
Tribler Download Core Improvement
BSc Thesis IN3700

Rick van Hattem (1297295)
R.D.T.vanHattem@student.tudelft.nl

Raynor Vliegendhart (1174827)
R.Vliegendhart@student.tudelft.nl

October 20, 2007

Committee
Dr. Ir. J.A. Pouwelse

Ir. B.R. Sodoyer
Delft University of Technology

Preface

Computer Science students of the Technical University of Delft have to undertake
a – preferably external – project as part of their Bachelor program. These projects
are done in groups.

This thesis is the result of the BSc project of Rick van Hattem and Raynor Vliegend-
hart. The project took place at the Technical University of Delft from early May
to the end of September 2007.

We want to thank Johan Pouwelse for giving us the opportunity to participate in
the Tribler research project and supervising us. Meetings during the project allowed
us to exchange ideas and come up with new things to investigate. We also want to
thank both Johan Pouwelse and Bernard Sodoyer for their comments on the draft
version of this thesis.

Rick van Hattem
Raynor Vliegendhart

Delft
October 16, 2007

i

ii PREFACE

Summary

BitTorrent is a popular peer-to-peer file sharing protocol. From a user’s perspective,
it is important that a BitTorrent client downloads the files as fast as possible. The
socially enhanced BitTorrent client called Tribler – from the Delft University of
Technology and the Vrije Universiteit – was presumed to be lacking in speed. This
presumption started this thesis’ research project. The research focused on two
questions. How poor is Tribler’s download performance and what determines the
performance of a BitTorrent client in general?

To understand the problem, we need to be aware that the limited available upload
capacity of the peers in the swarm is a speed bottleneck and that one own’s upload
capacity is a valuable, but limited currency that can be exchanged for speed from
others.

However, it is not known which behaviour is best. In order to solve this mystery,
we have to compare different behaviours through measurement. Important aspects
to measure include:

• Peer discovery and try out, measured by connection attempts and optimistic
unchokes.

• Implementation of the tit-for-tat algorihtm, measured by chokes and unchokes.

To measure and analyse these aspects, two approaches were taken. Our first de-
sign involved modifying existing BitTorrent clients to log internal events, but its
applicability was limited to open source clients. As a result, we came with a design
that analysed network traffic and was therefore applicable to all clients. However,
a wrongly taken design decision limited its analysis power.

The knowledge gained from our analysis is that the initial phase and the end phase of
a download are important. For the initial phase, a good discovery of peers required.
For the end phase, a different piece selection algorithm is required.

iii

iv SUMMARY

There are also some questions left that need to be answered and work to be done.
Questions left are:

• Do different peer discovery algorithms benefit in different situations?

• Does the Mainline BitTorrent client benefit from its new DNA service or is it
malware?

Future work involves improving our measuring tool and answering these questions.

Contents

Preface i

Summary iii

1 Introduction 1
1.1 Early peer-to-peer systems . 2
1.2 BitTorrent, the incentive to share 5
1.3 Thesis outline . 7

2 Problem Analysis 9
2.1 Speed bottleneck . 9
2.2 Fighting for scarce upload bandwidth 10
2.3 Measuring behaviour . 11

3 Measurement testbed design and evolution 13
3.1 Initial design, internal logging . 13
3.2 Project’s turning point . 14
3.3 Final design, the BitSMART tool 15
3.4 Fatal flaw, the PDML format . 16
3.5 Comparison of the two designs . 17

4 Implementation trouble 19
4.1 Parsing XML . 19
4.2 From pcap to XML, lost in translation 20
4.3 Erroneous piece indices . 20

5 Measurements and acquired insights 23
5.1 Critical download phases . 23
5.2 Adaptive strategies . 25
5.3 The unknown factor, DNA . 29

6 Reflection 31
6.1 Planning and delay . 31
6.2 Tools used for development . 32
6.3 Collaboration . 33

v

vi CONTENTS

7 Conclusions and future work 35
7.1 Conclusions . 35
7.2 Future work . 36

Appendices

A Requirements and Design 39
A.1 Requirements . 39

A Problem . 39
B Background information . 39
C Environment and system models 39
D Functional Requirements . 39
E Non-functional Requirements 40
F Constraints . 41

A.2 Design . 41
A.2.1 System Overview . 41
A.2.2 Component View . 42
A.2.3 Class Diagrams . 44
A.2.4 Sequence Diagrams . 46
A.2.5 Algorithms . 47

B Test Plan 49

C Deployment 53

D BitSMART Manual 57

Bibliography 64

Chapter 1

Introduction

Nowadays, high speed internet connections are common[22] and users are sharing
content to their heart’s content (Figure 1.1). Music, videos and other files are
distributed through various means on the internet. BitTorrent, a peer-to-peer file
sharing protocol (P2P), is one popular way to do so.

Figure 1.1: Internet trends show an increasing popularity of peer-to-peer systems.

Tribler is a socially enhanced file sharing application created by researchers at the
Delft University of Technology and the Vrije Universiteit (Figure 1.2). It is built on
top of the existing BitTorrent file sharing network. By adding social aspects to file
sharing, users can improve their overall experience by moderating available content
and stimulate each other to be cooperative [15].

1

2 CHAPTER 1. INTRODUCTION

Figure 1.2: In Tribler, users users can share files using the BitTorrent protocol and
download cooperatively with friends.

Unfortunately, the researchers of Tribler expressed their concern of their client’s
download performance. Even if a client has all kind of neat features, a user will
not use it if it performs poorly. This concern motivated the research to Tribler’s
download performance. In this thesis, we will answer the two main questions of this
research.
The first question is, is the performance of the Tribler client really as bad as it is
thought to be? We will answer this question by comparing its performance with
the performance of other clients.
Strongly linked with the first question is the second question. What determines the
download performance of a BitTorrent client in general? This question will also be
answered through comparison. By performing tests on different BitTorrent clients,
we will analyse the differences in their behaviour. For this analysis, we have written
a software tool.

The remainder of this introductory chapter contains a brief description of early (file
sharing) peer-to-peer systems in section 1.1. In this section, we explain how these
systems worked and show their advantages and disadvantages. We also explain how
the newer peer-to-peer system BitTorrent works and its main advantage over the
earlier peer-to-peer networks in section 1.2. Finally, we conclude the chapter with
the outline of this thesis in section 1.3.

1.1 Early peer-to-peer systems

In traditional computer architectures, files are stored centrally on a server (Figure
1.3a). The central server provides services to its clients. A client can connect and
request a file it is interested in. The server will then send the client the file he
requested. This architecture is called the client-server architecture.

While this architecture is fairly simple, it has its disadvantages. The main dis-
advantage is the cost of scalability. The client-server architecture can scale fairly

1.1. EARLY PEER-TO-PEER SYSTEMS 3

well,1 but the owner or maintainer of the server has to incur the costs. Another
disadvantage is the single point of failure. If the central server will stop functioning
or is taken down, clients can no longer make use of its services.

(a) A client-server architecture. (b) A hybrid peer-to-peer system.

Figure 1.3: In a traditional client-server architecture (a), files are stored centrally
on a server. In a hybrid peer-to-peer system (b), files are stored on the peers. An
index server keeps track of the location of files in the network.

In a peer-to-peer architecture, files are stored and distributed amongst the comput-
ers that are part of the network. All computers in this network are equal and can
act both as a client requesting services and as a server providing services. Hence,
they are called peers.

Hybrid peer-to-peer systems

Unlike the client-server architecture, a peer-to-peer system is a bit more complex.
Peers in a network are faced with the problem of locating files they want. One solu-
tion is to use a hybrid peer-to-peer architecture (Figure 1.3b). In this architecture,
there is an index server fulfilling the role of a directory. This server keeps track of
available files in the network and where they are stored at. When a peer wants to
download a file, it asks the server if anyone has it. The server responds and tells
the peer where it can find the file. The peer then establishes a connection with the
peer that has the file and the file can be transferred. A popular, but now defunct
network that used this architecture was Napster [1].

The advantage of this architecture over the traditional client-server architecture is
that the maintainer of the index server has lower costs. The server does not need

1For example, scalability can be obtained through caching, server replication and content de-
livery networks [16].

