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ABSTRACT

We present a system that allows users to generate animations for 3D rigged geometry easily and quickly us-
ing just a regular consumer Microsoft Kinect. The interactive system allows diverse meshes to be animated
through the interaction of human body. Traditionally, creating expressive and convincing animation is a chal-
lenging and laborious. Our system is a real-time performance-based puppetry application for any rigged ob-
ject, which makes the animation generation more playful. This paper describes the system in full, explaining
the generation procedures, highlighting the technical contributions, and demonstrating many examples.
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1
INTRODUCTION

1.1. MOTIVATION
Animation is a powerful tool applied in video games and movies to give life to virtual characters. However,
the process is quite time-consuming and requires that every user is experienced in the creation of computer
animation animation. Imagine you would like to generate a 3D animation of a rigged object. You need to
think about deformation, skinning, and key-framing. Even if you are experienced in the process, you might
spend hours to days manipulating software such as Blender or Maya. Thanks to new consumer input devices,
even if you are a novice user and have little knowledge in computer graphics, you have the opportunities to
interactively animate virtual characters. For instance, Microsoft Kinect outputs the 3D positions of joints
in human body skeleton. Based on traditional skeleton-based animation pipelines, we can map user’s joint
data to a rigged virtual character as long as the virtual character is humanoid, to control the movements of
the character. However, cases are that often characters without human structure need to be manipulated. For
example, horses can be rigged with skeletons, but they have a different body shape as humans. Ogre’s arms
are quite long thus it does not have the same body proportions as ordinary people. Characters like octopus
even have a different number of limbs towards human, so even if a skeletal mapping could be defined, tra-
ditional methods through direct human skeletal control would be impossible. In these cases, mapping and
transferring human motions towards arbitrary rigged characters would require considerable manual work,
and with all those limitations, it ’s hard to map arbitrary motions.

In general, 3D animations are implemented with virtual articulated figures, which means, hierarchical
limbs are defined within the body of virtual characters to enable the 3D model to deform locally. These ideas
in computer graphics come directly from the field of robotics. Thus if we can have methods of semantically
transferring human motions to virtual characters, we can use the similar way to control robot characters, no
matter they are in the shape of human, animals or fictitious characters. Existing character control algorithms
or systems cannot map human motions to arbitrary target motions, which we will categorize and discuss
current methods in Section 2.1. But there should be possible to map a human movement to an octopus, ogre,
a flour sack without explicitly specify all spacial correspondences. So our goal is to introduce a new option
for synthesizing 3D animation: a system that enables animating 3D rigged geometry through human body
interactions naturally in real-time.

Creating expressive and convincing animation is challenging for various reasons. We aim to animate vir-
tual characters and let them behave in their native ways, while the user performs a broad range of continuous
input poses. The large differences in the body proportions, structure topologies, and movement behaviors of
humans from those of our target characters lead to several challenges that have not been sufficiently consid-
ered by the previous puppetry systems.

Firstly, which part of target creature corresponds to a specific feature of human body? There is no
unique method to match human body part towards specific feature of a target object. For example, an-
imals usually have a different body structure and number of joints from those of a human being. Thus
designing mappings between a human body and rigged object that enable efficient and meaningful
human-creature control is a non-trivial task.

1



2 1. INTRODUCTION

Secondly, even if we have an intuitive and practical coupling of human body parts and target ob-
jects, how to generate natural and plausible creature animations from the input body motions of
users? For example, an elastic bar has their patterns of stretching, shrinking and twisting that human
bodies cannot possibly imitate. Furthermore, animals like horses with four legs have a different way
of walking from human beings.

Finally, how to design the system to make it real-time? As a real-time application, the system has
to generate desirable animations whenever receiving input body motions of Kinect. Thus we cannot
use complex models or equations that are hard to solve in the application.

1.2. CONTRIBUTION
This paper proposes a real-time animation puppetry application for any kind of rigged object, especially
non-humanoid characters. It enables intuitive pose reconstruction of arbitrary characters. And can run in
real-time on common hardware. Most importantly, the application uses the human body as input and thus
enables novice user to create interesting and personal 3D animations. The system requires some prepro-
cessing steps to make pose couplings. After the registration process, equipped with a Microsoft Kinect, users
easily create individual and expressive animation motions for virtual characters. Our main contributions
include:

1. Firstly, we formulate a brand new example-based methodology to semantically transfer the body move-
ments towards target character, to generate 3D rigged character animations in real-time. Compared to
the previous applications, our system doesn’t require the users input any previously generated motions
into the system. Just based on some example poses, the users can generate unique animation in real-
time for the target character;

2. Secondly, we present a new interactive animation system that allows any users to generate plausible
animations from body position scanning data from Microsoft Kinect;

3. Furthermore, we apply several methods to create mesh animation and compare their results. Users can
adjust several parameters for different types of mesh objects;

4. Finally, we demonstrate our results operating on input meshes of different morphologies, body propor-
tions, number of degrees of freedom (DOF) and size. The system enables new possibilities for human-
character animation previously unavailable to novice users.

1.3. STRUCTURE OF THE DOCUMENT
In this paper, we will first introduce some related works and concepts in the field of computer animation
(see Section 2). Following this section, we will present the system design and user scenarios (see Section 3.1),
where the readers can find how to interact with our system. Section 4 explains the technologies involved in
this system. Section 5.1 evaluates our methods in the aspect of projection, interpolation, and the system in
the whole. We will provide some examples to demonstrate the effectiveness of our system. In Section 6, we
will discuss the limitations, future work and we will draw conclusions at last (see Section 7) .



2
BACKGROUND

2.1. RELATED WORK
The major dominant approaches for computer animation are keyframing and performance animation.

2.1.1. KEYFRAMING
2D hand-drawn animation deals with a sequence of two-dimensional drawings that simulate motion. 3D
computer animation applies the similar concept and involves creating a three-dimensional model on the
computer. Figure 2.1 illustrates the process of creating character motion: filmmakers set keyframe poses
and then let the computer generate the in-between frames[1]. With keyframing, the only keyframe poses
need to be built. The huge number of DOFs can be carefully handled by users one after another. Current
animation software like Blender and Maya contains complicated implementations of keyframing techniques,
which create a huge barrier for novice users. Those applications and interfaces are quite powerful, but there
are several drawbacks:

1. Making motions look organic and natural is a demanding task.

2. The adjusting process is quite time-consuming, even for professional animations.

Besides well-developed tools such as Blender and Maya, there are other interfaces and systems make
use of the keyframing animation techniques. Most applications focus on making the posing process easier
and quicker. HoloSketch is a virtual reality-based 3D geometry creation and manipulation tool with 3D user
input[2]. Users can select virtual objects and apply 3D transformations to pose and animate them. The sys-
tem allows novice users to manipulate the virtual character easily, but it only allows simply rotations and
rotations to the whole objects instead of each part. So it is not possible to generate more complicated poses.
Li et al. [3] and Chao et al. [4] enables animations to be create by sketching the hand-drawn keyframe pos-
tures of the articulated object. They allow users to define the required motion by sketching several motion
strokes over a drawn character, which requires less effort and extends the users’ expressiveness.But the sys-
tem requires the ability to sketching, which is not friendly for novice users. Moreover, the system can only

Figure 2.1: Keyframes and generated inbetween frames of a moving ball.
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4 2. BACKGROUND

