A connected F-space

Non impeditus ab ulla scientia

K. P. Hart

Faculty EEMCS
TU Delft

Oxford, 10 August, 2006: 14:30-14:55
Outline

1. The main result

2. Why?
 - d-independent sets and d-bases
 - What does our space do then?

3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. Sources

K. P. Hart

A connected F-space
There is a compact Hausdorff space, X, that is connected and an F-space.
A space and a function

- There is a compact Hausdorff space, X, that is \textit{connected} and an \textit{F-space}.
- It supports a continuous real-valued function, f, that is not \textit{essentially constant}.
Contrasting behaviour of functions

For every continuous function \(g : X \to \mathbb{R} \) and every \(t \) in the interior of the interval \(g[X] \) the interior of \(g^{←}(t) \) is nonempty. (Follows from connected plus \(F \).)
The main result

Why?
The construction
Sources

Contrasting behaviour of functions

- For every continuous function $g : \mathbb{X} \to \mathbb{R}$ and every t in the interior of the interval $g[X]$ the interior of $g^{-1}(t)$ is nonempty. (Follows from connected plus F.)
- Yet, for f we have: $\Omega_f = \bigcup_t \text{int} f^{-1}(t)$ is not dense. (This is not essentially constant.)
Outline

1. The main result

2. Why?
 - d-independent sets and d-bases
 - What does our space do then?

3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. Sources

K. P. Hart
A connected F-space
D, a subset of $C(X)$, is \textit{d-independent} if for every nonempty open set O the nonzero elements in $\{d \upharpoonright O : d \in D\}$ are linearly independent.
A d-independent set D is a d-basis if for every $g \in C(X)$ there is a disjoint family \mathcal{O} of open sets, with dense union, such that for every O the restriction $g \upharpoonright O$ is a linear combination of (finitely many members of) \(\{d \upharpoonright O : d \in D \} \).
Outline

1. The main result
2. Why?
 - d-independent sets and d-bases
 - What does our space do then?
3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X
4. Sources

K. P. Hart

A connected F-space
Maximally independent does not mean base

- The family \{1\} is maximally d-independent.

 (For every continuous function $g : X \to \mathbb{R}$ and every t in the interior of the interval $g[X]$ the interior of $g^{-1}(t)$ is nonempty.)
Maximally independent does not mean base

- The family \{1\} is maximally \(d\)-independent. (For every continuous function \(g : X \rightarrow \mathbb{R}\) and every \(t\) in the interior of the interval \(g[X]\) the interior of \(g^{-1}(t)\) is nonempty.)

- Yet, the family \{1\} is not a \(d\)-basis. (For \(f\) we have: \(\Omega_f = \bigcup_t \text{int} f^{-1}(t)\) is not dense.)
Using a d-basis that contains 1 one can project $C(X)$ onto the subspace of essentially constant functions, in case X is extremally disconnected.
Using a d-basis that contains 1 one can project $C(X)$ onto the subspace of essentially constant functions, in case X is extremally disconnected. Unknown (but wanted) for basically disconnected spaces.
No (easy) projection

Using a d-basis that contains 1 one can project $C(X)$ onto the subspace of essentially constant functions, in case X is extremally disconnected. Unknown (but wanted) for basically disconnected spaces. Apparently even more difficult for F-spaces.
1. **The main result**

2. **Why?**
 - d-independent sets and d-bases
 - What does our space do then?

3. **The construction**
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. **Sources**

K. P. Hart
A connected F-space
Think of X as the following subspace of S:

\[([0, 1] \times \{0\}) \cup (C \times [0, 1]) \]

(C is the Cantor set)
Think of X as the following subspace of S:

$$([0, 1] \times \{0\}) \cup (C \times [0, 1])$$

(C is the Cantor set)

Think of f as resulting from the map from C onto $[0, 1]$ and constant on complementary intervals in bottom line.
Think of \(X\) as the following subspace of \(S\):

\[
([0, 1] \times \{0\}) \cup (C \times [0, 1])
\]

\((C\) is the Cantor set\)

Think of \(f\) as resulting from \(the\) map from \(C\) onto \([0, 1]\) and constant on complementary intervals in bottom line.

This ‘\(X\)’ is not an \(F\)-space . . .
Outline

1. The main result

2. Why?
 - d-independent sets and d-bases
 - What does our space do then?

3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. Sources

K. P. Hart

A connected F-space
Let S be the unit square $[0, 1]^2$
Let S be the unit square $[0, 1]^2$

Let $S = \omega \times S$
Let S be the unit square $[0, 1]^2$

Let $\mathbb{S} = \omega \times S$

Define $p : \mathbb{S} \to [0, 1]$ by $p(n, x, y) = x$
A particular β

- Let S be the unit square $[0, 1]^2$
- Let $\mathcal{S} = \omega \times S$
- Define $p : \mathcal{S} \to [0, 1]$ by $p(n, x, y) = x$
- and extend to $\beta p : \beta \mathcal{S} \to [0, 1]$.
A component of βS and a function

- $\beta \pi : \beta S \rightarrow \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.

