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Fast long-distance control of spin qubits by photon-assisted cotunneling
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We investigate theoretically the long-distance coupling and spin exchange in an array of quantum dot spin qubits
in the presence of microwaves. We find that photon-assisted cotunneling is boosted at resonances between photon
and energies of virtually occupied excited states and show how to make it spin selective. We identify configurations
that enable fast switching and spin echo sequences for efficient and nonlocal manipulation of spin qubits. We devise
configurations in which the near-resonantly boosted cotunneling provides nonlocal coupling which, up to certain
limit, does not diminish with distance between the manipulated dots before it decays weakly with inverse distance.
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I. INTRODUCTION

Photon-assisted tunneling (PAT) is an inelastic process
where an electron overcomes a barrier by emission or ab-
sorption of photons [1]. It shows up as additional peaks in the
tunneling current with sidebands occurring at multiples of the
photon frequency [2]. Although observed in superconductors
already 50 years ago [3], it took three decades to establish it in
other systems as well [4], including semiconductor quantum
dots based on two-dimensional electron gases [5–11], the
structures of primary interest here [12]. With the help of a
microwave field, various forms of charge [13,14], spin [15],
and photon [16] pumps were demonstrated. The adiabatic
(parametric) [17–21] or photon-assisted [22–26] pumping
has potential use in metrology, spintronics, and quantum
information processing [27,28].

Rich opportunities offered by time-dependent control
fields [29,30] motivate us to investigate microwave-assisted
manipulation of spin qubits. In particular, we consider here a
linear array of electrically controlled quantum dots [12,31,32]
and analyze electron transfer and spin exchange between dis-
tant (non-neighboring) quantum dots [33–37]. Such nonlocal
manipulations are higher order processes in the interdot tun-
neling amplitude (referred to as cotunneling), which proceed
through virtually excited dot states (henceforth we refer to
these as virtual states for brevity) [38].

We demonstrate that photon-assisted cotunneling
(PACT) [38,39] opens up new possibilities due to the
straightforward tunability of microwaves. Indeed, in contrast
to standard electrostatic tuning of dot levels by gates [40],
PACT allows one to tune to any virtual state [41–43], not
just the lowest one. Using Floquet theory, we find that
cotunneling amplitudes get boosted near such resonances.
Moreover, the virtual states possess spin structure (due to
on-site exchange interaction) that results in spin-dependent
cotunneling. This dependence can be exploited, for example
for spin-charge conversion, and further be tailored by spin
echo protocols. Finally, tuning to a Bloch band of delocalized
virtual states produced by an array of coupled dots generates
exceptionally long-ranged interactions that enables coupling
between distant spin qubits. Overall, we demonstrate that
PACT offers striking advantages over standard gate control

of spin qubits in terms of speed, long-range coupling, and
nonlocality.

This article is organized as follows. In Sec. II we introduce
the model of the driven spin qubit array, and state and discuss
the central result for the PACT amplitudes, Eq. (5). We apply
it to various specific configurations in the following sections.
In Sec. III we consider PACT in a three dot structure, and
point out the crucial difference between a real and virtual
resonance, as only in the latter case microwaves offer a speed-
up in cotunneling. In Sec. IV we demonstrate the use of spin
echoes for PACT. In Sec. V we show that, in complete analogy
to the electron transfer (Sec. III), the microwaves can boost also
the nonlocal spin-spin exchange. In Sec. VI we generalize to
an array with many dots and demonstrate the long-distance
scaling of PACT amplitudes. In Sec. VII we analyze the errors
arising during PACT, and identify their two main sources as
being the incoherent leakage and the coherent charging. We
show how these can be controllably limited under realistic
conditions. In Sec. VIII we compare PACT with cotunneling
schemes based on electrostatic gating. To keep the flow of the
text, we postpone detailed derivations of the main formulas to
the three Appendices.

II. MODEL

We investigate PACT first on a linear array of three driven
tunnel-coupled dots and subsequently extend it. The model
Hamiltonian

H =
∑

α

[
Hα

0 + Hα
D(t)

]+ HT (1)

is a sum of, respectively, single-dot confinement, driving, and
interdot tunneling terms. Each dot α = A,B,C is created by
electrostatic confinement, which defines a set of single-particle
dot states (with corresponding fermion creation operator c

†
αiσ )

and energies

Hα
0 =

∑
i,σ

εα
iσ c

†
αiσ cαiσ + Hα

int ≡
∑

k

εα
k |k〉αα〈k|. (2)

Here the orbital index i and spin index σ label the states.
A uniform magnetic field B sets the spin quantization axis,
and enters the energies through the Zeeman term εα

iσ = εα
i +
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σg∗μBB/2, according to the electron g-factor g∗, and the Bohr
magneton μB . We neglect spin-orbit and hyperfine interactions
and consider below only spin-conserving nearest-neighbor
tunneling in Eq. (1), which then commutes with the Zeeman
term and conserves the total spin. However, we do estimate the
errors originating form these neglected terms and show that
they are very small for parameters of GaAs (see Sec. V B).

Instead of specifying the intradot Coulomb interaction Hα
int

for dot α, we introduce a Fock-like basis formed by many-body
states |k〉α with a different number of electrons. Specifically,
we consider states with zero (|0〉), one (|σ =↑ , ↓〉), and two
electrons. The latter comprise a spin singlet |S〉 split by the
exchange energy from the unpolarized triplet |T0〉 and the
two polarized triplets |T±〉. Thus, k ∈ {0; σ ; S,T0,±}. The array
is gated such that due to charging energy costs, the doubly
occupied states are relevant (and taken into account) only for
the middle dot. The total (antisymmetrized) many-body state
is written as |kA kB kC〉 ≡ |klm〉 with associated energy εklm.

The interdot tunneling is described by

HT =
∑
αβijσ

τ
αβ

ij c
†
αiσ cβjσ , (3)

where the amplitudes τ
αβ

ij are nonzero only between neighbor-
ing dots and, in general, depend on the single-particle levels
they connect.

The oscillating electrostatic potential of the dot α driven at
frequency ω with the amplitude Vα shifts simultaneously all
energy levels

Hα
D(t) = −

∑
i,σ

e Vα cos(ωt) c
†
αiσ cαiσ . (4)

Here e > 0 is the electron charge. This semiclassical de-
scription of the electromagnetic field allows us to exploit the
Floquet theory to derive the cotunneling amplitudes within a
time-independent formalism [44]. We arrive at

τco =
∑
Q,n

〈P|HT |Q〉〈Q|HT |R〉
εP − εQ + n�ω

Jn

(
eVPQ
�ω

)
JN−n

(
eVQR
�ω

)

(5)

as the cotunneling amplitude between the initial stateP and the
final state R proceeding by virtually exciting and de-exciting
a state Q (all being the states |klm〉). During the transition N

photons in total are absorbed, split to n and N − n at the two
steps. The resonance condition

εP + N�ω ≈ εR (6)

defines N . The amplitude of an n-photon process is propor-
tional to the nth Bessel function Jn and depends on the drop
of the driving voltage amplitude between the corresponding
states VPQ = VP − VQ. The latter are defined as the sum of
the dot driving amplitudes Vα weighted by the occupations
n(kα) (the number of electrons in state |kα〉),

VP = VAn(kA) + VBn(kB) + VCn(kC), (7)

assuming the many-body state P = |kAkBkC〉.
Equation (5) applies to a broad range of situations, which

we illustrate below on several examples. Before that, let us note
that it is a pertubative result, applicable if the excited states Q
remain virtual. Roughly, this is so if the absolute value of the

first term of each summand is less than one, limiting the photon
detuning from below. Appendix A gives a detailed discussion
of this condition [see Eq. (A23)], as well as the derivation
and generalization of Eq. (5). Interestingly, the same formula
allows one to quantify how much the virtuality condition
is broken, by introducing charging and leakage errors. The
charging errors are related to the adiabaticity of the turning
on/off [45] the PACT amplitudes. The leakage is characterized
by a rate by which the system leaves the desired computational
space, and is related to states lifetimes. To cover also the
continuum model, we postpone the quantification of the errors
to Sec. VII. However, we would like to stress already here
that we observe the restrictions on the validity of Eq. (5) in all
cases which follow.

III. PACT FOR INITIAL-FINAL AND VIRTUAL
STATE RESONANCES

We first discuss microwave assisted transfer of electrons,
which, if spin preserving, can transport spin qubits between
spatially separated storage and manipulation domains. Con-
sider the triple dot structure containing two electrons in the
“tunneling” configuration, sketched in Fig. 1(a). The middle
dot is gated below the outer dots and driven at frequency ω and
amplitude V . We are interested in the photon-assisted transfer
between the outer dots, with the initial state P = |σs 0〉 and
the final state R = |0 s ′σ ′〉, where σ,σ ′,s,s ′ =↑ , ↓ denote
spin. The virtual states Q then comprise the middle dot either
doubly occupied or empty.