4 CHAPTER 1. INTRODUCTION

to provide the actual files and thus requires less bandwidth. Files are replicated
amongst the peers. Popular files are higher in demand and get replicated faster,
increasing their availability. Thus, scalability is achieved automatically.

The problem of the single point of failure still remains, but it is less severe. When the
index server is out of order, peers cannot locate any files in the network. However,
this does not disrupt any file transfers that are already being done.

Decentralized peer-to-peer systems

To eliminate the single point of failure problem, one could eliminate the existence
of index servers. The resulting architecture would be a decentralized peer-to-peer
network (Figure 1.4). Now, the responsibility of locating files is placed on the peers.
When a peer wants to download a file, it sends out a query to all the other nodes2

it is connected to. These nodes forward the request to all nodes they are connected
and the process repeats itself until the request reaches a node that has the file. This
node will then reply and the response travels the same path back till it reaches the
requesting peer. The requesting peer can then establish a connection with the peer
that has the file and the file transfer can begin [1].

This level of indirection does make look-ups slower as the query may have to travel
through a lot of nodes until it reaches the node it has the file. The look-up can be
sped up, though, by having each peer cache responses from other nodes. Each peer
is then basically an index server.

In this new architecture, the peer is also responsible of finding a peer of the existing
network to connect to. In the hybrid architecture, peers have to connect to a
central server to be part of the network, but there is no central point of access in
a decentralized network. To join a decentralized network, a new peer must have an
initial list of a few existing nodes in the network. In this so called bootstrapping
phase, the peer tries to connect to a few peers in its list. Once connected and part
of the network, the peer can find new peers through the network and update its
list.

The problem that remains is that a new peer has to acquire a nodes list the first
time it wants to connect to the network. To solve this, peer-to-peer applications
usually download a peer list from a webserver.

Leeching and performance

There are a few disadvantages of the two described peer-to-peer systems. One is
that in early networks, participants are not incented to share. This gives birth to

2Peers and nodes are used interchangedly throughout the remainder of the text.

1.2. BITTORRENT, THE INCENTIVE TO SHARE 5

Figure 1.4: In a decentralized P2P system, files are discovered by flooding queries
through the network. New peers join the network by trying to connect to existing
peers.

leechers, who consume resources of the network, but do not make their own resources
available. While this was a non-existing problem in a client-server architecture, it
is in peer-to-peer systems.

Another disadvantage is that the download speed is heavily depending on the peer
you are downloading from. Even worse, in early file sharing applications, you are
often restricted from downloading a file from a single peer. Compared to the tradi-
tional client-server architecture, the central server usually has dedicated fast lines
in contrast to peers who are often using normal consumer connections.

1.2 BitTorrent, the incentive to share

Bram Cohen released his first version of BitTorrent in 2001[10]. It was developed
to create a distribution mechanism in which the cost of upload is shared by the
downloaders[11]. This is achieved by allowing downloaders to trade smaller pieces
of the file with each other. The following sections describe BitTorrent and a brief
graphical overview is depicted in Figure 1.5.

6 CHAPTER 1. INTRODUCTION

Contributing files

Distribution in BitTorrent works as follows. To offer a file for distribution, the
contributor first creates a .torrent file. This file contains metadata about the
file to be offered. It contains both the hash of the whole file to be offered and the
hashes of the smaller pieces. Evidently, it also contains the size of a single piece
and the amount of pieces the whole is divided into. The .torrent file also contains
the address of a so called tracker. After the metadata is created, the contributor
registers the .torrent file at the tracker and connects to it.

Tracking the swarm

A BitTorrent tracker is a server that keeps track of the peers in the swarm, their
completion rate and other information. The peers regularly keep in touch with the
tracker. A swarm is the total group of downloaders and seeders. A seed is a peer
that has the full file.

Joining the swarm

When other peers want to download the file that is being offered, they have to
download the .torrent file and connect to the tracker specified in the metadata.
Then, the peers receive a list of peers and seeds that recently have connected to the
tracker. They can then try and connect to the peers and seeds listed in the tracker
response. This is how new peers can connect to the swarm.

Downloading files and fair sharing

When a peer is part of a swarm, it can receive pieces from seeds and from other
peers. Pieces are exchanged between peers on a tit-for-tat basis. This means that if
peers are willing to share pieces they have with other peers, they can receive other
pieces from those other peers and achieve higher download speeds and thus they
are incented to do so.

The tit-for-tat algorithm is simple and effective. Each peer is connected to several
other peers. Peers can request pieces from each other, but these requests are not
always honored. Each peer keeps track of the amount of pieces it received from
others. This information is then used as a selection criterion. Requests from peers
who have been uploading the most are more likely to be honored than requests from
leechers.

Improving the architecture

The original BitTorrent protocol relies on a central server to track the swarm. Solu-
tions for this single point of failure have been developed over the years. Nowadays,

1.3. THESIS OUTLINE 7

BitTorrent has support for multiple trackers in .torrent files and it supports de-
centralized tracking.

Figure 1.5: In a BitTorrent swarm, one or more seeds are distributing file pieces to
other peers. Amongst peers, missing pieces are traded. New peers join the swarm
by contacting a tracker, which has a list of peers in the swarm.

1.3 Thesis outline

The remainder of the thesis will focus on the two questions posed earlier in this
chapter. How poor is Tribler’s download performance and what determines the
download performance of a BitTorrent client in general? In order to answer these
questions, we will first need to get a better understanding of the problem. Chapter
2 analyses this problem. In chapter 3 we present the evolution of the design of our
measurement testbed that is required to find the answers to our questions. Imple-
menting the final design was not without trouble. The problems we encountered
are discussed in chapter 4. The insights we acquired through measurements are
discussed in chapter 5 and an overall reflection on how the project went is given in
chapter 6. In chapter 7 we present our conclusions and we show that there is still
work to do.
In appendix A the requirements and design document can be found. Our test plan
is appended as appendix B. How to deploy our created software tool can be found
in appendix C and how to use it can be found in appendix D.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Analysis

From a user’s perspective, the prime goal of peer-to-peer software is to download files
as fast as possible. If a client fails to perform well, the user will use a different client
or it will use alternative means to obtain the files he is interested in. In order to
make Tribler a faster BitTorrent client, we need to have a greater understanding of
this problem. In section 2.1 we discuss the bottleneck in attaining a high download
performance and in section 2.2 we show that this bottleneck has consequences for
the behaviour of BitTorrent clients. In the final section of this chapter (2.3), we
discuss that measuring behaviour of these clients is necessary to determine which
behaviour is best.

2.1 Speed bottleneck

When a client is performing a download transfer, it is limited by resources. For
one, the peer itself has only a limited amount of bandwidth. It cannot download
and upload faster than the maximum download and upload bandwidth. This means
the client must perform as best as it can under these conditions. In the eyes of the
user, performing best means fully using the available download bandwidth. In order
words, the download channel of the user’s connection should be saturated.

But how does the user’s client achieve this? The following example will illustrate.
A BitTorrent swarm consists of a diversity of peers. Assume there are three peers
named A, B and C in a certain BitTorrent swarm (Figure 2.1). Peer A has an
maximum upload capacity of 50 KB/s, peer B has a capacity of 20 KB/s and peer
C has a capacity of 80 KB/s. The user’s connection is limited to a maximum
download speed of 100 KB/s. It is obvious that the bottom peer needs at least
to be connected to two of the three other peers in order to be able saturate its
connection. However, if the bottom peer is connected to only peer A and B, it will
not be able to download at the maximum obtainable speed at all.

From the previous example, it should be clear that the available upload capacity in a

9

10 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.1: The bottom peer can saturate his download connection in several ways.

swarm is a determining factor in the maximum speed a client can obtain in theory.
In practice, a client might not always achieve that speed. It is either limited by its
own download bandwidth or by the peers it sees.

2.2 Fighting for scarce upload bandwidth

In the previous section it became clear that it is important for the client to connect
to enough other peers in order to be able to saturate its download connection.
However, just connecting to the right amount of peers does not guarantee high
speed downloads.

