

in § 10.3. The possibilities of the singularity approach are very 

limited and extension of the theory for mixed mode loading is not 

possible by the assumed collinear crack extension.  

 

 

10.3. SMALL CRACK LIMIT STRENGTH BEHAVIOR 

 

10.3.1. Small Crack Limit Dimensions 

 

The interpretation of the strength data-line of Figure 10.3 on 

geometrically similar specimens of Bazant, is to regard the 

inclined line to represent LEFM theory, the horizontal line to be 

the strength theory and the curved, connecting line to follow 

nonlinear fracture theory. However, there is no difference between 

nonlinear and linear elastic (LEFM) fracture mechanics. For both, 

the linear elastic - full plastic approach of limit analysis applies. 

The full-plastic zone of the elastic-full plastic approach exists as 

failure criterion, by a single curve in stress space as shown in 

Figure 10.3. In this figure from  [9], is d/d0, the ratio of specimen 
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size to the fracture process zone size. But, because the line is the 

result of volume effect tests, the initial crack length is proportional 

to the test-specimen length. Thus, 
0/d d   can also be regarded to 

be the ratio, initial open crack length to the process zone size. 

Then, for small values of d, this 
0/d d ratio also may represent the 

critical small crack density in a macro specimen (d also is small 

crack interspace).  

The curved line of Figure 10.3 follows the equation:  

 

 0 0ln ln 0.5ln 1 /d d     (10.3.1) 

 

This can be written:  
 

0.5 0.5

0 0

0 0 0

ln ln ln
d d d

d d d







    
     

    

 (10.3.2) 

 

or: 0 0 0( ) cd d d K      ,  (10.3.3) 

 

This confirms that the curve represents the stress intensity as 

the ultimate state with 
cK  as critical stress intensity factor as 

should be for values of
0/d d >>1. For these higher values the 

curved line approaches the drawn straight, tangent line 

 0 0ln ln 0.5 ln 1 /d d      0 0ln 0.5ln /d d   with the 

necessary slope of the curve, (the Bazant - curve): 

0

0

ln( / )
0.5

ln( / )d d

 
 


 as limit. The real slope however is: 

 

  0.5

0
0

0 0 0 0 0 0 0 0

ln 1 /ln ln( / ) 0.5 0.5

ln( / ) ( / ) ( / ) ( / ) 1 / 1 /

d dd d

d d d d d d d d d d d d d d

  


    
    

    
 

 (10.3.4) 
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Figure 10.3. From [9]. Limit LEFM behavior as correction of the interpretation 

of [9].  

This slope is – 0.5 for 
0d d  and this slope is zero when 

0d  . 

This shows that for the whole curve, LEFM applies and it is an 

indication that at zero open crack dimensions, where d = 0, the 

clear wood ultimate strength theory still follows LEFM, because it 

also applies  for the constant initial length 
0d  (the fracture process 

zone length). Thus 
0d  acts as a constant minimal blunt small crack 

length, determining the ultimate strength of strength theory, as 

shown in § 2.3.  

 

 

10.3.2. Small Crack Failure Criterion 

 

Softening, called yield drop is explained by the crack merging 

mechanism and discussed for mode I and II in Chapter 3. Because 

the isotropic matrix fails before the reinforcement, limit analysis 

has to be applied for the isotropic stresses in the isotropic matrix. 

This is not applied by all other fracture mechanics approaches, 

which therefore don’t satisfy the failure criterion and are not able 
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to give the correct exact mixed mode fracture criterion. At the 

initial “yield” of the matrix, the stresses of the still elastic 

reinforcement follow in proportion to the matrix stresses. That the 

matrix is first determining, follows  for Balsa wood, which is 

highly orthotropic, but is light, and thus has a low reinforcement 

content and shows total failure soon after matrix failure and  shows 

at failure the isotropic ratio of / 2IIc IcK K   of the isotropic 

matrix material.   For strong clear wood which is failing by shear 

by single oblique crack extension according to Figure 2.3.2, it 

appears that the start of crack extension may show the isotropic 

oblique angle, showing the matrix to be determining for initial 

failure.  

The truss action at the bending failure of a beam, causes a 

negative contraction coefficient in the bending tension zone. This 

shows that the reinforcement holds, even after flow in compression 

and stress redistribution, with increased tension in the 

reinforcement. It is therefore a requirement for an exact 

orthotropic solution of the total applied stress, applicable to wood, 

to also satisfy the isotropic flow solution of matrix-stresses and to 

look at possible stress redistributions. As discussed in § 5.2 (and 

Section A of iews.nl), the (small crack) failure criterion for shear 

with tension is eq. (5.2.1) or eq. (5.2.2), which becomes, as limit 

behavior, equal to the Wu-equation when due to full hardening, 

1C   in eq. (5.2.2). Full hardening is possible when the test rig 

is stiff enough to remain stable during the test. The Irwin solution 

of the crack problem,   as summation of in plane and antiplane 

solutions in order to use (with minor adaptions) isotropic stress 

functions for the orthotropic case, and to apply descriptions in the 

three characteristic modes and to sum the result for the general 

mixed mode case, is not right for wood. It misses  the interaction 

terms and the failure equation, eq. (5.2.2), is not orthotropic, 
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because it is not quadratic but contains a third degree term and 

thus does not show orthotropic symmetry. This coupling term is 

absent in the general accepted solutions. The strong influence of 

compression in  Figure 5.1 therefore cannot be given. The stress 

function which leads directly to the Wu-equation is given in § 2.3 

and in [3]. Necessary are the stresses at the crack boundary to 

know the mode of failure. This follows from the exact derivation 

in Chapter 2 and is applied by numerical simulation by the VCC- 

technique of the finite element method, and thus cannot be based 

on a separate calculation of the energy release rates of the normal 

stress in the opening mode and of the shear stress in the sliding 

mode according to the method of Sih, Paris, and Irwin, by giving 

the sum of separate solutions of the 3 modes, without interactions 

(as  
2

266 2 63F   ), which are assumed to be possible by assumed 

isotropic and orthotropic symmetry. Thus, the not orthotropic, 

“mixed mode,” interactions, as given by Figure 5.1, cannot be 

described by other methods.  

 

 

10.4. CONCLUSIONS REGARDING SMALL CRACK 

FRACTURE MECHANICS 

 

 Part of the conclusions about the need to regard small 

crack fracture are given in Chapter 8.  

 The correct derivation  of the geometric correction factor 

of the center notched specimen is given based on small-

crack extension to the macro-crack tip, and based on a 

constant, finite ultimate cohesion strength and constant 

dimensions of the process zone and thus is not based on 

the infinite tensile strength at zero process zone 

dimensions of all other derivation methods.  
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 A new interpretation is given of the transition of “strength 

theory” to “fracture mechanics theory” of Bazant based on 

tests on geometrically similar specimens. It follows that 

the whole curve represents LEFM (linear elastic fracture 

mechanics) and shows that at very small (to zero), open 

crack dimensions, the clear wood ultimate strength theory 

still follows LEFM, because it applies also for the adjacent 

constant initial length of the fracture process zone length. 

As follows from Chapter 9, the power 0.5 in eq. (10.3.2) 

shows that  a volume effect is acting not as assumed by 

Bazant. 

 Eq. (10.3.3) shows that the crack length should be regarded 

to consist of an open part plus the process zone length.  

 There is no difference between linear elastic- and non-

linear fracture mechanics because for both approaches 

linear elastic behavior is regarded up to failure and plastic 

flow. This is possible because, by the virtual work 

approach (regarding no geometrical changes), there is no 

influence on the strength depending on the loading path 

followed, and of initial stresses and internal equilibrium 

systems. The critical energy release rate is, in both cases 

determined by plastic behavior. In fact,  the linear- full 

plastic approach of limit analysis always applies for the 

boundary value approach and ultimate state at the crack-tip 

boundary.  

 It is confirmed:  

that limit analysis applies with elastic-full plastic behavior 

and may be regarded to be elastic up to fracture, at the 

confined plastic zone. 

 that wood behaves as a reinforced material, and the 

solutions of the isotropic Airy stress function of the matrix 
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stresses as well as the orthotropic Airy stress function of 

the total stresses are needed.  

 that reaction kinetics and the general applicable failure 

criterion indicate that small-crack processes are always 

determining for fracture.  

 the explanation of the failure criterion is given. All other 

methods are not able to give and explain the correct exact 

Wu-) failure criterion for combined “mixed mode” failure.  
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Chapter 11 

 

 

 

STRENGTH THEORY: EXACT FAILURE 

CRITERION FOR CLEAR WOOD  

AND TIMBER 
 

 

11.1. INTRODUCTION  

 

An overview is needed of the development during 3 decades. 

First, from 1982, [1], to 1993, [2]; second, from 1993 to 2005, [3, 

4] and third, from 2005 to now, resulting in this final publication 

of the general failure criterion. In the first period, the failure 

criterion, already in the Dutch Code, was adapted for the Draft 

Eurocode (see [5] – I to IV). In the second period, the anti-theory 

movement was in charge and replaced sneakily,    the exact theory 

of limit analysis based already, in the past, by CIB-W18 and the 

Code committee’s accepted Code rules  ([5]-I to VII), with 

empirical nonsense rules, which are unacceptable, uneconomical 

and/or unacceptably unreliable. The new CIB-W18 censorship, 

based on abstracts selection, prevented any possibility for 

discussion of theory and of necessary corrections at CIB-W18 
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meetings. This resulted at last, in a total absence of knowledge of 

the necessary exact theory and accordingly in withdrawal of the 

general failure criterion. The now useless Eurocode does not 

contain any generally applicable continuum failure criterion. This 

publication thus is necessary to recover this omission.  

A general failure criterion for wood was, for the first time 

derived in [1], which was necessarily based on a tensor polynomial 

format. This followed from a first derivation of the orthotropic 

extension of the critical distortional energy principle, in paragraph 

2.1.2 of [1], showing this basic principle to have the general form 

of the second degree tensor polynomial and further by the 

derivation of paragraph 1.2.4 of [1], showing the third degree 

tensor polynomial terms to represent hardening behavior up to the 

exact fracture mechanics mixed mode I - II strength. The further 

extension to a higher degree tensor polynomial represents the 

polynomial expansion of the failure criterion, because the 

measured mean data points represent points of the exact failure 

criterion, while these points also are the polynomial points, which 

thus represents the polynomial expansion of the exact failure 

criterion and as such, as many polynomial terms and data points 

can be chosen, as is necessary for a fit of the wanted precision.  

In the introduction and paragraph 1.1 of [1], the concept of the 

yield surface of classical plasticity theory is discussed with the 

conditions of orthotropic symmetry in the main planes. All 

transformation laws of the stress tensors   and of the strength 

tensors ijF  are given, making it possible to define  the uniaxial 

strength in any direction. This is shown in paragraph 1.2 of [1], by 

the fit to test results of tension compression and shear of clear 

wood. The initial flow properties, perpendicular to grain are fully  
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and precisely described by the second degree polynomial, 

confirming the critical distortional energy principle for initial 

yield. In the longitudinal direction, compressional hardening is 

possible in the radial plane after this initial yield. This is discussed 

in paragraph 1.2.4 of [1], leading to the derivation of the Wu-

equation of Fracture Mechanics, which also applies for micro-

crack extension in clear wood, as  explained in [2] and is discussed 

here in Chapters 1 to 10. In paragraph 1.2.5 of [1], the uniaxial off-

grain-axis strength is discussed, leading to the derivation of the 

Hankinson and Norris equations as initial yield equations. It is 

shown that the usually applied, von Mises- Hill- Hoffmann- 

Hankinson- and Norris criteria are special forms of the critical 

distortional energy principle of yield but are not generally valid. 