A. Initial-final state resonance: The nonlocal PAT

We first consider an initial-final state resonance, which
refers to a configuration with these states offset in energy.
In analogy with the usual PAT, the N th sideband appears
at a frequency compensating the energy difference εR −
εP ≈ N�ω. In experiments this difference is typically small
compared to the charging energy. If we then neglect n�ω in
the first denominator of Eq. (5), we straightforwardly obtain
[see Eq. (A25)]

τco ≈
(∑

Q

〈P|HT |Q〉〈Q|HT |R〉
ε − εQ

)
JN

(
eVPR
�ω

)
. (8)

The first bracket is the standard (photon nonassisted) cotun-
neling. To illustrate, for typical interdot tunneling of order
tens of μeV and the charging energy of order meV (see, e.g.,
Table I in Ref. [46]), the cotunneling scale reaches order of
0.1 μeV. However, since the second term is smaller than 1
for any parameters, Eq. (8) shows that the photons can only
suppress the cotunneling amplitudes. It is the current across
the structure which can be boosted by microwaves by aligning
the states in energy at resonances [47]. We conclude that in
this configuration the photons can demonstrate the existence
of the nonlocal tunnelings, as was done in the experiment of
Ref. [38], but cannot boost their amplitude.

B. Virtual state near resonance: Cotunneling boost

The situation changes dramatically if the photon is matched
to virtual states. We call it a “virtual” resonance, defined by
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FIG. 1. (Color online) PACT setups: (a) Electrons tunnel between quantum dots A, B, and C, each singly occupied in the “exchange”
configuration, while a single charge on the outer dots is missing in the “tunneling” configuration. The virtual states (dashed) are the exchange
split singlet/triplet levels εS/T in dot B. The photon (dotted line) is resonant with the initial-final (IF) or virtual (V) states offset. (b) An array
of dots creating a Bloch band (stripe, blue) by aligning degenerate singlet/triplet levels (dashed, blue). (c) Long-distance manipulations. Dot
A is singly occupied, driven, and with the excited single-electron level (e) aligned with the band [same band as in (b)]. For electron transfer,
dot C is empty, and gated and driven the same as dot A. For spin exchange, dot C is singly occupied, undriven, and aligned to the band by an
exchange-split singlet level εS (as shown in the box).

the initial and final states tuned to degeneracy electrostatically
by gates, so that N = 0 applies in Eq. (5), and there is a value
of n and a set of states Q for which the offsets

δQ = εP − εQ + n�ω (9)

are much smaller than all other offsets [48]. Such terms
dominate the sum in Eq. (5) and other contributions can be
neglected.

The condition on the states Q being virtual excitations,
and thus on Eq. (5) being valid, limits these resonances to be
only near, or quasiresonances. It means the magnitude of the
offset δQ is limited from below. Here this condition limits
the maximal ratio of the photon-assisted amplitude to the
nonassisted amplitude to below eV/2τ0. To get this estimate,
we used Eq. (5) for weak fields V , restricted the sum to a single
near-resonant Q state, and denoted the larger of the two matrix
elements of HT as τ0. We thus obtain our first important result:
for τ0 � eV (weakly coupled dots), the cotunneling can be
boosted by microwaves without charging the middle dot by
exploiting the virtual state resonance.

We now analyze the spin dependence of cotunneling. We
first note that the virtual state Q = |k0l〉 (an empty middle
dot) in Eq. (5) leads to nonzero cotunneling only between
states P and R with simultaneously σ = s ′ and s = σ ′. The
lack of spin dynamics follows from the lack of any spin
structure of Q. We thus consider the more interesting case of
the photon frequency matched to doubly occupied states. To
grasp qualitative features, we consider a symmetric structure
with two single-electron orbitals per dot. This gives us four
relevant virtual states |0k0〉 with k being one of the triplets
T0,± or the singlet state S. Within this simple model the three
dots with two electrons are described by (see Appendix B for

the derivation)

H2 = 1 + ηx

2

[
Jσ o · σ i + Jzσ

o
z σ i

z + (σo
z + σ i

z

)
b + c

]
. (10)

Here the exchange energies are J = τ 2
V (δ−1

T0
− δ−1

S )/2, and
Jz = τ 2

V (δ−1
T+ + δ−1

T− − 2δ−1
T0

)/2, the effective Zeeman energy

is b = τ 2
V (δ−1

T+ − δ−1
T− )/2, and the spin independent en-

ergy is c = τ 2
V (δ−1

S + δ−1
T0

+ δ−1
T+ + δ−1

T− )/2. We denoted τV ≡
τJn(eV/�ω), with the nearest neighbor tunneling amplitude
scale τ = |τAB

12 |. The Pauli matrices η act in the pseudospin
space with up/down being an electron in dot A/C. Finally, the
superscripts o and i denote the spin of the outer (A/C) and
inner (B) dot electron, respectively.

The effective Hamiltonian H2 generates dynamics with
spatial and spin rotations, in general, intertwined. We first
inspect symmetries by noting that H2 commutes with the set
of operators {σo

z + σ i
z , σ o · σ i , 1}⊗{ 1, ηx}. They generate,

respectively, the total spin rotation around the z axis and
the spin-spin swap, combined either with an identity acting
in the charge degrees of freedom or with a charge swap between
the outer dots. The eigenvalues of these operators are therefore
conserved.

Next, we illustrate the degree of control that microwaves
offer considering special cases depicted in Fig. 2. First, at far
detuning, with all offsets approximately the same, δk ≈ δ [49],
the charge oscillates between the outer dots with spins frozen,
see Fig. 2(a). This follows immediately upon noting that for
such offsets the only nonzero energy in Eq. (10) is c. Second,
we take the microwave frequency halfway between the singlet
and the triplet states, δT = δ = −δS , which corresponds to
J = c, and the remaining energies zero. Although spins now
rotate, the charge is transferred between the outer dots with
spins returned to their initial state at time t0 = π�δ/2τ 2

V ,
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FIG. 2. (Color online) Time evolution of probabilities for a triple
dot with two electrons. The charge on dot A for spin-polarized (black)
and unpolarized (red dashed) electrons. The spin-down on the middle
dot for unpolarized electrons (green). The diagram on the right shows
the position of the photon frequency �ω relative to the offsets ε0k0 −
εσs0 of virtual states (labeled by k).

see Fig. 2(b). Compared to the previous case, the transfer
is faster since the offset δ is smaller. Third, we consider the
special case |δT±| 
 δT0 = δ = −δS . This case corresponds
to J = −Jz, while b = 0 = c, and arises if the g factor is
state dependent (different g factor or Overhauser field for
different orbital levels) [50] or if the magnetic field is spatially
dependent [51], and the external magnetic field tunes the
exchange to almost zero by orbital effects [52]. Alternatively,
the exchange can also be tuned electrically, if the single dots
of the array are replaced by singly occupied and bias-detuned
double dots [53] oriented perpendicular to the array axis. Now,
as shown in Fig. 2(c), at t0 the charge is transferred only
for unpolarized-spin configurations, effectively allowing for a
single-shot measurement of the total spin by a conversion to
charge. As we show below (Sec. V A), for typical parameters
the time scale t0 for such photon-assisted spin manipulations
can reach nanoseconds, so that PACT can outperform the
purely electrostatic schemes.

IV. SPIN ECHOES

Spin echo techniques are standard in spin control [54,55].
We demonstrate their usefulness for PACT on the charge
transfer discussed in the previous section (note that special
configurations given in Fig. 2, identified for efficient charge
transfer and spin-charge conversions, do not require any
spin echoes). We aim at transport that is generated by the
Hamiltonian H2 in Eq. (10) but robustly spin preserving
(independently on virtual state offsets). Such a transport
corresponds to a propagator

Ueff(t) = exp

(
− i

�
Heff t

)
, (11)

generated by an effective Hamiltonian

Heff = τ 2
V

4
(1 + ηx)

(
δ−1
S + δ−1

T0
+ δ−1

T+ + δ−1
T−

)
. (12)

The latter is the Hamiltonian in Eq. (10) with terms containing
σ matrices being removed. We find that this propagator is
realized by the following echo sequence:

Ueff(t) = U (t/4)�i
x�

o
yU (t/4)�o

yU (t/4)�i
x�

o
yU (t/4)�o

y,

(13)

where U (t) = exp(−iH2t/�) is the propagator generated by
the Hamiltonian at hand, and �i(o)

n is the inner (outer) spin π

rotation around axis n. We remind that with the echo pulses,
the Zeeman term needs to be considered explicitly, as it no
longer trivially factorizes from the evolution. Importantly, the
echo sequences given here remove also the Zeeman term.

The general sequence of Eq. (13) can be simplified for
special values of the virtual state offsets. For a uniform
magnetic field and a state independent g factor (for which
δT0 = δT− = δT+), we find

Ueff(t) = U (t/4)�i
xU (t/4)�i

yU (t/4)�i
xU (t/4)�i

y. (14)

Compared to the general sequence, it requires less single
electron flips, which, moreover, need to be performed on a
single particle only—we chose a form in which this is the
inner particle (located in the middle dot) though it can be
chosen as the outer dot electron as well.

In the case of a tuned singlet-triplet degeneracy shown in
Fig. 2(c), where δS = −δT0 and the offsets δT± are much larger,
we find a sequence

Ueff(t) = U (t/2)�i
zU (t/2)�i

z. (15)

Essentially, a single rotation suffices as the final rotation can
be absorbed into the definition of the measurement at the end
of the evolution.