Let us look at the following example. In Figure 2.2, the two bottom peers have a
connection with the top peer. The top peer can upload at a maximum of 100 KB/s
and the two bottom peers each can download at the same speed. For simplicity’s
sake, there are no other connections, so the bottom two peers cannoth exchange
file pieces with each other. In this situation, each of the bottom peer would like to
download at 100 KB/s, but the available bandwidth is scarce and the top peer has
to divide its upload over the two bottom peers. How does the top peer determine
how to distribute its upload bandwidth? Well, the top peer judges the other two
peers by their upload behaviour. When a bottom peer is sharing interesting file
pieces with the top peer, the top peer will like him and is more likely to reciprocate
by sending interesting file pieces back.

So, the upload behaviour of a peer is important to get scarce upload bandwidth
from other peers. However, the upload bandwidth of oneself is also scarce. This
essentially means that upload bandwidth is a rare currency that needs to be cleverly
spent. Each foreign peer might be running a different client and each might have
slightly different reciprocation rules. A good performing client must thus be able
to figure out which peer has the best exchange rate, so it can get the most bang for
its upload.

2.3. MEASURING BEHAVIOUR 11

Figure 2.2: Two peers fighting for scarce upload bandwidth.

2.3 Measuring behaviour

As shown in the previous two sections, BitTorrent clients need to find and connect
to peers with a reasonable amount of bandwidth and then test those peers for
reciprocation. However, it is currently not known which peer discovery strategy
and which peer try out strategy is best. In order to determine this, we have to test
different strategies and evaluate them. Evaluation is based on their impact on the
download performance. So how do we measure this?

We can measure the impact on the download performance by simply starting a
BitTorrent download and measure how much time it takes for a certain client to
complete the download. While this is certainly a valid way of measuring, it would
not give us any information how exactly the download performance is affected, but
only that it is affected in a positive or negative way.

Therefore, it is a better idea to measure the progress over time. From the progress
curve’s incline, we can derive the download speed at any point in time. From this,
we can also see the maximum speed a client obtained in a test and how long it took
to obtain that speed.

However, just having a picture of the progress made over time is still lacking in-
formation. We can only observe changes in the download speed, but not explain
them. If we want to explain changes in speed, we will have to be able to link them
to other changes. For example, the client discovered a few new peers recently and
tried them out. This is why it helps to have information of the following:

• Discovered peers. Knowing more peers means a client can more likely saturate
its connection, as discussed in the first section.

• Chokes and chokes. Regular chokes and unchokes in BitTorrent are used to
tell the other party if the client is willing to send data. Only unchoked foreign
peers will receive file pieces.

12 CHAPTER 2. PROBLEM ANALYSIS

• Optimistic unchokes. An optimistic unchoke is a mechanism in BitTorrent
to try out a new peer. Normally, a client prefers sharing pieces with other
peers who have been nice in the past, but every now and then a new peer gets
unchoked.

If we can measure this information, we can analyse the differences between existing
clients and we can evaluate them. To measure this, we have developed a measure-
ment testbed. This design is discussed in the next chapter.

Chapter 3

Measurement testbed
design and evolution

This chapter describes our process of designing the measurement testbed for Bit-
Torrent applications. Initially, the project’s goal was to analyse the performance
of Tribler compared to other clients and, based on that analysis, improve Tribler’s
download core (section 3.1. However, during the project the task of actually im-
plementing a better download core was scrapped. Instead, the project shifted its
focus on analysis only (section 3.2). As a consequence of this change, we started
to redesign our way of measuring. The final design of our measurement testbed
–coined BitSMART– is discussed in section 3.3 and its design flaw is discussed in
section 3.4. Section 3.5 gives a comparison between our initial and our final design.

3.1 Initial design, internal logging

At the start of the project, we had meetings with our supervisor, J.A. Pouwelse.
In these meetings, our approach to the problem started to take shape. To com-
pare Tribler’s download performance with other BitTorrent clients, our supervisor
suggested the following list of open source clients:

• Azureus[3].

• BitTorrent, the official client also referred to as Mainline[6].

• Boudewijn’s fork of Tribler[17].

• libtorrent[13].

We decided to measure the performance by tracing the internal state changes of each
client. This was done by inserting our own code into the clients. After modifying a
client, tests could be performed with that client. By logging each change in progress
and logging every discovered peer, choke and unchoke to a file, we were able to parse

13

14 CHAPTER 3. MEASUREMENT TESTBED DESIGN AND EVOLUTION

these logs later on and generate graphs from it. This design is depicted in Figure
3.1.

Figure 3.1: The initial design of our measurement testbed.

Unfortunately, we were not able to make use of libtorrent’s own logging features
and we were not able to get Boudewijn’s client to work. The logs of libtorrent were
large and difficult to parse. The problems of Boudewijn’s client were related to the
fact that it was not a stable release. In the interest of time, we decided to ignore
these two clients and focus on the analysis of the remaining clients.

From the analysis phase, we came to understand the importance of several perfor-
mance factors1 and we were ready to design a new download core for Tribler.

3.2 Project’s turning point

Shortly after presenting our acquired insights, our supervisor suggested a change
in the project. Instead of implementing an improved download core for Tribler, we
would have to focus on analysis only and leave the actual download core implemen-
tation to the Tribler team.

The reasoning behind this suggestions was that our analysis only covered a few
clients. This was caused by our measuring method that was only applicable to open
source clients. So our new task was to come up with a new design that allowed us

1The acquired insights from the measurements can be found in Chapter 5.

3.3. FINAL DESIGN, THE BITSMART TOOL 15

to analyse more clients. Being able to analyse more clients would certainly mean
we could give a better evaluation of Tribler’s performance.

While we were pondering the suggestion, we came across a tool called Wireshark[23].
After trying it out, we thought it could be pretty useful. It could do network packet
capturing and it could recognize BitTorrent packets. With this information, we
accepted the suggestion and started the redesign.

3.3 Final design, the BitSMART tool

Figure 3.2: The final design of our measurement testbed.

For the redesign, we reformed the measurement testbed, so the measurement took
place completely outside the BitTorrent client. With this, we no longer had to
modify each client that had to be tested and we were no longer limited to open source
clients. The Wireshark component would perform the network packet capturing
during the test by using the libpcap library[12]. The captured BitTorrent traffic
would then be saved to a file in some format (discussed in the next section).

The next step in the chain would be our new software component, which we named
BitSMART.2 This tool is made out of three parts:

• The front-end component, responsible for parsing the output of Wireshark
and performing an analysis on the BitTorrent traffic.

2BitTorrent Speed Measurement and Analysis for Research Tool.

16 CHAPTER 3. MEASUREMENT TESTBED DESIGN AND EVOLUTION

• The back-end component, responsible for generating graphs.

• The main component, responsible for the command line interface and driving
the two front-end and back-end components.

Of these three components, the main component would require the least amount of
effort to implement, as its role is only to be a mediator between the user and the
two other components. The back-end component would also require little effort, as
we had already developed a graphing tool for our first design. Most effort would
have to be spent in writing the front-end.

3.4 Fatal flaw, the PDML format

For the interface between the Wireshark component and BitSMART (Figure 3.1),
we had several options. Wireshark is capable of writing captured network traffic in
several file formats:

• pcap format, containing Ethernet frames.

• Plain text, containing short summarized information about protocols.

• PDML (XML format), containing detailed protocol information.

Of these three formats, the plain text format was not found to be suitable as it did
not contain detailed information. PDML is easy to read – it is an XML document –
and it contains specific BitTorrent information. The pcap format on the other hand
contains all network traffic in its raw form, but reading it is not quite as simple. On
top of that, choosing this format would mean we have to do a lot of the low-level
analysis (like re-assembling TCP packets) and protocol recognition ourselves.

Based on this information we had at the time we had to make a decision, we decided
to go with the PDML format. Wireshark would do most of the heavy lifting of
analysing the network traffic and presenting it in a suitable format. This would
save us a lot of time, so we could spend our time on focusing on analysing the
BitTorrent traffic.