The Hill and Norris criteria only apply for materials with equal 

compression and tension strengths. Only the Hoffmann criterion 

accounts for such different strengths. However the Hill and 

Hoffmann criteria contain a cyclic symmetry of the stresses in the 

quadratic terms, as applies for the isotropic case which causes a 

fixed, not free, orientation of the failure ellipse in stress space [1]. 

These criteria thus cannot apply generally for the orthotropic case. 

The same prescribed orientation is given by the theoretical Norris 

equation, being far from wood behavior which shows a zero, or 

nearly zero, slope of the ellipsoid with respect to the main 

direction. This explains why the older empirical Norris equation, 

with zero slope, applied for wood, in the past, in Europe, is not as 

bad as the later theoretical Norris equation. 

A further derivation of [2], discussed in § 11.2, provided the 

extended Hankinson equations, extended by one hardening 

parameter, which is able to fit precisely different test results, at 

different hardening states, by different test methods and the fact  
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that different values of one parameter are able to precisely fit 

whole curves of different hardening states of different test types, is 

the proof that the polynomial third degree terms ijkF  determine 

the hardening state as part of the exact criterion based on a 

theoretical necessity. This theoretical necessity is explained by the 

boundary value derivation of the exact mixed mode Wu-equation 

of fracture mechanics, which is shown to represent these third 

degree coupling terms (See Chapter 2).  

The tensor transformations of 'ijkF  tensors were only given in 

[1], because the choice was made, in later publications, for the in 

general more simple stress tensor approach of strengths in the 

main planes, by expansion of the stresses into the main material 

planes, providing the fewer number of polynomial terms. 

However, for information, the general 'ijkF  transformations are 

also given here in Appendix III.  

Paragraph 2 of [1] delivers general information. The method of 

paragraph 2.2 of determination of hardening rules should not be 

followed. The method is too complex and only descriptive 

(phenomenological) and determination of the initial response with 

gradual “plastic” flow with hardening is not needed for the 

determination of the ultimate state, which follows from the elastic 

full plastic approximation of limit analysis.  

Extensions of the derivations of [1], given in [2], also involved 

an alternative derivation of the critical distortional energy criterion 

of initial yield of orthotropic wood. However the final, exact 

derivation is given here in Appendix II. A further discussion in [2] 

is given of the third degree shear coupling terms with special 

hardening effects due to micro-crack arrest by strong layers 

occurring after initial yield. It followed, that for a precise fit, 

without meaningless higher degree polynomial terms, separate 
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criteria are necessary for tension and for compression. This is 

obvious because of the different failure mechanisms of tension and 

compression. This is applied to resolve the initial yield equation, 

eq. (2.14), into 2 factors, giving a factor for compression and a 

factor for tension failure, leading to the product of the Hankinson 

equations for tension and  compression. In [2], also the derivation 

is given of the exact modified Hankinson criterion and of the 

general form of the higher degree constants and how they can 

safely be determined from oblique uniaxial loading tests.  

An extension of the tensor polynomial method was given [5]-

V, by a general approach for anisotropic, not orthotropic, behavior 

of joints (as punched out metal plates) and the simplification of the 

transformations by 2 angles as variables.  

A confirmation of the results of [1] by means of coherent 

measurements (only in the radial-longitudinal plane) of [6] 

provided the generalization to an equivalent, quasi homogeneous, 

polynomial failure criterion for timber (wood with small defects). 

These measurements also show a determining influence of 

hardening on the equivalent main strengths and on the failure 

criterion of wood. This follows from the theoretical explanation in 

[2] and Chapter 2, of the Wu fracture mechanics criterion for 

layered composites. 

The mentioned main developments and further developments 

to [3, 4] contributed to the final derived theory. Design and control 

calculations have to be based on the exact theory of limit analysis  

by the lower bound equilibrium method. Essential for design thus 

is the derivation and estimation of the exact failure criterion for 

wood. The influence of temperature, moisture content, creep and 

loading rate on the behavior at “flow” and failure is given in 

Section B of iews.nl, or in [7] (see  Figure 5.6 of [7]). The 

molecular deformation kinetics rate equations [7], provide the 

physical constitutive equations for wood and other materials.  
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11.2. THE GENERAL FAILURE CRITERION  

FOR WOOD POLYMERS  

 

11.2.1. General Properties  

 

A yield- or flow-criterion gives the combinations of stresses 

whereby flow occurs in an elastic-plastic material, like wood in 

compression. For more brittle failure types in polymers with glassy 

components like wood at tensile loading, there is some boundary 

where above the gradual flow of components at peak stresses and 

micro-crack formation may have a similar effect on stress 

redistribution as flow, especially for long term loading. It is 

discussed in [2] and later, that these flow and failure boundaries 

may be regarded as equivalent elastic-full- plastic flow surfaces of 

limit analysis. The initial loading line shows gradual flow and 

hardening and stable micro-cracking up to final “flow” at the top. 

The following unloading is elastic and reloading shows a linear 

elastic loading up to flow at the same top. This is independent of 

the loading history (by unaltered geometry) and the linear elastic 

loading up to full plastic failure can be chosen to determine the 

ultimate state. The full plastic state is a line in a cross section of 

stress space and the flow- or failure criterion is a closed surface in 

the stress space, i.e., a more dimensional space with coordinates 

1 2 3 4 5 6, , , , ,      . A cut,  according to Figure 2.1 through the 

plane of the coordinate axes x = 1  and y = 2 , will show a closed 

curve, and such a curve always can be described by a polynomial 

in x and y like:  

 

ax + by + cx2 + dy2 + exy + fx3 + gy3 + hx2y + ixy2 + ....... = k 

 (11.2.1) 
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Figure 11.1. Failure ellipsoid and definition of positive stresses.  

whereby as much as terms can be accounted for as is necessary for 

the wanted precision. The surface will be concave because of the 

normality principle, and higher degree terms, causing local peaks 

on the surface (and thus causing inflection points) are only 

possible by local hardening effects depending on the loading path 

and are outside the initial flow-criterion. It can also be seen that 

the constants f and g are indeterminate and have to be taken as 

zero because for y = 0, eq. (11.2.1) becomes ax + cx2 + fx3 = k, 

having the real roots 0 1 2, ,x x x   and thus can be written: 

 

     0 1 2 0x x x x x x       (11.2.2) 

 

Because there are only two points of intersection possible of a 

closed surface with a line, there are only two roots by the 

intersecting x-axis, being  x = x 0  and x = - x1  and the part (x + 2x

), never being  zero within or on the surface and thus is 

indeterminate, and has to be omitted. For a real concave surface 

“f” thus is necessarily zero. The same applies for g, g = 0 

following from the roots of y when x = 0. The equation can 

systematically be written as stress-polynomial like:  

 

........ 1i i ij i j ijk i j kF F F          (i, j, k = 1, 2, 3, 4, 5, 6) 

 (11.2.3) 
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In [1] it is shown that clear wood can be regarded to be 

orthotropic in the main planes and the principal directions of the 

strengths are orthogonal (showing the common tensor 

transformations) and higher degree terms, which are not always 

due to  possible hardening, should be neglected, so that eq. 

(11.2.3) becomes:  

 

1i i ij i jF F     (i, j = 1, 2, 3, 4, 5, 6)  (11.2.4) 

 

In [2], and as discussed in Appendix II, it is shown that this 

equation represents the orthotropic critical distortional energy 

criterion for initial flow or failure. In eq. (11.2.4),  for reasons of 

energetic reciprocity, i j j iF F  (i   j) and by orthotropic 

symmetry in the main planes (through the main axes along the 

grain, tangential and radial) there is no difference in positive and 

negative shear-strength and terms with uneven powers in 6  thus 

are zero or 16 26 6 0;F F F    and there is no interaction between 

normal- and shear-strengths or ijF = 0 (i   j; i, j = 4, 5, 6).  

Thus eq. (11.2.4) becomes for a plane stress state in a main 

plane:  

 

2 2 2
1 1 2 2 11 1 12 1 2 22 2 66 62 1F F F F F F           

  
(11.2.5) 

 

For a thermodynamic allowable criterion (positive finite strain 

energy), the values iiF must be positive and the failure surface has 

to be closed and not be open- ended and thus the interaction terms 

are constrained to:  
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11 22F F > 
2

12F   (11.2.6) 

 

( 11 22F F =
2

12F  gives a parabolic surface and 11 22F F < 
2

12F  is 

hyperbolic, both open ended)  

For the uniaxial tensile strength 1 = X ( 2 6 0   ) and eq. 

(11.2.5) becomes:  

 

2

1 1 11 1 1F F    or: 
2

1 11 1F X F X    (11.2.7) 

 

and for the compression strength 1 = - X’ this is:  

 

2

1 11 1F X F X     (11.2.8) 

 

It follows from eq. (11.2.7) and (11.2.8) that 1F and 11F  are 

known:  

 

1

1 1

'
F

X X
   and 

11

1

'
F

XX
   (11.2.9) 

 

In the same way,  for 1 6 0   , in the direction 

perpendicular:  

 

2

1 1

'
F

Y Y
   and 

22

1

'
F

YY
   (11.2.10) 

 

Further it follows for 1 2 0    (pure shear), for the shear 

strength S, that:  
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66 2

1
F

S
   (11.2.11) 

 

and according to eq. (11.2.6) is: 

 

1/ ' 'XX YY  < 12F  < 1/ ' 'XX YY   (11.2.12) 

 

It can be shown (as discussed in [1]) that the restricted values 

of 2 12F , based on assumed coupling according to the deviator 

stresses, as given by Norris [8], Hill or Hoffmann [9] as 2 12F  = -

1/2XY, or 12F  = - (1/ 2X  + 1/ 2Y  - 1/ 2Z ) are not general enough 

for orthotropic materials and don’t apply for wood. There  is also 

no reason to restrict 12F  according to  Tsai and Hahn [10] as 2 12F  = 

1/ ' 'XX YY  or according to Wu and Stachurski [11] as 2 12F    - 

2/X 'X . These chosen values suggest that 12F  then is about 0.2 to 

0.5 times the extreme value of eq. (11.2.12).  

The properties of a real physical surface in stress space have to 

be independent on the orientation of the axes and therefore the 

tensor transformations apply for the stresses   of eq. (11.2.5). 