V. EXCHANGE

Next, we consider the standard setup for a spin qubit based
quantum processor with single-electron dots (A, B, C) [12].
Can microwaves speed-up the interdot spin-spin exchange?
The standard derivation for tunnel coupled dots gives the
exchange as JAB ∼ 4τ 2/U with U being the single dot
charging energy [12]. Using cotunneling amplitudes derived in
the previous section, the analog of this formula gives a nonlocal
exchange JAC ∼ 4τ 2

co/U . Such terms indeed arise and are
enhanced by microwaves, but are subdominant. Namely, a
resonant microwave field required to enhance τco inevitably
boosts the nearest neighbor dot exchange JAB and JBC [56].
Since these are of order τ 2, the nonlocal exchange given above
(also known as superexchange [12,57]) of order τ 2

co ∼ τ 4

is negligible. It would then seem that the most efficient
way to induce nonlocal operations is to concatenate nearest
neighbor ones. Remarkably, we find that one can do better [58]:
simultaneously boosted pairwise spin rotations between dots
A-B and B-C can conspire to induce a fast and useful
interaction between the outer dots A and C without influencing
the mediator dot B for specially tuned microwave frequency
and/or if assisted by spin echoes. (For yet another alternative,
see the long-distance part below.)

To demonstrate this, we adopt the model described previ-
ously and, in analogy with the derivation of Eq. (10), derive

075302-4



FAST LONG-DISTANCE CONTROL OF SPIN QUBITS BY . . . PHYSICAL REVIEW B 92, 075302 (2015)

the Hamiltonian

H3 = HSWAP + Hd + Hz, (16)

describing the three dot structure gated as before, with the
middle dot detuned from the aligned outer dots, but now
containing three electron spins. In the above,

HSWAP = τ 2
V

δ−1
S − δ−1

T0

8

∑
α=A,C

(σα
+σB

− + σα
−σB

+ ) (17)

implements the spin SWAP between outer dots,

Hd = −τ 2
V d−1

+ |↑↓↑〉〈↑↓↑| − τ 2
V d−1

− |↓↑↓〉〈↓↑↓| (18)

describes by which the propagator departs from SWAP, and
the Zeeman-like term

Hz = −τ 2
V

∑
s

PsE
−1
s (19)

is a sum of projectors Ps on subspaces of total spin z projection
s ∈ {3/2,1/2, − 1/2, − 3/2} with the corresponding inverse
energies given by

E−1
s ∈ {2δ−1

T+ ,2δ−1
T+ + d−1

+ ,2δ−1
T− + d−1

− ,2δ−1
T−

}
. (20)

We denoted d−1
± = (δ−1

T0
+ δ−1

S )/2 − δ−1
T± and σ± = σx ± iσy .

Rather than giving explicitly the cumbersome analytical results
for the propagator generated by H3, we note that in the
configuration of Fig. 2(c) the error-causing term Hd affecting
the SWAP is small. Furthermore, since here δT+ ≈ −δT−
and d+ ≈ −d− to a very good accuracy, flipping all spins
at time t/2 around an axis perpendicular to the z axis
removes Hz (completely) and Hd (in the leading order)
from the time evolution. We once again find that PACT
qualitatively outperforms other schemes at specially designed
configurations [here the one of Fig. 2(c)].

A. Scale for PACT and nonlocal spin-spin exchange

The derivation of effective Hamiltonians H2 and H3

assumed the mediating states being occupied only virtually
[condition discussed in detail around Eq. (A23)]. This re-
quirement results in a limit on the photon offsets δQ from
below depending on the tunneling matrix element of the
corresponding state. The limit imposed on the photon detuning
is δ � cτV , with c > 1 a constant of order 1 [for example
c = 3; see Eq. (28) below]. Choosing typical values for
lateral gated quantum dots, with tunneling τAB

12 ∼ 20 μeV,
and the driving voltage amplitude eV one order of magnitude
smaller than the photon frequency �ω, well within the weak
driving regime, we get t0 � cπδ�/2τ 2

V ∼ c ns, the scale for
photon-assisted charge and spin oscillations. Among others,
this is the time scale for a spin-to-charge conversion depicted
in Fig. 2(c), and the analogous nonlocal spin-spin exchange
generated by HSWAP.

B. Estimation of errors from neglected terms

Let us now look at the errors with respect to the evo-
lutions derived above, caused by effects we neglected so
far: the interactions breaking the spin rotational symmetry
of the Hamiltonian, and the presence of additional states in the
Hilbert space.

First of all, we note that spin-orbit interactions do not
pose a serious problem in materials where their effects are
perturbative. Indeed, if the spin-orbit length lso is much larger
than the lateral dot scale l0, in symmetric dots a spin flip
during the tunneling is extraordinarily rare, suppressed by
factor (l0/lso)3, see Eqs. (35), (40), and (43) in Ref. [59].
For GaAs dots with typical parameters lso ∼ 1–10 μm and
l0 ∼ 30–100 nm, the spin-orbit interactions therefore lead to
corrections to effective Hamiltonians in Eqs. (10) and (16) of
relative weight below 10−3.

Second, in magnetic fields of order Tesla, which are typical
for experiments with spin qubits, the effects of hyperfine
spins on tunnelings are typically even smaller than those of
the spin-orbit interactions (unless the nuclei are polarized
intentionally). This follows from theoretical estimates on spin
relaxation [60], and experimental demonstrations in nuclear
spin polarization [61]. Concerning PACT, more important
effects of nuclei will be the quasistatic energy fluctuations
of the virtual states. We account for this below by taking the
virtual states with a nonzero spectral width.

Next, we consider the presence of additional states in the
spectrum, denoted as Q′, which corresponds to additional,
unwanted, channels for the cotunneling. An example is the
virtual state (σ0s), involving a different charge configuration,
or (0S ′

20), involving an orbitally excited state [see Eq. (B1c)
for notation details]. These states are offset by energies
δQ′ , which are given by the charging and orbital excitation
energy, respectively, both of order meV. The relative weight
of the unwanted channel [compared to the desired channel
proceeding through state(s) Q] is given by the ratio of the
photon offsets δQ′/δQ. To reduce it, it is beneficial to reduce
the interdot tunneling itself (say, to few μeV), which then
allows one to reduce δQ to a comparable value. This finally
leads to very small relative weights of the unwanted channels,
being of order 10−3.

From the above we conclude that the dominant error in
the most useful scheme in Fig. 2(c) will be due to the finite
value of the splitting of the polarized triplets. According to the
previous estimates, the Zeeman energy in GaAs of 25 μeV/T
then gives an error of order 10−2 at a splitting corresponding
to a field of a few Teslas. Importantly, as we discussed below
Eq. (20), these dominant errors can be further suppressed by a
straightforward spin echo pulse.

VI. LONG-DISTANCE SCALING

To investigate the PACT amplitudes scaling with distance,
we expand the array to M − 1 singly occupied dots with
uniform interdot tunneling as depicted in Fig. 1(b). The
structure is tuned such that there is a band of virtual states
(indexed by q) delocalized over the whole array [the tuning
is detailed in Fig. 1(c)] with wave functions and energies (see
Appendix C for details)

�q(j ) =
√

2

M
sin

(
πqj

M

)
, εq = εB + 4τ sin2

( πq

2M

)
,

(21)
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with j the position in the array, the virtual states bandwidth
given by the nearest neighbor tunneling τ , and the integer
indexes take values q,j ∈ [1,M − 1].

We now adopt the continuum limit, appropriate for M 
 1.
This, however, requires care to maintain the condition on the
mediating excitation being virtual, so that Eq. (5) remains
valid. Namely, if the photon is tuned inside the band, Eq. (5)
shows spurious divergences (because δQ → 0 for some Q),
and the result of its evaluation depends also on the order of
the limits M → ∞ and δQ → 0. This unphysical behavior is
removed by taking into account a finite lifetime of the states.
We do so phenomenologically by adding an imaginary part to
the energy with typical value γ (up to 1 μeV for gated quantum
dots), by which Eq. (5) becomes

τco = τ 2
V

∑
q

�
†
q(jA)�q(jC)

δ − εq + iγ
, (22)

with the band detuning δ = εA − εB + n�ω, and the manip-
ulated dot positions jA, jC , so that their spatial distance is
d = jC − jA. Apart from extending the validity of Eq. (5)
for any detuning [62], the physically motivated regularization
by γ has another great advantage: as shown in detail in
Appendix C [see Eq. (C9)], the imaginary part of Eq. (5)
for P = R corresponds to the leakage �, the rate by which
the system leaves the desired computational subspace. The
beneficial and detrimental effects following from the presence
of the mediating states Q can then be compared quantitatively
as τco versus �, both of these having the functional form of
Eq. (5).

To proceed with such comparison, we assume the manipu-
lated dots are not too close to the array edges [63]. We can then
replace the band wave functions by plane waves and reduce the
numerator in Eq. (22) to a phase factor eiφq . In the continuum
limit we estimate (see Appendix C)

τco ∼ 2τJ 2
n

(
eV

�ω

)√
τ

δ
× min

{
1,

4

π2

d0

d

}
, (23)

with a crossover distance d0 = √
τ/4δ. Both the cotunneling

amplitude and spatial range are boosted by tuning the photon
energy to the band edge (decreasing δ).

The minimal allowed value for δ is set by the leakage. With
similar approximations as before we get (see the next section
for the calculation, and for the analysis of additional errors due
to finite occupations of virtual states)

�� ∼ 2τJ 2
n

(
eV

�ω

)√
τ

δ
× γ

δ
. (24)

We singled out the last term being the factor of suppression of
the leakage with respect to the cotunneling. We get the natural
result that the cotunneling is ultimately limited by the states
lifetime �/γ .