Unfortunately, while Wireshark can recognize all kind of protocols, we found out
later on that its PDML output is limiting, as it does not always contain full details of
TCP packets. This happens when Wireshark was unable to recognize the protocol.
A concrete example would be the tracker traffic. While the tracker protocol is just
HTTP, Wireshark does not often recognize it. This is the case when the traffic flows
over a non-standard HTTP port. But even when it does recognize the traffic, the
details of tracker responses, i.e. the full content, are not extractable from the XML
file.

3.5. COMPARISON OF THE TWO DESIGNS 17

And so, the time we thought that we had saved and could have been spent in in-
depth BitTorrent analysis became meaningless, as the design decision limited us.
By the time we found out, there was not enough time to switch to the pcap format.
As a consequence, we decided to continue with the PDML format and create a
limited tool, so we could at least gather experience for future work.

3.5 Comparison of the two designs

Ignoring the flawed design decision described in the previous section, there are a
few differences between the two designs in their applicability and analysis power.
These comparisons are summarized in the following table.

Logging Network traffic analysis

Applicability −− ++
Scalability −− ++
Development time +/− −−
Accuracy ++ +/−

Table 3.1: Comparison between our initial and our final design.

The applicability of our first design is very limited. As this design requires source
code modification, it can only be applied to open source BitTorrent clients. As
discussed earlier in this chapter, this is the reason why we switched to the network
traffic analysis method. This method can be applied to any BitTorrent application.

Our first design also does not scale well. For each new client that has to be tested,
new logging code has to be inserted. In order to do this, we first have to identifiy all
the locations in the source code where the logging activity should take place. This
requires a reasonable understanding of the BitTorrent client’s code and it would
even require reverse engineering if the documentation is lacking. On the other
hand, our BitSMART tool only has to be designed and implemented once and it
can be used for any new client without any effort added.

However, implementing logging functionality in a client does cost considerable less
time than writing a full fledged network analysis tool. While it still takes some time
to understand a client’s source code, doing all the low-level network analysis on the
other hand requires lots of time. Trying to save time by using existing software
might backfire, as discussed in the previous section.

While our first design was limited in its applicability, our final design is limited
in its accuracy. This limitation comes from the fact that we are considering the
BitTorrent client under test as a black box and only analyse the input and output.

18 CHAPTER 3. MEASUREMENT TESTBED DESIGN AND EVOLUTION

As a consequence, encrypted messages sent between clients can be captured by the
network packet capturer, but they can not be deciphered. As a result, we cannot
analyse these encrypted messages and this might give skewed results. Our first
design does not have this limitation, as it captures all relevant information inside
the client where all BitTorrent messages are already deciphered.

When all these advantages and disadvantages of both designs are taken into ac-
count, which design is best? Well, it depends on the purpose of measuring a client’s
download performance. The network traffic analysis approach is best suited for
comparing different BitTorrent clients as it can be applied to any client. Imple-
menting a tool that does this analysis would cost a lot of time however and it is less
accurate than adding logging code to each client.
Adding logging code is preferable when the measurement only has to be done on a
single client. In this case, the developers of a BitTorrent client could add extensive
and modular logging features. This will allow them to evaluate the performance of
different versions of their client.

Chapter 4

Implementation trouble

In this chapter, we will present the main problems we encountered during devel-
opment and how we solved them. In section 4.1, we discuss the problems we had
with parsing XML. While it might seem to be a trivial task at first sight, it is not
in certain situations and with certain requirements. In section 4.2, we discuss the
problems we had with converting pcap files to XML files correctly, without losing
BitTorrent messages. Finally, we confirm the rule of thumb that one should never
trust external input in section 4.3.

4.1 Parsing XML

The task of our final design’s front-end component was supposed to be fairly simple.
Read the XML output of Wireshark and extract the information we are interested in.
Our first naive attempt, however, used a DOM1 XML parser. A DOM XML parser
tries to load the whole XML document into memory as a tree-like datastructure.
Normally, this would not be a problem, were it not for the very large files2 to be
parsed. The XML parser simply ran out of memory.

Since storing the whole file in memory was not an option, we had to read the XML
file sequentially and only storing pieces of information we really needed in memory.
We first looked at the option of using a SAX3 parser, but given the push nature4 of
SAX and our limited experience with it, we decided not to use it.

The parser we were still looking for had to be able to read the XML file sequentially
to be memory efficient. However, as we were debating how to do the XML parsing,
we also found out we had another requirement for the parser. We had to be able

1Document Object Model.
2Raw pcap files of 200 MB corresponded with XML files larger than 1 GB.
3Simple API for XML, a serial parser.
4SAX parsers call your code when a new XML node is encountered, instead of your code calling

the parser.

19

20 CHAPTER 4. IMPLEMENTATION TROUBLE

to scan a part of the XML file twice. This seemed necessary for the algorithm to
extract the local IP from the XML file.5 Simply reopening the file was deemed to
be unfavorable. Files like STDIN6 are not seekable and rewindable.

After some pondering we decided we would have to write our own relatively simple
XML parser. This parser would have to read files sequentially, but also had to be
able to buffer read XML nodes when instructed, so it was possible to rewind to the
last buffer starting point. Also, to deal with very large inputs, we added support
to the parser to handle input that was spanning several files.

4.2 From pcap to XML, lost in translation

Near the end of the development cycle, we found out that Wireshark showed more
captured BitTorrent messages when we loaded a pcap file in its graphical applica-
tion than when we asked Wireshark’s command line tool to convert a pcap file to
XML. We were puzzled. How come that the XML output was missing BitTorrent
messages?

Shortly after this discovery, we stumbled on something interesting. Opening a
pcap file in Wireshark and then filtering on BitTorrent messages had a different
behaviour than specifying the same filter in the open dialog box. In the latter case,
less BitTorrent messages were recognized and shown than in the former case (Figure
4.1). We also found out that splitting pcap files into several pcap files and then
convert them to XML also caused certain message to become lost.

After studying the manual of Wireshark, we found a way to solve the afore men-
tioned problems. By specifying a correct filter that selected only BitTorrent traffic,
we were able to convert pcap files to XML seamlessly. Apparently, our initial com-
mand flags were incorrenct. Also, the XML output became several times smaller
with these flags than our initial approach. As a consequence, the XML file output
only spanned a single file, solving the problem of multiple XML files.

4.3 Erroneous piece indices

One of the odd bugs we encountered in our code was related to erroneous input.
Our BitSMART tool was working fine for a few test pcap files, so we thought
it would work on real measurements. It worked for most measurements, but there
were two exceptional cases that crashed our tool. The two cases were measurements
from Tribler and µTorrent.

5Details of this algorithm can be found in the design document appendix.
6STDIN stands for Standard Input, a special file on most common operating systems.

4.3. ERRONEOUS PIECE INDICES 21

(a)

(b)

Figure 4.1: Different behaviour in Wireshark when specifying the filter after a file
is loaded (a) and when specifying the filter before loading (b).

22 CHAPTER 4. IMPLEMENTATION TROUBLE

After debugging, we saw that a few have messages7 in the XML output contained
a too large piece index. This caused our code to crash and we fixed it by checking
if the index is within bounds (Figure 4.2).

After fixing the bug, we investigated if there was more to this bug. We first sus-
pected that maybe there was a bug in Wireshark’s pcap to XML conversion. After
comparing the original pcap file and the XML output, this seemed not to be the
case. The only other explanations we could came up with were:

• Wireshark’s BitTorrent packet dissector8 contains bugs.

• Certain BitTorrent clients deliberately send erroneous have messages.

• The original pcap files got slightly damaged.

Unfortunately, all three seem unlikely and we are not sure what is causing the
erroneous piece indices.

Figure 4.2: BitSMART encountering erroneous piece indices in the XML file.

7A have message in the BitTorrent protocol is used to tell other peers that you have a certain
piece. It is used to convey one’s progress.

8A Wireshark packet dissector is a part of Wireshark that recognizes a certain network protocol.