Figure 2.2: : Users wearing a few retro-reflective markers control the full-body motion of avatars by acting out the motion in front of two
synchronized cameras. From left to right: walking, running, hopping, jumping, boxing, and Kendo (Japanese sword art).

apply motions from the motion clip database. Eitsuka and Hirakawa [5] presented a system for generating
keyframes of virtual objects with a touch operation in AR-based 3D space. The manipulation of the virtual
object is carried out by the user’s finger in front of the camera on a mobile phone. Similar to HoloSketch[2],
the users can only perform some limited transformations (scaling, translation, and rotation) to the whole
objects due to the difficulty and limitations in AR-based control. Jacobson et al. [6] presented a physical
modular input device that enables users to design the keyframe directly poses rather than using virtual inter-
faces by manipulating the degrees of freedom in composing parts. Single physical modular can be assembled
and manipulated, making the system flexible and easy to control. Based on similar principle, stop motion
is an animation technique that physically manipulates an object so that it appears to move on its own[7].
Filmmakers physically move the object with postures in small increments, creating the illusion of movement
when playing the keyframes at a fast pace.

2.1.2. PERFORMANCE ANIMATION
In contrast to keyframing, performance animation systems rely on the user’s physical timing and coordi-
nation skills[8]. One of the most well-known technique is motion capturing: filmmakers map a performer’s
motions towards a virtual character[9]. In most cases, direct mapping is applied to create realistic and natural
human-like animations[10]. Figure 2.2 illustrates the process of generating the animation. With the move-
ments of actors, the virtual character can perform various motions, such as walking, running, and hopping.
There are mostly two drawbacks to motion capturing:

1. Direct mapping is applied to create realistic and natural human-like animations.

2. Only animations that are physically possible for a human can be generated by motion capturing. For
example, it is not feasible for humans to perform stretching and squeezing.

Most of the recent techniques of performance animation aim to overcome these limitations by not apply-
ing direct mapping. Creature Features [11] focuses on non-humanoid creature animations. Users are tracked,
and their movements are mapped onto the creature’s movements. A combination of direct feature mapping
and motion coupling enables the generation of natural creature motion, along with intuitive and expressive
control.However, the system relies on some predefined animations to puppeteer and direct feature mapping
remains a limitation to control creatures like spiders. Kim et al. [12]came up with their idea from traditional
puppeteers who control devices such as rods or strings to move the body, head, limbs, and in some cases the
mouth and eyes of puppets. The system uses a haptic input device and virtual physically simulated strings
to mimic the process of traditional puppetry for synthesizing complex character animations. KinÊtre [13]
aims at animating arbitrary object through deformation according to the user’s performance using a regu-
lar consumer Kinect. However, in the registration phase, the user needs to physically move such that the
rendered skeleton interpenetrates the mesh, which makes controlling four-leg figures impossible. Similarly,
Vögele et al. [14]allows animate non-humanoid object from the motions of multiple actors. But these two
systems cannot guarantee that the virtual object is animated naturally and expressively. Creature Teacher
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(a) Creature Features[11] (b) Haptic puppetry[12] (c) Kinetre [13]

(d) Interactive steering of mesh
animations[14]

(e) Creature teacher[15] (f) Interactive motion mapping[16]

Figure 2.3: Examples of recent research in performance animation methods.

[15], with two custom-made pinch gloves and Oculus Rift, allows users to animate non-humanoid rigged ob-
jects through bimanual interaction paradigm. Users can select parts of the model with the left hand and then
manipulate them with the other hand. But the system only tracks periodic movements. Thus non-cyclic ani-
mation cannot be synthesized by this method. Rhodin et al. [16] allow for puppeteering using arbitrary source
motions, such as skeleton positions from Kinect and hand gestures from Leap Motion. Their source and tar-
get are not necessarily skeletal motions. Similar to our system, the user needs to define a small number of
pose correspondences between source and target motion. But the system can only return the closest existing
target pose in motion when given a new input pose. The input of the system includes motions from humans
and also the virtual character. While performance animation can be advantageous regarding creation speed,
several challenges still emerge. For example, input human motion must be physically possible for actors to
perform. Otherwise predefined animations need to be deployed.

2.1.3. DEFORMATION TRANSFER

Deformation transfer, referring to transferring existing mesh deformation from one character to another,
sometimes is another way to accelerate the process of synthesizing mesh animation. Under some circum-
stances, it is quite useful to preserve the semantic characteristics of the motion instead of its literal deforma-
tion. Baran et al. [17] enables semantic deformation transfer with a shape space that enables interpolation
and projection. The system allows creating a correspondence between the shape spaces of the two charac-
ters. Users can generate new poses and animations for target characters without target motion as inputs.
Ben-Chen et al. [18] proposed an automatic way to create a cage by wrapping the shape with many small
cubes, which is still hard to manipulate for the user. Their system only enforces pure rotations on the medial
axis of the shape, which restrict the ways for users to synthesize expressive animations. The system requires
the target object to have similar topology as the source object to make it meaningful to transfer the motions.
Moreover, some high-frequency details of the source deformation may be lost since the method projects the
deformation into a low-dimensional linear subspace.

2.2. RELATED CONCEPTS

2.2.1. SKINNING

Skinning is the process of controlling the deformation of an object by controlling a set of primitives. The
techniques of skinning are widely applied recently in the industry of video games and virtual animations.
Direct methods compute deformations of virtual characters based on closed-form expressions. There is no
process of optimization involved. Thus direct methods are popular because of its real-time performance[19].
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Linear blend skinning (LBS) is well-known as the fundamental method for shape deformation applications.
Lewis et al.[20] provided a full equation for LBS (mentioned as shape deformation and shape interpolation in
this paper) as following formula:

v ′
i =

m∑
j=1

wi , j T j vi (2.1)

Where vi contains the rest position of vertex i . It is assumed that the connectivity of the mesh will not
change duration deformation. Only positions of vertices will be computed and modified. Then we store the
value in v ′

i . T j ∈ IR3×4 represents the transformations of bone j aligning its current position with the rest
position. wi , j stands for the influence of bone j to vertex i. Traditionally those weights are manually adjusted
by designers, which is time-consuming. By default, the sum of weights of all handles for each vertex is one.
At a high level, the equation takes a weighted average over the transformations of all bones as the conversion
of each vertex. The method works well when the transformations at adjacent handles are similar. But issues
would arise in the circumstances where the shifts of neighboring handles differ too much. That is because
the combination of rigid transformations SO(3) is not linear. Thus the combined transformation we get from
Equation 2.1 is not promised to be rigid. The phenomenon is called candy-wrapper artifact.

2.2.2. RIGGING

3D rigging is the process of creating a skeleton for a 3D mesh so that it can animate freely. Most commonly, 3D
models are rigged before they can move because if character models don’t have a rig, designers will waste a lot
of time adjusting the positions of vertices. With the help of skeleton, we can calculate the influence of bones
on each vertex. So the designers can move Unsurprisingly, the usage of skeleton for animating characters has
a long history in computer animation [21].

Traditionally, riggers construct a 3D rig as a hierarchy of line-segments, which forms a graphical tree. In
this true, nodes are named joints connecting two or more lines, which are called bones. The parent-child
relationship is inherited as the skeleton is constructed. This parent-child tree structure can be used later to
define a forward kinematics tree when calculating pose transformations from relative bone rotations.