The inverse distance decay, 1/d for d > d0, originates
from destructive interferences of the phases φq , a general
feature [64–66]. Such interferences do not influence the
incoherent leakage, which will therefore ultimately domi-
nate at large distances. However, for intermediate distances,
Eq. (23) gives the rate for a useful spin-preserving nonlocal
electron transfer or spin-spin exchange [depending on how the
manipulated dots are gated, as described in Fig. 1(c)]. Using

γ = �/T ∗
2 , with the inhomogeneous dephasing time typical for

GaAs gated quantum dots T ∗
2 = 10 ns, and τ = 100 μeV, we

get d0 = 6 for detunings at which the cotunneling is one order
of magnitude larger than the leakage. For these parameters,
Eqs. (23) and (24) predict that the cotunneling dominates the
leakage for manipulations up to the 26th nearest neighbor.
This result is a remarkable demonstration of how microwaves
could enable coherent long-distance manipulations in spin
qubit arrays.

VII. LEAKAGE (INCOHERENT) VS CHARGING
(COHERENT) ERRORS

In the previous section we have characterized the incoherent
decay of information encoded in the system by the leakage
rate �. Since a time necessary for an operation induced by
cotunneling scales as �/τco, Eqs. (23) and (24) give a very
simple relation

Pincoh ≡ � × (�/τco) ∼ γ /δ, (25)

for the probability of an incoherent error to occur during a
typical nonlocal manipulation.

We now consider errors of different (coherent) origin, which
we call charging errors. To understand how they arise, consider
two levels energy split by �q with a time dependent coupling
τq(t). With the system being in the ground state initially,
the coupling is switched on from zero to a finite value τq .
Assuming that the wave function did not change during the
switch on, the upper state amplitude is

a2(t) = −ie−i
�q

2�
t τq

�ωq

sin ωqt, (26)

where �
2ω2

q = �2
q/4 + τ 2

q . The system displays small am-
plitude and fast frequency oscillations resulting from the
sudden change of the Hamiltonian. This results in the system
being possibly found in the excited state after the coupling is
switched off, an unwanted charging error. A crucial difference
to the incoherent errors is that the probability of the coherent
error is oscillatory (does not grow with time on longer time
scales) and that the higher state coherent excitation is, in
principle, reversible. Indeed, choosing the coupling switch-off
time at t = nπ/ωq , with n integer, there will be no charging
error.

However, if there are many excited states present, their
populations can hardly be made to vanish all simultaneously.
Moreover, the dynamics is much more involved, and solving
for the propagator is impractical. Looking at the previous
example, one recognizes that the charging error probability is
directly related to the adiabaticity of the coupling changes. For
each virtual state for which these changes were not adiabatic
we take its time averaged occupation probability

P2 = |a2(t)|2 = 2τ 2
q

�2
q + 4τ 2

q

, (27)

as the measure of its contribution to the coherent charging
errors [67]. On the other hand, states for which the switching
is adiabatic do not get populated and do not contribute to
charging errors.
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The adiabaticity of the evolution is characterized by the
following ratio:

ζ = 〈�1|�∂tH (t)|�2〉
(�ω12)2

, (28)

with ζ � 1 corresponding to an adiabatic evolution (system
excitations being exponentially suppressed, as can be expected
from the Landau-Zener theory). Assuming the microwave
switching-on takes place on the time scale �/γrise, we have
for the excited state q,

ζq ∼ τqγrise

�2
q

. (29)

Charging errors are therefore suppressed by a slower
switching-on of couplings. On the other hand, if the cotun-
neling is to be used for a nontrivial operation, the Hamiltonian
change must be nonadiabatic on this scale and therefore γrise

is limited from below by τco. We assume below that the
switching-on time was chosen at this optimal value, γrise ∼ τco.

Considering now the case of a single excited state, for which
τco ∼ τ 2

q /�q , we get

ζq ∼
(

τq

�q

)3

. (30)

The charging errors are absent as long as the intermediate
state offset �q is limited from below by cτq with c a constant
larger than, but of the order of, 1. Importantly, observing
this condition guarantees the validity of Eq. (5) in schemes
exploiting a single virtual state. We also get

τmax
co ∼ τq/c, (31)

for the maximally achievable cotunneling at which the charg-
ing errors are negligible. Taking into account Eq. (25) we
get another appealing conclusion, that in the case of a single
excited state, the maximally achievable cotunneling is limited
by the leakage if γ 
 τq , and the charging if γ � τq .

If many excited states contribute, resulting in a cotunneling
amplitude much larger than an individual state contribution (as
was the case in Sec. V), Eq. (27) gives

Pcoh ∼
∑

q

′ 2τ 2
q

�2
q + 4τ 2

q

, (32)

with the summation restricted to states q for which turning-on
of the coupling is nonadiabatic,

τqτco

!
� �2

q, (33)

a condition we get from Eq. (29). Since the terms in Eq. (32) are
positive, the condition Pcoh � 1 also means that τq � �q for
each term individually, as required for the validity of Eq. (5).

Using the notation from the previous section, we get

Pcoh ∼ 8τ 2
V

1

M

qc∑
q=1

1

(δ − εq)2 + γ 2
c

, (34)

where we replaced �2
q → (δ − εq)2 + γ 2 and denoted γ 2

c =
γ 2 + 4τ 2

V /M , and where the cut-off index qc is defined by

(
δ − τq2

c

)2 = 2√
M

τV τco, (35)

following from Eq. (33). In the continuum limit we get

Pcoh ∼ 8τ 2J 2
n

(
eV

�ω

)(
τ

γc

)3/2 ∫ xc

0

1

(δ/γc + x2)2 + 1
, (36)

where x2
c = εc/γc. The integral can be evaluated in limiting

cases of large/small values of its two dimensionless parame-
ters. However, instead of doing so, we note that the condition
in Eq. (33) is fulfilled already for the lowest state of the band
if

(
τ

γc

)5/2

� π√
M

J 3
n

(
eV

�ω

)
. (37)

Since the leakage errors are independent of the factor Jn,
as seen from Eq. (25), it is always possible to completely
suppress the charging errors by working at a weak driving.
The third power in the previous equation results in the fact that
already moderately weak fields, e.g., �ω = eV/20, and short
arrays, M = 20, allow one to completely suppress the charging
errors at small enough offsets, δ/τ = 0.003, a value which
allows for long-distance manipulations (see the example given
at the end of Sec. VI). Concluding, observing the condition
in Eq. (37), the dominant errors in manipulations based on
photon-assisted cotunneling are due to the incoherent leakage
and are characterized by the rate given in Eq. (24) and the
probability given in Eq. (25).

VIII. PACT COMPARED TO ELECTROSTATIC GATING

The findings of this section also shed light on the qualitative
difference between schemes based on microwave assisted and
electrostatic cotunneling control. Namely, if the electrostatic
gating is used and the protocol requires us to focus [68] on
a higher lying virtual state (such as was here the case for
an efficient long-distance coupling), it is necessary to cross
lower lying states during the switch on/off of the cotunneling.
This crossing is either fast, and then charging errors occur,
or slow, and then leakage errors occur. On the other hand,
when using microwaves to focus on a higher lying state, the
required energy shift is provided by the microwave frequency.
Since this frequency is fixed, so are all energy differences and
therefore no spectral crossings happen. It is the amplitude of
the higher lying state admixture in the ground state which
can be changed continuously by changing the amplitude of
the driving potential V . The freedom of tuning this admixture
without including uncontrollable errors by spectral crossings
is therefore available only in PACT schemes.

IX. CONCLUSIONS

We investigated the photon-assisted cotunneling in an array
of weakly coupled quantum dots. We found that microwaves
may offer substantial advantages for various aspects of spin
qubit control, and demonstrated it on specific configurations.
Overall, we showed how to use microwaves to increase
operation speed, enhance control over the spin, and generate
long-range interactions useful for spin qubit manipulations.
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APPENDIX A: SHIRLEY TECHNIQUE FOR FLOQUET
THEORY: DERIVATION OF EQ. (5)

Here we explain in detail how the cotunneling amplitudes
are derived and calculated. The microscopic Hamiltonian of
our system, Eq. (1), is time dependent. In general, a calculation
of a propagator for it is much more complicated than for a time
independent one. However, since in our case the Hamiltonian
contains only discrete frequencies, we can recast the time
dependent problem into a time independent one. The procedure
is based on the Floquet theorem [29], and was worked out in
the excellent work of Shirley [44]. We now restate the results
of this work that are of direct relevance for us and refer the
reader therein for more.

We restrict ourselves to the case of a single frequency ω =
2π/T present in the Hamiltonian H (t) acting in some Hilbert
space spanned by a basis {|κ〉}. To map the time dependent
problem into a time independent one, the following definitions
are adopted. The basis is extended into tensor product states
|κn〉 ≡ |κ〉 ⊗ |n〉, with n taking integer values from minus
to plus infinity. The state |n〉 is associated with the function
exp(inωt). A change of the value of this index corresponds to
a change in the number of photons, with the correspondence
explained in Ref. [44]. We will also use the word photons in
this sense. A time dependent function f (t) is associated with
the matrix elements in the added part of the Hilbert space
according to the following rule:

〈n|f (t)|m〉 = 1

T

∫ T

0
dt e−inωtf (t)eimωt ≡ f n−m, (A1)

with the last equality sign being a definition of the Fourier
transform.