These transformations are derived from the equilibrium of the 

stresses on an element, formed by the rotated plane and on the 

original planes, or simply, by the analogous circle of Mohr 

construction. For the uniaxial tensile stress then is:  

 

2

1 cost    
2

2 sint    6 cos sint      

 

Substitution in eq. (11.2.5) gives:  
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2 2 2 4 2 2 2 2 4

1 2 11 12 66 22cos sin cos (2 ) cos sin sin 1t t t t tF F F F F F                 

 (11.2.13)  

 

and substitution of the values of F:  

 
2 4 2 4

2 2 2 2

12

1 1 1 1 cos sin
cos sin 2 sin

' ' ' '

t t
t t tF

X X Y Y XX YY

   
     

  
         

  
 

 + 

2 2 2

2

cos sin
1t

S

  
  (11.2.14) 

 

It can be seen that for θ = 0, this gives the tensile- and 

compression strength in e.g., the grain direction t  = X and t  = 

'X , and for θ = 900, the tensile and compression strength 

perpendicular to the grain t  = Y and t  = - 'Y , and that a 

definition is given of the tensile and compression strengths in 

every direction. These are the points of intersection of the rotated 

axes with the failure surface. Eq. (11.2.13) thus can be read in this 

strength component along the rotated x-axis t  = 1  according to:  

 

2

1 1 11 1' ' 1F F     (11.2.15) 

 

and eq. (11.2.13) gives the definition of the transformations of 

1'F  and 11'F . The same can be done for the other strengths. The 

transformation of 'ijF  thus also is a tensor-transformation (of the 

fourth rank) that follows from the rotation of the symmetry axes of 

the material. Transformation thus is possible in two manners. The 

stress-components can be transformed to the symmetry directions 

according to eq. (11.2.5), or the symmetry axes can be rotated, 
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leaving the stresses along the rotating axes unchanged. For this 

case the general polynomial expression eq. (11.2.16) applies:  

 
2 2 2

1 1 2 2 11 1 12 1 2 22 2 16 1 6 26 2 6 66 6' ' ' 2 ' ' ' ' ' 1F F F F F F F F                   

 (11.2.16)  

 

These transformations of strength tensors F'  are  given in [1] 

and in Appendix III.  

 

 

11.2.2. Initial Yield Criterion and Derivation of the 

Hankinson and Extended Hankinson Equations  

 

As mentioned, eq. (11.2.5) or eq. (11.2.14) for the off-grain-

axis tensile- and compression strengths, represents the initial yield 

condition being the extended orthotropic critical distortional 

energy principle derived in Appendix II. This “initial yield” 

equation, eq. (11.2.14), can be resolved into factors as follows:  

 

2 2 2 2cos sin cos sin
1 1 0

' '

t t t t

X Y X Y

         
       

  
 

 (11.2.17) 

 

giving the product of the Hankinson equations for tension and for 

compression, (where X and X’ are the tensile and compressional 

strengths in grain direction). This applies when:  

 

2

122 1/ 1/ ' 1/ 'F S X Y XY     (11.2.18) 
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In this equation, derived in [1], (1/ ' 1/ 'X Y XY ) is of the 

same order, and thus about equal to 1/ 2S  so that 2 12F  is of lower 

order with respect to 1/ 2S . In [2], eq. (11.2.18) was used as a 

measure for 12F  which is a difference of two higher order 

quantities and thus cannot give a precise information of the value 

of 12F , that also can be neglected as first estimate. In [12],  the sum 

of 1/ 2S  and (1/ ' 1/ 'X Y XY ) is incorrectly taken to be equal to 2

12F , being of higher order with respect to the real value of 2 12F  and 

it is evident that this value did not satisfy eq. (11.2.12) for a closed 

surface.  

Eq. (11.2.17) shows that the exponent “n” of the generalized 

Hankinson formula eq. (11.2.19):  

 

cos sin
1

n n

t t

X Y

   
    (11.2.19)  

 

is: n = 2 for tension and compression at initial yield when there are 

no higher degree terms. A value of n, different from n = 2 thus 

means that there are third degree terms due to hardening after 

initial yield as in eq. (11.2.21).  

The initial yield criterion eq. (11.2.14) or eq. (11.2.17), being  

for orthotropy, the extended critical distortional energy principle, 

should satisfy both the elastic and the yield conditions at the same 

time. Because the Hankinson equation with n = 2 also applies for 

the axial modules of elasticity and because this modulus is 

proportional to the strength, the Hankinson equations with n = 2, 

eq. (11.2.17), satisfies this requirement. Thus n = 2 is necessary for 

initial yield. Thus after some strain in the elastic stage, the initial 

yield is reached and because the modulus of elasticity follows the 
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Hankinson equation with n = 2, also the yield criterion, eq. 

(11.2.17), containing the Hankinson equations, follows this and 

has the quadratic form and no higher degree terms. This also is 

measured. It is mentioned in [13], that for glulam and for clear 

wood in bending and in tension, n   2. The combined compression 

with shear tests (of Keylwerth by the “Schereisen,” allowing only 

shear-deformation in one plane) show that for off-axis longitudinal 

shear, also in the radial plane, n = 2, showing no higher degree 

terms for the shear strength. According to Figure 11.4, this also 

applies for the tangential plane, but not for the radial plane. The 

value of n thus depends on the type of test and it is mentioned  by 

Kollmann [14], that n   2.5 for compression of clear wood, 

showing that hardening was possible in the tests and the third 

degree terms of the yield criterion are not zero [2]. The test method 

of [6] shows that 112F , 166F  and 266F  in the radial plane have an 

influence (what is shown to be the hardening effect due to crack 

arrest). Thus the test method (early instability by loss of 

equilibrium of the test or not) has influence on whether only initial 

yield (n = 2), or a more stable failure will occur (n different from n 

= 2). Thus, when n ≠ 2, higher degree terms are not zero in the 

failure criterion and eq. (11.2.21) applies.  

An equation of the fourth degree (eq. (11.2.21) in t ) can 

always be written as the product of two quadratic equations, eq. 

(11.2.20). For a real failure surface, the roots will be real and 

because the measurements show that one of the quadratic 

equations is determining for compression- and the other for 

tension- failure mechanisms and must be valid for zero values of 

tC  and/or dC  as well, this factorization leads as the only possible 

solution to be the product of extended Hankinson equations for 

tension and compression as follows:  
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2 2
2 2 2cos sin

1 sin cos (t t
t tC

X Y

   
  


    

 

2 2cos sin
1

' '

t t

X Y

   
   + 

2 2 2sin cos )t dC     = 0  (11.2.20) 

 

Performing this multiplication, eq. (11.2.20) thus is in general:  

 

  2 2 2 4 2 2 2 4

1 2 11 12 66 22 112cos sin cos 2 cos sin 3t t t t tF F F F F F F                 

  3 4 2 3 4 2 4 4 4

166 122 266 1266cos sin 3 sin cos 12 cos sin 1t t tF F F F               

 (11.2.21) 

 

giving the third degree tensor polynomial, applied in [1, 6], where 

it appeared that 1122F  and other possible higher degree terms can be 

neglected except 1266F  (for completeness of the factorization).  

The values tC  and dC  can be found by fitting of the modified 

“Hankinson equations” eq. (11.2.20), for uniaxial off-axis tension 

and compression test results, giving the constants:  

 

2

122 1/ ' 1/ ' 1/ ;t dF X Y XY S C C      

 112 1663 / ' / ;t dF F C X C X    

 122 2663 / ' / ;t dF F C Y C Y    

and 1266 112212 12t d t dF C C F C C    (11.2.22)  

 

A fit of the Hankinson power equation, eq. (11.2.19) always is 

possible and different n values for tension and compression from n 

= 2 in that equation means that there are higher degree terms and 

that tC  and dC  are not zero, as follows from eq. (11.2.20).  
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For timber with defects and grain and stress deviations, the 

axial strength is determined by combined shear and normal stress 

perpendicular to the grain. This may cause some stable crack 

propagation and a parabolic curve of the effective shear strength 

(according to the Mohr- or Wu-equation, eq. (11.2.27) with C = 1) 

given by a third degree term. For timber n can be as low as n   1.6 

in eq. (11.2.19) for tension, showing higher degree terms to be 

present. This also follows from n   2.5 for compression. The data 

of [6], show that 166F , 266F  and 112F  of the radial plane have 

influence showing (see Figure 11.3, 11.4, 11.9, and 11.7), the 

parabolic like curves, different from elliptic curves of 2nd degree, 

at the longitudinal tension side, of Figure 11.6. It could be 

expected for clear wood that 166F = 0 and 122F = 0 because the 

longitudinal stress 1  is in the plane of the crack and not 

influenced by the crack tip. However collinear crack propagation 

is not possible at shear failure and also due to grain deviations in 

timber there is an influence on 166F  and 122F .  

It was shown in [1] that 12F  is small and cannot be known with 

a high accuracy. Small errors in the strength values (X, X’, Y, Y’, S) 

may switch 12F  from its lower bound to its upper bound, changing 

its sign and the value thus is not important and thus negligible for a 

first estimate. The data of [6] of the principal stresses in 

longitudinal tension, being close to initial yield, show 12F  to be 

about zero at initial yield, thus when dC = tC = 0 and thus when: 

 
21/ 1/ ' 1/ 'S X Y XY    (11.2.23)  
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Then eq. (11.2.22) suggests that:  

 

122 t dF C C   (11.2.24) 

 

due to hardening when tC  and dC  are not zero. This is tested in 

[2] and it appears that because 12F ≈ 0 for longitudinal tension, S 

follows, (according to eq. (11.2.22), from 

21/ 1/ ' 1/ ' t dS X Y XY C C     and S should not be measured 

separately by a different type of shear test, but follows (as the 

other strength values), from the uniaxial off-axis tension- and 

compression tests. Because 1122F  is negligible, is, according to eq. 

(11.2.22): 12 1266F  ≈ tC dC , which  is also small and negligible. 

166F  will have a similar bound as 266F , as follows from eq. 

(11.2.27) what is given in Figure 2.4.1 and follows by replacing 

the index 2 by 1 and Y by X. However the determining bound of 

166F  follows from eq. (11.2.22), when 112F  is known. 112F  is not 

discussed in [1], but a general method to determine the bounds of 

112F  is given in [1], for 266F . The estimation that in § 11.2.4, of 

112F , based on 1  and 2  alone, ( 6 0  ) also is sufficient.  

It appears not possible to have one failure criterion for the 

different failure types of longitudinal tension and longitudinal 

compression. For the longitudinal tension fit, the hardening 

constants 112F , 12F  and 122F  are zero by without hardening. For 

the longitudinal compression fit, these constants are not zero and 

112F , thus hardening, dominates. For tension, the early instability 
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of the test, by splitting, determines the strength, while for 

compression the late instability after hardening defines failure. It 

thus is necessary for a precise fit, to fit both regions (longitudinal 

tension and compression) separately and not to apply one overall 

criterion for longitudinal tension and compression. With the 

estimates of 266F  and 112F  to be close to their bounds for 

compression, and with zero normal coupling terms for tension, all 

constants are known, according to eq. (11.2.22), depending on dC  

and tC  from uniaxial off-axis tension and compression tests. (see 

§ 11.2.4). 

 

 

11.2.3. Transverse Strengths  

 

In [1] it is shown that for rotations of the 3-axis, when this axis 

is chosen along the grain, eq. (11.2.5) and (11.2.16) may precisely 

describe the peculiar behavior of the compression- tension- and 

(rolling) shear-strength perpendicular to the grain and the off-axis 

strengths without the need of higher degree terms. These measured 

lines of the off-axis uniaxial transverse strength of Figure 11.2, 

follow precisely from eq. (11.2.15) 
2

1 1 11 1' ' 1F F   . When for 

compression, the failure limit is taken to be the stress value, after 

that, the same sufficient high amount of flow strain has occurred, 

then the differences between radial- tangential- and off-axes 

strengths disappear and one directional, independent, strength 

value remains (see Figure 11.2). For tension perpendicular to the 

grain, only in a rather small region (around 900, see Figure 11.2) in 

the radial direction, the strength is higher and because in practice, 

the applied direction is not precisely known and avoids this higher 
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value, a lower bound of the strength will apply that is independent 

of the direction. The choice of these limits means that:  

1 2 0F F   and 11 22 0F F   and, that also 12F  is limited 

according to: 12 11 22 662F F F F   . 