Chapter 5

Measurements and
acquired insights

This chapter presents the acquired insights through our measurements. Section
5.1 will focus on the critical download phases of a BitTorrent download. We show
that there are two important aspects in reaching high download speeds. We also
present interesting and unexpected results of a measurement, leading us to believe
that there might not be a single, true strategy for BitTorrent clients in section 5.2.
Additionally, we reveal a shocking discovery that came to light during one of our
tests in section 5.3. We discovered that Mainline is using a piece of software of
which its purpose is unknown.

5.1 Critical download phases

Initially, when the project’s goal was to find the areas where Tribler’s performance
was lacking and improve them, we did several measurements using a logging method
as described in chapter 3. From these measurements, we quickly identified the two
most criticial phases of a BitTorrent download. In the following paragraphs, we will
use the data of measurements of Tribler 3.6, Azureus 2.5.0.41 and Mainline 5.0.7.

Figure 5.12 shows that Tribler needs a bit more time than Azureus to reach maxi-
mum speed. For Tribler, this initial phase of the download however does not seem
to have much impact on the download performance, as Tribler is only about 15 to
20 seconds behind Azureus.

Instead, the most critical phase is the end phase of the download. The progress
graph clearly shows that near the end Tribler’s download speed collapses, while
Azureus almost retains maximum speed. The inspection and the comparison of the

1Azureus was tested in two different configurations, with and without DHT.
2While this is a diagram from a specific measurement, other measurements shared the same

characteristics.

23

24 CHAPTER 5. MEASUREMENTS AND ACQUIRED INSIGHTS

Figure 5.1: Progress in percentage over time. Time unit is in seconds.

two client’s source code showed us that both clients behave differently in the end
phase of the download, the so called endgame mode. This special mode is described
in [11] and it specifies how to request file pieces. Looking at the results, it obviously
seems that Azureus’ endgame strategy performs better than Tribler’s.

While inspecting the source of Azureus, we also discovered that Azureus does opti-
mistic unchokes between choke/unchoke rounds (which take place every ten seconds)
when not all upload slots are in use. This means that when an upload slot becomes
unused, Azureus does not wait till the next choke/unchoke round to fill the slots.
Instead, it will check every second if it can perform any so called immediate un-
chokes. Adding immediate unchokes to Tribler might improve the initial phase of
the download.

Focusing on the rather terrible performance of the Mainline client in Figure 5.1, one
might wonder why the Mainline client does not even manage to obtain the same
highest speed as the other clients. To come up with a possible explanation, we would
need more information. Taking the information from Figure 5.2 into account, we
can see a very plausible cause. The Mainline client does not simply try hard enough
to find more peers. Other clients search more aggressively for new peers. Knowing
more peers also means you can try more of them, and thus having a higher chance

5.2. ADAPTIVE STRATEGIES 25

Figure 5.2: Discovered peers over time. Time unit is in seconds.

of finding faster peers.

In other words, to perform well, a BitTorrent client should try to find good peers
quickly in the initial phase of the download. The time it costs to reach top speed
is time that cannot be won in the middle phase of the download. That means if
a BitTorrent client is slow at the start, it will lag behind its faster competitors.
Fortunately for Tribler, it is not too bad at getting that maximum speed quickly.

A BitTorrent client should also try to maintain that maximum speed. In a middle
of the download, this does not seem to be a problem for the three clients. The
difficulty seems to lie in finishing the download. Unfortunately for Tribler, it is not
very good at it. The obstacle of getting the last few file pieces during the endgame
requires a different piece request algorithm.

5.2 Adaptive strategies

Using our measuring tool, we unfortunately did not quite gain new insights, but
remarkably, one of the measurements featured an unexpected performance. In the
battle between uTorrent 1.7, BitTyrant 1.1, Azureus 3.0.2.2, Tribler 4.1.4, BitComet

26 CHAPTER 5. MEASUREMENTS AND ACQUIRED INSIGHTS

0.89 and Mainline 6.0,3 the winner was Mainline. Performing rather poorly in older
tests,4 this time it passed the finishing line at a blazing speed. The times are listed
in Table 5.1 and the progress is shown graphically in Figure 5.3. Figure 5.4 shows
the peer discovery over time. Graphs of chokes and unchokes are left out as they
did not show any interesting features.

BitTorrent client Time Difference

1 Mainline 07:56 —
2 µTorrent 09:07 01:11 13%
3 Azureus 09:16 01:20 14%
4 BitTyrant 10:02 02:06 21%
5 BitComet 10:20 02:24 23%
6 Tribler 10:25 02:29 24%

Table 5.1: Download times in a swarm of approximately 7000 seeds and 400 peers.

These times might or might not be significant, but it is highly remarkable that
the Mainline client managed to be the fastest with a significant lesser amount of
discovered and connected peers. Previously we argumented that knowing too few
peers would be disadvantageous for a BitTorrent client, but now it seems to be a
good strategy. Is there a possible explanation?

Well, looking at the swarm one might notice the enormous amount of seeds. We
assume that the swarm was really healthy and that were relatively a lot of fast
seeds. This meant that it would only require a handful of these fast seeders to
saturate an ADSL connection. In this case, Mainline’s strategy would be extremely
lucky. While others are trying out a lot of peers and most likely suffering a bit from
unstable or low download speeds, the Mainline client takes it easy and enjoys the
high speed transfers of the few peers it found. The progress graph shows clearly
that the Mainline client needs a very short time to obtain maximum speed.

So our conclusion would be that a client should have several levels of aggressiveness
in discovering peers, based on the current situation. In order to be able to judge the
current situation, however, would require some awareness about the capacity of the
network connection. Still, having this information means the client will not waste
time trying to find even better peers aggressively when it is not needed. On the
other hand, not having this information and thus capable of only using one strategy
means that the client will only perform optimal in environments that are favorable
to its strategy.

3BitThief was also participating, but consumed too much CPU power, rendering the measure-
ment data invalid.

4See Figure 5.1 in the previous section.

5.2. ADAPTIVE STRATEGIES 27

Figure 5.3: Progress in permillage over time.

28 CHAPTER 5. MEASUREMENTS AND ACQUIRED INSIGHTS

Figure 5.4: Peers discovered over time.

5.3. THE UNKNOWN FACTOR, DNA 29

5.3 The unknown factor, DNA

While the adaptive strategy sounds like a plausible reason why Mainline was the
fastest client in a test discussed in the previous section, we recently made a shocking
discovery. Mainline 6 seems to unadvertisingly install a background task, called
Delivery Network Acceleration, or DNA for short. It is not clearly known what
it does and it is hard to find some detailed information about it. The Mainline’s
website does have a page about it and it suggest it accelerates your downloads[7].
Unfortunately, we cannot easily examine the inner workings of DNA and confirm if
it is true. Since the release of version 6, the Mainline client is closed source. To make
things even more suspicious, uninstalling the Mainline client does not uninstall the
DNA background task. The only way to detect DNA is to inspect the process list
or come across the DNA icon in the control panel.

So why does the Mainline client install this DNA service? Does it really speed
up downloads and would this explain the remarkable performances in one of our
tests? From an interview with one of the developers[2],5 we get the suspicion that
BitTorrent.com might be selling your bandwidth to other companies, but we cannot
say for sure. It would be an interesting case to investigate though, but it is out of
our project’s scope.

5This video interview can also be found through Tribler. Keywords: “navin dna”.

30 CHAPTER 5. MEASUREMENTS AND ACQUIRED INSIGHTS

Chapter 6

Reflection

In this chapter we will reflect on the planning and delays of the project in section 6.1.
We will also list the tools we used for development and discuss their effectiveness.
This is done in section 6.2. In section 6.3 our mutual collaboration is discussed.

6.1 Planning and delay

Initially, the project was estimated to take about ten weeks. This was when the
project’s goal was to perform an analysis on a few open source clients and then
implement a better download core for Tribler. For this planning, we had taken
into account that certain planned tasks might not be able to be completed in the
allocated time, so we reserved two extra weeks.

In the first phase of the project we already encountered a very slight delay. This
delay was caused by the difficulties we had with reverse engineering the open source
BitTorrent clients. Often, the documentation of these clients were lacking, so we
had to manually walk through the code and try to find the right location to log
certain events. This usually took a few tries.