The propagator evolving the system from time t0 to time t

in the original Hilbert space is given by (Eq. (13) in Ref. [44])

U (t,t0) =
∑
κλ

|κ〉〈λ|
∑

n

einωt

×〈κn| exp

[
− i

�
HF (t − t0)

]
|λ0〉, (A2)

with the expanded Hilbert space Hamiltonian defined as

HF = −i�∂t + H (t). (A3)

Its matrix elements follow from Eq. (A1) as (Eq. (10) in
Ref. [44])

〈κn|HF |λm〉 = 〈κ|H |λ〉n−m + n�ω δnmδκλ, (A4)

with δ the Kronecker delta symbols. The advantage of the
described mapping can be appreciated from Eq. (A2), where
the second line takes the form of a propagator of a time
independent problem. Therefore, its calculation is amenable to
corresponding perturbative techniques. In another words, the
propagator calculation is reduced to a matrix HF eigenvalue
problem.

Let us now consider an illustrative case. Suppose the Hilbert
space {|κ〉} consists of three states denoted as κ = P,Q,R.
This covers essentially all configurations considered in the
main text with the three states being, respectively, an initial,
virtual, and final state, upon various different identifications of
these with the states |klm〉. As a specific example, one might
consider two electrons in three dots, with the initial state being
the right most dot empty, P = |σs0〉, the final state being the
left most dot empty, R = |0σs〉, and the virtual state being
the middle dot empty, Q = |σ0s〉, with spins σ,s fixed. The
middle dot, driven by microwaves, is gated such that its other
states (such as doubly occupied) are far away in energy making
their contribution negligible. (The condition will be specified
more precisely later.) The Hamiltonian restricted to this three
state subspace is

H (t) =
∑

κ=P,Q,R
(εκ + eVκ cos(ωt))|κ〉〈κ|

+ (τPQ|P〉〈Q| + τRQ|R〉〈Q| + H.c.), (A5)

comprising the energies and interdot tunneling terms. Here
H.c. stands for Hermitian conjugate. The driving amplitude
of the total many-body state κ = |kAkBkC〉 is defined as
Vκ = VAn(kA) + VBn(kB) + VCn(kC), with n(k) the number
of electrons in the state |k〉. Our choice of driving the middle
dot at potential amplitude V gives VP = V , VQ = 0, and
VR = V . Finally,

τκλ = 〈κ|HT |λ〉 (A6)

denotes the tunneling amplitudes.
Next, we calculate the matrix HF with H (t) given by

Eq. (A5) according to Eqs. (A1) and (A4). We obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · P0 Q0 R0 P1 Q1 R1 P2 Q2 R2
P0 εP0 τPQ eV/2
Q0 τQP εQ0 τQR
R0 τRQ εR0 eV/2
P1 eV/2 εP1 τPQ eV/2
Q1 τQP εQ1 τQR
R1 eV/2 τRQ εR1 eV/2
P2 eV/2 εP2 τPQ
Q2 τQP εQ2 τQR
R2 eV/2 τRQ εR2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)
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where the matrix indexes are indicated by the row and column
labels. For space reasons we introduced a short hand notation
for the energies

εκn = εκ + n�ω. (A8)

What we give in Eq. (A7) is a finite block of an infinite matrix,
which is symbolized by the three dots in the left upper corner.
The index n takes negative as well as positive integer values, so
that the first state which is not shown to the left in the first row
would have index R(−1), while the next one continuing to the
right at the row end would be P3, and so on. Even though the
matrix is infinite, the calculations are tractable because it has
a periodic structure visible in Eq. (A7), and following from
Eq. (A4),

〈κ(n + m)|HF |λ(n′ + m)〉 = 〈κn|m�ω + HF |λn′〉. (A9)

Namely, upon a shift of the photon index the matrix elements
are identical up to adding a constant on the diagonal.

Let us now suppose that the dots are tuned close to a single
photon initial-final state resonance, corresponding to N = 1
in the notation of Eq. (5). Denoting the corresponding energy
explicitly as ε, we have

ε = εR ≈ εP + �ω. (A10)

We are interested in the dynamics of the system starting in the
initial state P . Associating it with P1 in the matrix HF [the
choice of the value of the photon index is arbitrary, because
of the periodic structure given in Eq. (A9)], we note that this
state is, by Eq. (A10), degenerate with state R0. Together they
span a degenerate subspace which we denote by projector

P = |P1〉〈P1| + |R0〉〈R0|. (A11)

If the matrix elements of HF between a state from subspace
P and another one from its complement Q = 1 − P are much
smaller than the difference of the corresponding diagonal
entries, the dynamics produced by HF will be well approx-
imated by restricting the basis to the degenerate subspace and
taking the effects of other states perturbatively. We calculate
the matrix elements of the effective Hamiltonian HP for
the subspace P using the following formula derived by the
Brillouin-Wigner perturbation method [69]:

HP = PHF P + PHo
F Q

E − Hd
F

⎡
⎣ ∞∑

p=0

(
QHo

F Q

E − Hd
F

)p

⎤
⎦QHo

F P.

(A12)

The matrix divisions should be understood as X
Y

= X · Y−1,

and H
d/o

F is the diagonal/off-diagonal part of the matrix HF .
The energy E is the eigenvalue of the eigenstate of HP , by
which the equation is a self-consistent one (nonlinear) in
principle. However, this drawback is in practice not substantial,
as one can solve order by order in the off-diagonal elements
of HF . The consecutively higher orders are indexed by the
summation index p. To derive the results of the main text,
we need only the lowest order of this formula, p = 0 (the
second order in off-diagonal matrix elements) for which one
can replace E by ε and get the standard linear Schrödinger

equation with the Hamiltonian

HP ≈ PHF P + PHo
F Q

1

ε − Hd
F

QHo
F P. (A13)

The formula is valid if the off-diagonal elements and the energy
differences of states within the subspace P are much smaller
than the energy denominator, which is required, respectively,
for the convergence of the sum over p in Eq. (A12),
and for the replacement E → ε. Importantly, Eq. (A13) is
valid for any dimension of P and Q and not only for our
specific example of three states. In practical calculations, it
is usually straightforward to identify the most relevant virtual
states that are to be retained in the subspace Q, while the
majority of states can be neglected. Some states strictly do not
contribute as there is no nonzero matrix element connecting
them to the subspace P (such as states with different number
of electrons, or different spin). The contribution of other states
is subdominant in requiring more dot-dot hoppings (this is the
case of the superexchange discussed in Sec. V) or is negligible
due to a large energy cost [the denominator in Eq. (A13)],
which would be the case, e.g., for states involving excited
single particle orbitals (see Sec. V B for an estimate).

We now return to our example, with HF given in Eq. (A7).
Trying to apply Eq. (A13), however, we find that there is no
term contributing to the matrix element 〈P1|HP |R0〉 in the
second order of Ho

F . Namely, to go from initial to the final
state, it is needed to nearest-neighbor tunnel twice and absorb
photon(s) once. Each of these corresponds to an of-diagonal
element in HF , at minimum three off-diagonal terms together.
Using Eq. (A12) in the next order, p = 1, we get

〈P1|HP |R0〉 ≈ eV

2�ω

τPQ τQR
ε − εQ0

− eV

2�ω

τPQ τQR
ε − εQ1

. (A14)

This result shows that, apart from generating contributions in
higher orders only, the matrix in Eq. (A7) potentially breaks the
assumption of the off-diagonal elements being small compared
to the energy differences. Namely, even though we always
assume that neighboring dots are gated such that the tunneling
amplitude is small compared to the detuning of the nearest
empty state where an electron can hop in, the appearance of the
ratio eV/�ω would restrict the validity of our results to weak
driving only, eV � �ω. To account for both of these issues, we
introduce a unitary transformation as the last step necessary to
obtain the cotunneling amplitudes given in the main text.

We introduce a new basis, with states denoted by a tilde, by
the following formula (this step goes beyond Ref. [44]):

|κ̃n〉 =
∑
m

Jm

(
eVκ

�ω

)
|κ(n − m)〉, (A15)

with Vκ the driving amplitude of the particular state, and Jm(x)
the Bessel function of the first kind. Using the sum rule for the
Bessel functions [Eqs. (D2) and (D4)], one can check that the
new basis is also orthonormal and the matrix relating the old
and new basis is, therefore, unitary with matrix elements

〈λm|κ̃n〉 = δκλJn−m(eVκ/�ω). (A16)
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Using the time dependent representation of |n〉,

|κ̃n〉 →
∑
m

Jm

(
eVκ

�ω

)
ei(n−m)ωt |κ〉 = einωt |κ̃(t)〉, (A17)

along with the notation

|κ̃(t)〉 ≡ |κ〉 exp

{
− i

�

∫ t

0
dt ′eVκ cos(ωt ′)

}
, (A18)

one can understand the choice in Eq. (A15) as accommodating the basis to include the accumulated phase from the oscillating
part of the energy.