Further then also is:  

 

6' 0F   and 66 66'F F   1/
2

rol   (11.2.25) 

 

From measurement, it can be derived that 12F  is small, leading 

to:  

 

66 11 22F F F   or rol  is bounded by:  

 

'/ 2 '/ 2rol XX YY     (11.2.26) 

 

and the ultimate behavior can be regarded to be quasi isotropic in 

the transverse direction.  

 

 

Figure 11.2. Yield stresses and hardening. 
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The measurements further show for this rotation around the 

grain-axis that the “shear strengths” in grain direction in the radial- 

and the tangential plane, 44F  and 55F , are uncoupled or 45F  = 0, as 

is to be expected from symmetry considerations. 

 

 

11.2.4. Longitudinal Strengths  

 

When now the 3-axis is chosen in the tangential or in the radial 

directions, the same relations apply (with indices 1, 2, 6) as in the 

previous case. The equations for this case then give the strengths 

along, and perpendicular to the grain and the shear-strength in the 

grain direction.  

In [1] it is shown that this longitudinal shear strength in the 

radial plane increases with compression perpendicular to this plane 

according to the coupling term 266F  (direction 2 is the radial 

direction” direction 1 is in the grain direction):  

 

2 2 2

2 2 22 2 66 6 266 2 63 1F F F F          

 

or: 

 

6 2 2

2

(1 / ) (1 / ')

1 / '

Y Y

S C Y

  



  



 (11.2.27)  

 

with: C = 
2

2663 'F Y S   0.9 (0,8 to 0.99, see Figure 2.4.1).  

When C approaches C   1 (measurements of project A in 

Figure 2.4.1), eq. (11.2.27) becomes:  
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2

6 2 1
S Y

 
  

 
  (11.2.28) 

 

which is equal to the mixed I– II mode Wu- equation of fracture 

mechanics, showing that the micro-crack and macro crack 

extensions are the same. The same can be done at the tensile side 

giving the same equation with Y replaced by - 'Y . The exact 

derivation of this equation, in orthotropic stresses, is given in 

Chapter 2, paragraph 2.3: 

 

 

 

2

2 2
6

2 6 2

22 2 2 2

0 0 6 0
6 0

1
/ 2 / 2 2

I II

t t Ic IIct
t

cc K K

n K Kr n r

    

       
     

,

 (11.2.29)  

 

because by the transformation from elliptical to circular 

coordinates 0 02 /r c  . Critical small crack propagation occurs 

at a critical crack density, when the intermediate crack distance is 

about the crack-length and is independent of the crack length and 

crack tip radius 0r , when an ultimate strength applies. This then 

indicates the presence of blunt initial flaws with constant 02 /r c  

and the second part of eq. (11.2.29) then can be written:  

 

2

2 6

2

2 6

1
c c

 

 
   (11.2.30) 

 

thus in ultimate strength values 2 6,c c   of strength theory.  
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The value of 266F  of eq. (11.2.27), depends on the stability of 

the test, and thus is not a constant, but a hardening factor, 

determining the amount of hardening  by the testing instability 

determined, ultimate state. This is shown  in the following Figure 

11.8, where parameter values according to more stable torsion tube 

tests, are used to predict the oblique grain compression strength 

values. Because of more hardening in the torsion tube test, the 

peak of 1.1, at 100 is predicted, which cannot be measured in the 

oblique grain test, due to earlier instability due to lack of 

equilibrium of this test setup, after “initial flow.”  

As derived in [2], eq. (11.2.27) does not only apply for tension 

with shear but also for shear with compression 2  perpendicular to 

the flat crack. For a high stress 2  the crack is closed at 2 c   

and the crack tip notices only the influence of 2  = c  because for 

the higher part of 2 , the load is directly transmitted through the 

closed crack and eq. (11.2.28) becomes:  
 

6 2( )
1c c

S S Y

     
     

 

or:  
 

6 C        (11.2.31) 

 

where 2  and c  are negative, giving the Coulomb-equation with 

an increased shear capacity due to friction     . However, 

inserting the measured values of [6], it appears that the frictional 

contribution is very small. The micro-crack closure stress c  will 
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numerical be about equal to the tensile strength c Y   . The 

shear strength will be  raised to its maximum at high compression 

of 0.9 'c Y   , by a factor: 

     1 0.9 ' / 2 1 0.3 0.9 5.6 3.7 / 9.8 2 1.03Y Y S        . 

Thus, the combined shear- compression strength is mainly 

determined by an equivalent hardening effect, caused by crack 

arrest in the critical direction by the strong layers. At higher 2  

stresses, compression plasticity perpendicular to the grain (project 

A of [11], see Figure 2.4.1) or instability of the test (project B of 

[11] with oblique-grain compression tests) may become 

determining, showing a lower value of C of eq. (11.2.27) than  

C = 1. 

Because the slopes of the lines (at small 2 ) of project A and B of 

[11] are the same, there is no indication, for clear wood, of an 

influence of the higher degree terms: 112F , 122F  and 166F  of 

project B. When for longitudinal tension 12F , 122F  and 112F  are 

zero, then, when 166F = 0, also 266 0F   according to eq. 

(11.2.22).  Then also 0t dC C  . Further, the line of B is below 

the line of A and the C-value of B is lower, closer to the elliptic 

failure criterion. This is an indication that hardening after initial 

yield (thus departure from the elliptic equation) of project B, the 

oblique-grain compression test, is less than that of project A and 

thus that the test is less stable. (Project C of [11] follows the 

elliptic failure criterion because of the influence of transverse 

failure due to rolling shear that is shown before, (§2.3), to be 

elliptic).  
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The high value of 266F , in the radial plane, (measured with  

1  = 0), indicates that for clear wood, 122F  has to be small 

according to eq. (11.2.22). It further follows from published 

Hankinson lines, with n   2, of clear wood that third degree terms 

are zero in the tangential plane, confirming the results of projects 

A and B of [11], mentioned before. There is an indication that this 

is a general property of timber [11], because when shear failure is 

free to occur in the weakest plane, as usually in large timber beams 

and glulam, it occurs in the tangential plane and n = 2, showing no 

higher degree terms. 
 

 

Figure 11.3. (2.4.1 a) - Combined shear-tension and shear-compression 

strengths. F266. 

Determining for compression failure in the radial plane, are the 

microscopic kinks formation in the cell walls, which is a buckling 

and plastic shearing mechanism. The kinks multiply and unite in 

kink-bands and kink-planes at fiber misalignments. Known by 

everyone is the slip-plane of the prism compression test showing a 

horizontal crease (shear line, slip line) on the longitudinal radial 

plane, while on the longitudinal tangential plane the crease is 

inclined at 450 to 600 with the vertical axis (depending on the 

species). 

The cause are the rays in the radial planes, which are the main 

disturbances of the alignment of the vertical cells. For this bi-axial 
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compression fracture, the same fracture mechanism occurs as for 

combined mode I-II fracture, discussed above. The shear loading 

due to micro-crack formation is now caused by the misalignment 

component of the normal stress.  
 

 

Figure 11.4. Figure 10 of A(1982) of Combined shear-tension -compression 

strengths. F266. 

The general equation now becomes:  
 

2 2 2

1 1 2 2 11 1 22 2 112 1 23 1F F F F F           (11.2.32)  

 

  

 

Figure 11.5. Kinkband formation, where K is the plastic shear strength of the 

matrix (e.g., 11.3 Mpa), 
015   is the misalignment (e.g., for Spruce) y  is 

the longitudinal shear yield strain.  
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Because 12 6 0F    and the contribution of the term with 

122F  is of lower order, not visible in Figure 11.6. The choice of 6  

= 0 is made because then, any high value of 112F  is most 

determining. Eq. (11.2.32) can be written:  

 

2 2
21 2

1 2 112 2 1

1 1 1 1
3 1

' ' ' '
F

X X Y Y XX YY

 
   

  
         

  
 

 (11.2.33)  

Thus: 

 

       2

1 1 112 2 2 2' 1 3 ' 1 / 1 / ' 'X X F XX Y Y XX             

 (11.2.34) 

 

The critical value of 112F , to just have a closed surface, will 

occur at high absolute values of 1  and 2 , thus in the 

neighborhood of 1  'X . Inserting safely this value in the 

smallest term of eq. (11.2.34) gives: 

 

        2

1 112 2 2 21 3 ' ' / ' 1 / 1 / ' 'F XX X X X Y Y XX            ,  

 

or:  

 

  2 21
2

2

1 / 1 / '
1 /

' 1 / '

Y Y
Y

X C Y

 




 
    


  

 

where: 
2

1123 ' 'C F Y X  (11.2.35) 



Strength Theory 189 

Thus when the hardening constant C approaches one 1C  , 

the curve reduces to a parabola and the requirement to have a 

closed curve is C < 1, or:  

 

2
1123 1/ ' 'F Y X  (11.2.36)  

 

More general, when 12F  and 122F  are not fully negligible, the 

bound C < 1 becomes:  

 

2 2
112 12 1223 ' ' 2 ' ' 3 ' ' 1C F X Y F Y X F Y X     (11.2.37) 

 

for longitudinal compression, where besides 1 'X   , also 

2 'Y    is substituted in the contribution of the smallest term, as 

determining point to just have a closed surface.  

The same could be expected to apply for longitudinal tension, 

giving the same equation (11.2.35) with X’ replaced by X. 

However, because of another type of failure, 112F  and 122F  are 

zero for longitudinal tension (see Figure 11.6) which is an ellipse 

at the longitudinal tension side, thus is a second degree equation, 

according to eq. (11.2.33) with 112F  ≈ 0 (and with 12F ≈ 0 by the 

zero slope of the ellipse).  

The found (cut-off) parabola eq. (11.2.35) (for C close to C = 

1) is, as eq. (11.2.27), equivalent to the mixed I–II mode Wu-

fracture equation for shear with tension or with compression 

perpendicular. For wood in longitudinal compression, this failure 

mechanism acts in the radial plane giving high values of 266F  and 

112F  close to their bounds of C ≈ 0.8 to 0.9.  
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The parabolic eq. (11.2.35) is shown in Figure 11.6, by the 

data points outside the points on the ellipse of the longitudinal 

compression side and is shown as fitted to the theoretical Wu-

parabola in Figure 11.7. As mentioned, this hardening of the 

torsion tube tests, is not found in the uniaxial oblique grain tests, 

which is earlier unstable, thus showing less hardening. According 

to Figure 11.6 below, is 122F -term of lower order with respect to 

112F - term and not visible in the figure. Determining is 112F , 

representing hardening by kinking and slip-plane formation (see 

Figure 11.5). As to be expected, and according to Figure 11.6, is 

112F  zero at the longitudinal tension side (as 122F  and 12F ).  

 

 

Figure 11.6. Initial yield for 12 0F   and 6 0  . 

In [2] is shown that all data may show a different amount of 

hardening at failure. Because tests in longitudinal compression 

show other and more hardening than tests in tension, separate data 

fits for longitudinal tension and longitudinal compression are 

necessary, as given by eq. (11.2.43) and eq. (11.2.44).  