At times, the rigging process can become technical and seem overwhelming. To accelerate this process,
modern research has focused on automatically computing a skeletal tree given a 3D mesh [22]. In fact, a
shape’s topology and morphology imply the topology of its rig inside. There are mainly two principal ques-
tions in automatic skeleton construction: determining the skeletal topology and attaching the skeleton to
the 3D mesh [23]. The topological problem focuses on how many bones make up the skeleton and how they
are structured and connected. The attaching question asks where the skeleton is situated in space and how
skeleton can control the mesh movement.

2.2.3. MESH DEFORMATION

Our system is related to a long series work on mesh and skeleton deformation. Applications like animation
and special effects require the deformation and manipulation of complex geometric models. These models,
like real-world geometry, often contain details at various scales. Controlling complex models with high reso-
lutions can be difficult. So early preserving mesh deformation focus on multi-resolution techniques to reduce
the complexity of controlling the meshes [24] [25]. They are applying algorithms combined with existing hier-
archy methods to build a subdivision for meshes with arbitrary topology. These hierarchical techniques can
decrease the complexity and preserve the details in mesh deformation through the technique of local shape
control.

To achieve more global and complex deformation, many researchers switched to cast deformation prob-
lem as an energy minimization problem [26] [27]. Typically, the energy functions enable detail-preserving
and contain position-constraint terms for direct manipulation. [26] reformulate the process of least squares
fitting of the Euclidean geometry to the given Laplacian coordinates. In their fitting system, they compute
transformation for each vertex, which is applied to its respective Laplacian coordinate. However, these exist-
ing techniques do not scale, as the optimizations involved are mostly nonlinear and require Gauss-Newton
iterations, which is slow-converging.
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Recent researchers focus on deformation via a mesh-based inverse kinematics. They provide the system
with a series of example meshes to let the system learn the space of natural deformations to improve the
efficiency by restricting the results to only constraint ones [28] [29] . Our system apply a different method for
the similar problem: let the system deform the mesh every frame by learning from some example poses.

2.2.4. SKELETON SUBSPACE DEFORMATION
Skeleton Subspace Deformation (SSD) have been applied in the graphics industry for a long time as an effi-
cient and effective representation of animation [30] [31]. However, they achieve their success by restricting
deformation to a particular subspace for efficiency. However, they may contain some artifacts like candy-
wrapper artifacts as well as tedious tweaking of vertex weights. On the other hand, they each have advantages.

2.2.5. MICROSOFT KINECT

(a) Kinect for Windows (b) Components of Kinect

Figure 2.4: The exterior and internal functions of Kinect for Windows

Microsoft Kinect is a series of motion-detecting input device firstly developed by Microsoft in 2010. It
allows users to interact with a computer without the help other game controller devices, just by motion and
audio commands. The device is mainly designed for Xbox 360 and Windows PCs in developing interacting
games.

COMPONENTS

Kinect is an aggregate device equipped with color cameras, depth sensors and a set of microphones, alto-
gether in a horizontal box. A small motor works as the base, letting the device to be tilted in a horizontal
direction. The Kinect contains four main components: a microphone array, an infrared emitter, an infrared
receiver and a color receiver, illustrated in Figure 2.4b.

There is no central processing unit (CPU) contained in this device. Only a digital signal processor (DSP)
processes the signal of the microphone array. So the Kinect driver can process data on the PC side. The driver
can be installed on Windows 7, 8, Vista and 10, and runs on a 32- or 64-bit processor. You will need a least 2
GB of RAM and a dual-core 2.66-GHz or faster processor for the Kinect driver.

Figure 2.5: Range of Kinect Sensor



8 2. BACKGROUND

THE COLOR CAMERA

The color camera inside is able to capture and stream the color video data. The camera can detect red, blue
and green colors and create image frames. The range of the Kinect Sensor is 43 degrees in vertical direction
and 57 degrees in the horizontal direction illustrated below. So Kinect can capture video streams using the
following resolutions and frame rate: 640 × 480 at 30 frames per second (FPS) using red, green, and blue (RGB)
format, 1280 × 960 at 12 FPS using RGB format, and 640 × 480 at 15 FPS using YUV (or raw YUV) format.

IR EMITTER AND IR DEPTH SENSOR

Figure 2.6: Demonstration of how the depth sensor works

The depth sensor for Kinect consists of an IR emitter and IR depth sensor. The position of the emitter
and the sensor on the Kinect device is shown in Figure 2.6. The IR emitter would constantly emit infrared
light and spread “pseudo-random dot” which is invisible to us over everything within reachable range. The IR
depth sensor would capture those dots and convert them into depth information by calculating the distance
between the sensor and the dots. All resolutions use a frame rate of 30 FPS. The resolutions supported are 640
× 480, 320 × 240 and 80 × 60.

LIMITS

The optical lenses, the base of the sensor, have some limitations. Figure 2.7 shows the range where the sensor
can work smoothly. Horizontal viewing angle is 57°. Vertical viewing angle is 43°. User distance (standard
mode) is from 1.2m to 4m. User distance (near mode) is from 0.4m to 3m. Depth range is 400mm to 8000mm.
Temperature range is 5 to 35 degrees Celsius (41 to 95 degrees Fahrenheit).

SKELETON TRACKING

Microsoft Kinect can track the skeleton position of the user within its working range in real time. Figure 2.8
shows the 20 joints whose 3D coordinate positions can be tracked by the sensor. A tracked skeleton provides
detailed information about the skeleton, including orientation and 3D coordinates for each skeleton joint. In
this project, we make use of only the skeleton information when 20 joints can all be successfully tracked.
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Figure 2.7: The scanner limit for Kinect

Figure 2.8: Kinect skeleton position





3
OVERVIEW OF THE SYSTEM

3.1. USER SCENARIO
Before coming to the details of our system architecture, we begin with a motivating scenario, to illustrate
the user experience and let the readers have a better overview of the project. Since our system is intended for
applications and games whose content creation is essential, giving users the ability to express individualism is
the critical point. In this example of user scenario, we will animate a flour sack. Figure 3.1 depicts the process
of standing on the hand animation. The user can add individual detail to the users since the animation is
performance-based. Imaging the user would like to animate an existing rigged 3D geometry, a flour sack,
into a 3D game. Following are the steps for the user to go through to synthesize the mesh.

Figure 3.1: User scenario for using the system. On the left is the registration phase, where users can make some couplings of standard
poses from the source object to the target object. On the right is the puppetry phase where the user can continuously give pose input to
puppetry phase and the system will generate animations for target object in real-time.

Step 1. He picks up a Kinect camera and place it at a certain height where it can image his full body.
At this point, the system tracks a human skeleton. The user can physically move such that the system
tracks the desired poses of the rendered skeleton.

Step 2. The user can then select the key poses they want to sample with the right character key poses.

Step 3. The user manually generate a key pose for the mesh. Press "register" button and pair the key
poses of the source and the target object.

Step 4. After repeating step 2 and step 3 a couple of times, we have completed the registration phase
and mapped several couplings of key poses.

11



12 3. OVERVIEW OF THE SYSTEM

Step 5. The last step is the puppetry phase, where the user can physically move in front of the camera
to puppeteer the virtual character. The system will automatically translate his motion into realistic
deformations of the previously static mesh.