In this basis the matrix HF takes the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · P̃0 Q̃0 R̃0 P̃1 Q̃1 R̃1 P̃2 Q̃2 R̃2

P̃0 εP0 τ
(0)
PQ τ

(−1)
PQ τ

(−2)
PQ

Q̃0 τ
(0)
QP εQ0 τ

(0)
QR τ

(1)
QP τ

(1)
QR τ

(2)
QP τ

(2)
QR

R̃0 τ
(0)
RQ εR0 τ

(−1)
RQ τ

(−2)
RQ

P̃1 τ
(1)
PQ εP1 τ

(0)
PQ τ

(−1)
PQ

Q̃1 τ
(−1)
QP τ

(−1)
QR τ

(0)
QP εQ1 τ

(0)
QR τ

(1)
QP τ

(1)
QR

R̃1 τ
(1)
RQ τ

(0)
RQ εR1 τ

(−1)
RQ

P̃2 τ
(2)
PQ τ

(1)
PQ εP2 τ

(0)
PQ

Q̃2 τ
(−2)
QP τ

(−2)
QR τ

(−1)
QP τ

(−1)
QR τ

(0)
QP εQ2 τ

(0)
QR

R̃2 τ
(2)
RQ τ

(1)
RQ τ

(0)
RQ εR2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A19)

The terms eV/2 were removed from the off-diagonal on the
expense of generating more tunneling elements. Unlike in the
original basis, where a time independent operator is diagonal
in the photon index, the interdot tunneling Hamiltonian now
has elements also between states with different integer indexes

τ
(n−m)
κλ = 〈κ̃n|HT | ˜λm〉 = τκλJn−m(eVκλ/�ω), (A20)

with Vκλ = Vκ − Vλ the voltage amplitude drop between the
two states. Since the Bessel functions are not larger than one
for any real parameter, the matrix HF in the newly adopted
basis is suitable for perturbative calculations even for a strong
driving, eV 
 �ω.

We note that such complete removal of the driving terms
proportional to the voltage is possible because of the form of
the driving part of the Hamiltonian that we chose in Eq. (4).
By that choice we neglect the spatial deformation of dot states
induced by the electric field. This simplification can make a
qualitative difference only if such terms would break some
symmetry which otherwise blocks tunnelings [30]. There is
no such symmetry in our case. Also, this simplification is not
essential for using the Shirley technique.

The propagator in the transformed basis is

U (t,t0) =
∑
κλn

|κ̃(t)〉〈λ̃(t0)|einωt 〈κ̃n|UF |λ̃0〉, (A21)

where the bra vector 〈κ̃(t)| is defined by a complex con-
jugation of Eq. (A18), and UF = exp{−(i/�)HF (t − t0)}.
Equation (A21) is a complete analog to Eq. (A2).

We now evaluate off-diagonal elements of the effective
Hamiltonian in the transformed basis. Using Eq. (A19) in

Eq. (A13) we get

〈P̃1|HP |R̃0〉 =
∞∑

n=−∞

τ
(1−n)
PQ τ

(n)
QR

ε − εQ − n�ω
. (A22)

The validity of the formula follows from conditions on the
validity of Eq. (A13), which were stated therein. In terms of
the parameters used here, both the photon-assisted tunneling
amplitudes and the degeneracy detuning should be smaller
than the energy denominator∣∣τ (1−n)

PQ
∣∣,∣∣τ (n)

QR
∣∣,|εR − εP − �ω| � |ε − εQ − n�ω|, (A23)

for each term in the summation over the photon index n.
Equation (A22) takes the microwave field into account to all

orders, enumerated by index n. It would be difficult to include
such higher order processes using Eq. (A7), as they correspond
to higher order of perturbation expansion in Eq. (A12). The
correspondence between the two bases can be established upon
expanding the Bessel functions in their argument. For weak
driving the tunneling amplitudes τ (n) fall off exponentially with
|n|. In such a case, retaining only the leading order terms, n =
0,1, using Eq. (A20), expanding the Bessel functions up to the
lowest order using Eq. (D5), Eq. (A22) reduces to Eq. (A14).

We can now easily generalize to N photon resonance, and to
more intermediate states Q. The former means that the initial
and final state energies differ by N�ω, and the generalization
amounts to replacing the upper index 1 by N in Eq. (A22).
The latter means a summation over the intermediate states, as
contributions from subspace Q are additive in Eq. (A13). With
these generalizations we get

〈 ˜PN |HP |R̃0〉 =
∑
Q

∞∑
n=−∞

τ
(N−n)
PQ τ

(n)
QR

ε − εQ − n�ω
. (A24)
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Denoting the left-hand side as τco and relating to the parameters
of the original Hamiltonian by Eqs. (A6), (A10), and (A20),
we obtain Eq. (5).

We remind that the “initial-final” state resonance discussed
in the main text refers to a configuration in which the initial
and final states differ in energy. The system can make the
transition between these two states only if a nonzero number
of photons is absorbed in total, with the photon number N

given by the resonance condition N�ω equal to the initial and
final state energy difference. In the often met case of the initial
to final state detuning being much smaller than the virtual
states offsets, so that one can neglect the photon energies in
the denominator of Eq. (A24), the sum over the photon index
can be evaluated using Eq. (D2) to arrive at

〈 ˜PN |HP |R̃0〉 ≈
(∑

Q

τPQτQR
ε − εQ

)
JN

(
eVPR
�ω

)
, (A25)

Eq. (8) of the main text. In this configuration the photon-
assisted cotunneling is proportional to a cotunneling without
any driving [the first bracket in Eq. (A25)] times a suppression
factor depending on the relative amplitude of driving of the
initial and final states. The role of microwaves is to allow for
the observation of the cotunneling by coupling the resonant
states | ˜PN〉 and |R̃0〉. The result also shows that in this regime
driving the mediating states is ineffective.

The “virtual resonance,” on the other hand, corresponds
to N = 0, so that energy does not have to be provided by
microwaves in order for the transition to occur. Rather, the
resonance now means that the microwave frequency is such
that a virtual state Q becomes quasidegenerate with the initial
and final state energies upon adding the energy of n photons.
Based on a much smaller energy denominator, the sum in
Eq. (A24) can be approximated by this single term n and state
Q (or a few close-by states).

Once the cotunneling amplitude is calculated, the dynamics
of the system can be found using the effective Hamiltonian HP ,
which in the subspace {| ˜PN〉,|R̃0〉} takes the form

HP =
(

εP + N�ω τco

τ
†
co εR

)
, (A26)

and the propagator in the original Hilbert space basis
{|P̃〉,|R̃〉}, with the phase factors defined in Eq. (A18), takes
the form

U (t0,t) =
(

eiNω(t−t0) 0
0 1

)
exp

{
− i

�
HP (t − t0)

}
. (A27)

Close to resonance εR ≈ εP + N�ω the system will display
Rabi oscillations with frequency τco. This finishes the deriva-
tion and interpretation of the photon-assisted cotunneling
amplitudes.

APPENDIX B: EFFECTIVE HAMILTONIANS FOR
THE FEW LEVEL MODEL: DERIVATIONS

OF EQS. (10) AND (16)

In this Appendix we introduce the few level model for
which the effective Hamiltonians for a three dot (A,B,C)
structure, given in Eqs. (10) and (16), are valid. We consider
two particle states in the middle dot (B) which can be built out

of the two lowest single particle orbitals (i = 1,2). Denoting
the corresponding fermionic operators as cB1σ and cB2σ , these
comprise the following six states:

|S〉 = 2−1/2(c†B1↑c
†
B2↓ − c

†
B1↓c

†
B2↑)|0〉, (B1a)

|S ′
1〉 = c

†
B1↑c

†
B1↓|0〉, (B1b)

|S ′
2〉 = c

†
B2↑c

†
B2↓|0〉, (B1c)

|T0〉 = 2−1/2(c†B1↑c
†
B2↓ + c

†
B1↓c

†
B2↑)|0〉, (B1d)

|T+〉 = c
†
B1↑c

†
B2↑|0〉, (B1e)

|T−〉 = c
†
B1↓c

†
B2↓|0〉, (B1f)

where state |0〉 denotes an empty dot.
To get an analytically manageable model, we now restrict

ourselves to a specific configuration. We assume the three dot
system is electrostatically gated such that the middle dot single
particle ground state is well below the aligned outer dot ones.
The relevant virtual states then do not include doubly occupied
outer dots and it is enough to consider only the lowest orbital
level i = 1 in these. To calculate the cotunneling amplitudes,
we need the matrix elements of the tunneling Hamiltonian
HT [Eq. (3)] between states of the three dot system. A short
calculation gives the following auxiliary result:

HT c
†
A1σ c

†
Bis |000〉

= −τCB
1i |σ0s〉 − τAB

1i δσsσpi |0S ′
i0〉

+ τAB

1i

(
δσs√

2
(σ |0S0〉 − pi |0T00〉) − δσspi |0Tσ 0〉

)
,

(B2)

where we use an overline to denote the complementary index,
1 = 2 and 2 = 1, and similarly for σ =↑ , ↓. If the spin index
is used as a factor, it should be understood as σ = +1, and −1,
corresponding to ↑, and ↓, respectively. Finally, we introduce
additional signs by p1 = 1 = −p2.

The state on the left-hand side of Eq. (B2) is the initial state
|σs0〉 for i = 1. The action of the tunneling Hamiltonian on
the final state of the form |0sσ 〉 can be obtained by swapping
the labels A and C. The right-hand side shows which virtual
states are connected by a single particle hopping to the initial
and final states. We now neglect the contribution from the
virtual states in the first line of Eq. (B2) based on their higher
energy offsets compared to the states retained, which are those
in the second line. The same would result from an assumption
that the interdot tunneling is dominated by tunneling into an
excited state |τ11| � |τ12|. This is expected to be the case in
tunnel coupled dots, because of a larger spatial extent of an
excited state, and was exploited in the spin measurement by
conversion to charge in the experiment of Ref. [70]. Finally,
in the case of a virtual resonance, which we consider below,
it is the microwave frequency which selects the relevant set
of virtual states. We assume this is the set of the singlet S

and the three triplets T0,± in the middle dot, with all other
states displaced by a large energy, on the scale of the single
dot orbital excitation energy or the charging energy. With any
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of these reasonings,

HT |σs0〉 = τAB
12

(
δσs√

2
(σ |0S0〉 − |0T00〉) − δσs |0Tσ 0〉

)
,

HT |0sσ 〉 = τCB
12

(
δσs√

2
(σ |0S0〉 − |0T00〉) − δσs |0Tσ 0〉

)
(B3)

is a good approximation for the calculation of the cotunneling
amplitudes.