For the parameter estimation by the uniaxial oblique grain 

tests, it is in eq. (11.2.22):  
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12 122 166 0F F F   ; 

2

1123 0.9 / (( ') ')F X Y ; 
2

2663 0.9 / ( ')F S Y   (11.2.38)  

 

Because hardening is mostly not guaranteed in real structures 

and test situations, the initial flow criterion for the Codes has to be:  

 

2 2 2

6 1 1 1 2 2 2

2
1

' ' ' 'S X X XX Y Y YY

      
         (11.2.39)  

 

  

Figure 11.7. Yield criterion for compression 112F  ( 1 < 0) for 6  = 0.  

 

11.2.5. Estimation of the Polynomial Constants by 

Uniaxial Tests 

 

Based on data fitting of uniaxial tension- and compression tests 

of [6], the values of dC  and tC  are determinable and by eq. 

(11.2.22) the polynomial constants are known. This can be 

compared with the data and fit of the biaxial measurements of [6].  

In Figure 11.8, a determination of dC  and of tC is given. In 

this figure of [6], the compression- strength perpendicular to the 
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grain measurement Y’/X’ = 0.204 is reduced to obtain a value of 

Y’/X’ = 0.13 (at 900 ) to be able to use the measured constants of 

the bi-axial tests. It is not mentioned how that can possibly  be 

done but the drawn lines in the figure give the prediction of the 

uniaxial values based on the measured constants according to the 

general eq. (11.2.21) (given in [6], as in [1], in the strength tensor 

form of eq. (11.2.15)). For comparison, the fits of the Hankinson 

equations are given following these drawn lines.  

For tension, the extended Hankinson equation (11.2.20) 

becomes (by scratching the non zero compression factor of the 

extended Hankinson product: eq. (11.2.20)):  

 

2 2
2 2 2cos sin
sin cos 1t t

t tC
X Y

   
       (11.2.40)  

 

This equation fits the line for tension in Figure 11.8 when tC  

11.9/ 2X . The Hankinson equation (11.2.19) fits in this case for 

n   1.8 and all 3 equations (11.2.21), (11.2.40) and (11.2.19) give 

the same result although for the Hankinson equations only the 

main tension- and compression strength have to be known and the 

influence of all other quantities are given by one parameter n or by 

tC .  

For compression, the same line as found in [6], was found in 

[1], (see Figure 11 of [1]), by the second degree polynomial with 

the minimal possible value of 12F  (according to eq. (11.2.12)), 

showing that except a negative 122F  (as used in [6]) also a high 

negative value of 12F  may cause the strong peak at small angles. 

Because such a peak is never  measured, the drawn line of [6] is 

only followed here for the higher angles by the Hankinson 
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equation. For the small angles, the line (dashed) is drawn through 

the measured point at 150, giving the expectable Hankinson value 

of n = 2.4 in eq. (11.2.19) and for eq. (11.2.31) 
24 / 'dC X . 

Because of this low measured value, the predicted peak at 100 in 

Figure 11.8 is not probable, although the peak-factor of 1.1 is 

theoretically possible, for a high shear strength, to occur at 180 

instead of 100 with 
27.6 / 'dC X  in the extended Hankinson 

equation: 

 

2 2
2 2 2cos sin
sin cos 1

' '

t t
t dC

X Y

   
       (11.2.41) 

 

 

Figure 11.8. Uniaxial tension- and compression strengths  

-------- Compression: Eqs. (11.2.19), (11.2.20), (11.2.41);  

 -------- Tension: Eqs. (11.2.19),(11.2.20),(11.2.41). 

This shows that the fit of the polynomial constants, based on 

the best fit of the measurements of [6], is not good for the oblique 

grain test. The explanation of this deviation is the different state of 

hardening of the data that can be more or less strong, depending on 
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the equilibrium stability of the type of test which is less in the 

uniaxial Hankinson test. This for instance, follows from the ratio 

of the compression strengths perpendicular to the grain and along 

the grain of 0.2 in the uniaxial tests and 0.1 in the biaxial tests 

showing more hardening in the biaxial tests. Further, because the 

local peak is not occurring in the oblique grain test, the stability is 

less than in the biaxial test. 

An analogous behaviour occurs in the oblique grain test of 

clear wood [1] where the tensile test shows 0tC   in eq. 

(11.2.20) and the compression test shows dC  not to be  zero. The 

tensile test shows unstable failure at yield which needs not to be 

the case for the compression test that may show additional 

hardening. For the different hardening states in the different 

possible types of tests, the lowest  possible value should always be 

used in practice, thus, 0t dC C  . It  has to be concluded that the 

strong hardening in the biaxial test in the radial plane will not 

occur in other circumstances and the hardening parameters should 

be omitted for a safe, lower bound criterion (in accordance with 

the oblique grain test).  

As generally found in [1] for spruce clear wood, a fit is 

possible for off-axis tension by a second degree polynomial with 

12F  = 0. This also applies for wood with defects, as follows from a 

fit of the data of [6] by the second degree polynomial (ellipse) in 

the principal stresses 1  and 2  ( 6  = 0), for longitudinal tension 

( 1  > 0; 12 0F  ), see Figure 11.6. This fit means that 112F  and 

122F  are also zero (for 1  > 0) in the radial plane and because the 

Hankinson value for tension n is different from n = 2, there must 
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be higher degree terms for shear ( 166F , 266F ). For fitting these 

parameters, several starting points are possible.  

A first hypothesis of [2]- IV was rejected. It was concluded 

that tC  and dC  are coupling terms between longitudinal tension 

and compression and that the different types of failure in 

longitudinal tension and in compression should be given in 

separate failure criteria for these cases. However, because of the 

small values of 122F  and 12F , the best fit for longitudinal tension 

1  > 0 is hypothesis 2, when a fit for the total criterion (tension 

and compression) is wanted for practice. 

In Table 11.1, column hyp. 2, this fit is given for 

12 112 122 0F F F   . Because the fit does not change much when 

data above the uniaxial compression strength X’ = 41.7 are 

neglected, the fit may apply for longitudinal compression too, 

given in column hyp.2, providing the same hardening state as in 

the oblique grain test (where the strong compression hardening 

does not occur). Based on the strength values of [6], the constants 

for this case, eq. (11.2.44), are: 

 

2 211.9 / 11.9 / 59.5 0.00336;tC X  
 

2 24 / ' 4 / 41.7 0.00230dC X    and by eq. (11.2.22) 

2663 / ' / 0.00332 / 5.95 0.0023/ 3.5 0.00122t dF C Y C Y       

 

or  

 

C of eq. (11.2.27) is: 
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2

266 0.00122 9.7 5.95 0.68c      and: 

 

1663 / ' / 0.00336 / 41.7 0.0023/ 59.5 0.000119t dF C X C X     , 

 

or: 

 

2

166 0.000119 9.7 41.7 0.47c     .  

1

1 1
1/ 59.5 1/ 41.7 0.0072;

'
F

X X
       

 11

1
1/ 59.5 41.7 0.00040,

'
F

XX
     

2

1 1
1/ 3.5 1/ 5.95 0.092;

'
F

Y Y
       

 22

1
1/ 3.5 5.95 0.048

'
F

YY
     and: 

2

66 2

1
1/ 9.7 0.0106;F

S
    12 112 122 0.F F F    

 

Eq, (11.2.44) thus also applies for longitudinal compression as 

follows from Figure 11.6 and Table 1, hyp. 2, showing a better 

overall fit than according to [6] and to hyp. 4.  

To correct the best fit of [6],  to obtain a closed curve, the 

shear strength had to be reduced and a reduced factor 0.8 instead 

of 0.9 for 112F  was necessary giving: 

 

 1223 0.8 / 5.6 43.1 0.000077;F     and 

166 1223 / ' / 3 0.000128 0.000077 0.000051t dF C X C X F      . 
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Thus, giving the C-values:  

and  (starting point). 

This corrected fit is given in Table 11.1, column 4 

(compression fit), and it is seen that the corrected fit is not better 

than column [6] and needs further improvement. For  = 0, the 

fit for , is given in Figure 11.7. For longitudinal compression 

eq. (11.2.21) then becomes:  

 

 

+  (11.2.42) 

 

Table 11.1. Shear strength 6  for combined normal stresses  

 

1  2  6  

test 

factor: 6, 6,/theory test   

[6] hyp. 1 hyp. 2 

tens. 

3 

compr. 

hyp. 4 

compr. 

30 1.5 5.8 1.07  1.03  1.02 

30 0 8.5 0.88  0.91  0.92 

30 -2.5 7.9 0.99  1.10  1.29 

7.3 0 9.2 1.04  1.03  1.01 

0 2.9 3.7 1.38   1.13  1.19 

0 1.5 8.5 0.96  0.89  0.86 

0 0 9.0 1.11  1.08  1.04 

0 -2.5 10.9 0.96  1.05  1.07 

0 -5.4 6.8 0.53  1.12  1.12 

-7.7 0 9.6 1.05  1.01  0.96 

-20 1.5 7.7 0.84  0.83  0.68 

-20 0 9.6 0.99  0.96  0.88 

-30 -2.5 11.3 1.04  0.90  0.94  

mean 

factor 

  0.99  1.0  1.0 

2

166 0.000051 9.4 43.1 0.2c    

266 0.9c 

6

112F

2 2 2 2 2

1 1 2 2 11 1 12 1 2 22 2 66 6 112 1 2 122 2 12 3 3F F F F F F F F                 

2 2

166 6 1 266 6 23 3 1F F    
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Inserting F-values in eq. (11.2.42), this equation becomes: 

 
2

6 2 1 1 1 2 2

2
1 0.9 0.2 1 1 1 1

' ' ' 'S Y X X X Y Y

              
                      
        

 

2 2

2 1 1 2 1 2

2 2
1 0.8 0.77 0.41

' ' ' ' ' 'Y X X Y X Y

      
       
 

 (11.2.43) 

 

This equation  only applies for the torsion tube test for failure 

in the radial plane, when it is assumed that negative values of 12F  

and 122F  (by confined dilatation) are possible. This however is not 

confirmed enough because its fit [6] in Table 1 is not  good 

enough.  

For longitudinal tension ( 1 ≥ 0), eq. (11.2.21) becomes:  

 
2

6 2 1 1 1 2 2

2
1 0.68 0.47 1 1 1 1 1

' ' ' 'S Y X X X Y Y

              
                      
        

 

 (11.2.44) 

 

As mentioned, this equation also applies for compression 

failure in the tangential plane. Because the compression hardening 

112F , 122F , according to eq. (11.2.43) occurs for low values of 6  

only, and only in the torsion tube test in the radial plane, eq. 

(11.2.44) more generally represents the failure criterion for  

tension and compression and shear. However, for tests and 

structures showing early instability at initial flow, the higher 

degree hardenings terms will be zero, causing the Hankinson value 
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of n = 2 for timber and glulam. Because this is to be expected in 

most situations in practice, the determining criterion becomes:  

 

 

Figure 11.9. Combined longitudinal shear with normal stress in grain direction. 

166F . 

2

6 1 1 2 2

2
1 1 1 1 1 0

' 'S X X Y Y

          
                
      

,  

 

or worked out, identical to eq. (11.2.5) with 12 0:F   

 
2 2 2

6 1 1 1 2 2 2

2
1

' ' ' 'S X X XX Y Y YY

      
        (11.2.45) 

 

It therefore is necessary to use eq. (11.2.45) in the Codes in all 

cases for timber and clear wood to replace the now still used, not 

valid Norris-equations. This criterion is, with 12F  = 0, a critical 

strain energy condition of the wood reinforcements. 
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Figure 11.10. Longitudinal shear strength ( 1  = 0) depending on the normal 

stress. 266F . 