The rest of the project went well until the change of the project’s goal. When we
created a revised planning, we really underestimated the time needed to implement
the analysis tool. This was caused by trying to squeeze all the required tasks in what
was left of the originally planned ten to twelve weeks. On the other hand, we cannot
say for sure that we would have been able to complete the tool in twelve weeks, if
we worked on a general analysis tool straight from the start. This is because in the
first few weeks of the project, we already gained some knowledge and insights that
we would not have had if we started the project with designing a general analysis
tool right away.

The delays on the finalization of the project were caused by a large chain of planned
and unplanned events. Because of the unexpected events that delayed the project,
the project entered a time frame of conflicting, previously planned events.

31

32 CHAPTER 6. REFLECTION

In order to prevent these delays in the future, we would have to assess the impact
of a project change more carefully. If we had done this for this project, we would
have discovered the change would require more time than previously allocated and
we had to inform our supervisor about it. We would also had to make clear, that
the extra required time would mean that the project would take place in a period,
where the project members would not be able to work full time on the project.

6.2 Tools used for development

To support our development, we have used a variety of tools for development and
communication. Most of the tools were chosen because of our familiarity with them
and their proven effectiveness. We will now discuss them.

SVN

At the start of the project, we created a SVN repository. SVN1 is a version control
system, which allows users to add and retrieve files from a repository, while the
versioning system keeps track of all the changes. It is a great tool for projects, as
all project files are stored in a central place and every change made is visible to
all project members. No one is ever working with old files. It is because of these
advantages and because of our past experiences that we chose to create a SVN
repository.

Eclipse

Eclipse2 is an extendable Integrated Development Environment, or IDE for short.
An IDE bundles all related tasks into a single application. This means a developer
does not have to switch applications and can do most of the development tasks in his
IDE of choice. The reason why we chose Eclipse is because of its wide applicability
and our experience. In our opinion, it really increases productivity. We used Eclipse
for the following tasks:

• Python development using the PyDev plugin.3

• Modifying the Java BitTorrent client Azureus, using the JDT plugin that is
included with most Eclipse distributions.

• Writing LaTeX documents using the TeXlipse plugin.4

1http://subversion.tigris.org/
2http://www.eclipse.org/
3http://pydev.sourceforge.net/
4http://texlipse.sourceforge.net/

6.3. COLLABORATION 33

In addition, we used the Eclipse plugin called Subclipse5, so we could commit to
and update files from our repositry within Eclipse.

Tribler Wiki

Our supervisor created a wiki entry on the Tribler site.6 This entry was meant to
contain all import insights, graphs and other important documents. In the early
phases of the project, we kept the wiki page reasonably up to date, but in the later
phases we kept spending more time on development and personal communication
than updating the wiki.

In hindsight, this is a shame as we believe that a wiki is helpful and can serve
as documentation and thus as external communication of the project’s progress.
However, we also think that it is a hassle of navigating to the wiki page, log in
and update it. In our eyes, the process of documenting is still too much separated
from the design and implementation cycles. It would be great if an IDE contained
support for updating wiki pages. This would allow the developer to easily update
the wiki every time he or she has finished a small part of the implementation.
Perhaps committing files to the SVN repository should be linked with updating the
wiki?

6.3 Collaboration

Throughout all the phases of the project, we worked well as a team. We achieved
this by a great amount of interaction. We kept in contact through instant messaging
using chat applications like ICQ and IRC and we often had meetings in person. We
also kept each other informed or shared ideas when we were en route by using text
messaging on our phones.

As a consequence, we were also able to distribute the workload evenly. By keeping
each other informed of the task we were doing at the moment, we could easily give
each other directions. We could also easily assign each other a task that needed
to be done in the near future. This one-on-one interaction worked well because we
were a two-man team, which in our experience are easier to coordinate.

5http://subclipse.tigris.org/
6https://www.tribler.org/DownloadPerformance

34 CHAPTER 6. REFLECTION

Chapter 7

Conclusions and future work

We conclude this thesis with our conclusions based on our acquired insights. The
answers to our two performance questions are answered in section 7.1. Although we
hoped to acquire more insights into the download performance with our measure-
ment tool, we did not learn much. Still, we gained experience and based on that,
we present the work that still has to be done in section 7.2.

7.1 Conclusions

From the latest measurements, we have to conclude that Tribler is unfortunately
not the best performing client. If we had to rank the six tested BitTorrent clients,
this would be the outcome:

1. Mainline

2. µTorrent

3. Azureus

4. BitTyrant

5. BitComent

6. Tribler

Tribler was 24% slower than the number one client. In order to improve the perfor-
mance of Tribler – or any other BitTorrent client in general – one has to make sure
of the following:

• The client should find fast peers quickly in the beginning phase of a download
in order to reach a maximum speed as soon as possible. This is done by trying
out a lot of peers.

35

36 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• Nearing the end phase of a download (called endgame), the client should
change its piece request behaviour to prevent any slowdowns.

Additionally, a client might benefit from an adaptive strategies, but we were not
able to confirm this. Still, in certain situations a different peer discovery strategy
appeared to be more effective.

7.2 Future work

So far, we have only been exploring the surface of the BitTorrent download perfor-
mance problem. In other to delve deeper and get a greater understanding, we need
a better measurement analysis tool. In order to improve our tool, the following has
to be done:

• The front-end module of our tool should be replaced. The used PDML format
is too restrictive. To do more indepth analysis, we need more control and do
more work ourselves. That is, we need to work with raw ethernet frames.
Unfortunately, we estimate that this approach will take a lot of time.

• After the replacement, more analysis features can be added. Several exam-
ples include storing information about a peer’s upload and the detection and
limited analysis of encrypted traffic.

Finally, worth investigating is the unexpected performance boost of Mainline version
6. Was the client just lucky with its relaxed peer discovery algorithm or can this
algorithm actually benefit from certain situations? If the latter is the case, adaptive
strategies are worth implementing in Tribler.
However, it is also possible that Mainline’s DNA service is improving the download
speeds, although it is not documented. It is also secretly installed, making the
process suspicious. Is BitTorrent.com perhaps selling its users’ upload bandwidth?
Further research should give us a clear answer.

Appendices

37

Appendix A

Requirements and Design

This document presents the requirements and the design of BitSMART, which
stands for BitTorrent Speed Measurement and Analysis for Research Tool. STA-
TUS: Being modified!

A.1 Requirements

A Problem

The BitSMART software will analyze network traffic generated by a BitTorrent
client and present the information in a understandable graphical format.

B Background information

See http://wiki.theory.org/BitTorrentSpecification.

C Environment and system models

The BitSMART software is to run on Linux and Windows systems with root or
administrator privileges. The measurement itself should take place on the same
machine as the running BitTorrent client, which is downloading a single torrent.
During the measurement, the IP address of the machine should remain fixed.

D Functional Requirements

R.1. The BitSMART application must be able to read the output of a pcap1

application, created during a single measurement. This requirement can be
split into two subrequirements:

1Application programming interface for Packet Capturing.

39

40 APPENDIX A. REQUIREMENTS AND DESIGN

R.1.1. The application should be able to preprocess raw pcap files2 and convert
them to an intermediate format in which BitTorrent protocol information
is available.

R.1.2. The application should be able to parse this intermediate format. This
seems to be a trivial requirement, but it is less so when R.1.1 is performed
by an external or foreign software component.

R.2. While reading the output of a pcap application, the BitSMART application
should perform an analysis on the BitTorrent traffic. The analysis should be
stored in an internal data structure. For this analysis, the torrent metadata3

is needed.

R.3. The analysis of R.2 should provide insights in:

R.3.1. Download speed (progress in percentage over time).

R.3.2. Choking (number of chokes, unchokes and unique unchokes over time).

R.3.3. Peer discovery (amount of peers discovered over time).

This means the created datastructure should contain sufficient information to
provide these insights.

R.4. The BitSMART application should be able to store and load the datas-
tructure of R.2 created during analysis to and from a file. Each analysis is
automatically stored to a file.

R.5. After analysis of R.2 has been done, the BitSMART application should be
able to output graphs of R.3.1, R.3.2 and R.3.3.