With the three dots gated as described, the two elec-
tron ground state (the degenerate subspace P ) comprises
eight states, P,R ∈ {|σs0〉,|0s ′σ ′〉} with the spins s,s ′,σ,σ ′ ∈
{↑,↓}. Taking into account that these states are degenerate
without the microwave assistance, we can apply Eq. (A24)
with N = 0:

〈P̃0|HP |R̃0〉 =
∑
Q

′ 〈P|HT |Q〉〈Q|HT |R〉
ε − εQ + n�ω

J 2
n

(
eV

�ω

)
. (B4)

The prime restricts the summation to states Q = |0k0〉 with
k ∈ {S,T0,T±}, as follows from assumption of the microwave
frequency being tuned close to these four states for some
integer multiple n of the photon energy. We also assumed
the middle dot is driven at amplitude V , which gives VPQ =
VRQ = −V . For simplicity we also consider a symmetric
structure with phases of single electron states chosen such that
τAB

12 = τCB
12 . With this we evaluate the effective Hamiltonian

HP using Eqs. (B3) and (B4). Due to the spin conservation, it
is block diagonal. For the unpolarized subspace we get⎛

⎜⎜⎜⎝
|↑↓0〉 |↓↑0〉 |0↑↓〉 |0↓↑〉

|↑↓0〉 ε+ ε− ε− ε+
| ↓↑ 0〉 ε− ε+ ε+ ε−
|0 ↑↓〉 ε− ε+ ε+ ε−
|0 ↓↑〉 ε+ ε− ε− ε+

⎞
⎟⎟⎟⎠, (B5)

where the energies ε± are defined as

ε± = τ 2
V

δ−1
T0

± δ−1
S

2
. (B6)

The energy offsets are defined as

δQ = εP − εQ + n�ω, (B7)

and refer to the energy of the states in the degenerate subspace
εP . The microwave assisted tunneling amplitude is given by

τ 2
V = J 2

n

(
eV

�ω

)
τAB

12 τBC
21 . (B8)

To simplify the notation, we omitted the tilde and the photon
index from the basis states in Eq. (B5). Namely, all photon
indexes of states P and R are identical for the case of virtual
resonance (N = 0) and can be chosen, e.g., to be zero while
there are no additional phases arising in the propagator apart
from those generated by HP as follows from Eq. (A27).
Using analogous notation in further, we get for the polarized
subspaces ⎛

⎝ |σσ0〉 |0σσ 〉
|σσ0〉 εσ εσ

|0σσ 〉 εσ εσ

⎞
⎠, (B9)

with εσ = τ 2
V /δTσ

. Equations (B5) and (B9) are the result given
in Eq. (10), as we now show by introducing the following
notations. Instead of the tensor product basis, we define an
outer and inner spins by introducing Pauli matrices

σ o = 1A ⊗ 1B ⊗ σC + σA ⊗ 1B ⊗ 1C, (B10a)

σ i = 1A ⊗ σB ⊗ 1C, (B10b)

with a sigma matrix acting on an empty state of a dot defined
to result in zero. Another pseudospin degree of freedom relates
to the position of the charge in the outer dots through operators

ηx =
∑
sσ

|σs0〉〈0sσ | + |0sσ 〉〈σs0|, (B11a)

ηy =
∑
sσ

i|0sσ 〉〈σs0| − i|σs0〉〈0sσ |, (B11b)

ηz =
∑
sσ

|σs0〉〈σs0| − |0sσ 〉〈0sσ |. (B11c)

With these operators, the effective Hamiltonian in the unpo-
larized subspace [Eq. (B5)] is

P0HP P0 = P0

[
(1 + ηx)

(
ε+ + σo

+σ i
− + σo

−σ i
+

4
ε−

)]
P0,

(B12)

and in the polarized subspace [Eq. (B9)] is

PσHP Pσ = Pσ (1 + ηx)εσPσ . (B13)

We defined Ps as a projector to the subspace with a definite
spin z projection s = 0, ± 1 by

P1 = (1/4)
(
1 + σo

z

)(
1 + σ i

z

)
, (B14a)

P−1 = (1/4)
(
1 − σo

z

)(
1 − σ i

z

)
, (B14b)

P0 = 1 − P1 − P−1. (B14c)

With the help of these, adding Eqs. (B12) and (B13) finishes
the way to Eq. (10).

Let us now turn to the configuration of each dot singly
occupied (the exchange configuration). The ground state
manifold comprises eight degenerate states, which we denote
by

|σπρ〉 = c
†
A1σ c

†
B1πc

†
C1ρ |000〉. (B15)

To derive the effective Hamiltonian for this subspace, we
proceed analogously to the previous case. Under the assump-
tions that the electrostatic and microwave tuning selects the
four doubly occupied states of the middle dot as the only
relevant excited states, the cotunneling amplitudes are given
by Eq. (B4). In this case the matrix elements of the tunneling
Hamiltonian can be written as

HT |σπρ〉 = c
†
A1σHT |0πρ〉 + c

†
C1ρHT |σπ0〉, (B16)
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where the terms on the right-hand side are given by Eq. (B3).
A short calculation gives⎛

⎜⎜⎜⎝
|↑↑↓〉 |↑↓↑〉 |↓↑↑〉

|↑↑↓〉 ε+ + ε↑ ε− 0

| ↑↓↑〉 ε− 2ε+ ε−
| ↓↑↑〉 0 ε− ε+ + ε↑

⎞
⎟⎟⎟⎠ (B17)

and ⎛
⎜⎜⎜⎝

|↓↓↑〉 |↓↑↓〉 |↑↓↓〉
|↓↓↑〉 ε+ + ε↓ ε− 0

| ↓↑↓〉 ε− 2ε+ ε−
| ↑↓↓〉 0 ε− ε+ + ε↓

⎞
⎟⎟⎟⎠, (B18)

for the partially polarized subspaces with the total spin s =
±1/2, and

〈σσσ |HP |σσσ 〉 = 2εσ , (B19)

for a fully polarized subspace with the total spin s = ±3/2.
Here we again used the energy notations defined in Eq. (B6)
and below Eq. (B9).

These equations give the effective Hamiltonian stated in the
main text by identifying the diagonal elements in Eqs. (B17)–
(B19) as Hd + Hz and the off-diagonal elements as the term
HSWAP .

APPENDIX C: LONG-DISTANCE AMPLITUDES:
DERIVATION OF EQS. (23) AND (24)

Here we derive the long-distance scaling of the PACT
amplitudes. To this end, we expand the dot model discussed
previously from three to M − 1 dots indexed by an integer in-
dex j = 1, . . . ,M − 1 and investigate cotunneling amplitudes
for electron transport and spin exchange between two selected
dots. These are labeled as A, C and placed within the array
at positions jA and jC with the distance d = jC − jA between
them. We are interested in the amplitude behavior for d 
 1,
which is what we mean by the long-distance cotunneling: a
coupling by coherently leapfrogging many dots at once.

We assume the structure is gated such that (singly occupied)
dots throughout the array are aligned in energy. These aligned
states should be the subspace of singlet S and triplet T0 tuned
to degeneracy by, e.g., external magnetic field, or be it some
higher excited states with negligible exchange splitting, or by
forming a double dot with an auxiliary dot in a nearby array, in
which case the exchange can be easily modified by a detuning
bias [31,53,71,72]. The condition on the degeneracy is that
the splitting should be much smaller than the tunneling matrix
element between these states in neighboring dots (which grows
for higher excited states because of an increased wave function
spatial extent). For identical dots such alignment corresponds
to alignment of the dots’ ground states as depicted on Fig. 1(b).
The two manipulated dots are detuned from the others in the
array. Let us first consider a situation where dots A and C
contain a single electron in total, and we intend to induce
nonlocal electron transfer between them. It is then desirable
to tune them such that there is a single electron excited
state aligned with the band. Also, both these dots should be
driven at the same frequency (its value specified below). This
configuration is depicted in Fig. 1(c).

To keep the problem analytically tractable, we approximate
the virtual band by a uniformly coupled linear chain of
M − 1 sites. That is, we neglect the heterogeneity of the array
induced by detuning dots A and C and by their driving (the
latter inessential at weak driving) and assume that the matrix
elements of HT between the aligned states do not depend on
the position in the array, j , and denote them by τ , with the
scale given by the tunneling matrix element between nearest
neighbor single particle states (τAB

22 in the notation of the
previous sections).