 

11.3. DISCUSSION OF APPLIED FAILURE CRITERIA 

 

11.3.1. Yield Criterion 

 

A yield- or flow-criterion gives the combinations of stresses 

whereby flow occurs in an elastic-plastic material. For more brittle 

failure types in polymers with glassy components like wood at 

tensile loading, there is some boundary where below the behaviour 

is assumed to be elastic and where above the gradual flow of 

components at peak stresses and micro-cracking may have a 

similar effect as plastic flow with hardening (like metals with 

gradual plasticity and no yield point). 

The loading, damage and hardening behaviour up to failure 

can be described by deformation kinetics [7]. There are visco-

elastic and viscous processes  causing early local flow and stable 

micro-crack propagation (damage increase),  while the main part 
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of the material is elastic and different inelastic and strain rate 

equations are necessary depending on the loading type and history 

for a full description.  

The failure criterion depends on the ultimate damage process 

and failure occurs when the standard test becomes unstable (due to 

loss of equilibrium). Wood can be regarded to be ductile because 

the critical distortional principle applies and therefore limit 

analysis should be applied.  

 

 

11.3.2. Critical Distortional Energy of the Isotropic 

Matrix  

 

It is not necessary to describe the whole initial loading curve 

with gradual flow and hardening to describe the ultimate state of 

flow. The unloading from this ultimate state is linear elastic and on  

reloading, the loading line is linear elastic up to flow. Thus, the 

geometry is unaltered and the loading history has no effect on the 

ultimate state and the linear elastic – full plastic approach of limit 

analysis is applicable and the initial yield criterion gives the 

boundary below where  the behaviour is elastic.  

Because an isotropic matrix of a material may sustain very 

large hydrostatic pressures without yielding, yield can be expected 

to depend on a critical value of the distortional energy. This energy 

is found by subtracting the energy of the volume change from the 

strain energy (see Appendix II) for the general case in total 

stresses. For the isotropic matrix material, this subtraction gives, 

when expressed in matrix stresses:  
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 (11.3.1) 

 

For plane stress, the distortional energy thus is with 2G = E/(1 

+ ν): 
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When x , y  and   are the nominal stresses of a material, 

having a reinforcement in x and y direction that takes a part of the 

loading, then the distortional energy of the matrix becomes: 
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 (11.3.3) 

 

where the reinforcement parts are subtracted from the total load. 

For the reinforcement, taking only normal force and shear, this is: 
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where 
x  is the area of the reinforcement per unit area, giving:  
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The other values of ic  are analogous.  

When the distortional energy is constant at yield then eq. (11.3.3) 

gives:  

 

     2 2 21 1 3 1x x x y y y tx tyc c c c C             

 (11.3.5) 

 

For 0y   , this gives the yield stress in x-direction 

'x X  . In the same way 'y Y  , when 0x    and is   = S 

when 0x y   , giving the equation:  

 

22 2

122 2 2
2 1

' '

yx
x yF

X Y S

 
       (11.3.6) 

 

The Norris equation follows from eq. (11.3.6) when 

122 1/ ' 'F X Y . This however is a special value of 122F  that need 

not  apply in general.  

For the special case that 0tx tyc c   when, as for concrete, it 

is assumed that the reinforcement takes no shear, eq. (11.3.5) 

becomes: 
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22 2

2 2 2 2
1

' 3 '

x y yx

X S Y S

   
      (11.3.7) 

 

and because 23 ' 'S X Y , as applies for isotropy and this is 

assumed by Norris for the cell walls in his derivation, so that this 

equation becomes:  
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giving the Norris equation as critical distortional energy equation 

of the matrix when the reinforcement “flows” and thus only may 

carry a normal force.  

Wood shows early failure of the matrix. Then the 

reinforcement carries the total load by the normal and shear forces 

and the coupling term disappears and the equation gives the 

apparent critical distortional energy of the reinforcement:  

 

22 2

2 2 2
1

' '

yx

X Y S

 
     (11.3.9) 

 

being the older empirical Norris equation. The Norris equations 

(11.3.8) and (11.3.9) give the possible extremes of 12F  between 

zero and the maximal value. Although the Norris-equations are 

used for wood, they only apply for materials with equal 

compression and tension strengths.  

Because these yield strengths are not equal for wood, different 

apparent critical distortional energies have been applied for tension 

and compression as first approximations.  
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11.3.3. Hankinson Equations  

 

The Hankinson equations apply for the off-axis uniaxial 

strengths, derived in 11.2 and Appendix II satisfying the exact 

critical distortional energy equation for initial yield:  
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where for uniaxial tensile stress is:  

 

2

1 cost    
2

2 sint    6 cos sint      

 

Substitution of these stresses gives eq. (11.2.14) which can be 

resolved into factors giving eq. (11.2.17), which is the product of 

the Hankinson equation for tension and for compression. 

As discussed before, this is possible because: 

 

2

122 1/ 1/ ' 1/ 'F S X Y XY     (11.3.11) 

 

In the generalized Hankinson equation, eq. (11.2.19):  

 

cos sin
1

n n

t t

X Y

   
    (11.3.12) 

 

is the exponent n = 2 for the initial yield equation. Measured is 

also n = 2 for the strengths in bending and in tension of clear 

wood, also for veneer and for shear in the radial plane measured 
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with the "Schereisen"-device. The measurements thus indicate that 

also in the radial plane, n = 2 applies for initial yield. For n   2, 

as may apply for compression, the extended Hankinson equations, 

eq. (11.2.20), apply.  

 

 

11.3.4. Rankine Criterion  

 

The Hankinson equation (11.2.19) for n = 2:  

2 2cos sin
1t t

X Y

   
    (11.3.13) 

 

contains the maximum stress condition (or Rankine criterion) of 

failure for very low and for high angles (see Figure 11.11). For   

in the neighborhood of   = 900, eq. (11.58) is about:  

 

2sin
1t

Y

 
  (11.3.14) 

 

The maximal stress criterion for tension is perpendicular to the 

grain. This also applies down to  450, because 1/X is of lower order 

with respect to 1/Y and thus the difference of eq. (11.59) with eq. 

(11.58) is then of lower order.  In the same way, for very small 

values of  , the ultimate tensile strength criterion in grain 

direction, eq. (11.60) applies:  
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Figure 11.11. Hankinson and Maximal stress criteria. 

2cos
1t

X

 
   (11.3.15) 

 

For values of  , where the first two terms of eq. (11.3.13) are 

equal or cos /√X = sin /√Y, the deviations of eq. (11.3.14) and 

(11.3.15) from eq. (11.3.13) are maximal (50%). In the 

neighborhood of this value of   is (cos /√X - sin /√Y)2 ≈ 0 or 
2 2cos / sin / 2sin cos / 0X Y XY       or with eq. 

(11.3.13):  

 

sin cos sin cos
1

/ 2

t t

SXY

      
    (11.3.16)  

 

giving the ultimate failure criterion for shear by the fictive shear-

strength / 2S XY . 
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Figure 11.12. Maximal stress failure conditions. 

It is easy to show that this value of S is the point of contact of 

the lines eq. (11.3.16) and eq. (11.3.13). Although eq. (11.3.16) 

fits precisely at this point where , the difference of 

equations (11.3.14) to (11.3.16) with eq. (11.3.13) is too high at 

their intersects for application (see Figure 11.11). This also follows 

from Figure 11.12 for wood and for other comparable polymers.  

 

 

11.3.5. Norris Equations  

 

The Norris equations follow from the yield equation, eq. 

(11.3.10), when compression and tension strengths are equal X = 

X‘ and Y = Y‘ and thus different equations should be used in each 

stress quadrant with the strengths X,Y; X‘,Y; X,Y‘; X‘,Y‘. 

When this is done, Figure 11.13 shows that the Norris 

equations still do not apply.  

/tg Y X 
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The success of these equations follows from the uniaxial 

applications (in the first and third quadrant) when the Hankinson 

equations apply.  

After substitution of X = X‘ and Y = Y‘, the yield equation, eq. 

(11.2.14), can be resolved in factors like eq. (11.2.17) as:  
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showing the Hankinson equations to apply and leading to:  
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This is equal to the Norris-criterion:  
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 (11.3.18) 

 

when 21/ 3 / ' 'S X Y . This value of S is measured and can be 

found in literature (see [1]) showing that the Norris equations are 

the same as the Hankinson equations for the uniaxial stress case.  

For tension (replacing X‘ by X and Y‘ by Y in eq. (11.3.18)), it 

follows in the same way that 2 / 3S XY , which may be different 

from the value for compression, showing that fictive values of S 

are needed in the other quadrants. Further, the yield criterion eq. 

(11.3.10) is an ellipsoid, having a small, (or zero) slope with 

respect to the 1 - axis and thus a negligible 12F . The center of the 

ellipse in the 1 – 2 – plane is point ((X – X‘ )/2; (Y – Y‘ )/2). When 

the part of this ellipse in  the compression – compression quadrant 



T.A.C.M. van der Put 210 

has to be approximated by an ellipse with the center at the point 

(0,0) (as applies for the Norris equation), then 12F  of that ellipse 

has a pronounced value. In the tension – compression quadrant, the 

apparent 12F  even has the opposite sign. An improvement of eq. 

(11.3.18) thus will be to have a free slope of the ellipses and to use 

eq. (11.3.6) instead as an extended Norris equation.  

From eq. (11.3.17) it follows that:  

 

2 4 2 4 2 2 2

2 2 2

cos sin sin cos
1

' ' '

t t t

X Y S

      
     (11.3.19) 

 

when 21/ 2 ' 'S X Y  in eq.(11.3.17), giving the older empirical 

Norris equation, that has a zero 12F  and fits better than the later 

proposed equation (11.3.18), but still does not fit in all quadrants 

(see Figure 11.13) because of the assumed equal compression and 

tension strengths. Further in all four stress quadrants, another, 

fictive shear strength has to be used.  

 

 

Figure 11.13. Norris equations for 6  = 0.  
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It can be concluded that the Norris equations  can only be 

applied for uniaxial stress loading being equivalent to the 

Hankinson equations for initial yield.  

Because the Norris equations in the general form are not right, 

they should not be used anymore.  

As discussed before, hardening is mostly not present in tests 

and structures and a lower bound should be used where also 12F  

can be neglected. Thus for plane stress:   
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in all cases, which is  easier to use than the  invalid Norris criteria.  

In general, eq. (11.3.21) applies for the 3-axial stress state, as 

also is discussed in [1]:  
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This 3-d approach is applicable when there are no initial flat 

cracks. In this eq. (11.3.21), 4  is the rolling shear and, 2  and 

3  are the normal stresses in the tangential and radial planes. In 

this equation too, 12F  = 0 should be assumed.  

It thus can be concluded that the critical distortional energy 

criterion, reduced when 12F  = 0, to the critical strain energy 

criterion, also has to be used as a lower bound of the ultimate 

failure condition.  
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11.4. CONCLUSIONS REGARDING  

THE FAILURE CRITERION 

 

 The tensor polynomial failure criterion is shown to be 

regarded as a polynomial expansion of the real failure 

criterion.  

 It is also shown (Appendix II), that the second degree 

tensor-polynomial yield criterion represents the critical 

orthotropic distortional energy principle for initial yield.  

 Initial yield in transverse direction, thus follows the second 

degree polynomial eq. (11.2.15). For compression 

(perpendicular to grain), strong hardening is possible 

leading to the isotropic strength behavior (independent of 

orientation), at the strain where all empty spaces are 

pressed away.  