R.6. The BitSMART application should be able to load several previously stored
analyses and produce combined graphs of R.3.1, R.3.2 and R.3.3.

E Non-functional Requirements

User interface and human factors

The application should be simple in use and runnable from the command line.

Documentation

The process of installing the software tool and the steps required to perform the
measurement of a BitTorrent client should be clearly documented.

2A pcap file contains captured ethernet frames.
3This information is stored in a .torrent file.

A.2. DESIGN 41

Performance

There are no performance constraints imposed on the actual analysis and graphing
features of the BitSMART application.

System modifications

The system should be designed to be modular, so it can easily be modified and
extended in the future.

F Constraints

The system should be written in Python as it is the primary language used by the
Tribler team.

A.2 Design

This part of the document outlines the most important aspects of BitSMART’s
design.

A.2.1 System Overview

Figure A.1: Input and output behaviour.

The BitSMART system takes captured packets as input and produces several
graphs as output. Internally, it contains two main components. The front-end
analyses the captured IP traffic and stores it in some datastructure. This semantic
representation – which is discussed in section A.2.3 – is then passed on to the
back-end. The back-end’s task is to create a visual representation of it.

The main advantage of this design is that it is quite easy to change or extend.
As long as the internal semantic representation is unchanged and well documented,
the front-end can be replaced, either statically or dynamically.

42 APPENDIX A. REQUIREMENTS AND DESIGN

Figure A.2: Change and extension through different front-end modules.

A.2.2 Component View

Figure A.3 is a high-level component overview, showing the connections between
the three top level components. Using the network card, the TCP/UDP packet
capturer component captures all data that the BitTorrent client sends and receives.
Wireshark will fulfill this role in our design, but any packet capturer component can
be used.4 The packets captured by this component will be read by the BitSMART
component’s front-end through file I/O.

The BitSMART component can be split into the following sub-components.
The main application component is the mediator between the front-end components
(Figure A.4, right hand side) and the back-end component. This purpose of the
main component is to select the right front-end component, give it a file containing
captured packets, and pass the results of the front-end component to the back-end.

Front-end Component

We had three options for the front-component, as Wireshark can output the cap-
tured packets in several formats:

• Raw (pcap format)

• Plain text

• PDML (XML format)

Of these three formats, the plain text format was not found to be suitable as it did
not contain detailed information. So two options were left. PDML is easy to read –

4Depending on the output format of the packet capturer, a different front-end might be required.

A.2. DESIGN 43

Figure A.3: High-level component overview.

Figure A.4: Internals of the BitSMART component.

44 APPENDIX A. REQUIREMENTS AND DESIGN

it is an XML document – and it contains specific BitTorrent information. The raw
format on the other hand contains all network packets, but reading it is not quite
as simple. Creating a reader for this format would take a lot of time. The reader
would have to be able to re-assemble TCP packets to construct TCP conversations
and perform analysis on these conversation to recognize BitTorrent traffic. So, the
decision was made to create a reader for the PDML format.

Back-end Component

The back-end component will be based on the graph code we wrote previously.

A.2.3 Class Diagrams

This section describes the datastructure of the internal semantic representation, the
interface of the front-end and the interface of the back-end.

Semantic Representation

Figure A.5: Semantic representation.

The structure of the semantic representation is based on the previously written
code. Each change or event is modeled as a Record. Each record contains a time
field and an offset field. The offset is the time difference between the current record
and the first record.

Front-end Interface

The interface of a front-end module consists of a constructor accepting a file handle
or its file name containing captured packets and the dictionary read from a torrent

A.2. DESIGN 45

Figure A.6: PacketReader interface and structure.

meta file. By invoking read packets(), the reader will read the file and the results
from the analysis will be available in public properties. After each read operation,
the packets file can be changed with change packets(). This is used for input
spanning multiple files.

The PDMLReader class implements all methods and public fields of the front-end
interface. It uses the BufferedXMLReader to read the PDML format. By iterating
over all the XML nodes, the PDMLReader extracts the information required.

Back-end Interface

Figure A.7: Back-end interface.

46 APPENDIX A. REQUIREMENTS AND DESIGN

The interface of the back-end module is straightforward. It can create graphs from
a single measurement by using plot file() and it can create graphs from several
measurements by using plot files().

A.2.4 Sequence Diagrams

The following diagrams show the sequence of method calls when a user wants to
preprocess, analyse and plot a single or several measurements. The general overview
is depicted in Figure A.8. A detailed view of reading PDML files is shown in Figure
A.9.

Figure A.8: Sequence diagram of preprocessing, analysing and plotting a single and
multiple measurements.

A.2. DESIGN 47

Figure A.9: Sequence diagram of parsing the PDML file.

A.2.5 Algorithms

In this section we will discuss general algorithms that are required for components
of the BitSMART system.

Local IP Discovery

A file containing captured packets does not explicitly contain the IP address of
the machine on which the packets were captured. We need to analyse the TCP
packets to figure out the local IP address, so we know which BitTorrent messages
are relevant.

To figure out the local address, we need to iterate through the active TCP
connections. A TCP connection consists of two endpoints. One of these endpoints
is our local node; the other is some foreign node. Now, if we consider all pairs of

48 APPENDIX A. REQUIREMENTS AND DESIGN

Figure A.10: An example of connections between several nodes.

endpoints, one endpoint will occur in multiple pairs. This endpoint is the local
node. So if we store each pair in a dictionary of sets, the entry whose set contains
more than one endpoint will be the local endpoint we’re looking for. The algorithm
based on this idea is shown in Figure A.11.

Figure A.11: Local IP Discovery Algorithm.

Appendix B

Test Plan

Overview

Because of the dynamic nature of a language like Python, testing is harder and
prone to runtime-errors. Because of this we have chosen to do unit tests and a lot
of manual testing.

Tools used for testing

For the unit testing, we have used two of the build-in unit testing frameworks in
Python, the unittest module and the doctest module. The following code snippets
are two examples of both the unittest and the doctest module:

unittest

import random

import unittest

class TestSequenceFunctions(unittest.TestCase):

’’’Test sequence functions

The class inherits unittest.TestCase to enable unit testing’’’

def setUp(self):

’’’Prepare the variables for the tests’’’

self.seq = range (10)

def testchoice(self):

’’’Test if the random.choice function is working properly’’’

element = random.choice(self.seq)

49

50 APPENDIX B. TEST PLAN

self.assert_(element in self.seq)

if __name__ == ’ __main__ ’ :

unittest.main()

If everything is working correctly, the output of “python file.py -v“ should be some-
thing like this:

Test if the random.choice function is working properly ... ok

--

Ran 1 test in 0.000s

OK

doctest

def pow(x, y=2):

’’’Return x raised to the power y

The lines prepended with >>> will be executed, the lines

below that, without the >>> are the expected results, if

the output differs an error is given

>>> pow(0, 0)

1

>>> pow(4, -1)

0.25

Create an error and say that we’re expecting that error

>>> pow(’test’)

Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for ** or pow():

’str’ and ’int’

In Python ** is equivalent to x^y (latex style)

or pow(x, y) (c style)’’’

return x ** y

’ Check if we are running as a standalone file or are imported

as a module ’

51

if __name__ == ’ __main__ ’ :

’ import the doctest module and test the module ’

import doctest

doctest.testmod(exclude_empty=True)

If everything is working correctly the output of “python file.py -v” should be some-
thing like this:

Trying:

pow(0, 0)

Expecting:

1

ok

Trying:

pow(4, -1)

Expecting:

0.25

ok

Trying:

pow(’test’)

Expecting:

Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for ** or pow():

’str’ and ’int’

ok

1 items passed all tests:

3 tests in __main__.pow

3 tests in 1 items.

3 passed and 0 failed.

Test passed.

Testing BitSMART

Besides the unit tests discussed in the previous section, we have tested the pro-
gram thoroughly by giving the program varying input. While doing this, we used
Wireshark to check if the output was correct.

For the automated tests for BitSMART, one has to enter the following command:

python test.py

This command has an optional “-i” or “–interactive” flag to enable the interac-
tive tests for Gnuplot.py. Unfortunately, because of limitations in the Gnuplot.py
module, this is the only way to test it currently (Figure B.1).