Our method enables motions of the human body to transfer onto the mesh in real-time. The system
provides a natural way for users to perform playful and unique animations of arbitrary rigged mesh that they
want to bring to life in their 3D applications.

3.2. SYSTEM DESIGN

Figure 3.2: Overview of the System. Lower square is the procedure of registration phase. The upper right square is the process of puppetry
phase. The rounded rectangle represents procedures that can be automatically processed by the system. The rectangle stands for the
operations required from users.

Figure 3.2 illustrates the overview of our animation generation process. The manual blocks indicate the
manual process, while the rounded rectangles represent automatic operations by the system. Our system can
render both the human skeleton and articulated object side by side.

There are two phases of our system. One is registration phase, where the system learns static coupling
between the source and target character. The other part is the puppetry phase, where the system generates
the real-time animations. In the Registration Phase, we firstly capture the motions of an actor or actress per-
forming the key poses they would like to behave. Then the actor selects a few key poses among the captured
motion sequences as stand source postures. It is recommended that the poses should cover the space of the
poses that would appear in the later captured motions. The last task for the users is to create some charac-
ter pose corresponding to each of the selected poses for the source object. These couplings of crucial poses
implicitly define the correspondence between the body parts of the human and character models, even if
they have different topology and morphology. The system puts down the skeleton vertex position human key
poses and maps them towards the linear and angular momenta of the character pose. In the puppetry phase,
when the new input motion data comes in from Kinect, the system project the new pose into the stand pose
space and generates the weight vector(Section 4.4). We will then obtain the interpolated poses, in either the
form of transformation matrix or linear and angular momenta, for the target character(Section 4.5).



4
TECHNOLOGIES

In this chapter, we will introduce the technologies that we apply to this project.

4.1. GOAL
Our source motion X(t ) = (x1, ...xN ) is a 3D point sequence over time t , from tracking device Microsoft Kinect.
Target character motions Y(t ) = (y1, ...,yN ) are mesh deformation sequences. The goal of our project is find
the mapping M that is able to transfer the source motion into the target motion:

X(t )
M=⇒ Y(t ) (4.1)

4.2. REQUIRED OPERATIONS
The proper choice of shape space is essential for deformation transfer between humans and virtual creature.
Some existing mesh representations can satisfy our requirements[17]. We summarize some of them into an
intuitive representation that enables semantic deformation transfer.

Two maps define a shape space for a specific mesh connectivity: an encoding map C : IR3n → IRm that
takes 3D vertex positions and outputs a coordinate vector; a reconstruction map C−1 that generates 3D vertex
positions from a coordinate vector. The reconstruction of an encoding map C−1 should return the original
3D vertex positions. The deformation transfer relies on two primary operations in shape space:

• Interpolation: Given n example base poses p1, ...,pn and n weights w1, ..., wn , such that
∑

i wi = 1,
compute

∑
i wi pi to reconstruct combination of the poses.

• Projection: Given n example base poses p1, ...,pn and another input pose x, compute n weights
w1, ..., wn that is able to reconstruct the input base pose x by interpolating weighted base poses∑

i wi pi .

4.3. METHOD

A shape space that helps interpolation and projection facilitates semantic deformation transfer with the sim-
ple method stated in Algorithm 1. Together the projection and interpolation cover a linear mapping from
the source shape space towards the target shape space. Using the following equation, we firstly encode the
source motion X (t ) into source shape space to get the weight vector [w1, ..., wn]. And the target motion Y (t )
then comes from the interpolation of example base poses in the target shape spaces:

X(t )
Csr c==⇒ [w1, ..., wn]

C−1
t g t==⇒ Y(t ) (4.2)

13
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Algorithm 1 Motion Puppetry

1: Given n pairs of example poses, encode them into the source and target shape spaces using Csr c and Ct g t .
2: Given a new source pose, encode it into the source shape space and use projection to express it as an

affine combination of the source example poses with weights w1, w2, ..., wn

3: Use these weights to interpolate corresponding target example poses in the target shape spaces and use
C−1

t g t to reconstruct the resulting pose.

However, this method sometimes have disadvantages. For example, the global transformations will affect
the projection result (We will discuss this problem more in Section 5.1). We therefore separate global motions
from character pose, so that we can eliminate the effects of global transformations. We parametrize a motion
X(t ) = (x1, ...xN ) into character pose feature vectors Xpose (t ) = (xpose

1 , ...xpose
N ), global translations Xtr ans (t ) =

(xtr ans
1 , ...xtr ans

N ), and global rotations Xr ot (t ) = (xr ot
1 , ...xr ot

N ). In this project, we use the orientation of spine
as the orientation of the actor.

Figure 4.1: This image illustrate the our method in the puppetry phase, where we get current input pose x(t ) from kinect and output the
animations y(t ) to the system.

4.4. EXAMPLE-BASED PROJECTION
The projection process starts by obtaining the newest coordinates that correspond to a new human pose. The
system will automatically project the pose into source shape space and generate n weights w = [w1, ..., wn].
We apply three methods to solve this projection problem: quadratic programming, positive constraint mini-
mization and L1 norm.

4.4.1. LINEAR PROJECTION
The first method we applied is quadratic programming. For a new human pose p, we search for the best
weight vector w = [w1, ..., wn] that can reconstruct a pose that is closest to the original pose. Ideally, the
reconstructed pose should be identical to the original pose. Thus here we apply the L2 norm here to minimize
the errors.

min
wi

‖p−
n∑

i=0
wi Pi‖

2

while
n∑

i=0
wi = 1

(4.3)

The solution can be calculated through the following equation [32]:[
w
λ

]
=

[
G −AT

A 0

]−1

×
[

c
1

]
(4.4)

where w ∈ Rn is the weight vector in the form of [w1, w2, ..., wn]T . G ∈ Rn×n is an outer product matrix
equal to xxT . c ∈ Rn equals to xT p. A ∈ Rn is a unit matrix. We can compute outer product matrix G and the



4.4. EXAMPLE-BASED PROJECTION 15

Figure 4.2: Visualization about the reason of sparsity for adding L1 norm

inverse matrix of

[
G −AT

A 0

]
for projection in advance in the source shape space. By pre-calculating the

necessary inverse matrix, the whole process can be solved in real-time.

4.4.2. POSITIVE CONSTRAINED PROJECTION
The second method we apply here is the convex optimization of a quadratic function with positive con-
straints. Sometimes we might want to eliminate the effect of extrapolation. So besides the method of convex
optimization of a quadratic function with equality constraint, we add an inequality constraint wi ≥ 0 to allow
only positive weights in the solution.

min
wi

‖p−
n∑

i=0
wi pi‖

2

while
n∑

i=0
wi = 1, wi ≥ 0

(4.5)

Compared to the unconstrained quadratic programming problem, the constrained problem is more dif-
ficult to solve. In this paper, we use MOSEK optimization software to solve this problem. We will introduce
the implementations in detail in Section 5.4.