K. P. Hart

A connected F-space
A component of βS and a function

- $\beta \pi : \beta S \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.

K. P. Hart

A connected F-space
A component of βS and a function

- $\beta \pi : \beta S \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{-1}(u)$
A component of βS and a function

- $\beta \pi : \beta S \rightarrow \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{-1}(u)$.
- S_u is a compact connected F-space
A component of βS and a function

- $\beta \pi : \beta S \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{-1}(u)$.
- S_u is a compact connected F-space.
- $\beta p \upharpoonright S_u$ is continuous.
A component of βS and a function

- $\beta \pi : \beta S \to \beta \omega$ is the extension of $\pi : \langle n, x, y \rangle \mapsto n$.
- Pick one $u \in \beta \omega \setminus \omega$.
- Let $S_u = \beta \pi^{-1}(u)$.
- S_u is a compact connected F-space.
- $\beta p \upharpoonright S_u$ is continuous.

but S_u and βp are not good enough . . .
Outline

1. The main result

2. Why?
 - d-independent sets and d-bases
 - What does our space do then?

3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. Sources

K. P. Hart

A connected F-space
Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively
Get rid of interiors

Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively

- $Y_{\alpha+1} = Y_\alpha \setminus \bigcup_t \text{int}_\alpha q_\alpha^{-1}(t)$ and $q_{\alpha+1} = q_\alpha \upharpoonright Y_{\alpha+1}$
 (\text{int}_\alpha: \text{interior in } Y_\alpha)
Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively

- $Y_{\alpha+1} = Y_\alpha \setminus \bigcup_t \text{int}_\alpha q_\alpha^{-1}(t)$ and $q_{\alpha+1} = q_\alpha \upharpoonright Y_{\alpha+1}$ (intα: interior in Y_α)
- $Y_\alpha = \bigcap_{\beta < \alpha} Y_\beta$ and $q_\alpha = q_0 \upharpoonright Y_\alpha$ if α is a limit
Get rid of interiors

Set $Y_0 = S_u$ and $q_0 = \beta p \upharpoonright Y_0$ and recursively

- $Y_{\alpha+1} = Y_{\alpha} \setminus \bigcup_t \text{int}_\alpha q_\alpha^\leftarrow(t)$ and $q_{\alpha+1} = q_\alpha \upharpoonright Y_{\alpha+1}$ (int$_\alpha$: interior in Y_α)
- $Y_\alpha = \bigcap_{\beta < \alpha} Y_\beta$ and $q_\alpha = q_0 \upharpoonright Y_\alpha$ if α is a limit

There is a first (limit) $\delta < c^+$ where $Y_\delta = Y_{\delta+1}$, meaning that $\text{int}_\delta q_\delta^\leftarrow(t) = \emptyset$ for all t
1. The main result

2. Why?
 - d-independent sets and d-bases
 - What does our space do then?

3. The construction
 - Intuition
 - Starting point
 - Thin out S_u
 - Create X

4. Sources
Tie everything together

Sadly, Y_δ is not connected
Tie everything together

Sadly, Y_δ is not connected
However, take the bottom line of S_u:
Tie everything together

 Sadly, Y_δ is not connected
However, take the bottom line of S_u:

$$B_u = S_u \cap \text{cl}(\omega \times [0, 1] \times \{0\}).$$
Here are X and f

Finally then

\[X = B_u \cup Y \delta \]

$f = \beta p \upharpoonright X$

X is connected and F-space

All components of Y meet the top line, so $\Omega f \subseteq B_u$ is not dense
Here are X and f

Finally then

$$X = B_u \cup Y_\delta$$
Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$
Here are X and f

Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$

X is connected and F
Here are X and f

Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$

X is connected and F
int $f^{-1}(t) \subseteq B_u$ for all t
Finally then

- $X = B_u \cup Y_\delta$
- $f = \beta p \upharpoonright X$

X is connected and F

$\text{int} f^{-1}(t) \subseteq B_u$ for all t

All components of Y_δ meet the top line, so $\Omega_f \subseteq B_u$ is not dense
Light reading

Website: fa.its.tudelft.nl/~hart

- Y. A. Abramovich and A. K. Kitover.

- K. P. Hart.
 \textit{A connected F-space}, Positivity, 10 (2006), 607–611.