 For longitudinal initial yield in the radial plane, the third 

degree polynomial eq. (11.2.42), (with 12F  = 122F  = 0), 

applies in a stable test, while in the tangential plane 122F  = 

112F  = 12F  = 0. When early failure instability occurs in the 

test at initial crack extension, as for instance in the 

oblique-grain tension test, or for shear with compression in 

the “Schereisen” test, there are no third and higher degree 

terms also not in the radial plane. Higher degree terms thus 

are due to hardening, depending on the type of test, and 

due to meta stable crack propagation after initial yield.  

 The third degree polynomial hardening terms of the failure 

criterion are shown to represent  (in Chapter 2 or in § 10.5 

of [3]), the theoretically derived, Wu-mixed-mode I-II 

fracture equation, showing hardening to be based on 

hindered micro-crack extension and micro-crack arrest. 
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This also applies for kink-band and slip line formation of 

compression failure, eq. (11.2.35), which is a variant of 

shear failure according to the mixed mode Wu-equation. 

Important is the conclusion that the failure criterion shows 

that micro-crack extension is always involved in fracture 

processes. The derivation of the new fracture mechanics 

theory, is therefore based on micro-crack extension. In § 

10.2, the exact derivation is given of the geometric 

correction factor for small crack extension towards the 

macro-crack tip. This correction factor appears to be 

numerical the same as for macro-crack extension. 

 Because in limit analysis, the extremum variational 

principle applies for initial “flow” and thus the virtual 

work equations apply, where the variations are sufficiently 

small enough to get a linear irreversible process, so that  

the plastic potential function exists, which is identical to 

the yield function at flow, and for which the normality rule 

applies. This  applies for the derived orthotropic critical 

distortional energy criterion, making complete exact 

solutions possible, and thus reliable strength predictions in 

all circumstances. 

 Wood behaves like a reinforced polymer. The absence of 

coupling term 12F =0, between the normal stresses in the 

main planes, means that the reinforcement takes only 

normal loading, causing the wood-matrix to carry the 

whole shear loading. Therefore also, 122 0F  . The 

reinforcement then is the most effective, as flow of the 

reinforcement occurs.  

 Failure of the matrix occurs before flow of the 

reinforcement. This follows  for Balsa wood, which is 

highly orthotropic, but shows the isotropic ratio of the 
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critical stress intensities of the isotropic matrix material at 

failure at initial flow. For dense, strong (thus with a high 

reinforcement content), clear wood, this is shown by the 

oblique crack extension Figure 2.3.2, showing the isotropic 

oblique angle at the start of shear crack extension, and thus 

shows the matrix to be determining for initial failure. It is 

therefore a requirement for an exact orthotropic solution, 

applicable to wood, to satisfy the equilibrium condition for 

the total orthotropic stresses, as well as for the isotropic 

stresses in the matrix at failure. This last condition is not 

satisfied in all other existing fracture mechanics models.  

 Early failure of the matrix causes stress redistribution of 

mainly shear with compression in the matrix and increased 

tensile stress in the fibres. The measured negative 

contraction for creep in tension indicates this mechanism. 

As in reinforced concrete, truss action is possible, as 

noticeable by the strong negative contraction coefficient 

(swelling instead of contraction) in the bending tensile 

zone of the beam. Failure in compression is determined by 

the difference in the principal compression stresses. Thus 

the maximal shear stress or Tresca criterion applies. The 

necessary validity of the Tresca criterion is confirmed by § 

11.5, [15, 16], where the strongly increased (sixfold) 

compression strength under the load of locally loaded 

blocks and the increased embedding strength of dowels is 

explained by the construction of the equivalent slip line 

field in the specimen based on the Tresca criterion. In 

addition, the many apparent contradictions of the different 

investigations are explained by this theory. This strong 

increase of the compression strength is due to confined 

dilatation by real hardening (when the empty spaces in 

wood are pressed away).  
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 The initial yield equation for uniaxial loading can be 

resolved into factors containing the Hankinson equation 

for tension and compression for n = 2. Thus when the 

Hankinson parameter n in eq. (11.2.19) is n = 2, in tension 

and in compression, all higher degree terms are zero. This 

applies for clear wood, depending on the type of test. It 

also is probable that this is a general property for timber 

[11], due to preferred failure of the tangential plane.  

 The yield equation for uniaxial loading  which contains 

higher degree terms, can be resolved in factors of the 

extended Hankinson equations, eq. (11.3.1) for tension and 

compression when n in eq. (11.2.19) is different from n = 

2.  

 For wood, at least in the radial plane, after hardening in a 

stable test, the combined compression - shear strength 

depends on the third degree coupling term 266F , or 166F

giving the parabolic Mohr- or Wu- equation of fracture. 

This is theoretically explained in [9] by micro-crack 

propagation in grain direction. This increase of the shear 

strength is an equivalent hardening effect due to crack 

arrest in the worst direction by strong layers. It is shown 

that the increase of the shear strength, by compression 

perpendicular to the shear plane, is not due to Coulomb 

friction which is too small for wood.  

 Because of the grain deviations from the regarded main 

directions, there is always  combined shear-normal stress 

loading in the real material planes where eq. (11.2.27) 

applies. 112F  is due to misalignment of the vertical cells by 

rays in the radial planes.  

 Therefore, for wood in longitudinal compression in the 

radial plane, this micro-crack failure mechanism is 
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determining, giving high values of 266F  and 112F , close to 

their bounds of C ≈ 0.8 to 0.9.  

 The same that is found for 266F  as a function of 2 , is to 

be expected for 166F  as a function of 1 . This is given in 

Figure 11.9.  

 For wood in longitudinal tension, 12F , 112F  and 122F  are 

zero and only 166F  and 266F  remain in the radial plane as 

higher degree terms, in stable tests showing a different 

type of failure than for longitudinal compression.  

For longitudinal compression, at 6  = 0, equivalent slip 

line hardening (high 112F ), as well hardening by confined 

dilatation is possible (showing a negative 122F  and 12F ). 

This last type of hardening occurs only in the torsion tube 

test, because the negative 122F  and 12F  of [6] predict the 

compression peak of Figure 11.8 in the oblique grain test, 

that does not occur by the lack of hardening in the oblique 

grain test. This  will also be so for structural elements and 

the lower bound criterion with only 166F  , and 266F  (and 

zero 12F , 112F  and 122F ) is probably more reliable (hyp 2 

fits better than hyp 4 in Table 1) for longitudinal 

compression failure in the radial plane. In the tangential 

plane  166F  and 266F  are also zero, making the second 

degree criterion determining. 

In general  eq. (11.3.21) applies for the 3-axial stress state, 

as is discussed in [1]: 
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where 4  is the rolling shear and 2  and 3  are the 

normal stresses in the tangential and radial planes and 

where it is assumed that 12F  = 0 as applies for longitudinal 

tension.  

 Equations (11.2.28) and (11.2.44) can be used for 

analyzing test data. Because it is questionable that the 

hardening by confined dilatation or crack arrest may occur 

in all circumstances, because it depends on the type of test, 

the hardening contained by the third degree terms should 

be omitted for a general application.  

 Therefore the second degree polynomial, eq. (11.3.20) or 

eq. (11.2.45), for plane stress is:  

2 2 2

6 1 1 1 2 2 2

2
1
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      
      

,  

which should be used for initial yield and for ultimate 

failure for the Codes and, as initial yield equation, it 

applies for the 5th percentile of the strength as well. 

 Only this derived extension of the von Mises criterion 

contains  (for orthotropic materials), the necessary 

independent value of the interaction constant as 12F  and 

accounts for different tension- and compression strengths, 

and is able to give the strength in any direction in the 

strength tensor form.  

 The ultimate stress principle for failure, eqs. (11.3.14), 

(11.3.15) and (11.3.16), does not apply for the general 

loading case and only applies locally and approximately 

for  uniaxial loading. These equations  are also predicted 

by the fracture mechanics singularity method [2], showing 
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that this method, which always is applied in fracture 

mechanics for all materials, is not right and should not be 

used.  

 The Norris equations are not generally valid and are only 

for uniaxial loading identical to the Hankinson equation 

with n = 2, when the proper (mostly) fictive shear-strength 

is used. This equation thus should not be used anymore.  

 There thus  is no reason not to  apply the exact general 

criterion  for the future Codes for all cases of combined 

stresses. Only this criterion gives the possibility of a 

definition of the off-axis strength of anisotropic materials.  

 It was shown for the first time  in A(1982) of iews.nl, that 

the tensor polynomial failure criterion applies to wood. 

Also shown is, that the fourth-degree and higher-degree 

polynomial terms have no physical meaning and thus are 

zero. Only the third-degree polynomial part is identical to 

the real initial flow criterion, while the third degree terms 

represent deviations from orthotropic behavior and 

represent post initial flow hardening behavior, the 

numerical value of which depends on the stability of the 

test specimen and testing device.  

 For uniaxial loading, the failure criterion can be resolved 

in factors leading to the derivation of extended Hankinson 

equations. This provides a simple method to determine all 

strength parameters by simple uniaxial, oblique grain 

compression and tension tests. Based on this, the numerical 

failure criterion is given with the simple lower bound 

criterion for practice and for the codes.  

 The existence of an isotropic matrix in wood (lignin with 

branched hemicellulose) follows not only from material 

analysis, but  as mentioned, from the high compression 

strength at confined dilation with the absence of failure by 
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triaxial hydrostatic compression which is not the case for 

orthotropy, because then, for equal triaxial stresses, the 

strains then are not equal and yield remains possible. 

 Plastic flow in wood, starts with the propagation of empty 

spaces by segmental jumps, just as the dislocation 

propagation in steel and the possibility should be 

accounted that there is no change in density at initial flow 

(as for steel) and the plastic incompressibility condition 

should be accounted for as a possibility, and as follows 

from the normality rule of flow in combination with 

perfect plasticity, the Tresca criterion (maximal shear 

stress criterion)  then should also apply. By the dissipation 

according to the incompressibility condition, the minimum 

energy principle is followed providing the lowest possible 

upper bound and therefore the closest to the exact flow 

criterion. Limit analysis of the matrix therefore has to be 

based on incompressibility and the Tresca criterion.  

 It has to be stressed, for the virtual work equations of limit 

analysis, that neither the chosen equilibrium, nor the 

compatible strain and displacement set need not be the 

actual state, nor do the equilibrium and compatible sets 

need to be related in any way to each other. 

 The loading curve up to yield and failure also should be 

described by deformation kinetics [7] to adapt for 

temperature, time and loading rate influences.  
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Chapter 12 

 

 

 

CONCLUSION 
 

 

APPENDIX I: DYNAMICS OF CRACK PROPAGATION 

 

The dynamic extension of the Griffith theory is given by Berry 

in: Some kinetic considerations of the Griffith criterion for fracture 

I and II: J. Mech. Phys. Solids, 8, (1960) 194-206 and 207-216. 

Regarding the test specimen of Figure 3.1, assuming plane 

stress, the work done by the external forces is: 

 

2 21 2 / / 2i i iW bl c bl E       (A1) 

 

Including the apparent surface energy 4 ic  gives as total 

energy:  

 

2 21 2 / / 2 4i i i iV bl c bl E c         (A2) 

 

When the crack extends at constant 
i , the total energy V will 

be:  
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2 21 2 / / 2 4i i iV bl c bl E c K          (A3) 

 

where K is the stored kinetic energy. The work 
iW W  done by 

i  during the extension is:  

 

( )i i iW W bl       (A4) 

 

where , i   are the strains corresponding to crack lengths , ic c . 