4.4.3. L1 REGULARIZATION
In fact, sometimes we will be bothered by weights that are not sparse enough to choose the actual relevant
poses. In practice, we prefer weights that can semantically project the latent pose rather than the weight
vector that can reproduce the original pose accurately. Sparsity in the quadratic optimization problem can
be enforced by adding a L1 regularization form into the into the quadratic energy. Figure 4.2 illustrates the
reason why L1 can bring sparsity into the system. H0 is the constraint, which in our system represents the
partition and unity relationship of the weight vector. The intersection of The intersection point is the solution
to the system. In Figure 4.2 B L2 is a convex and H0 is tangential to the L2 norm. So the solution is involved
with both x0 and x1, which is not sparse. However, in Figure 4.2 A, because of the attributes of L1 norm, the
intersection points will either be on x1 axis or x2 axis, which enforce sparsity in the results.

In this method, we decide to add a L1 regularization λ‖w‖L1 into the minimization energy. In Equation
4.6, λ is the parameter to balance the influence of L1 norm and the quadratic energy. It allows extrapolation
but adds sparsity into the selection of weight vectors.

min
wi

‖p−
n∑

i=0
wi pi‖

2

+λ‖w‖L1

while
n∑

i=0
wi = 1

(4.6)
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We cannot find existing libraries to solve this problem. Thus we implement the solution provided by
previous researchers [33] [34]. We firstly put everything into matrix form. Then Equation 4.6 is equal to:

min
w

f (w) =wT Qw+qT w+λ‖w‖L1

1Tw = 1

w+, w− ≥ 0

(4.7)

Next, we bound the L1 norm of w to w+ and w−, where w = w+−w−. As every element is positive, the l1
norm of w+ and w− is l (w+, w−) = 1T w++1T w−. Then:

‖w‖L1 =
∥∥w+−w−∥∥

L1
≤ l1(w+,w−) = w++w−

min
w

f (w) = wT Qw+qT w+λ‖w‖L1

≤ (w+−w−)T Q(w+−w−)+qT (w+−w−)+λ1T (w++w−)

(4.8)

Thus we can get the optimized weight vector w by solving the constrained quadratic minimization prob-
lems for w+ and w−. The matrix form for the translated problem becomes as follows:

min
w+,w− f (w+,w−) =

[
w+
w−

]T

M

[
w+
w−

]
+nT

[
w+
w−

]
[

w+
w−

]T [
1
−1

]
= 1

w+, w− ≥ 0

(4.9)

The problem then is transformed into a quadratic optimization problem with inequality constraint. So
we can solve the equations by using the same method as that of Equation 4.5.

4.5. SHAPE INTERPOLATION
Given such a weight vector from the projection procedure, we will reconstruct the vertex positions for the
target object in this subsection.

4.5.1. LINEAR BLENDING
The linear blending method is the basic algorithm for skeletal shape deformation. Linear blending computes
the reconstruct vertex positions v

′
according to the following equation[31]:

V
′ = M

( k∑
i=0

wi Ti

)
(4.10)

Where V
′ ∈ IRn×d is the matrix whose rows are the reconstructed vertex positions, k is the number of key

poses, M ∈ IRn×(d+1)m is the matrix combining rest-pose vertex positions v j with the vertex weights wp (v j ),
m is the number of handles, and Ti ∈ IR(d+1)m×d stacks transposed transformation matrices for each handle.
Transformation matrix for handle j Ti j ∈ SE(3) is a rigid body transformation. Linear blending works well
when each blended transformations Ti is not too much different the others. Issues might arise if we need to
blend transformations which differ too much. Besides, the blended transformation is not guaranteed to be a
rigid body transformation.

4.5.2. FORWARD KINEMATICS
As the system aims to generate real-time animation for an articulated object, we can make use of the hierar-
chical modeling of rigged characters. In fact, much of the ideas concerning the animation of hierarchies in
computer graphics comes from Robotics. The articulated models consist of the rigid part connected by joints
that can rotate around a fixed point of a link. Figure 4.3 illustrates the movements of hands for an articulated
character. When we want to raise the hand of the character to touch the ball, we firstly rotate the shoulder,
then rotate the elbow, which is the child of the joint shoulder. That is how the forward kinematics works: it
can describe the positions of the body parts as a function of the joint angles rather than rigid transformation
matrix[35].
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Figure 4.3: Sample sequence of forward kinematic specification of joint rotations.

By applying forward kinematics, we can animate the character by specifying the joint rotation angles rel-
ative to its parent node as a function of time. In the registration phase, we register the relative rotation and
relative translations of each joint towards its parent node for each key poses. During the shape interpola-
tion process, we calculate the linearly blend the relative rotations and translations for each joint, using the
following equation:

θ
′
j =

k∑
i=0

wiθi j

T
′
j =

k∑
i=0

wi Ti j

(4.11)

After the interpolation, We can aggregate the transformation matrix for each joint, which is a matrix com-
position of all joint transformation between the joint and the root of the hierarchy. The affine transformation
matrix a f f i ne( j ) for each joint j can be calculated as follows:

affine( j ) = affine(parent( j ))T j R(θj), while j is leaf node

affine( j ) = T j R(θj),while j is parent node
(4.12)

The affine transformation at each joint is calculated by compositing all the transformations up the hier-
archy to the root node. After that, we can stack all the affine matrix into transformation matrix T and apply
the linear blending equation similar to Equation 4.10 to reconstruct vertex positions v

′
:

V
′ = M ·T (4.13)

Forward kinematics guarantee that the input transformation matrix for linear blending must be rigid.
Artifacts like candy wrapper or exaggeration would be avoided.
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Figure 4.4: Global translation xtr ans (t ) and rotation xr ot (t ) of a general pose (right) extracted in relation to the rest pose (left)

4.6. OPTIMIZATION
For each actor pose in the puppetry phase x(t ), we estimate the global position and orientation of the actor’s
spine. Figure 4.4 illustrates the procedures how we extracts the global translation xtr ans (t ) and the global
rotation xr ot (t ) for each frame [16]. Global motion is represented by 3 degrees of freedom: a translation
vector xtr ans (t ) ∈ IR3 and a rotation angle xr ot (t ) ∈ IR



5
EXPERIMENTAL RESULTS

In this chapter, we evaluate the effectiveness of our approach in a number of steps. Firstly, we will evalu-
ate different methods for example-based projection. Next, we will provide some examples to compare the
forward kinematics and linear blending in shape interpolation. Then we will compare our system with the
previous methodologies for performance-based animation.

5.1. EXAMPLE-BASED PROJECTION
In this sections, we show the examples and statistics of weight generation and evaluate the results of applying
a linear projection, positive-constrained projection, and l1 regularization.

Input poses

1 2 3
Base Poses

(1) 0.76 0.41 0.15

(2) 0.24 0.59 0.85

Table 5.1: Project three input poses into two-base-pose shape space with linear projection

During the puppetry phase, Microsoft Kinect continuously inputs real-time skeleton positions of the ac-
tor into the system. The system treats this real-time input data as an interpolated result of base positions
achieved during the registration phase. Then we can calculate the weight vectors for interpolated shape re-
construction in the next step. We first try to solve this problem with quadratic programming.

Table 5.1 shows the weights of three input pose when we have two base poses. The three input poses are
intuitively interpolated pose from the base poses. The weights demonstrate the extents of interpolation and
are consistent with human perception. Next, we test what happens if we add a third pose that may interfere
with the first poses to the system.