52 APPENDIX B. TEST PLAN

Figure B.1: Testing the Gnuplot.py module.

Appendix C

Deployment

Overview

Figure C.1: Deployment diagram.

This document describes the deployment of the BitSMART application.

Measurement Machine

For the measurement machine, it is required that it has the following components
installed:

• The BitTorrent client to be tested.

• The Wireshark network protocol analyser tool.
http://www.wireshark.org/.

To perform the actual measurement, please see the BitSMART manual.

53

54 APPENDIX C. DEPLOYMENT

Analysis Machine

For the analysis machine, it is required that it has the following components in-
stalled:

• The BitSMART application.
https://www.tribler.org/DownloadPerformance.

• The Wireshark network protocol analyser tool.
http://www.wireshark.org/.

• Python 2.4 or 2.5.
http://www.python.org/.

• gnuplot 4.2 patch level 2.
http://www.gnuplot.info/.

• Gnuplot.py 1.7.
http://gnuplot-py.sourceforge.net/.

• NumPy 24.2.
numpy.scipy.org/

It is recommended that Python, Wireshark and gnuplot binaries are added to the
path environment variable.

55

Deploying BitSMART

BitSMART can be simply deployed by unpacking its archive.

File Descriptions

/

bitsmart.py Application entry point

test.py Test cases

libs Libraries directory

argparse.py Command line arguments parser

bencode.py Bencode encoding and decoding

type.py Record class hierarchy

readers Front-end modules directory

PDMLReader PDML format reader module

packetreader.py PacketReader class

xmlreader.py BufferedXMLReader class

tests Test data directory for test.py

tools Tools directory

graph.py Back-end graphing module

plugins.py Dynamic module loading

56 APPENDIX C. DEPLOYMENT

Appendix D

BitSMART Manual

This manual presents the system requirements and the usage of the BitSMART

tool.

System Requirements

The following software packages are required to run BitSMART:

• Python 2.4 or 2.5

http://www.python.org/

Tested with both Python 2.4 and Python 2.5

• Wireshark

http://www.wireshark.org/

Tested with Wireshark 0.99.6

• gnuplot

http://www.gnuplot.info

Tested with gnuplot 4.2 patchlevel 2 (must support both svg and png)

• Gnuplot.py

http://gnuplot-py.sourceforge.net/

Tested with Gnuplot.py 1.7

• NumPy

http://numpy.scipy.org/

57

58 APPENDIX D. BITSMART MANUAL

Tested with Numeric 24.2 (note, Gnuplot.py is not compatible with recent

versions that use “import numpy” instead of “import Numeric”)

It is recommended that the Python, Wireshark and gnuplot binaries are added to

the path environment variable.

Usage

To use BitSMART to perform a measurement, please follow the following steps.

Preparations

Before performing the measurement, configure the BitTorrent client under test.

After configuring the client, please look up the correct network interface with:

tshark -D

Performing a Test Capture

Before actually starting a measurement, do a test capture:

tshark -i network interface

Check if packets are captured when there is network activity. If not, try turning off

promiscuous mode:

tshark -i network interface -p

If all fails, please read the Wireshark manual.

Measurement

To perform a measurement, execute the following steps:

1. Run tshark:

tshark -i network interface [-p] filename.pcap

2. Start the BitTorrent client under test and start the download.

3. After the download finished, stop tshark by pressing Ctrl+C.

59

General information about BitSMART

Path

If Python is not in your PATH, it can be called like this in Linux:

/usr/bin/env python bitsmart.py -h

In Windows, one can add the Python folder to the PATH on the Advanced tab of

the System applet in the Control Panel.

Output directory

The output directory (where all the files will be placed) can be specified like this:

bitsmart.py -o directory

or:

bitsmart.py --output directory

Extra info

If more info is needed, bitsmart.py -h and bitsmart.py --help give an overview

of all flags and there descriptions. BitSMART is capable of processing multiple

files at once. filename means one or more files and the flags affect all of the given

files.

Preprocessing

Captured pcap files must be processed before they can be analysed:

bitsmart.py -p filename

or:

bitsmart.py --preprocess filename

This reads filename.pcap and produces a filename.xml file.

60 APPENDIX D. BITSMART MANUAL

Analysing

Preprocessed files can be analysed to convert the xml file to a pickle file:

bitsmart.py -a filename

or:

bitsmart.py --analyse filename

This will generate filename.pickle. The latter file is used for combining graphs. If

there is no filename.xml available BitSMART will try to find a filename.pcap and

process this file.

Adding a torrent file

The analyse mode has the possibility of adding a torrent file for more acuraccy, by

doing this the amount of pieces can be retrieved directly instead of being guessed

from the bitfield. The torrent file must be given as an extra flag:

bitsmart.py -a filename -t torrentfile

or:

bitsmart.py --analyse filename --torrent torrentfile

Creating a single graph

A previous measurement can be graphed as follows:

bitsmart.py -s filename

or:

bitsmart.py --single filename

This produces the graphs filename.png and filename.svg.

If there is no filename.pickle available, BitSMART will try to find a filename.xml

and analyse this file.

Combining Several Measurements Graphs

Previous measurements can be combined and graphed as follows:

61

bitsmart.py -c filename1 [filename2 ...]

or:

bitsmart.py --combine filename1 [filename2 ...]

This produces several graphs:

• peers.png/svg

• progress.png/svg

• chokes.png/svg

• unchokes.png/svg

• unique unchokes.png/svg

If there is no filename.pickle available, BitSMART will try to find a filename.xml

and analyse this file.

62 APPENDIX D. BITSMART MANUAL

Bibliography

[1] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys, 36(4):335–371, Dec 2004.

[2] Ashwin Navin of BitTorrent, discussing BitTorrent DNA.
http://youtube.com/watch?v=uEF_giyvRaA.

[3] Azureus - Java BitTorrent Client.
http://azureus.sourceforge.net/.

[4] BitComet - A C++ BitTorrent client.
http://www.bitcomet.com/.

[5] BitThief - A free riding BitTorrent client.
http://dcg.ethz.ch/projects/bitthief/.

[6] BitTorrent - The Official BitTorrent client (mainline).
http://www.bittorrent.com/.

[7] BitTorrent DNA - Delivery Network Acceleration.
http://www.bittorrent.com/about/dna.

[8] BitTyrant - A strategic BitTorrent client based on Azureus.
http://bittyrant.cs.washington.edu/.

[9] CacheLogic.
http://www.cachelogic.com/.

[10] B. Cohen. Personal announcement: BitTorrent - a new P2P app.
http://finance.groups.yahoo.com/group/decentralization/message/3160.

[11] B. Cohen. Incentives Build Robustness in BitTorrent. Workshop on Economics of
Peer-to-Peer Systems, 6, 2003.

[12] libpcap - A low-level network monitoring framework.
http://sourceforge.net/projects/libpcap/.

[13] libtorrent - Open source C++ client.
http://sourceforge.net/projects/libtorrent/.

[14] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani. Do
incentives build robustness in BitTorrent?, 2006.

63

64 BIBLIOGRAPHY

[15] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J. Epema,
M. Reinders, M. van Steen, and H.J. Sips. Tribler: A social-based peer-to-peer
system. Concurrency and Computation (to appear), 2007. Accepted for publication.

[16] A.S. Tanenbaum. Computer Networks Fourth Edition. Person Education Interna-
tional, 2003.

[17] Tribler, Boudewijn Client.
https://www.tribler.org/browser/abc/branches/boudewijn/tribler-frayja.

[18] The Tribler Client.
https://www.tribler.org/Download.

[19] Tribler - The Tribler Vision.
https://www.tribler.org/triblerVision.

[20] Unofficial BitTorrent Protocol Specification 1.0.
http://wiki.theory.org/BitTorrentSpecification.

[21] µTorrent - A lightweight BitTorrent client.
http://www.utorrent.com/.

[22] WebSiteOptimization.com. Europe Passes US in Broadband Penetration.
http://www.websiteoptimization.com/bw/0709/.

[23] Wireshark - Network Protocol Analyzer.
http://www.wireshark.org/.