Thus:  

 
2 2 22 ( ) /i i iW W c c E     (A5) 

 

Equating this to 
iV V  gives:  

 
2 2 2( ) / 4 ( )i i ic c E c c K      (A6) 

 

Writing: 24 / i in E c    this is:  

 
2 2(1 / )[1 ( 1) / ] /i i iK c c c n c c E      (A7) 

 

On dimensional grounds is: 

 
2 2 2 2/ 2i cK k c v E   (A8) 

 

where /cv dc dt  velocity of crack extension,   the density and k 

is a constant. From the last 2 equations, it follows:  

 

   2 22
1 1 1 1 1 1i i i i

c m

E c c c c
v n v n

k c c c c





      
             

      
 (A9) 
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where 2 / 0.38 /mv E k E     is the maximum velocity of 

crack extension.  

Differentiating eq. (A9) gives the acceleration of the moving 

crack tip:  

 

 
2

2 1c i idv Ec c
n n

dt k c c





 
   

 
 (A10) 

 

It follows from eq. (A9) that the crack velocity is zero when 

ic c  and from eq. (A10), that for n = 2, the acceleration of crack 

extension is zero also. For n = 2 is 2 2i ic E   , which is the 

Griffith equation. Thus the crack of Griffith length is in unstable 

equilibrium but does not propagate. For 2n  , is i g  , the 

Griffith stress, the crack propagates. This explains why the whole 

yield drop curve could be measured by Bostro ̈m in his thesis, see: 

§ 3.8 - [3], without instable crack extension.  

 

 

APPENDIX II: DERIVATION OF THE ORTHOTROPIC 

CRITICAL DISTORTIONAL ENERGY PRINCIPLE 

 

It was shown for the first time  for wood, in A(1982), that the 

second degree tensor-polynomial describes initial “flow,” which is 

shown,  to represent the orthotropic extension of the critical 

distortional energy criterion providing an exact flow criterion as 

the necessary basis for exact solutions according to limit analysis.  

Because the matrix of wood material is isotropic and therefore 

may sustain large hydrostatic pressures without yielding, yield 

depends on a critical value of the distortional energy. This energy 
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dW  is found by subtracting the energy of the volume change from 

the total strain energy. Thus for the isotropic matrix material this 

is:  

 

dW  = 
     2 2 2 2 2 21 1

2
x y z x y y z z x xy yz xz

E E E

 
           

 
            

 

 

  
21 2

6
x y z

E


  

 
     
 

 

        
2 2 2 2 2 21 1

6 2
x y y z z x xy xz yz

E G


        


            

 (B.1) 

 

where i  are the normal matrix stresses, i  the shear stresses, E 

the modulus of elasticity, G the shear modulus and   Poison’s 

ratio of the matrix material following 2G = E/(1 + ν).  

Wood has to be regarded as a reinforced material and initial 

failure is due to failure of the isotropic matrix. This is shown in § 

3.8 – [1], leading to a new fracture mechanics theory and a new 

transformation of the Airy stress function, making exact solutions 

possible as applied for the derivations of the Wu mixed mode I-II 

fracture criterion and the derivations of the correct fracture 

energies and the relation between mode I and II stress intensities 

and energy release rates. According to § 3.8 – [1], the matrix 

stresses can be expressed in orthotropic stresses as follows:  

The stress in wood ,x or  is 1n  times the stress in the matrix x  

due to the reinforcement in x-direction: , 1( / )x or x x xE E n      , 

while the reinforcement in y-direction is regarded to belong to the 

matrix, thus ,y or y   and yE E  of the matrix. For the shear 
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stress, the multiplying factor is 6 (2 ) /xy yx xyn G E     . Thus, 

xE , yE , xyG , xy  and yx  are the orthotropic values of wood due 

to the reinforcements.  

Eq. (B1) applies for a material with equal tension and 

compression strength. For unequal axial strengths, the failure 

condition  in x-direction is ( ) ( ') 0x xX X     , where X is 

the tensile strength and 'X is the compression strength, as given 

in Figure 1a.  

This condition can be written as:  

 

2 2
' '

2 2
x

X X X X


    
    

   
 or: x xp X      (B.2) 

 

The behavior is identical to that of a material with equal 

tension and compression strengths of X  being pre-stressed by 

stress xp .  

This result follows from the applied linear transformation. 

Because eq. (B.1) is a physical property, it should be independent 

of the chosen vector space and according to the additivity rule of 

linear mapping (linear transformation) is f(x + y) = f(x) +f(y), or in 

this case f ( ) p f ( )  + f ( ) p  giving:  

 

 

Figure 1a. von Mises criterion for wood.  
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f ( )  = f ( ) p  f ( ) p  (B.3) 

 

Substitution of x xp  , y yp   and z zp    respectively for 

x , y  and z  in eq. (B.1) gives:  

 

 
2 2

2, , , ,

, , , ,

1 1 1 1

x or x or x or x or

y or y y or y z or z z or y

p p
p p p p

n n n n

 
   

   
              

   

 

26 / 2ij in C    ( 6 / (1 )dEW   )  

 

and after subtraction of f ( ) p  this is:  

 
2

, ,, , , , ,2 2

, , , ,2

1 1 1 1 1

2x or y orx or x or z or x or x or

y or z or z or y or y z

p
p p

n n n n n

    
   

 
         

 

 

, , 2

,

1 1

2 2 3 /
x or x or

y z z or z y y ij i p

p p
p p p p n C

n n
  

   
            
   

 

 + f(- p) + C = 3 / (1 )dC EW     (B.4) 

 

with: 

 

f(- p)
2 2 2 2

, 1 , 1 , 1/ / /x or z x or z z x or pp n p p pp n pp p p n C       . 

 

This follows from inserting x xp  , y yp p    and z zp   

in eq.(B.1).  

Of interest for failure by flat crack propagation is the plane 

stress equation with 0z zp   ; 0xz yz    and with 

,y y orp p p  , giving for eq. (B.4): 
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22 2
, , ,, , , ,

2 2

1 1 1 1 1 6

2 2 3 1
' ' ' ' ' '

x or y or y or yx or x or x or x or or
p p

p p
C n C n C C n n C n C n

         
          

      

 

 (B.5) 

 

For , 0y or or   , eq. (B.5) becomes:  

 
2

, , ,

2

1 1 1

2 1
' '

x or x or x orp
p

C n C n n

   
   

   
  

 

This is identical to , ,( )( ') 0x or x orX X    , or to:

2

, ,( ' ) ' 0x or x orX X XX     , showing that: 

 1 ,2 'x orpn p X X   , and 
2

1' 'C n XX  . The same applies in 

the perpendicular y-direction for the uniaxial tension and 

compression strengths Y and 'Y  giving ' 'C YY  and 

 , 1/ 2 'x orp n p Y Y   . 

This last result is to be expected because according to the 

molecular theory, the strength is proportional to the E-modulus 

and thus is 
2

1' '/YY XX n  and 1' ( ')X X n Y Y   . Then also is 

, 1 1/ ' ( ') /x orp p n Y Y X X n     , and eq. (B.5) becomes:  

 
22 2

, , , ,, ,

2 2

1 1 1 6

3 1
' ' ' ' ' '

x or y or y or y orx or x or orp p
C n C n C C n C C n

     
     

   
  

or: (B.6) 

 
22 2
, , ,, , ,

12 , , 2
2 1

' ' ' '

y or y or y orx or x or x or or
x or y orF

XX X X YY Y Y S

     
           

 (B.7) 
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where S  is the shear strength and: 

 

12 12 1/ ' 1/ ' 'F C n XX YY    (B.8) 

 

This value of 12F  applies for the elastic state. At initial stress 

redistribution and micro-cracking of the matrix and 12F  becomes 

lower, reaching a near zero value at yield or failure initiation. This 

may indicate an early dissipation of the elastic distortional energy 

for formation of initial micro-cracks. This dissipation of 

distortional energy is according to the incompressibility condition 

and thus follows a minimum energy principle of yield. At the end 

of this stress redistribution, yield occurs according to eq. (B.7) 

with 12 0F  . This  means an absence of coupling terms between 

the normal stresses. This  is only possible when the reinforcement 

takes the whole normal loading and no shear, causing the matrix to 

fail by shear and the critical distortional energy principle thus 

reduces to the Tresca criterion. The necessary validity of the 

Tresca criterion is confirmed in [17, 18] of § 11.5, where the 

strongly increased (6-fold) compression strength under the load of 

locally loaded blocks and the increased embedding strength of 

dowels and nails is explained by the construction of the equivalent 

slip line field in the specimen, using the Tresca criterion. The 

Tresca criterion satisfies the normality rule and thus inherently the 

theorems of limit analysis for matrix failure. The normality rule 

thus does not apply for hardening. This condition is shown to be 

replaced by the minimum work condition for dissipation 

represented by the yield equation and the hardening state constants 

dC  and tC  of eq. (11.2.20). Thus, after initial yield, shear strength 

hardening is possible according to the mixed mode Wu equation 
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and finally when the empty spaces in wood are pressed away, real 

hardening is possible by confined dilatation at locally compression 

loading of the isotropic matrix. This is discussed in Section D – 

publications of iews.nl. 

 

 

APPENDIX III: TRANSFORMATION OF  

STRENGTH TENSORS: FIJ 

 

 

Positive rotation about the main 3-axis (z-axis). 

 

 

Positive signs in right handed coordinate system. 
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Sign convention for shear: If an outward normal of a plane 

points to a positive direction, the plane is positive, and if on a 

positive plane the stress component acts in the positive coordinate 

direction, this component is positive. 

In the x’, y’ coordinates of figure above the strength tensors 

are: 

 

 
 

The principal strength components are: 

 

 
 

Transformation about the 3- axis gives: 

 

1 2 1 2
1

F F F F
F ' cos(2 )

2 2

 
   ; 1 2 1 2

2

F F F F
F ' sin(2 )

2 2

 
    

 6 1 2F ' F F sin(2 )    ; 3 3F ' F ; 4 5F ' F ' 0    
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F’ij invariant Cos2   Sin2   Cos4  Sin 4   

F’11 I1 I2 0 I3 0 

F’22 I1 - I2 0 I3 0 

F’12 I4 0 0 - I3 0 

F’66 4I5 0 0 - 4I3 0 

F’16 0 0 - I2 0 - 2I3 

F’26 0 0 - I2 0 + 2I3 

F’13 I6 I7 0 0 0 

F’23 I6 - I7 0 0 0 

F’36 0 0 - I7 0 0 

F’44 I8 I9 0 0 0 

F’55 I8 - I9 0 0 0 

F’45 0 0 I9 0 0 

F’33 F33 0 0 0 0 

 

Read e.g., F’11 = I1 + I2cos2  + I3cos4  

 

 1 11 22 12 663 3 2 3 / 8I F F F F    ; 

 2 11 22 / 2I F F  ; 

 3 11 22 12 662 / 8I F F F F    ; 

 4 11 22 12 666 / 8I F F F F    ; 

 5 11 22 12 662 / 8I F F F F    ; 

 6 13 23 / 2I F F  ;  

 7 13 23 / 2I F F  ; 

 8 44 55 / 2I F F  ;  

 9 44 55 / 2I F F  . 
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