19
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Input poses

1 2 3 4 5
Base Poses

(1) 0.24 0.52 0.99 0.80 0.40

(2) -0.04 -0.06 0.19 0.50 0.80

(3) 0.80 0.54 -0.18 -0.30 -0.20

Table 5.2: Project five input poses into three-base-pose shape space with linear projection

Input poses

1 2 3 4 5
Base Poses

(1) 0.16 0.42 0.76 0.41 0.15

(2) - - 0.24 0.59 0.85

(3) 0.84 0.58 - - -

Table 5.3: Project five input poses into three-base-pose shape space with positive-constrained projection.

Table 5.2 presents the results with an additional base pose three. The last three input pose is the same as
the in Table 5.1. As a result, we see that compared to the setting with just two poses, the weights completely
change and negative weights appear. The negative weights seem undesired here as the input poses are chosen
to be inbetween poses of the input poses.

To eliminate negative weights, we apply a positivity constraint to the weights (see Equation 4.5). Table
5.3 presents updated results from the identical input data in Table 5.2. The weights of the last three input
pose are the same as those in Table 5.1. The method successfully enables the system to consider the effect of
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relevant base pose only.

Input poses

1 2 3 4 5
Base Poses

(1) 0.17 0.42 1.00 1.00 1.00

(2) 0.83 0.58 - - -

Table 5.4: Project five input poses into two-base-pose shape space with positive constrained projection.

The above example illustrates our observation that the positivity helps us in dealing with the construction
of weights for input poses that are inbetween the base poses. What if the input poses exceed the boundary of
base poses? Table 5.4 demonstrates the case where the base poses are "arms down" and "arms straight" and
the input poses include "arms up" poses. Explicitly, the input poses 3, 4, and 5 are not inbetween poses of
the input poses. The results show that the poses 3, 4 and 5 are approximated as the base pose 1. The reason
is that with the restriction to positive weights, the system cannot extrapolate beyond convex combinations
of the base poses. Hence, extrapolated poses like the "arms up" poses cannot be represented. This can be a
desirable feature for some applications, but can also be a several limitations in other scenarios.
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Input poses

1 2 3 4 5
Base Poses

(1) 0.17 0.42 1.12 1.40 1.45

(2) 0.83 0.58 -0.12 -0.40 -0.45

(a) λ = 0.1

Input poses

1 2 3 4 5
Base Poses

(1) 0.17 0.42 1.00 1.24 1.29

(2) 0.83 0.58 - -0.24 -0.29

(b) λ = 0.2

Input poses

1 2 3 4 5
Base Poses

(1) 0.17 0.42 1.00 1.08 1.13

(2) 0.83 0.58 - -0.08 -0.13

(c) λ = 0.3

Input poses

1 2 3 4 5
Base Poses

(1) 0.17 0.42 1.00 1.00 1.00

(2) 0.83 0.58 - - -

(d) λ = 0.4

Table 5.5: Project five input poses into two base-pose through l1 regularization with different value of λ
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Weights for Standard Poses

Base a Base b Base c Base d Base e
Input Pose Methods Pattern

Linear 0.08 0.54 -0.15 -0.10 0.64

L1 - 0.37 -0.05 - 0.68

Positive 0.01 0.29 - - 0.70

Linear -0.70 0.66 0.52 -0.13 0.64

L1 -0.14 0.51 0.54 -0.13 0.23

Positive - 0.42 0.55 - 0.03

Table 5.6: The two input poses contains movement in both arms and legs. We compare the results of projection by using linear projection,
L1 regularization and positive constrained projection.

An alternative way to regularize the system is to add a sparsity enforcing prior. This type of regularization
allows for extrapolation while avoiding that too many poses influence the result. Explicitly, we introduce L1

norm into the optimization energy as a sparsity enforcing term. The L1 term receives a weight λ. The higher
the weight, the sparser we expect the solution to be. To explore the effects of the parameter λ, we assign λ

with several values.

Table 5.5 shows the generated with λ equals from 0.1 to 0.4. We can tell that the Table 5.5(d) is a pure
interpolation. The result is identical to that in Table 5.4. When λ equals to 0.1, the result shows extrapolation
which is consistent with our perception. The effect of extrapolation decreases with larger and larger λ. λ

can control the extent of extrapolation in the result. Thus we believe λ is quite essential in controlling the
properties in the reconstruction process because it can adjust the elasticity in the weight generation. We
believe this method is an in-between method for quadratic programming and positive constraint. λ is the
control stick. We will discuss more the effects of interpolation and extrapolation for mesh reconstruction in
the next section.

We have discussed effects of the three methods in the weight generation of simple input poses. How
would they behave when we have more complicated input data? Table 5.6 demonstrate the case when leg
poses are involved. In this case, there are five standard poses: three for moving hands and two for moving
legs. From the perspective of human perception, the first input pose is a combination of base pose b and e.
The quadratic programming can give us a similar result, but it brings negative weights for irrelevant base pose
c and d. L1 and positive constraint both provide satisfactory results, with large weights in base pose b and
e. Based on human cognition, the second input pose should be a combination of base pose b, c, and e. The
L1 behaves the best and can recognize the main poses. The quadratic programming behaves with quite large
negative weight in base a to eliminate the stretching effect of base b and c. The positive constraint recognizes
the wrong leg because it does not negative weights.
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Weights for Standard Poses

Base a Base b Base c Base d Base e
Input Pose Methods Pattern

Linear 0.09 0.20 -0.04 1.04 -0.29

L1 - 0.06 - 0.94 -

Positive - 0.06 - 0.94 -

Linear -0.68 0.32 0.63 1.01 -0.29

L1 -0.23 -0.11 0.68 0.69 -0.25

Positive - - 0.69 0.31 -

Table 5.7: Based on table 5.6, we shift the coordinates of two inputs poses 0.5 in the x direction. This table compares the influence of
translation in the three methods.

Linear L1 Positive Linear L1 Positive

x 2.53 1.98 1.88 2.54 1.93 0.90
y 4.70 2.48 1.12 4.65 3.89 0.90
z 0.72 0.22 0.22 0.72 0.39 0.19

Table 5.8: This table shows the differences in weights when we shift the input coordinates 0.5 in x, y, z direction respectively.

(a) Input Pose 1 (b) Input Pose 2

Figure 5.1: This figure illustrate the influence in weight generation when we shift the coordinates in x, y, z direction respectively.
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Linear L1 Positive

(a)

Linear L1 Positive

(b)

Linear L1 Positive

(c)

Table 5.9: This table illustrates the projection when we take all 23 base poses in Appendix A into consideration. The visualization shows
the weight generated by linear projection, l1 regularization and positive constrained projection respectively.

Apart from the influences of applying different methods, there are also other factors that we need to add
into consideration. In the case demonstrated in Table 5.7, we shift all the vertexes in the input poses in Table
5.6 0.5 to the right. L1 is the most stable method as it still generates similar result as in Table 5.6. Quadratic
programming is the most unstable method, and the result is seriously influenced by the shifting. The system
cannot recognize the relevant input poses. Table 5.8 shows the influences of weight generation for the three
methods when we shift the input pose by 0.5 towards the direction x, y, and z. The result is visualized in the
bar chart in Figure 5.1. 5.1a visualizes the shifting result of example 1, and the shifting result of example 2 is
on the right. We can tell from the graph that the shift in Y direction affect the result most, and the quadratic
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methods are quite unstable that shifting in all direction will result in largest difference for this method.