The states of the virtual band are then described by wave
functions

|�q〉 =
∑
σα

�q(jα)c†α2σ cA1σ |G〉, (C1)

with |G〉 representing the ground state of the array, from which
the electron from the dot A is virtually excited into the band.
Since the excited electron can be on any dot, the index q

takes values from 1 to M − 1. For uniform hoppings, these
wave functions are those of a linear chain with zero boundary
conditions

�q(j ) =
√

2

M
sin
( π

M
qj
)
. (C2)

The corresponding energies are

εq = εB + 4τ sin2
( πq

2M

)
, (C3)

where by εB we denote the bottom of the band.
With the above definitions, the cotunneling amplitude

follows from Eq. (B4) as

τco =
M−1∑
q=1

τ
(n)
Aq τ

(−n)
qC

δ − εq

, (C4)

where we assumed both dots A and C are driven at the same
voltage amplitude V and introduced the microwave tunable
offset from the band bottom defined as

δ = εA − εB + n�ω. (C5)

The tunneling amplitude from dot α into the delocalized band
is

ταq = τ 12
AB[�q(jα − 1) + �q(jα + 1)], (C6)

as it can occur through any of the two nearest neighbors of the
dot α.

In this Appendix we are interested in the possible maximum
of the cotunneling and in boosting it by diminishing the
denominator in Eq. (C4) by the microwave matching. How-
ever, Eq. (C4) formally diverges upon tuning its denominator
to zero. This is unphysical as it violates the condition in
Eq. (A23). A simple and physically appealing regularization
of such spurious divergences is to consider explicitly the
decoherence (energy smearing) by inserting an imaginary part
into the virtual state energies, εQ → εQ − iγ . The scale for γ

is set by the scale of the coherence or lifetime of the dot states
themselves, which we take of order of 10 ns corresponding to
γ ∼ 50 neV (a typical scale for energy of random nuclear
magnetic fields [73,74], and also phonon induced orbital
relaxation [75,76]).
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With this change of the cotunneling formula, the diagonal
elements of the effective Hamiltonian HP become complex.
Let us consider the imaginary part of such an element,

− Im[〈P̃0|HP |P̃0〉] = π

M−1∑
q=1

∣∣τ (n)
Aq

∣∣2gγ (δ − εq), (C7)

where we denoted

gγ (δ − εq) = 1

π

γ

(δ − εq)2 + γ 2
. (C8)

We recognize in Eq. (C7) the Fermi’s golden rule formula

�� = 2π

∫
dε
∑

q

|〈P̃0|HT |Q̃n〉|2δ(εP − ε)gγ (ε − εQn),

(C9)

for the decay rate of state |P̃0〉 due to coupling to the
band of states if these states have the energies given as the
Lorentz probability distribution, Eq. (C8). The factor of 2 is
a conversion between a Hamiltonian matrix element and the
rate for the change of the probability. We, therefore, define

�� = −2 Im[〈P̃0|HP |P̃0〉] (C10)

as the leakage rate by which the initial state leaves the
computational subspace. The cotunneling is to be compared
to this rate and the leakage must be much smaller than the
cotunneling for any useful manipulations.

Now we are ready to evaluate the relevant rates. We are
interested in the limit of a long array, M 
 1, and a large
distance between the dots, d 
 1. This allows us to adopt
several approximations, which make it possible to obtain
results in an explicit analytical form. First, we neglect the
difference of the wave functions arguments in Eq. (C6), by
putting τqα ≈ 2τ�q(jα). Second, we assume the dots A and C
are not too close to the array boundary (we will quantify this
condition later), so we can change the boundary conditions to
different ones, e.g., periodic, and replace the wave functions
in Eq. (C2) by plane waves

�q(j ) �
√

1

M
exp

(
π

M
qj

)
. (C11)

Finally, assuming the regime in which the leakage is much
smaller than the cotunneling, we approximate the latter energy
denominator by its real part only. Using the notation of Eq. (B8)
for the overall scale, we obtain

τco = 4τ 2
V

1

M

M−1∑
q=1

δ − εq

(δ − εq)2 + γ 2
eiφAC

q , (C12)

for the cotunneling, with the phases φAC
q = dq/M , and

�� = 8τ 2
V

1

M

M−1∑
q=1

γ

(δ − εq)2 + γ 2
, (C13)

for the leakage. It is worth to note the difference of these two
formulas. While terms contributing to the leakage (incoherent
process) are all positive, there are nontrivial phases appearing
in the cotunneling, which is a coherent process. The phases
depend on the particle correlations in the band and their

destructive interference is very general [65]. Devising ways
to suppress such interference is probably the most important
factor in inducing effective long-range cotunneling. Refer-
ence [66] shows how these correlations for dots close to the
boundary can be changed by changing the array boundary
conditions. For us it is critical that the virtual band is not
cut at the manipulated dots A and C, since that would lead
to unfavorable properties of these phases and a very strong
destructive interference (see below).

To evaluate Eqs. (C12) and (C13), we take the continuum
limit M → ∞ by introducing a continuum variable κ =
q/M which covers the band by κ ∈ (0,1). We rewrite the
expressions using dimensionless parameters � = δ/γ (the
detuning in units of decoherence, of order 1 and larger),
g = γ /τ (decoherence in units of the bandwidth, much smaller
than 1), and ξ = 2πd

√
γ /τ (a parameter related to the dots

distance, which can be both smaller and larger than 1).
Assuming the bandwidth is much larger than γ and δ, we
Taylor expand the virtual states energies in the lowest order in
κ and get

τco = 4

π

τ 2
V

τ

√
τ

γ

∫ ∞

0
dx eiξx � − x2

(� − x2)2 + 1
(C14)

and

�� = 8

π

τ 2
V

τ

√
τ

γ

∫ ∞

0
dx

1

(� − x2)2 + 1
. (C15)

The integral in the last equation can be calculated analytically
with the result

π

2
(�2 + 1)−1/4 sin

[
1

2
arctan

(
1

�

)]
. (C16)

Expanding in the leading order in 1/� gives Eq. (24).
We evaluate Eq. (C14) in two limits. First, if 1/ξ 2 
 �,

we replace the phase factor by 1. The integral then equals
Eq. (C16) multiplied by an additional factor � + √

�2 + 1. In
the opposite limit, 1/ξ 2 � �, the fast oscillating phase factor
acts effectively as a derivative −(2i/ξ )∂x , by which we can
replace it. The integral then gives ∼2�/ξ (�2 + 1). Expanding
again for large �, we obtain the two results of Eq. (23).

Let us now come back to the condition on the distance from
the boundary. The replacement of functions in Eq. (C2) by
plane waves [Eq. (C11)] will not influence the result for the
cotunneling if the upper integration limit in Eq. (C14), being
the minimum of {1/ξ,

√
�}, corresponds to a wave vector qu

resulting in a large enough phase in the arguments of functions
in Eqs. (C2) and (C11). The condition therefore reads

M � jαqu = jαMπ
√

gxu = jαMπ
√

g min{1/ξ,
√

δ/γ },
(C17)

from where we get

jα � (2/π )max{d,d0} (C18)

as the requirement on the distance of the manipulated dots
α = A,C from the array edges so that Eq. (C14) is valid.

If the condition in Eq. (C18) is not fulfilled, the cotunneling,
unlike the leakage, will be suppressed by an additional factor.
As an illustration of such suppression, we consider the case
of the two manipulated dots being on the edge of the array,
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jA = 1, jC = M − 1. Equation (C4) applies with only a single
term contributing in Eq. (C6), as both A and C have only a
single neighbor. Using Eq. (C2), we get

τco = τ 2
V

M−1∑
q=1

δ − εq

(δ − εq)2 + γ 2
|�q(1)|2(−1)q, (C19)

being the worst possible case of destructive interference,
corresponding to phases φAC

q = πq. To evaluate the sum, we
replace the oscillating sign by a derivative (−1)q → −∂q and
get

τco = −τ 2
V

[
δ − εq

(δ − εq)2 + γ 2
|�q(1)|2

]q=M−1

q=1

. (C20)

Assuming the lower band edge detuning is much smaller than
the upper one, and expanding the wave function in the leading
order in M we get

τco = τ 2
V

2π2

M3

δ

δ2 + γ 2
. (C21)

The cotunneling is proportional to the photon-assisted tunnel-
ing matrix element squared, divided by the detuning, with the
latter limited from below by the decoherence. This is the same
behavior as that of Eq. (23) for d > d0. However, here there is
an additional quadratic suppression with the distance d ≈ M

on top the linear fall off of Eq. (23).
The leakage rate can be evaluated for this case too. However,

instead of giving explicitly the cumbersome formulas, we
only state that, since there is no destructive interference for

the leakage, the result is qualitatively the same as the one in
Eq. (24). Then as long as the decoherence of the band states
is larger than their separation γ � τ/M , which is a natural
property of a continuous band, we get that the requirement for
the leakage to be smaller than the cotunneling requires very
large detunings

δ � M2/3τ. (C22)

This strongly limits possibilities for long-distance cotunnel-
ing mediated by the dot array itself in this configuration,
microwaves assisted or not.

APPENDIX D: BESSEL FUNCTIONS PROPERTIES

Here we list a few properties of Bessel functions which are
needed in the discussed derivations,

eiz sin φ =
∞∑

n=−∞
Jn(z)einφ, (D1)

Jn(z1 ± z2) =
∞∑

k=−∞
Jn∓k(z1)Jk(z2), (D2)

J−n(x) = (−1)nJn(x), (D3)

Jn(0) = δn,0, (D4)

Jn(x) ≈ (x/2)n/n!. (D5)

In the last equation, the result is given in the leading order
expansion around x = 0 assuming n to be a positive integer.
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