The above examples are based on 5 standard poses at most. In fact, we have generated 23 example base
poses in the project. You can view all of them in Section A. Table 5.9 shows the result when we have 23 base
poses. From the three examples, we can find the quadratic programming involve most of the base poses in
the final weights. This method is not ideal when there are more than three base cases. Either L1 regularization
or positive constraints can be applied in this case. Quadratic programming with the positive constraint is the
most stable method so far, but it may give wrong answers when extrapolation happens.

5.2. SHAPE INTERPOLATION
In this section, we report the results of shape deformation by interpolation and extrapolation.

After the procedure of shape space projection, we will get a weight vector for interpolation and extrapola-
tion. In this section, we will reconstruct vertex positions of a virtual object based on different weight vectors.
Table 5.10 shows the reconstructed poses of an ogre when we apply different methods. Reconstructed results
based on forward kinematics is in the first row. Linear blending results are on the second row. The third
column and the fifth column are the base poses. Inbetween is the interpolated poses. We can tell that both
methods work well here but for the extrapolation, but linear blending will stretch the hands of the ogre to
make it looks abnormal when negative weights are involved. In the first column when the weight is (-1.0,
2.0), the forward kinematics will cross the hands above the ogre’s head. So although we input large negative
weights into the system, we can still get intuitive poses based on this method.

Forward Kinematics

Linear Blending

Weights (-1.0, 2.0) (-0.5, 1.5) (0.0, 1.0) (0.5, 0.5)

Forward Kinematics

Linear Blending

Weights (1.0, 0.0) (1.5, -0.5) (2.0, -1.0)

Table 5.10: Reconstructed poses of ogre from different setting of weights. The first two and last two columns are extrapolation. The rest
columns are interpolation.

Table 5.2 demonstrates another example when the base pose combination aims to help the ogre to clap
hands. In the first column and the last column, the hands of ogre stretch out tremendously when applying
direct interpolation. Even when the negative weight is not too large (W1 =−0.5), the hands of the ogre looks
bigger indirect method compared with forward kinematics.

Up to now, We might have the impression that negative weights will bring inconvenience for shape in-
terpolation. Should we eliminate it from the weight generation by using only positive weight constraint? Are
there any advantages of using negative weights? We make another experiments as demonstrated in Table
5.12. The third one (normal pose) and the fifth one (compressing the bar) are the bases poses. When the
first weight is negative, the bar is stretching out, and when the second weight is negative, the bar is com-
pressed more. That effect makes the bar looks elastic and vivid. So extrapolation has its advantages of adding
elasticity to the object.
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Forward Kinematics

Linear Blending

Weights (-1.0, 2.0) (-0.5, 1.5) (0.0, 1.0) (0.5, 0.5)

Forward Kinematics

Linear Blending

Weights (1.0, 0.0) (1.5, -0.5) (2.0, -1.0)

Table 5.11: Reconstructed poses of ogre from different setting of weights. The first two and last two columns are extrapolation. The rest
columns are interpolation.

In the last example, the base poses bar involves only translations in the joint, what if we add twisting into
the base pose? Table 5.13 demonstrates this process. The first three columns are an interpolation, where the
two methods behave all well. From the fourth column to the right, large negative weights are presented. With
linear blending, the bar is not behaving twisting after the boundary of the base pose. On the contrary, one
side of the bar exaggerates in size. In the first row, we apply forward kinematics. The bar keeps twisting when
the negative weights are larger.

5.3. SYSTEM

In this section, we compare our result with previous puppetry approaches. We compare our method for mesh
puppetry with previous approaches based on some criteria that are important for puppetry (see Table 5.14).
These criteria include the following aspects:

1. The type of target characters supported by the system. Whether they system can puppeteer non-
humanoid creatures.

2. Whether the system runs in real-time.

3. Whether the system can synthesize motion with a natural creature style.

4. Whether the system support dynamics in the motion generation, not only purely select existing motion
from the library.

5. Whether the system can generate human-impossible motion.

Similar to Creature Features [11], our method is aimed at animating non-humanoid creatures. However,
they require the users to initially collect several pairs of motions from both actors and virtual objects to trigger
the direct feature mapping between the source and target. In other words, users need to import extra motions
from elsewhere to generate their animation here, which raise a barrier for normal users. The Kim et al. [12]
propose to control the characters through traditional marionette control as natural interfaces. Thus the users
need a large amount of practice to synthesize motions with natural creature style. KinÊtre [13] claims to be
able to animate arbitrary objects. However, they deform the mesh according to actors’ real-time performance
to let them imitate the motion of humans. So their animation is not natural if the target object has different
body structure of human body. For example, when they want to animate a four-leg chair, two of the chair
leg cannot move because humans only have two legs. Similarly, Interactive Steering [14] separates the mesh
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(-1.0, 2.0) (-0.5, 1.5) (0.0, 1.0) (0.5, 0.5) (1.0, 0.0) (1.5, -0.5) (2.0, -1.0)

Table 5.12: This figure illustrates the advantages of negative weights in reconstruction. The bar can stretch out and squeeze in when
extrapolation is involved.

Forward Kinematics

Linear Blending
Weights (0.0, 1.0) (0.5, 0.5) (1.0, 0.0) (1.5, -0.5) (2.0, -1.0)

Forward Kinematics

Linear Blending
Weights (2.5, -1.0) (3.0, -2.0) (3.5, -2.5) (4.0, -3.0)

Table 5.13: We compare the reconstructed results of squeezing bars between forward kinematics and linear blending.

into limbs and body parts and let the users animate them separately according to their performance in real-
time. So multiple users can animate a single virtual object at the same time. However, making a natural
animation becomes even harder as several people need to perform certain actions concurrently, which is
difficult to control. Creature Teacher [15] only allows periodic movements, and the users have to generate the
animation with several rounds of manipulation, so they cannot output the animation in real-time. Similar
to our method, Interactive Motion Mapping [16] learns the mapping relationship between source and target
characters by registering multiple pairs of poses from the actor and the virtual object. Different from our
method, the system also requires the input of several clips of animations for generating animation in the
puppetry phase.

Our method has the advantages over the direct feature mapping when we consider the aim of creating
natural motions for non-human character puppetry. In the registration phase, direct feature mapping re-
quires the user to specify the number of feature pairs, which is sometimes a difficult process. Because non-
humanoid characters often have a different body structure with humans. So sometimes the system even
leaves some DOFs of the target object blank, and thus some parts of the target object cannot move. This phe-
nomenon lets the target object behave weird and unnatural. Besides, when we apply direct mapping to non-
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Ours
Creature
Features

Haptic
Puppetry

KinÊtre
Interactive

Steering
Creature
Teacher

Motion
Mapping

Human-Human X X X X X X X
Human-Creature X X X X X X X
Real-Time X X X X X 7 X
Natural Creature Style X X - 7 7 X X
Dynamics X 7 X X X X 7

Human Impossible Motion X X X 7 7 X X
Extra Motion Independent X 7 X X X X 7

Table 5.14: Comparison with previous puppetry methods: Creature Features[11], Haptic Puppetry[12], KinÊtre[13], Interactive
Steering[14], Creature Teacher[15], Motion Mapping[16]

humanoid characters, there are several kinds of motions that the user cannot perform, such as squeezing,
stretching and twisting, which is in contrast with the initial aim of the performance animation: to animate
meshes with human-possible body motions. Moreover, our system does not require any motion inputs from
the character side. So the users don’t have to spend extra time in other systems to create desirable motion
clips beforehand. They can directly come to our system and generate their first animation in real-time and
with fun.

5.4. RESULTS
In this section, we will display some demo animations fo various meshes. Figure 5.2 presents two examples
generated by our system.

Figure 5.2a presents animation generation process of a dog. It has a different body topology from human
beings. We want to generate the movement of walking, running, waving a pow and moving the tail. In the
registration phase, we make seven pose couplings between the user and the character. The "arm straight"
and "arm front" poses control the running of the dog. "Left arm up" controls the pow waving. "Right arm
up" controls the tail moving. Human walking represents the dog walking. In the puppetry phase, we can tell
that the system can generate different animations interactively according to the user’s performance. When
the user turns left and walk, the dog will turn correspondingly and walk. When the user moves from "arm
straight" to "arm front", the dog will run. In the meanwhile, the dog’s ears will also move up and down.
We can tell that the system can differentiate different input poses from Kinect side and generate useful and
playful animations for non-humanoid characters.

Figure 5.2b demonstrates a case when users control an object with fewer DOFs compared to the human
body. The task is generating squeezing animation for a simple bar. Traditionally, it is impossible for users
to animate squeezing and twisting. But our system can animate the bar with just the arm movement. In
the registration phase, we make two couplings of example poses from the user and the bar. For the second
example pose of the bar, we add twisting effect to the squeezing pose. So in the puppetry phase, when the
user moves from "arm straight" to "arm front", the bar will have a cartoonish effect of twisting and squeezing
simultaneously. We can conclude that our system can animate object with arbitrary topology and let them
behave human-impossible motions.
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(a) Animated Result of a dog. The dog can move according to not only the input pose of user, but also the user’s orientation

(b) The animated result of a simple bar. With only two standard poses registered, the user can let the bar squeeze and
twist based on the movement of arms

Figure 5.2: Some animations generated by our system.
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DISCUSSION, LIMITATIONS AND FUTURE

WORK

In this chapter, we will discuss our findings and limitations and suggest some future work.

6.1. DISCUSSION
Let’s recap the challenges we have mentioned in the field of mesh puppetry:

• How to match arbitrary target creature to human body?

We eliminate the traditional way of direct feature mapping, which is not able to control non-humanoid
creatures. We propose to project the human skeleton information into a low-degree shape space and recon-
struct the target deformation by interpolation. So we can control any 3D rigged mesh, despite morphology
and topology.

• How to generate natural and plausible creature animations from the input body motions of users?

By using motion transfer, we transform this question into generating the best weights for mesh defor-
mation in reconstruction. We apply three methods here: quadratic programming, quadratic programming
with positive constraints, quadratic programming with L1 regularization. During the evaluation process, we
use multiple examples with different numbers and types of base poses. We find that quadratic programming
performs better when there is a limited number of base poses. Positive constraints will perform better when
input motion is within the boundary of example poses. So it can not expect extrapolation in the result, which
keeps the rigidity in the shape space. However, when the input motion is crossing the shape space boundary,
the animation will be stuck. Because the projection returns the same result for the extrapolation. L1 regular-
ization can select sparse result, which is suitable when there are a lot of base poses in the shape space. At the
same time, it allows extrapolation. There is parameter λ in this method, which balances the influence of L1

regularization and quadratic programming. In our experiments, we can find that when λ is larger, the result
is closer to the result from positive constraints. And naturally, when λ is closer to zero, the result is more like
quadratic programming. So this method can work as a compromise between the other two methods, and the
λ is the control stick to adjust the tolerance of extrapolation.

Is it necessary to allow extrapolation in the pose reconstruction? Is it better if we just keep the rigidity
in the shape space and eliminate all the negative weights? Actually, extrapolation is very useful. When an
object is moved, the movement emphasizes any rigidity in the object. In real life, only the most rigid shapes
(such as chairs, dishes, and pans) remain so during motion. Anything composed of living flesh or more elas-
tic materials such as rubber, no matter how bony, will show considerable movement in its shape during an
action. For example, a face, whether chewing, smiling, talking, or just showing a change of expression, is alive
with changing shapes in the cheeks, the lips, and the eyes. The movements and expressions will exaggerate
if the character is cartoonish. So with extrapolation, the designers won’t have headaches about choosing the
boundary key poses because the system can exaggerate them a little bit when the user have poses with larger
movement. This uncertainty increases the continuity and the enjoyability of the system.
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• How to design the system to make it real-time?

To achieve the real-time performance, we choose to apply three methods that can be linearly solved. Al-
though the method with L1 minimization is not quadratic programming, we apply solving procedure written
in paper [34] that can transform the problem into quadratic programming. So the solving time is very small,
and the animation can be generated in real-time. Therefore, by using our system, Users can produce contin-
uous motions comfortably in real-time.

6.2. LIMITATIONS AND FUTURE WORK
Our puppetry system has several limitations. An inherent limitation of pose-to-pose mapping is that accurate
control of all degrees of freedoms is a non-trivial task. When the number of DOFs is quite large, it will take
a long time to adjust a natural key pose for the target character. Jacobson et al. have proposed a method to
deform a shape with only a subset of DOFs are specified. It keeps the rigidity of the target mesh by minimizing
a rigidity energy to automatically solve the transformation matrix for other handles. Inverse Kinematics can
be applied to transform the absolute transformation information back into the relative rotations.

Using the Kinect as an input device also restricts the level of control that can be applied by the users. For
example, it is not very sensitive to track the leg movement of the user. The arrange of accepting of full-body
information is limited. So is the optimization step for generating mesh animation. If the full body information
is not tracked, our system will pause until the users step back completely in the camera range.

Another limitation is that in the projection procedure, the movements of unrelated parts will sometimes
affect each other. For example, an arm raising pose will affect a leg raising pose because in the leg pose we
also take down the arm information. In a later study, we can focus on split the shape space into several parts:
leg movement, arm movements, and body movements. Projection can be applied individually in the three
shape space, which will not interfere each other[14].

One interesting extension of our work is in the optimization step. We only apply the basic optimization
method to rotate and translate the target shape according to users’ movements and orientation. Other op-
timization criteria can be added to the system in the future. For example, overlapping in the body parts in
the target are not allowed. We can add contact constraints to this step. What’s more, physical simulations
can increase the realism of the animation. For example, a fat man’s belly will shake, when he quickly turns
around.



7
CONCLUSION

We have presented a puppetry approach that is motivated by the recent advances in motion detecting de-
vices and the increase in applications that require the users to control a virtual character through their body
performance. Existing puppetry application mainly focus on human or humanoid target characters and the
extension to non-humanoid characters for novice user in real-time is not attempted, despite the broad range
of recent applications. Our approach produces natural and continuous motions for this kind of non-human-
like characters comfortably and enjoyably in real-time, despite differences in body structures. Therefore, we
sincerely expect that our approach will continuously contribute to other puppetry applications in the field of
3D computer games and interactive media in the future.
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APPENDIX

A.1. EXPERIMENTAL POSES
In this section, we will list all the experimental base poses as the reference for the researchers and users who
are interested in the related projects.
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Figure A.1: 23 example base poses that we use in this application
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